WorldWideScience

Sample records for nano level detection

  1. Magnetic bead detection using nano-transformers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kwon; Ahn, Doyeol [Institute of Quantum Information Processing and Systems, University of Seoul, 90 Jeonnong, Dongdaemun, Seoul 130-743 (Korea, Republic of); Hwang, Jong Seung; Hwang, Sung Woo, E-mail: dahn@uos.ac.kr [Research Center for Time-domain Nano-functional Devices and School of Electrical Engineering, Korea University, 5-1 Anam, Sungbuk, Seoul 136-701 (Korea, Republic of)

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.

  2. Magnetic bead detection using nano-transformers.

    Science.gov (United States)

    Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.

  3. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases.

    Science.gov (United States)

    Gupta, Vinod K; Al Khayat, Maysoon; Singh, Ashok K; Pal, Manoj K

    2009-02-16

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2'-(1Z,1'Z)-(1E,1'E)-(1,2-phenylenebis(methan-1-yl-1-ylidene))bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-ylidene)diphenol (L(1)) and 4,4'-(1E,1'E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L(2)) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L(1)) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 x 10(-9) to 1.0 x 10(-1)M Cd(2+) with limit of detection 3.1 x 10(-9), performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  4. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases

    International Nuclear Information System (INIS)

    Gupta, Vinod K.; Al Khayat, Maysoon; Singh, Ashok K.; Pal, Manoj K.

    2009-01-01

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2'-(1Z,1'Z)-(1E,1'E)-(1,2-phenylenebis(methan-1-yl-1-ylidene)) bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene) bis(methan-1-yl-ylidene)diphenol (L 1 ) and 4,4'-(1E,1'E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene)) bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L 2 ) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L 1 ) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 x 10 -9 to 1.0 x 10 -1 M Cd 2+ with limit of detection 3.1 x 10 -9 , performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11 s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants

  5. Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinod K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)], E-mail: vinodfcy@iitr.ernet.in; Al Khayat, Maysoon [Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (United Arab Emirates); Singh, Ashok K.; Pal, Manoj K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)

    2009-02-16

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, 2,2'-(1Z,1'Z)-(1E,1'E)-(1,2-phenylenebis(methan-1-yl-1-ylidene)) bis(azaan-1-yl-1-ylidene)bis(methylene)bis(azan-1-yl-1-ylidene) bis(methan-1-yl-ylidene)diphenol (L{sub 1}) and 4,4'-(1E,1'E)-(butane-1,4-diylbis(azan-1-yl-1-ylidene)) bis(methan-1-yl-1-ylidene)dinaphthalen-1-ol (L{sub 2}) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (L{sub 1}) (2.6%):PVC (31.6%):DOP (63.2%):NaTPB (2.6%). The proposed electrode exhibits Nernstian response in the concentration range 5.0 x 10{sup -9} to 1.0 x 10{sup -1} M Cd{sup 2+} with limit of detection 3.1 x 10{sup -9}, performs satisfactorily over wide pH range (2.0-8.5) with a fast response time (11 s). The electrode has been found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2.5 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in cigarette samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  6. Water level detection pipeline

    International Nuclear Information System (INIS)

    Koshikawa, Yukinobu; Imanishi, Masatoshi; Niizato, Masaru; Takagi, Masahiro

    1998-01-01

    In the present invention, water levels of a feedwater heater and a drain tank in a nuclear power plant are detected at high accuracy. Detection pipeline headers connected to the upper and lower portions of a feedwater heater or a drain tank are connected with each other. The connection line is branched at appropriate two positions and an upper detection pipeline and a lower detection pipeline are connected thereto, and a gauge entrance valve is disposed to each of the detection pipelines. A diaphragm of a pressure difference generator is connected to a flange formed to the end portion. When detecting the change of water level in the feedwater heater or the drain tank as a change of pressure difference, gauge entrance valves on the exit side of the upper and lower detection pipelines are connected by a connection pipe. The gauge entrance valve is closed, a tube is connected to the lower detection pipe to inject water to the diaphragm of the pressure difference generator passing through the connection pipe thereby enabling to calibrate the pressure difference generator. The accuracy of the calibration of instruments is improved and workability thereof upon flange maintenance is also improved. (I.S.)

  7. The All Terrain Bio nano Gear for Space Radiation Detection System

    International Nuclear Information System (INIS)

    Ummat, Ajay; Mavroidis, Constantinos

    2007-01-01

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system

  8. Direct Identification of Atomic-Like Electronic Levels in InAs Nano crystal Quantum Dots

    International Nuclear Information System (INIS)

    Millo, O.; Katz, D.

    1999-01-01

    The size dependent level structure of InAs nano crystals in the range 2-7 nm in diameter is investigated using both tunneling and optical spectroscopies. The tunneling measurements are performed using a cryogenic scanning tunneling microscope on individual nano crystals that, are attached to a gold substrate via dithiol molecules. The tunneling I-V characteristics manifest an interplay between single electron charging and quantum size effects. We are able to directly identify quantum confined states of isolated InAs nano crystals having s and p symmetries. These states are observed in the I-V curves as two and six-fold single electron charging multiplets. Excellent agreement is found between the strongly allowed optical transitions [1] and the spacing of levels detected in the tunneling experiment. This correlation provides new information on the quantum-dot level structure, from which we conclude that the top-most valence band state has both s and p characteristics. The interplay between level structure singles electron charging of the nano crystals obeys an atomic-like Aufbau sequential electron level occupation

  9. Large Scale Plasmonic nanoCones array For Spectroscopy Detection

    KAUST Repository

    Das, Gobind; Battista, Edmondo; Manzo, Gianluigi; Causa, Filippo; Netti, Paolo; Di Fabrizio, Enzo M.

    2015-01-01

    Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large area 3D plasmonic arrays, their direct and easy functionalization with capture elements and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques. In detail we have investigated the effect of Au-based nanoCones array, fabricated by means of direct nanoimprint technique over large area (mm2), on protein capturing and on the enhancement in optical signal. A selective functionalization of gold surfaces was proposed by using a peptide (AuPi3) previously selected by phage display. In this regard, two different sequences, labeled with fluorescein and biotin, were chemisorbed on metallic surfaces. The presence of Au nanoCones array consents an enhancement in electric field on the apex of cone, enabling the detection of molecules. We have witnessed around 12-fold increase in fluorescence intensity and SERS enhancement factor around 1.75 ×105 with respect to the flat gold surface. Furthermore, a sharp decrease in fluorescence lifetime over nanoCones confirms the increase in radiative emission (i.e. an increase in photonics density at the apex of cones).

  10. Large Scale Plasmonic nanoCones array For Spectroscopy Detection

    KAUST Repository

    Das, Gobind

    2015-09-24

    Advanced optical materials or interfaces are gaining attention for diagnostic applications. However, the achievement of large device interface as well as facile surface functionalization largely impairs their wide use. The present work is aimed to address different innovative aspects related to the fabrication of large area 3D plasmonic arrays, their direct and easy functionalization with capture elements and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques. In detail we have investigated the effect of Au-based nanoCones array, fabricated by means of direct nanoimprint technique over large area (mm2), on protein capturing and on the enhancement in optical signal. A selective functionalization of gold surfaces was proposed by using a peptide (AuPi3) previously selected by phage display. In this regard, two different sequences, labeled with fluorescein and biotin, were chemisorbed on metallic surfaces. The presence of Au nanoCones array consents an enhancement in electric field on the apex of cone, enabling the detection of molecules. We have witnessed around 12-fold increase in fluorescence intensity and SERS enhancement factor around 1.75 ×105 with respect to the flat gold surface. Furthermore, a sharp decrease in fluorescence lifetime over nanoCones confirms the increase in radiative emission (i.e. an increase in photonics density at the apex of cones).

  11. Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde.

    Science.gov (United States)

    Akshath, Uchangi Satyaprasad; Bhatt, Praveena

    2018-02-15

    Supramolecular nanoparticle hybrids for biosensing of analytes have been a major focus due to their tunable optical and surface properties. Quantum dots-Gold nanoparticle (QDs-GNP) based FRET probes involving turn on/off principles have gained immense interest due to their specificity and sensitivity. Recent focus is on applying these supramolecular hybrids for enzyme operated biosensors that can specifically turn-on fluorescence induced by co-factor or product formed from enzymatic reaction. The present study focuses on locking and unlocking the interaction between QD-GNP pair leading to differential fluorescent properties. Cationic GNPs efficiently quenched the anionic QD fluorescence by forming nanoparticle hybrid. Quenching interaction between QD-GNP pair was unlocked by NADH leading to QD fluorescence turn-on. This phenomenon was applied for the successful detection of formaldehyde using NAD + dependent formaldehyde dehydrogenase. The proposed nano-sniffer could successfully detect formaldehyde from 0.001 to 100000ng/mL (R 2 = 0.9339) by the turn off-turn on principle. It could also detect formaldehyde in fruit juice and wine samples indicating its stability and sensitivity in real samples. The proposed nanoprobe can have wide applications in developing enzyme biosensors in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 'Nano-immuno test' for the detection of live Mycobacterium avium subspecies paratuberculosis bacilli in the milk samples using magnetic nano-particles and chromogen.

    Science.gov (United States)

    Singh, Manju; Singh, Shoor Vir; Gupta, Saurabh; Chaubey, Kundan Kumar; Stephan, Bjorn John; Sohal, Jagdip Singh; Dutta, Manali

    2018-04-26

    Early rapid detection of Mycobacterium avium subspecies paratuberculosis (MAP) bacilli in milk samples is the major challenge since traditional culture method is time consuming and laboratory dependent. We report a simple, sensitive and specific nano-technology based 'Nano-immuno test' capable of detecting viable MAP bacilli in the milk samples within 10 h. Viable MAP bacilli were captured by MAP specific antibody-conjugated magnetic nano-particles using resazurin dye as chromogen. Test was optimized using true culture positive (10-bovine and 12-goats) and true culture negative (16-bovine and 25-goats) raw milk samples. Domestic livestock species in India are endemically infected with MAP. After successful optimization, sensitivity and specificity of the 'nano-immuno test' in goats with respect to milk culture was 91.7% and 96.0%, respectively. Whereas, it was 90.0% (sensitivity) and 92.6% (specificity) with respect to IS900 PCR. In bovine milk samples, sensitivity and specificity of 'nano-immuno test' with respect to milk culture was 90.0% and 93.7%, respectively. However, with respect to IS900 PCR, the sensitivity and specificity was 88.9% and 94.1%, respectively. Test was validated with field raw milk samples (goats-258 and bovine-138) collected from domestic livestock species to detect live/viable MAP bacilli. Of 138 bovine raw milk samples screened by six diagnostic tests, 81 (58.7%) milk samples were positive for MAP infection in one or more than one diagnostic tests. Of 81 (58.7%) positive bovine raw milk samples, only 24 (17.4%) samples were detected positive for the presence of viable MAP bacilli. Of 258 goats raw milk samples screened by six diagnostic tests, 141 (54.6%) were positive for MAP infection in one or more than one test. Of 141 (54.6%) positive raw milk samples from goats, only 48 (34.0%) were detected positive for live MAP bacilli. Simplicity and efficiency of this novel 'nano-immuno test' makes it suitable for wide-scale screening of milk

  13. Detection of triglyceride using an iridium nano-particle catalyst based amperometric biosensor.

    Science.gov (United States)

    Liao, Wei-Yin; Liu, Chung-Chiun; Chou, Tse-Chuan

    2008-12-01

    The detection and quantification of triglyceride (TG) using an iridium nano-particle modified carbon based biosensor was successfully carried out in this study. The detection procedures were based on the electrochemical detection of enzymatically produced NADH. TG was hydrolyzed by lipase and the glycerol produced was catalytically oxidized by NAD-dependent glycerol dehydrogenase producing NADH in a solution containing NAD(+). Glyceryl tributyrate, a short chain triglyceride, was chosen as the substrate for the evaluation of this TG biosensor in bovine serum and human serum. A linear response to glyceryl tributyrate in the concentration range of 0 to 10 mM and a sensitivity of 7.5 nA mM(-1) in bovine serum and 7.0 nA mM(-1) in human serum were observed experimentally. The potential interference of species such as uric acid (UA) and ascorbic acid (AA) was assessed. The incorporation of a selected surfactant and an increase in the incubation temperature appeared to enhance the performance of this biosensor. The conditions for the determination of TG levels in bovine serum using this biosensor were optimized, with sunflower seed oil being used as an analyte to simulate the detection of TG in blood. The experimental results demonstrated that this iridium nano-particle modified working electrode based biosensor provided a relatively simple means for the accurate determination of TG in serum.

  14. Concurrent infections of pseudorabies virus and porcine bocavirus in China detected by duplex nanoPCR.

    Science.gov (United States)

    Luo, Yakun; Liang, Lin; Zhou, Ling; Zhao, Kai; Cui, Shangjin

    2015-07-01

    Nanoparticle-assisted polymerase chain reaction (nanoPCR) is a novel method for the simple, rapid, and specific amplification of DNA and has been used to detect viruses. A duplex nanoPCR molecular detection system was developed to detect pseudorabies virus (PRV) and porcine bocavirus (PBoV). Primers were selected to target conserved regions within the PRV gE gene and the PBoV NS1 gene. Under optimized nanoPCR reaction conditions, two specific fragments of 316 bp (PRV) and 996 bp (PBoV) were amplified by the duplex nanoPCR with a detection limit of 6 copies for PRV and 95 copies for PBoV; no fragments were amplified when other porcine viruses were used as template. When used to test 550 clinical samples, the duplex nanoPRC assay and a conventional duplex PCR assay provided very similar results (98.1% consistency); single PRV infections, single PBoV infections, and concurrent PRV and PBoV infections were detected in 37%, 15%, and 9% of the samples, respectively. The results indicate that the novel duplex nanoPCR assay is useful for the rapid detection of PRV and PBoV in pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  16. Low level photoneutron detection equipment

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Yuqin; Li Yuansui

    1991-01-01

    A low level photoneutron detection equipment has been developed. The photoneutrons produced by interaction of 226 Ra gamma quanta and deutron (D) target are detected with n-n discrimination detector made up of 3 He proportional counter array. The D-content information in the target can be obtained from the measured photoneutron counts. The equipment developed is mainly used for nondestructive D-content measurement of D-devices

  17. Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae.

    Science.gov (United States)

    Masser, Anna E; Kandasamy, Ganapathi; Kaimal, Jayasankar Mohanakrishnan; Andréasson, Claes

    2016-05-01

    Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon-optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half-lives of 40 and 5 min, respectively. The commercial substrate Nano-Glo® is compatible with detection of yNluc bioluminescence in yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd.

  18. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil

    2012-01-01

    that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  19. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    Science.gov (United States)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  20. Nb nanoSQUIDs for detection of small spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Woelbing, R.; Nagel, J.; Kemmler, M.; Kleiner, R.; Koelle, D. [Physikalisches Institut, Universitaet Tuebingen (Germany); Kieler, O.; Weimann, T.; Kohlmann, J.; Zorin, A. [Fachbereich 2.4 ' ' Quantenelektronik' ' , PTB Braunschweig (Germany); Buchter, A.; Xue, F.; Poggio, M. [Department of Physics, University of Basel (Switzerland); Rueffer, D.; Russo-Averchi, E.; Fontcuberta i Morral, A. [Laboratoire des Materiaux Semiconducteurs, EPF Lausanne (Switzerland); Huber, R.; Berberich, P. [Physik-Department E10, Technische Universitaet Muenchen (Germany); Grundler, D. [Laboratoire des Materiaux Semiconducteurs, EPF Lausanne (Switzerland); Physik-Department E10, Technische Universitaet Muenchen (Germany)

    2013-07-01

    We report on the realization of highly sensitive dc nanoSQUIDs for the investigation of small spin systems in moderate magnetic fields. The Nb SQUIDs are based on normal metal Josephson junctions made of HfTi and patterned by e-beam lithography. We demonstrate stable operation up to B = ± 50 mT without degradation of rms flux noise (S{sub Φ}{sup 1/2} ≤ 280 nΦ{sub 0}/√(Hz)). We also present a multifunctional system combining a Nb nanoSQUID and a low-temperature magnetic force microscope (LTMFM) with a Ni nanotube as a scanning tip. This system allows for magnetization measurements of the Ni tube by using both, LTMFM and SQUID readout. Furthermore, the measurement of magnetic flux Φ vs. position of the particle provides an experimental determination of the coupling factor φ{sub μ} = Φ/μ between SQUID and Ni tube with magnetic moment μ. The results confirm our predictions from numerical simulations, taking into account the SQUID geometry.

  1. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    Science.gov (United States)

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  2. Novel Selective Detection Method of Tumor Angiogenesis Factors Using Living Nano-Robots.

    Science.gov (United States)

    Al-Fandi, Mohamed; Alshraiedeh, Nida; Owies, Rami; Alshdaifat, Hala; Al-Mahaseneh, Omamah; Al-Tall, Khadijah; Alawneh, Rawan

    2017-07-14

    This paper reports a novel self-detection method for tumor cells using living nano-robots. These living robots are a nonpathogenic strain of E. coli bacteria equipped with naturally synthesized bio-nano-sensory systems that have an affinity to VEGF, an angiogenic factor overly-expressed by cancer cells. The VEGF-affinity/chemotaxis was assessed using several assays including the capillary chemotaxis assay, chemotaxis assay on soft agar, and chemotaxis assay on solid agar. In addition, a microfluidic device was developed to possibly discover tumor cells through the overexpressed vascular endothelial growth factor (VEGF). Various experiments to study the sensing characteristic of the nano-robots presented a strong response toward the VEGF. Thus, a new paradigm of selective targeting therapies for cancer can be advanced using swimming E. coli as self-navigator miniaturized robots as well as drug-delivery vehicles.

  3. ZnO nano-array-based EGFET biosensor for glucose detection

    Science.gov (United States)

    Qi, Junjie; Zhang, Huihui; Ji, Zhaoxia; Xu, Minxuan; Zhang, Yue

    2015-06-01

    Electrochemical biosensors are normally based on enzymatic catalysis of a reaction that produces or consumes electrons and the sensing membranes dominate the performance. In this work, ZnO nano-array-based EGFETs were fabricated for pH and glucose detection. The ZnO nano-arrays prepared via low-temperature hydrothermal method were well-aligned, with an average length of 2 μm and diameter of 100-150 nm, and have a typical hexagonal wurtzite structure. The sensor performed with a sensitivity of 45 mV/pH and response time of about 6-7 s from pH = 4-12. UV irradiation can improve the Vref response as a result of the formation of a depletion region at the surface of ZnO nanomaterials. Due to its high specific surface area, the ZnO nano-array EGFET sensor showed a sensitivity of -0.395 mV/μM to the glucose detection in a concentration range between 20 and 100 μM. These EGFET glucose biosensors demonstrate a low detectable concentration (20 μM) with good linearity, therefore may be used to detect glucose in saliva and tears at much lower concentrations than that in blood.

  4. Detecting Fraudulent Erasures at an Aggregate Level

    Science.gov (United States)

    Sinharay, Sandip

    2018-01-01

    Wollack, Cohen, and Eckerly suggested the "erasure detection index" (EDI) to detect fraudulent erasures for individual examinees. Wollack and Eckerly extended the EDI to detect fraudulent erasures at the group level. The EDI at the group level was found to be slightly conservative. This article suggests two modifications of the EDI for…

  5. Fabrication of Surface Level Cu/Si Cp Nano composites by Friction Stir Processing Route

    International Nuclear Information System (INIS)

    Srinivasan, R. C.; Karunanithi, M.

    2015-01-01

    Friction stir processing (FSP) technique has been successfully employed as low energy consumption route to prepare copper based surface level nano composites reinforced with nano sized silicon carbide particles (Si Cp). The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nano sized Si Cp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nano composites was remarkably enhanced and about 95% more than that of copper matrix

  6. High Density Nano-Electrode Array for Radiation Detection

    International Nuclear Information System (INIS)

    Misra, Mano

    2010-01-01

    Bulk single crystals of Cd 1-x Zn x Te (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd 1-x Zn x Te with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd 1-x Zn x Te in an electrochemical route. In this investigation, Cd 1-x Zn x Te ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO 2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 C. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd 0.9 Zn 0.1 Te nanowires were 4.29 x 10 13 cm -3 , 1.56 eV and 2.76 x 10 11 (Omega)-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 (micro)Ci), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The

  7. High Density Nano-Electrode Array for Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Mano Misra

    2010-05-07

    Bulk single crystals of Cd1-xZnxTe (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd1-xZnxTe with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd1-xZnxTe in an electrochemical route. In this investigation, Cd1-xZnxTe ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 ºC. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd0.9Zn0.1Te nanowires were 4.29x1013 cm-3, 1.56 eV and 2.76x1011Ω-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 μCi), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The preliminary results indicate that the

  8. Activity Level Change Detection for Persistent Surveillance

    National Research Council Canada - National Science Library

    Liu, F; Bush, L. A

    2004-01-01

    .... Instead of traditional target tracking, this approach utilizes GMTI data as moving spots on the ground to estimate the level of activities and detect unusual activities such as military deployments...

  9. Detection of Cyanobacteria in Eutrophic Water Using a Portable Electrocoagulator and NanoGene Assay.

    Science.gov (United States)

    Lee, Eun-Hee; Chua, Beelee; Son, Ahjeong

    2018-02-06

    We have demonstrated the detection of cyanobacteria in eutrophic water samples using a portable electrocoagulator and NanoGene assay. The electrocoagulator is designed to preconcentrate cyanobacteria from water samples prior to analysis via NanoGene assay. Using Microcystis aeruginosa laboratory culture and environmental samples (cell densities ranging from 1.7 × 10 5 to 4.1 × 10 6 and 6.5 × 10 3 to 6.6 × 10 7 cells·mL -1 , respectively), the electrocoagulator was evaluated and compared with a conventional centrifuge. Varying the operation duration from 0 to 300 s with different cell densities was first investigated. Preconcentration efficiencies (obtained via absorbance measurement) and dry cell weight of preconcentrated cyanobacteria were then obtained and compared. For laboratory samples at cell densities from 3.2 × 10 5 to 4.1 × 10 6 cells·mL -1 , the preconcentration efficiencies of electrocoagulator appeared to be stable at ∼60%. At lower cell densities (1.7 and 2.2 × 10 5 cells·mL -1 ), the preconcentration efficiencies decreased to 33.9 ± 0.2 and 40.4 ± 5.4%, respectively. For environmental samples at cell densities of 2.7 × 10 5 and 6.6 × 10 7 cells·mL -1 , the electrocoagulator maintained its preconcentration efficiency at ∼60%. On the other hand, the centrifuge's preconcentration efficiencies decreased to nondetectable and below 40%, respectively. This shows that the electrocoagulator outperformed the centrifuge when using eutrophic water samples. Finally, the compatibility of the electrocoagulator with the NanoGene assay was verified via the successful detection of the microcystin synthetase D (mcyD) gene in environmental samples. The viability of the electrocoagulator as an in situ compatible alternative to the centrifuge is also discussed.

  10. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar; Baker, Erin M.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2018-05-01

    Abstract. In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150–250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMSCID- TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10–200 nM range, while simultaneously achieving discovery measurements

  11. Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein.

    Science.gov (United States)

    Li, Wanbo; Jiang, Xueqin; Xue, Jiancai; Zhou, Zhangkai; Zhou, Jianhua

    2015-06-15

    Localized surface plasmon resonance (LSPR) combined with immunoassay shows greatly potential in fast detection of tumor markers. In this paper, a highly sensitive LSPR substrate has been fabricated and modified for direct detection of alpha-fetoprotein (AFP). The biosensor was prepared by interference lithography, and modified by covalently immobilizing anti-AFP on the surface of gold nano-mushroom arrays (GNMA). The modification process was investigated by Vis-NIR reflectance spectra and cyclic voltammogram measurements. We revealed the optical properties of the modified GNMA by measuring the Vis-NIR reflectance spectra and simulating its electric intensity field distribution under light illumination. The GNMA substrate was highly sensitive, with a refractive index sensitivity of ~465 nm/RIU. The substrate can be applied to label-free detection of AFP, with the linear range and the limit of detection determined to be 20-200 ng/mL and 24 ng/mL (S/N=3), respectively. We also demonstrated its clinical application by directly detecting AFP in human serum samples. It is expected that our biosensor could be integrated on microfluidic chips for high-throughput detection in portable early diagnosis, post-operative and point-of-care (POC) in clinical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Label-free detection of DNA hybridization and single point mutations in a nano-gap biosensor

    International Nuclear Information System (INIS)

    Zaffino, R L; Mir, M; Samitier, J

    2014-01-01

    We describe a conductance-based biosensor that exploits DNA-mediated long-range electron transport for the label-free and direct electrical detection of DNA hybridization. This biosensor platform comprises an array of vertical nano-gap biosensors made of gold and fabricated through standard photolithography combined with focused ion beam lithography. The nano-gap walls are covalently modified with short, anti-symmetric thiolated DNA probes, which are terminated by 19 bases complementary to both the ends of a target DNA strand. The nano-gaps are separated by a distance of 50nm, which was adjusted to fit the length of the DNA target plus the DNA probes. The hybridization of the target DNA closes the gap circuit in a switch on/off fashion, in such a way that it is readily detected by an increase in the current after nano-gap closure. The nano-biosensor shows high specificity in the discrimination of base-pair mismatching and does not require signal indicators or enhancing molecules. The design of the biosensor platform is applicable for multiplexed detection in a straightforward manner. The platform is well-suited to mass production, point-of-care diagnostics, and wide-scale DNA analysis applications. (paper)

  13. Nano-Electromechanical Systems: Displacement Detection and the Mechanical Single Electron Shuttle

    Science.gov (United States)

    Blick, R. H.; Beil, F. W.; Höhberger, E.; Erbe, A.; Weiss, C.

    For an introduction to nano-electromechanical systems we present measurements on nanomechanical resonators operating in the radio frequency range. We discuss in detail two different schemes of displacement detection for mechanical resonators, namely conventional reflection measurements of a probing signal and direct detection by capacitive coupling via a gate electrode. For capacitive detection we employ an on-chip preamplifier, which enables direct measurements of the resonator's disp lacement. We observe that the mechanical quality factor of the resonator depends on the detection technique applied, which is verified in model calculations and report on the detection of sub-harmonics. In the second part we extend our investigations to include transport of single electrons through an electron island on the tip of a nanomachined mechanical pendulum. The pendulum is operated by applying a modulating electromagnetic field in the range of 1 - 200 MHz, leading to mechanical oscillations between two laterally integrated source and drain contacts. Forming tunneling barriers the metallic tip shuttles single electrons from source to drain. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. The transport properties of the device are compared in detail to model calculations based on a Master-equation approach.

  14. Helium concentration in tungsten nano-tendril surface morphology using Elastic Recoil Detection

    International Nuclear Information System (INIS)

    Woller, K.B.; Whyte, D.G.; Wright, G.M.; Doerner, R.P.; De Temmerman, G.

    2013-01-01

    Helium (He) concentrations in tungsten nano-tendrils (W fuzz) have been measured for the first time using Elastic Recoil Detection (ERD). Fuzzy and non-fuzzy W surfaces were analyzed in order to illuminate the role of He in the transition in surface morphologies. Samples grown in the PISCES-A and PILOT-PSI experiments allowed a survey of surface temperature ranging from T s = 470–2595 K and of He fluence on the order of Φ He ∼ 10 24 –10 27 ions/m 2 . He concentrations measured in the bulk of W fuzz layers are roughly uniform with bulk He concentration 1–4 at.% while samples with just He in the near surface peaked at 1–2 at.%. This confirms that the nano-tendrils are filled with high pressure He bubbles since the solubility of He in W is ∼10 −5 at.%. This indicates that the ∼1000 K temperature fuzz-growth threshold is determined by the response of the W, not the near-surface He concentration

  15. Poly aniline Nano fiber as Modified Cladding for Optical Fiber Sensor to Detect Acetone Vapor

    International Nuclear Information System (INIS)

    Akhiruddin maddu; Ahmad aminuddin; Setyanto Tri Wahyudi; Hamdani Zain

    2008-01-01

    In this research, we used poly aniline nano fiber as modified cladding material for a fiber optic sensor system to detect the acetone vapor. The sensor was designed based on variation of evanescent field absorption on the core-modified cladding interface when exposed with varied acetone vapor. Poly aniline nano fiber synthesized by interfacial polymerization was coated onto the un-cladded core and acts as sensing element. Response of the fiber optic sensor was investigated by measuring the transmission light intensity via fiber optic sensor system while exposed with acetone vapor. Based on the sensor response curve, it is obtained a very fast response time of 30 s and recovery time of 10 s. The fiber optic sensor also exhibits a good reversibility and repeatability. Sensitivity of the sensor to variation of acetone vapor pressure was obtained 1.25 %/mmHg, that means the transmission intensity of the sensor changes 1.25 % for acetone vapor change of 1 mmHg. (author)

  16. Development of a Quartz Crystal Microbalance Sensor Modified by Nano-Structured Polyaniline for Detecting the Plasticizer in Gaseous State

    Directory of Open Access Journals (Sweden)

    Hui XU

    2014-01-01

    Full Text Available A quartz crystal microbalance (QCM modified by a film of nano-structured polyaniline (nano-PANI is developed as a gas sensor for detecting the presence of the plasticizer, such as dibutyl phthalate (DBP in the ambient. Nano-PANI is prepared using a non-template method and the films are deposited using physical coating method. Scanning electron microscopy is used to characterize the nano-PANI film. The sensor response towards DBP is tested in a sealed gas chamber. The QCM resonant frequency shift is measured due to the absorption of DBP with different concentration ranging from 0.04 to 1.2 ppm. The experiment results show that the variation of the frequency is a linear function of DBP concentration and the sensitivity up to 54 Hz/ppm could be achieved by using the researched nano-PANI on QCM. To investigate the selectivity, the potential interfering analytes such as acetone, ethanol, acetaldehyde and formaldehyde are tested. And the mechanism hypothesis of the nano-PANI sensitive to the plasticizer is analyzed.

  17. Nanotechnology-Based Detection and Targeted Therapy in Cancer: Nano-Bio Paradigms and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Shaker A., E-mail: shaker.mosua@acphs.edu [The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 (United States); College of Medicine, King Saud University, Riyadh (Saudi Arabia); Bharali, Dhruba J. [The Pharmaceutical Research Institute at Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144 (United States)

    2011-07-15

    The application of nanotechnology to biomedicine, particularly in cancer diagnosis and treatment, promises to have a profound impact on healthcare. The exploitation of the unique properties of nano-sized particles for cancer therapeutics is most popularly known as nanomedicine. The goals of this review are to discuss the current state of nanomedicine in the field of cancer detection and the subsequent application of nanotechnology to treatment. Current cancer detection methods rely on the patient contacting their provider when they feel ill, or relying on non-specific screening methods, which unfortunately often result in cancers being detected only after it is too late for effective treatment. Cancer treatment paradigms mainly rely on whole body treatment with chemotherapy agents, exposing the patient to medications that non-specifically kill rapidly dividing cells, leading to debilitating side effects. In addition, the use of toxic organic solvents/excipients can hamper the further effectiveness of the anticancer drug. Nanomedicine has the potential to increase the specificity of treatment of cancer cells while leaving healthy cells intact through the use of novel nanoparticles. This review discusses the use of nanoparticles such as quantum dots, nanoshells, nanocrystals, nanocells, and dendrimers for the detection and treatment of cancer. Future directions and perspectives of this cutting-edge technology are also discussed.

  18. Nanotechnology-Based Detection and Targeted Therapy in Cancer: Nano-Bio Paradigms and Applications

    Directory of Open Access Journals (Sweden)

    Dhruba J. Bharali

    2011-07-01

    Full Text Available The application of nanotechnology to biomedicine, particularly in cancer diagnosis and treatment, promises to have a profound impact on healthcare. The exploitation of the unique properties of nano-sized particles for cancer therapeutics is most popularly known as nanomedicine. The goals of this review are to discuss the current state of nanomedicine in the field of cancer detection and the subsequent application of nanotechnology to treatment. Current cancer detection methods rely on the patient contacting their provider when they feel ill, or relying on non-specific screening methods, which unfortunately often result in cancers being detected only after it is too late for effective treatment. Cancer treatment paradigms mainly rely on whole body treatment with chemotherapy agents, exposing the patient to medications that non-specifically kill rapidly dividing cells, leading to debilitating side effects. In addition, the use of toxic organic solvents/excipients can hamper the further effectiveness of the anticancer drug. Nanomedicine has the potential to increase the specificity of treatment of cancer cells while leaving healthy cells intact through the use of novel nanoparticles. This review discusses the use of nanoparticles such as quantum dots, nanoshells, nanocrystals, nanocells, and dendrimers for the detection and treatment of cancer. Future directions and perspectives of this cutting-edge technology are also discussed.

  19. Direct protein detection with a nano-interdigitated array gate MOSFET.

    Science.gov (United States)

    Tang, Xiaohui; Jonas, Alain M; Nysten, Bernard; Demoustier-Champagne, Sophie; Blondeau, Franoise; Prévot, Pierre-Paul; Pampin, Rémi; Godfroid, Edmond; Iñiguez, Benjamin; Colinge, Jean-Pierre; Raskin, Jean-Pierre; Flandre, Denis; Bayot, Vincent

    2009-08-15

    A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.

  20. Nanotechnology-Based Detection and Targeted Therapy in Cancer: Nano-Bio Paradigms and Applications

    International Nuclear Information System (INIS)

    Mousa, Shaker A.; Bharali, Dhruba J.

    2011-01-01

    The application of nanotechnology to biomedicine, particularly in cancer diagnosis and treatment, promises to have a profound impact on healthcare. The exploitation of the unique properties of nano-sized particles for cancer therapeutics is most popularly known as nanomedicine. The goals of this review are to discuss the current state of nanomedicine in the field of cancer detection and the subsequent application of nanotechnology to treatment. Current cancer detection methods rely on the patient contacting their provider when they feel ill, or relying on non-specific screening methods, which unfortunately often result in cancers being detected only after it is too late for effective treatment. Cancer treatment paradigms mainly rely on whole body treatment with chemotherapy agents, exposing the patient to medications that non-specifically kill rapidly dividing cells, leading to debilitating side effects. In addition, the use of toxic organic solvents/excipients can hamper the further effectiveness of the anticancer drug. Nanomedicine has the potential to increase the specificity of treatment of cancer cells while leaving healthy cells intact through the use of novel nanoparticles. This review discusses the use of nanoparticles such as quantum dots, nanoshells, nanocrystals, nanocells, and dendrimers for the detection and treatment of cancer. Future directions and perspectives of this cutting-edge technology are also discussed

  1. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples.

    Science.gov (United States)

    Papadakis, George; Murasova, Pavla; Hamiot, Audrey; Tsougeni, Katerina; Kaprou, Georgia; Eck, Michael; Rabus, David; Bilkova, Zuzana; Dupuy, Bruno; Jobst, Gerhard; Tserepi, Angeliki; Gogolides, Evangelos; Gizeli, Electra

    2018-07-15

    The fast and efficient detection of foodborne pathogens is a societal priority, given the large number of food-poisoning outbreaks, and a scientific and technological challenge, given the need to detect as little as 1 viable cell in 25 gr of food. Here, we present the first approach that achieves the above goal, thanks to the use of a micro/nano-technology and the detection capability of acoustic wave sensors. Starting from 1 Salmonella cell in 25 ml of milk, we employ immuno-magnetic beads to capture cells after only 3 h of pre-enrichment and subsequently demonstrate efficient DNA amplification using the Loop Mediated Isothermal Amplification method (LAMP) and acoustic detection in an integrated platform, within an additional ½ h. The demonstrated 4 h sample-to-analysis time comes as a huge improvement to the current need of few days to obtain the same result. In addition, the work presents the first reported Lab-on-Chip platform that comprises an acoustic device as the sensing element, exhibiting impressive analytical features, namely, an acoustic limit of detection of 2 cells/μl or 3 aM of the DNA target and ability to detect in a label-free manner dsDNA amplicons in impure samples. The use of food samples together with the incorporation of the necessary pre-enrichment step and ability for multiple analysis with an internal control, make the proposed methodology highly relevant to real-world applications. Moreover, the work suggests that acoustic wave devices can be used as an attractive alternative to electrochemical sensors in integrated platforms for applications in food safety and the point-of-care diagnostics. Copyright © 2018. Published by Elsevier B.V.

  2. Cancer Nano medicine

    International Nuclear Information System (INIS)

    Li, H.; Pike, M.M.; Luo, X.; Liu, L.H.

    2013-01-01

    Bioengineered nano materials have inspired revolutionary imaging and drug delivery methods whose clinical application in cancer research has resulted in powerful medical devices for early diagnosis, treatment, and prevention of cancer. Recent advances in super imaging agents have resulted in improved resolution and sensitivity. For instance, fluorescent quantum dots with wavelength-tunable emissions, plasmon-resonant gold nano structures with shape-controlled near-infrared absorptions, and MRI-active iron oxide nanoparticles are well-established molecular imaging probes for noninvasive cancer imaging. Nano materials are also considered to be the most effective vectors that can break through transport bio barriers and deliver a constant dose of multiple therapeutic agents to tumors and intracellular endocytic compartments for cancer gene therapy, immunotherapy, or chemotherapy. Furthermore, nano wire- or nano tube-based electronic devices demonstrate extraordinary sensitivity capable of detection at the single molecule or protein level. It is anticipated that developing nano technology-driven imaging, sensing, and therapeutic systems will dramatically advance cancer research and clinical treatments.

  3. Investigating the properties and interaction mechanism of nano-silica in polyvinyl alcohol/polyacrylamide blends at an atomic level.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Wang, Shuzhi; Zhang, Yingfeng; Chen, Xiongbiao

    2017-11-01

    The nano-silica can be incorporated into polymers for improved mechanical properties. Notably, the interaction between nano-silica and polymer is of a microscopic phenomenon and thus, hard to observe and study by using experimental methods. Based on molecular dynamics, this paper presents a study on the properties and the interaction mechanism of nano-silica in the polyvinyl alcohol (PVA)/polyacrylamide (PAM) blends at an atomic level. Specifically, six blends of PVA/PAM with varying concentrations of nano-silica (0-13wt%) and two interfacial interaction models of polymers on the silica surface were designed and analyzed at an atomic level in terms of concentration profile, mechanical properties, fractional free volume (FFV), dynamic properties of polymers and X-ray diffraction patterns. The concentration profile results and micromorphologies of equilibrium models suggest PAM molecular chains are easier to be adsorbed on the silica surface than PVA molecular chains in blends. The incorporation of nano-silica into the PVA/PAM blends can increase the blend mechanical properties, densities, and semicrystalline character. Meanwhile, the FFV and the mobility of polymer chain decrease with the silica concentration, which agrees with the results of mechanical properties, densities, and semicrystalline character. Our results also illustrate that an analysis of binding energies and pair correlation functions (PCF) allows for the discovery of the interaction mechanism of nano-silica in PVA/PAM blends; and that hydrogen bond interactions between polar functional groups of polymer molecular chains and the hydroxyl groups of the silica surface are involved in adsorption of the polymers on the silica surface, thus affecting the interaction mechanism of nano-silica in PVA/PAM blend systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    Science.gov (United States)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.; Baker, Erin S.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2017-09-01

    In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150-250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMS-CID-TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10-200 nM range, while simultaneously achieving discovery measurements of not initially targeted peptides as markers from the same proteins and, eventually, other proteins. [Figure not available: see fulltext.

  5. Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications

    International Nuclear Information System (INIS)

    Xu, Yuanhong; Liu, Mengli; Kong, Na; Liu, Jingquan

    2016-01-01

    Paper-based chips (PB-chips; also referred to as lab-on-paper chips) are using patterned paper as a substrate in a lab-on-a-chip platform. They represent an outstanding technique for fabrication of analytical devices for multiplex analyte assays. Typical features include low-cost, portability, disposability and small sample consumption. This review (with 211 refs.) gives a comprehensive and critical insight into current trends in terms of materials and techniques for use in fabrication, modification and detection. Following an introduction into the principles of PB-chips, we discuss features of using paper in lab-on-a-chip devices and the proper choice of paper. We then discuss the versatile methods known for fabrication of PB-chips (ranging from photolithography, plasma treatment, ink jet etching, plotting, to printing including flexographic printing). The modification of PB-chips with micro- and nano-materials possessing superior optical or electronic properties is then reviewed, and the final section covers detection techniques (such as colorimetry, electrochemistry, electrochemiluminescence and chemiluminescence) along with specific (bio)analytical examples. A conclusion and outlook section discusses the challenges and future prospectives in this field. (author)

  6. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: application to grain samples.

    Science.gov (United States)

    Della Pelle, Flavio; Angelini, Claudia; Sergi, Manuel; Del Carlo, Michele; Pepe, Alessia; Compagnone, Dario

    2018-08-15

    An electrochemical screening assay for the detection of phenyl carbamates (i.e. carbaryl, carbofuran, isoprocarb and fenobucarb) was developed and applied to grains samples (i.e. durum wheat, soft wheat and maize). Nano carbon black (CB) was strategically employed to realize an effective, reproducible, fouling resistant, low cost, delocalisable screen printed sensor (CB-SPE). CB-SPEs morphology (SEM and FEM) and electrochemical property (CV and EIS) were studied. The final pesticides analysis protocol consist of: (i) extraction of the analyte (just by mixing), (ii) alkaline hydrolysis (10 min R.T.), (iii) DPV detection directly of 100 µL of extract on the CB-SPE surface. Linear range between 1.0 × 10 -7 and 1.0 × 10 -4 mol L -1 , good determination coefficients (R 2 ≥ 0.9971) and satisfactory sensitivity (≥ 3.90 × 10 -1 A M -1 cm -2 ) and LODs (≤ 8.0 × 10 -8 mol L -1 ) were obtained for all the analytes. Excellent recoveries (78-102%) and accuracy (relative error vs. HPLC-MS/MS between 9.0% and -7.8%) resulted from the analysis of grains samples. The proposed CB-SPE based approach has demonstrated to be able to detect carbaryl at Maximum residue limits levels (MRLs), allowing class selective detection of commonly employed phenyl carbamates in food samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Amperometric detection of carbohydrates based on the glassy carbon electrode modified with gold nano-flake layer

    Directory of Open Access Journals (Sweden)

    Huy Du Nguyen

    2015-09-01

    Full Text Available An electro-deposition approach was established to incorporate the gold nano-flakes onto the glassy carbon electrode in electrochemical cells (nano-Au/GC/ECCs. Using pulsed amperometric detection (PAD without any gold oxidation for cleaning (non-oxidative PAD, the nano-Au/GC/ECCs were able to maintain their activity for oxidizing of carbohydrates in a normal alkaline medium. The reproducibility of peak area was about 2 relative standard deviation (RSD,% for 6 consecutive injections. A dynamic range of carbohydrates was obtained over a concentration range of 5–80 mg L−1 and the limits of detection (LOD were of 2 mg L−1 for fructose and lactose and 1 mg L−1 for glucose and galactose. Moreover, the nano-Au/GC/ECC using the non-oxidative PAD was able to combine with the internal standard method for determination of lactose in fresh cow milk sample.

  8. Biochemical Stability Analysis of Nano Scaled Contrast Agents Used in Biomolecular Imaging Detection of Tumor Cells

    Science.gov (United States)

    Kim, Jennifer; Kyung, Richard

    Imaging contrast agents are materials used to improve the visibility of internal body structures in the imaging process. Many agents that are used for contrast enhancement are now studied empirically and computationally by researchers. Among various imaging techniques, magnetic resonance imaging (MRI) has become a major diagnostic tool in many clinical specialties due to its non-invasive characteristic and its safeness in regards to ionizing radiation exposure. Recently, researchers have prepared aqueous fullerene nanoparticles using electrochemical methods. In this paper, computational simulations of thermodynamic stabilities of nano scaled contrast agents that can be used in biomolecular imaging detection of tumor cells are presented using nanomaterials such as fluorescent functionalized fullerenes. In addition, the stability and safety of different types of contrast agents composed of metal oxide a, b, and c are tested in the imaging process. Through analysis of the computational simulations, the stabilities of the contrast agents, determined by optimized energies of the conformations, are presented. The resulting numerical data are compared. In addition, Density Functional Theory (DFT) is used in order to model the electron properties of the compound.

  9. Rapid detection of salmonella using SERS with silver nano-substrate

    Science.gov (United States)

    Sundaram, J.; Park, B.; Hinton, A., Jr.; Windham, W. R.; Yoon, S. C.; Lawrence, K. C.

    2011-06-01

    Surface Enhanced Raman Scattering (SERS) can detect the pathogen in rapid and accurate. In SERS weak Raman scattering signals are enhanced by many orders of magnitude. In this study silver metal with biopolymer was used. Silver encapsulated biopolymer polyvinyl alcohol nano-colloid was prepared and deposited on stainless steel plate. This was used as metal substrate for SERS. Salmonella typhimurium a common food pathogen was selected for this study. Salmonella typhimurium bacteria cells were prepared in different concentrations in cfu/mL. Small amount of these cells were loaded on the metal substrate individually, scanned and spectra were recorded using confocal Raman microscope. The cells were exposed to laser diode at 785 nm excitation and object 50x was used to focus the laser light on the sample. Raman shifts were obtained from 400 to 2400 cm-1. Multivariate data analysis was carried to predict the concentration of unknown sample using its spectra. Concentration prediction gave an R2 of 0.93 and standard error of prediction of 0.21. The results showed that it could be possible to find out the Salmonella cells present in a low concentration in food samples using SERS.

  10. Formation of three-dimensional nano-porous silver films and application toward electrochemical detection of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Junpeng [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Niu, Yuchao [Department of Materials Science and Engineering, Shandong Jianzhu University, Fengming Road, Lingang Development Zone, Jinan 250101 (China); Bai, Yanwen; Xiao, Xinxin; Yang, Chuncheng; Yang, Jianfei; Yang, Jinyue [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2013-11-15

    By using the chemically dealloying method, three-dimensional nano-porous silver films (3-D NPSFs) are fabricated into a novel sensor for detecting hydrogen peroxide. The precursor films are prepared by high vacuum magnetron co-sputtering. High-resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM) are taken to investigate the structure and the micro morphology of the precursor films and nano-porous films. We find that the precursor films are composed of glassy matrix and nanocrystallines. After dealloying, the films exhibit a combination of homogenously distributed pores and silver filaments, and exhibit an open, three dimensional bicontinuous interpenetrating ligament–channel structure. Thickness and morphology of the films can be easily controlled by the sputtering time and alloy composition of the precursor films, respectively. In addition, NPSFs show a good linear responding for the concentration of hydrogen peroxide in phosphate buffered solutions, which indicates NPSFs could be a promising electrochemical material for hydrogen peroxide detection.

  11. Detecting subnetwork-level dynamic correlations.

    Science.gov (United States)

    Yan, Yan; Qiu, Shangzhao; Jin, Zhuxuan; Gong, Sihong; Bai, Yun; Lu, Jianwei; Yu, Tianwei

    2017-01-15

    The biological regulatory system is highly dynamic. The correlations between many functionally related genes change over different biological conditions. Finding dynamic relations on the existing biological network may reveal important regulatory mechanisms. Currently no method is available to detect subnetwork-level dynamic correlations systematically on the genome-scale network. Two major issues hampered the development. The first is gene expression profiling data usually do not contain time course measurements to facilitate the analysis of dynamic relations, which can be partially addressed by using certain genes as indicators of biological conditions. Secondly, it is unclear how to effectively delineate subnetworks, and define dynamic relations between them. Here we propose a new method named LANDD (Liquid Association for Network Dynamics Detection) to find subnetworks that show substantial dynamic correlations, as defined by subnetwork A is concentrated with Liquid Association scouting genes for subnetwork B. The method produces easily interpretable results because of its focus on subnetworks that tend to comprise functionally related genes. Also, the collective behaviour of genes in a subnetwork is a much more reliable indicator of underlying biological conditions compared to using single genes as indicators. We conducted extensive simulations to validate the method's ability to detect subnetwork-level dynamic correlations. Using a real gene expression dataset and the human protein-protein interaction network, we demonstrate the method links subnetworks of distinct biological processes, with both confirmed relations and plausible new functional implications. We also found signal transduction pathways tend to show extensive dynamic relations with other functional groups. The R package is available at https://cran.r-project.org/web/packages/LANDD CONTACTS: yunba@pcom.edu, jwlu33@hotmail.com or tianwei.yu@emory.eduSupplementary information: Supplementary data

  12. Micro-array versus nano-array platforms: a comparative study for ODN detection based on SPR enhanced ellipsometry

    International Nuclear Information System (INIS)

    Celen, Burcu; Piskin, Erhan; Demirel, Goekhan

    2011-01-01

    The rapid and sensitive detection of DNA has recently attracted worldwide attention for a variety of disease diagnoses and detection of harmful bacteria in food and drink. In this paper, we carried out a comparative study based on surface plasmon resonance enhanced ellipsometry (SPREE) for the detection of oligodeoxynucleotides (ODNs) using micro- and nano-array platforms. The micro-arrayed surfaces were fabricated by a photolithography approach using different types of mask having varying size and shape. Well-ordered arrays of high aspect ratio polymeric nanotubes were also obtained using high molecular weight polystyrene (PS) and anodic aluminum oxide (AAO) membranes having 200 nm pore diameters. The SPREE sensors were then prepared by direct coupling of thiolated probe-ODNs, which contain suitable spacer arms, on gold-coated micro- and nano-arrayed surfaces. We experimentally demonstrated that, for the first time, gold-coated free standing polymeric nano-arrayed platforms can easily be produced and lead to a significant sensor sensitivity gain compared to that of the conventional SPREE surfaces of about four times. We believe that such an enhancement in sensor response could be useful for next generation sensor systems.

  13. Micro-array versus nano-array platforms: a comparative study for ODN detection based on SPR enhanced ellipsometry

    Science.gov (United States)

    Celen, Burcu; Demirel, Gökhan; Piskin, Erhan

    2011-04-01

    The rapid and sensitive detection of DNA has recently attracted worldwide attention for a variety of disease diagnoses and detection of harmful bacteria in food and drink. In this paper, we carried out a comparative study based on surface plasmon resonance enhanced ellipsometry (SPREE) for the detection of oligodeoxynucleotides (ODNs) using micro- and nano-array platforms. The micro-arrayed surfaces were fabricated by a photolithography approach using different types of mask having varying size and shape. Well-ordered arrays of high aspect ratio polymeric nanotubes were also obtained using high molecular weight polystyrene (PS) and anodic aluminum oxide (AAO) membranes having 200 nm pore diameters. The SPREE sensors were then prepared by direct coupling of thiolated probe-ODNs, which contain suitable spacer arms, on gold-coated micro- and nano-arrayed surfaces. We experimentally demonstrated that, for the first time, gold-coated free standing polymeric nano-arrayed platforms can easily be produced and lead to a significant sensor sensitivity gain compared to that of the conventional SPREE surfaces of about four times. We believe that such an enhancement in sensor response could be useful for next generation sensor systems.

  14. Effects of atomic-level nano-structured hydroxyapatite on adsorption of bone morphogenetic protein-7 and its derived peptide by computer simulation.

    Science.gov (United States)

    Wang, Qun; Wang, Menghao; Lu, Xiong; Wang, Kefeng; Fang, Liming; Ren, Fuzeng; Lu, Guoming

    2017-11-09

    Hydroxyapatite (HA) is the principal inorganic component of bones and teeth and has been widely used as a bone repair material because of its good biocompatibility and bioactivity. Understanding the interactions between proteins and HA is crucial for designing biomaterials for bone regeneration. In this study, we evaluated the effects of atomic-level nano-structured HA (110) surfaces on the adsorption of bone morphogenetic protein-7 (BMP-7) and its derived peptide (KQLNALSVLYFDD) using molecular dynamics and density functional theory methods. The results indicated that the atomic-level morphology of HA significantly affected the interaction strength between proteins and HA substrates. The interactions of BMP-7 and its derived peptide with nano-concave and nano-pillar HA surfaces were stronger than those with flat or nano-groove HA surfaces. The results also revealed that if the groove size of nano-structured HA surfaces matched that of residues in the protein or peptide, these residues were likely to spread into the grooves of the nano-groove, nano-concave, and nano-pillar HA, further strengthening the interactions. These results are helpful in better understanding the adsorption behaviors of proteins onto nano-structured HA surfaces, and provide theoretical guidance for designing novel bioceramic materials for bone regeneration and tissue engineering.

  15. Chip-Oriented Fluorimeter Design and Detection System Development for DNA Quantification in Nano-Liter Volumes

    Directory of Open Access Journals (Sweden)

    Da-Sheng Lee

    2009-12-01

    Full Text Available The chip-based polymerase chain reaction (PCR system has been developed in recent years to achieve DNA quantification. Using a microstructure and miniature chip, the volume consumption for a PCR can be reduced to a nano-liter. With high speed cycling and a low reaction volume, the time consumption of one PCR cycle performed on a chip can be reduced. However, most of the presented prototypes employ commercial fluorimeters which are not optimized for fluorescence detection of such a small quantity sample. This limits the performance of DNA quantification, especially low experiment reproducibility. This study discusses the concept of a chip-oriented fluorimeter design. Using the analytical model, the current study analyzes the sensitivity and dynamic range of the fluorimeter to fit the requirements for detecting fluorescence in nano-liter volumes. Through the optimized processes, a real-time PCR on a chip system with only one nano-liter volume test sample is as sensitive as the commercial real-time PCR machine using the sample with twenty micro-liter volumes. The signal to noise (S/N ratio of a chip system for DNA quantification with hepatitis B virus (HBV plasmid samples is 3 dB higher. DNA quantification by the miniature chip shows higher reproducibility compared to the commercial machine with respect to samples of initial concentrations from 103 to 105 copies per reaction.

  16. Ionic liquid assisted synthesis of nano Pd-Au particles and application for the detection of epinephrine, dopamine and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Tsung-Hsuan; Thiagarajan, Soundappan; Chen Shenming, E-mail: smchen78@ms15.hinet.net; Cheng Chingyi

    2012-01-31

    Nano Pd-Au particles have been electrochemically fabricated utilizing ionic liquid as green electrolyte (1-Butyl-3-methylimidazolium tetrafluoroborate). Nano Pd-Au particles modified glassy carbon electrode (GCE) and indium tin oxide coated glass electrodes were examined using atomic force microscopy, field emission scanning electron microscope and X-ray diffraction studies. Electrodeposited nano Pd-Au particles' average diameter was found as 33 nm. Nano Pd-Au particle modified GCE was electrochemically active and stable in various pH solutions. The proposed nano particle modified GCE reduces the over potential and shows the well defined oxidation peaks for the detection of epinephrine and simultaneous determination of dopamine and uric acid (in pH 7.0 phosphate buffer solution) using cyclic voltammetry and differential pulse voltammetry.

  17. Micro and Nano Electromechanical Systems for Near-Zero Power Infrared Detection

    Science.gov (United States)

    Qian, Zhenyun

    Light is one of the most important tools for human beings to probe and sense the physical world. Infrared (IR) radiation located in longer wavelengths than those of visible light carries rich information of an environment as it reveals the temperature distribution and chemical composition of objects. In addition, it has been utilized for communication and distance measurement owing to the atmospheric window and insensitiveness of human eyes to the IR radiation. As a result, IR detectors nowadays can be found in a wide variety of applications, including thermal imaging, automotive night vision, standoff chemical detection, remote control and laser ranging, just to mention a few. On the other hand, due to the recent fast development of the Internet of Things (IoT), there is a growing demand for miniaturized and power efficient unattended sensors that can be widely distributed in large volumes to form a wireless sensor networks capable of monitoring the environment with high accuracy and long lifetime. In this context, micro and nano electromechanical systems (MEMS/NEMS) may provide a huge impact, since they can be used for the implementation of miniaturized, low power, high-performance sensors and wireless communication devices fully compatible with standard integrated circuitry. This dissertation presents the design and the experimental verification of high performance uncooled IR detectors based on Aluminum Nitride (AlN) nano electromechanical resonators, and a first-of-its-kind near-zero power IR digitizer based on plasmonically-enhanced micromechanical photoswitches. The unique advantages of the piezoelectric AlN thin film in terms of scaling in thickness and transduction efficiency are exploited by the first experimental demonstration of ultra-fast (thermal time constant, tau ˜ 80 mus) and high resolution (noise equivalent power, NEP ˜ 656 pW/Hz1/2) AlN NEMS resonant IR detectors with reduced pixel size comparable to the state-of-the-art microbolometers

  18. Nano-level instrumentation for analyzing the dynamic accuracy of a rolling element bearing

    International Nuclear Information System (INIS)

    Yang, Z.; Hong, J.; Zhang, J.; Wang, M. Y.; Zhu, Y.

    2013-01-01

    The rotational performance of high-precision rolling bearings is fundamental to the overall accuracy of complex mechanical systems. A nano-level instrument to analyze rotational accuracy of high-precision bearings of machine tools under working conditions was developed. In this instrument, a high-precision (error motion < 0.15 μm) and high-stiffness (2600 N axial loading capacity) aerostatic spindle was applied to spin the test bearing. Operating conditions could be simulated effectively because of the large axial loading capacity. An air-cylinder, controlled by a proportional pressure regulator, was applied to drive an air-bearing subjected to non-contact and precise loaded axial forces. The measurement results on axial loading and rotation constraint with five remaining degrees of freedom were completely unconstrained and uninfluenced by the instrument's structure. Dual capacity displacement sensors with 10 nm resolution were applied to measure the error motion of the spindle using a double-probe error separation method. This enabled the separation of the spindle's error motion from the measurement results of the test bearing which were measured using two orthogonal laser displacement sensors with 5 nm resolution. Finally, a Lissajous figure was used to evaluate the non-repetitive run-out (NRRO) of the bearing at different axial forces and speeds. The measurement results at various axial loadings and speeds showed the standard deviations of the measurements’ repeatability and accuracy were less than 1% and 2%. Future studies will analyze the relationship between geometrical errors and NRRO, such as the ball diameter differences of and the geometrical errors in the grooves of rings

  19. Graphene/Gold Nano composites-Based Thin Films as an Enhanced Sensing Platform for Voltammetric Detection of Cr(VI) Ions

    International Nuclear Information System (INIS)

    Santhosh, Ch.; Saranya, M.; Ramachandran, R.; Felix, S.; Velmurugan, V.; Grace, A.N.

    2014-01-01

    A highly sensitive and selective Cr(VI) sensor with graphene-based nano composites film as an enhanced sensing platform is reported. The detection of chromium species is a challenging task because of the different possible oxidation states in which the element can occur. The sensing film was developed by homogeneously distributing Au nanoparticles (AuNPs) onto the two-dimensional (2D) graphene nano sheet matrix by electrochemical method. Such nano structured composite film platforms combine the advantages of AuNPs and graph ene nano sheets because of the synergistic effect between them. This effect greatly facilitates the electron-transfer processes and the sensing behavior for Cr(VI) detection, leading to a remarkably improved sensitivity and selectivity. The interference from other heavy metal ions is studied in detail. Such sensing elements are very promising for practical environmental monitoring applications.

  20. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  1. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    NARCIS (Netherlands)

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  2. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  3. A new technique to detect antibody-antigen reaction (biological interactions) on a localized surface plasmon resonance (LSPR) based nano ripple gold chip

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Iram, E-mail: iiram.qau@gmail.com [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Widger, William, E-mail: widger@uh.edu [Department of Biology and Biochemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Chu, Wei-Kan, E-mail: wkchu@uh.edu [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2017-07-31

    Highlights: • The nano ripple LSPR chip has monolayer molecule-coating sensitivity and specific selectivity. • Gold nano-ripple sensing chip is a low cost, and a label-free method for detecting the antibody-antigen reaction. • The plasmonic resonance shift depends upon the concentration of the biomolecules attached on the surface of the nano ripple pattern. - Abstract: We demonstrate that the gold nano-ripple localized surface plasmon resonance (LSPR) chip is a low cost and a label-free method for detecting the presence of an antigen. A uniform stable layer of an antibody was coated on the surface of a nano-ripple gold pattern chip followed by the addition of different concentrations of the antigen. A red shift was observed in the LSPR spectral peak caused by the change in the local refractive index in the vicinity of the nanostructure. The LSPR chip was fabricated using oblique gas cluster ion beam (GCIB) irradiation. The plasmon-resonance intensity of the scattered light was measured by a simple optical spectroscope. The gold nano ripple chip shows monolayer scale sensitivity and high selectivity. The LSPR substrate was used to detect antibody-antigen reaction of rabbit X-DENTT antibody and DENTT blocking peptide (antigen).

  4. Ultra-high optical responsivity of semiconducting asymmetric nano-channel diodes for photon detection

    Science.gov (United States)

    Akbas, Y.; Plecenik, T.; Durina, P.; Plecenik, A.; Jukna, A.; Wicks, G.; Sobolewski, Roman

    2017-05-01

    The asymmetric nano-channel diode (ANCD) is the 2-dimensional electron gas (2DEG) semiconductor nanodevice that, unlike a conventional diode, relies on the device nanostructure and field-controlled transport in a ballistic nanometerwidth channel instead of barriers to develop its asymmetric, diode-like current-voltage (I-V) characteristics. We focus on ANCD optoelectronic properties, and demonstrate that the devices can act as very sensitive, single-photon-level, visiblelight photodetectors. Our test structures consist of 2-μm-long and 230-nm-wide channels and were fabricated using electron-beam lithography on a GaAs/AlGaAs heterostructure with a 2DEG layer, followed by reactive ion etching. The I-V curves were collected by measuring the transport current under the voltage-source biasing condition, both in the dark and under light illumination. The experiments were conducted inside a cryostat, in a temperature range from 300 K to 78 K. As an optical excitation, we used a 800-nm-wavelength, generated by a commercial Ti:sapphire laser operated either at a quasi-continuous-wave mode or as a source of 100-fs-wide pulses. The impact of the light illumination was very clear, and at low temperatures we observed a significant photocurrent Iph 0.25 μA at temperature 78 K for the incident optical power as low as 1 nW, with a limited dark-current background. The magnitude of the device optical responsivity increased linearly with the decrease of the optical power, reaching for 1-nW optical excitation the value as high as 400 A/W at room temperature and >800 A/W at 78K. The physics of the photoresponse gain mechanism in the ANCD arises from a vast disparity between the sub-picosecond transit time of photo-excited electrons travelling in the 2DEG nanochannel and the up to microsecond lifetime of photo-excited holes pushed towards the device substrate.

  5. A nanobiosensor composed of Exfoliated Graphene Oxide and Gold Nano-Urchins, for detection of GMO products.

    Science.gov (United States)

    Aghili, Zahra; Nasirizadeh, Navid; Divsalar, Adeleh; Shoeibi, Shahram; Yaghmaei, Parichehreh

    2017-09-15

    Genetically Modified Organisms, have been entered our food chain and detection of these organisms in market products are still the main challenge for scientists. Among several developed detection/quantification methods for detection of these organisms, the electrochemical nanobiosensors are the most attended which are combining the advantages of using nanomaterials, electrochemical methods and biosensors. In this research, a novel and sensitive electrochemical nanobiosensor for detection/quantification of these organisms have been developed using nanomaterials; Exfoliated Graphene Oxide and Gold Nano-Urchins for modification of the screen-printed carbon electrode, and also applying a specific DNA probe as well as hematoxylin for electrochemical indicator. Application time period and concentration of the components have been optimized and also several reliable methods have been used to assess the correct assembling of the nanobiosensor e.g. field emission scanning electron microscope, cyclic voltammetry and electrochemical impedance spectroscopy. The results shown the linear range of the sensor was 40.0-1100.0 femtomolar and the limit of detection calculated as 13.0 femtomolar. Besides, the biosensor had good selectivity towards the target DNA over the non-specific sequences and also it was cost and time-effective and possess ability to be used in real sample environment of extracted DNA of Genetically Modified Organism products. Therefore, the superiority of the aforementioned specification to the other previously published methods was proved adequate. Copyright © 2017. Published by Elsevier B.V.

  6. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    Science.gov (United States)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor

    2011-07-01

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ~ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ~ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ~ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ~ 12 nm retained bright fluorescence over an extended duration of ~ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ~ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ~ 8.2% in human peripheral blood cells (PBMCs) which are CD33low. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  7. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    International Nuclear Information System (INIS)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor

    2011-01-01

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ∼ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ∼ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ∼ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ∼ 12 nm retained bright fluorescence over an extended duration of ∼ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ∼ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ∼ 8.2% in human peripheral blood cells (PBMCs) which are CD33 low . The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  8. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor, E-mail: manzoork@aims.amrita.edu, E-mail: ullasmony@aims.amrita.edu [Amrita Centre for Nanoscience and Molecular Medicine, Amrita Institute of Medical Science, Cochin 682 041 (India)

    2011-07-15

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with {approx} 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of {approx} 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in {approx} 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of {approx} 12 nm retained bright fluorescence over an extended duration of {approx} a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of {approx} 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of {approx} 8.2% in human peripheral blood cells (PBMCs) which are CD33{sup low}. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  9. Thermo-optical Characterization of Photothermal Optical Phase Shift Detection in Extended-Nano Channels and UV Detection of Biomolecules.

    Science.gov (United States)

    Shimizu, Hisashi; Miyawaki, Naoya; Asano, Yoshihiro; Mawatari, Kazuma; Kitamori, Takehiko

    2017-06-06

    The expansion of microfluidics research to nanofluidics requires absolutely sensitive and universal detection methods. Photothermal detection, which utilizes optical absorption and nonradiative relaxation, is promising for the sensitive detection of nonlabeled biomolecules in nanofluidic channels. We have previously developed a photothermal optical phase shift (POPS) detection method to detect nonfluorescent molecules sensitively, while a rapid decrease of the sensitivity in nanochannels and the introduction of an ultraviolet (UV) excitation system were issues to be addressed. In the present study, our primary aim is to characterize the POPS signal in terms of the thermo-optical properties and quantitatively evaluate the causes for the decrease in sensitivity. The UV excitation system is then introduced into the POPS detector to realize the sensitive detection of nonlabeled biomolecules. The UV-POPS detection system is designed and constructed from scratch based on a symmetric microscope. The results of simulations and experiments reveal that the sensitivity decreases due to a reduction of the detection volume, dissipation of the heat, and cancellation of the changes in the refractive indices. Finally, determination of the concentration of a nonlabeled protein (bovine serum albumin) is performed in a very thin 900 nm deep nanochannel. As a result, the limit of detection (LOD) is 2.3 μM (600 molecules in the 440 attoliter detection volume), which is as low as that previously obtained for our visible POPS detector. UV-POPS detection is thus expected be a powerful technique for the study of biomolecules, including DNAs and proteins confined in nanofluidic channels.

  10. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs

    Science.gov (United States)

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-01

    A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.

  11. A multi-level capacitor-less memory cell fabricated on a nano-scale strained silicon-on-insulator

    International Nuclear Information System (INIS)

    Park, Jea-Gun; Kim, Seong-Je; Shin, Mi-Hee; Song, Seung-Hyun; Shim, Tae-Hun; Chung, Sung-Woong; Enomoto, Hirofumi

    2011-01-01

    A multi-level capacitor-less memory cell was fabricated with a fully depleted n-metal-oxide-semiconductor field-effect transistor on a nano-scale strained silicon channel on insulator (FD sSOI n-MOSFET). The 0.73% biaxial tensile strain in the silicon channel of the FD sSOI n-MOSFET enhanced the effective electron mobility to ∼ 1.7 times that with an unstrained silicon channel. This thereby enables both front- and back-gate cell operations, demonstrating eight-level volatile memory-cell operation with a 1 ms retention time and 12 μA memory margin. This is a step toward achieving a terabit volatile memory cell.

  12. 2D Effective Electron Mass at the Fermi Level in Accumulation and Inversion Layers of MOSFET Nano Devices.

    Science.gov (United States)

    Singh, S L; Singh, S B; Ghatak, K P

    2018-04-01

    In this paper an attempt is made to study the 2D Fermi Level Mass (FLM) in accumulation and inversion layers of nano MOSFET devices made of nonlinear optical, III-V, ternary, Quaternary, II-VI, IV-VI, Ge and stressed materials by formulating 2D carrier dispersion laws on the basis of k → ⋅ p → ⋅ formalism and considering the energy band constants of a particular material. It is observed taking accumulation and inversion layers of Cd3As2, CdGeAs2, InSb, Hg1-xCdxTe and In1-xGaxAsyP1-y lattice matched to InP, CdS, GaSb and Ge as examples that the FLM depends on sub band index for nano MOSFET devices made of Cd3As2 and CdGeAs2 materials which is the characteristic features such 2D systems. Besides, the FLM depends on the scattering potential in all the cases and the same mass changes with increasing surface electric field. The FLM exists in the band gap which is impossible without heavy doping.

  13. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection

    OpenAIRE

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C.; Ye, Bang-Ce

    2013-01-01

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated ...

  14. Systems and methods for neutron detection using scintillator nano-materials

    Science.gov (United States)

    Letant, Sonia Edith; Wang, Tzu-Fang

    2016-03-08

    In one embodiment, a neutron detector includes a three dimensional matrix, having nanocomposite materials and a substantially transparent film material for suspending the nanocomposite materials, a detector coupled to the three dimensional matrix adapted for detecting a change in the nanocomposite materials, and an analyzer coupled to the detector adapted for analyzing the change detected by the detector. In another embodiment, a method for detecting neutrons includes receiving radiation from a source, converting neutrons in the radiation into alpha particles using converter material, converting the alpha particles into photons using quantum dot emitters, detecting the photons, and analyzing the photons to determine neutrons in the radiation.

  15. Design of a sector bowtie nano-rectenna for optical power and infrared detection

    Science.gov (United States)

    Wang, Kai; Hu, Haifeng; Lu, Shan; Guo, Lingju; He, Tao

    2015-10-01

    We designed a sector bowtie nanoantenna integrated with a rectifier (Au-TiO x -Ti diode) for collecting infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at infrared frequencies (5-30 μm) using three-dimensional frequency-domain electromagnetic field calculation software based on the finite element method. The simulation results indicate that the resonance wavelength and local field enhancement are greatly affected by the shape and size of the bowtie nanoantenna, as well as the relative permittivity and conductivity of the dielectric layer. The output current of the rectified nano-rectenna is substantially at nanoampere magnitude with an electric field intensity of 1 V/m. Moreover, the power conversion efficiency for devices with three different substrates illustrates that a substrate with a larger refractive index yields a higher efficiency and longer infrared response wavelength. Consequently, the optimized structure can provide theoretical support for the design of novel optical rectennas and fabrication of optoelectronic devices.

  16. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  17. Nano-particle enhanced impedimetric biosensor for detection of foodborne pathogens

    International Nuclear Information System (INIS)

    Kim, G; Om, A S; Mun, J H

    2007-01-01

    Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency

  18. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Labroo, Pratima; Cui, Yue, E-mail: yue.cui@usu.edu

    2014-02-01

    Graphical abstract: - Highlights: • We report graphene-ink biosensor arrays on a microfluidic paper for metabolites. • The device is able to detect multiple metabolites sensitively and rapidly. • The device fabrication process is simple and inexpensive. - Abstract: The development of a miniaturized and low-cost platform for the highly sensitive, selective and rapid detection of multiplexed metabolites is of great interest for healthcare, pharmaceuticals, food science, and environmental monitoring. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with extraordinary electrical sensing capability. Microfluidic paper with printing technique is a low cost matrix. Here, we demonstrated the development of graphene-ink based biosensor arrays on a microfluidic paper for the multiplexed detection of different metabolites, such as glucose, lactate, xanthine and cholesterol. Our results show that the graphene biosensor arrays can detect multiple metabolites on a microfluidic paper sensitively, rapidly and simultaneously. The device exhibits a fast measuring time of less than 2 min, a low detection limit of 0.3 μM, and a dynamic detection range of 0.3–15 μM. The process is simple and inexpensive to operate and requires a low consumption of sample volume. We anticipate that these results could open exciting opportunities for a variety of applications.

  19. Detection efficiencies in nano- and femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Waelle, M.; Koch, J.; Flamigni, L.; Heiroth, S.; Lippert, T.; Hartung, W.; Guenther, D.

    2009-01-01

    Detection efficiencies of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), defined as the ratio of ions reaching the detector and atoms released by LA were measured. For this purpose, LA of silicate glasses, zircon, and pure silicon was performed using nanosecond (ns) as well as femtosecond (fs) LA. For instance, ns-LA of silicate glass using helium as in-cell carrier gas resulted in detection efficiencies between approximately 1E-7 for low and 3E-5 for high mass range elements which were, in addition, almost independent on the laser wavelength and pulse duration chosen. In contrast, the application of argon as carrier gas was found to suppress the detection efficiencies systematically by a factor of up to 5 mainly due to a less efficient aerosol-to-ion conversion and ion transmission inside the ICP-MS

  20. An integrated circuit/microsystem/nano-enhanced four species radiation sensor for inexpensive fissionable material detection

    Science.gov (United States)

    Waguespack, Randy Paul

    2011-12-01

    Small scale radiation detectors sensitive to alpha, beta, electromagnetic, neutron radiation are needed to combat the threat of nuclear terrorism and maintain national security. There are many types of radiation detectors on the market, and the type of detector chosen is usually determined by the type of particle to be detected. In the case of fissionable material, an ideal detector needs to detect all four types of radiation, which is not the focus of many detectors. For fissionable materials, the two main types of radiation that must be detected are gamma rays and neutrons. Our detector uses a glass or quartz scintillator doped with 10B nanoparticles to detect all four types of radiation particles. Boron-10 has a thermal neutron cross section of 3,840 barns. The interaction between the neutron and boron results in a secondary charge particle in the form of an alpha particle to be emitted, which is detectable by the scintillator. Radiation impinging on the scintillator matrix produces varying optical pulses dependent on the energy of the particles. The optical pulses are then detected by a photomultiplier (PM) tube, creating a current proportional to the energy of the particle. Current pulses from the PM tube are differentiated by on-chip pulse height spectroscopy, allowing for source discrimination. The pulse height circuitry has been fabricated with discrete circuits and designed into an integrated circuit package. The ability to replace traditional PM tubes with a smaller, less expensive photomultiplier will further reduce the size of the device and enhance the cost effectiveness and portability of the detector.

  1. Investigation of Luminescence Characteristics of Some Synthetic Nano phosphors and Possibility of Application in Mixed Field Radiation Detection

    International Nuclear Information System (INIS)

    Ahmed, N.Y.A.

    2013-01-01

    The work given in this thesis aimed at Fabrication of high quality nano phosphor particles for getting high sensitive thermoluminescence material to use as ionizing radiation dosimeter. Ca Sr S nano phosphor has been prepared by solid state diffusion reaction method. The prepared nano phosphor was then activated with proper addition of some rare earth elements (dysprosium and gadolinium) for the sake of improving its TL sensitivity. The doped Ca Sr S nano phosphor was then treated by different courses of heat annealing for dual sake and regeneration. High temperature and high gamma dose sensitization are also used to increase sensitivity of Ca Sr S doped. By this means the TL-intensity of treated samples proved about 24 times observed enhancement. The prepared Ca Sr S: Dy nano phosphor is very reliable as pure gamma dosimeter for various applications such as personal, environmental and clinical dosimetry.

  2. Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.

    Science.gov (United States)

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-08-08

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.

  3. Nano-metric Dust Particles as a Hardly Detectable Component of ...

    Indian Academy of Sciences (India)

    sis of the TNO color index–orbital inclinations. We also .... In our view, during these two processes, their complementarities lead to a certain balance due to the .... dust will form a multi-mineral complex of the hardly detectable dust matter of the.

  4. Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra.

    Science.gov (United States)

    Gonzalez, Oriol; Roso, Sergio; Vilanova, Xavier; Llobet, Eduard

    2016-01-01

    We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C) via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C) together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal), results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.

  5. Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra

    Directory of Open Access Journals (Sweden)

    Oriol Gonzalez

    2016-10-01

    Full Text Available We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal, results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.

  6. Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I.

    Science.gov (United States)

    Wei, Yin; Li, Bianmiao; Wang, Xu; Duan, Yixiang

    2014-08-15

    This paper describes a novel approach utilizing nano-graphite-DNA hybrid and DNase I for the amplified detection of silver(I) ion in aqueous solutions for the first time. Nano-graphite can effectively quench the fluorescence of dye-labeled cytosine-rich single-stranded DNA due to its strong π-π stacking interactions; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the hairpin structure can be cleaved by DNase I, and in such case Ag(+) is delivered from the complex. The released Ag(+) then binds other dye-labeled single-stranded DNA on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled single-stranded DNA from the nano-graphite, which leads to significant amplification of the signal. The present magnification sensing system exhibits high sensitivity toward Ag(+) with a limit of detection of 0.3nM (S/N=3), which is much lower than the standard for Ag(+) in drinking water recommended by the Environmental Protection Agency (EPA). The selectivity of the sensor for Ag(+) against other biologically and environmentally related metal ions is outstanding due to the high specificity of C-Ag(+)-C formation. Moreover, the sensing system is used for the determination of Ag(+) in river water samples with satisfying results. The proposed assay is simple, cost-effective, and might open the door for the development of new assays for other metal ions or biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Nano-biosensors as new tool for detection of food quality and safety

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available Nanosensors can be defined as sensors based on nanotechnology. The aim of some nanobiosensor projects at potentially high volume applications in the public health sector, as preventing food poisoning where markets might be significant, while the other aim to improve on existing clinical practises by allowing the more quantification and rapid detection of bacteria and viruses. It should increase the safety of the food for the customer.

  8. Chemical detection with nano/bio hybrid devices based on carbon nanotubes and graphene

    Science.gov (United States)

    Lerner, Mitchell Bryant

    Carbon nanotube field-effect transistors (NT-FETs) and graphene field effect transistors (GFETs) provide a unique transduction platform for chemical and biomolecular detection. The work presented in this thesis describes the fabrication, characterization, and investigation of operational mechanisms of carbon-based biosensors. In the first set of experiments, we used carbon nanotubes as fast, all-electronic readout elements in novel vapor sensors, suitable for applications in environmental monitoring and medicine. Molecules bound to the hybrid alter the electrical properties of the NT-FET via several mechanisms, allowing direct detection as a change in the transistor conduction properties. Vapor sensors suitable for more complex system architectures characteristic of mammalian olfaction were demonstrated using NT-FETs functionalized with mouse olfactory receptor (mOR) proteins or single stranded DNA (ssDNA). Substitution of graphene as the channel material enabled production of hundreds of electronically similar devices with high yield. Etching large scale chemical vapor deposition (CVD)-grown graphene into small channels is itself a challenging problem, and we have developed novel fabrication methods to this end without sacrificing the inherent electrical quality that makes graphene such an attractive material. Large arrays of such devices have potential utility for understanding the physics of ligand-receptor interactions and contributing to the development of a new generation of devices for electronic olfaction. Tailored and specific detection was accomplished by chemically functionalizing the NT-FET or GFET with biomolecules, such as proteins or small molecules, to create a hybrid nanostructures. Targets for detection were widely varied, indicating the utility of these techniques, such as 1) live Salmonella cells in nutrient broth, 2) a biomarker protein indicative of prostate cancer, 3) antigen protein from the bacterium that causes Lyme disease, and 4) glucose

  9. The element level time domain (ELTD) method for the analysis of nano-optical systems: I. Nondispersive media

    Science.gov (United States)

    Fallahi, Arya; Oswald, Benedikt; Leidenberger, Patrick

    2012-04-01

    We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell's equations in the time domain on unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper. Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.

  10. RapidNano: towards 20nm Particle Detection on EUV Mask Blanks

    NARCIS (Netherlands)

    Donck, J.C.J. van der; Bussink, P.G.W.; Fritz, E.C.; Walle, P. van der

    2016-01-01

    Cleanliness is a prerequisite for obtaining economically feasible yield levels in the semiconductor industry. For the next generation of lithographic equipment, EUV lithography, the size of yield-loss inducing particles for the masks will be smaller than 20 nm. Consequently, equipment for handling

  11. Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nano tubes-Chitosan Modified Electrode

    International Nuclear Information System (INIS)

    Zhang, Sh.; Li, Sh.; Ma, J.; Xiong, F.; Qu, S.; Zhang, Sh.; Li, Sh.

    2013-01-01

    A sensitive and stable enzyme biosensor based on efficient immobilization of acetylcholinesterase (AChE) to MWNTs-modified glassy carbon electrode (GCE) with chitosan (CS) by layer-by-layer (LBL) technique for rapid determination of carbofuran has been devised. According to the inhibitory effect of carbamate pesticide on the enzymatic activity of AChE, we use carbofuran as a model pesticide. The inhibitory effect of carbofuran on the biosensor was proportional to concentration of carbofuran in the range from 10 -10  g/L to 10 -3  g/L with a detection limit of 10 -12  g/L. This biosensor is a promising new method for pesticide analysis

  12. Fabrication and characterization of injection molded multi level nano and microfluidic systems

    DEFF Research Database (Denmark)

    Matteucci, Marco; Christiansen, Thomas Lehrmann; Tanzi, Simone

    2013-01-01

    We here present a method for fabrication of multi-level all-polymer chips by means of silicon dry etching, electroplating and injection molding. This method was used for successful fabrication of microfluidic chips for applications in the fields of electrochemistry, cell trapping and DNA elongati...

  13. Auto Detection For High Level Water Content For Oil Well

    Science.gov (United States)

    Janier, Josefina Barnachea; Jumaludin, Zainul Arifin B.

    2010-06-01

    Auto detection of high level water content for oil well is a system that measures the percentage of water in crude oil. This paper aims to discuss an auto detection system for measuring the content of water level in crude oil which is applicable for offshore and onshore oil operations. Data regarding water level content from wells can be determined by using automation thus, well with high water level can be determined immediately whether to be closed or not from operations. Theoretically the system measures the percentage of two- fluid mixture where the fluids have different electrical conductivities which are water and crude oil. The system made use of grid sensor which is a grid pattern like of horizontal and vertical wires. When water occupies the space at the intersection of vertical and horizontal wires, an electrical signal is detected which proved that water completed the circuit path in the system. The electrical signals are counted whereas the percentage of water is determined from the total electrical signals detected over electrical signals provided. Simulation of the system using the MultiSIM showed that the system provided the desired result.

  14. Detecting bots using multi-level traffic analysis

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2016-01-01

    introduces a novel multi-level botnet detection approach that performs network traffic analysis of three protocols widely considered as the main carriers of botnet Command and Control (C&C) and attack traffic, i.e. TCP, UDP and DNS. The proposed method relies on supervised machine learning for identifying...

  15. Timescales for detecting a significant acceleration in sea level rise.

    Science.gov (United States)

    Haigh, Ivan D; Wahl, Thomas; Rohling, Eelco J; Price, René M; Pattiaratchi, Charitha B; Calafat, Francisco M; Dangendorf, Sönke

    2014-04-14

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records.

  16. EPR dosimetric properties of nano-barium sulfate

    International Nuclear Information System (INIS)

    Aboelezz, E.; Hassan, G.M.; Sharaf, M.A.; El-Khodary, A.

    2015-01-01

    Nano/micro BaSO 4 were prepared through the co-precipitation method to measure ionizing radiation doses using electron paramagnetic resonance (EPR). The nano-BaSO 4 sample was characterized using X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The dose response and fading properties of nano- and micro-phase BaSO 4 were compared in EPR spectra. The prepared nano- and micro-BaSO 4 samples have the same hole and electron centers, which may be attributed to SO 4 − and SO 3 − , respectively. The dosimetric signals for prepared nano- and micro-BaSO 4 have spectroscopic splitting factor (g) with values 2.0025±0.0006 and 2.0027±0.0006, respectively. The nanocrystalline sample has a linear γ-ray dose response over the range 0.4 Gy–1 kGy. The performance parameters which including detection limit and critical level calculated from weighted and unweighted least-squares fitting. The sensitivity of nano-BaSO 4 to γ-ray is one and a half times more than alanine. The lifetime and activation energy for nano-BaSO 4 were estimated by conducting a thermal stability study, and were 5.7±1.1×10 4 years and 0.73±0.14 eV, respectively. The combined and expanded uncertainties accompanying measurements were ±3.89% and ±7.78%, respectively. - Highlights: • Preparation of nano-BaSO 4 using the co-precipitation method. • Study of the dosimetric properties of nano-barium sulfate using the EPR technique. • Comparison between a new EPR dosimeter using nano-materials and standard alanine. • Calculation of the uncertainty budget for nano-BaSO 4

  17. Increased response to oxidative stress challenge of nano-copper-induced apoptosis in mesangial cells

    International Nuclear Information System (INIS)

    Xu, Pengjuan; Li, Zhigui; Zhang, Xiaochen; Yang, Zhuo

    2014-01-01

    Recently, many studies reported that nanosized copper particles (nano-Cu, the particle size was around 15–30 nm), one of the nanometer materials, could induce nephrotoxicity. To detect the effect of nano-Cu on mesangial cells (MCs), and investigate the underlying mechanism, MCs were treated with different concentrations of nano-Cu (1, 10, and 30 μg/mL) to determine the oxidative stress and apoptotic changes. It was revealed that nano-Cu could induce a decreased viability in MCs together with a significant increase in the number of apoptotic cells by using cell counting kit-8 assay and flow cytometry. The apoptotic morphological changes induced by nano-Cu in MCs were demonstrated by Hochest33342 staining. Results showed that nano-Cu induced the nuclear fragmentation in MCs. Meanwhile, nano-Cu significantly increased the levels of reactive oxygen species, especially increased the levels of H 2 O 2 . It also decreased the activity of total SOD enzyme. In addition, when pre-treated with N-(2-mercaptopropionyl)-glycine, the cell apoptosis induced by nano-Cu was significantly decreased. These results suggest that oxidative stress plays an important role in the nano-Cu toxicity in MCs, which may be the main mechanism of nano-Cu-induced nephrotoxicity

  18. The synergistic effects of ω-3 fatty acids and nano-curcumin supplementation on tumor necrosis factor (TNF)-α gene expression and serum level in migraine patients.

    Science.gov (United States)

    Abdolahi, Mina; Tafakhori, Abbas; Togha, Mansoureh; Okhovat, Ali Asghar; Siassi, Feridoun; Eshraghian, Mohammad Reza; Sedighiyan, Mohsen; Djalali, Mona; Mohammadzadeh Honarvar, Niyaz; Djalali, Mahmoud

    2017-06-01

    Migraine is a destabilizing neuroinflammatory disorder characterized by recurrent headache attacks. Evidences show tumor necrosis factor (TNF)-α play a role in neuroimmunity pathogenesis of migraine. TNF-α increase prostanoid production, hyperexcitability of neurons, and nociceptor activation resulted in neuroinflammation and neurogenic pain. ω-3 fatty acids and curcumin exert neuroprotective and anti-inflammatory effects via several mechanisms including suppression of TNF-α gene expression and its serum levels. The aim of this study is an evaluation of synergistic effects of ω-3 fatty acids and nano-curcumin on TNF-α gene expression and serum levels in migraine patients. The present study performed as a clinical trial over a 2 month period included 74 episodic migraine patients in 4 groups and received ω-3 fatty acids, nano-curcumin, and combination of them or placebo. At the start and the end of the study, the gene expression of TNF-α and TNF-α serum levels was measured by real-time PCR and ELISA method, respectively. Our results showed that the combination of ω-3 fatty acids and nano-curcumin downregulated TNF-α messenger RNA (mRNA) significantly in a synergistic manner (P curcumin alone did not show significant reduction either in mRNA or serum levels of TNF-α. In addition, a much greater reduction in attack frequency was found in the combination group (P curcumin supplementation can be considered as a new promising approach in migraine management.

  19. Nano-scale microfluidics to study 3D chemotaxis at the single cell level.

    Directory of Open Access Journals (Sweden)

    Corina Frick

    Full Text Available Directed migration of cells relies on their ability to sense directional guidance cues and to interact with pericellular structures in order to transduce contractile cytoskeletal- into mechanical forces. These biomechanical processes depend highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. In vivo, the majority of cells are exposed to 3D environments. Data on 3D cell migration are mostly derived from intravital microscopy or collagen-based in vitro assays. Both approaches offer only limited controllability of experimental conditions. Here, we developed an automated microfluidic system that allows positioning of cells in 3D microenvironments containing highly controlled diffusion-based chemokine gradients. Tracking migration in such gradients was feasible in real time at the single cell level. Moreover, the setup allowed on-chip immunocytochemistry and thus linking of functional with phenotypical properties in individual cells. Spatially defined retrieval of cells from the device allows down-stream off-chip analysis. Using dendritic cells as a model, our setup specifically allowed us for the first time to quantitate key migration characteristics of cells exposed to identical gradients of the chemokine CCL19 yet placed on 2D vs in 3D environments. Migration properties between 2D and 3D migration were distinct. Morphological features of cells migrating in an in vitro 3D environment were similar to those of cells migrating in animal tissues, but different from cells migrating on a surface. Our system thus offers a highly controllable in vitro-mimic of a 3D environment that cells traffic in vivo.

  20. Interactions of radionuclides and CO2 with clays: elucidating mechanisms at nano-scale level

    International Nuclear Information System (INIS)

    Yang, Wei

    2014-01-01

    In order to predict and regulate the environmental impact of human activities such as uranium mining and radioactive waste disposal, it is necessary to understand the behavior of actinides in the environment because their interaction with clay mineral is an important factor to control the migration of radionuclide in the environment. The behavior of actinides in the soil is mainly the surface adsorption interactions, which change the forms of radioactive elements and reduces the mobility of actinides in the natural systems. Therefore, it is important to search how the actinides interact with clay mineral such as the fundamental process of surface precipitation. Uranium is the predominant heavy metal content of the final waste in the nuclear fuel cycle (≥95% UO 2 ). In addition, uranium is a major contaminant in the soil, subsurface and groundwater as a result of human activity. Under standard environmental conditions, the most stable chemical form of U(VI) is the uranyl ion UO 2 2+ , which is potentially very mobile and readily complexes with organic and inorganic matter. On the other hand, carbon dioxide is an important greenhouse gas, warming the earth's surface to a higher temperature by reducing outward radiation. However, problems may occur when the atmospheric concentration of greenhouse gases increases. Amounts of carbon dioxide were produced since the industrial revolution, which is behind the significant global warming and rising sea level. Clay minerals are of great practical importance here, in storage of carbon dioxide due to its hydraulic permeability and ability to retain mobile species. We have chosen kaolinite and montmorillonite as prototypes of clay minerals of 1:1 and 2:1. Classical Monte Carlo (MC) and molecular dynamics (MD) methods have been used in this work in order to understand the adsorption behaviour of radionuclide and carbon dioxide in clays surface. In this thesis, we will investigate first the adsorption of uranyl on kaolinite

  1. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  2. Detection of human influence on sea-level pressure.

    Science.gov (United States)

    Gillett, Nathan P; Zwiers, Francis W; Weaver, Andrew J; Stott, Peter A

    2003-03-20

    Greenhouse gases and tropospheric sulphate aerosols--the main human influences on climate--have been shown to have had a detectable effect on surface air temperature, the temperature of the free troposphere and stratosphere and ocean temperature. Nevertheless, the question remains as to whether human influence is detectable in any variable other than temperature. Here we detect an influence of anthropogenic greenhouse gases and sulphate aerosols in observations of winter sea-level pressure (December to February), using combined simulations from four climate models. We find increases in sea-level pressure over the subtropical North Atlantic Ocean, southern Europe and North Africa, and decreases in the polar regions and the North Pacific Ocean, in response to human influence. Our analysis also indicates that the climate models substantially underestimate the magnitude of the sea-level pressure response. This discrepancy suggests that the upward trend in the North Atlantic Oscillation index (corresponding to strengthened westerlies in the North Atlantic region), as simulated in a number of global warming scenarios, may be too small, leading to an underestimation of the impacts of anthropogenic climate change on European climate.

  3. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens.

    Directory of Open Access Journals (Sweden)

    Shifra Ken Dror

    Full Text Available Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP (Savyon Diagnostics, Ashdod, IL, a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland. This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory.

  4. NanoDLSay: a new platform technology for biomolecular detection and analysis using gold nanoparticle probes coupled with dynamic light scattering

    Science.gov (United States)

    Bogdanovic, Jelena; Huo, Qun

    2010-04-01

    Most analytical techniques that are routinely used in biomedical research for detection and quantification of biomolecules are time-consuming, expensive and labor-intensive, and there is always a need for rapid, affordable and convenient methods. Recently we have developed a new platform technology for biomolecular detection and analysis: NanoDLSay. NanoDLSay employs antibody-coated gold nanoparticles (GNPs) and dynamic light scattering, and correlates the specific increase in particle size after antigen-antibody interaction to the target antigen concentration. We applied this technology to develop an assay for rapid detection of actin, a protein widely used as a loading control in Western Blot analysis. GNPs were coated with two types of polyclonal anti-actin antibodies, and used in the assay to detect two types of actin: β- and bovine skeletal muscle actin in RIPA buffer. The results of our study revealed some complex aspects of actin binding characteristics, which depended on the type of actin reagent and anti-actin antibody used. A surprising finding was a reverse dose-response relationship between the actin concentration and the average particle size in the assay solution, which we attributed to the effect of RIPA buffer. Our results indicate that RIPA may also interfere in other types of nanoparticle-based assays, and that this interference deserves further study.

  5. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    Science.gov (United States)

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  6. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxy apatite in rat femurs

    Energy Technology Data Exchange (ETDEWEB)

    Atila, Alptug, E-mail: alptugatila@yahoo.com [Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Halici, Zekai; Cadirci, Elif [Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240 (Turkey); Karakus, Emre [Department of Pharmacology and Toxicology, School of Veterinary Medicine, Ataturk University, Erzurum 25240 (Turkey); Palabiyik, Saziye Sezin [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ataturk University, Erzurum 25240 (Turkey); Ay, Nuran [Department of Material Science and Engineering, Faculty of Engineering, Anadolu University, Eskisehir 26555 (Turkey); Bakan, Feray [Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956 (Turkey); Yilmaz, Sahin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul 34755 (Turkey)

    2016-01-01

    ABSTRACT: Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN–HA composites in rat femurs. All rats were (n = 126) divided into five experimental groups (n = 24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100HA (Group2), femoral defect + %2.5hBN + %97.5HA (Group3), femoral defect + %5hBN + %95HA (Group4), femoral defect + %10hBN + %90 HA (Group5), femoral defect + %100hBN (Group6). The femoral defect was created in the distal femur (3 mm drill-bit). Each implant group was divided into four different groups (n = 24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN–HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN–HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. - Highlights: • Nano-hBN–HA composites are new targets for biomaterial and implant bioengineers. • Serum boron levels were researched after implantation of nano-hBN–HA composites. • Implantation of hBN–HA composite did not result in increased serum boron levels. • The use of boron in composite form with HA did not change the stability of the implant.

  7. Universal quantum dot-based sandwich-like immunoassay strategy for rapid and ultrasensitive detection of small molecules using portable and reusable optofluidic nano-biosensing platform

    International Nuclear Information System (INIS)

    Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong; Shi, Hanchang; Long, Feng

    2016-01-01

    A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples

  8. Universal quantum dot-based sandwich-like immunoassay strategy for rapid and ultrasensitive detection of small molecules using portable and reusable optofluidic nano-biosensing platform

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong [School of Environment and Natural Resources, Renmin University of China, Beijing (China); Shi, Hanchang [School of Environment, Tsinghua University, Beijing (China); Long, Feng, E-mail: longf04@ruc.edu.cn [School of Environment and Natural Resources, Renmin University of China, Beijing (China)

    2016-01-28

    A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples

  9. Nano structures for Medical Diagnostics Md

    International Nuclear Information System (INIS)

    Bellah, M.; Iqbal, S.M.; Bellah, M.; Iqbal, S.M.; Christensen, S.M.; Iqbal, S.M.; Iqbal, S.M.

    2012-01-01

    Nano technology is the art of manipulating materials on atomic or molecular scales especially to build nano scale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, structures, devices, and systems by controlling shape and size at nanometer scale. In the last few years, much work has been focused on the use of nano structures toward problems of biology and medicine. In this paper, we focus on the application of various nano structures and nano devices in clinical diagnostics and detection of important biological molecules. The discussion starts by introducing some basic techniques of micro-/nano scale fabrication that have enabled reproducible production of nano structures. The prospects, benefits, and limitations of using these novel techniques in the fields of bio detection and medical diagnostics are then discussed. Finally, the challenges of mass production and acceptance of nano technology by the medical community are considered.

  10. Non-enzymatic detection of glucose in fruits using TiO2-Mn3O4 hybrid nano interface

    Science.gov (United States)

    Jayanth Babu, K.; Sasya, Madhurantakam; Nesakumar, Noel; Shankar, Prabakaran; Gumpu, Manju Bhargavi; Ramachandra, Bhat Lakshmishri; Kulandaisamy, Arockia Jayalatha; Rayappan, John Bosco Balaguru

    2017-08-01

    Consumption of fruits leads to increase in glucose level in blood for diabetic patients, which in turn leads to peripheral, vascular, ocular complications and cardiac diseases. In this context, a non-enzymatic hybrid glucose biosensor was fabricated for the first time to detect glucose by immobilizing titanium oxide-manganese oxide (TiO2-Mn3O4) nanocomposite and chitosan membrane on to the surface of Pt working electrode (Pt/TiO2-Mn3O4/chitosan). TiO2-Mn3O4 nanocomposite catalyzed the oxidation of glucose to gluconolactone in the absence of glucose oxidase enzyme with high electron transfer rate, good biocompatibility and large surface coverage. Electrochemical measurements revealed the excellent sensing response of the developed biosensor towards glucose with a high sensitivity of 7.073 µA mM-1, linearity of 0.01-0.1 mM, low detection limit of 0.01 µM, reproducibility of 1.5% and stability of 98.8%. The electrochemical parameters estimated from the anodic process were subjected to linear regression models for the detection of unknown concentration of glucose in different fruit samples.

  11. Development of a bionanodevice for detecting stress levels

    International Nuclear Information System (INIS)

    Nomura, S; Handri, S; Honda, H

    2011-01-01

    Recent advances in molecular analysis techniques have enabled scientists to assess the tiny amounts of biochemical substances secreted in our bodies. This has revealed that the levels of various secretory hormones and immune substances vary sensitively with the mental state of a person. Such hormones and immune substances exhibit transient increases with various psychological stressors. They thus have the potential to be used as a novel biometric for monitoring stress. Biomarkers that occur in saliva can be monitored non-invasively and are thus potentially useful as practical indicators of mental stress. Stress biomarkers are considered to be released into the blood stream or other secretory fluids by physiological stress reactions. Stress biomarkers are expected to be detectable in sweat and other humoral fluids that are exuded from the skin surface. Based on this, we have developed a bionanodevice for detecting stress by capturing stress biomarkers on the skin surface in a non-invasive manner. A prototype bionanodevice is described in which a motor protein is introduced for molecular handling.

  12. Towards Flexibility Detection in Device-Level Energy Consumption

    DEFF Research Database (Denmark)

    Neupane, Bijay; Pedersen, Torben Bach; Thiesson, Bo

    2014-01-01

    The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility and operat......The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility...... and operation patterns of the devices in a set of real households. We propose a number of specific pre-processing steps such as operation stage segmentation, and aberrant operation duration removal to clean device level data. Further, we demonstrate various device operation properties such as hourly and daily...... regularities and patterns and the correlation between operating different devices. Subsequently, we show the existence of detectable time and energy flexibility in device operations. Finally, we provide various results providing a foundation for load- and flexibility-detection and -prediction at the device...

  13. Development of a bionanodevice for detecting stress levels

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, S; Handri, S [Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Honda, H, E-mail: nomura@kjs.nagaokaut.ac.jp, E-mail: hhonda@vos.nagaokaut.ac.jp [Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan)

    2011-03-15

    Recent advances in molecular analysis techniques have enabled scientists to assess the tiny amounts of biochemical substances secreted in our bodies. This has revealed that the levels of various secretory hormones and immune substances vary sensitively with the mental state of a person. Such hormones and immune substances exhibit transient increases with various psychological stressors. They thus have the potential to be used as a novel biometric for monitoring stress. Biomarkers that occur in saliva can be monitored non-invasively and are thus potentially useful as practical indicators of mental stress. Stress biomarkers are considered to be released into the blood stream or other secretory fluids by physiological stress reactions. Stress biomarkers are expected to be detectable in sweat and other humoral fluids that are exuded from the skin surface. Based on this, we have developed a bionanodevice for detecting stress by capturing stress biomarkers on the skin surface in a non-invasive manner. A prototype bionanodevice is described in which a motor protein is introduced for molecular handling.

  14. Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for blood cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandra Mouli [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042 (India); Dewan, Srishti [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Biomedical Engineering Department, Deenbandhu Chhotu Ram University of Science & Technology, Haryana 131039 (India); Chawla, Seema [Biomedical Engineering Department, Deenbandhu Chhotu Ram University of Science & Technology, Haryana 131039 (India); Yadav, Birendra Kumar [Rajiv Gandhi Cancer Institute and Research Centre, Rohini, Delhi 110085 (India); Sumana, Gajjala, E-mail: sumanagajjala@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Malhotra, Bansi Dhar, E-mail: bansi.malhotra@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042 (India)

    2016-09-21

    We report results of the studies relating to controlled deposition of the amino-functionalized silica-coated zinc oxide (Am-Si@ZnO) nano-assemblies onto an indium tin oxide (ITO) coated glass substrate using Langmuir-Blodgett (LB) technique. The monolayers have been deposited by transferring the spread solution of Am-Si@ZnO stearic acid prepared in chloroform at the air-water interface, at optimized pressure (16 mN/m), concentration (10 mg/ml) and temperature (23 °C). The high-resolution transmission electron microscopic studies of the Am-Si@ZnO nanocomposite reveal that the nanoparticles have a microscopic structure comprising of hexagonal assemblies of ZnO with typical dimensions of 30 nm. The surface morphology of the LB multilayer observed by scanning electron microscopy shows uniform surface of the Am-Si@ZnO film in the nanometer range (<80 nm). These electrodes have been utilized for chronic myelogenous leukemia (CML) detection by covalently immobilizing the amino-terminated oligonucleotide probe sequence via glutaraldehyde as a crosslinker. The response studies of these fabricated electrodes carried out using electrochemical impedance spectroscopy show that this Am-Si@ZnO LB film based nucleic acid sensor exhibits a linear response to complementary DNA (10{sup −6}–10{sup −16} M) with a detection limit of 1 × 10{sup −16} M. This fabricated platform is validated with clinical samples of CML positive patients and the results demonstrate its immense potential for clinical diagnosis. - Graphical abstract: Controlled deposition of functionalized silica coated zinc oxide nano-assemblies at the air/water interface for label free electrochemical detection of chronic myelogenous leukemia. - Highlights: • Stable and controlled deposition of Am-Si@ZnO nano-assemblies using LB technique. • Uniform monolayer deposition of the Am-Si@ZnO LB film within the nanometer range. • Am-Si@ZnO LB film shows enhanced electrochemical properties. • Fabricated

  15. In vivo detection of fluctuating brain steroid levels SHORT

    Science.gov (United States)

    Ikeda, Maaya; Rensel, Michelle A.; Schlinger, Barney A.; Remage-Healey, Luke

    2015-01-01

    This protocol describes a method for in vivo measurement of steroid hormones in brain circuits of the zebra finch. In vivo microdialysis has been used successfully to detect fluctuating neurosteroids in the auditory forebrain (Remage-Healey et al., 2008; 2012; Ikeda et al., 2012) and in the hippocampus (Rensel et al., 2012; 2013) of behaving adult zebra finches. In some cases, the steroids measured are derived locally (e.g., ‘neurosteroids’ like estrogens in males) whereas in other cases the steroids measured reflect systemic circulating levels and/or central conversion (e.g., the primary androgen testosterone and the primary glucocorticoid corticosterone). We also describe the method of reverse-microdialysis (‘retrodialysis’) of compounds that can influence local steroid neurochemistry as well as behavior. In vivo microdialysis can now be used to study steroid signaling in the brain for a variety of experimental purposes. Furthermore, similar methods have been developed to examine changing levels of catecholamines in behaving zebra finches (e.g., Sasaki et al., 2006). Thus, the combined study of neurochemistry and behavior in a vocal learning species now has a new set of powerful tools. PMID:25342066

  16. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection.

    Science.gov (United States)

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce

    2013-10-07

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.

  17. Polycrystalline CVD diamond device level modeling for particle detection applications

    Science.gov (United States)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  18. Polycrystalline CVD diamond device level modeling for particle detection applications

    International Nuclear Information System (INIS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-01-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  19. Development of a molecularly imprinted polymer tailored on disposable screen-printed electrodes for dual detection of EGFR and VEGF using nano-liposomal amplification strategy.

    Science.gov (United States)

    Johari-Ahar, Mohammad; Karami, Pari; Ghanei, Mostafa; Afkhami, Abbas; Bagheri, Hasan

    2018-06-01

    This work demonstrates the development of a gold screen-printed electrode (Au-SPE)-based biosensor modified with a molecularly imprinted polymer and amplified using antibody-conjugated nano-liposomes. The developed biosensor was utilized for dual determination of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) as cancer biomarkers. To prepare this biosensor, Au-SPE was modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) via self-assembly method and then the target proteins (EGFR and VEGF) were covalently attached to the modified SPE. To synthesize the molecularly imprinted polymer, monomers of acrylamide and N,N'-methylenebis(acrylamide) were polymerized around the EGFR and VEGF templates, and to characterize the prepared biosensor, electrochemical impedance spectroscopy was used for analyses of surface changes in the engineered electrodes. To produce reliable electrochemical signals, nano-liposomes which were loaded with Cd(II) and Cu(II) cations and decorated with antibodies specific for EGFR and VEGF were used as an efficient tool for detection of target biomarkers. In the analysis step, potentiometric striping analysis (PSA), as an electrochemical technique, was utilized for sensitive determination of these cations. The limits of detection (LODs) of EGFR and VEGF analyses were found to be 0.01 and 0.005 pg mL -1 with the linear dynamic ranges (LDRs) of 0.05-50000 and 0.01-7000 pg mL -1 , respectively. Moreover, the proposed biosensor was successfully used for sensitive, reproducible, and specific detection of EGFR and VEGF in real samples. Due to the SPE nature of the developed biosensor, we envision that this sensing tool has capability of being integrated with lab-on-a-chip (LOC), microfluidics, and micro total analysis systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Monitoring gradient profile on-line in micro- and nano-high performance liquid chromatography using conductivity detection.

    Science.gov (United States)

    Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong

    2016-08-19

    In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.

  1. Decision-level fusion for audio-visual laughter detection

    NARCIS (Netherlands)

    Reuderink, B.; Poel, M.; Truong, K.; Poppe, R.; Pantic, M.

    2008-01-01

    Laughter is a highly variable signal, which can be caused by a spectrum of emotions. This makes the automatic detection of laughter a challenging, but interesting task. We perform automatic laughter detection using audio-visual data from the AMI Meeting Corpus. Audio-visual laughter detection is

  2. Decision-Level Fusion for Audio-Visual Laughter Detection

    NARCIS (Netherlands)

    Reuderink, B.; Poel, Mannes; Truong, Khiet Phuong; Poppe, Ronald Walter; Pantic, Maja; Popescu-Belis, Andrei; Stiefelhagen, Rainer

    Laughter is a highly variable signal, which can be caused by a spectrum of emotions. This makes the automatic detection of laugh- ter a challenging, but interesting task. We perform automatic laughter detection using audio-visual data from the AMI Meeting Corpus. Audio- visual laughter detection is

  3. Advanced self-healing asphalt composites in the pavement performance field: mechanisms at the nano level and new repairing methodologies.

    Science.gov (United States)

    Agzenai, Yahya; Pozuelo, Javier; Sanz, Javier; Perez, Ignacio; Baselga, Juan

    2015-01-01

    In an effort to give a global view of this field of research, in this mini-review we highlight the most recent publications and patents focusing on modified asphalt pavements that contain certain reinforcing nanoparticles which impart desirable thermal, electrical and mechanical properties. In response to the increasing cost of asphalt binder and road maintenance, there is a need to look for alternative technologies and new asphalt composites, able to self-repair, for preserving and renewing the existing pavements. First, we will focus on the self-healing property of asphalt, the evidences that support that healing takes place immediately after the contact between the faces of a crack, and how the amount of healing can be measured in both the laboratory and the field. Next we review the hypothetical mechanisms of healing to understand the material behaviour and establish models to quantify the damage-healing process. Thereafter, we outline different technologies, nanotechnologies and methodologies used for self-healing paying particular attention to embedded micro-capsules, new nano-materials like carbon nanotubes and nano-fibres, ionomers, and microwave and induction heating processes.

  4. Impact of use of different sources of humic, bio and nano fertilizers and nitrogen levels on saffron (.Crocus sativus L flower yield

    Directory of Open Access Journals (Sweden)

    aliasghar armak

    2017-12-01

    Full Text Available This study is aimed at investigating the effect of using humic, bio and nano fertilizers and levels of nitrogen fertilizers in flower yield of saffron (Crocus sativus L. at the University of Torbat Heydarieh research farm located in Zaveh in 2014-2015. Treatments consisted of three levels of nitrogen application and use of fertilizer sources as the main factor, including Bioumik, Super Humic, combined Super Humic and Bioumik, Humi Ful, Nitrokara and no fertilizer as sub plots as split plot based on randomized complete block design with 18 treatments and three replications. Analysis of data showed that the effect of year and fertilizer sources on all traits measured was significant. The effect of nitrogen treatments was significant (at 1% except on number of flowers, dry style, mean dry weight stigma, and mean dry weight. Fertilizer sources increased all measured traits significantly. Application of Biomic increased petals and sepals dry weight (736.34 g/m2 by 46.78% in comparison with the control (464.19 g/m2. The highest dry weight stigma (524.2 g/m2 was seen in Super Humic + Bioumik treatment compared to the control group (443.1 g/m2. Super Humic treatment increased dry weight stigma by 86.49% relative to control. It seems that the use of humic, bio and nano fertilizers has a good effect on saffron performance.

  5. On detecting reference level of acrolein content in children's blood

    Directory of Open Access Journals (Sweden)

    T.S. Ulanova

    2017-03-01

    Full Text Available The article gives the results of complex chemical-analytical and clinical-laboratory research in course of which biological media of children living in Perm region were examined. To study impacts exerted by exogenous acrolein we examined 156 children in 2014–2016, aged 5–10, attending pre-school facilities and schools, and living in Perm region. As we conducted this research we detected average annual acrolein concentration in atmosphere on the examined territory; this concentration was equal to 0.000024 mg/m3, and it was 1.2 times higher than reference acrolein concentration in the air for chronic inhalation exposure. Average group acrolein concentration in children's blood was 1.2 times authentically higher (р3.96, p≤0.05. We used increased content of delta-aminolevulinic acid in urine as a limiting marker for effects occurring at chronic inhalation exposure to acrolein. Basing on the results of the performed examination we recommend concentration equal to 0.10 mgr/dm 3 as a reference level of acrolein content in blood at chronic inhalation exposure.

  6. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  7. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au

    International Nuclear Information System (INIS)

    Chang, C.-W.; Liao, J.-D.

    2008-01-01

    In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment

  8. Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.-W.; Liao, J.-D. [Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)], E-mail: jdliao@mail.ncku.edu.tw

    2008-08-06

    In this study, the well-ordered alkanethiolate self-assembled monolayers (SAMs) of varied chain lengths and tail groups were employed as examples for nano-characterization on their mechanical properties. A novel nano-indentation technique with a constant harmonic frequency was applied on SAMs chemically adsorbed on Au to explore their contact mechanics, and furthermore to interpret how SAM molecules respond to an infinitesimal oscillation force without pressing them. Experimental results demonstrated that the harmonic contact stiffness along with the measured displacement of SAMs/Au was distinguishable using a dynamic contact modulus with the distinct feature of phase angles. Phase angles resulted from the relaxing continuation of an applied harmonic frequency and mostly influenced by the outermost tail group of SAM molecules. The harmonic contact stiffness of SAM molecules obviously increased with the densely packed alkyl chains and relatively intense agglomeration of the head group at the anchoring site. As a consequence, the result of this work is relevant to contact mechanics at the surface contact level for the distinction of molecular substances attached on a solid surface. Furthermore it is particularly anticipated to identify biological molecules of variable qualities under a fluid-like micro-environment.

  9. Photon level chemical classification using digital compressive detection

    International Nuclear Information System (INIS)

    Wilcox, David S.; Buzzard, Gregery T.; Lucier, Bradley J.; Wang Ping; Ben-Amotz, Dor

    2012-01-01

    Highlights: ► A new digital compressive detection strategy is developed. ► Chemical classification demonstrated using as few as ∼10 photons. ► Binary filters are optimal when taking few measurements. - Abstract: A key bottleneck to high-speed chemical analysis, including hyperspectral imaging and monitoring of dynamic chemical processes, is the time required to collect and analyze hyperspectral data. Here we describe, both theoretically and experimentally, a means of greatly speeding up the collection of such data using a new digital compressive detection strategy. Our results demonstrate that detecting as few as ∼10 Raman scattered photons (in as little time as ∼30 μs) can be sufficient to positively distinguish chemical species. This is achieved by measuring the Raman scattered light intensity transmitted through programmable binary optical filters designed to minimize the error in the chemical classification (or concentration) variables of interest. The theoretical results are implemented and validated using a digital compressive detection instrument that incorporates a 785 nm diode excitation laser, digital micromirror spatial light modulator, and photon counting photodiode detector. Samples consisting of pairs of liquids with different degrees of spectral overlap (including benzene/acetone and n-heptane/n-octane) are used to illustrate how the accuracy of the present digital compressive detection method depends on the correlation coefficients of the corresponding spectra. Comparisons of measured and predicted chemical classification score plots, as well as linear and non-linear discriminant analyses, demonstrate that this digital compressive detection strategy is Poisson photon noise limited and outperforms total least squares-based compressive detection with analog filters.

  10. The world of Nano

    International Nuclear Information System (INIS)

    Noh, Seung Jeong; Hyun, Jun Won; An, Yong Hyeon; Lee, Sung Uk; Jee, Hye Gu; Kim, Young Seon

    2006-07-01

    The contents of this book are the beginning of nano technology, definition of nano, commercialization of nano technology, prospect of nano technology, survive with nano t-, development strategy of n-t in the U.S, and Japan, Korea, and other countries, comparison of development strategy of n-t among each country, various measurement technology for practical n-t, scanning tunneling microscopy, nano device, carbon nano tube, nano belt and nano wire, application of sensor in daily life, energy, post-Genome period and using as medicine with nano bio technology.

  11. Oocyte maturation and origin of the germline as revealed by the expression of Nanos-like in the Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Xu, Rui; Li, Qi; Yu, Hong; Kong, Lingfeng

    2018-04-13

    Nanos gene plays an important role in germline development in animals. However, the molecular mechanisms involved in germline development in Mollusca, the second largest animal phylum, are still poorly understood. Here we identified the Nanos orthologue from the Pacific oyster Crassostrea gigas (Cg-Nanos-like), and investigated the expression patterns of Nanos during gametogenesis and embryogenesis in C. gigas. Tissue expression analysis showed that Cg-Nanos-like was specifically expressed in female gonads. During the reproductive cycle, the expression of Cg-Nanos-like mRNA increased matching the seasonal development of the ovarian tissues in diploids, while the expression levels were significantly lower in the ovaries of sterile triploids compared to diploids. High expression of Cg-Nanos-like transcripts were detected in early embryonic stages, while the expression significantly dropped at gastrulation and was barely detectable in veliger stages. In situ hybridization showed that Cg-Nanos-like was expressed at different stages of developing oocytes, whereas positive signals were detected only in spermatogonia during the spermatogenic cycle. These findings indicated that Cg-Nanos-like was involved in the development of germ cells, and maintenance of oocyte maturation. In early embryogenesis, the transcripts were broadly expressed; following gastrulation, the expression was restricted to two cell clumps, which might be the putative primordial germ cells (PGCs) or their precursors. Based on the results, the formation of the PGCs in C. gigas was consistent with the model of transition from epigenesis to preformation. Copyright © 2017. Published by Elsevier B.V.

  12. Detection of serum antibody levels against newcastle disease in ...

    African Journals Online (AJOL)

    Poultry diseases are one of the main factors constraining poultry practice in most developing countries. Newcastle disease (ND) is a highly contagious and commonly fatal viral poultry disease caused by Newcastle disease virus (NDV). Detection of antibodies to Newcastle disease virus in 300 blood samples from local ...

  13. Enhanced detection levels in a semi-automated sandwich ...

    African Journals Online (AJOL)

    A peptide nucleic acid (PNA) signal probe was tested as a replacement for a typical DNA oligonucleotidebased signal probe in a semi-automated sandwich hybridisation assay designed to detect the harmful phytoplankton species Alexandrium tamarense. The PNA probe yielded consistently higher fluorescent signal ...

  14. Nano medicine in Action: An Overview of Cancer Nano medicine on the Market and in Clinical Trials

    International Nuclear Information System (INIS)

    Wang, R.; Billone, P.S.; Mullett, W.M.

    2013-01-01

    Nano medicine, defined as the application of nano technology in the medical field, has the potential to significantly change the course of diagnostics and treatment of life-threatening diseases, such as cancer. In comparison with traditional cancer diagnostics and therapy, cancer nano medicine provides sensitive cancer detection and/or enhances treatment efficacy with significantly minimized adverse effects associated with standard therapeutics. Cancer nano medicine has been increasingly applied in areas including nano drug delivery systems, nano pharmaceuticals, and nano analytical contrast reagents in laboratory and animal model research. In recent years, the successful introduction of several novel nano medicine products into clinical trials and even onto the commercial market has shown successful outcomes of fundamental research into clinics. This paper is intended to examine several nano medicines for cancer therapeutics and/or diagnostics-related applications, to analyze the trend of nano medicine development, future opportunities, and challenges of this fast-growing area.

  15. Nano Fertilizers

    Directory of Open Access Journals (Sweden)

    Hatice DAĞHAN

    2017-06-01

    Full Text Available Agricultural land is decreasing day by day due to erosion, environmental pollution, unconscious irrigation and fertilization. On the other hand, it is necessary to increase agricultural production in order to meet the needs of the developing industry as well as the nutritional needs of the growing population. In the recent years, nano fertilizers have begun to be produced to obtain the highest amount and quality of production from the unit area. Previous research shows that nano fertilizers cause an increase in the use efficiency of plant nutrients, reduce soil toxicity, minimize the potential adverse effects of excessive chemical fertilizer use, and reduce fertilizer application frequency. Nano fertilizers are important in agriculture to increase crop yield and nutrient use efficiency, and to reduce excessive use ofchemical fertilizers. The most important properties of these fertilizers are that they contain one or more of macro and micronutrients, they can be applied frequently in small amounts and are environmentally friendly. However, when applied at high doses, they exhibit decreasing effects on plant growth and crop yields, similar to chemical fertilizers. In this review, the definition, importan ce, and classification of nano fertilizers, their application in plant production, advantages and disadvantages and the results obtained in this field were discussed.

  16. Detection of spontaneous combustion underground by measuring CO levels

    Energy Technology Data Exchange (ETDEWEB)

    Boutonnat, M; Jeger, M

    1980-01-01

    It is essential to detect spontaneous combustion as soon as it occurs so as to prevent such outbreaks from becoming a serious conflagration. At present CO detection is the basic method used. States the need for setting up additional measuring points (in air returns from working palces and in return airways in general). Where possible measuring instruments should be placed near zones where there is a particularly high risk of spontaneous combustion. Measurement should be undertaken on a continuous basis or as frequently as possible and must be capable of distinguishing between extraneous CO (shotfiring and diesel motors) and CO emanating from outbreaks of spontaneous combustion. The article describes two instruments developed by CERCHAR: the remote-control CO monitors type C and CSD. Both devices make use of a UNOR analyser.

  17. Electropolymerization of Ni–LD metallopolymers on gold nanoparticles enriched multi-walled carbon nanotubes as nano-structure electrocatalyst for efficient voltammetric sertraline detection in human serum

    International Nuclear Information System (INIS)

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2016-01-01

    Highlights: • Electrodepositionof gold nanoparticles (Au NPs) on MWCNTs/GCE by potentiostatic double-pulse technique. • Cyclicvoltammetric method was used for electropolymerization of nano-structure Ni–LD on Au NPs/MWCNTs/GCE surface. • Synergisticeffect between Au NPs and MWCNTs in the modified GCE provided a larger surface area to allow more Ni(II)–LD complex electropolymerized onmodified electrode surface. • The modified electrode exhibited good reproducibility, sensitivity, stability, selectivity and lower limit of detection toward sertraline oxidation. - Abstract: In the following study attempts were made to present a novel and sensitive strategy for sensing and determining sertraline. To reach the goal of the study therefore, nano-structured Ni(II)–LD (LD: levodopa) film was electropolymerized on glassy carbon electrode (GCE) which was modified by gold nanoparticles (Au NPs) enriched multi-walled carbon nanotubes (MWCNTs) in alkaline solution. Double-pulse electrochemical technique was applied for electrodeposition of Au NPs on MWCNTs which were immobilized on glassy carbon electrode surface. In the next step, the prepared Au NPs/MWCNT/GCE was modified with Ni (II)–LD film by using cyclic voltammetry technique. Structure of Ni (II)–LD/Au NPs/MWCNT/GCE was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). Furthermore, the electrochemical behavior of Ni (II)–LD/Au NPs/MWCNTs composite and oxidation of sertraline in alkaline solutions was investigated by cyclic voltammetry (CV). It was found that the prepared Ni(II)–LD/Au NPs/MWCNTs nanocomposite, due to its unique properties, reveals high electrocatalytic activity towards oxidation of sertraline. Differential pulse voltammetry (DPV) was used for determining sertraline in the range of 0.05–5.5 μM with a good sensitivity (16.128 μA/μM) and a low detection limit of 95 nM (for S/N = 3). Finally, the developed

  18. Brain Targeted Intranasal Zaleplon Nano-emulsion: In-Vitro Characterization and Assessment of Gamma Aminobutyric Acid Levels in rabbits' Brain and Plasma at low and high Doses.

    Science.gov (United States)

    Abd-Elrasheed, Eman; El-Helaly, Sara Nageeb; El-Ashmoony, Manal M; Salah, Salwa

    2017-11-30

    Zaleplon is a pyrazolopyrimidin derivative hypnotic drug indicated for the short-term management of insomnia. Zaleplon belongs to Class II drugs, according to the biopharmaceutical classification system (BCS), showing poor solubility and high permeability. It undergoes extensive first-pass hepatic metabolism after oral absorption, with only 30% of Zaleplon being systemically available. It is available in tablet form which is unable to overcome the previous problems. The aim of this study is to enhance solubility and bioavailability via utilizing nanotechnology in the formulation of intranasal Zaleplon nano-emulsion (ZP-NE) to bypass the barriers and deliver an effective therapy to the brain. Screening studies were carried out wherein the solubility of zaleplon in various oils, surfactants(S) and co-surfactants(CoS) were estimated. Pseudo-ternary phase diagrams were constructed and various nano-emulsion formulations were prepared. These formulations were subjected to thermodynamic stability, in-vitro characterization, histopathological studies and assessment of the gamma aminobutyric acid (GABA) level in plasma and brain in rabbits compared to the market product (Sleep aid®). Stable NEs were successfully developed with a particle size range of 44.57±3.351 to 136.90±1.62 nm. A NE composed of 10% Miglyol® 812, 40%Cremophor® RH40 40%Transcutol® HP and 10% water successfully enhanced the bioavailability and brain targeting in the rabbits, showing a three to four folds increase than the marketed product. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Nano-mole scale sequential signal assignment by 1 H-detected protein solid-state NMR

    KAUST Repository

    Wang, Songlin; Parthasarathy, Sudhakar; Xiao, Yiling; Nishiyama, Yusuke; Long, Fei; Matsuda, Isamu; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a 3D 1H-detected solid-state NMR (SSNMR) approach for main-chain signal assignments of 10-100 nmol of fully protonated proteins using ultra-fast magic-angle spinning (MAS) at ∼80 kHz by a novel spectral-editing method, which permits drastic spectral simplification. The approach offers ∼110 fold time saving over a traditional 3D 13C-detected SSNMR approach. This journal is © The Royal Society of Chemistry 2015.

  20. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A.

    Science.gov (United States)

    Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju

    2015-01-01

    In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Detection of Nighttime Melatonin Level in Chinese Original Quiet Sitting

    Directory of Open Access Journals (Sweden)

    Chien-Hui Liou

    2010-10-01

    Conclusion: Our results support the hypothesis that meditation might elevate the nighttime salivary melatonin levels. It suggests that COQS can be used as a psychophysiological stimulus to increase endogenous secretion of melatonin, which in turn, might contribute to an improved sense of well-being.

  2. Detection of Aspergillus spp . and determination of the levels of ...

    African Journals Online (AJOL)

    Aflatoxins (B1, B2, G1 and G2) are hepatotoxic metabolites produced by Aspergillus flavus on a number of agricultural commodities. Their levels were studied in rice samples imported to Iran through a southern port in Bushehr. Aflatoxins analysis was performed by solvent extraction, immunoaffinity clean-up and ...

  3. Transport and Deposition of Micro-and Nano-Particles in Human Tracheobronchial Tree by an Asymmetric Multi-Level Bifurcation Model

    Directory of Open Access Journals (Sweden)

    Lin Tian

    2012-06-01

    Full Text Available Transport and deposition of particles in the upper tracheobronchial tree were analyzed using a multi-level asymmetric lung bifurcation model. The first three generations of tracheobronchial tree were included in the study. The laryngeal jet at the trachea entrance was modeled as an effective turbulence disturbance, and the study was focused on how to accurately simulate the airflow and predict the motion of the inhaled particles. Downstream in the lower level of the bronchial region, a laminar flow model was used, as smoother flow condition was expected. Transport and deposition of nano- and micro-scale spherical particles in the range of 0.01 μm to 30 μm were evaluated. The particle local deposition pattern and deposition rate in the lung bifurcation was discussed. The proposed multi-level asymmetric lung bifurcation model was found to be flexible, easy to use and computationally highly efficient. It was also shown that the selection of the anisotropic Reynolds stress transport turbulence model (RSTM was appropriate, and the use of the enhanced two-layer model boundary treatment was needed for accurate simulation of the turbulent airflow conditions in the upper airways.

  4. The investigation of nano-monitoring technology and the probability analysis of application of nuclear technology

    International Nuclear Information System (INIS)

    Kang Kejun; Wang Xuewu; Gao Wenhuan

    1999-01-01

    After several-decade of development, nano science/nano technology has become a scientific and technical frontier that with major trends foreseen in several disciplines. By connecting with the development of nano science/nano technology and considering the human body environment that the nano system is applicable in, the author analyzes the probability of the present nuclear detection technologies integrating and application with the monitoring of nano system, and draws an analysis of optimality choice

  5. Enhanced Device and Circuit-Level Performance Benchmarking of Graphene Nanoribbon Field-Effect Transistor against a Nano-MOSFET with Interconnects

    Directory of Open Access Journals (Sweden)

    Huei Chaeng Chin

    2014-01-01

    Full Text Available Comparative benchmarking of a graphene nanoribbon field-effect transistor (GNRFET and a nanoscale metal-oxide-semiconductor field-effect transistor (nano-MOSFET for applications in ultralarge-scale integration (ULSI is reported. GNRFET is found to be distinctly superior in the circuit-level architecture. The remarkable transport properties of GNR propel it into an alternative technology to circumvent the limitations imposed by the silicon-based electronics. Budding GNRFET, using the circuit-level modeling software SPICE, exhibits enriched performance for digital logic gates in 16 nm process technology. The assessment of these performance metrics includes energy-delay product (EDP and power-delay product (PDP of inverter and NOR and NAND gates, forming the building blocks for ULSI. The evaluation of EDP and PDP is carried out for an interconnect length that ranges up to 100 μm. An analysis, based on the drain and gate current-voltage (Id-Vd and Id-Vg, for subthreshold swing (SS, drain-induced barrier lowering (DIBL, and current on/off ratio for circuit implementation is given. GNRFET can overcome the short-channel effects that are prevalent in sub-100 nm Si MOSFET. GNRFET provides reduced EDP and PDP one order of magnitude that is lower than that of a MOSFET. Even though the GNRFET is energy efficient, the circuit performance of the device is limited by the interconnect capacitances.

  6. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection.

    Science.gov (United States)

    Garrett, Natalie L; Sekine, Ryo; Dixon, Matthew W A; Tilley, Leann; Bambery, Keith R; Wood, Bayden R

    2015-09-07

    Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based on gold-coated butterfly wings, which enabled detection of malarial hemozoin pigment within lysed blood samples containing 0.005% and 0.0005% infected red blood cells.

  7. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  8. Editorial Nano structures for Medicine and Pharmaceuticals

    International Nuclear Information System (INIS)

    Xing-Jie, L.; Kumar, A.; Donglu, S.; Daxiang, C.

    2012-01-01

    The rapid developments in nano structured materials and nano technology will have profound impact in many areas of biomedical applications including delivery of drugs and biomolecules, tissue engineering, detection of bio markers, cancer diagnosis, cancer therapy, and imaging. This field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, for controlling shape and size at nanometer scale to develop highly advanced materials for biomedical application and even to design better pharmaceutical products. In recent years, novel nano structure with multi functionalities has been focused on the use of nano structures toward solving problems of biology and medicine. The main scope of this special issue is to demonstrate the latest achievement of nano technology and its application in nano medicine particularly in new approaches for drug delivery such as targeted drug delivery system, nano structure for drug storage, nano materials for tissue engineering, medical diagnosis and treatment, and generation of new kinds of materials from biological sources. Therefore, many critical issues in nano structured materials, particularly their applications in biomedicine, must be addressed before clinical applications. This special issue devotes several review and research articles encompassing various aspects of nano materials for medicine and pharmaceuticals.

  9. Selective detection of Co2+ by fluorescent nano probe: Diagnostic approach for analysis of environmental samples and biological activities

    Science.gov (United States)

    Mahajan, Prasad G.; Dige, Nilam C.; Desai, Netaji K.; Patil, Shivajirao R.; Kondalkar, Vijay V.; Hong, Seong-Karp; Lee, Ki Hwan

    2018-06-01

    Nowadays scientist over the world are engaging to put forth improved methods to detect metal ion in an aqueous medium based on fluorescence studies. A simple, selective and sensitive method was proposed for detection of Co2+ ion using fluorescent organic nanoparticles. We synthesized a fluorescent small molecule viz. 4,4‧-{benzene-1,4-diylbis-[(Z)methylylidenenitrilo]}dibenzoic acid (BMBA) to explore its suitability as sensor for Co2+ ion and biocompatibility in form of nanoparticles. Fluorescence nanoparticles (BMBANPs) prepared by simple reprecipitation method. Aggregation induced enhanced emission of BMBANPs exhibits the narrower particle size of 68 nm and sphere shape morphology. The selective fluorescence quenching was observed by addition of Co2+ and does not affected by presence of other coexisting ion solutions. The photo-physical properties, viz. UV-absorption, fluorescence emission, and lifetime measurements are in support of ligand-metal interaction followed by static fluorescence quenching phenomenon in emission of BMBANPs. Finally, we develop a simple analytical method for selective and sensitive determination of Co2+ ion in environmental samples. The cell culture E. coli, Bacillus sps., and M. tuberculosis H37RV strain in the vicinity of BMBANPs indicates virtuous anti-bacterial and anti-tuberculosis activity which is of additional novel application shown by prepared nanoparticles.

  10. Fabrication of nano piezoelectric based vibration accelerometer for mechanical sensing

    Science.gov (United States)

    Murugan, S.; Prasad, M. V. N.; Jayakumar, K.

    2016-05-01

    An electromechanical sensor unit has been fabricated using nano PZT embedded in PVDF polymer. Such a polymer nano composite has been used as vibration sensor element and sensitivity, detection of mechanical vibration, and linearity measurements have been investigated. It is found from its performance, that this nano composite sensor is suitable for mechanical sensing applications.

  11. Detecting spin polarization of nano-crystalline manganese doped zinc oxide thin film using circular polarized light

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, H.M., E-mail: h_m_elsaid@hotmail.com

    2016-02-01

    The presence of spin polarization in Mn-doped ZnO thin film is very important for spintronic applications. Spin polarization was detected using simple method. This method depends on measuring the optical transmittance using circular polarized light in visible and near infra-red region. It was found that, there is a difference in the optical energy gap of the film for circular left and circular polarized light. For temperatures > 310 K the difference in energy gap is vanished. This result is confirmed by measuring the magnetic hysteresis of the film. This work introduces a promising method for measuring the ferromagnetism in diluted magnetic semiconductors. - Highlights: • Highly oriented c-axis of Mn-ZnO thin film doped with nitrogen is prepared. • The optical energy gap depends on the state of circularly polarized light. • The presence of spin polarization is confirmed using simple optical method. • Magnetic measurements are consistent with the results of the optical method.

  12. A new nano-enhanced technology proposed to quantify intracellular detection of radiation-induced metabolic processes.

    Science.gov (United States)

    Malak, Henryk; Richmond, Robert; Dicello, J F

    2011-02-01

    A new approach to intracellular detection and imaging of metabolic processes and pathways is presented that uses surface plasmon resonance to enhance interactions between photon-absorbing metabolites and metal nanoparticles in contact with cells in vitro or in vivo. Photon absorption in the nanoparticles creates plasmon fields, enhancing intrinsic metabolite fluorescence, thereby increasing absorption and emission rates, creating new spectral emission bands, shortening fluorescence lifetimes, becoming more photo-stable and increasing fluorescent resonance energy transfer efficiency. Because the cells remain viable, it is proposed that the method may be used to interrogate cells prior to and after irradiation, with the potential for automated analyses of intracellular interactive pathways associated with radiation exposures at lower doses than existing technologies. The design and concepts of the instrument are presented along with data for unexposed cells.

  13. Construction of a Nano Biosensor for Cyanide Anion Detection and Its Application in Environmental and Biological Systems.

    Science.gov (United States)

    Dong, Zhen-Zhen; Yang, Chao; Vellaisamy, Kasipandi; Li, Guodong; Leung, Chung-Hang; Ma, Dik-Lung

    2017-10-27

    We have developed a Ag@Au core-shell nanoparticle (NP)/iridium(III) complex-based sensing platform for the sensitive luminescence "turn-on" sensing of cyanide ions, an acutely toxic pollutant. The assay is based on the quenching effect of Ag@Au NPs on the emission of complex 1, but luminescence is restored after the addition of cyanide anions due to their ability to dissolve the Au shell. Our sensing platform exhibited a high sensitivity toward cyanide anions with a detection limit of 0.036 μM, and also showed high selectivity for cyanide over 10-fold excess amounts of other anions. The sensing platform was also successfully applied to monitor cyanide anions in drinking water and in living cells.

  14. Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride-hydroxy apatite in rat femurs.

    Science.gov (United States)

    Atila, Alptug; Halici, Zekai; Cadirci, Elif; Karakus, Emre; Palabiyik, Saziye Sezin; Ay, Nuran; Bakan, Feray; Yilmaz, Sahin

    2016-01-01

    Boron and its derivatives are effective in bone recovery and osteointegration. However, increasing the boron levels in body liquids may cause toxicity. The aim of our study is to investigate serum boron levels using ICP-MS after implantation of different ratios of nano-hBN-HA composites in rat femurs. All rats were (n=126) divided into five experimental groups (n=24) and one healthy group (6 rats); healthy (Group1), femoral defect + %100 HA (Group2), femoral defect + %2.5 hBN + %97.5 HA (Group3), femoral defect + %5 hBN + %95 HA (Group4), femoral defect + %10 hBN + %90 HA (Group5), femoral defect + %100 hBN (Group6). The femoral defect was created in the distal femur (3mm drill-bit). Each implant group was divided into four different groups (n=24) also 6 rats sacrificed for each groups in one week intervals during four weeks. In our results; at 1, 2, 3, and 4 weeks after implantation near bone tissue, serum levels of boron were evaluated using ICP-MS. We demonstrated that neither short-term nor long-term implantation of hBN-HA composite resulted in statistically increased serum boron levels in experimental groups compared to healthy group. In conclusion, this study investigated the implant material produced form hBN-HA for the first time. Our data suggest that hBN is a new promising target for biomaterial and implant bioengineers. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  16. Silver-choline chloride modified graphene oxide: Novel nano-bioelectrochemical sensor for celecoxib detection and CCD-RSM model.

    Science.gov (United States)

    Parsaee, Zohreh; Karachi, Nima; Abrishamifar, Seyyed Milad; Kahkha, Mohammad Reza Rezaei; Razavi, Razieh

    2018-07-01

    In this study, silver nanoparticles modified choline chloride functionalized graphene oxide (AgNPs-ChCl-GO) was synthesized using sonochemical method and utilized as a bioelectrochemical sensor for detection of celecoxib (CEL). The characterization studies were ultimately performed in order to acheive a more complete understanding of the morphological and structural features of the AgNPs-ChCl-GO using different techniques including FT-IR, AFM, FE-SEM, EDX, and XRD. AgNPs-ChCl-GO demonstrated a significant improvement in the reduction activity of CEL due to the enhancement in the current response compared to the bare carbon paste electrode (CPE). The optimum experimental conditions, were optimized using central composite design (CCD) methodology. The differential pulse voltammetry (DPVs) showed an expanded linear dynamic ranges of 9.6 × 10 -9 -7.4 × 10 -7  M for celecoxib in Britton-Robinson buffer in pH 5.0 with. LOD (S/N = 3) and LOQ (S/N = 10) were obtained 2.51 × 10 -9  M and 6.58 × 10 -9  M respectively. AgNPs-ChCl-GO-carbon paste electrode exhibited suitable properties and high accuracy determination of celecoxib in the human plasma sample. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Environmental Risks of Nano Zerovalent Iron for Arsenate Remediation: Impacts on Cytosolic Levels of Inorganic Phosphate and MgATP2- in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Weilan; Lo, Irene M C; Hu, Liming; Voon, Chia Pao; Lim, Boon Leong; Versaw, Wayne K

    2018-04-03

    The use of nano zerovalent iron (nZVI) for arsenate (As(V)) remediation has proven effective, but full-scale injection of nZVI into the subsurface has aroused serious concerns for associated environmental risks. This study evaluated the efficacy of nZVI treatment for arsenate remediation and its potential hazards to plants using Arabidopsis thaliana grown in a hydroponic system. Biosensors for inorganic phosphate (Pi) and MgATP 2- were used to monitor in vivo Pi and MgATP 2- levels in plant cells. The results showed that nZVI could remove As(V) from growth media, decrease As uptake by plants, and mitigate As(V) toxicity to plants. However, excess nZVI could cause Pi starvation in plants leading to detrimental effects on plant growth. Due to the competitive adsorption of As(V) and Pi on nZVI, removing As(V) via nZVI treatment at an upstream site could relieve downstream plants from As(V) toxicity and Pi deprivation, in which case 100 mg/L of nZVI was the optimal dosage for remediation of As(V) at a concentration around 16.13 mg/L.

  18. CZT nanoRAIDER_VFG Factsheet

    Energy Technology Data Exchange (ETDEWEB)

    James, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bolotnikov, A. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cui, Yonggang [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-15

    Brookhaven National Laboratory (BNL) is working with FLIR System Inc., the manufacturer of the nanoRAIDER, to design a handheld device based on a position-sensitive virtual Frisch-grid (VFG) Cadmium-Zinc-Telluride (CdZnTe or CZT) detector array (with 1% or better energy resolution). The new device called nanoRAIDER VFG will be an improvement to the current nanoRAIDER, which is a compact gamma-ray detection instrument manufactured by FLIR Systems Inc. that employs relatively lower-performing CZT hemispheric detectors (i.e., 3%-FWHM CZT detectors). The nanoRAIDER will significantly improve the accuracy while maintaining similar efficiency, as compared to the nanoRAIDER, for in-field analysis of nuclear materials and detection of undeclared activities during inspections conducted by the International Atomic Energy Agency (IAEA). Since the nanoRAIDER is currently used by the IAEA as part of its Complementary Access toolkit, a relatively quick acceptance of the nanoRAIDER VFG for safeguards is anticipated. The nanoRAIDER VFG will help address several items listed in the IAEA’s Long-Term R&D Plan that could enhance the abilities to detect undeclared nuclear material and activities.

  19. Nano-technology and nano-toxicology

    OpenAIRE

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of ...

  20. Application of smart transmitter technology in nuclear engineering measurements with level detection algorithm

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1994-01-01

    In this study a programmable smart transmitter is designed and applied to the nuclear engineering measurements. In order to apply the smart transmitter technology to nuclear engineering measurements, the water level detection function is developed and applied in this work. In the real time system, the application of level detection algorithm can make the operator of the nuclear power plant sense the water level more rapidly. Furthermore this work can simplify the data communication between the level-sensing thermocouples and the main signal processor because the level signal is determined at field. The water level detection function reduces the detection time to about 8.3 seconds by processing the signal which has the time constant 250 seconds and the heavy noise signal

  1. Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method

    Directory of Open Access Journals (Sweden)

    Wan Zhixiang

    2005-07-01

    Full Text Available Abstract Background Viral hepatitis due to hepatitis B virus and hepatitis C virus are major public health problems all over the world. Traditional detection methods including polymerase chain reaction (PCR-based assays and enzyme-linked immunosorbent assays (ELISA are expensive and time-consuming. In our assay, a protein chip assay using Nano-gold Immunological Amplification and Silver Staining (NIASS method was applied to detect HBV and HCV antibodies rapidly and simultaneously. Methods Chemically modified glass slides were used as solid supports (named chip, on which several antigens, including HBsAg, HBeAg, HBcAg and HCVAg (a mixture of NS3, NS5 and core antigens were immobilized respectively. Colloidal nano-gold labelled staphylococcal protein A (SPA was used as an indicator and immunogold silver staining enhancement technique was applied to amplify the detection signals, producing black image on array spots, which were visible with naked eyes. To determine the detection limit of the protein chip assay, a set of model arrays in which human IgG was spotted were structured and the model arrays were incubated with different concentrations of anti-IgG. A total of 305 serum samples previously characterized with commercial ELISA were divided into 4 groups and tested in this assay. Results We prepared mono-dispersed, spherical nano-gold particles with an average diameter of 15 ± 2 nm. Colloidal nano-gold-SPA particles observed by TEM were well-distributed, maintaining uniform and stable. The optimum silver enhancement time ranged from 8 to 12 minutes. In our assay, the protein chips could detect serum antibodies against HBsAg, HBeAg, HBcAg and HCVAg with the absence of the cross reaction. In the model arrays, the anti-IgG as low as 3 ng/ml could be detected. The data for comparing the protein chip assay with ELISA indicated that no distinct difference (P > 0.05 existed between the results determined by our assay and ELISA respectively. Conclusion

  2. Nanogram per milliliter-level immunologic detection of alpha-fetoprotein with integrated rotating-resonance microcantilevers for early-stage diagnosis of heptocellular carcinoma.

    Science.gov (United States)

    Liu, Yongjing; Li, Xinxin; Zhang, Zhixiang; Zuo, Guomin; Cheng, Zhenxing; Yu, Haitao

    2009-02-01

    Nanogram per milliliter-level ultra-low concentration detection of alpha-fetoprotein (AFP), which is an important marker for heptocellular carcinoma, is in favor of early-stage prognosis and disease diagnosis. On-the-spot rapid detection of such antigens as AFP highly requires innovative micro/nano techniques. To meet this requirement, an advanced resonant microcantilever is developed and used for screening the tumor marker at nanogram per milliliter level. The sensing principle of the resonant microcantilever is measuring frequency-shift versus specific-adsorbed mass. With both electromagnetic resonance-exciting and piezoresistive readout elements on-chip integrated, the microcantilever sensor is operated in a rotating resonance mode to improve sensitivity and resolution to specific mass adsorption. Prior to detection of AFP with previously immobilized anti-AFP antibody, the antigen-antibody specific-binding is confirmed with an enzyme linked immunosorbent assay experiment. By implementing the specific reaction in liquid and reading out the sensor signal in lab air environment, the micromechanical sensor has achieved the sensitive scale between 2 and 20 ng/ml. To effectively depress cross-talk signal and improve resolution, the insensitive regions of the cantilever surface are pre-modified with 2-[methoxy (polyethyleneoxy) propyl] trimethoxysilane for nonspecific bio-adsorption minimization. Finally, a better AFP detecting limit than 2 ng/mL is experimentally achieved. The label-free resonant microcantilever sensor is promising in low-cost or even disposable early-stage prognosis and diagnosis of tumors.

  3. Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Alizadeh, Taher; Ganjali, Mohammad Reza; Akhoundian, Maede; Norouzi, Parviz

    2016-01-01

    A carbon paste electrode was modified with a Ce(III)-imprinted polymer (Ce-IP) and used for voltammetric determination of Ce(III) ions in real water samples. Precipitation polymerization was used for synthesis of the nano-sized Ce-IP from vinylpyridine and methacrylic acid (acting as the complexing ligands and functional monomers), divinylbenzene (cross-linker) and AIBN as the radical starter. The Ce-IP was characterized by scanning electron microscopy and zeta potentials. A carbon paste electrode (CPE) was then impregnated with the Ce-IP and used for the extraction and subsequent determination of Ce(III). Oxidative square wave voltammetry showed the electrode to give a significantly better response than an electrode modified with the non-imprinted polymer. The addition of multiwalled carbon nanotubes to the Ce-IP-modified electrode further improves the signal, thereby increasing the sensitivity of the method. The effects of electrode composition, extraction pH value, volume and time were optimized. The electrode, if operated at a voltage of 1.05 V (vs. Ag/AgCl), displays a linear response to Ce(III) in the 1.0 μM to 25 pM concentration range, and the detection limit is 10 pM (at an S/N ratio of 3). The relative standard deviation of 5 separate determinations is 3.1 %. The method was successfully applied to the determination of Ce(III) in the spiked samples of drinking water and sea water. (author)

  4. Automatic QRS complex detection using two-level convolutional neural network.

    Science.gov (United States)

    Xiang, Yande; Lin, Zhitao; Meng, Jianyi

    2018-01-29

    The QRS complex is the most noticeable feature in the electrocardiogram (ECG) signal, therefore, its detection is critical for ECG signal analysis. The existing detection methods largely depend on hand-crafted manual features and parameters, which may introduce significant computational complexity, especially in the transform domains. In addition, fixed features and parameters are not suitable for detecting various kinds of QRS complexes under different circumstances. In this study, based on 1-D convolutional neural network (CNN), an accurate method for QRS complex detection is proposed. The CNN consists of object-level and part-level CNNs for extracting different grained ECG morphological features automatically. All the extracted morphological features are used by multi-layer perceptron (MLP) for QRS complex detection. Additionally, a simple ECG signal preprocessing technique which only contains difference operation in temporal domain is adopted. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed detection method achieves overall sensitivity Sen = 99.77%, positive predictivity rate PPR = 99.91%, and detection error rate DER = 0.32%. In addition, the performance variation is performed according to different signal-to-noise ratio (SNR) values. An automatic QRS detection method using two-level 1-D CNN and simple signal preprocessing technique is proposed for QRS complex detection. Compared with the state-of-the-art QRS complex detection approaches, experimental results show that the proposed method acquires comparable accuracy.

  5. Detection and quantification limits: basic concepts, international harmonization, and outstanding ('low-level') issues

    International Nuclear Information System (INIS)

    Currie, L.A.

    2004-01-01

    A brief review is given of concepts, basic definitions, and terminology for metrological detection and quantification capabilities, representing harmonized recommendations and norms of the International Union of Pure and Applied Chemistry (IUPAC) and the International Organization for Standardization (ISO), respectively. Treatment of the (low-level) blank and variance function are discussed in some detail, together with special problems arising with detection decisions and the reporting of low-level data. Key references to the international documents follow, as well as specialized references addressing very low-level counting data, skewed environmental blank distributions, and multiple and multivariate detection decisions

  6. Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications

    Science.gov (United States)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.

  7. Identification, characterization and functional analysis of regulatory region of nanos gene from half-smooth tongue sole (Cynoglossus semilaevis).

    Science.gov (United States)

    Huang, Jinqiang; Li, Yongjuan; Shao, Changwei; Wang, Na; Chen, Songlin

    2017-06-20

    The nanos gene encodes an RNA-binding zinc finger protein, which is required in the development and maintenance of germ cells. However, there is very limited information about nanos in flatfish, which impedes its application in fish breeding. In this study, we report the molecular cloning, characterization and functional analysis of the 3'-untranslated region of the nanos gene (Csnanos) from half-smooth tongue sole (Cynoglossus semilaevis), which is an economically important flatfish in China. The 1233-bp cDNA sequence, 1709-bp genomic sequence and flanking sequences (2.8-kb 5'- and 1.6-kb 3'-flanking regions) of Csnanos were cloned and characterized. Sequence analysis revealed that CsNanos shares low homology with Nanos in other species, but the zinc finger domain of CsNanos is highly similar. Phylogenetic analysis indicated that CsNanos belongs to the Nanos2 subfamily. Csnanos expression was widely detected in various tissues, but the expression level was higher in testis and ovary. During early development and sex differentiation, Csnanos expression exhibited a clear sexually dimorphic pattern, suggesting its different roles in the migration and differentiation of primordial germ cells (PGCs). Higher expression levels of Csnanos mRNA in normal females and males than in neomales indicated that the nanos gene may play key roles in maintaining the differentiation of gonad. Moreover, medaka PGCs were successfully labeled by the microinjection of synthesized mRNA consisting of green fluorescence protein and the 3'-untranslated region of Csnanos. These findings provide new insights into nanos gene expression and function, and lay the foundation for further study of PGC development and applications in tongue sole breeding. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nano-technology and nano-toxicology.

    Science.gov (United States)

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  9. NaNO3/NaCl Oxidant and Polyethylene Glycol (PEG) Capped Gold Nanoparticles (AuNPs) as a Novel Green Route for AuNPs Detection in Electrochemical Biosensors.

    Science.gov (United States)

    López-Marzo, Adaris M; Hoyos-de-la-Torre, Raquel; Baldrich, Eva

    2018-03-20

    Gold nanoparticles (AuNPs) have been exploited as signal-producing tags in electrochemical biosensors. However, the electrochemical detection of AuNPs is currently performed using corrosive acid solutions, which may raise health and environmental concerns. Here, oxidant salts, and specifically the environmentally friendly and occupational safe NaNO 3 /NaCl mixture, have been evaluated for the first time as potential alternatives to the acid solutions traditionally used for AuNPs electrooxidation. In addition, a new strategy to improve the sensitivity of the biosensor through PEG-based ligand exchange to produce less compact and easier to oxidize AuNPs immunoconjugates is presented too. As we show, the electrochemical immunosensor using NaNO 3 /NaCl measurement solution for AuNPs electrooxidation and detection, coupled to the employment of PEG-capped nanoimmunoconjugates, produced results comparable to classical HCl detection. The procedure developed was next tested for human matrix metallopeptidase-9 (hMMP9) analysis, exhibiting a 0.18-23 ng/mL linear range, a detection limit of 0.06 ng/mL, and recoveries between 95 and 105% in spiked human plasma. These results show that the procedure developed is applicable to the analysis of protein biomarkers in blood plasma and could contribute to the development of more environmentally friendly AuNP-based electrochemical biosensors.

  10. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection.

    Science.gov (United States)

    Qi, Ping; Liang, Zhi-An; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-Qiong; Zheng, Chun-Hao; Luo, Li-Ni; Lin, Zi-Hao; Zhu, Fang; Zhang, Xue-Wu

    2016-03-11

    In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. FJ-2207 measuring instrument detection pipe surface a level of pollution method

    International Nuclear Information System (INIS)

    Wang Jiangong

    2010-01-01

    On the pipe surface contamination were detected α level of pollution is a frequently encountered dose-detection work. Because the pipeline surface arc, while the measuring probe for the plane, which for accurate measurement difficult. In this paper, on the FJ-2207-type pipe surface contamination measuring instrument measuring pollution levels in the α method was studied. Introduced the FJ-2207 measuring instrument detection pipe surface α pollution levels. Studied this measuring instrument on the same sources of surface, plane α level of radioactivity measured differences in the results obtained control of the apparatus when the direct measurement of the surface correction factor, and gives 32-216 specifications commonly used pipe direct measurement of the amendment factor. Convenient method, test results are reliable for the accurate measurement of pipe pollution levels in the surface of α as a reference and learning. (authors)

  12. Topoisomerase I as a Biomarker: Detection of Activity at the Single Molecule Level

    DEFF Research Database (Denmark)

    Proszek, Joanna; Roy, Amit; Jakobsen, Ann-Katrine

    2014-01-01

    in hTopI have been reported to result in CPT resistance. Therefore, hTOPI gene copy number, mRNA level, protein amount, and enzyme activity have been studied to explain differences in cellular response to CPT. We show that Rolling Circle Enhanced Enzyme Activity Detection (REEAD), allowing measurement...... of hTopI cleavage-religation activity at the single molecule level, may be used to detect posttranslational enzymatic differences influencing CPT response. These differences cannot be detected by analysis of hTopI gene copy number, mRNA amount, or protein amount, and only become apparent upon measuring...

  13. Low-Level Detection of Poly(amidoamine) PAMAM Dendrimers Using Immunoimaging Scanning Probe Microscopy

    OpenAIRE

    Cason, Chevelle A.; Fabré, Thomas A.; Buhrlage, Andrew; Haik, Kristi L.; Bullen, Heather A.

    2012-01-01

    Immunoimaging scanning probe microscopy was utilized for the low-level detection and quantification of biotinylated G4 poly(amidoamine) PAMAM dendrimers. Results were compared to those of high-performance liquid chromatography (HPLC) and found to provide a vastly improved analytical method for the low-level detection of dendrimers, improving the limit of detection by a factor of 1000 (LOD = 2.5 × 10−13 moles). The biorecognition method is reproducible and shows high specificity and good accur...

  14. [Spectral features analysis of Pinus massoniana with pest of Dendrolimus punctatus Walker and levels detection].

    Science.gov (United States)

    Xu, Zhang-Hua; Liu, Jian; Yu, Kun-Yong; Gong, Cong-Hong; Xie, Wan-Jun; Tang, Meng-Ya; Lai, Ri-Wen; Li, Zeng-Lu

    2013-02-01

    Taking 51 field measured hyperspectral data with different pest levels in Yanping, Fujian Province as objects, the spectral reflectance and first derivative features of 4 levels of healthy, mild, moderate and severe insect pest were analyzed. On the basis of 7 detecting parameters construction, the pest level detecting models were built. The results showed that (1) the spectral reflectance of Pinus massoniana with pests were significantly lower than that of healthy state, and the higher the pest level, the lower the reflectance; (2) with the increase in pest level, the spectral reflectance curves' "green peak" and "red valley" of Pinus massoniana gradually disappeared, and the red edge was leveleds (3) the pest led to spectral "green peak" red shift, red edge position blue shift, but the changes in "red valley" and near-infrared position were complicated; (4) CARI, RES, REA and REDVI were highly relevant to pest levels, and the correlations between REP, RERVI, RENDVI and pest level were weak; (5) the multiple linear regression model with the variables of the 7 detection parameters could effectively detect the pest levels of Dendrolimus punctatus Walker, with both the estimation rate and accuracy above 0.85.

  15. Target detection and driving behaviour measurements in a driving simulator at mesopic light levels

    NARCIS (Netherlands)

    Alferdinck, J.W.A.M.

    2006-01-01

    During night-time driving hazardous objects often appear at mesopic light levels, which are typically measured using light meters with a spectral sensitivity that is only valid for photopic light levels. In order to develop suitable mesopic models a target detection experiment was performed in a

  16. Hybrid approach for detection of dental caries based on the methods FCM and level sets

    Science.gov (United States)

    Chaabene, Marwa; Ben Ali, Ramzi; Ejbali, Ridha; Zaied, Mourad

    2017-03-01

    This paper presents a new technique for detection of dental caries that is a bacterial disease that destroys the tooth structure. In our approach, we have achieved a new segmentation method that combines the advantages of fuzzy C mean algorithm and level set method. The results obtained by the FCM algorithm will be used by Level sets algorithm to reduce the influence of the noise effect on the working of each of these algorithms, to facilitate level sets manipulation and to lead to more robust segmentation. The sensitivity and specificity confirm the effectiveness of proposed method for caries detection.

  17. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste.

    Science.gov (United States)

    Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V

    2015-06-01

    The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete. © The Author(s) 2015.

  18. A new interface weak-capacitance detection ASIC of capacitive liquid level sensor in the rocket

    Science.gov (United States)

    Yin, Liang; Qin, Yao; Liu, Xiao-Wei

    2017-11-01

    A new capacitive liquid level sensing interface weak-capacitance detection ASIC has been designed. This ASIC realized the detection of the output capacitance of the capacitive liquid level sensor, which converts the output capacitance of the capacitive liquid level sensor to voltage. The chip is fabricated in a standard 0.5μm CMOS process. The test results show that the linearity of capacitance detection of the ASIC is 0.05%, output noise is 3.7aF/Hz (when the capacitance which will be detected is 40 pF), the stability of capacitance detection is 7.4 × 10-5pF (1σ, 1h), the output zero position temperature coefficient is 4.5 uV/∘C. The test results prove that this interface ASIC can meet the requirement of high accuracy capacitance detection. Therefore, this interface ASIC can be applied in capacitive liquid level sensing and capacitive humidity sensing field.

  19. Metrology at the nano scale

    International Nuclear Information System (INIS)

    Sheridan, B.; Cumpson, P.; Bailey, M.

    2006-01-01

    Progress in nano technology relies on ever more accurate measurements of quantities such as distance, force and current industry has long depended on accurate measurement. In the 19th century, for example, the performance of steam engines was seriously limited by inaccurately made components, a situation that was transformed by Henry Maudsley's screw micrometer calliper. And early in the 20th century, the development of telegraphy relied on improved standards of electrical resistance. Before this, each country had its own standards and cross border communication was difficult. The same is true today of nano technology if it is to be fully exploited by industry. Principles of measurement that work well at the macroscopic level often become completely unworkable at the nano metre scale - about 100 nm and below. Imaging, for example, is not possible on this scale using optical microscopes, and it is virtually impossible to weigh a nano metre-scale object with any accuracy. In addition to needing more accurate measurements, nano technology also often requires a greater variety of measurements than conventional technology. For example, standard techniques used to make microchips generally need accurate length measurements, but the manufacture of electronics at the molecular scale requires magnetic, electrical, mechanical and chemical measurements as well. (U.K.)

  20. MULTI-LEVEL SAMPLING APPROACH FOR CONTINOUS LOSS DETECTION USING ITERATIVE WINDOW AND STATISTICAL MODEL

    OpenAIRE

    Mohd Fo'ad Rohani; Mohd Aizaini Maarof; Ali Selamat; Houssain Kettani

    2010-01-01

    This paper proposes a Multi-Level Sampling (MLS) approach for continuous Loss of Self-Similarity (LoSS) detection using iterative window. The method defines LoSS based on Second Order Self-Similarity (SOSS) statistical model. The Optimization Method (OM) is used to estimate self-similarity parameter since it is fast and more accurate in comparison with other estimation methods known in the literature. Probability of LoSS detection is introduced to measure continuous LoSS detection performance...

  1. Detection of Changes in Ground-Level Ozone Concentrations via Entropy

    Directory of Open Access Journals (Sweden)

    Yuehua Wu

    2015-04-01

    Full Text Available Ground-level ozone concentration is a key indicator of air quality. Theremay exist sudden changes in ozone concentration data over a long time horizon, which may be caused by the implementation of government regulations and policies, such as establishing exhaust emission limits for on-road vehicles. To monitor and assess the efficacy of these policies, we propose a methodology for detecting changes in ground-level ozone concentrations, which consists of three major steps: data transformation, simultaneous autoregressive modelling and change-point detection on the estimated entropy. To show the effectiveness of the proposed methodology, the methodology is applied to detect changes in ground-level ozone concentration data collected in the Toronto region of Canada between June and September for the years from 1988 to 2009. The proposed methodology is also applicable to other climate data.

  2. Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yun; Wang Huixiang; Huang Jingyu; Yang Jie; Liu Baohong [Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Yang Pengyuan, E-mail: pyyang@fudan.edu.cn [Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai 200433 (China)

    2009-09-14

    A simple and sensitive method has been proposed to determine a trace level of {alpha}-fetoprotein (AFP), hepatocellular carcinoma biomarker, using poly(methyl methacrylate) (PMMA) microfluidic chips coupled with electrochemical detection system. The PMMA microchannels have been modified with poly(ethyleneimine) (PEI) containing abundant NH{sub 2} groups to covalently immobilize AFP monoclonal antibody. Afterward, the antigen AFP and horseradish peroxidase (HRP)-conjugated AFP antibody can sequentially bind through antigen-antibody specific interaction. Atomic force microscopy (AFM) and confocal fluorescence microscope (CFFM) were utilized to characterize the surface topography and protein immobilization after modification. Coupled with three-electrode electrochemical detection system, the immunochip can perform the detection limit of AFP down to 1 pg mL{sup -1}, and achieve a detectable linear concentration range of 1-500 pg mL{sup -1} by differential pulse voltammetry (DPV). The on-chip immunoassay platform can not only provide rapid and sensitive detection for target proteins but also be resistant to non-specific adsorption of proteins, which contributes to the detection of low-level protein in real sample. Finally, AFP existing in healthy human serum was detected to demonstrate the utility of the immunochip. The result shows that the proposed approach is feasible and has the potential application in clinical analysis and diagnosis.

  3. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  4. Nano devices and sensors

    CERN Document Server

    Liaw, Shien-Kuei; Chung, Yung-Hui

    2016-01-01

    This volume on semiconductor devices focuses on such topics as nano-imprinting, lithography, nanowire charge-trapping, thermo-stability in nanowires, nano-electrodes, and voltage and materials used for fabricating and improving electrical characteristics of nano-materials.

  5. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  6. Nano-DTA and nano-DSC with cantilever-type calorimeter

    International Nuclear Information System (INIS)

    Nakabeppu, Osamu; Deno, Kohei

    2016-01-01

    Highlights: • Nanocalorimetry with original cantilever type calorimeters. • The calorimeters showed the enthalpy resolution of 200 nJ level. • Nano-DTA of a binary alloy captured a probabilistic peak after solidification. • Power compensation DSC of a microgram level sample was demonstrated. • The DSC and DTA behavior were explained with a lumped model. - Abstract: Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) of the minute samples in the range of microgram to nanogram were studied using original cantilever-type calorimeters. The micro-fabricated calorimeter with a heater and thermal sensors was able to perform a fast temperature scan at above 1000 K/s and a high-resolution heat measurement. The DTA of minuscule metal samples demonstrated some advances such as the thermal analysis of a 20 ng level indium and observation of a strange phase transition of a binary alloy. The power compensation type DSC using a thermal feedback system was also performed. Thermal information of a microgram level sample was observed as splitting into the DSC and DTA signals because of a mismatch between the sample and the calorimeter. Although there remains some room for improvement in terms of the heat flow detection, the behavior of the compensation system in the DSC was theoretically understood through a lumped model. Those experiments also produced some findings, such as a fin effect with sample loading, a measurable weight range, a calibration of the calorimeter and a product design concept. The development of the nano-DTA and nano-DSC will enable breakthroughs for the fast calorimetry of the microscopic size samples.

  7. The clinical value of detection of serum TGAb and TPOAb level in autoimmune thyroid diseases

    International Nuclear Information System (INIS)

    Min Xiaoxia; Huang Xingming

    2008-01-01

    To study the clinical value of serum TGAb and TPOAb levels in the diagnosis of patients with autoimmune thyroid diseases (AITD), the serum levels of TGAb and TPOAb in 175 patients with AITD and 64 non-AITD patients and 57 health controls were measured by RIA. The results showed that the serum levels of TGAb and TPOAb in AITD patients with GD and HT were significantly higher than that of control group (P 0.05). The detection of serum TGAb and TPOAb levels may have clinical value in the diagnosis, treatment and prognosis of autoimmune thyroid diseases. (authors)

  8. Enhancing spatial detection accuracy for syndromic surveillance with street level incidence data

    Directory of Open Access Journals (Sweden)

    Alemi Farrokh

    2010-01-01

    Full Text Available Abstract Background The Department of Defense Military Health System operates a syndromic surveillance system that monitors medical records at more than 450 non-combat Military Treatment Facilities (MTF worldwide. The Electronic Surveillance System for Early Notification of Community-based Epidemics (ESSENCE uses both temporal and spatial algorithms to detect disease outbreaks. This study focuses on spatial detection and attempts to improve the effectiveness of the ESSENCE implementation of the spatial scan statistic by increasing the spatial resolution of incidence data from zip codes to street address level. Methods Influenza-Like Illness (ILI was used as a test syndrome to develop methods to improve the spatial accuracy of detected alerts. Simulated incident clusters of various sizes were superimposed on real ILI incidents from the 2008/2009 influenza season. Clusters were detected using the spatial scan statistic and their displacement from simulated loci was measured. Detected cluster size distributions were also evaluated for compliance with simulated cluster sizes. Results Relative to the ESSENCE zip code based method, clusters detected using street level incidents were displaced on average 65% less for 2 and 5 mile radius clusters and 31% less for 10 mile radius clusters. Detected cluster size distributions for the street address method were quasi normal and sizes tended to slightly exceed simulated radii. ESSENCE methods yielded fragmented distributions and had high rates of zero radius and oversized clusters. Conclusions Spatial detection accuracy improved notably with regard to both location and size when incidents were geocoded to street addresses rather than zip code centroids. Since street address geocoding success rates were only 73.5%, zip codes were still used for more than one quarter of ILI cases. Thus, further advances in spatial detection accuracy are dependant on systematic improvements in the collection of individual

  9. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Sang-Il Oh

    2017-01-01

    Full Text Available To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN. The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226 × 370 image, whereas the original selective search method extracted approximately 10 6 × n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset.

  10. Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress

    Directory of Open Access Journals (Sweden)

    Amina Rhouati

    2017-10-01

    Full Text Available Recent years have witnessed an overwhelming integration of nanomaterials in the fabrication of biosensors. Nanomaterials have been incorporated with the objective to achieve better analytical figures of merit in terms of limit of detection, linear range, assays stability, low production cost, etc. Nanomaterials can act as immobilization support, signal amplifier, mediator and artificial enzyme label in the construction of aptasensors. We aim in this work to review the recent progress in mycotoxin analysis. This review emphasizes on the function of the different nanomaterials in aptasensors architecture. We subsequently relate their features to the analytical performance of the given aptasensor towards mycotoxins monitoring. In the same context, a critically analysis and level of success for each nano-aptasensing design will be discussed. Finally, current challenges in nano-aptasensing design for mycotoxin analysis will be highlighted.

  11. Kepler Planet Detection Metrics: Pixel-Level Transit Injection Tests of Pipeline Detection Efficiency for Data Release 25

    Science.gov (United States)

    Christiansen, Jessie L.

    2017-01-01

    This document describes the results of the fourth pixel-level transit injection experiment, which was designed to measure the detection efficiency of both the Kepler pipeline (Jenkins 2002, 2010; Jenkins et al. 2017) and the Robovetter (Coughlin 2017). Previous transit injection experiments are described in Christiansen et al. (2013, 2015a,b, 2016).In order to calculate planet occurrence rates using a given Kepler planet catalogue, produced with a given version of the Kepler pipeline, we need to know the detection efficiency of that pipeline. This can be empirically determined by injecting a suite of simulated transit signals into the Kepler data, processing the data through the pipeline, and examining the distribution of successfully recovered transits. This document describes the results for the pixel-level transit injection experiment performed to accompany the final Q1-Q17 Data Release 25 (DR25) catalogue (Thompson et al. 2017)of the Kepler Objects of Interest. The catalogue was generated using the SOC pipeline version 9.3 and the DR25 Robovetter acting on the uniformly processed Q1-Q17 DR25 light curves (Thompson et al. 2016a) and assuming the Q1-Q17 DR25 Kepler stellar properties (Mathur et al. 2017).

  12. Scaling Laws for NanoFET Sensors

    Science.gov (United States)

    Wei, Qi-Huo; Zhou, Fu-Shan

    2008-03-01

    In this paper, we report our numerical studies of the scaling laws for nanoplate field-effect transistor (FET) sensors by simplifying the nanoplates as random resistor networks. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field-effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors. We propose to eliminate these detection thresholds by employing devices with very short source-drain distance and large width.

  13. Laser Calorimetry Spectroscopy for ppm-level Dissolved Gas Detection and Analysis.

    Science.gov (United States)

    K S, Nagapriya; Sinha, Shashank; R, Prashanth; Poonacha, Samhitha; Chaudhry, Gunaranjan; Bhattacharya, Anandaroop; Choudhury, Niloy; Mahalik, Saroj; Maity, Sandip

    2017-02-20

    In this paper we report a newly developed technique - laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region.

  14. Cascade Boosting-Based Object Detection from High-Level Description to Hardware Implementation

    Directory of Open Access Journals (Sweden)

    K. Khattab

    2009-01-01

    Full Text Available Object detection forms the first step of a larger setup for a wide variety of computer vision applications. The focus of this paper is the implementation of a real-time embedded object detection system while relying on high-level description language such as SystemC. Boosting-based object detection algorithms are considered as the fastest accurate object detection algorithms today. However, the implementation of a real time solution for such algorithms is still a challenge. A new parallel implementation, which exploits the parallelism and the pipelining in these algorithms, is proposed. We show that using a SystemC description model paired with a mainstream automatic synthesis tool can lead to an efficient embedded implementation. We also display some of the tradeoffs and considerations, for this implementation to be effective. This implementation proves capable of achieving 42 fps for 320×240 images as well as bringing regularity in time consuming.

  15. How to evaluate PCR assays for the detection of low-level DNA

    DEFF Research Database (Denmark)

    Banch-Clausen, Frederik; Urhammer, Emil; Rieneck, Klaus

    2015-01-01

    distribution describing parameters for singleplex real-time PCR-based detection of low-level DNA. The model was tested against experimental data of diluted cell-free foetal DNA. Also, the model was compared with a simplified formula to enable easy predictions. The model predicted outcomes that were...... not significantly different from experimental data generated by testing of cell-free foetal DNA. Also, the simplified formula was applicable for fast and accurate assay evaluation. In conclusion, the model can be applied for evaluation of sensitivity of real-time PCR-based detection of low-level DNA, and may also......High sensitivity of PCR-based detection of very low copy number DNA targets is crucial. Much focus has been on design of PCR primers and optimization of the amplification conditions. Very important are also the criteria used for determining the outcome of a PCR assay, e.g. how many replicates...

  16. 16-level differential phase shift keying (D16PSK) in direct detection optical communication systems

    DEFF Research Database (Denmark)

    Sambaraju, R.; Tokle, Torger; Jensen, J.B.

    2006-01-01

    Optical 16-level differential phase shift keying (D16PSK) carrying four bits for every symbol is proposed for direct detection optical communication systems. Transmitter and receiver schematics are presented, and the receiver sensitivity is discussed. We numerically investigate the impact...

  17. Galvanic detection of sulfur dioxide in ambient air at trace levels by anodic oxidation

    NARCIS (Netherlands)

    Lindqvist, F.

    1978-01-01

    A continuous method for the measurement of SO2 in ambient air at trace levels is described. The principle of detection is based on the anodic oxidation of SO2 in a galvanic cell. A differential measuring technique with a cell with two anodes and one cathode is used; background and noise current are

  18. Analysis of an ultrasonic level device for in-core Pressurized Water Reactor coolant detection

    International Nuclear Information System (INIS)

    Johnson, K.R.

    1981-01-01

    A rigorous semi-empirical approach was undertaken to model the response of an ultrasonic level device (ULD) for application to in-core coolant detection in Pressurized Water Reactors (PWRs). An equation is derived for the torsional wave velocity v/sub t phi/ in the ULD. Existing data reduction techniques were analyzed and compared to results from use of the derived equation. Both methods yield liquid level measurements with errors of approx. 5%. A sensitivity study on probe performance at reactor conditions predicts reduced level responsivity from data at lower temperatures

  19. Multi person detection and tracking based on hierarchical level-set method

    Science.gov (United States)

    Khraief, Chadia; Benzarti, Faouzi; Amiri, Hamid

    2018-04-01

    In this paper, we propose an efficient unsupervised method for mutli-person tracking based on hierarchical level-set approach. The proposed method uses both edge and region information in order to effectively detect objects. The persons are tracked on each frame of the sequence by minimizing an energy functional that combines color, texture and shape information. These features are enrolled in covariance matrix as region descriptor. The present method is fully automated without the need to manually specify the initial contour of Level-set. It is based on combined person detection and background subtraction methods. The edge-based is employed to maintain a stable evolution, guide the segmentation towards apparent boundaries and inhibit regions fusion. The computational cost of level-set is reduced by using narrow band technique. Many experimental results are performed on challenging video sequences and show the effectiveness of the proposed method.

  20. Capture, isolation and electrochemical detection of industrially-relevant engineered aerosol nanoparticles using poly (amic) acid, phase-inverted, nano-membranes

    Energy Technology Data Exchange (ETDEWEB)

    Okello, Veronica A. [Department of Chemistry, Center for Advanced Sensors and Environmental Systems (CASE), State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Gass, Samuel; Pyrgiotakis, Georgios [Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Department of Environmental Health, 665 Huntington Avenue, Boston, MA 02115-6021 (United States); Du, Nian; Lake, Andrew; Kariuki, Victor [Department of Chemistry, Center for Advanced Sensors and Environmental Systems (CASE), State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Sotiriou, Georgios A. [Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Department of Environmental Health, 665 Huntington Avenue, Boston, MA 02115-6021 (United States); Addolorato, Jessica [Department of Chemistry, Center for Advanced Sensors and Environmental Systems (CASE), State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Demokritou, Philip, E-mail: pdemokri@hsph.harvard.edu [Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Department of Environmental Health, 665 Huntington Avenue, Boston, MA 02115-6021 (United States); Sadik, Omowunmi A., E-mail: osadik@binghamton.edu [Department of Chemistry, Center for Advanced Sensors and Environmental Systems (CASE), State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States)

    2014-08-30

    Graphical abstract: - Highlights: • Exposure level assessment of aerosol nanoparticles reported using Harvard's VENGES. • Device equipped with pi-conjugated conducting PAA membrane filters/sensor arrays. • PAA membrane motifs used to capture, isolate and detect the nanoparticles. • Manipulating the PAA delocalized π electron enabled electrocatalytic detection. • Fe{sub 2}O{sub 3}, ZnO and TiO{sub 2} quantified using impedance spectroscopy and cyclic voltammetry. - Abstract: Workplace exposure to engineered nanoparticles (ENPs) is a potential health and environmental hazard. This paper reports a novel approach for tracking hazardous airborne ENPs by applying online poly (amic) acid membranes (PAA) with offline electrochemical detection. Test aerosol (Fe{sub 2}O{sub 3}, TiO{sub 2} and ZnO) nanoparticles were produced using the Harvard (Versatile Engineered Generation System) VENGES system. The particle morphology, size and elemental composition were determined using SEM, XRD and EDS. The PAA membrane electrodes used to capture the airborne ENPs were either stand-alone or with electron-beam gold-coated paper substrates. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to conceptually illustrate that exposure levels of industry-relevant classes of airborne nanoparticles could be captured and electrochemically detected at PAA membranes filter electrodes. CV parameters showed that PAA catalyzed the reduction of Fe{sub 2}O{sub 3} to Fe{sup 2+} with a size-dependent shift in reduction potential (E{sup 0}). Using the proportionality of peak current to concentration, the amount of Fe{sub 2}O{sub 3} was found to be 4.15 × 10{sup −17} mol/cm{sup 3} PAA electrodes. Using EIS, the maximum phase angle (Φ{sub max}) and the interfacial charge transfer resistance (R{sub ct}) increased significantly using 100 μg and 1000 μg of TiO{sub 2} and ZnO respectively. The observed increase in Φ{sub max} and R{sub ct} at increasing

  1. Multi-Level Anomaly Detection on Time-Varying Graph Data

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, Robert A [ORNL; Collins, John P [ORNL; Ferragut, Erik M [ORNL; Laska, Jason A [ORNL; Sullivan, Blair D [ORNL

    2015-01-01

    This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating probabilities at finer levels, and these closely related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitates intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. To illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.

  2. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Biomedical Engineering, Gothenburg (Sweden); Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A. [University of Gothenburg, Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Radiology, Gothenburg (Sweden)

    2014-07-15

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  3. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis

    International Nuclear Information System (INIS)

    Asplund, Sara A.; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus; Johnsson, Aase A.; Vikgren, Jenny; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A.

    2014-01-01

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70 % of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100 % dose levels, respectively. The differences in FOM between the 12 % dose level and the 32, 70, and 100 % dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32 %. (orig.)

  4. Application of nano-structured conducting polymers to humidity sensing

    Science.gov (United States)

    Park, Pilyeon

    moisture levels because even low humidity levels saturate the sample surface within a few minutes. Because of this, it was not perfect to distinguish the effects of etching the PEDOT film for humidity detection and difficult to apply nano-columned PEDOT films as a humidity sensors under continuously changing humidity conditions. However, nano-columned PEDOT films showed excellent performance in simulated breath tests, i.e., an area where the medical needs sensors for pulmonary monitoring. Since the polymers are sensitive to heat, it was important to characterize the influence of temperature on the sensor performance. PANI nanowires and nano-columned PEDOT sensors were tested in the environmental chamber developed in this work as a function of temperature with the humidity fixed, and only the temperature was varied. The PANI nanowires showed very fast degradation at temperatures above room temperature, while the nano-columned PEDOT film performed up to 50 °C. The influence of other gases was also tested for the potential of gas sensing, selectivity, and chemical stability. In order to exclude the moisture effect during the measurement, the samples were characterized under the lowest humidity condition, RH 14% preserved in the system. Under these conditions the PANI nanowires responded to the gases (hydrogen and carbon monoxide were used), but the moisture inside the PANI nanowire was forced to influence the gas detection. Therefore, samples were dried overnight under a nitrogen environment and tested again. With this careful control of the moisture present, it was found that PANI nanowires respond to both hydrogen and carbon monoxide gases, however, there is no selectivity between gases. Nano-columned PEDOT films were also tested under the same experimental moisture-controlling conditions. It was shown that there was little response to other gases. Any response that may have been presented was buried in the electrical noise. Finally, both samples were tested for long

  5. Characterization and Influence of Green Synthesis of Nano-Sized Zinc Complex with 5-Aminolevulinic Acid on Bioactive Compounds of Aniseed.

    Science.gov (United States)

    Tavallali, Vahid; Rahmati, Sadegh; Rowshan, Vahid

    2017-11-01

    A new water soluble zinc-aminolevulinic acid nano complex (n[Zn(ALA) 2 ]), which was characterized by TEM, IR, and EDX spectra, has been prepared via sonochemical method under green conditions in water. In the current study, the effectiveness of foliar Zn amendment using synthetic Zn-ALA nano complex, as a new introduced Zn-fertilizer here, was evaluated. As the model plant, Pimpinella anisum, the most valuable spice and medicinal plant grown in warm regions, was used. By using zinc nano complex, further twenty compounds were obtained in the essential oil of anise plants. Application of 0.2% (w/v) Zn-ALA nano complex increased the levels of (E)-anethole, β-bisabolene, germacrene D, methyl chavicol, and α-zingiberene in the essential oil. Nano Zn complex at the rate of 0.2% induced considerable high phenolic compounds and zinc content of shoots and seeds. Chlorogenic acid had the highest level between four detected phenolic compounds. The maximum antioxidant activity was monitored through the application of Zn nano complex. According to the results, nanoscale nutrients can be provided with further decreased doses for medicinal plants. Using Zn-ALA nano complex is a new and efficient method to improve the pharmaceutical and food properties of anise plants. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  6. DyNano-2010, Book of abstracts

    International Nuclear Information System (INIS)

    Bjoemeholm, O.; Boutu, W.; Gauthier, D.; Xunyou, Ge; Xiaochi, Liu; Carre, B.; Merdji, H.; Winkler, M.; Harnes, J.; Saethre, L.J.; Boerve, K.J.

    2012-01-01

    The amazing progresses made in the recent years by the instrumentation in terms of spectral brightness of the X-ray sources (new synchrotron radiation facilities, X-ray Free Electron Lasers etc.), detection schemes (multi-channel analysis due to intensive use of position sensitive detectors, time-resolved techniques etc.) and production sources of clusters (pure and mixed, atomic and molecular clusters) and nano-particles permit nowadays highly accurate spectroscopic studies of more and more complex objects. There were dedicated sessions on the following topics: 1) recent progress in Nano-object's investigations, 2) synchrotron radiation based spectroscopic investigations of clusters and nano-particles, 3) Structure and properties of size-selected clusters, 4) electronic and nuclear decay of clusters, 5) new insights in structure and dynamics of complex species, and 6) clusters and nano-particles and new light sources. This document gathers only the abstracts of the papers

  7. Detection System of Sound Noise Level (SNL) Based on Condenser Microphone Sensor

    Science.gov (United States)

    Rajagukguk, Juniastel; Eka Sari, Nurdieni

    2018-03-01

    The research aims to know the noise level by using the Arduino Uno as data processing input from sensors and called as Sound Noise Level (SNL). The working principle of the instrument is as noise detector with the show notifications the noise level on the LCD indicator and in the audiovisual form. Noise detection using the sensor is a condenser microphone and LM 567 as IC op-amps, which are assembled so that it can detect the noise, which sounds are captured by the sensor will turn the tide of sinusoida voice became sine wave energy electricity (altering sinusoida electric current) that is able to responded to complaints by the Arduino Uno. The tool is equipped with a detector consists of a set indicator LED and sound well as the notification from the text on LCD 16*2. Work setting indicators on the condition that, if the measured noise > 75 dB then sound will beep, the red LED will light up indicating the status of the danger. If the measured value on the LCD is higher than 56 dB, sound indicator will be beep and yellow LED will be on indicating noisy. If the noise measured value <55 dB, sound indicator will be quiet indicating peaceful from noisy. From the result of the research can be explained that the SNL is capable to detecting and displaying noise level with a measuring range 50-100 dB and capable to delivering the notification noise in audiovisual.

  8. A facile approach to the synthesis of hydrophobic iron tetrasulfophthalocyanine (FeTSPc) nano-aggregates on multi-walled carbon nanotubes: A potential electrocatalyst for the detection of dopamine

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2011-07-01

    Full Text Available A facile method has been utilized to synthesize ahydrophobic form of nano-scaled iron (II) tetrasulfophthalocyanine (nanoFeTSPc), integrated with functionalized multi-walled carbon nanotubes (fMWCNT-nanoFeTSPc). The nanocomposite was characterized...

  9. Effect of radiation dose level on the detectability of pulmonary nodules in chest tomosynthesis.

    Science.gov (United States)

    Asplund, Sara A; Johnsson, Åse A; Vikgren, Jenny; Svalkvist, Angelica; Flinck, Agneta; Boijsen, Marianne; Fisichella, Valeria A; Månsson, Lars Gunnar; Båth, Magnus

    2014-07-01

    To investigate the detectability of pulmonary nodules in chest tomosynthesis at reduced radiation dose levels. Eighty-six patients were included in the study and were examined with tomosynthesis and computed tomography (CT). Artificial noise was added to simulate that the tomosynthesis images were acquired at dose levels corresponding to 12, 32, and 70% of the default setting effective dose (0.12 mSv). Three observers (with >20, >20 and three years of experience) read the tomosynthesis cases for presence of nodules in a free-response receiver operating characteristics (FROC) study. CT served as reference. Differences between dose levels were calculated using the jack-knife alternative FROC (JAFROC) figure of merit (FOM). The JAFROC FOM was 0.45, 0.54, 0.55, and 0.54 for the 12, 32, 70, and 100% dose levels, respectively. The differences in FOM between the 12% dose level and the 32, 70, and 100% dose levels were 0.087 (p = 0.006), 0.099 (p = 0.003), and 0.093 (p = 0.004), respectively. Between higher dose levels, no significant differences were found. A substantial reduction from the default setting dose in chest tomosynthesis may be possible. In the present study, no statistically significant difference in detectability of pulmonary nodules was found when reducing the radiation dose to 32%. • A substantial radiation dose reduction in chest tomosynthesis may be possible. • Pulmonary nodule detectability remained unchanged at 32% of the effective dose. • Tomosynthesis might be performed at the dose of a lateral chest radiograph.

  10. Plasma antioxidant capacity, sexual and thyroid hormones levels, sperm quantity and quality parameters in stressed male rats received nano-particle of selenium

    Directory of Open Access Journals (Sweden)

    M Rezaeian-Tabrizi

    2017-01-01

    Full Text Available Objective: To evaluate the effects of nano-particle of selenium (nSe on plasma antioxidant capacity, sexual and thyroid hormones and spermatogenesis in male rats exposed to oxidative stress.Methods: Forty rats were randomly divided into four treatments with ten replicates. Treatment groups were: C, the control group received normal saline as gavage and injection (i.p.; OS, received tert-butyl hydroperoxide (0.2 mmol/kg body weight for inducing oxidative stress; nSe, received nSe (0.3 mg/kg body weight as gavage, and OS+nSe, received tert-butyl hydroperoxide and nSe. All groups were treated for 28 d and administrations were done each 48 h.Results: Oxidative stress decreased and gavage of nSe to stressed rats increased the antioxidant capacity and activities (P0.05 between rats exposed to oxidative stress and those in the control group for sperm quantity and quality. Gavage of nSe to stressed rats had no effect (P>0.05 on the sperm parameters, except increased viability and progressive percentages.Conclusions: Nano-particle of Selenium administration in stressed rats could ameliorate the negative effects of oxidative stress on the antioxidant capacity and activities, but not on the quantity and quality parameters of sperm.

  11. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis.

    Science.gov (United States)

    Hussein, Jihan; El-Banna, Mona; Mahmoud, Khaled F; Morsy, Safaa; Abdel Latif, Yasmin; Medhat, Dalia; Refaat, Eman; Farrag, Abdel Razik; El-Daly, Sherien M

    2017-06-01

    The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect

  12. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Rindzevicius, Tomas; Molin, Søren

    2015-01-01

    Lung infections with Pseudomonas aeruginosa (PA) is the most common cause of morbidity and mortality in cystic fibrosis (CF) patients. Due to its ready adaptation to the dehydrated mucosa of CF airways, PA infections tend to become chronic, eventually killing the patient. Hydrogen cyanide (HCN......) at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS)-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band...... substrate can be consistently detected under different experimental conditions and up to 9 days after exposure. For detection of lower cyanide concentrations serial dilution experiments using potassium cyanide (KCN) demonstrated cyanide quantification down to 1 μM in solution (corresponding to 18 ppb...

  13. Book Review: Nano physics & Nano technology

    Directory of Open Access Journals (Sweden)

    Abdolkhaled Zaree

    2012-12-01

    Full Text Available During last decades, there are a lot of emphases on studying material behavior in atomic scale. In most scientific and engineering fields, one can see the effect of nanotechnology. The aim of nanoscience is to design and fabrication of new and applicable materials. Nowadays, Nano is a popular science which chemists, physicist, doctors, engineers, financial managers and environment's fans for creating a good life via nanoscience have a great cooperation with each others. Materials in nano scale such as nanotubes and nanowires have extraordinary properties which by optimization of these properties in nano scale and then develop these properties to macro scale, they've been challenging issues. For instance, materials in nano scale improve mechanical properties of polymers and metallic materials via nano particles and on the other hand by producing a thin film on surfaces improve surface hardening. Besides, nanotechnology is in hi-tech industries such as magnetic devices, surface coating, and biomaterial, material having sensors, polymers, gels, ceramics and intelligent membrane. Nano-carbon tubes are considered intelligent due to the fact that they couple electrochemical and elastic properties simultaneously, hence have greater activation energy density in comparison with other intelligent materials. Studying nanoscience is important because it causes the life to be better. Future Materials and structures will have a lot of outstanding properties. Intelligent machines can repair, recycle and reconstruct themselves. All these features are only possible in nano zone. Nano in engineering science can provide the possibility of making light missiles for exploring space. The reduced weight can be achieved by replacing traditional materials with hybrid nanocomposites.

  14. In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold.

    Science.gov (United States)

    Hutchison, N J; Langer-Safer, P R; Ward, D C; Hamkalo, B A

    1982-11-01

    In situ hybridization has become a standard method for localizing DNA or RNA sequences in cytological preparations. We developed two methods to extend this technique to the transmission electron microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope in situ hybridization. Radioactively labeled complementary RNA (cRNA) is hybridized to metaphase chromosomes deposited on electron microscope grids and fixed in 70 percent ethanol vapor; hybridixation site are detected by autoradiography. Specific and intense labeling of chromosomal centromeric regions is observed even after relatively short exposure times. Inerphase nuclei present in some of the metaphase chromosome preparations also show defined paatterms of satellite DNA labeling which suggests that satellite-containing regions are associate with each other during interphase. The sensitivity of this method is estimated to at least as good as that at the light microscope level while the resolution is improved at least threefold. The second method, which circumvents the use of autoradiogrphic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction is improved at least threefold. The second method, which circumvents the use of autoradiographic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction with an antibody against biotin and secondary antibody adsorbed to the surface of over centromeric heterochromatin and along the associated peripheral fibers. Labeling is on average

  15. Very low level α-particle detection by means of pulse shape discrimination

    International Nuclear Information System (INIS)

    Omori, M.

    1993-01-01

    A charge comparison pulse shape discriminator has been shown to be capable of low level alpha particle detection in a NE213 scintillator by discriminating against a high rate of gamma background. The clearly observed alpha peaks were due to 212 Po in 232 Th chain and 214 Po in 238 U chain with rates of 13.5/h and 15.6/h, and energies of 8.95 and 7.83 MeV respectively. For the 8.95 MeV alpha, the gamma background rate was reduced by a factor of 2.1 x 10 4 to a level of 22.5/h. The measurements were made in a low muon flux environment underground (1230 m deep). The detection limit for the alphas could be lowered to as low as 0.1-1 event per day deep underground by use of high purity PSD scintillators. (orig.)

  16. Transrectal ultrasound in detecting prostate cancer compared with serum total prostate-specific antigen levels

    International Nuclear Information System (INIS)

    Tamsel, S.; Killi, R.; Demirpolat, G.; Hekimgil, M.; Soydan, S.; Altay, B.

    2008-01-01

    We carried out a retrospective study to review the efficiency of grey-scale transrectal ultrasonography (TRUS) in detecting prostate cancer compared with the data in recent published work, including alternative imaging methods of the prostate gland. Our study group consisted of 830 patients who underwent TRUS-guided biopsy of the prostate between May 2000 and June 2004. The relation between abnormal TRUS findings and serum total prostate-specific antigen (tPSA) levels was evaluated in patients with prostate cancer who were divided into three different groups according to serum tPSA levels. Group I included patients with tPSA levels of 4-9.9 ng/mL, group II included tPSA levels of 10-19.9 ng/mL and group III included patients with tPSA levels of 20 ng/mL or more. In general, TRUS detected 185 (64%) of 291 cancers with a specificity of 89%, a PPV of 76% and an accuracy of 80%. TRUS findings enabled the correct identification of 22 (56%) of the 39 cancers in group I, 28 (30%) of the 93 cancers in group II and 135 (85%) of the 159 cancers in group III. In conclusion, TRUS alone has a limited potential to identify prostate cancer, especially in patients with tPSA levels lower than 20 ng/mL. Therefore, increased numbers of systematically placed biopsy cores must be taken or alternative imaging methods are required to direct TRUS-guided biopsy for improving prostate cancer detection.

  17. Robust boundary detection of left ventricles on ultrasound images using ASM-level set method.

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Li, Hong; Teng, Yueyang; Kang, Yan

    2015-01-01

    Level set method has been widely used in medical image analysis, but it has difficulties when being used in the segmentation of left ventricular (LV) boundaries on echocardiography images because the boundaries are not very distinguish, and the signal-to-noise ratio of echocardiography images is not very high. In this paper, we introduce the Active Shape Model (ASM) into the traditional level set method to enforce shape constraints. It improves the accuracy of boundary detection and makes the evolution more efficient. The experiments conducted on the real cardiac ultrasound image sequences show a positive and promising result.

  18. Electron capture detection of sulphur gases in carbon dioxide at the parts-per-billion level

    International Nuclear Information System (INIS)

    Pick, M.E.

    1979-01-01

    A gas chromatograph with an electron capture detector has been used to determine sulphur gases in CO 2 at the parts-per-billion level, with particular application to the analysis of coolant from CO 2 cooled nuclear reactors. For COS, CS 2 , CH 3 SH, H 2 S and (CH 3 ) 2 S 2 the detector has a sensitivity comparable with the more commonly used flame photometric detector, but it is much less sensitive towards (CH 3 ) 2 S and thiophene. In addition, the paper describes a simple method for trapping sulphur gases which might enable detection of sub parts-per-billion levels of sulphur compounds. (Auth.)

  19. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    Science.gov (United States)

    Debehets, J.; Homm, P.; Menghini, M.; Chambers, S. A.; Marchiori, C.; Heyns, M.; Locquet, J. P.; Seo, J. W.

    2018-05-01

    In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-level pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.

  20. Stable Composition of the Nano- and Picoplankton Community during the Ocean Iron Fertilization Experiment LOHAFEX

    KAUST Repository

    Thiele, Stefan

    2014-11-17

    The iron fertilization experiment LOHAFEX was conducted in a cold-core eddy in the Southern Atlantic Ocean during austral summer. Within a few days after fertilization, a phytoplankton bloom developed dominated by nano- and picoplankton groups. Unlike previously reported for other iron fertilization experiments, a diatom bloom was prevented by iron and silicate co-limitation. We used 18S rRNA gene tag pyrosequencing to investigate the diversity of these morphologically similar cell types within the nano- and picoplankton and microscopically enumerated dominant clades after catalyzed reported deposition fluorescence in situ hybridization (CARD-FISH) with specific oligonucleotide probes. In addition to Phaeocystis, members of Syndiniales group II, clade 10–11, and the Micromonas clades ABC and E made up a major fraction of the tag sequences of the nano- and picoplankton community within the fertilized patch. However, the same clades were also dominant before the bloom and outside the fertilized patch. Furthermore, only little changes in diversity could be observed over the course of the experiment. These results were corroborated by CARD-FISH analysis which confirmed the presence of a stable nano- and picoplankton community dominated by Phaeocystis and Micromonas during the entire course of the experiment. Interestingly, although Syndiniales dominated the tag sequences, they could hardly be detected by CARD-FISH, possibly due to the intracellular parasitic life style of this clade. The remarkable stability of the nano- and picoplankton community points to a tight coupling of the different trophic levels within the microbial food web during LOHAFEX.

  1. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    Science.gov (United States)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  2. Fiber optic fluorescence detection of low-level porphyrin concentrations in preclinical and clinical studies

    Science.gov (United States)

    Mang, Thomas S.; McGinnis, Carolyn; Khan, S.

    1990-07-01

    A significant clinical problem in the local treatment of cutaneous metastases of breast cancer (by any modality--surgery, radiation therapy or photodynainic therapy) is the fact that the disease almost always extends beyond the boundary of visible lesions in the form of microscopic deposits. These deposits may be distant from the site of visible disease but are often in close proximity to it and are manifested sooner or later by the development of recurrent lesions at the border of the treated area, thus the "marginal miss" in radiation therapy, the "rim recurrence" in photodynamic therapy, and the "incisional recurrence" following surgical excision. More intelligent use of these treatment modalities demands the ability to detect microscopic deposits of tumor cells using non-invasive methodology. In vivo fluorescence measurements have been made possible by the development of an extremely sensitive fiber optic in vivo fluorescence photometer. The instrument has been used to verify that fluorescence correlated with injected porphyrin levels in various tissues. The delivery of light to excite and detect background fluorescence as well as photosensitizer fluorescence in tissues has been accomplished using two HeNe lasers emitting at 632.8 nm and 612 nm delivered through a single quartz fiber optic. Chopping at different frequencies, contributions of fluorescence may be separated. Fluorescence is picked up via a 400 micron quartz fiber optic positioned appropriately near the target tissue. Validation of these levels was made by extraction of the drug from the tissues with resultant quantitation. Recently, an extensive study was undertaken to determine if fluorescence could be used for the detection of occult, clinically non-palpable metastases in the lymph node of rats. This unique model allowed for the detection of micrometastases in lymph nodes using very low injected doses of the photosensitizer Photofrin II. Data obtained revealed the ability to detect on the order

  3. Gas sensing at the nanoscale: engineering SWCNT-ITO nano-heterojunctions for the selective detection of NH3 and NO2 target molecules

    Science.gov (United States)

    Rigoni, F.; Drera, G.; Pagliara, S.; Perghem, E.; Pintossi, C.; Goldoni, A.; Sangaletti, L.

    2017-01-01

    The gas response of single-wall carbon nanotubes (SWCNT) functionalized with indium tin oxide (ITO) nanoparticles (NP) has been studied at room temperature and an enhanced sensitivity to ammonia and nitrogen dioxide is demonstrated. The higher sensitivity in the functionalized sample is related to the creation of nano-heterojunctions at the interface between SWCNT bundles and ITO NP. Furthermore, the different response of the two devices upon NO2 exposure provides a way to enhance also the selectivity. This behavior is rationalized by considering a gas sensing mechanism based on the build-up of space-charge layers at the junctions. Finally, full recovery of the signal after exposure to NO2 is achieved by UV irradiation for the functionalized sample, where the ITO NP can play a role to hinder the poisoning effects on SWCNT due to NO2 chemisorption.

  4. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.

    Science.gov (United States)

    Chen, X; Bhola, B; Huang, Y; Ho, S T

    2010-08-02

    Interactions between a semiconducting gain medium and confined plasmon-polaritons are studied using a multilevel multi-thermal-electron finite-difference time-domain (MLMTE-FDTD) simulator. We investigated the amplification of wave propagating in a plasmonic metal-semiconductor-metal (MSM) waveguide filled with semiconductor gain medium and obtained the conditions required to achieve net optical gain. The MSM gain waveguide is used to form a plasmonic semiconductor nano-ring laser(PSNRL) with an effective mode volume of 0.0071 microm3, which is about an order of magnitude smaller than the smallest demonstrated integrated photonic crystal based laser cavities. The simulation shows a lasing threshold current density of 1kA/cm2 for a 300 nm outer diameter ring cavity with 80 nm-wide ring. This current density can be realistically achieved in typical III-V semiconductor, which shows the experimental feasibility of the proposed PSNRL structure.

  5. Trace level detection of explosives in solution using leidenfrost phenomenon assisted thermal desorption ambient mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Chen, Lee Chuin; Ninomiya, Satoshi; Shida, Yasuo; Hiraoka, Kenzo

    2013-01-01

    The present paper demonstrates the detection of explosives in solution using thermal desorption technique at a temperature higher than Leidenfrost temperature of the solvent in combination with low temperature plasma (LTP) ionization. Leidenfrost temperature of a solvent is the temperature above which the solvent droplet starts levitation instead of splashing when placed on a hot metallic surface. During this desorption process, slow and gentle solvent evaporation takes place, which leads to the pre-concentration of less-volatile explosive molecules in the droplet and the explosive molecules are released at the last moment of droplet evaporation. The limits of detection for explosives studied by using this thermal desorption LTP ionization method varied in a range of 1 to 10 parts per billion (ppb) using a droplet volume of 20 μL (absolute sample amount 90-630 fmol). As LTP ionization method was applied and ion-molecule reactions took place in ambient atmosphere, various ion-molecule adduct species like [M+NO2](-), [M+NO3](-), [M+HCO3](-), [M+HCO4](-) were generated together with [M-H](-) peak. Each peak was unambiguously identified using 'Exactive Orbitrap' mass spectrometer in negative ionization mode within 3 ppm deviation compared to its exact mass. This newly developed technique was successfully applied to detect four explosives contained in the pond water and soil sample with minor sample pre-treatment and the explosives were detected with ppb levels. The present method is simple, rapid and can detect trace levels of explosives with high specificity from solutions.

  6. Quantitative detection of glucose level based on radiofrequency patch biosensor combined with volume-fixed structures.

    Science.gov (United States)

    Qiang, Tian; Wang, Cong; Kim, Nam-Young

    2017-12-15

    A concept for characterizing a radiofrequency (RF) patch biosensor combined with volume-fixed structures is presented for timely monitoring of an individual's glucose levels based on frequency variation. Two types of patch biosensors-separately integrated with a backside slot (0.53μL) and a front-side tank (0.70μL) structure-were developed to achieve precise and efficient detection while excluding the effects of interference due to the liquidity, shape, and thickness of the tested glucose sample. A glucose test analyte at different concentrations (50-600mg/dL) was dropped into the volume-fixed structures. It fully interacted with the RF patch electromagnetic field, effectively and sensitively changing the resonance frequency and magnitude of the reflection coefficient. Measurement results based on the resonance frequency showed high sensitivity up to 1.13MHz and 1.97MHz per mg/dL, and low detection limits of 26.54mg/dL and 15.22mg/dL, for the two types of patch biosensors, respectively, as well as a short response time of less than 1s. Excellent reusability of the proposed biosensors was verified through three sets of measurements for each individual glucose sample. Regression analysis revealed a good linear correlation between glucose concentrations and the resonance frequency shift. Moreover, to facilitate a multi-parameter-sensitive detection of glucose, the magnitude of the reflection coefficient was also tested, and it showed a good linear correlation with the glucose concentration. Thus, the proposed approach can be adopted for distinguishing glucose solution levels, and it is a potential candidate for early-stage detection of glucose levels in diabetes patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Nanos3 not nanos1 and nanos2 is a germ cell marker gene in large yellow croaker during embryogenesis.

    Science.gov (United States)

    Han, Kunhuang; Chen, Shihai; Cai, Mingyi; Jiang, Yonghua; Zhang, Ziping; Wang, Yilei

    2018-04-01

    In this study, three nanos gene subtypes (Lcnanos1, Lcnanos2 and Lcnanos3) from Larimichthys crocea, were cloned and characterized. We determined the spatio-temporal expression patterns of each subtype in tissues as well as the cellular localization of mRNA in embryos. Results showed that deduced Nanos proteins have two main homology domains: N-terminal CCR4/NOT1 deadenylase interaction domain and highly conserved carboxy-terminal region bearing two conserved CCHC zinc-finger motifs. The expression levels of Lcnanos1 in testis were significantly higher than other tissues, followed by heart, brain, eye, and ovary. Nevertheless, both Lcnanos2 and Lcnanos3 were restrictedly expressed in testis and ovary, respectively. No signals of Lcnanos1 and Lcnanos2 expression were detected at any developmental stages during embryogenesis. On the contrary, the signals of Lcnanos3 were detected in all stages examined. Lcnanos3 transcripts were firstly localized to the distal end of cleavage furrow at the 2-cell stage. Subsequently, mounting positive signals started to appear in a small number of cells as the embryo developed to blastula stage and early-gastrula stage. As development proceeded, positive signals were found in the primitive gonadal ridge. These cells of Lcnanos3 positive signals implied the specification of the future PGCs at this stage. It also suggested that PGCs of croaker originate from four clusters of cells which inherit maternal germ plasm at blastula stage. Furthermore, we preliminarily analyzed the migration route of PGCs in embryos of L. crocea. In short, this study laid the foundation for studies on specification and development of germ cell from L. crocea during embryogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    Directory of Open Access Journals (Sweden)

    Rikke Kragh Lauridsen

    2015-09-01

    Full Text Available Lung infections with Pseudomonas aeruginosa (PA is the most common cause of morbidity and mortality in cystic fibrosis (CF patients. Due to its ready adaptation to the dehydrated mucosa of CF airways, PA infections tend to become chronic, eventually killing the patient. Hydrogen cyanide (HCN at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band at ∼2133 cm−1, is an excellent case for the SERS-based detection due to the infrequent occurrence of triple bonds in nature. For demonstration of direct HCN detection in the gas phase, a gold-coated silicon nanopillar substrate was exposed to 5 ppm HCN in N2. Results showed that HCN adsorbed on the SERS substrate can be consistently detected under different experimental conditions and up to 9 days after exposure. For detection of lower cyanide concentrations serial dilution experiments using potassium cyanide (KCN demonstrated cyanide quantification down to 1 μM in solution (corresponding to 18 ppb. Lower KCN concentrations of 10 and 100 nM (corresponding to 0.18 and 1.8 ppb produced SERS intensities that were relatively similar to the reference signal. Since HCN concentration in the breath of PA colonized CF children is reported to be ∼13.5 ppb, the detection of cyanide is within the required range. Keywords: Surface-Enhanced Raman Spectroscopy, Hydrogen cyanide, Pseudomonas aeruginosa, Cystic fibrosis, Breath analysis

  9. Detecting drawdowns masked by environmental stresses with water-level models

    Science.gov (United States)

    Garcia, C.A.; Halford, K.J.; Fenelon, J.M.

    2013-01-01

    Detecting and quantifying small drawdown at observation wells distant from the pumping well greatly expands the characterized aquifer volume. However, this detection is often obscured by water level fluctuations such as barometric and tidal effects. A reliable analytical approach for distinguishing drawdown from nonpumping water-level fluctuations is presented and tested here. Drawdown is distinguished by analytically simulating all pumping and nonpumping water-level stresses simultaneously during the period of record. Pumping signals are generated with Theis models, where the pumping schedule is translated into water-level change with the Theis solution. This approach closely matched drawdowns simulated with a complex three-dimensional, hypothetical model and reasonably estimated drawdowns from an aquifer test conducted in a complex hydrogeologic system. Pumping-induced changes generated with a numerical model and analytical Theis model agreed (RMS as low as 0.007 m) in cases where pumping signals traveled more than 1 km across confining units and fault structures. Maximum drawdowns of about 0.05 m were analytically estimated from field investigations where environmental fluctuations approached 0.2 m during the analysis period.

  10. Clinical value of detecting the serum level of TRAb of GD progeny in gestational period

    International Nuclear Information System (INIS)

    Zou Jinhai; Li Xue; Zhang Qingfeng; Wang Yansheng; Wang Jianchun

    2011-01-01

    Objective: To investigate the relationship between thyroid function and serum TRAb level of neonates borned by puerperal who have Graves disease. Methods: To detect the serum levels of FT 3 , FT 4 , sTSH (with RIA) and TRAb (with ECLIA) in 126 neonates borned by puerperal who had Graves disease and 40 neonates borned by healthy puerperal. Results: The incidence of thyroid dysfunction was 25.4% (32/126) in 126 neonates borned by puerperal who had Graves' disease. Among them, the increase of serum TRAb occupied 1.59%(2/126), the incidence of hypothyroidism made up 23.81% (30/126), the ratio of neonates who had normal serum TRAb was 98.41% (124/126), the ratio of neonates who had normal thyroid function Ab was 74.60% (94/126). The serum levels of FT 3 , FT 4 , sTSH and TRAb in 40 neonates borned by healthy puerperal were normal. Conclusion: It has important clinical value by detecting the serum TRAb level of neonates borned by puerperal who have Graves' disease to diagnose diseases of thyroid gland in neonates, especially only one Graves' disease. (authors)

  11. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    Science.gov (United States)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  12. Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film

    Directory of Open Access Journals (Sweden)

    Hamdy H. Hassan

    2018-02-01

    Full Text Available A commercially available copper electrical cable and pure Cu disk were used as substrates for the electrodeposition of copper nanoparticles (nano-Cu. The surface morphology of the prepared nano-Cu/Cu electrodes was investigated by scanning electron microscope (SEM and energy dispersive X-ray spectrometer (EDX. The bare copper substrates and the nano-copper modified electrodes were utilized and optimized for electrochemical assay of chemical oxygen demand (COD using glycine as a standard. A comparison was made among the four electrodes (i.e., bare and nano-Cu coated copper cable and pure copper disk as potential COD sensors. The oxidation behavior of glycine was investigated on the surface of the prepared sensors using linear sweep voltammetry (LSV. The results indicate significant enhancement of the electrochemical oxidation of glycine by the deposited nano-Cu. The effects of different deposition parameters, such as Cu2+ concentration, deposition potential, deposition time, pH, and scan rate on the response of the prepared sensors were investigated. Under optimized conditions, the optimal nano-Cu based COD sensor exhibited a linear range of 2–595 mg/L, lower limit of detection (LOD as low as 1.07 mg/L (S/N = 3. The developed method exhibited high tolerance level to Cl− ion where 1.0 M Cl− exhibited minimal influence. The sensor was utilized for the detection of COD in different real water samples. The results obtained were validated using the standard dichromate method.

  13. Intracavity OptoGalvanic Spectroscopy not suitable for ambient level radiocarbon detection.

    Science.gov (United States)

    Paul, Dipayan; Meijer, Harro A J

    2015-09-01

    IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research. Significantly cheaper, this technique was portrayed as a possible complementary technique to the more expensive and complex accelerator mass spectrometry. Several groups around the world started developing this technique for various radiocarbon related applications. The IntraCavity OptoGalvanic Spectroscopy setup at the University of Groningen was constructed in 2012 in close collaboration with the Murnick group for exploring possible applications in the fields of radiocarbon dating and atmospheric monitoring. In this paper we describe a systematic evaluation of the IntraCavity OptoGalvanic Spectroscopy setup at Groningen for radiocarbon detection. Since the IntraCavity OptoGalvanic Spectroscopy setup was strictly planned for dating and atmospheric monitoring purposes, all the initial experiments were performed with CO2 samples containing contemporary levels and highly depleted levels of radiocarbon. Because of recurring failures in differentiating the two CO2 samples, with the radiocarbon concentration 3 orders of magnitude apart, CO2 samples containing elevated levels of radiocarbon were prepared in-house and experimented with. All results obtained thus far at Groningen are in sharp contrast to the results published by the Murnick group and rather support the results put forward by the Salehpour group at Uppsala University. From our extensive test work, we must conclude that the method is unsuited for ambient level radiocarbon measurements, and even highly enriched CO2 samples yield insignificant signal.

  14. Improved detection probability of low level light and infrared image fusion system

    Science.gov (United States)

    Luo, Yuxiang; Fu, Rongguo; Zhang, Junju; Wang, Wencong; Chang, Benkang

    2018-02-01

    Low level light(LLL) image contains rich information on environment details, but is easily affected by the weather. In the case of smoke, rain, cloud or fog, much target information will lose. Infrared image, which is from the radiation produced by the object itself, can be "active" to obtain the target information in the scene. However, the image contrast and resolution is bad, the ability of the acquisition of target details is very poor, and the imaging mode does not conform to the human visual habit. The fusion of LLL and infrared image can make up for the deficiency of each sensor and give play to the advantages of single sensor. At first, we show the hardware design of fusion circuit. Then, through the recognition probability calculation of the target(one person) and the background image(trees), we find that the trees detection probability of LLL image is higher than that of the infrared image, and the person detection probability of the infrared image is obviously higher than that of LLL image. The detection probability of fusion image for one person and trees is higher than that of single detector. Therefore, image fusion can significantly enlarge recognition probability and improve detection efficiency.

  15. Assessment of a Smart Sensing Shoe for Gait Phase Detection in Level Walking

    Directory of Open Access Journals (Sweden)

    Nicola Carbonaro

    2016-11-01

    Full Text Available Gait analysis and more specifically ambulatory monitoring of temporal and spatial gait parameters may open relevant fields of applications in activity tracking, sports and also in the assessment and treatment of specific diseases. Wearable technology can boost this scenario by spreading the adoption of monitoring systems to a wide set of healthy users or patients. In this context, we assessed a recently developed commercial smart shoe—the FootMoov—for automatic gait phase detection in level walking. FootMoov has built-in force sensors and a triaxial accelerometer and is able to transmit the sensor data to the smartphone through a wireless connection. We developed a dedicated gait phase detection algorithm relying both on force and inertial information. We tested the smart shoe on ten healthy subjects in free level walking conditions and in a laboratory setting in comparison with an optical motion capture system. Results confirmed a reliable detection of the gait phases. The maximum error committed, on the order of 44.7 ms, is comparable with previous studies. Our results confirmed the possibility to exploit consumer wearable devices to extract relevant parameters to improve the subject health or to better manage his/her progressions.

  16. Detection of ultra-low levels of DNA changes by drinking water: epidemiologically important finding.

    Science.gov (United States)

    Kumari, Parmila; Kamiseki, Meiko; Biyani, Manish; Suzuki, Miho; Nemoto, Naoto; Aita, Takuyo; Nishigaki, Koichi

    2015-02-01

    The safety of drinking water is essential to our health. In this context, the mutagenicity of water needs to be checked strictly. However, from the methodological limit, the lower concentration (less than parts per million) of mutagenicity could not be detected, though there have been of interest in the effect of less concentration mutagens. Here, we describe a highly sensitive mutation assay that detects mutagens at the ppb level, termed genome profiling-based mutation assay (GPMA). This consists of two steps; (i) Escherichia coli culture in the medium with/without mutagens and (ii) Genome profiling (GP) method (an integrated method of random PCR, temperature gradient gel electrophoresis and computer-aided normalization). Owing to high sensitivity of this method, very low concentration of mutagens in tap water could be directly detected without introducing burdensome concentration processes, enabling rapid measurement of low concentration samples. Less expectedly, all of the tap waters tested (22 samples) were shown to be significantly mutagenic while mineral waters were not. Resultantly, this article informs two facts that the GPMA method is competent to measure the mutagenicity of waters directly and the experimental results supported the former reports that the city tap waters contain very low level of mutagenicity reagent trihalomethanes. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  17. Rapid islanding detection using multi-level inverter for grid-interactive PV system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2014-01-01

    Graphical abstract: - Highlights: • Novel reference signal is used to form an islanding detection scheme for PV system. • Supply fixed magnitude sinusoidal signal even if utility grid is disconnected. • Seamless transfer between grid-connected and stand-alone modes is possible. - Abstract: A novel reference signal generator is combined with a multi-level inverter to form a rapid islanding detection scheme for grid-interactive PV system. The reference signal generator can easily be synchronized with the utility grid signal and produced a fixed magnitude and very low total harmonic distortion (THD) sinusoidal signal which is in phase with the utility grid signal. Unlike conventional phase-locked loop (PLL) circuitry, the reference signal generator can also provide a fixed magnitude sinusoidal signal even if the utility grid is disconnected and automatically re-synchronous with the grid rapidly. Consequently, seamless transfer between grid-connected and stand-alone modes could easily be achieved if anti-islanding protection is not required. If a saturation element is applied to the raw reference signal followed by the synthesis of the truncated signal using a multi-level inverter, the distinct flat-top feature of the synthesized signal can quickly and easily be identified if the network is in islanding mode at the point of common coupling. Experimental results are included to demonstrate the effectiveness of the proposed detection scheme

  18. Managing collaboration in the nanoManipulator

    DEFF Research Database (Denmark)

    Hudson, Thomas C.; Heiser, Aron T.; Sonnenwald, Diane H.

    2003-01-01

    We designed, developed, deployed, and evaluated the Collaborative nanoManipulator (CnM), a system supporting remote collaboration between users of the nanoManipulator interface to atomic force microscopes. To be accepted by users, the shared nanoManipulator application had to have the same high...... level of interactivity as the single user system and the application had to support a user's ability to interleave working privately and working collaboratively. This paper briefly describes the entire collaboration system, but focuses on the shared nanoManipulator application. Based on our experience...... developing the CnM, we present: a method of analyzing applications to characterize the requirements for sharing data between collaborating sites, examples of data structures that support collaboration, and guidelines for selecting appropriate synchronization and concurrency control schemes....

  19. Different Levels of DNA Methylation Detected in Human Sperms after Morphological Selection Using High Magnification Microscopy

    Directory of Open Access Journals (Sweden)

    Nino Guy Cassuto

    2016-01-01

    Full Text Available Objective. To analyze DNA methylation levels between two groups of spermatozoa taken from the same sample, following morphological selection by high magnification (HM at 6100x microscopy. A prospective study was conducted and studied 876 spermatozoa from 10 randomly selected men. Sperm morphology was characterized at HM according to criteria previously established. High-scoring Score 6 and low-scoring Score 0 sperm were selected. Sperm DNA methylation level was assessed using an immunoassay method targeting 5-methylcytosine residues by fluorescence microscopy with imaging analysis system to detect DNA methylation in single spermatozoon. Results. In total, 448 S6 spermatozoa and 428 S0 spermatozoa were analyzed. A strong relationship was found between sperm DNA methylation levels and sperm morphology observed at HM. Sperm DNA methylation level in the S6 group was significantly lower compared with that in the S0 group (p<10-6, OR = 2.4; and p<0.001, as determined using the Wilcoxon test. Conclusion. Differences in DNA methylation levels are associated with sperm morphology variations as observed at HM, which allows spermatozoa with abnormal levels to be discarded and ultimately decrease birth defects, malformations, and epigenetic diseases that may be transmitted from sperm to offspring in ICSI.

  20. Detection of irradiated meat, fish and their products by measuring 2-alkylcyclobutanones levels after frozen storage

    International Nuclear Information System (INIS)

    Obana, H.; Furuta, M.; Tanaka, Y.

    2007-01-01

    2-Alkylcyclobutanones, such as 2-dodecylcyclobutanone and 2-tetradecylcyclobutanone, were analyzed to assess the irradiation history of irradiated meats or fish, and cooked foods with irradiated ingredients, which had been stored frozen for up to one year. The purpose of the study was to show that irradiated meats could be detected even after having been stored in the distribution system. 2-Alkylcyclobutanones showed a small decrease in irradiated raw meats that had been stored frozen for one year. Cooked foods, such as pancake and fried chicken made with irradiated eggs and chicken, respectively, contained detectable levels of 2-alkylcyclobutanones after storage frozen for one year. The 2-alkylcyclobutanones became undetectable in highly dried samples, such as feed for lab animals, during the same period

  1. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots nano-CeO 2  nano iron oxides nano-Al 2 O 3  nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  2. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, R. [Post Graduate and Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamil Nadu (India); Karuppiah, Chelladurai [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC (China); Chen, Shen-Ming, E-mail: smchen78@ms15.hinet.net [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC (China); Palanisamy, Selvakumar [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC (China); Padmavathy, S. [Department of Zoology and Microbiology, Thiagarajar College, Madurai 625009, Tamil Nadu (India); Prakash, P., E-mail: kmpprakash@gmail.com [Post Graduate and Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamil Nadu (India)

    2014-08-30

    Graphical abstract: Schematic representation for green synthesis of Au-NPs and its electroreduction of nitrobenzene. - Highlights: • A green synthesis of size controlled Au-NPs from plant extract. • Trace level detection of nitro benzene, a pollutant causing Methemoglobinaemia, at Au-NPs modified electrode. • Achievement of lower LOD and wider linear response. • The proposed sensor exhibits excellent practicality in various water samples. - Abstract: The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10 min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV–vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600 μM with high sensitivity of 1.01 μA μM{sup −1} cm{sup −2} and low limit of detection of 0.016 μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples.

  3. Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia

    International Nuclear Information System (INIS)

    Emmanuel, R.; Karuppiah, Chelladurai; Chen, Shen-Ming; Palanisamy, Selvakumar; Padmavathy, S.; Prakash, P.

    2014-01-01

    Graphical abstract: Schematic representation for green synthesis of Au-NPs and its electroreduction of nitrobenzene. - Highlights: • A green synthesis of size controlled Au-NPs from plant extract. • Trace level detection of nitro benzene, a pollutant causing Methemoglobinaemia, at Au-NPs modified electrode. • Achievement of lower LOD and wider linear response. • The proposed sensor exhibits excellent practicality in various water samples. - Abstract: The present study involves a green synthesis of gold nanoparticles (Au-NPs) using Acacia nilotica twig bark extract at room temperature and trace level detection of one of the hazardous materials, viz. nitrobenzene (NB) that causes Methemoglobinaemia. The synthesis protocol demonstrates that the bioreduction of chloroauric acid leads to the formation of Au-NPs within 10 min, suggesting a higher reaction rate than any other chemical methods involved. The obtained Au-NPs have been characterized by UV–vis spectroscopy, X-ray diffraction, transmission electron microscopy, Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy. The electrochemical detection of NB has been investigated at the green synthesized Au-NPs modified glassy carbon electrode by using differential pulse voltammetry (DPV). The Au-NPs modified electrode exhibits excellent reduction ability toward NB compared to unmodified electrode. The developed NB sensor at Au-NPs modified electrode displays a wide linear response from 0.1 to 600 μM with high sensitivity of 1.01 μA μM −1 cm −2 and low limit of detection of 0.016 μM. The modified electrode shows exceptional selectivity in the presence of ions, phenolic and biologically coactive compounds. In addition, the Au-NPs modified electrode exhibits an outstanding recovery results toward NB in various real water samples

  4. The Nano Solar Case

    DEFF Research Database (Denmark)

    Hollensen, Svend; Lindgren, Peter

    2011-01-01

    ISO PAINT Nordic A/S produces roof coatings, facade painting as well as specialised products for surface treatments. The company decided that they would develop a nano solar ICT based project having the capacity to change the whole cost structure of a building, for example by a nano roof coating...

  5. Leaf and Canopy Level Detection of Fusarium Virguliforme (Sudden Death Syndrome in Soybean

    Directory of Open Access Journals (Sweden)

    Ittai Herrmann

    2018-03-01

    Full Text Available Pre-visual detection of crop disease is critical for food security. Field-based spectroscopic remote sensing offers a method to enable timely detection, but still requires appropriate instrumentation and testing. Soybean plants were spectrally measured throughout a growing season to assess the capacity of leaf and canopy level spectral measurements to detect non-visual foliage symptoms induced by Fusarium virguliforme (Fv, which causes sudden death syndrome. Canopy reflectance measurements were made using the Piccolo Doppio dual field-of-view, two-spectrometer (400 to 1630 nm system on a tractor. Leaf level measurements were obtained, in different plots, using a handheld spectrometer (400 to 2500 nm. Partial least squares discriminant analysis (PLSDA was applied to the spectroscopic data to discriminate between Fv-inoculated and control plants. Canopy and leaf spectral data allowed identification of Fv infection, prior to visual symptoms, with classification accuracy of 88% and 91% for calibration, 79% and 87% for cross-validation, and 82% and 92% for validation, respectively. Differences in wavelengths important to prediction by canopy vs. leaf data confirm that there are different bases for accurate predictions among methods. Partial least square regression (PLSR was used on a late-stage canopy level data to predict soybean seed yield, with calibration, cross-validation and validation R2 values 0.71, 0.59 and 0.62 (p < 0.01, respectively, and validation root mean square error of 0.31 t·ha−1. Spectral data from the tractor mounted system are thus sensitive to the expression of Fv root infection at canopy scale prior to canopy symptoms, suggesting such systems may be effective for precision agricultural research and management.

  6. Use of HPLC with flow-through radiometric detection for low level environmental analysis

    International Nuclear Information System (INIS)

    Mao, J.; Fackler, P.H.

    1992-01-01

    High Performance Liquid Chromatography with flow-through radiometric detection (HPLC-RAM) is increasingly becoming a standard analytical technique in pharmaceutical, agricultural and chemical industries for monitoring radiolabeled analytes. This paper focuses on the applications of this flow-through radiochromatographic technique for low level aquatic toxicology and environmental fate testing. Examples include parts per billion water, sediment/soil and fish tissue analyses using reverse phase as well as normal phase HPLC. The applications of both homogeneous (liquid) and heterogeneous (solid) flow cell scintillation counting are addressed. Compounds discussed are primarily pesticides and pharmaceuticals

  7. SNP data in the detection of hybridization levels between wild boar and domestic pig in Europe

    DEFF Research Database (Denmark)

    Iacolina, Laura; Bakan, Jana; Cubric-Curik, Vlatka

    , a better understanding of hybridization patterns in Europe might have important implications for conservation and management of both wild populations and local breeds, as well as for the contingency of infectious diseases. Here we present the results for the analysis of 235 wild boars (WB; from 22 areas......, additionally, highlights the presence of several individuals, of both ancestries, with intermediate positions. This result was confirmed by Admixture analysis that detected the presence of hybrid individuals in both WB and local domestic pig breeds. The introgression level varies considerably among populations...

  8. Plasmodium falciparum transfected with ultra bright NanoLuc luciferase offers high sensitivity detection for the screening of growth and cellular trafficking inhibitors.

    Directory of Open Access Journals (Sweden)

    Mauro F Azevedo

    Full Text Available Drug discovery is a key part of malaria control and eradication strategies, and could benefit from sensitive and affordable assays to quantify parasite growth and to help identify the targets of potential anti-malarial compounds. Bioluminescence, achieved through expression of exogenous luciferases, is a powerful tool that has been applied in studies of several aspects of parasite biology and high throughput growth assays. We have expressed the new reporter NanoLuc (Nluc luciferase in Plasmodium falciparum and showed it is at least 100 times brighter than the commonly used firefly luciferase. Nluc brightness was explored as a means to achieve a growth assay with higher sensitivity and lower cost. In addition we attempted to develop other screening assays that may help interrogate libraries of inhibitory compounds for their mechanism of action. To this end parasites were engineered to express Nluc in the cytoplasm, the parasitophorous vacuole that surrounds the intraerythrocytic parasite or exported to the red blood cell cytosol. As proof-of-concept, these parasites were used to develop functional screening assays for quantifying the effects of Brefeldin A, an inhibitor of protein secretion, and Furosemide, an inhibitor of new permeation pathways used by parasites to acquire plasma nutrients.

  9. Characterization of angiotensin-I converting enzyme inhibiting peptide from Venerupis philippinarum with nano-liquid chromatography in combination with orbitrap mass spectrum detection and molecular docking

    Science.gov (United States)

    Shi, Lei; Wu, Tizhi; Sheng, Naijuan; Yang, Li; Wang, Qian; Liu, Rui; Wu, Hao

    2017-06-01

    The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-I converting enzyme (ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-I-inhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC50 of 5.75 μmol L-1. The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.

  10. Detection of contaminated metallurgical scrap at borders: a proposal for an 'investigation level'

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1999-01-01

    In 1995 the IAEA started a program to combat illicit trafficking in nuclear and other radioactive materials which includes the problem of cross-border movement of contaminated metallurgical scrap. A major activity in this program is the elaboration of a Safety Guide on 'Preventing, Detecting and Responding to Illicit Trafficking', co-sponsored by the World Customs Organization (WCO) and INTERPOL. The guide will provide advice to the Member States, in particular on technical and administrative procedures for detection of radioactive materials at borders. Radiation monitoring systems for contaminated scrap metals have been successfully used in steel plants and larger scrap yards since several years and suitable products are on the market today. Using sophisticated software and dynamic scanning techniques such systems allow for detection of an artificial increase in radiation background level as low as by 20%, even if the natural background signal is substantially suppressed by the vehicle itself entering the monitor. However, the measurement conditions at borders are essentially different from those in plants. Large traffic crossing major borders limits the time for detection and response to a few seconds and multiple checks are nearly impractical. Shielded radioactive sources - even of high activity - which are deeply buried in scrap, cannot be detected without unloading the vehicle, a procedure generally ruled out at borders. Highly sensitive monitoring systems necessarily cause frequent false alarms or nuisance alarms due to innocent radioactive materials such as naturally occurring radioactivity e.g. in fertilizers, scale in pipes used in the oil industry or medical radioisotopes. A particular, rather frequent problem is the unnecessary reject of scrap transports on borders due to the inherent low level contamination of steel with 60 Co, even in sheet metal used for lorries or railroad cars. Such contamination can easily be caused by the routine method to control

  11. Characterizing the recovery of a solid surface after tungsten nano-tendril formation

    Science.gov (United States)

    Wright, G. M.; van Eden, G. G.; Kesler, L. A.; De Temmerman, G.; Whyte, D. G.; Woller, K. B.

    2015-08-01

    Recovery of a flat tungsten surface from a nano-tendril surface is attempted through three techniques; a mechanical wipe, a 1673 K annealing, and laser-induced thermal transients. Results were determined through SEM imaging and elastic recoil detection to assess the helium content in the surface. The mechanical wipe leaves a ∼0.5 μm deep layer of nano-tendrils on the surface post-wipe regardless of the initial nano-tendril layer depth. Laser-induced thermal transients only significantly impact the surface morphology at heat loads of 35.2 MJ/m2 s1/2 or above, however a fully flat or recovered surface was not achieved for 100 transients at this heat load despite reducing the helium content by a factor of ∼7. A 1673 K annealing removes all detectable levels of helium but sub-surface voids/bubbles remain intact. The surface is recovered to a nearly flat state with only some remnants of nano-tendrils re-integrating into the surface remaining.

  12. Characterizing the recovery of a solid surface after tungsten nano-tendril formation

    International Nuclear Information System (INIS)

    Wright, G.M.; Eden, G.G. van; Kesler, L.A.; De Temmerman, G.; Whyte, D.G.; Woller, K.B.

    2015-01-01

    Recovery of a flat tungsten surface from a nano-tendril surface is attempted through three techniques; a mechanical wipe, a 1673 K annealing, and laser-induced thermal transients. Results were determined through SEM imaging and elastic recoil detection to assess the helium content in the surface. The mechanical wipe leaves a ∼0.5 μm deep layer of nano-tendrils on the surface post-wipe regardless of the initial nano-tendril layer depth. Laser-induced thermal transients only significantly impact the surface morphology at heat loads of 35.2 MJ/m 2 s 1/2 or above, however a fully flat or recovered surface was not achieved for 100 transients at this heat load despite reducing the helium content by a factor of ∼7. A 1673 K annealing removes all detectable levels of helium but sub-surface voids/bubbles remain intact. The surface is recovered to a nearly flat state with only some remnants of nano-tendrils re-integrating into the surface remaining

  13. Characterizing the recovery of a solid surface after tungsten nano-tendril formation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, G.M., E-mail: wright@psfc.mit.edu [MIT Plasma Science and Fusion Center, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Eden, G.G. van [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); Kesler, L.A. [MIT Plasma Science and Fusion Center, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); De Temmerman, G. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregion Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); Whyte, D.G.; Woller, K.B. [MIT Plasma Science and Fusion Center, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2015-08-15

    Recovery of a flat tungsten surface from a nano-tendril surface is attempted through three techniques; a mechanical wipe, a 1673 K annealing, and laser-induced thermal transients. Results were determined through SEM imaging and elastic recoil detection to assess the helium content in the surface. The mechanical wipe leaves a ∼0.5 μm deep layer of nano-tendrils on the surface post-wipe regardless of the initial nano-tendril layer depth. Laser-induced thermal transients only significantly impact the surface morphology at heat loads of 35.2 MJ/m{sup 2} s{sup 1/2} or above, however a fully flat or recovered surface was not achieved for 100 transients at this heat load despite reducing the helium content by a factor of ∼7. A 1673 K annealing removes all detectable levels of helium but sub-surface voids/bubbles remain intact. The surface is recovered to a nearly flat state with only some remnants of nano-tendrils re-integrating into the surface remaining.

  14. Design of a cement-based formulation for the conditioning of a NaNO3-rich intermediate-level long-lived radioactive effluent using a surrogate

    International Nuclear Information System (INIS)

    Coppens, E.; Antonucci, P.; Cau dit Coumes, C.

    2015-01-01

    Since the immobilization of concentrates in a bituminous matrix has been abandoned in Belgium in the late nineties, CEA and ONDRAF/NIRAS recently started developing an alternative conditioning technique for a historic radioactive effluent, rich in NaNO 3 . Multiple ways of treatment - in the domain of homogeneous cementation - were tested on a non-radioactive simulant of this aqueous waste stream, but due to its very low pH (∼ 0), the solution has to be neutralized to a higher pH in order to make it more compatible with general hydraulic binders. Therefore the research started by looking for a suitable base (i.e. KOH, NaOH or Ca(OH) 2 ) to neutralize the stream. Due to the formation of a viscous gel in different pH-domains, the resulting neutralization curve was separated in multiple areas of interest, i.e. those areas resulting in a highly liquid, water-like product. Only in a next step the research focused on selecting a suitable hydraulic binder (e.g. OPC, blended cement (OPC / blast-furnace slag with high contents of slag), KOH-activated slag, Fondu calcium aluminate cement). In a third step, two final formulations were established taking into account the specifications for grout implementation at industrial scale and further management of the waste packages. (authors)

  15. Detection of environmental radioactive contamination levels using a liquid-scintillation counter

    International Nuclear Information System (INIS)

    Calisto, W.; Kun, A.; Campos, E.

    1981-01-01

    A high-efficiency LS-100 C liquid scintillation counter was used to detect low levels of environmental activity. Different concentrations of primary scintillator were tested and these established the most suitable values. Work was carried out at the same time to find conditions which would ensure a low background and high efficiency. To reduce the sample volume used, various types of chelating agents were utilized: 8-hydroxyquinoline (oxine), tannic acid, cupferron, dimethylglioxime and beta-naphthol. These were tested at pH levels of 1, 6 and 11. Measurements were performed by means of the Cerenkov effect using substances with differing refraction indices - 26% sodium chloride, water, glycerine, carbon bisulphide, nitrobenzene, benzyl alcohol and toluene. Finally, work was done on comparing spectra obtained by Cerenkov radiation and by 90 Sr and 90 Y beta radiation respectively. Clearly differentiated zones were obtained, thus making it possible to distinguish one isotope from another in an equilibrium solution. (author)

  16. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads

    DEFF Research Database (Denmark)

    Uddin, Rokon; Burger, Robert; Donolato, Marco

    2016-01-01

    30 s) using the two differently sized beads for the two detection methods. In both cases a sample volume of only 10 μl is required. The demonstrated automation, low sample-to-answer time and portability of both detection instruments as well as integration of the assay on a low-cost disc are important...

  17. High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection

    Directory of Open Access Journals (Sweden)

    Nitin Chandrachoodan

    2002-09-01

    Full Text Available The problem of detecting negative weight cycles in a graph is examined in the context of the dynamic graph structures that arise in the process of high level synthesis (HLS. The concept of adaptive negative cycle detection is introduced, in which a graph changes over time and negative cycle detection needs to be done periodically, but not necessarily after every individual change. We present an algorithm for this problem, based on a novel extension of the well-known Bellman-Ford algorithm that allows us to adapt existing cycle information to the modified graph, and show by experiments that our algorithm significantly outperforms previous incremental approaches for dynamic graphs. In terms of applications, the adaptive technique leads to a very fast implementation of Lawlers algorithm for the computation of the maximum cycle mean (MCM of a graph, especially for a certain form of sparse graph. Such sparseness often occurs in practical circuits and systems, as demonstrated, for example, by the ISCAS 89/93 benchmarks. The application of the adaptive technique to design-space exploration (synthesis is also demonstrated by developing automated search techniques for scheduling iterative data-flow graphs.

  18. Mutation detection for inventories of traffic signs from street-level panoramic images

    Science.gov (United States)

    Hazelhoff, Lykele; Creusen, Ivo; De With, Peter H. N.

    2014-03-01

    Road safety is positively influenced by both adequate placement and optimal visibility of traffic signs. As their visibility degrades over time due to e.g. aging, vandalism, accidents and vegetation coverage, up-to-date inven­tories of traffic signs are highly attractive for preserving a high road safety. These inventories are performed in a semi-automatic fashion from street-level panoramic images, exploiting object detection and classification tech­niques. Next to performing inventories from scratch, these systems are also exploited for the efficient retrieval of situation changes by comparing the outcome of the automated system to a baseline inventory (e.g. performed in a previous year). This allows for specific manual interactions to the found changes, while skipping all unchanged situations, thereby resulting in a large efficiency gain. This work describes such a mutation detection approach, with special attention to re-identifying previously found signs. Preliminary results on a geographical area con­taining about 425 km of road show that 91.3% of the unchanged signs are re-identified, while the amount of found differences equals about 35% of the number of baseline signs. From these differences, about 50% correspond to physically changed traffic signs, next to false detections, misclassifications and missed signs. As a bonus, our approach directly results in the changed situations, which is beneficial for road sign maintenance.

  19. Detection of ST-T Episode Based on the Global Curvature of Isoelectric Level in ECG

    Energy Technology Data Exchange (ETDEWEB)

    Kang, D. W.; Jun, D. G.; Lee, K. J.; Yoon, H. R. [Yonsei University, Seoul (Korea)

    2001-04-01

    This paper describes an automated detection algorithm of ST-T episodes using global curvature which can connect the isoelectric level in ECG and can eliminate not only the slope of ST segment, but also difference of the baseline and global curve. This above method of baseline correction is very faster than classical baseline correction methods. The optimal values of parameters for baseline correction were found as the value having the highest detection rate of ST episode. The features as input of backpropagation Neural Network were extracted from the whole ST segment. The European ST-T database was used as training and test data. Finally, ST elevation, ST depression and normal ST were classified. The average ST episode sensitivity and predictivity were 85.42%, 80.29%, respectively. This result shows the high speed and reliability in ST episode detection. In conclusion, the proposed method showed the possibility in various applications for the Holter system. (author). 17 refs., 5 figs., 4 tabs.

  20. The detection of serum homocysteine (Hcy) level in II diabetes mellitus with hyperinsulinism

    International Nuclear Information System (INIS)

    He Meiqiong; Zhang Ling; Quan Xinsheng; Zhou Youjun; Wang Ying

    2003-01-01

    To explore the relationship between serum total homocysteine (Hcy) level and II diabetes mellitus (DM) with hyperinsulinism and insulin resistance, serum total Hcy level in 30 normal subjects and 78 type II DM (38 with hyperinsulinism) are detected. The results show: the mean serum Hcy level is 11.90 ± 3.90 μmo/L, 9.21 ± 2.83 μmol/L at oral glucose tolerance test (OGTT) 1 h and 10.43 ± 3.82 μmol/L at OGTT 2h in normal subjects (n=30); 21.80 ± 7.98 μmol/L, 17.98 ± 6.83 μmol/L at OGTT 1 h and 12.58 ± 6.73 μmol/L at OGTT 2 h in DM without hyperinsulinism and angiopathy (n=40); and 19.80 ± 7.98 μmol/L, 14.50 ± 7.69 μmol/L at OGTT 1 h and 11.07 ± 6.52 μmol/L at OGTT 2 h in DM with hyperinsulinism (n=38). The Hcy level is a significant difference among three groups (P<0.001, P<0.01). Hcy level of DM with hyperinsulinism is lower than that of DM with hyperinsulinism (P<0.01). The serum Hcy level in DM is higher than that in control group, the elevated level of serum Hcy may be related to the diabetic hyperinsulinism and insulin resistance

  1. Data-driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...... the number of available training data is limited. We suggest a data-driven classification model which work from few examples. The paper compares a number of data-driven classification and quantification schemes able to detect the gas and the concentration level. The data-driven approaches are based on state...

  2. Data–driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...... the number of available training data is limited. We suggest a data-driven classification model which work from few examples. The paper compares a number of data-driven classification and quantification schemes able to detect the gas and the concentration level. The data-driven approaches are based on state...

  3. Toward General Software Level Silent Data Corruption Detection for Parallel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Berrocal, Eduardo; Bautista-Gomez, Leonardo; Di, Sheng; Lan, Zhiling; Cappello, Franck

    2017-12-01

    Silent data corruption (SDC) poses a great challenge for high-performance computing (HPC) applications as we move to extreme-scale systems. Mechanisms have been proposed that are able to detect SDC in HPC applications by using the peculiarities of the data (more specifically, its “smoothness” in time and space) to make predictions. However, these data-analytic solutions are still far from fully protecting applications to a level comparable with more expensive solutions such as full replication. In this work, we propose partial replication to overcome this limitation. More specifically, we have observed that not all processes of an MPI application experience the same level of data variability at exactly the same time. Thus, we can smartly choose and replicate only those processes for which the lightweight data-analytic detectors would perform poorly. In addition, we propose a new evaluation method based on the probability that a corruption will pass unnoticed by a particular detector (instead of just reporting overall single-bit precision and recall). In our experiments, we use four applications dealing with different explosions. Our results indicate that our new approach can protect the MPI applications analyzed with 7–70% less overhead (depending on the application) than that of full duplication with similar detection recall.

  4. Superconducting nano-strip particle detectors

    International Nuclear Information System (INIS)

    Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M

    2015-01-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)

  5. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  6. Dose critical in-vivo detection of anti-cancer drug levels in blood

    Science.gov (United States)

    Miller, Holly H.; Hirschfeld, deceased, Tomas B.

    1991-01-01

    A method and apparatus are disclosed for the in vivo and in vitro detection and measurement of dose critical levels of DNA-binding anti-cancer drug levels in biological fluids. The apparatus comprises a laser based fiber optic sensor (optrode) which utilizes the secondary interactions between the drug and an intercalating fluorochrome bound to a probe DNA, which in turn is attached to the fiber tip at one end thereof. The other end of the optical fiber is attached to an illumination source, detector and recorder. The fluorescence intensity is measured as a function of the drug concentration and its binding constant to the probe DNA. Anticancer drugs which lend themselves to analysis by the use of the method and the optrode of the present invention include doxorubicin, daunorubicin, carminomycin, aclacinomycin, chlorambucil, cyclophosphamide, methotrexate, 5-uracil, arabinosyl cytosine, mitomycin, cis-platinum 11 diamine dichloride procarbazine, vinblastine vincristine and the like. The present method and device are suitable for the continuous monitoring of the levels of these and other anticancer drugs in biological fluids such as blood, serum, urine and the like. The optrode of the instant invention also enables the measurement of the levels of these drugs from a remote location and from multiple samples.

  7. Comparison between properties of polyurethane nano composites prepared by two different methods

    International Nuclear Information System (INIS)

    Barmar, M.; Barikani, M.; Fereidoonnia, M.

    2009-01-01

    In this work, a thermoplastic polyurethane elastomer model based on polytetramethylene glycol. toluene diisocyanate and 1,4-butanediol was selected and synthesized. According to this model two types of polyurethane nano composites were prepared by in situ polymerization and melt intercalation procedures. The organo-modified nano clay was used in nano composites samples in 0.4 weight percent level. The prepared nano composites were studied by WAXD, tensile and thermal analysis. Thermal properties of the nano composites were higher than those of pure polyurethane elastomers. Nano composites prepared via melt intercalation method showed a lower tensile strength and hardness than those prepared through in situ polymerization method

  8. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    Science.gov (United States)

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Progress in proton-detected solid-state NMR (SSNMR): Super-fast 2D SSNMR collection for nano-mole-scale proteins

    Science.gov (United States)

    Ishii, Yoshitaka; Wickramasinghe, Ayesha; Matsuda, Isamu; Endo, Yuki; Ishii, Yuji; Nishiyama, Yusuke; Nemoto, Takahiro; Kamihara, Takayuki

    2018-01-01

    Proton-detected solid-state NMR (SSNMR) spectroscopy has attracted much attention due to its excellent sensitivity and effectiveness in the analysis of trace amounts of amyloid proteins and other important biological systems. In this perspective article, we present the recent sensitivity limit of 1H-detected SSNMR using "ultra-fast" magic-angle spinning (MAS) at a spinning rate (νR) of 80-100 kHz. It was demonstrated that the high sensitivity of 1H-detected SSNMR at νR of 100 kHz and fast recycling using the paramagnetic-assisted condensed data collection (PACC) approach permitted "super-fast" collection of 1H-detected 2D protein SSNMR. A 1H-detected 2D 1H-15N correlation SSNMR spectrum for ∼27 nmol of a uniformly 13C- and 15N-labeled GB1 protein sample in microcrystalline form was acquired in only 9 s with 50% non-uniform sampling and short recycle delays of 100 ms. Additional data suggests that it is now feasible to detect as little as 1 nmol of the protein in 5.9 h by 1H-detected 2D 1H-15N SSNMR at a nominal signal-to-noise ratio of five. The demonstrated sensitivity is comparable to that of modern solution protein NMR. Moreover, this article summarizes the influence of ultra-fast MAS and 1H-detection on the spectral resolution and sensitivity of protein SSNMR. Recent progress in signal assignment and structural elucidation by 1H-detected protein SSNMR is outlined with both theoretical and experimental aspects.

  10. PSMA-Targeted Nano-Conjugates as Dual-Modality (MRI/PET) Imaging Probes for the Non-Invasive Detection of Prostate Cancer

    National Research Council Canada - National Science Library

    Sun, Xiankai

    2008-01-01

    The goal of this project is to develop dual modality imaging probes for the detection of prostate cancer by doping radioisotopes to iron oxide nanoparticles, so that the sensitivity and specificity...

  11. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Steill, Jeffrey D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Huang, Haifeng [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hoops, Alexandra A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Birtola, Salvatore R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jaska, Mark [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Strecker, Kevin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bisson, Soott [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to these species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.

  12. Using Growth Hormone Levels to Detect Macroadenoma in Patients with Acromegaly

    Directory of Open Access Journals (Sweden)

    Ji Young Park

    2014-12-01

    Full Text Available BackgroundThe aim of this study was to assess the clinical differences between acromegalic patients with microadenoma and patients with macroadenoma, and to evaluate the predictive value of growth hormone (GH levels for early detection of macroadenoma.MethodsWe performed a retrospective analysis of 215 patients diagnosed with a GH-secreting pituitary adenoma. The patients were divided into two groups: the microadenoma group and the macroadenoma group, and the clinical parameters were compared between these two groups. The most sensitive and specific GH values for predicting macroadenoma were selected using receiver operating characteristic (ROC curves.ResultsCompared with the microadenoma group, the macroadenoma group had a significantly younger age, higher body mass index, higher prevalence of hyperprolactinemia and hypogonadism, and a lower proportion of positive suppression to octreotide. However, there were no significant differences in the gender or in the prevalence of diabetes between the two groups. The tumor diameter was positively correlated with all GH values during the oral glucose tolerance test (OGTT. All GH values were significantly higher in the macroadenoma group than the microadenoma group. Cut-off values for GH levels at 0, 30, 60, 90, and 120 minutes for optimal discrimination between macroadenoma and microadenoma were 5.6, 5.7, 6.3, 6.0, and 5.8 ng/mL, respectively. ROC curve analysis revealed that the GH value at 30 minutes had the highest area under the curve.ConclusionThe GH level of 5.7 ng/mL or higher at 30 minutes during OGTT could provide sufficient information to detect macroadenoma at the time of diagnosis.

  13. PREFACE: Nano- and microfluidics Nano- and microfluidics

    Science.gov (United States)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  14. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    International Nuclear Information System (INIS)

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs

  15. Single-cell intracellular nano-pH probes†

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  16. Single-cell intracellular nano-pH probes.

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  17. Preparation and Characterization of Water-Based Nano-fluids for Nuclear Applications

    International Nuclear Information System (INIS)

    Williams, W.C.; Forrest, E.; Hu, L.W.; Buongiorno, J.

    2006-01-01

    As part of an effort to evaluate water-based nano-fluids for nuclear applications, preparation and characterization has been performed for nano-fluids being considered for MIT's nano-fluid heat transfer experiments. Three methods of generating these nano-fluids are available: creating them from chemical precipitation, purchasing the nano-particles in powder form and mixing them with the base fluid, and direct purchase of prepared nano-fluids. Characterization of nano-fluids includes colloidal stability, size distribution, concentration, and elemental composition. Quality control of the nano-fluids to be used for heat transfer testing is crucial; an exact knowledge of the fluid constituents is essential to uncovering mechanisms responsible for heat transport enhancement. Testing indicates that nano-fluids created by mixing a liquid with nano-particles in powder form are often not stable, although some degree of stabilization is obtainable with pH control and/or surfactant addition. Some commercially available prepared nano-fluids have been found to contain unacceptable levels of impurities and/or include a different weight percent of nano-particles compared to vendor specifications. Tools utilized to characterize and qualify nano-fluids for this study include neutron activation analysis (NAA), inductively-coupled plasma spectroscopy (ICP), transmission electron microscopy (TEM) imaging, thermogravimetric analysis (TGA) and dynamic light scattering (DLS). Preparation procedures and characterization results for selected nano-fluids will be discussed in detail. (authors)

  18. Detection of the Level of Reactive Oxygen Species Induced by Ionizing Radiation in Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Chung, Dong Min; Kim, Jin-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    By definition, the direct effect is referred to interaction between photon and DNA molecule, whereas the indirect effect is mediated by the reactive oxygen species (ROS) generated by radiolysis and subsequent reaction. It has been reported that ROS produced after exposure to IR can react with cellular materials such as DNA, proteins, carbohydrates and lipids. ROS is free radicals such as the superoxide anion, hydroxyl radicals and the non-radical hydrogen peroxide. Cells generate ROS during aerobic metabolism. Excessive production of ROS can lead to oxidative stress, genetic alteration and even cell death. It has been reported that ROS plays a critical role in radiation-induced cell injury. Thus, it is of great interest to determine the radiation-induced ROS level. Many kinds of methods to detect the level of ROS have been developed so far. There were random changes of fluorescence intensity in the treatment after irradiation. This result meant that this protocol was not appropriate for determination of radiation-induced ROS. On the other hand, the fluorescence intensity was increased in a dose-dependent manner when the cells were treated with the DCFH-DA solution before irradiation. Conclusions can be drawn from the experimental results of this study. In order to properly measure the ROS level in the cells exposed to ionizing radiation, the cells should be treated with the DCFH-DA solution before irradiation.

  19. Detection of indoxyl sulfate levels in dogs and cats suffering from naturally occurring kidney diseases.

    Science.gov (United States)

    Cheng, F P; Hsieh, M J; Chou, C C; Hsu, W L; Lee, Y J

    2015-09-01

    Indoxyl sulfate (IS), a protein-bound uraemic toxin, has been found to accumulate in the serum of people with renal diseases and is associated with free radical induction, nephrotoxicity cardiovascular toxicity, and osteoblast cytotoxicity. Although IS has been studied in humans and in experimental models, the role of IS in dogs and cats with kidney disease has not been investigated. A high performance liquid chromatography system was applied to detect plasma IS concentrations in non-azotaemic animals (63 dogs, 16 cats) and in animals with renal azotaemia (66 dogs, 69 cats). The IS levels of azotaemic animals were significantly higher (P dogs; median [IQR] 21 (18.9) mg/L vs. 14.8 (12.3) mg/L for cats). The IS level was significantly correlated with blood urea nitrogen, serum creatinine and phosphate concentrations. Dogs with acute kidney injury had significantly higher IS levels (P dogs and cats. The IS concentration is directly related to loss of renal function. Further studies are necessary to determine whether measurement of IS provides any additional diagnostic or prognostic information in dogs and cats with kidney disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. An efficient probe for rapid detection of cyanide in water at parts per billion levels and naked-eye detection of endogenous cyanide.

    Science.gov (United States)

    Kumari, Namita; Jha, Satadru; Bhattacharya, Santanu

    2014-03-01

    A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the "naked-eye" detection of cyanide ions in water with a visual color change from red to yellow (Δλmax =80 nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for "in-field" experiments without requiring any sophisticated instruments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sub-ppb level detection of uranium using ligand sensitized luminescence

    International Nuclear Information System (INIS)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-01-01

    Uranyl ion (UO 2 2+ ) is known to exhibit weak luminescence in aqueous medium due to poor molar absorptivity and low quantum yield. In order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HClO 4 have been widely used. Like lanthanides, uranyl luminescence can also be sensitized by using some organic ligands. Pyridine 2,6-dicarboxylic acid (PDA) has shown enhancement of luminescence of uranyl in aqueous medium. Enhancement in intensity is due to sensitization of uranyl luminescence by PDA. In order to see the effect of non-aqueous medium, in this work, luminescence of uranyl-PDA complex has been studied in acetonitrile medium. More than one order luminescence enhancement has been observed compared to UO 2 2+ - PDA complex in aqueous medium. The lifetime of uranyl luminescence of the complex in acetonitrile medium is 90 μs which is very high compared to 10 μs in aqueous medium, suggesting that the luminescence enhancement is a result of reduction in non-radiative decay channels in acetonitrile medium. The large enhancement of uranyl luminescence of uranyl-PDA complex in acetonitrile medium can be used for ultra-trace level detection of uranium. Linearity in the luminescence intensity has been observed over the uranium concentration range of 5 to 80 ppb and the detection limit calculated using the criterion of 3 σ is ~ 0.2 ppb. (author)

  2. Characterization of deep energy levels in mercury iodide. Application to nuclear detection

    International Nuclear Information System (INIS)

    Mohammed Brahim, Tayeb.

    1982-07-01

    The last few years have seen an increasing interest in HgI 2 detectors for room temperature gamma and X-ray spectrometry. Performance and effective thickness of these detectors are presently limited by carrier trapping which results in incomplete charge collection. Characterization of the trapping levels has been performed by several photoelectronic methods (photoconductivity, thermal and optical quenching of the photoconductivity, TSC, lifetime measurement). A model is proposed taking into account the results obtained by these techniques and the polarization phenomena observed in nuclear detection in both vapor phase and solution grown crystals. For the latter, polarization can be eliminated or notably reduced by illumination of the positive electrode or by using a MIS positively biased structure [fr

  3. SnO2 quantum dots with rapid butane detection at lower ppm-level

    Science.gov (United States)

    Cai, Pan; Dong, Chengjun; Jiang, Ming; Shen, Yuanyuan; Tao, You; Wang, Yude

    2018-04-01

    SnO2 quantum dots (QDs) were successfully synthesized by a facile approach employing benzyl alcohol and ammonium hydroxide at lower temperature of 130 °C. It is revealed that the SnO2 QDs is about 3 nm in size to form clusters. The gas sensor based on SnO2 QDs shows a high potential for detecting low-ppm-level butane at 400 °C, exhibiting a high sensitivity, short response and rapid recovery time, and effective selectivity. The sensing mechanism is understood in terms of adsorbed oxygen species. Significantly, the excellent sensing performance is attributed to the smaller size of SnO2 and larger surface area (204.85 m2/g).

  4. Scaling laws for nanoFET sensors

    International Nuclear Information System (INIS)

    Zhou Fushan; Wei Qihuo

    2008-01-01

    The sensitive conductance change of semiconductor nanowires and carbon nanotubes in response to the binding of charged molecules provides a novel sensing modality which is generally denoted as nanoFET sensors. In this paper, we study the scaling laws of nanoplate FET sensors by simplifying nanoplates as random resistor networks with molecular receptors sitting on lattice sites. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors, while they could be eliminated by designing devices with very short source-drain distance and large width

  5. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  6. NanoAODs

    CERN Document Server

    Husova, Lucia Anna

    2017-01-01

    The scientist on LHC experiment analyse a huge amount of data every day on the Grid. Thus new methods are requested, how to make the analysis more efficient. The NanoAOD is a derived dataset from AOD, where only information necessary for the analysis is stored. Thus the analysis can be more than two times faster, because of the smaller file size, which can be read faster on the Grid. The main goal of this summer student project was to help other users to start using NanoAODs by rewriting their user tasks. Two example users tasks were converted to NanoAODs and tested with the local train test. A speed up of 3.5 was reached. The results of the analysis tasks are identical independent if they use AODs or NanoAODs.

  7. Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil.

    Science.gov (United States)

    Nunney, Leonard; Yuan, Xiaoli; Bromley, Robin E; Stouthamer, Richard

    2012-07-01

    Documenting the role of novel mutation versus homologous recombination in bacterial evolution, and especially in the invasion of new hosts, is central to understanding the long-term dynamics of pathogenic bacteria. We used multilocus sequence typing (MLST) to study this issue in Xylella fastidiosa subsp. pauca from Brazil, a bacterium causing citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). All 55 citrus isolates typed (plus one coffee isolate) defined three similar sequence types (STs) dominated by ST11 (85%), while the remaining 22 coffee isolates defined two STs, mainly ST16 (74%). This low level of variation masked unusually large allelic differences (>1% divergence with no intermediates) at five loci (leuA, petC, malF, cysG, and holC). We developed an introgression test to detect whether these large differences were due to introgression via homologous recombination from another X. fastidiosa subspecies. Using additional sequencing around these loci, we established that the seven randomly chosen MLST targets contained seven regions of introgression totaling 2,172 bp of 4,161 bp (52%), only 409 bp (10%) of which were detected by other recombination tests. This high level of introgression suggests the hypothesis that X. fastidiosa subsp. pauca became pathogenic on citrus and coffee (crops cultivated in Brazil for several hundred years) only recently after it gained genetic variation via intersubspecific recombination, facilitating a switch from native hosts. A candidate donor is the subspecies infecting plum in the region since 1935 (possibly X. fastidiosa subsp. multiplex). This hypothesis predicts that nonrecombinant native X. fastidiosa subsp. pauca (not yet isolated) does not cause disease in citrus or coffee.

  8. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads

    DEFF Research Database (Denmark)

    Uddin, Rokon; Burger, Robert; Donolato, Marco

    2016-01-01

    of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates...... whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25 pM with the same sample-to-answer time (15 min...

  9. Joint level-set and spatio-temporal motion detection for cell segmentation.

    Science.gov (United States)

    Boukari, Fatima; Makrogiannis, Sokratis

    2016-08-10

    Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images. In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of each processed frame with an intensity distribution model learned from all frames of the sequence during the training stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and optimize the final segmentation result. We applied this method to several datasets of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based segmentation. We validated all segmentation techniques against reference masks provided by the international Cell Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of 89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in segmentation accuracy compared to both strictly spatial and temporally linked Chan

  10. Instrument platforms for nano liquid chromatography.

    Science.gov (United States)

    Šesták, Jozef; Moravcová, Dana; Kahle, Vladislav

    2015-11-20

    The history of liquid chromatography started more than a century ago and miniaturization and automation are two leading trends in this field. Nanocolumn liquid chromatography (nano LC) and largely synonymous capillary liquid chromatography (capillary LC) are the most recent results of this process where miniaturization of column dimensions and sorbent particle size play crucial role. Very interesting results achieved in the research of extremely miniaturized LC columns at the end of the last century lacked distinctive raison d'être and only advances in mass spectrometry brought a real breakthrough. Configuration of nano LC-electrospray ionization mass spectrometry (LC-ESI-MS) has become a basic tool in bioanalytical chemistry, especially in proteomics. This review discusses and summarizes past and current trends in the realization of nano liquid chromatography (nano LC) platforms. Special attention is given to the mobile phase delivery under nanoflow rates (isocratic, gradient) and sample injection to the nanocolumn. Available detection techniques applied in nano LC separations are also briefly discussed. We followed up the key themes from the original scientific reports over gradual improvements up to the contemporary commercial solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  12. Optiske nano-fibre

    DEFF Research Database (Denmark)

    Rubahn, Horst-Günter; Simonsen, Adam Cohen

    2003-01-01

    Forskere ved Syddansk Universitet har udviklet organiske nano-aggregater, som gør det muligt under meget kontrollerede forhold at studere optiske fænomener på skalaer mindre end lysets bølgelængde.......Forskere ved Syddansk Universitet har udviklet organiske nano-aggregater, som gør det muligt under meget kontrollerede forhold at studere optiske fænomener på skalaer mindre end lysets bølgelængde....

  13. A Comparison of the Capability of Sensitivity Level 3 and Sensitivity Level 4 Fluorescent Penetrants to Detect Fatigue Cracks in Aluminum

    Science.gov (United States)

    Parker, Bradford, H.

    2009-01-01

    Historically both sensitivity level 3 and sensitivity level 4 fluorescent penetrants have been used to perform NASA Standard Level inspections of aerospace hardware. In April 2008, NASA-STD-5009 established a requirement that only sensitivity level 4 penetrants were acceptable for inspections of NASA hardware. Having NASA contractors change existing processes or perform demonstration tests to certify sensitivity level 3 penetrants posed a potentially huge cost to the Agency. This study was conducted to directly compare the probability of detection sensitivity level 3 and level 4 penetrants using both Method A and Method D inspection processes. The study results strongly support the conclusion that sensitivity level 3 penetrants are acceptable for NASA Standard Level inspections

  14. Mass Cytometry for Detection of Silver at the Bacterial Single Cell Level

    Directory of Open Access Journals (Sweden)

    Yuting Guo

    2017-07-01

    Full Text Available Background: Mass cytometry (Cytometry by Time of Flight, CyTOF allows single-cell characterization on the basis of specific metal-based cell markers. In addition, other metals in the mass range such as silver can be detected per cell. Bacteria are known to be sensible to silver and a protocol was developed to measure both the number of affected cells per population and the quantities of silver per cell.Methods: For mass cytometry ruthenium red was used as a marker for all cells of a population while parallel application of cisplatin discriminated live from dead cells. Silver quantities per cell and frequencies of silver containing cells in a population were measured by mass cytometry. In addition, live/dead subpopulations were analyzed by flow cytometry and distinguished by cell sorting based on ruthenium red and propidium iodide double staining. Verification of the cells’ silver load was performed on the bulk level by using ICP-MS in combination with cell sorting. The protocol was developed by conveying both, fast and non-growing Pseudomonas putida cells as test organisms.Results: A workflow for labeling bacteria in order to be analyzed by mass cytometry was developed. Three different parameters were tested: ruthenium red provided counts for all bacterial cells in a population while consecutively applied cisplatin marked the frequency of dead cells. Apparent population heterogeneity was detected by different frequencies of silver containing cells. Silver quantities per cell were also well measurable. Generally, AgNP-10 treatment caused higher frequencies of dead cells, higher frequencies of silver containing cells and higher per-cell silver quantities. Due to an assumed chemical equilibrium of free and bound silver ions live and dead cells were associated with silver in equal quantities and this preferably during exponential growth. With ICP-MS up to 1.5 fg silver per bacterial cell were detected.Conclusion: An effective mass cytometry

  15. Protein electrochemistry using graphene-based nano-assembly: an ultrasensitive electrochemical detection of protein molecules via nanoparticle-electrode collisions.

    Science.gov (United States)

    Li, Da; Liu, Jingquan; Barrow, Colin J; Yang, Wenrong

    2014-08-04

    We describe a new electrochemical detection approach towards single protein molecules (microperoxidase-11, MP-11), which are attached to the surface of graphene nanosheets. The non-covalently functionalized graphene nanosheets exhibit enhanced electroactive surface area, where amplified redox current is produced when graphene nanosheets collide with the electrode.

  16. Photo-nano immunotherapy for metastatic cancers (Conference Presentation)

    Science.gov (United States)

    Zhou, Feifan

    2016-03-01

    We constructed a multifunction nano system SWNT-GC and investigated the synergize photothermal and immunological effects. Here, we improve the SWNT-GC nano system and design a new synergistic nano-particle, both have the photothermal effects and immunological effects. We investigate the therapeutic effects and detect the immune response with metastatic mouse tumor models. We also study the therapeutic mechanism after treatment in vitro and in vivo. With the enhancement of nano-materials on photothermal effects, laser treatment could destroy primary tumor and protect normal tissue with low dose laser irradiation. With the immunological effects of nano-materials, the treatment could trigger specific antitumor immune response, to eliminate the metastasis tumor. It is providing a promising treatment modality for the metastatic cancers.

  17. Redox Cycling Realized in Paper-Based Biochemical Sensor for Selective Detection of Reversible Redox Molecules Without Micro/Nano Fabrication Process.

    Science.gov (United States)

    Yamamoto, So; Uno, Shigeyasu

    2018-02-28

    This paper describes a paper-based biochemical sensor that realizes redox cycling with close interelectrode distance. Two electrodes, the generator and collector electrodes, can detect steady-state oxidation and reduction currents when suitable potential is held at each electrode. The sensor has two gold plates on both sides of a piece of chromatography paper and defines the interelectrode distance by the thickness of the paper (180 μm) without any micro-fabrication processes. Our proposed sensor geometry has successfully exhibited signatures of redox cycling. As a result, the concentration of ferrocyanide as reversible redox molecules was successfully quantified under the interference by ascorbic acid as a strong irreversible reducing agent. This was possible because the ascorbic acids are completely consumed by the irreversible reaction, while maintaining redox cycling of reversible ferrocyanide. This suggests that a sensor based on the redox cycling method will be suitable for detecting target molecules at low concentration.

  18. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform.

    Science.gov (United States)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-12-14

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.

  19. Screening-level risk assessment for styrene-acrylonitrile (SAN) trimer detected in soil and groundwater.

    Science.gov (United States)

    Kirman, C R; Gargas, M L; Collins, J J; Rowlands, J C

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment.

  20. Joint sparsity based heterogeneous data-level fusion for target detection and estimation

    Science.gov (United States)

    Niu, Ruixin; Zulch, Peter; Distasio, Marcello; Blasch, Erik; Shen, Dan; Chen, Genshe

    2017-05-01

    Typical surveillance systems employ decision- or feature-level fusion approaches to integrate heterogeneous sensor data, which are sub-optimal and incur information loss. In this paper, we investigate data-level heterogeneous sensor fusion. Since the sensors monitor the common targets of interest, whose states can be determined by only a few parameters, it is reasonable to assume that the measurement domain has a low intrinsic dimensionality. For heterogeneous sensor data, we develop a joint-sparse data-level fusion (JSDLF) approach based on the emerging joint sparse signal recovery techniques by discretizing the target state space. This approach is applied to fuse signals from multiple distributed radio frequency (RF) signal sensors and a video camera for joint target detection and state estimation. The JSDLF approach is data-driven and requires minimum prior information, since there is no need to know the time-varying RF signal amplitudes, or the image intensity of the targets. It can handle non-linearity in the sensor data due to state space discretization and the use of frequency/pixel selection matrices. Furthermore, for a multi-target case with J targets, the JSDLF approach only requires discretization in a single-target state space, instead of discretization in a J-target state space, as in the case of the generalized likelihood ratio test (GLRT) or the maximum likelihood estimator (MLE). Numerical examples are provided to demonstrate that the proposed JSDLF approach achieves excellent performance with near real-time accurate target position and velocity estimates.

  1. Design and Fabrication of Carbon Nano tube for Medical Application

    International Nuclear Information System (INIS)

    Azniza Abas; Nuzaihan, M.N.; Hafiza, N.; Nazwa, T.

    2011-01-01

    Carbon nano tubes or known as CNTs are allotropes of carbon with a cylindrical nano structure. They exhibit extraordinary strength and unique electrical properties, and are efficient thermal conductors [1]. Due to its ordinary properties this research will based on BIOSENSOR device. Normally these CNTs biosensor are based on an enzyme catalyzed reaction that will produce either electrons or protons. In particular, it is useful in genetic profiling of human diseases, which includes in identifying genes that are expressed in certain diseases such as cancer [2]. This research will based on design and fabricate sensor or device using carbon nano tube and integrate carbon nano tube (CNTs) onto wafer using combination of dichlorophosphate and nano manipulation. Carbon nano tubes device mask are design using AUTOCAD software; there is four mask involved, first mask is Gate Formation,second mask is insulation layer third mask is source and drain and final mask forth mask is used as test channel. For fabrication and optimization of biosensor using carbon nano tube CNT that will be involve both microfabrication and nano fabrication. This process will involve conventional photolithography process, electron beam evaporator, thermal oxidation and wet etching process. To inspect and characterize carbon nano tube electrical properties it will involve tools such as SEM, AFM, Dielectric Analyzer, IV-CV and Semiconductor Parametric Analyzer system. This inspection is very important to produce a perfect profile to produce a good biosensor based on carbon nano tube structure. Preparation of various samples for testing functionality of the device this various samples and conditions will be done to ensure the detection is precise. Conductivity and capacitance effect will be tested electrically to detect the hybridization of the sample. (author)

  2. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    Science.gov (United States)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  3. Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair.

    Science.gov (United States)

    Qing, Taiping; He, Xiaoxiao; He, Dinggeng; Ye, Xiaosheng; Shangguan, Jingfang; Liu, Jinquan; Yuan, Baoyin; Wang, Kemin

    2017-08-15

    DNA repair processes are responsible for maintaining genome stability. Ligase and polynucleotide kinase (PNK) have important roles in ligase-mediated DNA repair. The development of analytical methods to monitor these enzymes involved in DNA repair pathways is of great interest in biochemistry and biotechnology. In this work, we reported a new strategy for label-free monitoring PNK and ligase activity by using dumbbell-shaped DNA templated copper nanoparticles (CuNPs). In the presence of PNK and ligase, the dumbbell-shaped DNA probe (DP) was locked and could resist the digestion of exonucleases and then served as an efficient template for synthesizing fluorescent CuNPs. However, in the absence of ligase or PNK, the nicked DP could be digested by exonucleases and failed to template fluorescent CuNPs. Therefore, the fluorescence changes of CuNPs could be used to evaluate these enzymes activity. Under the optimal conditions, highly sensitive detection of ligase activity of about 1U/mL and PNK activity down to 0.05U/mL is achieved. To challenge the practical application capability of this strategy, the detection of analyte in dilute cells extracts was also investigated and showed similar linear relationships. In addition to ligase and PNK, this sensing strategy was also extended to the detection of phosphatase, which illustrates the versatility of this strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Beneficial effects of TQRF and TQ nano- and conventional emulsions on memory deficit, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble Aβ levels in high fat-cholesterol diet-induced rats.

    Science.gov (United States)

    Ismail, Norsharina; Ismail, Maznah; Azmi, Nur Hanisah; Bakar, Muhammad Firdaus Abu; Yida, Zhang; Stanslas, Johnson; Sani, Dahiru; Basri, Hamidon; Abdullah, Maizaton Atmadini

    2017-09-25

    The study determined the effect of thymoquinone rich fraction (TQRF) and thymoquinone (TQ) in the forms of nano- and conventional emulsions on learning and memory, lipid peroxidation, total antioxidant status, antioxidants genes expression and soluble β-amyloid (Aβ) levels in rats fed with a high fat-cholesterol diet (HFCD). The TQRF was extracted from Nigella sativa seeds using a supercritical fluid extraction system and prepared into nanoemulsion, which later named as TQRF nanoemulsion (TQRFNE). Meanwhile, TQ was acquired commercially and prepared into thymoquinone nanoemulsion (TQNE). The TQRF and TQ conventional emulsions (CE), named as TQRFCE and TQCE, respectively were studied for comparison. Statin (simvastatin) and non-statin (probucol) cholesterol-lowering agents, and a mild-to-severe Alzheimer's disease drug (donepezil) were served as control drugs. The Sprague Dawley rats were fed with HFCD for 6 months, and treated with the intervention groups via oral gavage daily for the last 3 months. As a result, HFCD-fed rats exhibited hypercholesterolaemia, accompanied by memory deficit, increment of lipid peroxidation and soluble Aβ levels, decrement of total antioxidant status and down-regulation of antioxidants genes expression levels. TQRFNE demonstrated comparable effects to the other intervention groups and control drugs in serum biomarkers as well as in the learning and memory test. Somehow, TQRFNE was more prominent than those intervention groups and control drugs in brain biomarkers concomitant to gene and protein expression levels. Supplementation of TQRFNE into an HFCD thus could ameliorate memory deficit, lipid peroxidation and soluble Aβ levels as well as improving the total antioxidant status and antioxidants genes expression levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Oxidation of nano-reinforced polyolefins

    International Nuclear Information System (INIS)

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  6. Molecular Tools for the Selective Detection of Nine Diatom Species Biomarkers of Various Water Quality Levels

    Directory of Open Access Journals (Sweden)

    Lucia Cimarelli

    2015-05-01

    Full Text Available Our understanding of the composition of diatom communities and their response to environmental changes is currently limited by laborious taxonomic identification procedures. Advances in molecular technologies are expected to contribute more efficient, robust and sensitive tools for the detection of these ecologically relevant microorganisms. There is a need to explore and test phylogenetic markers as an alternative to the use of rRNA genes, whose limited sequence divergence does not allow the accurate discrimination of diatoms at the species level. In this work, nine diatom species belonging to eight genera, isolated from epylithic environmental samples collected in central Italy, were chosen to implement a panel of diatoms covering the full range of ecological status of freshwaters. The procedure described in this work relies on the PCR amplification of specific regions in two conserved diatom genes, elongation factor 1-a (eEF1-a and silicic acid transporter (SIT, as a first step to narrow down the complexity of the targets, followed by microarray hybridization experiments. Oligonucleotide probes with the potential to discriminate closely related species were designed taking into account the genetic polymorphisms found in target genes. These probes were tested, refined and validated on a small-scale prototype DNA chip. Overall, we obtained 17 highly specific probes targeting eEF1-a and SIT, along with 19 probes having lower discriminatory power recognizing at the same time two or three species. This basic array was validated in a laboratory setting and is ready for tests with crude environmental samples eventually to be scaled-up to include a larger panel of diatoms. Its possible use for the simultaneous detection of diatoms selected from the classes of water quality identified by the European Water Framework Directive is discussed.

  7. Metal-Organic Frameworks for Resonant-Gravimetric Detection of Trace-Level Xylene Molecules.

    Science.gov (United States)

    Xu, Tao; Xu, Pengcheng; Zheng, Dan; Yu, Haitao; Li, Xinxin

    2016-12-20

    As one of typical VOCs, xylene is seriously harmful to human health. Nowadays, however, there is really lack of portable sensing method to directly detect environmental xylene that has chemical inertness. Especially when the concentration of xylene is lower than the human olfactory threshold of 470 ppb, people are indeed hard to be aware of and avoid this harmful vapor. Herein the metal-organic framework (MOF) of HKUST-1 is first explored for sensing to the nonpolar molecule of p-xylene. And the sensing mechanism is identified that is via host-guest interaction of MOF with xylene molecule. By loading MOFs on mass-gravimetric resonant-cantilevers, sensing experiments for four MOFs of MOF-5, HKUST-1, ZIF-8, and MOF-177 approve that HKUST-1 has the highest sensitivity to p-xylene. The resonant-gravimetric sensing experiments with our HKUST-1 based sensors have demonstrated that trace-level p-xylene of 400 ppb can be detected that is lower than the human olfactory threshold of 470 ppb. We analyze that the specificity of HKUST-1 to xylene comes from Cu 2+ -induced moderate Lewis acidity and the "like dissolves like" interaction of the benzene ring. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to elucidate the adsorbing/sensing mechanism of HKUST-1 to p-xylene, where p-xylene adsorbing induced blue-shift phenomenon is observed that confirms the sensing mechanism. Our study also indicates that the sensor shows good selectivity to various kinds of common interfering gases. And the long-term repeatability and stability of the sensing material are also approved for the usage/storage period of two months. This research approves that the MOF materials exhibit potential usages for high performance chemical sensors applications.

  8. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites.

    Science.gov (United States)

    Fortunati, E; Peltzer, M; Armentano, I; Torre, L; Jiménez, A; Kenny, J M

    2012-10-01

    The aim of this paper is to report the impact of the addition of cellulose nanocrystals on the barrier properties and on the migration behaviour of poly(lactic acid), PLA, based nano-biocomposites prepared by the solvent casting method. Their microstructure, crystallinity, barrier and overall migration properties were investigated. Pristine (CNC) and surfactant-modified cellulose nanocrystals (s-CNC) were used, and the effect of the cellulose modification and content in the nano-biocomposites was investigated. The presence of surfactant on the nanocrystal surface favours the dispersion of CNC in the PLA matrix. Electron microscopy analysis shows the good dispersion of s-CNC in the nanoscale with well-defined single crystals indicating that the surfactant allowed a better interaction between the cellulose structures and the PLA matrix. Reductions of 34% in water permeability were obtained for the cast films containing 1 wt.% of s-CNC while good oxygen barrier properties were detected for nano-biocomposites with both 1 wt.% and 5 wt.% of modified and un-modified cellulose nanocrystals, underlining the improvement provided by cellulose on the PLA films. Moreover, the migration level of the studied nano-biocomposites was below the overall migration limits required by the current normative for food packaging materials in both non-polar and polar simulants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Detecting sea-level hazards: Simple regression-based methods for calculating the acceleration of sea level

    Science.gov (United States)

    Doran, Kara S.; Howd, Peter A.; Sallenger,, Asbury H.

    2016-01-04

    This report documents the development of statistical tools used to quantify the hazard presented by the response of sea-level elevation to natural or anthropogenic changes in climate and ocean circulation. A hazard is a physical process (or processes) that, when combined with vulnerability (or susceptibility to the hazard), results in risk. This study presents the development and comparison of new and existing sea-level analysis methods, exploration of the strengths and weaknesses of the methods using synthetic time series, and when appropriate, synthesis of the application of the method to observed sea-level time series. These reports are intended to enhance material presented in peer-reviewed journal articles where it is not always possible to provide the level of detail that might be necessary to fully support or recreate published results.

  10. Deception Detection: The Relationship of Levels of Trust and Perspective Taking in Real-Time Online and Offline Communication Environments.

    Science.gov (United States)

    Friend, Catherine; Fox Hamilton, Nicola

    2016-09-01

    Where humans have been found to detect lies or deception only at the rate of chance in offline face-to-face communication (F2F), computer-mediated communication (CMC) online can elicit higher rates of trust and sharing of personal information than F2F. How do levels of trust and empathetic personality traits like perspective taking (PT) relate to deception detection in real-time CMC compared to F2F? A between groups correlational design (N = 40) demonstrated that, through a paired deceptive conversation task with confederates, levels of participant trust could predict accurate detection online but not offline. Second, participant PT abilities could not predict accurate detection in either conversation medium. Finally, this study found that conversation medium also had no effect on deception detection. This study finds support for the effects of the Truth Bias and online disinhibition in deception, and further implications in law enforcement are discussed.

  11. [Noninvasive detection of hematocrit and the mean corpuscular hemoglobin concentration levels by Vis-NIR spectroscopy].

    Science.gov (United States)

    Zhao, Jing; Lin, Ling; Lu, Xiao-Zuo; Li, Gang

    2014-03-01

    Hematocrit (HCT) and mean hemoglobin concentration(MCHC) play a very important role in preventing cardiovascular disease and anemia. A method was developed on the basis of spectroscopy to detect HCT and MCHC non-invasively and accurately. The anatomical study showed that the blood rheology abnormalities and blood viscosity's changes can cause the changes of tongue, so there is a certain correlation between tongue and blood components. Reflectance spectrums from the tongue tips of 240 volunteers were collected, then the tongue pictures were captured and the biochemical analysis results were recorded at the same time. The 240 samples were separated into two parts: calibration sample and test sample. Spectra were then subjected to a partial least squares regression (PLSR) analysis to develop mathematics models for predicting HCT levels. The correlation between the data and prediction of HCT and MCHC yielded calibration samples value of 0.998 and 0.938. HCT and MCHC levels of test samples predicted by this model from Visible-Near infrared spectra provided a coefficient of determination in prediction of 0.979 and 0.883 with an average relative error of prediction of 1.65% and 1.88%, a root mean square error of prediction of 4.066 and 4.139. From the experiment results we can see that the model which was built before can better predict the HCT and MCHC, and the results also showed that spectrometry method may provide a promising approach to the noninvasive measurement of human HCT and MCHC with a combination of PLSR analysis.

  12. Detecting text in natural scenes with multi-level MSER and SWT

    Science.gov (United States)

    Lu, Tongwei; Liu, Renjun

    2018-04-01

    The detection of the characters in the natural scene is susceptible to factors such as complex background, variable viewing angle and diverse forms of language, which leads to poor detection results. Aiming at these problems, a new text detection method was proposed, which consisted of two main stages, candidate region extraction and text region detection. At first stage, the method used multiple scale transformations of original image and multiple thresholds of maximally stable extremal regions (MSER) to detect the text regions which could detect character regions comprehensively. At second stage, obtained SWT maps by using the stroke width transform (SWT) algorithm to compute the candidate regions, then using cascaded classifiers to propose non-text regions. The proposed method was evaluated on the standard benchmark datasets of ICDAR2011 and the datasets that we made our own data sets. The experiment results showed that the proposed method have greatly improved that compared to other text detection methods.

  13. Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations

    Energy Technology Data Exchange (ETDEWEB)

    Granata, Carmine, E-mail: carmine.granata@cnr.it; Vettoliere, Antonio

    2016-02-19

    The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In

  14. ON NANO Λg-CLOSED SETS

    OpenAIRE

    Rajasekaran, Ilangovan; Nethaji, Ochanan

    2017-01-01

    Abstaract−In this paper, we introduce nano ∧g-closed sets in nano topological spaces. Some properties of nano ∧g-closed sets and nano ∧g-open sets are weaker forms of nano closed sets and nano open sets

  15. Detecting the Subtle Shape Differences in Hemodynamic Responses at the Group Level

    Directory of Open Access Journals (Sweden)

    Gang eChen

    2015-10-01

    Full Text Available The nature of the hemodynamic response (HDR is still not fully understood due to the multifaceted processes involved. Aside from the overall amplitude, the response may vary across cognitive states, tasks, brain regions, and subjects with respect to characteristics such as rise and fall speed, peak duration, undershoot shape, and overall duration. Here we demonstrate that the fixed-shape or adjusted-shape methods may fail to detect some shape subtleties. In contrast, the estimated-shape method (ESM through multiple basis functions can provide the opportunity to identify some subtle shape differences and achieve higher statistical power at both individual and group levels. Previously, some dimension reduction approaches focused on the peak magnitude, or made inferences based on the area under the curve or interaction, which can lead to potential misidentifications. By adopting a generic framework of multivariate modeling (MVM, we showcase a hybrid approach that is validated by simulations and real data. Unlike the few analyses that were limited to main effect, two- or three-way interactions, we extend the approach to an inclusive platform that is more adaptable than the conventional GLM, achieving a practical equipoise among representation, false positive control, statistical power, and modeling flexibility.

  16. Novel Detecting Methods of Shack-Hartmann Wavefront Sensor at Low Light Levels

    International Nuclear Information System (INIS)

    Zhang, A; Rao, C H; Zhang, Y D; Jiang, W H

    2006-01-01

    A study of novel detecting methods of Shack-Hartmann wavefront sensor at low light levels has been made. Three methods of images processing before slope estimating are presented: Linear Enhancing (LE), Exponential Enhancing (EE) and Fourier Spectrum Filtering (FSF). The idea of LE method is to time the image intensity with a special coefficient before slope estimation. The image points are powered by a selected exponent in EE method. The FSF method is based on the spectrum difference between signal and noise. Most of noise spectrum is filtered and the noise is restrained. The simulated and experimental results show that the LE method does not work effectively, and the other two methods can improve the slope estimation when the Signal-to-noise ratio is higher than 3.0. When the Signal-to-noise ratio is less than 3.0, especially when it is less than 1.0, the FSF is the only method that can overcome the readout noise of the CCD detector

  17. Interventions to increase tuberculosis case detection at primary healthcare or community-level services.

    Science.gov (United States)

    Mhimbira, Francis A; Cuevas, Luis E; Dacombe, Russell; Mkopi, Abdallah; Sinclair, David

    2017-11-28

    Pulmonary tuberculosis is usually diagnosed when symptomatic individuals seek care at healthcare facilities, and healthcare workers have a minimal role in promoting the health-seeking behaviour. However, some policy specialists believe the healthcare system could be more active in tuberculosis diagnosis to increase tuberculosis case detection. To evaluate the effectiveness of different strategies to increase tuberculosis case detection through improving access (geographical, financial, educational) to tuberculosis diagnosis at primary healthcare or community-level services. We searched the following databases for relevant studies up to 19 December 2016: the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library, Issue 12, 2016; MEDLINE; Embase; Science Citation Index Expanded, Social Sciences Citation Index; BIOSIS Previews; and Scopus. We also searched the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), ClinicalTrials.gov, and the metaRegister of Controlled Trials (mRCT) for ongoing trials. Randomized and non-randomized controlled studies comparing any intervention that aims to improve access to a tuberculosis diagnosis, with no intervention or an alternative intervention. Two review authors independently assessed trials for eligibility and risk of bias, and extracted data. We compared interventions using risk ratios (RR) and 95% confidence intervals (CI). We assessed the certainty of the evidence using the GRADE approach. We included nine cluster-randomized trials, one individual randomized trial, and seven non-randomized controlled studies. Nine studies were conducted in sub-Saharan Africa (Ethiopia, Nigeria, South Africa, Zambia, and Zimbabwe), six in Asia (Bangladesh, Cambodia, India, Nepal, and Pakistan), and two in South America (Brazil and Colombia); which are all high tuberculosis prevalence areas.Tuberculosis outreach

  18. Mechanics over micro and nano scales

    CERN Document Server

    Chakraborty, Suman

    2011-01-01

    Discusses the fundaments of mechanics over micro and nano scales in a level accessible to multi-disciplinary researchers, with a balance of mathematical details and physical principles Covers life sciences and chemistry for use in emerging applications related to mechanics over small scales Demonstrates the explicit interconnection between various scale issues and the mechanics of miniaturized systems

  19. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  20. Novel plasmon nano-lasers

    NARCIS (Netherlands)

    Hill, M.T.; Marell, M.J.H.

    2010-01-01

    We will discuss some of the latest developments in metallic and plasmonic nano-lasers. Furthermore we will present our latest results on further miniaturization of electrically pumped plasmonic nano-lasers and also DFB Plasmon mode devices.

  1. Nano lasers in photonic VLSI

    NARCIS (Netherlands)

    Hill, M.T.; Oei, Y.S.; Smit, M.K.

    2007-01-01

    We examine the use of micro and nano lasers to form digital photonic VLSI building blocks. Problems such as isolation and cascading of building blocks are addressed, and the potential of future nano lasers explored.

  2. Applications of Nano-optics.

    Science.gov (United States)

    Zhou, Changhe; Fainman, Yeshaiahu; Sheng, Yunlong

    2011-11-01

    As nanoscale fabrication techniques advance, nano-optics continues to offer enabling solutions to numerous practical applications for information optics. This Applied Optics feature issue focuses on the Application of Nano-optics. © 2011 Optical Society of America

  3. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  4. Screening-Level Risk Assessment for Styrene-Acrylonitrile (SAN) Trimer Detected in Soil and Groundwater

    Science.gov (United States)

    Kirman, C. R.; Gargas, M. L.; Collins, J. J.; Rowlands, J. C.

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment. PMID:23030654

  5. Light hydrogen isotopes in the single - walled carbon nano tube

    International Nuclear Information System (INIS)

    Khugaev, A.V.; Sultanov, R.A.; Guster, D.

    2007-01-01

    Full text: Progress of our understanding of the molecular hydrogen behavior in the nano tube interior open an intriguing possibility for the applications of these knowledge's to the solution of the hydrogen storage problem and light isotopes gas selectivity. That can strongly change the situation at the energy production in the world and completely change our civil life. These investigations underline the influence of the quantum effects on the properties of molecular hydrogen in the nano tube interior and it leads to the pure quantum-mechanical reformulation of the problem for the hydrogen behavior inside carbon nano tube as a problem of molecular quantum system behavior in the external field induced by the regular nano tube surface. In the present paper the molecular hydrogen behavior in the carbon nano tube was considered in the simple quantum mechanical manner. The main attention was paid to the investigation of the quantum sieving selectivity in the dependence of nano tube composition, radius and symmetry properties. For the interaction potential between hydrogen and nano tube surface was taken some phenomenological LJ(12,6) - (Lennard - Jones) potential and the external field induced by the nano tube in its interior is considered as a simple sum over the all nano tube carbon atoms. Influence of the structure of rotation (vibration) spectrum of the energy levels of diatomic molecules, such as H 2 , HD and D 2 on the final results and finite size of the nano tube along the axis of symmetry, its boundary effects is discussed in details. Thermal oscillations of nano tube surface were considered separately in the dependence of the temperature gradient along of the axis of symmetry

  6. Factors that affect the level of detectability of objects of low contrast in diagnostic radiology

    International Nuclear Information System (INIS)

    Zuniga Vargas, F.

    2001-01-01

    The diagnosed imageneologia is every day more used by the medical staff to obtain diagnoses of diverse illnesses. In this branch, the conventional equipments of tubes of X Rays, equipments with fluoroscopic, angiographos, on-line tomographos, ultrasound equipment of magnetic resonance are used. All of them finally produce an image which will be used for the radiologist to evaluate the structures and pathology with in order to give to emit a good and precise diagnosis. From the total of radiation that the man receives annually, the medical irradiations are the main contributors after natural radiations. The applications of the ionized radiations in the medical area have as an objective to provide diagnosis or treatment to the ill patient. To obtain an image of good quality is fundamental, so that the doctor carries out a good diagnosis. The images depend on many physical factors, such as the type of the used equipment, ability of the operator that takes the badge, maintenance of the equipment, badge quality, etc. The images in which the diagnosis is based on are a gathering of gray different tones that draw the anatomy of interest. Therefore, an injury should have different physical characteristics (grosor, density) to stand out from its environment. This notable capacity is known as radiological contrast. Studies which allow the quantification of the radiation levels' effect, the optic badge densities and the observers' physical particularities for the detection of low-contrast objects have not been done in Costa Rica The physician is the one responsible of implementing the quality programs that lead to the gathering of better images. From now on, the asserted diagnosis falls right into the radiologist's experience, who receives the theoretical training and practices of the different diagnosed modalities during his or her residence's years. Besides, the radiologist can collaborate with the improvement of the accuracy of the diagnosis, if he or she recommends the

  7. Determination of cobalt ions at nano-level based on newly synthesized pendant armed macrocycle by polymeric membrane and coated graphite electrode.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna; Bhattacharjee, G

    2009-12-15

    Poly(vinylchloride) (PVC) based membranes of macrocycles 2,3,4:9,10,11-dipyridine-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L(1)) and 2,3,4:9,10,11-dipyridine-1,5,8,12-tetramethylacrylate-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L(2)) with NaTPB and KTpClPB as anion excluders and dibutylphthalate (DBP), benzyl acetate (BA), dioctylphthalate (DOP), o-nitrophenyloctyl ether (o-NPOE) and tri-n-butylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as Co(2+) selective electrodes. The best performance was observed with the membranes having the composition L(2):PVC:TBP:NaTPB in the ratio of 6:39:53:2 (w/w; mg). The performance of the membrane based on L(2) was compared with polymeric membrane electrode (PME) and coated graphite electrode (CGE). The PME exhibits detection limit of 4.7x10(-8)M with a Nernstian slope of 29.7 mV decade(-1) of activity between pH 2.5 and 8.5 whereas CGE exhibits the detection limit of 6.8x10(-9)M with a Nernstian slope of 29.5 mV decade(-1) of activity between pH 2.0 and 9.0. The response time for PME and CGE was found to be 11 and 8s, respectively. The CGE has been found to work satisfactorily in partially non-aqueous media up to 35% (v/v) content of methanol, ethanol and 25% (v/v) content of acetonitrile and could be used for a period of 4 months. The CGE was successfully applied for the determination of Co(2+) in real and pharmaceutical samples and as an indicator electrode in potentiometric titration of cobalt ion.

  8. Amperometric detection of hydrogen peroxide at nano-nickel oxide/thionine and celestine blue nanocomposite-modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Noorbakhsh, Abdollah; Salimi, Abdollah

    2009-01-01

    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with nickel oxide (NiOx) nanoparticles and water-soluble dyes. By immersing the GC/NiOx modified electrode into thionine (TH) or celestine blue (CB) solutions for a short period of time (5-120 s), a thin film of the proposed molecules was immobilized onto the electrode surface. The modified electrodes showed stable and a well-defined redox couples at a wide pH range (2-12), with surface confined characteristics. In comparison to usual methods for the immobilization of dye molecules, such as electropolymerization or adsorption on the surface of preanodized electrodes, the electrochemical reversibility and stability of these modified electrodes have been improved. The surface coverage and heterogeneous electron transfer rate constants (k s ) of thionin and celestin blue immobilized on a NiOx-GC electrode were approximately 3.5 x 10 -10 mol cm -2 , 6.12 s -1 , 5.9 x 10 -10 mol cm -2 and 6.58 s -1 , respectively. The results clearly show the high loading ability of the NiOx nanoparticles and great facilitation of the electron transfer between the immobilized TH, CB and NiOx nanoparticles. The modified electrodes show excellent electrocatalytic activity toward hydrogen peroxide reduction at a reduced overpotential. The catalytic rate constants for hydrogen peroxide reduction at GC/NiOx/CB and GC/NiOx/TH were 7.96 (±0.2) x 10 3 M -1 s -1 and 5.5 (±0.2) x 10 3 M -1 s -1 , respectively. The detection limit, sensitivity and linear concentration range for hydrogen peroxide detection were 1.67 μM, 4.14 nA μM -1 nA μM -1 and 5 μM to 20 mM, and 0.36 μM, 7.62 nA μM -1 , and 1 μM to 10 mM for the GC/NiOx/TH and GC/NiOx/CB modified electrodes, respectively. Compared to other modified electrodes, these modified electrodes have many advantages, such as remarkable catalytic activity, good reproducibility, simple preparation procedures and long-term stabilities of signal responses during

  9. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  10. Nano-electromembrane extraction

    DEFF Research Database (Denmark)

    Payán, María D Ramos; Li, Bin; Petersen, Nickolaj J.

    2013-01-01

    as extraction selectivity. Compared with conventional EME, the acceptor phase volume in nano-EME was down-scaled by a factor of more than 1000. This resulted in a very high enrichment capacity. With loperamide as an example, an enrichment factor exceeding 500 was obtained in only 5 min of extraction...... electrophoresis (CE). In that way the sample preparation performed by nano-EME was coupled directly with a CE separation. Separation performance of 42,000-193,000 theoretical plates could easily be obtained by this direct sample preparation and injection technique that both provided enrichment as well...

  11. Antitumor Effect of Selenium and Modified Pectin Nano Particles and Gamma Radiation on Ehrilch Solid Tumor in Female Mice

    International Nuclear Information System (INIS)

    Mansour, S. Z.; Anis, L.M.; EI- Batal, A.I.

    2010-01-01

    Selenium nano particle (Nano- Se) is a novel Se species with novel biological activities with low toxicity. The aim of the present work was to evaluate the antitumor activity of a novel Nano- Se compound with or without gamma irradiation of female mice. Selenium size- controlled Nano-Se was prepared by a simple method by adding modified pectin to the selenious acid and ascorbic acid. The antitumor activity of Selenium and Modified Pectin Nano Particles (Se-Mp- NPs) were evaluated against Ehrilch ascites carcinoma (In vitro) and Ehrilch solid tumor model (In vivo). The antioxidant states of the novel compound were assessed measuring parameters in blood and tumor tissue of female mice. Malonaldehydoyl (MDA) end product of lipid peroxidation was evaluated in plasma and tumor tissue. Glutathione -S- transferase (GST) and cytochrome P450 (Cyto P450) were determined in tumor tissue homogenate. Tumor necrosis factor alpha (TNF- a) concentration and interleukin 10 (IL- 10) concentrations was evaluated in plasma of female mice. The effect of tumor inoculation and different treatments on liver enzymes (ALT and AST) and kidney Function (urea and creatinine) were detected in the plasma of animals. Apoptosis was shown and estimated in tumor tissue of animals histopathological of tumor in different groups of mice were examined. Ehrilch solid tumor induced a significant increase in MDA content, GSH-Px and GST activities level and in the amount of metabolites of CYP 450. Moreover, a significant decrease was observed in GSH content, SOD activity level in the tumor tissue, INF- a concentration, IL- 10 concentration in the plasma. Also, a significant alteration in kidney and liver functions was occurred as compared to control group. The results showed a significant antitumor activity of selenium and Modified Pectin Nano Particles (Se-Mp- NPs) at the concentration 2.25 μg / ml was 70%

  12. Detection of trace levels of Pb2+ in tap water at boron-doped diamond electrodes with anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Dragoe, Diana; Spataru, Nicolae; Kawasaki, Ryuji; Manivannan, Ayyakkannu; Spataru, Tanta; Tryk, Donald A.; Fujishima, Akira

    2006-01-01

    Boron-doped diamond (BDD) electrodes were used to investigate the possibility of detecting trace levels of lead by linear-sweep anodic stripping voltammetry. The low limit of detection (2 nM) is an advantage compared to other electrode materials, and it was found that at low pH values, copper concentrations that are usually present in drinking water do not affect to a large extent the detection of lead. These findings recommend anodic stripping voltammetry at the BDD electrodes as a suitable mercury-free method for the determination of trace levels of lead in drinking water. The results obtained for the lead detection in tap water real samples are in excellent agreement with those found by inductively coupled plasma-mass spectrometry (ICP-MS), demonstrating the practical analytical utility of the method

  13. Detecting anthropogenic footprints in sea level rise: the role of complex colored noise

    Science.gov (United States)

    Dangendorf, Sönke; Marcos, Marta; Müller, Alfred; Zorita, Eduardo; Jensen, Jürgen

    2015-04-01

    While there is scientific consensus that global mean sea level (MSL) is rising since the late 19th century, it remains unclear how much of this rise is due to natural variability or anthropogenic forcing. Uncovering the anthropogenic contribution requires profound knowledge about the persistence of natural MSL variations. This is challenging, since observational time series represent the superposition of various processes with different spectral properties. Here we statistically estimate the upper bounds of naturally forced centennial MSL trends on the basis of two separate components: a slowly varying volumetric (mass and density changes) and a more rapidly changing atmospheric component. Resting on a combination of spectral analyses of tide gauge records, ocean reanalysis data and numerical Monte-Carlo experiments, we find that in records where transient atmospheric processes dominate, the persistence of natural volumetric changes is underestimated. If each component is assessed separately, natural centennial trends are locally up to ~0.5 mm/yr larger than in case of an integrated assessment. This implies that external trends in MSL rise related to anthropogenic forcing might be generally overestimated. By applying our approach to the outputs of a centennial ocean reanalysis (SODA), we estimate maximum natural trends in the order of 1 mm/yr for the global average. This value is larger than previous estimates, but consistent with recent paleo evidence from periods in which the anthropogenic contribution was absent. Comparing our estimate to the observed 20th century MSL rise of 1.7 mm/yr suggests a minimum external contribution of at least 0.7 mm/yr. We conclude that an accurate detection of anthropogenic footprints in MSL rise requires a more careful assessment of the persistence of intrinsic natural variability.

  14. Advanced Detection Technology of Trace-level Borate for SG Leakage Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seban; Kang, Dukwon; Kim, Seungil; Kim, Hyunki; Heo, Jun; Sung, Jinhyun [Radiation Eng. Center, Shihung (Korea, Republic of); Lee, Dongbum [Academic Support Dept., Seoul (Korea, Republic of)

    2013-05-15

    Many studies have been reported for monitoring technology of steam generator, however, all of these methods have their own limitations. The leakage monitoring technology of steam generator of PWR has also got a limit due to the adoption of specific radionuclides (N-16, Ar-41, H-3, Xe, etc.) generated by nuclear fission, which are available only when reactor output is 20% or more. Most of domestic NPPs apply the N-16 technique for monitoring tube leakage but it has some problem that it is difficult to calculate the leakage rate because neutron flux are not completely formed during low power operation. For example, tube leakage of steam generator occurred in the Uljin nuclear power plant in 2002 during coast down operation for periodic plant maintenance. This plant could not prevent a rupture accident in advance because N-16 method is not possible the leak monitoring less than 20% reactor power. The development of excellent alternative monitoring technology that can monitor the real-time leakage is required under a variety of operating conditions like start-up and abnormal conditions of NPPs. This study was performed to lay a foundation in monitoring the leakage of steam generator coping with the lower output and low power operational condition using trace level of boron which is non-radioactive nuclide to inject control neutron injection. In this study, non-radioactive nuclide boron ion, which existed in the secondary system water, as leakage monitoring indicator was investigated for the separation of complex cation and anion phase. Borate was detected by using borate concentrator column coupled with the ion-exclusion column analytical column, revealing the problem of overlapped peak between fluoride and boron ions. Meanwhile, ion-exchange column could confirm the possibility as a leakage monitoring indicator of steam generator, despite the peak of glycolic acid salts was slightly overlapped. It will be needed for further research regarding the selectivity of the

  15. Detection of Acute Tubular Necrosis Using Blood Oxygenation Level-Dependent (BOLD MRI

    Directory of Open Access Journals (Sweden)

    Frederic Bauer

    2017-12-01

    Full Text Available Background/Aims: To date, there is no imaging technique to assess tubular function in vivo. Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI measures tissue oxygenation based on the transverse relaxation rate (R2*. The present study investigates whether BOLD MRI can assess tubular function using a tubule-specific pharmacological maneuver. Methods: Cross sectional study with 28 participants including 9 subjects with ATN-induced acute kidney injury (AKI, 9 healthy controls, and 10 subjects with nephron sparing tumor resection (NSS with clamping of the renal artery serving as a model of ischemia/reperfusion (I/R-induced subclinical ATN (median clamping time 15 min, no significant decrease of eGFR, p=0.14. BOLD MRI was performed before and 5, 7, and 10 min after intravenous administration of 40 mg furosemide. Results: Urinary neutrophil gelatinase-associated lipocalin was significantly higher in ATN-induced AKI and NSS subjects than in healthy controls (p=0.03 and p=0.01, respectively. Before administration of furosemide, absolute medullary R2*, cortical R2*, and medullary/cortical R2* ratio did not significantly differ between ATN-induced AKI vs. healthy controls and between NSS-I/R vs. contralateral healthy kidneys (p>0.05 each. Furosemide led to a significant decrease in the medullary and cortical R2* of healthy subjects and NSS contralateral kidneys (p<0.05 each, whereas there was no significant change of R2* in ATN-induced AKI and the NSS-I/R kidneys (p>0.05 each. Conclusion: BOLD-MRI is able to detect even mild tubular injury but necessitates a tubule-specific pharmacological maneuver, e.g. blocking the Na+-K+-2Cl- transporter by furosemide.

  16. Advanced Detection Technology of Trace-level Borate for SG Leakage Monitoring

    International Nuclear Information System (INIS)

    Lee, Seban; Kang, Dukwon; Kim, Seungil; Kim, Hyunki; Heo, Jun; Sung, Jinhyun; Lee, Dongbum

    2013-01-01

    Many studies have been reported for monitoring technology of steam generator, however, all of these methods have their own limitations. The leakage monitoring technology of steam generator of PWR has also got a limit due to the adoption of specific radionuclides (N-16, Ar-41, H-3, Xe, etc.) generated by nuclear fission, which are available only when reactor output is 20% or more. Most of domestic NPPs apply the N-16 technique for monitoring tube leakage but it has some problem that it is difficult to calculate the leakage rate because neutron flux are not completely formed during low power operation. For example, tube leakage of steam generator occurred in the Uljin nuclear power plant in 2002 during coast down operation for periodic plant maintenance. This plant could not prevent a rupture accident in advance because N-16 method is not possible the leak monitoring less than 20% reactor power. The development of excellent alternative monitoring technology that can monitor the real-time leakage is required under a variety of operating conditions like start-up and abnormal conditions of NPPs. This study was performed to lay a foundation in monitoring the leakage of steam generator coping with the lower output and low power operational condition using trace level of boron which is non-radioactive nuclide to inject control neutron injection. In this study, non-radioactive nuclide boron ion, which existed in the secondary system water, as leakage monitoring indicator was investigated for the separation of complex cation and anion phase. Borate was detected by using borate concentrator column coupled with the ion-exclusion column analytical column, revealing the problem of overlapped peak between fluoride and boron ions. Meanwhile, ion-exchange column could confirm the possibility as a leakage monitoring indicator of steam generator, despite the peak of glycolic acid salts was slightly overlapped. It will be needed for further research regarding the selectivity of the

  17. Statistical improvement in detection level of gravitational microlensing events from their light curves

    Science.gov (United States)

    Ibrahim, Ichsan; Malasan, Hakim L.; Kunjaya, Chatief; Timur Jaelani, Anton; Puannandra Putri, Gerhana; Djamal, Mitra

    2018-04-01

    In astronomy, the brightness of a source is typically expressed in terms of magnitude. Conventionally, the magnitude is defined by the logarithm of received flux. This relationship is known as the Pogson formula. For received flux with a small signal to noise ratio (S/N), however, the formula gives a large magnitude error. We investigate whether the use of Inverse Hyperbolic Sine function (hereafter referred to as the Asinh magnitude) in the modified formulae could allow for an alternative calculation of magnitudes for small S/N flux, and whether the new approach is better for representing the brightness of that region. We study the possibility of increasing the detection level of gravitational microlensing using 40 selected microlensing light curves from the 2013 and 2014 seasons and by using the Asinh magnitude. Photometric data of the selected events are obtained from the Optical Gravitational Lensing Experiment (OGLE). We found that utilization of the Asinh magnitude makes the events brighter compared to using the logarithmic magnitude, with an average of about 3.42 × 10‑2 magnitude and an average in the difference of error between the logarithmic and the Asinh magnitude of about 2.21 × 10‑2 magnitude. The microlensing events OB140847 and OB140885 are found to have the largest difference values among the selected events. Using a Gaussian fit to find the peak for OB140847 and OB140885, we conclude statistically that the Asinh magnitude gives better mean squared values of the regression and narrower residual histograms than the Pogson magnitude. Based on these results, we also attempt to propose a limit in magnitude value for which use of the Asinh magnitude is optimal with small S/N data.

  18. The Graphene/l-Cysteine/Gold-Modified Electrode for the Differential Pulse Stripping Voltammetry Detection of Trace Levels of Cadmium

    OpenAIRE

    Yu Song; Chao Bian; Jianhua Tong; Yang Li; Shanghong Xia

    2016-01-01

    Cadmium(II) is a common water pollutant with high toxicity. It is of significant importance for detecting aqueous contaminants accurately, as these contaminants are harmful to human health and environment. This paper describes the fabrication, characterization, and application of an environment-friendly graphene (Gr)/l-cysteine/gold electrode to detect trace levels of cadmium (Cd) by differential pulse stripping voltammetry (DPSV). The influence of hydrogen overflow was decreased and the curr...

  19. A comparison of decision-level sensor-fusion methods for anti-personnel landmine detection.

    NARCIS (Netherlands)

    Schutte, K.; Schavemaker, J.G.M.; Cremer, F.; Breejen, E. den

    2001-01-01

    We present the sensor-fusion results obtained from measurements within the European research project ground explosive ordinance detection (GEODE) system that strives for the realisation of a vehicle-mounted, multi-sensor, anti-personnel landmine-detection system for humanitarian de-mining. The

  20. Intracavity OptoGalvanic Spectroscopy Not Suitable for Ambient Level Radiocarbon Detection

    NARCIS (Netherlands)

    Paul, Dipayan; Meijer, Harro

    2015-01-01

    IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research.

  1. Error detection, handling and recovery at the High Level Trigger of the ATLAS experiment at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223972; The ATLAS collaboration

    2016-01-01

    The complexity of the ATLAS High Level Trigger (HLT) requires a robust system for error detection and handling during online data-taking; it also requires an offline system for the recovery of events where no trigger decision could be made online. The error detection and handling ensure smooth operation of the trigger system and provide debugging information necessary for offline analysis and diagnosis. In this presentation, we give an overview of the error detection, handling and recovery of problematic events at the HLT of ATLAS.

  2. The biochemical effects of nano tamoxifen and some bioactive components in experimental breast cancer.

    Science.gov (United States)

    Ezzat, Afaf; Abdelhamid, Abdou Osman; El Awady, Mostafa K; Abd El Azeem, Amal S; Mohammed, Dina Mostafa

    2017-11-01

    The effect of nano tamoxifen and some bioactive components such as yeast, isoflavone, and silymarin on the level of resistance and prevention of breast cancer progression in experimental animals is the target of this study. Thirty female Sprague-Dawley rats received a single medication dosage of 7,12-dimethylbenz[a]anthracene (DMBA) intragastrically. After fourteen days of DMBA admission, the procedure protocol started out. Finally, all the experimental results evaluated, tabulated and statistically analyzed. The results demonstrated a highly significant elevation in the 8-OHdG level in group 1 (nano yeast) and 3 (nano silymarin) while the results demonstrated a highly significant reduction in group 2 (nano tamoxifen). The apoptosis results demonstrated a significant elevation in group 3 (nano silymarin) where appeared significant reduction in group 4 (nano isoflavone). ErbB-2 results demonstrated a significant elevation in group 2 (nano tamoxifen) and a significant reduction in each of group 3 (nano silymarin) and 4 (nano isoflavone). The lipid peroxide level demonstrated an extremely significant reduction in group 4 (nano isoflavone). And a significant reduction of total antioxidant was observed in group 3 (nano silymarin) in comparison to injected animals control. This may be considered a new vision and strategy to resist breast cancer disease or prevent progression. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    Science.gov (United States)

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. NanoLaunch

    Science.gov (United States)

    Jones, Jonathan; Harris, Lawanna

    2015-01-01

    NASA's NanoLaunch effort will provide the framework to mature both Earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low-Earth orbit for CubeSat-class payloads. The project will also serve as an early career personnel training opportunity with mentors to gain hands-on project experience.

  5. Nano-level monitoring of Yb(III) by fabrication of coated graphite electrode based on newly synthesized hexaaza macrocyclic ligand

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K., E-mail: akscyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India); Singh, Prerna [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2009-06-08

    The two macrocyclic ligands 2,12-(2-methoxyaniline){sub 2}-4,14-Me{sub 2}-[20]-1,4,11,14-tetraene-1,5,8,11,15,18-N{sub 6} (L{sub 1}) and 2,12-(2-methoxyaniline){sub 2}-4,14-Me{sub 2}-8,18-dimethylacrylate-[20] -1,4,11,14-tetraene-1,5,8,11,15,18-N{sub 6} (L{sub 2}) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Yb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L{sub 2}:PVC:BA:NaTPB in the ratio of 5: 40: 52: 3 (w/w; mg). The performance of the membrane based on L{sub 2} was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Yb{sup 3+} ions with limits of detection of 4.3 x 10{sup -8} M for PME and 5.8 x 10{sup -9} M for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-8.0 for PME and 2.5-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Yb{sup 3+} ions with EDTA and in determination of fluoride ions in mouthwash samples. It can be used for determination of sulfite in red and white wine samples and also in determination of Yb{sup 3+} in various binary mixtures with quantitative results.

  6. Nano-level monitoring of Yb(III) by fabrication of coated graphite electrode based on newly synthesized hexaaza macrocyclic ligand

    International Nuclear Information System (INIS)

    Singh, Ashok K.; Singh, Prerna

    2009-01-01

    The two macrocyclic ligands 2,12-(2-methoxyaniline) 2 -4,14-Me 2 -[20]-1,4,11,14-tetraene-1,5,8,11,15,18-N 6 (L 1 ) and 2,12-(2-methoxyaniline) 2 -4,14-Me 2 -8,18-dimethylacrylate-[20] -1,4,11,14-tetraene-1,5,8,11,15,18-N 6 (L 2 ) have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Yb(III) ions. Effects of various plasticizers and anion excluders were studied in detail and improved performance was observed. The best performance was obtained for the membrane sensor having a composition of L 2 :PVC:BA:NaTPB in the ratio of 5: 40: 52: 3 (w/w; mg). The performance of the membrane based on L 2 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Yb 3+ ions with limits of detection of 4.3 x 10 -8 M for PME and 5.8 x 10 -9 M for CGE. The response time for PME and CGE was found to be 10 s and 8 s, respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.0-8.0 for PME and 2.5-8.5 for CGE. The CGE has found to work satisfactorily in partially non-aqueous media upto 30% (v/v) content of methanol, ethanol and 20% (v/v) content of acetonitrile and could be used for a period of 5 months. The CGE was used as indicator electrode in the potentiometric titration of Yb 3+ ions with EDTA and in determination of fluoride ions in mouthwash samples. It can be used for determination of sulfite in red and white wine samples and also in determination of Yb 3+ in various binary mixtures with quantitative results.

  7. Fabrication of novel coated graphite electrodes for the selective nano-level determination of Cd{sup 2+} ions in biological and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jitendra [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India); Singh, Ashok Kumar, E-mail: akscyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India); Jain, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India)

    2011-10-30

    Novel cadmium selective coated graphite electrodes were prepared using three different ionophores N{sup 1}, N{sup 2}-dicyanoethyl-N{sup 1}, N{sup 2}-bis(pyridin-2-ylmethyl)benzene-1, 2-diamine [L{sub 1}], N{sup 1}, N{sup 2}-dicyanoethyl-N{sup 1}, N{sup 2}-bis(thiophen-2-ylmethyl) benzene-1, 2-diamine [L{sub 2}] and N{sup 1}, N{sup 2}-dicyanoethyl-N{sup 1}, N{sup 2}-bis(furan-2-ylmethyl)benzene-1, 2-diamine [L{sub 3}], and their potentiometric characteristics were determined. Membranes having different compositions of poly(vinylchloride) (PVC), the plasticizer o-nitrophenyloctylether (o-NPOE), sodium tetraphenylborate (NaTPB) as an anionic additive and ionophores were coated onto the graphite surface. The potential response measurements showed that the best performance was exhibited by the electrodes with membranes having the composition L{sub 1}: o-NPOE:NaTPB:PVC as 4:51:2.5:42.5 (wt.%), L{sub 2}: o-NPOE:NaTPB:PVC as 3:52.5:1.5:43 (wt.%) and L{sub 3}: o-NPOE:NaTPB:PVC as 7:49:3.5:40.5 (wt.%). These electrodes had the widest working concentration range, Nernstian slope and fast response times of 12 s, 7 s and 17 s for L{sub 1}, L{sub 2} and L{sub 3}, respectively. The selectivity studies showed that these electrodes have higher selectivity towards Cd{sup 2+} over a large number of cations and could tolerate up to 20 vol.% non-aqueous impurities. Furthermore, the electrodes generated constant potentials in the pH range 2.0-8.0, with a shelf life of approximately four to six weeks. The high selectivity of these electrodes permits their use in the detection of the Cd{sup 2+} content in some medicinal plants, soil and industrial wastewater samples. The electrodes could also be used as an indicator electrode in the potentiometric titration of Cd{sup 2+} with EDTA.

  8. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  9. Precise Automatic Image Coregistration Tools to Enable Pixel-Level Change Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Automated detection of land cover changes between multitemporal images (i.e., images captured at different times) has long been a goal of the remote sensing...

  10. Detecting Phonemes and Letters in Text: Interactions Between Different Types and Levels of Processes

    National Research Council Canada - National Science Library

    Schnelder, Vivian

    1998-01-01

    .... In addition, visual word unitization processes were implicated. Experiments 3 and 4 provided support for the hypothesis that the Gestalt goodness of pattern affected detection errors when subjects searched for letters...

  11. Development of a Nanobody-Based Lateral Flow Immunoassay for Detection of Human Norovirus.

    Science.gov (United States)

    Doerflinger, Sylvie Y; Tabatabai, Julia; Schnitzler, Paul; Farah, Carlo; Rameil, Steffen; Sander, Peter; Koromyslova, Anna; Hansman, Grant S

    2016-01-01

    Human noroviruses are the dominant cause of outbreaks of acute gastroenteritis. These viruses are usually detected by molecular methods, including reverse transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Human noroviruses are genetically and antigenically diverse, with two main genogroups that are further subdivided into over 40 different genotypes. During the past decade, genogroup 2 genotype 4 (GII.4) has dominated in most countries, but recently, viruses belonging to GII.17 have increased in prevalence in a number of countries. A number of commercially available ELISAs and lateral flow immunoassays were found to have lower sensitivities to the GII.17 viruses, indicating that the antibodies used in these methods may not have a high level of cross-reactivity. In this study, we developed a rapid Nanobody-based lateral flow immunoassay (Nano-immunochromatography [Nano-IC]) for the detection of human norovirus in clinical specimens. The Nano-IC assay detected virions from two GII.4 norovirus clusters, which included the current dominant strain and a novel variant strain. The Nano-IC method had a sensitivity of 80% and specificity of 86% for outbreak specimens. Norovirus virus-like particles (VLPs) representing four genotypes (GII.4, GII.10, GII.12, and GII.17) could be detected by this method, demonstrating the potential in clinical screening. However, further modifications to the Nano-IC method are needed in order to improve this sensitivity, which may be achieved by the addition of other broadly reactive Nanobodies to the system. IMPORTANCE We previously identified a Nanobody (termed Nano-85) that bound to a highly conserved region on the norovirus capsid. In this study, the Nanobody was biotinylated and gold conjugated for a lateral flow immunoassay (termed Nano-IC). We showed that the Nano-IC assay was capable of detecting at least four antigenically distinct GII genotypes, including the newly emerging GII.17. In the clinical setting, the

  12. An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS

    Science.gov (United States)

    Zhang, Xin; Cui, Yiming; Wang, Yan; Sun, Mingjian; Hu, Hengshan

    2018-01-01

    In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression.

  13. Spotlight on nano-theranostics in South Korea: applications in diagnostics and treatment of diseases

    Directory of Open Access Journals (Sweden)

    Lee S

    2015-08-01

    Full Text Available Sangwha Lee,1,* Jongsung Kim,1,* Chung Wung Bark,2 Bonghee Lee,3 Heongkyu Ju,4 Se Chan Kang,5 TaeYoung Kim,6 Moon Il Kim,6 Young Tag Ko,3 Jeong-Seok Nam,3 Hyon Hee Yoon,1 Kyu-Sik Yun,1,6 Young Soo Yoon,1 Seong Soo A An,1,6 John Hulme6 1BioNano Sensor Research Center, 2Department of Electrical Engineering, Gachon University, Seongnam-si, 3Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 4Department of Nano-Physics, 5Department of Life Science, Gachon University, 6Department of BioNano Technology, Gachon BioNano Research Institute, Seongnam-si, South Korea *These authors contributed equally to this work Abstract: From the synergistic integration and the multidisciplinary strengths of the BioNano Sensor Research Center, Gachon Bionano Research Institute, and Lee GilYa Cancer and Diabetes Institute, researchers, students, and faculties at Gachon University in collaboration with other institutions in Korea, Australia, France, America, and Japan have come together to produce a special issue on the diverse applications of nano-theranostics in nanomedicine. This special issue will showcase new research conducted by various scientific groups in Gyonggi-do and Songdo/Incheon, South Korea. The objectives of this special issue are as follows: 1 to bring together and demonstrate some of the latest research results in the field, 2 to introduce new multifunctional nanomaterials and their applications in imaging and detection methods, and 3 to stimulate collaborative interdisciplinary research at both national and international levels in nanomedicine. Keywords: cancer, imaging and therapeutics, antibacterial, disease, neurodegenerative

  14. Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo

    Science.gov (United States)

    Zhang, Wanglinhan; Zhang, Linlin; Gao, Huiling; Yang, Wenyan; Wang, Shuai; Xing, Lili; Xue, Xinyu

    2018-06-01

    Implantable bioelectronics for analyzing physiological biomarkers has recently been recognized as a promising technique in medical treatment or diagnostics. In this study, we developed a self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Based on the piezo-enzymatic-reaction coupling effect of GOx@ZnO nanowire, the device under an applied deformation can actively output piezoelectric signal containing the glucose-detecting information. No external electricity power source or battery is needed for this device, and the outputting piezoelectric voltage acts as both the biosensing signal and electricity power. A practical application of the skin-like glucometer implanted in mouse body for detecting blood glucose level has been simply demonstrated. These results provide a new technique path for diabetes prophylaxis and treatment.

  15. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  16. Optimal dose levels in screening chest CT for unimpaired detection and volumetry of lung nodules, with and without computer assisted detection at minimal patient radiation.

    Directory of Open Access Journals (Sweden)

    Andreas Christe

    Full Text Available OBJECTIVES: The aim of this phantom study was to minimize the radiation dose by finding the best combination of low tube current and low voltage that would result in accurate volume measurements when compared to standard CT imaging without significantly decreasing the sensitivity of detecting lung nodules both with and without the assistance of CAD. METHODS: An anthropomorphic chest phantom containing artificial solid and ground glass nodules (GGNs, 5-12 mm was examined with a 64-row multi-detector CT scanner with three tube currents of 100, 50 and 25 mAs in combination with three tube voltages of 120, 100 and 80 kVp. This resulted in eight different protocols that were then compared to standard CT sensitivity (100 mAs/120 kVp. For each protocol, at least 127 different nodules were scanned in 21-25 phantoms. The nodules were analyzed in two separate sessions by three independent, blinded radiologists and computer-aided detection (CAD software. RESULTS: The mean sensitivity of the radiologists for identifying solid lung nodules on a standard CT was 89.7% ± 4.9%. The sensitivity was not significantly impaired when the tube and current voltage were lowered at the same time, except at the lowest exposure level of 25 mAs/80 kVp [80.6% ± 4.3% (p = 0.031]. Compared to the standard CT, the sensitivity for detecting GGNs was significantly lower at all dose levels when the voltage was 80 kVp; this result was independent of the tube current. The CAD significantly increased the radiologists' sensitivity for detecting solid nodules at all dose levels (5-11%. No significant volume measurement errors (VMEs were documented for the radiologists or the CAD software at any dose level. CONCLUSIONS: Our results suggest a CT protocol with 25 mAs and 100 kVp is optimal for detecting solid and ground glass nodules in lung cancer screening. The use of CAD software is highly recommended at all dose levels.

  17. Small-scale anomaly detection in panoramic imaging using neural models of low-level vision

    Science.gov (United States)

    Casey, Matthew C.; Hickman, Duncan L.; Pavlou, Athanasios; Sadler, James R. E.

    2011-06-01

    Our understanding of sensory processing in animals has reached the stage where we can exploit neurobiological principles in commercial systems. In human vision, one brain structure that offers insight into how we might detect anomalies in real-time imaging is the superior colliculus (SC). The SC is a small structure that rapidly orients our eyes to a movement, sound or touch that it detects, even when the stimulus may be on a small-scale; think of a camouflaged movement or the rustle of leaves. This automatic orientation allows us to prioritize the use of our eyes to raise awareness of a potential threat, such as a predator approaching stealthily. In this paper we describe the application of a neural network model of the SC to the detection of anomalies in panoramic imaging. The neural approach consists of a mosaic of topographic maps that are each trained using competitive Hebbian learning to rapidly detect image features of a pre-defined shape and scale. What makes this approach interesting is the ability of the competition between neurons to automatically filter noise, yet with the capability of generalizing the desired shape and scale. We will present the results of this technique applied to the real-time detection of obscured targets in visible-band panoramic CCTV images. Using background subtraction to highlight potential movement, the technique is able to correctly identify targets which span as little as 3 pixels wide while filtering small-scale noise.

  18. Method of producing nano-scaled inorganic platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  19. Gradual cut detection using low-level vision for digital video

    Science.gov (United States)

    Lee, Jae-Hyun; Choi, Yeun-Sung; Jang, Ok-bae

    1996-09-01

    Digital video computing and organization is one of the important issues in multimedia system, signal compression, or database. Video should be segmented into shots to be used for identification and indexing. This approach requires a suitable method to automatically locate cut points in order to separate shot in a video. Automatic cut detection to isolate shots in a video has received considerable attention due to many practical applications; our video database, browsing, authoring system, retrieval and movie. Previous studies are based on a set of difference mechanisms and they measured the content changes between video frames. But they could not detect more special effects which include dissolve, wipe, fade-in, fade-out, and structured flashing. In this paper, a new cut detection method for gradual transition based on computer vision techniques is proposed. And then, experimental results applied to commercial video are presented and evaluated.

  20. Structural Characteristics of Bimetallic Catalysts Supported on Nano-Ceria

    Directory of Open Access Journals (Sweden)

    J. F. Bozeman

    2011-01-01

    Full Text Available Cu-Pt bimetal catalysts supported on nanocrystalline CeO2 (nano-ceria are synthesized via the low-cost sol-gel approach followed by impregnation processing. The average particle size of the catalytic composites is 63 nm. Ceria nanopowders sequentially impregnated in copper solution and then in Pt solution transformed into Pt-skin-structured Cu-Pt/ceria nanocomposite, based on the surface elemental and bulk compositional analyses. The ceria supporter has a fluorite structure, but the structure of Cu and Pt catalytic contents, not detected by X-ray diffraction spectroscopy due to the low loading level, is yet conclusive. The bimetallic catalytic nanocomposites may potentially serve as sulfur-tolerant anode in solid oxide fuel cells.

  1. Computerized detection of multiple sclerosis candidate regions based on a level set method using an artificial neural network

    International Nuclear Information System (INIS)

    Kuwazuru, Junpei; Magome, Taiki; Arimura, Hidetaka; Yamashita, Yasuo; Oki, Masafumi; Toyofuku, Fukai; Kakeda, Shingo; Yamamoto, Daisuke

    2010-01-01

    Yamamoto et al. developed the system for computer-aided detection of multiple sclerosis (MS) candidate regions. In a level set method in their proposed method, they employed the constant threshold value for the edge indicator function related to a speed function of the level set method. However, it would be appropriate to adjust the threshold value to each MS candidate region, because the edge magnitudes in MS candidates differ from each other. Our purpose of this study was to develop a computerized detection of MS candidate regions in MR images based on a level set method using an artificial neural network (ANN). To adjust the threshold value for the edge indicator function in the level set method to each true positive (TP) and false positive (FP) region, we constructed the ANN. The ANN could provide the suitable threshold value for each candidate region in the proposed level set method so that TP regions can be segmented and FP regions can be removed. Our proposed method detected MS regions at a sensitivity of 82.1% with 0.204 FPs per slice and similarity index of MS candidate regions was 0.717 on average. (author)

  2. High-level traffic-violation detection for embedded traffic analysis

    NARCIS (Netherlands)

    Vijverberg, J.A.; de Koning, A.H.M.; Han, Jungong; de With, P.H.N.; Cornelissen, D.

    2007-01-01

    This paper presents the design of a robust and real-time traffic-violation detection system for cameras on intersections. We use background segmentation and a novel road-model to obtain the candidate traffic participants. A region-based tracking system, equipped with static occlusion-reasoning,

  3. System-level protection and hardware Trojan detection using weighted voting.

    Science.gov (United States)

    Amin, Hany A M; Alkabani, Yousra; Selim, Gamal M I

    2014-07-01

    The problem of hardware Trojans is becoming more serious especially with the widespread of fabless design houses and design reuse. Hardware Trojans can be embedded on chip during manufacturing or in third party intellectual property cores (IPs) during the design process. Recent research is performed to detect Trojans embedded at manufacturing time by comparing the suspected chip with a golden chip that is fully trusted. However, Trojan detection in third party IP cores is more challenging than other logic modules especially that there is no golden chip. This paper proposes a new methodology to detect/prevent hardware Trojans in third party IP cores. The method works by gradually building trust in suspected IP cores by comparing the outputs of different untrusted implementations of the same IP core. Simulation results show that our method achieves higher probability of Trojan detection over a naive implementation of simple voting on the output of different IP cores. In addition, experimental results show that the proposed method requires less hardware overhead when compared with a simple voting technique achieving the same degree of security.

  4. Multi-level anomaly detection: Relevance of big data analytics in ...

    Indian Academy of Sciences (India)

    The Internet has become a vital source of information; internal and exter- .... (iii) DDos detection: Distributed Denial of Service (DDoS) is a common malicious ...... Guirguis M, Bestavros A, Matta I and Zhang Y 2005a Reduction of quality (roq) ...

  5. System-level protection and hardware Trojan detection using weighted voting

    Directory of Open Access Journals (Sweden)

    Hany A.M. Amin

    2014-07-01

    Full Text Available The problem of hardware Trojans is becoming more serious especially with the widespread of fabless design houses and design reuse. Hardware Trojans can be embedded on chip during manufacturing or in third party intellectual property cores (IPs during the design process. Recent research is performed to detect Trojans embedded at manufacturing time by comparing the suspected chip with a golden chip that is fully trusted. However, Trojan detection in third party IP cores is more challenging than other logic modules especially that there is no golden chip. This paper proposes a new methodology to detect/prevent hardware Trojans in third party IP cores. The method works by gradually building trust in suspected IP cores by comparing the outputs of different untrusted implementations of the same IP core. Simulation results show that our method achieves higher probability of Trojan detection over a naive implementation of simple voting on the output of different IP cores. In addition, experimental results show that the proposed method requires less hardware overhead when compared with a simple voting technique achieving the same degree of security.

  6. Nano-education from a European perspective

    International Nuclear Information System (INIS)

    Malsch, I

    2008-01-01

    At a global level, educating the nanotechnology workforce has been discussed since the beginning of the new millennium. Scientists, engineers and technicians should be trained in nanotechnology. Most educators prefer training students first in their own discipline at the Bachelor level (physics, chemistry, biology, etc) followed by specialisation in nanoscience and technology at the Master's level. Some favour a broad interdisciplinary basic training in different nanosciences followed by specialisation in a particular application area. What constitutes a good nanoscience curriculum is also being discussed, as well as the application of e-learning methodologies. The European Union is stimulating the development of nanoscience education in universities. The Erasmus Mundus programme is funding nanoscience and nanotechnology education programmes involving universities in several European countries. The policy debate in Europe is moving towards vocational training in nanotechnology for educating the technicians needed in industry and research. The EU vocational training institute CEDEFOP published a report in 2005 The EU funded European gateway to nanotechnology Nanoforum has stimulated the accessibility of nano-education throughout Europe with reports and online databases of education courses and materials. For university education, they list courses at the Bachelor, Master's, and PhD level as well as short courses. The EU funded EuroIndiaNet project also reviewed Nano-education courses at the Master's level, short courses, e-learning programmes, summerschools and vocational training courses. In this presentation, I review Nanoforum and other publications on nano-education in Europe and highlight current trends and gaps

  7. Extractive scintillating polymer sensors for trace-level detection of uranium in contaminated ground water

    International Nuclear Information System (INIS)

    Duval, Christine E.; DeVol, Timothy A.; Husson, Scott M.

    2016-01-01

    This contribution describes the synthesis of robust extractive scintillating resin and its use in a flow-cell detector for the direct detection of uranium in environmental waters. The base poly[(4-methyl styrene)-co-(4-vinylbenzyl chloride)-co-(divinylbenzene)-co-(2-(1-napthyl)-4-vinyl-5-phenyloxazole)] resin contains covalently bound fluorophores. Uranium-binding functionality was added to the resin by an Arbuzov reaction followed by hydrolysis via strong acid or trimethylsilyl bromide (TMSBr)-mediated methanolysis. The resin was characterized by Fourier-transform infrared spectroscopy and spectrofluorometry. Fluorophore degradation was observed in the resin hydrolyzed by strong acid, while the resin hydrolyzed by TMSBr-mediated methanolysis maintained luminosity and showed hydrogen bonding-induced Stokes' shift of ∼100 nm. The flow cell detection efficiency for uranium of the TMSBr-mediated methanolysis resin was evaluated at pH 4, 5 and 6 in DI water containing 500 Bq L"−"1 uranium-233 and demonstrated flow cell detection efficiencies of 23%, 16% and 7%. Experiments with pH 4, synthetic groundwater with 50 Bq L"−"1 uranium-233 exhibited a flow cell detection efficiency of 17%. The groundwater measurements show that the resins can concentrate the uranyl cation from waters with high concentrations of competitor ions at near-neutral pH. Findings from this research will lay the groundwork for development of materials for real-time environmental sensing of alpha- and beta-emitting radionuclides. - Highlights: • Extractive scintillating resins synthesized with covalently bound fluor and ligand. • Methylphosphonic acid-derivitized resins characterized for optical properties. • Online detection of uranium in ground water demonstrated at near-neutral pH.

  8. Extractive scintillating polymer sensors for trace-level detection of uranium in contaminated ground water

    Energy Technology Data Exchange (ETDEWEB)

    Duval, Christine E. [Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634 (United States); DeVol, Timothy A. [Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, SC 29625 (United States); Husson, Scott M., E-mail: shusson@clemson.edu [Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634 (United States)

    2016-12-01

    This contribution describes the synthesis of robust extractive scintillating resin and its use in a flow-cell detector for the direct detection of uranium in environmental waters. The base poly[(4-methyl styrene)-co-(4-vinylbenzyl chloride)-co-(divinylbenzene)-co-(2-(1-napthyl)-4-vinyl-5-phenyloxazole)] resin contains covalently bound fluorophores. Uranium-binding functionality was added to the resin by an Arbuzov reaction followed by hydrolysis via strong acid or trimethylsilyl bromide (TMSBr)-mediated methanolysis. The resin was characterized by Fourier-transform infrared spectroscopy and spectrofluorometry. Fluorophore degradation was observed in the resin hydrolyzed by strong acid, while the resin hydrolyzed by TMSBr-mediated methanolysis maintained luminosity and showed hydrogen bonding-induced Stokes' shift of ∼100 nm. The flow cell detection efficiency for uranium of the TMSBr-mediated methanolysis resin was evaluated at pH 4, 5 and 6 in DI water containing 500 Bq L{sup −1} uranium-233 and demonstrated flow cell detection efficiencies of 23%, 16% and 7%. Experiments with pH 4, synthetic groundwater with 50 Bq L{sup −1} uranium-233 exhibited a flow cell detection efficiency of 17%. The groundwater measurements show that the resins can concentrate the uranyl cation from waters with high concentrations of competitor ions at near-neutral pH. Findings from this research will lay the groundwork for development of materials for real-time environmental sensing of alpha- and beta-emitting radionuclides. - Highlights: • Extractive scintillating resins synthesized with covalently bound fluor and ligand. • Methylphosphonic acid-derivitized resins characterized for optical properties. • Online detection of uranium in ground water demonstrated at near-neutral pH.

  9. Computer-aided pulmonary nodule detection. Performance of two CAD systems at different CT dose levels

    International Nuclear Information System (INIS)

    Hein, Patrick Alexander; Rogalla, P.; Klessen, C.; Lembcke, A.; Romano, V.C.

    2009-01-01

    Purpose: To evaluate the impact of dose reduction on the performance of computer-aided lung nodule detection systems (CAD) of two manufacturers by comparing respective CAD results on ultra-low-dose computed tomography (ULD-CT) and standard dose CT (SD-CT). Materials and Methods: Multi-slice computed tomography (MSCT) data sets of 26 patients (13 male and 13 female, patients 31 - 74 years old) were retrospectively selected for CAD analysis. Indication for CT examination was staging of a known primary malignancy or suspected pulmonary malignancy. CT images were consecutively acquired at 5 mAs (ULD-CT) and 75 mAs (SD-CT) with 120kV tube voltage (1 mm slice thickness). The standard of reference was determined by three experienced readers in consensus. CAD reading algorithms (pre-commercial CAD system, Philips, Netherlands: CAD-1; LungCARE, Siemens, Germany: CAD-2) were applied to the CT data sets. Results: Consensus reading identified 253 nodules on SD-CT and ULD-CT. Nodules ranged in diameter between 2 and 41 mm (mean diameter 4.8 mm). Detection rates were recorded with 72% and 62% (CAD-1 vs. CAD-2) for SD-CT and with 73% and 56% for ULD-CT. Median also positive rates per patient were calculated with 6 and 5 (CAD-1 vs. CAD-2) for SD-CT and with 8 and 3 for ULD-CT. After separate statistical analysis of nodules with diameters of 5 mm and greater, the detection rates increased to 83% and 61% for SD-CT and to 89% and 67% for ULD-CT (CAD-1 vs. CAD-2). For both CAD systems there were no significant differences between the detection rates for standard and ultra-low-dose data sets (p>0.05). Conclusion: Dose reduction of the underlying CT scan did not significantly influence nodule detection performance of the tested CAD systems. (orig.)

  10. DNA damage due to perfluorooctane sulfonate based on nano-gold embedded in nano-porous poly-pyrrole film

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Xu, Laihui; Kang, Tianfang; Cheng, Shuiyuan

    2013-11-01

    DNA damage induced from perfluorooctane sulfonate (PFOS) was further developed on a nano-porous bionic interface. The interface was formed by assembling DNA on nano-gold particles which were embedded in a nano-porous overoxidized polypyrrole film (OPPy). Atomic force microscopy, scanning electron microscope and electrochemical investigations indicate that OPPy can be treated to form nano-pore structures. DNA damage due to PFOS was proved using electrochemistry and X-ray photoelectron spectroscopy (XPS) and was investigated by detecting differential pulse voltammetry (DPV) response of methylene blue (MB) which was used as electro-active indicator in the system. The current of MB attenuates obviously after incubation of DNA in PFOS. Moreover, electrochemical impedance spectroscopy (EIS) demonstrates that PFOS weakens DNA charge transport. The tentative binding ratio of PFOS: DNA base pair was obtained by analyzing XPS data of this system.

  11. Detection of serum leptin levels in patients with viral hepatitis C

    International Nuclear Information System (INIS)

    Sun Shuhong; Yu Hua; Niu Airong; Wu Yuqing

    2006-01-01

    To evaluate changes of serum leptin levels in patients with viral hepatitis C(HCV), serum leptin levels were determined by RIA in 65 patients with viral chronic hepatitis C and in 80 control subjects ,liver function (ALT, AST) , glucose (Glu) , and total cholesterol (TC) were evaluated too. Campared with controls, the levels of serum leptin were significantly increased in patients with HCV (P 0.05). The levels of serum leptin increased in patients with HCV, which correlates positively with the severity of liver inflammation, so that leptin can be regarded as an index which reflects the severity of liver inflammation. (authors)

  12. Nano semiconducting materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2.

  13. Differential diagnostic value of combined detection of serum CA153, CEA and TPA levels in patients with breast tumor

    International Nuclear Information System (INIS)

    Ding Wei

    2007-01-01

    Objective: To assess the differential diagnostic value of combined detection of serum CA153, CEA and TPA levels in patients with breast tumor. Methods: Serum levels of CA153, CEA and TPA were measured with RIA in 269 patients with breast tumor and 150 controls. Results: The serum levels of CA153, CEA and TPA in patients with breast cancer were significantly higher than those in the patients with benign breast tumor and controls. The positive rate of CA153 was 63.8% in the patients with breast cancer and that of CEA and TPA was 22.4% and 62.1% respectively, with combined detection of CA153 and CEA, the positive rate was 69.8%, with CA153 and TPA combined, the positive rate was 87.1%, with the three marker combined, the positive rate was 90.5%. The specificity was 77.9% with CA153, 77.9% with CA153 and CEA, 71.9% with CA153 and TPA, and 73.4% with all the three markers combined. Conclusion: The positive rate was increased remarkably with combined detection of CA153, CEA and TPA, however the specificity was not much changed, so the combined detection was valuable for differential diagnosis. (authors)

  14. Light‐driven Nano­‐robotics - Invited Plenary Presentation, IEEE NANO 2016

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    ) and pioneering their use in so-called lightdriven nano-robotics. Hence, the aim of our latest R&D is to combine advanced topology optimisation, 3D printing of functionalized materials and light manipulation to demonstrate a structure-mediated micro-tonano coupling paradigm for controlled operation of robotic...... tools overcoming the diffraction limit while still being optically visible and manoeuvrable. 2PP-fabrication can already today create intricate nano-features merged onto larger microstructures that, in turn, are steerable by dynamic light beams. Applying multiple independently controllable laser beam...... traps on these structures will enable real-time light-driven nanorobotics with six-degrees-of-freedom. This sets the stage for new discoveries using calibrated steering of optimally shaped and functionalized nano-tools at the subcellular level and in full 3D - not available in the scientifi c world...

  15. Combinatorial Nano-Bio Interfaces.

    Science.gov (United States)

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  16. Intervention levels in a precocious detection program for breast cancer and evaluation of four participant units

    International Nuclear Information System (INIS)

    Carrera M, F.; Velazquez M, S.; Manzano M, F.J.; Sanchez S, J.

    1998-01-01

    It is presented the basis to make a cost benefit analysis for a breast cancer precocious detection program and consequently the keys for its optimization from the radiological point of view. Taking this as a reference it is made an exhaustive quality control to four mammographic unities which were participating or they were candidates to participate in a breast cancer precocious detection program. Also it is presented its results. It is followed the protocol for quality control in mammography in Spain obtaining values for the measurement of twelve interesting parameters. It should be maintained the standard breast dose about 1 mGy/ image. It should be available a 24 x 30 cm portacassete and considering the utilization of a single projection by breast. (Author)

  17. Extractive scintillating polymer sensors for trace-level detection of uranium in contaminated ground water.

    Science.gov (United States)

    Duval, Christine E; DeVol, Timothy A; Husson, Scott M

    2016-12-01

    This contribution describes the synthesis of robust extractive scintillating resin and its use in a flow-cell detector for the direct detection of uranium in environmental waters. The base poly[(4-methyl styrene)-co-(4-vinylbenzyl chloride)-co-(divinylbenzene)-co-(2-(1-napthyl)-4-vinyl-5-phenyloxazole)] resin contains covalently bound fluorophores. Uranium-binding functionality was added to the resin by an Arbuzov reaction followed by hydrolysis via strong acid or trimethylsilyl bromide (TMSBr)-mediated methanolysis. The resin was characterized by Fourier-transform infrared spectroscopy and spectrofluorometry. Fluorophore degradation was observed in the resin hydrolyzed by strong acid, while the resin hydrolyzed by TMSBr-mediated methanolysis maintained luminosity and showed hydrogen bonding-induced Stokes' shift of ∼100 nm. The flow cell detection efficiency for uranium of the TMSBr-mediated methanolysis resin was evaluated at pH 4, 5 and 6 in DI water containing 500 Bq L -1 uranium-233 and demonstrated flow cell detection efficiencies of 23%, 16% and 7%. Experiments with pH 4, synthetic groundwater with 50 Bq L -1 uranium-233 exhibited a flow cell detection efficiency of 17%. The groundwater measurements show that the resins can concentrate the uranyl cation from waters with high concentrations of competitor ions at near-neutral pH. Findings from this research will lay the groundwork for development of materials for real-time environmental sensing of alpha- and beta-emitting radionuclides. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Detection of Malware and Kernel-Level Rootkits in Cloud Computing Environments

    OpenAIRE

    Win, Thu Yein; Tianfield, Huaglory; Mair, Quentin

    2016-01-01

    Cyberattacks targeted at virtualization infrastructure underlying cloud computing services has become increasingly sophisticated. This paper presents a novel malware and rookit detection system which protects the guests against different attacks. It combines system call monitoring and system call hashing on the guest kernel together with Support Vector Machines (SVM)-based external monitoring on the host. We demonstrate the effectiveness of our solution by evaluating it against well-known use...

  19. Phone camera detection of glucose blood level based on magnetic particles entrapped inside bubble wrap.

    Science.gov (United States)

    Martinkova, Pavla; Pohanka, Miroslav

    2016-12-18

    Glucose is an important diagnostic biochemical marker of diabetes but also for organophosphates, carbamates, acetaminophens or salicylates poisoning. Hence, innovation of accurate and fast detection assay is still one of priorities in biomedical research. Glucose sensor based on magnetic particles (MPs) with immobilized enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP) was developed and the GOx catalyzed reaction was visualized by a smart-phone-integrated camera. Exponential decay concentration curve with correlation coefficient 0.997 and with limit of detection 0.4 mmol/l was achieved. Interfering and matrix substances were measured due to possibility of assay influencing and no effect of the tested substances was observed. Spiked plasma samples were also measured and no influence of plasma matrix on the assay was proved. The presented assay showed complying results with reference method (standard spectrophotometry based on enzymes glucose oxidase and peroxidase inside plastic cuvettes) with linear dependence and correlation coefficient 0.999 in concentration range between 0 and 4 mmol/l. On the grounds of measured results, method was considered as highly specific, accurate and fast assay for detection of glucose.

  20. Detecting Source Code Plagiarism on .NET Programming Languages using Low-level Representation and Adaptive Local Alignment

    Directory of Open Access Journals (Sweden)

    Oscar Karnalim

    2017-01-01

    Full Text Available Even though there are various source code plagiarism detection approaches, only a few works which are focused on low-level representation for deducting similarity. Most of them are only focused on lexical token sequence extracted from source code. In our point of view, low-level representation is more beneficial than lexical token since its form is more compact than the source code itself. It only considers semantic-preserving instructions and ignores many source code delimiter tokens. This paper proposes a source code plagiarism detection which rely on low-level representation. For a case study, we focus our work on .NET programming languages with Common Intermediate Language as its low-level representation. In addition, we also incorporate Adaptive Local Alignment for detecting similarity. According to Lim et al, this algorithm outperforms code similarity state-of-the-art algorithm (i.e. Greedy String Tiling in term of effectiveness. According to our evaluation which involves various plagiarism attacks, our approach is more effective and efficient when compared with standard lexical-token approach.

  1. DETECTION OF SERIAL SERUM P-185 LEVEL IN PATIENTS WITH MALIGNANCY USING ELISA

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-hui; WU Ping; LI Li; MIAO Yi-meng; LI Jun

    2006-01-01

    Objective: To investigate P-185 contents in serum of the normal person and cancer patients and it's the significance on prognosis of diseases. Methods: We used ELISA method to evaluate P-185 levels in 193 normal persons, 133 malignancies and 34 hepatocirrhosises were evaluated using ELISA method. Results: Normal person had lower expression of P-185. However, malignancy and hepatocirrhosis patients had a significantly higher expression level of P-185 than normal (P<0.05). Conclusion: ELISA method is an easy and reliable way to measure the level of P-185 in serum. Being a cancer marker, P-185 overexpression can be used for early diagnosis and prognosis of cancer patients.

  2. A Review of Analytical Methods for the Identification and Characterization of Nano Delivery Systems in Food

    NARCIS (Netherlands)

    Luykx, D.M.A.M.; Peters, R.J.B.; Ruth, van S.M.; Bouwmeester, H.

    2008-01-01

    Detection and characterization of nano delivery systems is an essential part of understanding the benefits as well as the potential toxicity of these systems in food. This review gives a detailed description of food nano delivery systems based on lipids, proteins, and/or polysaccharides and

  3. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  4. Detection of serum leptin levels in patients with viral hepatitis and fatty liver

    International Nuclear Information System (INIS)

    Sun Shuhong; Sun Bingmei; Niu Airong; Lan Cuixia

    2007-01-01

    In order to find out the correlations between serum leptin levels and viral hepatitis, the serum leptin levels in 167 patients with viral chronic hepatitis, 87 patients with fatty liver, and 80 control subjects were determined by radioimmunoassay. The liver function (ALT, AST), glucose(Glu) and total cholesterol(TC) in these patients were also measured. Compared with controls and patients with fatty liver, the levels of serum leptin in patients with viral hepatitis were significantly increased (P 0.05). The increase of serum leptin levels in the patients with viral hepatitis was correlated positively with the severity of liver inflammation. Therefore, the leptin can be regarded as an indicator to reflect the severity of liver inflammation. (authors)

  5. Detection of survivin, carcinoembryonic antigen and ErbB2 level in oral squamous cell carcinoma patients.

    Science.gov (United States)

    Li, Shu-Xia; Yang, Yan-Qi; Jin, Li-Jian; Cai, Zhi-Gang; Sun, Zheng

    2016-01-01

    The aim of this study was to detect the survivin, carcinoembryonic antigen (CEA) and ErbB2 in the saliva, serum and local tumor-exfoliated cells of oral squamous cell carcinoma (OSCC) patients, for providing reliable tumor markers for the early detection of oral malignant cancer. The saliva, serum, and local tumor-exfoliated cell samples of 26 OSCC patients without chemotherapy and 10 non-cancer patients were collected in Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University. The contents of survivin, CEA and ErbB2 using were detected usingenzyme-linked immunosorbent assay. The survivin and CEA levels in saliva and local tumor-exfoliated cells of OSCC patients were significantly higher than those in the non-cancer patients (P oral malignant cancer.

  6. Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level

    DEFF Research Database (Denmark)

    Zhang, Jianzhi; Nielsen, Rasmus; Yang, Ziheng

    2005-01-01

    of interest, while test 2 had acceptable false-positive rates and appeared robust against violations of model assumptions. As test 2 is a direct test of positive selection on the lineages of interest, it is referred to as the branch-site test of positive selection and is recommended for use in real data......Detecting positive Darwinian selection at the DNA sequence level has been a subject of considerable interest. However, positive selection is difficult to detect because it often operates episodically on a few amino acid sites, and the signal may be masked by negative selection. Several methods have...... been developed to test positive selection that acts on given branches (branch methods) or on a subset of sites (site methods). Recently, Yang, Z., and R. Nielsen (2002. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19...

  7. A novel approach to nano topology via neutrosophic sets

    OpenAIRE

    M. Lellis Thivagar; Saeid Jafari; V. Sutha Devi; V. Antonysamy

    2018-01-01

    The main objective of this study is to introduce a new hybrid intelligent structure called Neutrosophic nano topology. Fuzzy nano topology and intuitionistic nano topology can also be deduced from the neutrosophic nano topology. Based on the neutrosophic nano approximations we have classified neutrosophic nano topology. Some properties like neutrosophic nano interior and neutrosophic nano closure are derived.

  8. An investigation into soft error detection efficiency at operating system level.

    Science.gov (United States)

    Asghari, Seyyed Amir; Kaynak, Okyay; Taheri, Hassan

    2014-01-01

    Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs) and data errors. Valuable research results have already appeared in literature at hardware and software levels for their alleviation. However, there is the basic assumption behind these works that the operating system is reliable and the focus is on other system levels. In this paper, we investigate the effects of soft errors on the operating system components and compare their vulnerability with that of application level components. Results show that soft errors in operating system components affect both operating system and application level components. Therefore, by providing endurance to operating system level components against soft errors, both operating system and application level components gain tolerance.

  9. An Investigation into Soft Error Detection Efficiency at Operating System Level

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Asghari

    2014-01-01

    Full Text Available Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs and data errors. Valuable research results have already appeared in literature at hardware and software levels for their alleviation. However, there is the basic assumption behind these works that the operating system is reliable and the focus is on other system levels. In this paper, we investigate the effects of soft errors on the operating system components and compare their vulnerability with that of application level components. Results show that soft errors in operating system components affect both operating system and application level components. Therefore, by providing endurance to operating system level components against soft errors, both operating system and application level components gain tolerance.

  10. The level of embryonation influences detection of Ostertagia ostertagi eggs by semi-quantitative PCR

    DEFF Research Database (Denmark)

    Drag, Markus; Höglund, Johan; Nejsum, Peter

    2016-01-01

    The Internal Transcribed Spacer 2 (ITS2) is a candidate diagnostic marker of the pathogenic cattle nematode Ostertagia ostertagi. The aims of this study were: (i) to document and quantify how the development of O. ostertagi eggs affects ITS2 copies under different storage conditions, and (ii......) to suggest optimal storage conditions for faecal samples in a diagnostic pipeline that involves detection and semi-quantification by real-time semi-quantitative polymerase chain reaction (qPCR). Eggs of Ostertagia ostertagi were obtained from fresh faeces and stored at 4 °C or 25 °C under aerobic...

  11. A Monte Carlo technique for signal level detection in implanted intracranial pressure monitoring.

    Science.gov (United States)

    Avent, R K; Charlton, J D; Nagle, H T; Johnson, R N

    1987-01-01

    Statistical monitoring techniques like CUSUM, Trigg's tracking signal and EMP filtering have a major advantage over more recent techniques, such as Kalman filtering, because of their inherent simplicity. In many biomedical applications, such as electronic implantable devices, these simpler techniques have greater utility because of the reduced requirements on power, logic complexity and sampling speed. The determination of signal means using some of the earlier techniques are reviewed in this paper, and a new Monte Carlo based method with greater capability to sparsely sample a waveform and obtain an accurate mean value is presented. This technique may find widespread use as a trend detection method when reduced power consumption is a requirement.

  12. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    Science.gov (United States)

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples.

  13. A Study on the Model of Detecting the Liquid Level of Sealed Containers Based on Kirchhoff Approximation Theory

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-06-01

    Full Text Available By simulating the sound field of a round piston transducer with the Kirchhoff integral theorem and analyzing the shape of ultrasound beams and propagation characteristics in a metal container wall, this study presents a model for calculating the echo sound pressure by using the Kirchhoff paraxial approximation theory, based on which and according to different ultrasonic impedance between gas and liquid media, a method for detecting the liquid level from outside of sealed containers is proposed. Then, the proposed method is evaluated through two groups of experiments. In the first group, three kinds of liquid media with different ultrasonic impedance are used as detected objects; the echo sound pressure is calculated by using the proposed model under conditions of four sets of different wall thicknesses. The changing characteristics of the echo sound pressure in the entire detection process are analyzed, and the effects of different ultrasonic impedance of liquids on the echo sound pressure are compared. In the second group, taking water as an example, two transducers with different radii are selected to measure the liquid level under four sets of wall thickness. Combining with sound field characteristics, the influence of different size transducers on the pressure calculation and detection resolution are discussed and analyzed. Finally, the experimental results indicate that measurement uncertainly is better than ±5 mm, which meets the industrial inspection requirements.

  14. A Study on the Model of Detecting the Liquid Level of Sealed Containers Based on Kirchhoff Approximation Theory.

    Science.gov (United States)

    Zhang, Bin; Song, Wen-Ai; Wei, Yue-Juan; Zhang, Dong-Song; Liu, Wen-Yi

    2017-06-15

    By simulating the sound field of a round piston transducer with the Kirchhoff integral theorem and analyzing the shape of ultrasound beams and propagation characteristics in a metal container wall, this study presents a model for calculating the echo sound pressure by using the Kirchhoff paraxial approximation theory, based on which and according to different ultrasonic impedance between gas and liquid media, a method for detecting the liquid level from outside of sealed containers is proposed. Then, the proposed method is evaluated through two groups of experiments. In the first group, three kinds of liquid media with different ultrasonic impedance are used as detected objects; the echo sound pressure is calculated by using the proposed model under conditions of four sets of different wall thicknesses. The changing characteristics of the echo sound pressure in the entire detection process are analyzed, and the effects of different ultrasonic impedance of liquids on the echo sound pressure are compared. In the second group, taking water as an example, two transducers with different radii are selected to measure the liquid level under four sets of wall thickness. Combining with sound field characteristics, the influence of different size transducers on the pressure calculation and detection resolution are discussed and analyzed. Finally, the experimental results indicate that measurement uncertainly is better than ±5 mm, which meets the industrial inspection requirements.

  15. The Graphene/l-Cysteine/Gold-Modified Electrode for the Differential Pulse Stripping Voltammetry Detection of Trace Levels of Cadmium

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-06-01

    Full Text Available Cadmium(II is a common water pollutant with high toxicity. It is of significant importance for detecting aqueous contaminants accurately, as these contaminants are harmful to human health and environment. This paper describes the fabrication, characterization, and application of an environment-friendly graphene (Gr/l-cysteine/gold electrode to detect trace levels of cadmium (Cd by differential pulse stripping voltammetry (DPSV. The influence of hydrogen overflow was decreased and the current response was enhanced because the modified graphene extended the potential range of the electrode. The Gr/l-cysteine/gold electrode showed high electrochemical conductivity, producing a marked increase in anodic peak currents (vs. the glass carbon electrode (GCE and boron-doped diamond (BDD electrode. The calculated detection limits are 1.15, 0.30, and 1.42 µg/L, and the sensitivities go up to 0.18, 21.69, and 152.0 nA·mm−2·µg−1·L for, respectively, the BDD electrode, the GCE, and the Gr/l-cysteine/gold electrode. It was shown that the Gr/l-cysteine/gold-modified electrode is an effective means for obtaining highly selective and sensitive electrodes to detect trace levels of cadmium.

  16. Some statistical and sampling needs for detecting spills or migration at commercial low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Thomas, J.M.; Eberhardt, L.L.; Skalski, J.R.; Simmons, M.A.

    1984-05-01

    As part of a larger study funded by the US Nuclear Regulatory Commission we have been investigating field sampling strategies and compositing as a means of detecting spills or migration at commercial low-level radioactive waste disposal sites. The overall project is designed to produce information for developing guidance on implementing 10 CFR part 61. Compositing (pooling samples) for detection is discussed first, followed by our development of a statistical test to allow a decision as to whether any component of a composite exceeds a prescribed maximum acceptable level. The question of optimal field sampling designs and an Apple computer program designed to show the difficulties in constructing efficient field designs and using compositing schemes are considered. 6 references, 3 figures, 3 tables

  17. Advances in optoplasmonic sensors – combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier Jolly

    2018-01-01

    Full Text Available Nanophotonic device building blocks, such as optical nano/microcavities and plasmonic nanostructures, lie at the forefront of sensing and spectrometry of trace biological and chemical substances. A new class of nanophotonic architecture has emerged by combining optically resonant dielectric nano/microcavities with plasmonically resonant metal nanostructures to enable detection at the nanoscale with extraordinary sensitivity. Initial demonstrations include single-molecule detection and even single-ion sensing. The coupled photonic-plasmonic resonator system promises a leap forward in the nanoscale analysis of physical, chemical, and biological entities. These optoplasmonic sensor structures could be the centrepiece of miniaturised analytical laboratories, on a chip, with detection capabilities that are beyond the current state of the art. In this paper, we review this burgeoning field of optoplasmonic biosensors. We first focus on the state of the art in nanoplasmonic sensor structures, high quality factor optical microcavities, and photonic crystals separately before proceeding to an outline of the most recent advances in hybrid sensor systems. We discuss the physics of this modality in brief and each of its underlying parts, then the prospects as well as challenges when integrating dielectric nano/microcavities with metal nanostructures. In Section 5, we hint to possible future applications of optoplasmonic sensing platforms which offer many degrees of freedom towards biomedical diagnostics at the level of single molecules.

  18. Detection of a dynamic topography signal in last interglacial sea-level records.

    Science.gov (United States)

    Austermann, Jacqueline; Mitrovica, Jerry X; Huybers, Peter; Rovere, Alessio

    2017-07-01

    Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters.

  19. Detection of subsurface core-level shifts in Si 2p core-level photoemission from Si(111)-(1x1):As

    Energy Technology Data Exchange (ETDEWEB)

    Paggel, J.J. [Philipps-Universitaet Marburg (Germany); Hasselblatt, M.; Horn, K. [Fritz-Haber Institut der Max-Planck-Gesellschraft, Berlin (Germany)] [and others

    1997-04-01

    The (7 x 7) reconstruction of the Si(111) surface arises from a lowering energy through the reduction of the number of dangling bonds. This reconstruction can be removed by the adsorption of atoms such as hydrogen which saturate the dangling bonds, or by the incorporation of atoms, such as arsenic which, because of the additional electron it possesses, can form three bonds and a nonreactive lone pair orbital from the remaining two electrons. Core and valence level photoemission and ion scattering data have shown that the As atoms replace the top silicon atoms. Previous core level spectra were interpreted in terms of a bulk and a single surface doublet. The authors present results demonstrate that the core level spectrum contains two more lines. The authors assign these to subsurface silicon layers which also experience changes in the charge distribution when a silicon atom is replaced by an arsenic atom. Subsurface core level shifts are not unexpected since the modifications of the electronic structure and/or of photohole screening are likely to decay into the bulk and not just to affect the top-most substrate atoms. The detection of subsurface components suggests that the adsorption of arsenic leads to charge flow also in the second double layer of the Si(111) surface. In view of the difference in atomic radius between As and Si, it was suggested that the (1 x 1): As surface is strained. The presence of charge rearrangement up to the second double layer implies that the atomic coordinates also exhibit deviations from their ideal Si(111) counterparts, which might be detected through a LEED I/V or photoelectron diffraction analysis.

  20. Progress in low light-level InAs detectors- towards Geiger-mode detection

    Science.gov (United States)

    Tan, Chee Hing; Ng, Jo Shien; Zhou, Xinxin; David, John; Zhang, Shiyong; Krysa, Andrey

    2017-05-01

    InAs avalanche photodiodes (APDs) can be designed such that only electrons are allowed to initiate impact ionization, leading to the lowest possible excess noise factor. Optimization of wet chemical etching and surface passivation produced mesa APDs with bulk dominated dark current and responsivity that are comparable and higher, respectively, than a commercial InAs detector. Our InAs electron-APDs also show high stability with fluctuation of 0.1% when operated at a gain of 11.2 over 60 s. These InAs APDs can detect very weak signal down to 35 photons per pulse. Fabrication of planar InAs by Be implantation produced planar APDs with bulk dominated dark current. Annealing at 550 °C was necessary to remove implantation damage and to activate Be dopants. Due to minimal diffusion of Be, thick depletion of 8 μm was achieved. Since the avalanche gain increases exponentially with the thickness of avalanche region, our planar APD achieved high gain > 300 at 200 K. Our work suggest that both mesa and planar InAs APDs can exhibit high gain. When combined with a suitable preamplifier, single photon detection using InAs electron-APDs could be achieved.

  1. Parametric Analysis of Surveillance Quality and Level and Quality of Intent Information and Their Impact on Conflict Detection Performance

    Science.gov (United States)

    Guerreiro, Nelson M.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Lewis, Timothy A.

    2016-01-01

    A loss-of-separation (LOS) is said to occur when two aircraft are spatially too close to one another. A LOS is the fundamental unsafe event to be avoided in air traffic management and conflict detection (CD) is the function that attempts to predict these LOS events. In general, the effectiveness of conflict detection relates to the overall safety and performance of an air traffic management concept. An abstract, parametric analysis was conducted to investigate the impact of surveillance quality, level of intent information, and quality of intent information on conflict detection performance. The data collected in this analysis can be used to estimate the conflict detection performance under alternative future scenarios or alternative allocations of the conflict detection function, based on the quality of the surveillance and intent information under those conditions.Alternatively, this data could also be used to estimate the surveillance and intent information quality required to achieve some desired CD performance as part of the design of a new separation assurance system.

  2. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great ...

  3. To be nano or not to be nano?

    Science.gov (United States)

    Joachim, Christian

    2005-02-01

    Nanomaterials, nanostructures, nanostructured materials, nanoimprint, nanobiotechnology, nanophysics, nanochemistry, radical nanotechnology, nanosciences, nanooptics, nanoelectronics, nanorobotics, nanosoldiers, nanomedecine, nanoeconomy, nanobusiness, nanolawyer, nanoethics to name a few of the nanos. We need a clear definition of all these burgeoning fields for the sake of the grant attribution, for the sake of research program definition, and to avoid everyone being lost in so many nanos.

  4. Climate-change-driven accelerated sea-level rise detected in the altimeter era.

    Science.gov (United States)

    Nerem, R S; Beckley, B D; Fasullo, J T; Hamlington, B D; Masters, D; Mitchum, G T

    2018-02-27

    Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y 2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections. Copyright © 2018 the Author(s). Published by PNAS.

  5. Development of radiation detection and measurement systems - Development of level gauge and density gauge

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Su Man; Kim, Sung Hun; Jang, Jung Hun; Yun, Mung Hun; Yun Jun Hyung; Kang, Sung Youn [Techvalley co., Ltd., Research Center, Seoul (Korea)

    2000-03-01

    -Pervasive effect of R and D results. Technical development of level/density measuring instruments has a definitely significant effect on the quality test of various products in the filled on the heavy industry. As measurement of flow increasingly becomes important in the plant design in the chemical industry, development of our products is applicable to various equipment in the field of industries. -Applications of R and D results. Technical development of level/density measurement copes with a technical difficulty in inspecting the internal conditions of chemical plants by transmission through metal materials in a non-destructive manner and thereby enables non-destructive flow and level tests in the field of industries. 11 refs., 19 figs., 4 tabs. (Author)

  6. Comparison of approximate formulas for decision levels and detection limits for paired counting with the exact results

    International Nuclear Information System (INIS)

    Potter, W.E.

    2005-01-01

    The exact probability density function for paired counting can be expressed in terms of modified Bessel functions of integral order when the expected blank count is known. Exact decision levels and detection limits can be computed in a straightforward manner. For many applications perturbing half-integer corrections to Gaussian distributions yields satisfactory results for decision levels. When there is concern about the uncertainty for the expected value of the blank count, a way to bound the errors of both types using confidence intervals for the expected blank count is discussed. (author)

  7. [THE POSSIBILITY OF APPLICATION OF COLORIMETRY TECHNIQUE OF DETECTION OF LEVELS OF OXIDATIVE STRESS AND ANTIOXIDANT CAPACITY OF SERUM].

    Science.gov (United States)

    Sapojnikova, M A; Strakhova, L A; Blinova, T V; Makarov, I A; Rakhmanov, R S; Umniagina, I A

    2015-11-01

    The analysis was implemented concerning indicators of oxidative status and antioxidant capacity of serum. The indicators were received by colorimetry technique based on detection of peroxides in blood serum in examined patients of different categories: healthy persons aged from 17 to 20 years and from 30 to 60 years and patients with bronchopulmonary pathology. The low level of oxidative stress and high antioxidant capacity of serum were established in individuals ofyounger age. With increasing of age, degree of expression of oxidative stress augmented and level of antioxidant defense lowered. Almost all patients with bronchopulmonary pathology had high level of oxidative stress and low level of antioxidant defense. The analysis of quantitative data of examined indicators their conformity with health condition was established

  8. [Effect of nano-hydroxyapatite to glass ionomer cement].

    Science.gov (United States)

    Mu, Ya-Bing; Zang, Guang-Xiang; Sun, Hong-Chen; Wang, Cheng-Kun

    2007-12-01

    To investigate the mechanical character, microleakage and mineralizing potential of nano-hydroxyapatite (nano-HAP)-added glass ionomer cement(GIC). 8% nano-HAP were incorporated into GIC as composite, and pure GIC as control. Both types of material were used to make 20 cylinders respectively in order to detect three-point flexural strength and compressive strength. Class V cavities were prepared in 120 molars extracted for orthodontic treatment, then were filled by two kinds of material. The microleakage at the composite-dentine interface was observed with confocal laser scanning microscope (CLSM) after stained with 1% rhodamin-B-isothiocyanate for 24 hours. Class V cavities were prepared in the molars of 4 healthy dogs, filled with composite, and the same molars in the other side were filled with GIC as control. The teeth were extracted to observe the mineralizing property with polarimetric microscope in 8 weeks after filling. Three-point flexural strength and compressive of nano-HAP-added GIC were increased compared with pure GIC (P nano-HAP-added GIC, while there was no hydroxyapatite crystals formed at the interface of tooth and pure GIC. 8% nano-HAP-added GIC can tightly fill tooth and have mineralizing potential, and can be used as liner or filling material for prevention.

  9. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.

    Science.gov (United States)

    Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra

    2017-01-03

    Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.

  10. 1D Nano materials 2012

    International Nuclear Information System (INIS)

    Yanqiu Zhu, Y.; Ma, R.; Whitby, R.; Acquah, S.

    2013-01-01

    We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers

  11. A Study on the Linkage between Nano Fusion Technology and Nuclear Technology

    International Nuclear Information System (INIS)

    Jeong, Ik; Lim, Chae Young; Lee, Jong Hee

    2009-02-01

    1) A survey of national energy policy trends in major nation - to secure renewal energy in the level of making a plan to supply national energy in the future - Tendency of energy policy based on Europe 2) A survey of the nano technology development - Status of major nano technology development - Developmental direction of nano technology related to nuclear energy 3) the nano technology development related with nuclear - high-temperature nuclear reactor by applying nano science and technology under quick development - materials required to high-level radioactive wastes treatment facility - develop materials of nuclear fusion facility in the long-term view 4) Innovation system of nano technology - Energy source -> conversion to energy -> distribution of energy -> energy storage -> energy use

  12. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array.

    Science.gov (United States)

    Shrestha, Nabin K; Lim, Sung H; Wilson, Deborah A; SalasVargas, Ana Victoria; Churi, Yair S; Rhodes, Paul A; Mazzone, Peter J; Procop, Gary W

    2017-01-01

    A colorimetric sensor array (CSA) has been demonstrated to rapidly detect and identify bacteria growing in blood cultures by obtaining a species-specific "fingerprint" of the volatile organic compounds (VOCs) produced during growth. This capability has been demonstrated in prokaryotes, but has not been reported for eukaryotic cells growing in culture. The purpose of this study was to explore if a disposable CSA could differentially identify 7 species of pathogenic yeasts growing in blood culture. Culture trials of whole blood inoculated with a panel of clinically important pathogenic yeasts at four different microorganism loads were performed. Cultures were done in both standard BacT/Alert and CSA-embedded bottles, after adding 10 mL of spiked blood to each bottle. Color changes in the CSA were captured as images by an optical scanner at defined time intervals. The captured images were analyzed to identify the yeast species. Time to detection by the CSA was compared to that in the BacT/Alert system. One hundred sixty-two yeast culture trials were performed, including strains of several species of Candida (Ca. albicans, Ca. glabrata, Ca. parapsilosis, and Ca. tropicalis), Clavispora (synonym Candida) lusitaniae, Pichia kudriavzevii (synonym Candida krusei) and Cryptococcus neoformans, at loads of 8.2 × 105, 8.3 × 103, 8.5 × 101, and 1.7 CFU/mL. In addition, 8 negative trials (no yeast) were conducted. All negative trials were correctly identified as negative, and all positive trials were detected. Colorimetric responses were species-specific and did not vary by inoculum load over the 500000-fold range of loads tested, allowing for accurate species-level identification. The mean sensitivity for species-level identification by CSA was 74% at detection, and increased with time, reaching almost 95% at 4 hours after detection. At an inoculum load of 1.7 CFU/mL, mean time to detection with the CSA was 6.8 hours (17%) less than with the BacT/Alert platform. The CSA

  13. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array.

    Directory of Open Access Journals (Sweden)

    Nabin K Shrestha

    Full Text Available A colorimetric sensor array (CSA has been demonstrated to rapidly detect and identify bacteria growing in blood cultures by obtaining a species-specific "fingerprint" of the volatile organic compounds (VOCs produced during growth. This capability has been demonstrated in prokaryotes, but has not been reported for eukaryotic cells growing in culture. The purpose of this study was to explore if a disposable CSA could differentially identify 7 species of pathogenic yeasts growing in blood culture.Culture trials of whole blood inoculated with a panel of clinically important pathogenic yeasts at four different microorganism loads were performed. Cultures were done in both standard BacT/Alert and CSA-embedded bottles, after adding 10 mL of spiked blood to each bottle. Color changes in the CSA were captured as images by an optical scanner at defined time intervals. The captured images were analyzed to identify the yeast species. Time to detection by the CSA was compared to that in the BacT/Alert system.One hundred sixty-two yeast culture trials were performed, including strains of several species of Candida (Ca. albicans, Ca. glabrata, Ca. parapsilosis, and Ca. tropicalis, Clavispora (synonym Candida lusitaniae, Pichia kudriavzevii (synonym Candida krusei and Cryptococcus neoformans, at loads of 8.2 × 105, 8.3 × 103, 8.5 × 101, and 1.7 CFU/mL. In addition, 8 negative trials (no yeast were conducted. All negative trials were correctly identified as negative, and all positive trials were detected. Colorimetric responses were species-specific and did not vary by inoculum load over the 500000-fold range of loads tested, allowing for accurate species-level identification. The mean sensitivity for species-level identification by CSA was 74% at detection, and increased with time, reaching almost 95% at 4 hours after detection. At an inoculum load of 1.7 CFU/mL, mean time to detection with the CSA was 6.8 hours (17% less than with the BacT/Alert platform

  14. An Iterative Maximum a Posteriori Estimation of Proficiency Level to Detect Multiple Local Likelihood Maxima

    Science.gov (United States)

    Magis, David; Raiche, Gilles

    2010-01-01

    In this article the authors focus on the issue of the nonuniqueness of the maximum likelihood (ML) estimator of proficiency level in item response theory (with special attention to logistic models). The usual maximum a posteriori (MAP) method offers a good alternative within that framework; however, this article highlights some drawbacks of its…

  15. Vaginal Fluid hCG Levels for Detecting Premature Rupture of Membranes

    Directory of Open Access Journals (Sweden)

    T. Artimani

    2004-04-01

    Full Text Available The aim of this study was to determine whether there is any different in hCG levels of vaginal fluids from normal pregnant women, women with confirmed PROM and with suspected PROM. After irrigating the posterior vaginal fornix with 3 ml of sterile saline and procuring vaginal washing , we measured hCG levels. Samples were analyzed from 38 normal pregnant women , 31 women with confirmed PROM , 28 women with suspected PROM. The mean of vaginal fluid hCG levels of normal pregnant women were 11.2 (0.00-98.6 mIu/ml. That of women with PROM was 140.2 (0.5 , 390.1 and that of women with suspected PROM was 21.5 (0.0 , 143.9. Sensivity was 80%, specility 83% , positive predictive value 73.7% , negative predictive value 88.1% , using a cut-value 20. It was concluded that the hCG level in vaginal fluid is a marker of PROM during third trimester.

  16. MemPick : High-level data structure detection in C/C++ binaries

    NARCIS (Netherlands)

    Haller, Istvan; Slowinska, Asia; Bos, Herbert

    2013-01-01

    Many existing techniques for reversing data structures in C/C++ binaries are limited to low-level programming constructs, such as individual variables or structs. Unfortunately, without detailed information about a program's pointer structures, forensics and reverse engineering are exceedingly hard.

  17. Carbon nano-tubes - what risks, what prevention?

    International Nuclear Information System (INIS)

    Ricaud, Myriam; Lafon, Dominique; Roos, Frederique

    2007-01-01

    Carbon nano-tubes are arousing considerable interest in both the research world and industry because of their exceptional intrinsic properties and dimensional characteristics. Health risks of nano-tubes have been little studied, although the general public is already aware of their existence on account of their numerous promising applications. Existing, sometimes extremely brief, publications only reveal insufficient data for assessing risks sustained due to carbon nano-tube exposure. Yet, the great interest aroused by these new chemicals would indicate strongly that the number of exposed workers will increase over the coming years. It therefore appears essential to review not only the characteristics and applications of carbon nano-tubes, but also the prevention means to be implemented during their handling. We recommend application of the principle of precaution and measures to keep the exposure level as low as possible until the significance of occupational exposure and the corresponding human health risks are better known and have been assessed. (authors)

  18. Laser-induced breakdown spectroscopy for the remote detection of explosives at level of fingerprints

    Science.gov (United States)

    Almaviva, S.; Palucci, A.; Lazic, V.; Menicucci, I.; Nuvoli, M.; Pistilli, M.; De Dominicis, L.

    2016-04-01

    We report the results of the application of Laser-Induced Breakdown Spectroscopy (LIBS) for the detection of some common military explosives and theirs precursors deposited on white varnished car's external and black car's internal or external plastic. The residues were deposited by an artificial silicon finger, to simulate material manipulation by terrorists when preparing a car bomb, leaving traces of explosives on the parts of a car. LIBS spectra were acquired by using a first prototype laboratory stand-off device, developed in the framework of the EU FP7 313077 project EDEN (End-user driven DEmo for CBRNe). The system operates at working distances 8-30 m and collects the LIBS in the spectral range 240-840 nm. In this configuration, the target was moved precisely in X-Y direction to simulate the scanning system, to be implemented successively. The system is equipped with two colour cameras, one for wide scene view and another for imaging with a very high magnification, capable to discern fingerprints on a target. The spectral features of each examined substance were identified and compared to those belonging to the substrate and the surrounding air, and those belonging to possible common interferents. These spectral differences are discussed and interpreted. The obtained results show that the detection and discrimination of nitro-based compounds like RDX, PETN, ammonium nitrate (AN), and urea nitrate (UN) from organic interfering substances like diesel, greasy lubricants, greasy adhesives or oils in fingerprint concentration, at stand-off distance of some meters or tenths of meters is feasible.

  19. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...

  20. Remote detection of air pollution stress to vegetation - Laboratory-level studies

    Science.gov (United States)

    Westman, Walter E.; Price, Curtis V.

    1987-01-01

    An experimental investigation of the role of leaf chemistry, anatomy, moisture content, and canopy density on spectral reflectance in healthy and pollution stressed western conifer needles and broad-leafed species of California coastal sage scrub is presented. Acid mist at a level of pH 2.0 is found to more severely effect chlorophyll loss and leaf death than ozone at a level of 0.2 ppm for a four-week period. Both pollutants cause water loss, affecting Bands 4 and 5 in nonlinear ways. The infrared bands initially rise as free water is lost, and subsequently, scattering and reflectance decline. The net effect is shown to be a reduction in TM 4/3 and a rise in TM 5/4 with pollution stress. Under more severe pollution stresses, the decline of leaf area indices due to accelerated leaf drop accentuates the expected TM 4/3 and TM 5/4 changes.

  1. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product ...

  2. Radioimmunoassay detection of levels of triiodothyronine and thyroxine in Mangalarga Marchador equine

    International Nuclear Information System (INIS)

    Viana, F.A.B.; Pessoa, J.M.; Biondini, J.

    1991-01-01

    Serum levels of triiodothyronine (T 3 ) and thyroxine (T 4 ) were determined in equine of Mangalarga Marchador breed through radioimmunoassay. Forty-two animals (17 males and 25 females), with age ranging from two to eighteen years, were utilized. The values recorded for males and females were, respectively: 101.68 ± 23.44 and 71.14 ± 18.82 ng/d l of T 3 (P 4 (P<0.05). (author). 10 refs, 1 tab

  3. Continuous liquid level detection based on two parallel plastic optical fibers in a helical structure

    Science.gov (United States)

    Zhang, Yingzi; Hou, Yulong; Zhang, Yanjun; Hu, Yanjun; Zhang, Liang; Gao, Xiaolong; Zhang, Huixin; Liu, Wenyi

    2018-02-01

    A simple and low-cost continuous liquid-level sensor based on two parallel plastic optical fibers (POFs) in a helical structure is presented. The change in the liquid level is determined by measuring the side-coupling power in the passive fiber. The side-coupling ratio is increased by just filling the gap between the two POFs with ultraviolet-curable optical cement, making the proposed sensor competitive. The experimental results show that the side-coupling power declines as the liquid level rises. The sensitivity and the measurement range are flexible and affected by the geometric parameters of the helical structure. A higher sensitivity of 0.0208 μW/mm is acquired for a smaller curvature radius of 5 mm, and the measurement range can be expanded to 120 mm by enlarging the screw pitch to 40 mm. In addition, the reversibility and temperature dependence are studied. The proposed sensor is a cost-effective solution offering the advantages of a simple fabrication process, good reversibility, and compensable temperature dependence.

  4. Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii

    Science.gov (United States)

    2012-01-01

    Background Immunomagnetic separation (IMS) and immunoassays are widely used for pathogen detection. However, novel technology platforms with highly selective antibodies are essential to improve detection sensitivity, specificity and performance. In this study, monoclonal antibodies (MAbs) against Internalin A (InlA) and p30 were generated and used on paramagnetic beads of varying diameters for concentration, as well as on fiber-optic sensor for detection. Results Anti-InlA MAb-2D12 (IgG2a subclass) was specific for Listeria monocytogenes and L. ivanovii, and p30-specific MAb-3F8 (IgM) was specific for the genus Listeria. At all bacterial concentrations (103–108 CFU/mL) tested in the IMS assay; the 1-μm diameter MyOne beads had significantly higher capture efficiency (P Listeria antibody (9 %). Furthermore, capture efficiency for MyOne-2D12 was highly specific for L. monocytogenes and L. ivanovii. Subsequently, we captured L. monocytogenes by MyOne-2D12 and MyOne-3F8 from hotdogs inoculated with mono- or co-cultures of L. monocytogenes and L. innocua (10–40 CFU/g), enriched for 18 h and detected by fiber-optic sensor and confirmed by plating, light-scattering, and qPCR assays. The detection limit for L. monocytogenes and L. ivanovii by the fiber-optic immunosensor was 3 × 102 CFU/mL using MAb-2D12 as capture and reporter antibody. Selective media plating, light-scattering, and qPCR assays confirmed the IMS and fiber-optic results. Conclusions IMS coupled with a fiber-optic sensor using anti-InlA MAb is highly specific for L. monocytogenes and L. ivanovii and enabled detection of these pathogens at low levels from buffer or food. PMID:23176167

  5. ppt level detection of samarium(III) with a coated graphite sensor based on an antibiotic.

    Science.gov (United States)

    Ganjali, Mohammad Reza; Rezapour, Morteza; Pourjavid, Mohammad Reza; Haghgoo, Soheila

    2004-07-01

    N-[2-[4-[[[(Cyclohexylamino)carbonyl]amino]sulfonyl]phenyl]ethyl]-5-methyl pyrazine carboxamide (glipizid) was explored as an electro-active material for preparing a polymeric membrane-based sensor selective to samarium ions. The membrane incorporated 30% poly(vinyl chloride) (PVC), 53% benzyl acetate (BA), 11% glipizid and 6% sodium tetraphenyl borate. When coated on the surface of a graphite electrode, it exhibits Nernstian responses in the concentration range of 1.0 x 10(-5) to 1.0 x 10(-10) M, with a detection limit of 8.0 x 10(-11)M samarium. The electrode shows high selectivity towards samarium over several cations (alkali, alkaline earth, transition and heavy metal ions), and specially lanthanide ions. The proposed sensor has a very short response time (pH range for at least ten weeks. It was used as an indicator electrode in potentiometric titration of Sm(III) ions with an EDTA solution, and for determination of samarium in binary and ternary mixtures.

  6. Detection of Serum IgG4 Levels in Patients with IgG4-Related Disease and Other Disorders

    Science.gov (United States)

    Wang, Chenqiong; Wu, Xuefen; Miao, Ye; Xiong, Hui; Bai, Lin; Dong, Lingli

    2015-01-01

    Objective Elevated serum IgG4 levels are an important hallmark for diagnosing IgG4-related disease (IgG4-RD), but can also be observed in other diseases. This study aimed to compare two different testing methods for IgG4: ELISA and nephelometric assay. Both assays were used to measure serum IgG4 concentrations, and to assess the prevalence of high serum IgG4 levels in both IgG4-RD and non-IgG4-RD diseases. Methods A total of 80 serum samples were tested using the nephelometric assay and ELISA method that we established. Serum IgG4 concentrations were determined by ELISA for 957 patients with distinct diseases, including 12 cases of IgG4-RD and 945 cases of non-IgG4-RD. Results IgG4 levels from 80 selected serum samples examined by ELISA were in agreement with those detected using the nephelometry assay. Meanwhile, the serum IgG4 concentrations measured by ELISA were also consistent with the clinical diagnoses of patients with IgG4-RD during the course of disease. The Elevated levels of serum IgG4 (>1.35 g/L) were detected in all IgG4-RD (12/12) patients, and the prevalence of high IgG4 serum levels was 3.39% in non-IgG4-RD cases. Among them, the positive rates of serum IgG4 were 2.06% in patients with carcinoma and 6.3% in patients with other non-IgG4 autoimmune diseases. Conclusion Our established ELISA method is a reliable and convenient technique, which could be extensively used in the clinic to measure serum IgG4 levels. High levels of IgG4 were observed in IgG4-RD. However, this phenomenon could also be observed in other diseases, such as carcinomas and other autoimmune diseases. Thus, a diagnosis of IgG4 disease cannot only be dependent on the detection of elevated serum IgG4 levels. PMID:25885536

  7. Ship Detection in Optical Remote Sensing Images Based on Wavelet Transform and Multi-Level False Alarm Identification

    Directory of Open Access Journals (Sweden)

    Fang Xu

    2017-09-01

    Full Text Available Ship detection by Unmanned Airborne Vehicles (UAVs and satellites plays an important role in a spectrum of related military and civil applications. To improve the detection efficiency, accuracy, and speed, a novel ship detection method from coarse to fine is presented. Ship targets are viewed as uncommon regions in the sea background caused by the differences in colors, textures, shapes, or other factors. Inspired by this fact, a global saliency model is constructed based on high-frequency coefficients of the multi-scale and multi-direction wavelet decomposition, which can characterize different feature information from edge to texture of the input image. To further reduce the false alarms, a new and effective multi-level discrimination method is designed based on the improved entropy and pixel distribution, which is robust against the interferences introduced by islands, coastlines, clouds, and shadows. The experimental results on optical remote sensing images validate that the presented saliency model outperforms the comparative models in terms of the area under the receiver operating characteristic curves core and the accuracy in the images with different sizes. After the target identification, the locations and the number of the ships in various sizes and colors can be detected accurately and fast with high robustness.

  8. CEA, SCC and NSE levels in exhaled breath condensate--possible markers for early detection of lung cancer.

    Science.gov (United States)

    Zou, Yingchang; Wang, Lin; Zhao, Cong; Hu, Yanjie; Xu, Shan; Ying, Kejing; Wang, Ping; Chen, Xing

    2013-12-01

    Lung cancer (LC) is the leading cause of cancer-related death. The sensitive and non-invasive diagnostic tools in the early stage are still poor. We present a pilot study on the early diagnosis of LC by detecting markers in exhaled breath condensate (EBC). EBC samples were collected from 105 patients with LC and 56 healthy controls. We applied chemiluminescence immunoassay to detect CEA (carcinoembryonic antigen), SCC (squamous cell carcinoma) antigen and NSE (neuron specific enolase) in EBC and serum. Concentrations of markers were compared between independent groups and subgroups. A significantly higher concentration level of each marker was found in patients with LC than healthy controls. The areas under curve of receiver operating characteristic (ROC) curves were 0.800, 0.771, 0.659, 0.679, 0.636 and 0.626 for EBC-CEA, serum-CEA, EBC-SCC, serum-SCC, EBC-NSE and serum-NSE, respectively. Markers in EBC had a higher positive rate (PR) and were more specific to histologic types than markers in serum. In addition, multivariate analysis was performed to evaluate the association of presenting markers with the stages of non-small cell lung cancer (NSCLC). EBC-CEA showed the best predictive characteristic (p tumor markers in EBC may have a better diagnostic performance for LC than those in serum. With further investigation on the combination of markers in EBC, detection of EBC could probably be a novel and non-invasive method to detect NSCLC earlier.

  9. Detection and quantification capabilities and the evaluation of low-level data. Some international perspectives and continuing challenges

    International Nuclear Information System (INIS)

    Currie, L.A.

    2000-01-01

    The minimum amounts or concentrations of an analyte that may be detected or quantified by a specific measurement process (MP) represent fundamental performance characteristics that are vital for planning experiments and designing MPs to meet external specifications. Following many years of conceptual and terminological disarray regarding detection and quantification limits, the International Union of Pure and Applied Chemistry (IUPAC, 1995) and the International Organization for Standardization (ISO, 1997) developed a harmonized position and documents that provide a basis for international consensus on this topic. During the past year, the International Atomic Energy Agency (IAEA) has developed a TECDOC on Quantifying Uncertainty in Nuclear Analytical Measurements that treats 'Uncertainty in Measurements Close to Detection Limits' from the perspective of the UIPAC and ISO recommendations. The first part of this article serves as a review of these international developments during the last quinquennium of the twentieth century. Despite the achievement of international consensus on these contentious matters, many challenges remain. One quickly discovers this in the practical world of high stakes, ultra-trace analysis, where complications are introduced by the nature and distribution of the blank, the variance function (σ vs. concentration), non-linear models, and hidden algorithms and data evaluation/reporting schemes. Some of these issues are illustrated through a multidisciplinary case study of fossil and biomass burning aerosol at extremely low levels in the polar atmosphere and cryosphere, and by biased reporting practices for 'non-detects.' (author)

  10. Electrochemical Detection of Ultratrace (Picomolar) Levels of Hg2+ Using a Silver Nanoparticle-Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Suherman, Alex L; Ngamchuea, Kamonwad; Tanner, Eden E L; Sokolov, Stanislav V; Holter, Jennifer; Young, Neil P; Compton, Richard G

    2017-07-05

    Ultratrace levels of Hg 2+ have been quantified by undertaking linear sweep voltammetry with a silver nanoparticle-modified glassy carbon electrode (AgNP-GCE) in aqueous solutions containing Hg 2+ . This is achieved by monitoring the change in the silver stripping peak with Hg 2+ concentration resulting from the galvanic displacement of silver by mercury: Ag(np) + 1/2Hg 2+ (aq) → Ag + (aq) + 1/2Hg(l). This facile and reproducible detection method exhibits an excellent linear dynamic range of 100.0 pM to 10.0 nM Hg 2+ concentration with R 2 = 0.982. The limit of detection (LoD) based on 3σ is 28 pM Hg 2+ , while the lowest detectable level for quantification purposes is 100.0 pM. This method is appropriate for routine environmental monitoring and drinking water quality assessment since the guideline value set by the US Environmental Protection Agency (EPA) for inorganic mercury in drinking water is 0.002 mg L -1 (10 nM).

  11. The Polypyrrole/Multiwalled Carbon Nanotube Modified Au Microelectrode for Sensitive Electrochemical Detection of Trace Levels of Pb2+

    Directory of Open Access Journals (Sweden)

    Xuxing Zhu

    2017-03-01

    Full Text Available The sensitive detection of trace levels of heavy metal ions such as Pb2+ is of significant importance due to the health hazard they pose. In this paper, we present a polypyrrole (PPy/multiwalled carbon nanotube (MWCNT-modified Au microelectrode. The PPy/MWCNT composite film was electrochemically deposited on the microelectrode by cyclic voltammetry (CV. The composite film was investigated by scanning electron microscope (SEM, CV, and electrochemical impedance spectroscopy (EIS, and the results show that this film presents a uniformly distributed and web-like entangled structure and good conductivity. Differential pulse stripping voltammetry (DPSV was applied to determine trace levels of Pb2+. Experimental conditions including accumulation time and deposition potential were optimized. In optimal conditions, the PPy/MWCNT-modified microelectrode performed sensitive detection of Pb2+ within a concentration range from 1 to 100 μg·L−1, and the limit of detection was 0.65 μg·L−1 at the signal-to-noise ratio of three.

  12. Transient electromagnetic detecting technique for water hazard to the roof of fully mechanized sub-level caving face

    Energy Technology Data Exchange (ETDEWEB)

    Yu Jing-cun; Liu Zhi-xin; Tang Jin-yun; Wang Yang-zhou [China University of Mining & Technology, Xuzhou (China). School of Resources and Geoscience Science

    2007-07-01

    In coal mining, with the popularization of fully mechanized equipment, the roof control becomes more and more important. The development of water body in roofs may seriously affect the efficiency of the fully mechanized mining, quite possible to cause an accident in working face. Therefore, to make clear the position of a water body located in roofs so as to provide a basis for water drainage borehole layout is an urgent problem to be solved by geophysical exploration. Based on the transient electromagnetic theory and the technique used on ground surface and on the actual situation in underground coal mines, a square superimposed loop device (2 m in side length) which is non-contact and multi-turns was developed to detect the water bodies in coal seam roofs. Based on the 'smoke ring effect' theory and the physical simulation criterion, the mathematical model for calculating the apparent resistivity of full space transient electromagnetism is deduced. In addition, the water detection technology for the roof of fully mechanized sub-level caving face was researched and applied in several coal mines, which has been verified by boreholes and mining practice, indicating that this method is very effective in detecting the water source in the roof of fully mechanized sub-level caving face. 11 refs., 5 figs.

  13. Nano Copper Induces Apoptosis in PK-15 Cells via a Mitochondria-Mediated Pathway.

    Science.gov (United States)

    Zhang, Hui; Chang, Zhenyu; Mehmood, Khalid; Abbas, Rao Zahid; Nabi, Fazul; Rehman, Mujeeb Ur; Wu, Xiaoxing; Tian, Xinxin; Yuan, Xiaodan; Li, Zhaoyang; Zhou, Donghai

    2018-01-01

    Nano-sized copper particles are widely used in various chemical, physical, and biological fields. However, earlier studies have shown that nano copper particles (40-100 μg/mL) can induce cell toxicity and apoptosis. Therefore, this study was conducted to investigate the role of nano copper in mitochondrion-mediated apoptosis in PK-15 cells. The cells were treated with different doses of nano copper (20, 40, 60, and 80 μg/mL) to determine the effects of apoptosis using acridine orange/ethidium bromide (AO/EB) fluorescence staining and a flow cytometry assay. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the PK-15 cells were examined using commercially available kits. Moreover, the mRNA levels of the Bax, Bid, Caspase-3, and CYCS genes were assessed by real-time PCR. The results revealed that nano copper exposure induced apoptosis and changed the mitochondrial membrane potential. In addition, nano copper significantly altered the levels of the Bax, Bid, Caspase-3, and CYCS genes at a concentration of 40 μg/mL. To summarize, nano copper significantly (P nano copper can play an important role in inducing the apoptotic pathway in PK-15 cells, which may be the mechanism by which nano copper induces nephrotoxicity.

  14. Bioinspiration From Nano to Micro Scales

    CERN Document Server

    2012-01-01

    Methods in bioinspiration and biomimicking have been around for a long time. However, due to current advances in modern physical, biological sciences, and technologies, our understanding of the methods have evolved to a new level. This is due not only to the identification of mysterious and fascinating phenomena but also to the understandings of the correlation between the structural factors and the performance based on the latest theoretical, modeling, and experimental technologies. Bioinspiration: From Nano to Micro Scale provides readers with a broad view of the frontiers of research in the area of bioinspiration from the nano to macroscopic scales, particularly in the areas of biomineralization, antifreeze protein, and antifreeze effect. It also covers such methods as the lotus effect and superhydrophobicity, structural colors in animal kingdom and beyond, as well as behavior in ion channels. A number of international experts in related fields have contributed to this book, which offers a comprehensive an...

  15. Dynamics of magnetic nano-particle assembly

    International Nuclear Information System (INIS)

    Kondratyev, V N

    2010-01-01

    Ferromagnetically coupled nano-particle assembly is analyzed accounting for inter- and intra- particle electronic structures within the randomly jumping interacting moments model including quantum fluctuations due to the discrete levels and disorder. At the magnetic jump anomalies caused by quantization the magnetic state equation and phase diagram are found to indicate an existence of spinodal regions and critical points. Arrays of magnetized nano-particles with multiple magnetic response anomalies are predicted to display some specific features. In a case of weak coupling such arrays exhibit the well-separated instability regions surrounding the anomaly positions. With increasing coupling we observe further structure modification, plausibly, of bifurcation type. At strong coupling the dynamical instability region become wide while the stable regime arises as a narrow islands at small disorders. It is shown that exploring correlations of magnetic noise amplitudes represents convenient analytical tool for quantitative definition, description and study of supermagnetism, as well as self-organized criticality.

  16. Nano-photonics: past and present

    Science.gov (United States)

    Szu, Harold

    2010-04-01

    Nanotech is at the scale of 10-9 meters, located at the mesocopic transition phase, which can take both classical mechanics (CM) and quantum mechanics (QM) descriptions bridging ten orders of magnitude phenomena, between the microscopic world of a single atom at 10-10 meters with the macroscopic world at meters. However, QM principles aid the understanding of any unusual property at the nanotech level. The other major difference between nano-photonics and other forms of optics is that the nano-scale is not very 'hands on'. For the most part, we will not be able to see the components with our naked eyes, but will be required to use some nanotech imaging tools, as follows:

  17. Automated detection of macular drusen using geometric background leveling and threshold selection.

    Science.gov (United States)

    Smith, R Theodore; Chan, Jackie K; Nagasaki, Takayuki; Ahmad, Umer F; Barbazetto, Irene; Sparrow, Janet; Figueroa, Marta; Merriam, Joanna

    2005-02-01

    Age-related macular degeneration (ARMD) is the most prevalent cause of visual loss in patients older than 60 years in the United States. Observation of drusen is the hallmark finding in the clinical evaluation of ARMD. To segment and quantify drusen found in patients with ARMD using image analysis and to compare the efficacy of image analysis segmentation with that of stereoscopic manual grading of drusen. Retrospective study. University referral center.Patients Photographs were randomly selected from an available database of patients with known ARMD in the ongoing Columbia University Macular Genetics Study. All patients were white and older than 60 years. Twenty images from 17 patients were selected as representative of common manifestations of drusen. Image preprocessing included automated color balancing and, where necessary, manual segmentation of confounding lesions such as geographic atrophy (3 images). The operator then chose among 3 automated processing options suggested by predominant drusen type. Automated processing consisted of elimination of background variability by a mathematical model and subsequent histogram-based threshold selection. A retinal specialist using a graphic tablet while viewing stereo pairs constructed digital drusen drawings for each image. The sensitivity and specificity of drusen segmentation using the automated method with respect to manual stereoscopic drusen drawings were calculated on a rigorous pixel-by-pixel basis. The median sensitivity and specificity of automated segmentation were 70% and 81%, respectively. After preprocessing and option choice, reproducibility of automated drusen segmentation was necessarily 100%. Automated drusen segmentation can be reliably performed on digital fundus photographs and result in successful quantification of drusen in a more precise manner than is traditionally possible with manual stereoscopic grading of drusen. With only minor preprocessing requirements, this automated detection

  18. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    Science.gov (United States)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  19. Detection of interferon alpha protein reveals differential levels and cellular sources in disease.

    Science.gov (United States)

    Rodero, Mathieu P; Decalf, Jérémie; Bondet, Vincent; Hunt, David; Rice, Gillian I; Werneke, Scott; McGlasson, Sarah L; Alyanakian, Marie-Alexandra; Bader-Meunier, Brigitte; Barnerias, Christine; Bellon, Nathalia; Belot, Alexandre; Bodemer, Christine; Briggs, Tracy A; Desguerre, Isabelle; Frémond, Marie-Louise; Hully, Marie; van den Maagdenberg, Arn M J M; Melki, Isabelle; Meyts, Isabelle; Musset, Lucile; Pelzer, Nadine; Quartier, Pierre; Terwindt, Gisela M; Wardlaw, Joanna; Wiseman, Stewart; Rieux-Laucat, Frédéric; Rose, Yoann; Neven, Bénédicte; Hertel, Christina; Hayday, Adrian; Albert, Matthew L; Rozenberg, Flore; Crow, Yanick J; Duffy, Darragh

    2017-05-01

    Type I interferons (IFNs) are essential mediators of antiviral responses. These cytokines have been implicated in the pathogenesis of autoimmunity, most notably systemic lupus erythematosus (SLE), diabetes mellitus, and dermatomyositis, as well as monogenic type I interferonopathies. Despite a fundamental role in health and disease, the direct quantification of type I IFNs has been challenging. Using single-molecule array (Simoa) digital ELISA technology, we recorded attomolar concentrations of IFNα in healthy donors, viral infection, and complex and monogenic interferonopathies. IFNα protein correlated well with functional activity and IFN-stimulated gene expression. High circulating IFNα levels were associated with increased clinical severity in SLE patients, and a study of the cellular source of IFNα protein indicated disease-specific mechanisms. Measurement of IFNα attomolar concentrations by digital ELISA will enhance our understanding of IFN biology and potentially improve the diagnosis and stratification of pathologies associated with IFN dysregulation. © 2017 Rodero et al.

  20. From Remotely Sensed Vegetation Onset to Sowing Dates: Aggregating Pixel-Level Detections into Village-Level Sowing Probabilities

    Directory of Open Access Journals (Sweden)

    Eduardo Marinho

    2014-11-01

    Full Text Available Monitoring the start of the crop season in Sahel provides decision makers with valuable information for an early assessment of potential production and food security threats. Presently, the most common method for the estimation of sowing dates in West African countries consists of applying given thresholds on rainfall estimations. However, the coarse spatial resolution and the possible inaccuracy of these estimations are limiting factors. In this context, the remote sensing approach, which consists of deriving green-up onset dates from satellite remote sensing data, appears as an interesting alternative. It builds upon a novel statistic model that translates vegetation onset detections derived from MODIS time series into sowing probabilities at the village level. Results for Niger show that this approach outperforms the standard method adopted in the region based on rainfall thresholds.

  1. Comparison of level discrimination, increment detection, and comodulation masking release in the audio- and envelope-frequency domains

    DEFF Research Database (Denmark)

    Nelson, Paul C.; Ewert, Stephan; Carney, Laurel H.

    2007-01-01

    In general, the temporal structure of stimuli must be considered to account for certain observations made in detection and masking experiments in the audio-frequency domain. Two such phenomena are (1) a heightened sensitivity to amplitude increments with a temporal fringe compared to gated level......-frequency domain. Pure-tone carrier amplitude-modulation (AM) depth-discrimination thresholds were found to be similar using both traditional gated stimuli and using a temporally modulated fringe for a fixed standard depth (ms=0.25) and a range of AM frequencies (4-64 Hz). In a second experiment, masked sinusoidal...... AM detection thresholds were compared in conditions with and without slow and regular fluctuations imposed on the instantaneous masker AM depth. Release from masking was obtained only for very slow masker fluctuations (less than 2 Hz). A physiologically motivated model that effectively acts...

  2. Low-level detection and quantification of Plutonium(III, IV, V,and VI) using a liquid core waveguide

    International Nuclear Information System (INIS)

    Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

    2003-01-01

    Understanding the aqueous chemistry of plutonium, in particular in environmental conditions, is often complicated by plutonium's complex redox chemistry. Because plutonium possesses four oxidation states, all of which can coexist in solution, a reliable method for the identification of these oxidation states is needed. The identification of plutonium oxidation states at low levels in aqueous solution is often accomplished through an indirect determination using series of liquid-liquid extraction procedures using oxidation state specific reagents such as HDEHP and TTA. While these methods, coupled with radioactive counting techniques provide superior limits of detection they may influence the plutonium redox equilibrium, are time consuming, waste intensive and costly. Other analytical methods such as mass spectrometry and radioactive counting as stand alone methods provide excellent detection limits but lack the ability to discriminate between the oxidation states of the plutonium ions in solution

  3. Detection of the Interdependence of Economic Development and Environmental Performance at the Industry Level

    Directory of Open Access Journals (Sweden)

    Nina Ilysheva

    2017-12-01

    Full Text Available The aim of the research is to identify the connection between economic development and environmental performance at the industrial level. The subject of the research is a set of processes of correlation analysis of economic and environmental indicators of the oil and gas producing industry. The urgency of the task of mitigating anthropogenic climate change caused by rising concentrations of greenhouse gases in the atmosphere is proven. Statistical data on emissions for the past 15 years are analyzed, change trends are identified. The authors establish the cause of the growth in greenhouse gas emissions, the energy sector being the main contributor. A description of the mechanism of the effect of greenhouse gases on the climate system is provided. The requirements set by international agreements and Russian documents aimed at reducing greenhouse gas emissions are unified. The main gases that cause the greenhouse effect are identified, their classification and brief characteristics are provided in the article. The necessity to promote the monitoring of greenhouse gas emissions and reporting system at the global level is substantiated. The purpose of the advanced metering system is to obtain relevant and reliable data for timely response to and planned reduction of greenhouse gas emissions. In accordance with the recommendations of the international standard for non-financial reporting, GRI, the effectiveness of reducing greenhouse gas emissions should be disclosed in the aspect of “Emissions”. The progress of economic science has made it important to take into account the natural component, and the value of bioresources will increase over time, therefore, the company's economic development can not be isolated. In accordance with the hypothesis, it is assumed that the economy and ecology are interrelated and affect each other.

  4. Interrogating Host-virus Interactions and Elemental Transfer Using NanoSIMS

    Science.gov (United States)

    Pasulka, A.; Thamatrakoln, K.; Poulos, B.; Bidle, K. D.; Sullivan, M. B.; Orphan, V. J.

    2016-02-01

    Marine viruses (bacteriophage and eukaryotic viruses) impact microbial food webs by influencing microbial community structure, carbon and nutrient flow, and serving as agents of gene transfer. While the collective impact of viral activity has become more apparent over the last decade, there is a growing need for single-cell and single-virus level measurements of the associated carbon and nitrogen transfer, which ultimately shape the biogeochemical impact of viruses in the upper ocean. Stable isotopes have been used extensively for understanding trophic relationships and elemental cycling in marine food webs. While single-cell isotope approaches such as nanoscale secondary ion mass spectrometry (nanoSIMS) have been more readily used to study trophic interactions between microorganisms, isotopic enrichment in viruses has not been described. Here we used nanoSIMS to quantify the transfer of stable isotopes (13C and 15N) from host to individual viral particles in two distinct unicellular algal-virus model systems. These model systems represent a eukaryotic phytoplankton (Emiliania huxleyi strain CCMP374) and its 200nm coccolithovirus (EhV207), as well as a cyanobacterial phytoplankton (Synechococcus WH8101) and its 80nm virus (Syn1). Host cells were grown on labeled media for multiple generations, subjected to viral infection, and then viruses were harvested after lysis. In both cases, nanoSIMS measurements were able to detect 13C and 15N in the resulting viral particles significantly above the background noise. The isotopic enrichment in the viral particles mirrored that of the host. Through use of these laboratory model systems, we quantified the sensitivity (ion counts), spatial resolution, and reproducibility, including sources of methodological and biological variability, in stable isotope incorporation into viral particles. Our findings suggest that nanoSIMS can be successfully employed to directly probe virus-host interactions at the resolution of individual

  5. Interconnecting wearable devices with nano-biosensing implants through optical wireless communications

    Science.gov (United States)

    Johari, Pedram; Pandey, Honey; Jornet, Josep M.

    2018-02-01

    Major advancements in the fields of electronics, photonics and wireless communication have enabled the development of compact wearable devices, with applications in diverse domains such as fitness, wellness and medicine. In parallel, nanotechnology is enabling the development of miniature sensors that can detect events at the nanoscale with unprecedented accuracy. On this matter, in vivo implantable Surface Plasmon Resonance (SPR) nanosensors have been proposed to analyze circulating biomarkers in body fluids for the early diagnosis of a myriad of diseases, ranging from cardiovascular disorders to different types of cancer. In light of these results, in this paper, an architecture is proposed to bridge the gap between these two apparently disjoint paradigms, namely, the commercial wearable devices and the advanced nano-biosensing technologies. More specifically, this paper thoroughly assesses the feasibility of the wireless optical intercommunications of an SPR-based nanoplasmonic biochip -implanted subcutaneously in the wrist-, with a nanophotonic wearable smart band which is integrated by an array of nano-lasers and photon-detectors for distributed excitation and measurement of the nanoplasmonic biochip. This is done through a link budget analysis which captures the peculiarities of the intra-body optical channel at (sub) cellular level, the strength of the SPR nanosensor reflection, as well as the capabilities of the nanolasers (emission power, spectrum) and the nano photon-detectors (sensitivity and noise equivalent power). The proposed analysis guides the development of practical communication designs between the wearable devices and nano-biosensing implants, which paves the way through early-stage diagnosis of severe diseases.

  6. The many faces of nano in newspaper reporting

    Science.gov (United States)

    Boholm, Max; Boholm, Åsa

    2012-02-01

    The morpheme nano in languages such as Swedish and English is a constituent of many words. This article linguistically analyses the meaning potential of nano by focusing on word use in a Swedish newspaper corpus comprising 2,564 articles (1.6 million words) covering a 22-year period (1988-2010). Close to 400 word forms having nano as a constituent have been identified and analyzed. The results suggest that nano covers a broad and heterogeneous conceptual field: (i) as a prefix of the SI system; (ii) in relation to the scientific activities of nanoscience and nanotechnology, including their sub-processes and actors; and (iii) in relation to objects. The identified meanings of nano, besides the standard definition (i.e. `billionth part' in relation to SI units), are `operating at the nanometre level' in relation to activities and their actors and `nanometre sized' and `nanotechnological' in relation to objects; in addition, the less precise and non-technical meaning `very small' is identified. We discuss the implications of the findings for a hypothesis about media influence on public understanding of technology, suggesting that repeated findings in Europe and the USA of little self-reported understanding and knowledge of nanotechnology or nanoscience among the public make sense in light of the polysemy of nano reflected in its broad variety of verbal forms and usages.

  7. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  8. Techniques for detecting and determining risks from low-level radiation

    International Nuclear Information System (INIS)

    Boice, J.D.

    1980-01-01

    Epidemiology is the study of disease in man. In evaluating radiation hazards, analytic studies have utilized the cohort type of investigation (where persons exposed and not exposed to radiation are followed forward in time for determination of disease experience) or case-control approaches (where persons with and without a specific disease are evaluated for previous exposure to radiation). Most radiation studies have evaluated cohorts (e.g., radiologists), although important case-control studies have been conducted (e.g., childhood leukemia as related to prenatal x ray). At its best, epidemiology is capable fo evaluating relative risks (RR) on the order of 1.4 (i.e., a 40% relative excess). However, the RRs of interest following low doses of radiation (1 rad) are on the order of 1.02-1.002. Thus, not much should be anticipated from direct observations at 1 rad, and indirect approaches must be taken to estimate low-dose effects. Such indirect approaches include evaluating 1) populations exposed to a range of doses, both low and high, where interpolation models can be reasonably applied to estimate low-dose effects; and 2) populations exposed to fractionated doses over a long period of time where the resulting dose-effect relationship theoretically should be linear and the estimation of low-level health effects facilitated

  9. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  10. DETECTING LOW-LEVEL SYNTHESIS IMPURITIES IN MODIFIED PHOSPHOROTHIOATE OLIGONUCLEOTIDES USING LIQUID CHROMATOGRAPHY – HIGH RESOLUTION MASS SPECTROMETRY

    Science.gov (United States)

    Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.

    2010-01-01

    Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts

  11. Synthesis of nano-structured materials by laser-ablation and their application to sensors

    International Nuclear Information System (INIS)

    Okada, T.; Suehiro, J.

    2007-01-01

    We describe the synthesis of nano-structured materials of ZnO and Pd by laser ablation and their applications to sensors. The synthesis of ZnO nano-wires was performed by nano-particle assisted deposition (NPAD) where nano-crystals were grown with nano-particles generated by laser-ablating a ZnO sintered target in an Ar background gas. The synthesized ZnO nano-wires were characterized with a scanning electron microscopy and the photoluminescent characteristics were examined under an excitation with the third harmonics of a Nd:YAG laser. The nano-wires with a diameter in the range from 50 to 150 nm and a length of up to 5 μm were taken out of the substrate by laser blow-off technique and/or sonication. It was confirmed that the nano-wires showed the stimulated emission under optical pumping, indicating a high quality of the crystalinity. Pd nano-particles were generated by laser-ablating a Pd plate in pure water. The transmission electron microscope observation revealed that Pd nano-particles with a diameter in the range from 3 nm to several tens of nanometers were produced. Using these nano-structured materials, we successfully fabricated sensors by the dielectrophoresis techniques. In the case of the ultraviolet photosensor, a detection sensitivity of 10 nW/cm 2 was achieved and in the case of hydrogen sensing, the response time of less than 10 s has been demonstrated with Pd nano-particles

  12. Detecting anthropogenic footprints in regional and global sea level rise since 1900

    Science.gov (United States)

    Dangendorf, S.; Marcos, M.; Piecuch, C. G.; Jensen, J.

    2015-12-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) is rising since the late 19th century, it remains unclear how much of this rise is due to natural variability or anthropogenic forcing. Distinguishing both contributions requires an extensive knowledge about the persistence of natural high and low stands in GMSL and LMSL. This is challenging, since observational time series represent the superposition of various processes with different spectral properties. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL (corrected for vertical land motion) into a slowly varying volumetric (mass and density changes) and a more rapidly changing atmospheric component. Based on a combination of spectral analyses of tide gauge records, barotropic and baroclinic ocean models and numerical Monte-Carlo experiments, we find that in records where transient atmospheric processes dominate the spectra, the persistence of natural volumetric changes tends to be underestimated. If each component is assessed separately, natural centennial trends are locally up to ~1.0 mm/yr larger than in case of an integrated assessment, therefore erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin.

  13. Strengthening the diagnostic capacity to detect Bio Safety Level 3 organisms in unusual respiratory viral outbreaks.

    Science.gov (United States)

    van Asten, Liselotte; van der Lubben, Mariken; van den Wijngaard, Cees; van Pelt, Wilfrid; Verheij, Robert; Jacobi, Andre; Overduin, Pieter; Meijer, Adam; Luijt, Dirk; Claas, Eric; Hermans, Mirjam; Melchers, Willem; Rossen, John; Schuurman, Rob; Wolffs, Petra; Boucher, Charles; Bouchier, Charles; Schirm, Jurjen; Kroes, Louis; Leenders, Sander; Galama, Joep; Peeters, Marcel; van Loon, Anton; Stobberingh, Ellen; Schutten, Martin; Koopmans, Marion

    2009-07-01

    Experience with a highly pathogenic avian influenza outbreak in the Netherlands (2003) illustrated that the diagnostic demand for respiratory viruses at different biosafety levels (including BSL3), can increase unexpectedly and dramatically. We describe the measures taken since, aimed at strengthening national laboratory surge capacity and improving preparedness for dealing with diagnostic demand during outbreaks of (emerging) respiratory virus infections, including pandemic influenza virus. Academic and peripheral medical-microbiological laboratories collaborated to determine minimal laboratory requirements for the identification of viruses in the early stages of a pandemic or a large outbreak of avian influenza virus. Next, an enhanced collaborative national network of outbreak assistance laboratories (OAL) was set up. An inventory was made of the maximum diagnostic throughput that this network can deliver in a period of intensified demand. For an estimate of the potential magnitude of this surge demand, historical counts were calculated from hospital- and physician-based registries of patients presenting with respiratory symptoms. Number of respiratory physician-visits ranged from 140,000 to 615,000 per month and hospitalizations ranged from 3000 to 11,500 per month. The established OAL-network provides rapid diagnostic response with agreed quality requirements and a maximum throughput capacity of 1275 samples/day (38,000 per month), assuming other routine diagnostic work needs to be maintained. Thus surge demand for diagnostics for hospitalized cases (if not distinguishable from other respiratory illness) could be handled by the OAL network. Assessing etiology of community acquired acute respiratory infection however, may rapidly exceed the capacity of the network. Therefore algorithms are needed for triaging for laboratory diagnostics; currently this is not addressed in pandemic preparedness plans.

  14. Detection of alternative splice variants at the proteome level in Aspergillus flavus.

    Science.gov (United States)

    Chang, Kung-Yen; Georgianna, D Ryan; Heber, Steffen; Payne, Gary A; Muddiman, David C

    2010-03-05

    Identification of proteins from proteolytic peptides or intact proteins plays an essential role in proteomics. Researchers use search engines to match the acquired peptide sequences to the target proteins. However, search engines depend on protein databases to provide candidates for consideration. Alternative splicing (AS), the mechanism where the exon of pre-mRNAs can be spliced and rearranged to generate distinct mRNA and therefore protein variants, enable higher eukaryotic organisms, with only a limited number of genes, to have the requisite complexity and diversity at the proteome level. Multiple alternative isoforms from one gene often share common segments of sequences. However, many protein databases only include a limited number of isoforms to keep minimal redundancy. As a result, the database search might not identify a target protein even with high quality tandem MS data and accurate intact precursor ion mass. We computationally predicted an exhaustive list of putative isoforms of Aspergillus flavus proteins from 20 371 expressed sequence tags to investigate whether an alternative splicing protein database can assign a greater proportion of mass spectrometry data. The newly constructed AS database provided 9807 new alternatively spliced variants in addition to 12 832 previously annotated proteins. The searches of the existing tandem MS spectra data set using the AS database identified 29 new proteins encoded by 26 genes. Nine fungal genes appeared to have multiple protein isoforms. In addition to the discovery of splice variants, AS database also showed potential to improve genome annotation. In summary, the introduction of an alternative splicing database helps identify more proteins and unveils more information about a proteome.

  15. A hospital-level cost-effectiveness analysis model for toxigenic Clostridium difficile detection algorithms.

    Science.gov (United States)

    Verhoye, E; Vandecandelaere, P; De Beenhouwer, H; Coppens, G; Cartuyvels, R; Van den Abeele, A; Frans, J; Laffut, W

    2015-10-01

    Despite thorough analyses of the analytical performance of Clostridium difficile tests and test algorithms, the financial impact at hospital level has not been well described. Such a model should take institution-specific variables into account, such as incidence, request behaviour and infection control policies. To calculate the total hospital costs of different test algorithms, accounting for days on which infected patients with toxigenic strains were not isolated and therefore posed an infectious risk for new/secondary nosocomial infections. A mathematical algorithm was developed to gather the above parameters using data from seven Flemish hospital laboratories (Bilulu Microbiology Study Group) (number of tests, local prevalence and hospital hygiene measures). Measures of sensitivity and specificity for the evaluated tests were taken from the literature. List prices and costs of assays were provided by the manufacturer or the institutions. The calculated cost included reagent costs, personnel costs and the financial burden following due and undue isolations and antibiotic therapies. Five different test algorithms were compared. A dynamic calculation model was constructed to evaluate the cost:benefit ratio of each algorithm for a set of institution- and time-dependent inputted variables (prevalence, cost fluctuations and test performances), making it possible to choose the most advantageous algorithm for its setting. A two-step test algorithm with concomitant glutamate dehydrogenase and toxin testing, followed by a rapid molecular assay was found to be the most cost-effective algorithm. This enabled resolution of almost all cases on the day of arrival, minimizing the number of unnecessary or missing isolations. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. Frontiers in nano-therapeutics

    CERN Document Server

    Tasnim, Nishat; Sai Krishna, Katla; Kalagara, Sudhakar; Narayan, Mahesh; Noveron, Juan C; Joddar, Binata

    2017-01-01

    This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.

  17. Systems and methods for the detection of low-level harmful substances in a large volume of fluid

    Science.gov (United States)

    Carpenter, Michael V.; Roybal, Lyle G.; Lindquist, Alan; Gallardo, Vincente

    2016-03-15

    A method and device for the detection of low-level harmful substances in a large volume of fluid comprising using a concentrator system to produce a retentate and analyzing the retentate for the presence of at least one harmful substance. The concentrator system performs a method comprising pumping at least 10 liters of fluid from a sample source through a filter. While pumping, the concentrator system diverts retentate from the filter into a container. The concentrator system also recirculates at least part of the retentate in the container again through the filter. The concentrator system controls the speed of the pump with a control system thereby maintaining a fluid pressure less than 25 psi during the pumping of the fluid; monitors the quantity of retentate within the container with a control system, and maintains a reduced volume level of retentate and a target volume of retentate.

  18. Nano antibody therapy for cancer

    International Nuclear Information System (INIS)

    Venkatachallam, M.; Sivakumar, T.; Nazeema; Venkateswari, P.

    2011-01-01

    Nanomedicine, an offshoot of nanotechnology, refers to highly specific medical intervention at the molecular scale for curing disease or repairing damaged tissues, such as bone, muscle, or nerve. Nanotechnology can have an early, paradigm-changing impact on how clinicians will detect cancer in its earliest stages. Exquisitely sensitive devices constructed of nanoscale components-such as nanocantilevers, nanowires and nanochannels-offer the potential for detecting even the rarest molecular signals associated with malignancy. One of the most pressing needs in clinical oncology is for imaging agents that can identify tumors that are far smaller than is possible with today's technology, at a scale of 100,000 cells rather than 1,000,000,000 cells. A new approach in nanotechnology for treating cancer incorporates nano iron particles and attaches them to an antibody that has targets only cancer cells and not healthy cells. The treatment works in two steps. This treatment is an ingenious way to make localized tumor ablation a systemic treatment. The advantages are incredible. There are absolutely no side effects from this treatment. It is not painful or even uncomfortable. The iron particles get flushed harmlessly from the body. It is not a drug and so the cancer cannot build up a resistance to the treatment. It is a systematic treatment; even cancer cells and tumors that are not known about get heated up and ablated. This treatment can even be used to enhance imaging of the cancer because once the cancer cells are coated with the iron particles, they are easy to identify. Everything depends on how reliably the antibodies target cancer cells and not healthy cells. When used in conjunction with other systemic treatments, such as vaccine treatments, we could be looking at a time when even advanced cancers can be brought under control. (author)

  19. HNF - Helmholtz Nano Facility

    Directory of Open Access Journals (Sweden)

    Wolfgang Albrecht

    2017-05-01

    Full Text Available The Helmholtz Nano Facility (HNF is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP and aquivalent to Semiconductor Industry Association (SIA standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc.. The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

  20. Nano-optomechanical transducer

    Science.gov (United States)

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  1. Multiscale Region-Level VHR Image Change Detection via Sparse Change Descriptor and Robust Discriminative Dictionary Learning

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2015-01-01

    Full Text Available Very high resolution (VHR image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened, while they ignore the change pattern description (i.e., how the changes changed, which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique.

  2. Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots

    KAUST Repository

    Long, Yuchen

    2018-05-15

    Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living multicellular organism at single-cell resolution and under native condition is still difficult to achieve. Here we describe the optimization of the labeling conditions to detect FRET-FLIM in living plants. This study exemplifies optimization procedure involving the identification of the optimal position for the labels either at the N or C terminal region and the selection of the bright and suitable, fluorescent proteins as donor and acceptor labels for the FRET study. With an effective optimization strategy, we were able to detect the interaction between the stem cell regulators SHORT-ROOT and SCARECROW at endogenous expression levels in the root pole of living Arabidopsis embryos and developing lateral roots by FRET-FLIM. Using this approach we show that the spatial profile of interaction between two transcription factors can be highly modulated in reoccurring and structurally resembling organs, thus providing new information on the dynamic redistribution of nuclear protein complex configurations in different developmental stages. In principle, our optimization procedure for transcription factor complexes is applicable to any biological system.

  3. SparCLeS: dynamic l₁ sparse classifiers with level sets for robust beard/moustache detection and segmentation.

    Science.gov (United States)

    Le, T Hoang Ngan; Luu, Khoa; Savvides, Marios

    2013-08-01

    Robust facial hair detection and segmentation is a highly valued soft biometric attribute for carrying out forensic facial analysis. In this paper, we propose a novel and fully automatic system, called SparCLeS, for beard/moustache detection and segmentation in challenging facial images. SparCLeS uses the multiscale self-quotient (MSQ) algorithm to preprocess facial images and deal with illumination variation. Histogram of oriented gradients (HOG) features are extracted from the preprocessed images and a dynamic sparse classifier is built using these features to classify a facial region as either containing skin or facial hair. A level set based approach, which makes use of the advantages of both global and local information, is then used to segment the regions of a face containing facial hair. Experimental results demonstrate the effectiveness of our proposed system in detecting and segmenting facial hair regions in images drawn from three databases, i.e., the NIST Multiple Biometric Grand Challenge (MBGC) still face database, the NIST Color Facial Recognition Technology FERET database, and the Labeled Faces in the Wild (LFW) database.

  4. Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate.

    Science.gov (United States)

    Ogunkunle, Clement O; Jimoh, Mahboob A; Asogwa, Nnaemeka T; Viswanathan, K; Vishwakarma, Vinita; Fatoba, Paul O

    2018-07-15

    Increased use of nanoparticles-based products in agriculture portends important implications for agriculture. Therefore, the impact of nano-copper particles (nano-Cu for 65 days. Results indicated significant (Pnano-Cu levels compared to control, and bioaccumulation increased in seeds by at least 250%. Response of antioxidant enzymes to both nano-Cu types was concentration-dependent. Activity of APX and GR was enhanced in leaves and roots in response to both nano-Cu treatments in similar patterns compared to control. Both nano-Cu increased CAT activity in roots while SOD activity reduced in both leaves and roots. This shows that response of antioxidant enzymes to nano-Cu toxicity was organ-specific in cowpea. Malondialdehyde, a measure of lipid peroxidation, increased at 500 -1000 mg/kg of 25 nm nano-Cu in leaves by average of 8.4%, and 60-80 nm nano-Cu in root by 52.8%, showing particle-size and organ-dependent toxicity of nano-Cu. In conclusion, exposure of cowpea to nano-Cu treatments increased both the uptake and bioaccumulation of Cu, and also promoted the activity of APX and GR in root and leaf tissues of cowpea. Therefore, APX- and GR-activity level could be a useful predictive biomarker of nano-Cu toxicity in cowpea. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Prediction of Protein-Protein Interactions by NanoLuc-Based Protein-Fragment Complementation Assay | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory has developed a new NanoLuc®-based protein-fragment complementation assay (NanoPCA) which allows the detection of novel protein-protein interactions (PPI). NanoPCA allows the study of PPI dynamics with reversible interactions.  Read the abstract. Experimental Approaches Read the detailed Experimetnal Approaches. 

  6. Carbon nanotubes: from nano test tube to nano-reactor.

    Science.gov (United States)

    Khlobystov, Andrei N

    2011-12-27

    Confinement of molecules and atoms inside carbon nanotubes provides a powerful strategy for studying structures and chemical properties of individual molecules at the nanoscale. In this issue of ACS Nano, Allen et al. explore the nanotube as a template leading to the formation of unusual supramolecular and covalent structures. The potential of carbon nanotubes as reactors for synthesis on the nano- and macroscales is discussed in light of recent studies.

  7. Nano-education from a European perspective

    Energy Technology Data Exchange (ETDEWEB)

    Malsch, I [Malsch TechnoValuation Vondellaan 90 3521 GH Utrecht (Netherlands)], E-mail: postbus@malsch.demon.nl

    2008-03-15

    At a global level, educating the nanotechnology workforce has been discussed since the beginning of the new millennium. Scientists, engineers and technicians should be trained in nanotechnology. Most educators prefer training students first in their own discipline at the Bachelor level (physics, chemistry, biology, etc) followed by specialisation in nanoscience and technology at the Master's level. Some favour a broad interdisciplinary basic training in different nanosciences followed by specialisation in a particular application area. What constitutes a good nanoscience curriculum is also being discussed, as well as the application of e-learning methodologies. The European Union is stimulating the development of nanoscience education in universities. The Erasmus Mundus programme is funding nanoscience and nanotechnology education programmes involving universities in several European countries. The policy debate in Europe is moving towards vocational training in nanotechnology for educating the technicians needed in industry and research. The EU vocational training institute CEDEFOP published a report in 2005 The EU funded European gateway to nanotechnology Nanoforum has stimulated the accessibility of nano-education throughout Europe with reports and online databases of education courses and materials. For university education, they list courses at the Bachelor, Master's, and PhD level as well as short courses. The EU funded EuroIndiaNet project also reviewed Nano-education courses at the Master's level, short courses, e-learning programmes, summerschools and vocational training courses. In this presentation, I review Nanoforum and other publications on nano-education in Europe and highlight current trends and gaps.

  8. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate.

    Science.gov (United States)

    Xin, Z-J; Li, X-W; Bian, L; Sun, X-L

    2017-02-01

    Green leaf volatiles (GLVs) have been reported to play an important role in the host-locating behavior of several folivores that feed on angiosperms. However, next to nothing is known about how the green leafhopper, Empoasca vitis, chooses suitable host plants and whether it detects differing emission levels of GLV components among genetically different tea varieties. Here we found that the constitutive transcript level of the tea hydroperoxide lyase (HPL) gene CsiHPL1, and the amounts of (Z)-3-hexenyl acetate and of total GLV components are significantly higher in tea varieties that are susceptible to E. vitis (Enbiao (EB) and Banzhuyuan (BZY)) than in varieties that are resistant to E. vitis (Changxingzisun (CX) and Juyan (JY)). Moreover, the results of a Y-tube olfactometer bioassay and an oviposition preference assay suggest that (Z)-3-hexenyl acetate and (Z)-3-hexenol offer host and oviposition cues for E. vitis female adults. Taken together, the two GLV components, (Z)-3-hexenol and especially (Z)-3-hexenyl acetate, provide a plausible mechanism by which tea green leafhoppers distinguish among resistant and susceptible varieties. Future research should be carried out to obtain the threshold of the above indices and then assess their reasonableness. The development of practical detection indices would greatly improve our ability to screen and develop tea varieties that are resistant to E. vitis.

  9. Cuff Pressure Pain Detection Is Associated with Both Sex and Physical Activity Level in Nonathletic Healthy Subjects.

    Science.gov (United States)

    Lemming, Dag; Börsbo, Björn; Sjörs, Anna; Lind, Eva-Britt; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas; Gerdle, Björn

    2017-08-01

    The aim of this study was to evaluate pressure pain sensitivity on leg and arm in 98 healthy persons (50 women) using cuff algometry. Furthermore, associations with sex and physical activity level were investigated. Normal physical activity level was defined as Godin Leisure-Time Exercise Questionnaire (GLTEQ) score ≤ 45 and high activity level as GLTEQ > 45. A pneumatic double-chamber cuff was placed around the arm or leg where a single chamber was inflated. The cuff inflation rate (1 kPa/s) was constant, and pain intensity was registered continuously on a 10 cm electronic visual analogue scale (VAS). The pain detection threshold (PDT) was defined as when the pressure was perceived as painful, and pain tolerance (PTT) was when the subject terminated the cuff inflation. For PTT, the corresponding VAS score was recorded (VAS-PTT). The protocol was repeated with two chambers inflated. Only single cuff results are given. For women compared with men, the PDT was lower when assessed in the arm ( P = 0.002), PTTs were lower in the arm and leg ( P active participants compared with less active had higher PDT ( P = 0.027) in the leg. Women showed facilitated spatial summation ( P physical activity level. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  10. The relationship between particulate pollution levels in Australian cities, meteorology, and landscape fire activity detected from MODIS hotspots.

    Science.gov (United States)

    Price, Owen F; Williamson, Grant J; Henderson, Sarah B; Johnston, Fay; Bowman, David M J S

    2012-01-01

    Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects. Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by the MODIS Active Fire Product (referred to as "hotspots"), pollution concentrations, and meteorological data for the years 2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot fire activity with meteorological data.

  11. Effect of Nano Iron and Solupotasse Fertilizers on Accumulation of Nutrient Elements and Quality of Two Onion (Allium cepa Cultivars

    Directory of Open Access Journals (Sweden)

    Ali Joghatay

    2015-11-01

    Full Text Available To study the effect of nano iron and solupotass on agronomic and physiological traits of two onion cultivars, a factorial experiment was conducted in complete randomized block design with 32 treatments and three replications in Joghatai of Khorasan-e- Razavi province, Iran. Treatments consisted of two onion cultivars (red, yellow and four levels (0, 1, 2, 3 kg per hectare of nano iron chelat and four levels of solupotass (0, 5, 10, 15 kg per hectare. Results showed that the effect of nano iron and solupotasse on fresh weight, dry weight, pyrovic acid and macro element (N, P, S contents were significant at %1 levels. Application nano iron, solupotasse to red onion cultivar increased dry weight significantly at the %5 level. Highest onion weight was obtained by using 2 kg nano iron and 15 kg solupotasse (17.3 g. Use of nano iron and solupotasse highly increased the pyruvic acid percentage (1.07 mM. Highest rate of pyruvic acid obtained by application of 3 and 15 kg nano iron and solupotasse respectively. Application of nano iron on the sulfur and nitrogen contents of onion were significant. Use of 2 kg/ha of nano iron exhibited highest increase in these elements. Thus, soil application of 10 kg/ha solupotasse, 3 kg/ha nano iron would highly increase red onion traits mentioned above.

  12. Nano Engineered Energetic Materials (NEEM)

    Science.gov (United States)

    2011-01-12

    Dryer, FL; Aksay, IA, Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion, ACS NANO 3, 13, 3945-3954, 2009. 16. Weismiller...loading) which was not observed in other heterogeneous mixtures. Additional details on nano fuels (including graphene ) with liquid oxidizers can be...to the high reflectance of some samples black high temperature spray paint was used on ends of the samples to decrease ignition delay times and

  13. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  14. MICRO & NANO TECHNOLOGIES – APPLICATIONS, DESIGN AND INTEGRATION

    Directory of Open Access Journals (Sweden)

    Dorin LEŢ

    2010-05-01

    Full Text Available The science of micro-nano technologies represents a multidisciplinary research domain, which provokes active participation of specialist from multiple domains (physics, chemistry, biology, mathematics, electronics, medicine, a.o.. Nanotechnology is an applied science domain focusing the design, synthesis and characterization of materials and devices starting from individual atoms and molecules level up to supramolecular level of strains of molecules with 100 molecular diameters. Operations at this dimensions implies the understanding of new scientific principles and new materials properties, which take place at micro and nano scale and are used in the development of materials, devices and systems with new and improved functions and performances. The properties and basic functions of structures and material systems at nano scale may be changed based on the organization of the living mater on molecular “weak” interactions (hydrogen binds, electrostatic dipole, Van der Waals forces, surface forces, electrofluidic forces, a.o..

  15. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa [Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang (Indonesia)

    2016-04-19

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content in the spinach plants was increased when the magnetic nano particles was injected in the growing media.

  16. Ecological assessment of nano-enabled supercapacitors for automotive applications

    Science.gov (United States)

    Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M.

    2012-09-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  17. Ecological assessment of nano-enabled supercapacitors for automotive applications

    International Nuclear Information System (INIS)

    Weil, M; Dura, H; Shimon, B; Baumann, M; Zimmermann, B; Ziemann, S; Decker, M; Lei, C; Markoulidis, F; Lekakou, T

    2012-01-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  18. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sherry; Chen, Jin Ching; Hsu, Chin Wei; Chang, Walter H, E-mail: whchang@cycu.edu.t [Center for Nano Bioengineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2009-09-16

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In the present study, we examined whether the bioavailability of calcium carbonate and calcium citrate can be improved by reducing the particle size. The morphology of nano calcium carbonate and nano calcium citrate was characterized by dynamic laser-light scattering (DLS), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The measurements obtained from DLS, FE-SEM and TEM were comparable. Acute and sub-chronic toxicity tests were performed to establish the safety of these products after oral administration. The no-observed-adverse-effect levels of nano calcium carbonate and nano calcium citrate were 1.3 and 2.3 g kg{sup -1} body weight, respectively. The results of our in vivo studies indicate that administering nano calcium carbonate and nano calcium citrate can enhance the serum calcium concentration and maintain the whole-body bone mineral density in ovariectomized mice. These data suggest that nano calcium carbonate and nano calcium citrate are more bioavailable than micro calcium carbonate and micro calcium citrate, respectively.

  19. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  20. Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Basiruddin, SK; Swain, Sarat K., E-mail: swainsk2@yahoo.co.in

    2016-01-01

    Reduced graphene has emerged as promising tools for detection based application of biomolecules as it has high surface area with strong fluorescence quenching property. We have used the concept of fluorescent quenching property of reduced graphene oxide to the fluorescent probes which are close vicinity of its surface. In present work, we have synthesized fluorescent based nano-sensor consist of phenylboronic acid functionalized reduced graphene oxide (rGO–PBA) and di-ol modified fluorescent probe for detection of biologically important glucose molecules. This fluorescent graphene based nano-probe has been characterized by high resolution transmission electron microscope (HRTEM), Atomic force microscope (AFM), UV–visible, Photo-luminescence (PL) and Fourier transformed infrared (FT-IR) spectroscopy. Finally, using this PBA functionalized reduced GO based nano-sensor, we were able to detect glucose molecule in the range of 2 mg/mL to 75 mg/mL in aqueous solution of pH 7.4. - Highlights: • Easy and simple synthesis of PBA functionalized reduced GO based nano probe. • PBA functionalized reduced GO graphene based nano-probes are characterized. • PBA functionalized reduced GO nano probe is used to detect glucose molecules. • It is very cost-effective and enzyme-free detection of glucose in solution.

  1. Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles

    Science.gov (United States)

    Bertok, Tomas; Sediva, Alena; Katrlik, Jaroslav; Gemeiner, Pavol; Mikula, Milan; Nosko, Martin; Tkac, Jan

    2016-01-01

    We present here an ultrasensitive electrochemical biosensor based on a lectin biorecognition capable to detect concentrations of glycoproteins down to attomolar (aM) level by investigation of changes in the charge transfer resistance (Rct) using electrochemical impedance spectroscopy (EIS). On polycrystalline gold modified by an aminoalkanethiol linker layer, gold nanoparticles were attached. A Sambucus nigra agglutinin was covalently immobilised on a mixed self-assembled monolayer formed on gold nanoparticles and finally, the biosensor surface was blocked by poly(vinylalcohol). The lectin biosensor was applied for detection of sialic acid containing glycoproteins fetuin and asialofetuin. Building of a biosensing interface was carefully characterised by a broad range of techniques such as electrochemistry, EIS, atomic force microscopy, scanning electron microscopy and surface plasmon resonance with the best performance of the biosensor achieved by application of HS-(CH2)11-NH2 linker and gold nanoparticles with a diameter of 20 nm. The lectin biosensor responded to an addition of fetuin (8.7% of sialic acid) with sensitivity of (338 ± 11) Ω decade-1 and to asialofetuin (≤ 0.5% of sialic acid) with sensitivity of (109 ± 10) Ω decade-1 with a blank experiment with oxidised asialofetuin (without recognisable sialic acid) revealing sensitivity of detection of (79 ± 13) Ω decade-1. These results suggest the lectin biosensor responded to changes in the glycan amount in a quantitative way with a successful validation by a lectin microarray. Such a biosensor device has a great potential to be employed in early biomedical diagnostics of diseases such as arthritis or cancer, which are connected to aberrant glycosylation of protein biomarkers in biological fluids. PMID:23601864

  2. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    Science.gov (United States)

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  3. Stretchable Complementary Split Ring Resonator (CSRR-Based Radio Frequency (RF Sensor for Strain Direction and Level Detection

    Directory of Open Access Journals (Sweden)

    Seunghyun Eom

    2016-10-01

    Full Text Available In this paper, we proposed a stretchable radio frequency (RF sensor to detect strain direction and level. The stretchable sensor is composed of two complementary split ring resonators (CSRR with microfluidic channels. In order to achieve stretchability, liquid metal (eutectic gallium-indium, EGaIn and Ecoflex substrate are used. Microfluidic channels are built by Ecoflex elastomer and microfluidic channel frames. A three-dimensional (3D printer is used for fabrication of microfluidic channel frames. Two CSRR resonators are designed to resonate 2.03 GHz and 3.68 GHz. When the proposed sensor is stretched from 0 to 8 mm along the +x direction, the resonant frequency is shifted from 3.68 GHz to 3.13 GHz. When the proposed sensor is stretched from 0 to 8 mm along the −x direction, the resonant frequency is shifted from 2.03 GHz to 1.78 GHz. Therefore, we can detect stretched length and direction from independent variation of two resonant frequencies.

  4. Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection

    Science.gov (United States)

    Henriques, C. A. O.; Freitas, E. D. C.; Azevedo, C. D. R.; González-Díaz, D.; Mano, R. D. P.; Jorge, M. R.; Fernandes, L. M. P.; Monteiro, C. M. B.; Gómez-Cadenas, J. J.; Álvarez, V.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carríon, J. V.; Cebrían, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Felkai, R.; Ferrario, P.; Ferreira, A. L.; Goldschmidt, A.; Gutiérrez, R. M.; Hauptman, J.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monrabal, F.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D. R.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2017-10-01

    Xe-CO2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification with applications in the important field of rare event detection such as directional dark matter, double electron capture and double beta decay detection. The addition of CO2 to pure xenon at the level of 0.05-0.1% can reduce significantly the scale of electron diffusion from 10 mm /√{m} to 2.5 mm /√{m}, with high impact on the discrimination efficiency of the events through pattern recognition of the topology of primary ionization trails. We have measured the electroluminescence (EL) yield of Xe-CO2 mixtures, with sub-percent CO2 concentrations. We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that produced in pure xenon, for CO2 concentrations around 0.05% and 0.1%, respectively. The contribution of the statistical fluctuations in EL production to the energy resolution increases with increasing CO2 concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO2.

  5. Nano-Gap Embedded Plasmonic Gratings for Surface Plasmon Enhanced Fluorescence

    Science.gov (United States)

    Bhatnagar, Kunal; Bok, Sangho; Korampally, Venumadhav; Gangopadhyay, Shubhra

    2012-02-01

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal/dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures on the sub wavelength scale have been shown to provide very efficient and extreme light concentration at the nano-scale. The enhanced electric field produced within a few hundred nanometers of these structures can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences. Improving the qualities and capabilities of fluorescence based detectors and imaging equipment has been a big challenge to the industry manufacturers. We report the novel fabrication of nano-gap embedded periodic grating substrates on the nanoscale using micro-contact printing and polymethylsilsesquioxane (PMSSQ) polymer. Fluorescence enhancement of up to 118 times was observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for low-level fluorescence detection and single molecule imaging.

  6. The effects of nano-TiO{sub 2} on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L

    Energy Technology Data Exchange (ETDEWEB)

    Ruffini Castiglione, Monica, E-mail: mruffini@biologia.unipi.it [University of Pisa, Department of Biology (Italy); Giorgetti, Lucia; Geri, Chiara [Institute of Agricultural Biology and Biotechnology (IBBA/CNR), UOS Pisa (Italy); Cremonini, Roberto [University of Pisa, Department of Biology (Italy)

    2011-06-15

    This study aimed to provide new information about phyto-toxicology of nano-TiO{sub 2} on plant systems. To contribute to the evaluation of the potential harmful effects of the nanoparticles on monocots and dicots we considered their effects on seed germination and root elongation applying a concentration range from 0.2 to 4.0 Per-Mille-Sign in the plants Zea mays L. and Vicia narbonensis L. Moreover, we achieved a genotoxicity study at cytological level in root meristems by means of traditional cytogenetic approach, to evidence possible alterations in mitotic activity, chromosomal aberrations, and micronuclei release. From these analyses it comes out that nano-TiO{sub 2} particles, after short-term exposure and under our experimental conditions, delayed germination progression for the first 24 h in both materials. Root elongation was affected only after treatment with the higher nano-TiO{sub 2} concentration. Further significant effects were detected showing mitotic index reduction and concentration-dependent increase in the aberration emergence that evidenced a nano-TiO{sub 2}-induced genotoxic effect for both species.

  7. Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Bader Michael

    2008-12-01

    Full Text Available Abstract Background Exposure to particulate matter is a risk factor for cardiopulmonary disease but the underlying molecular mechanisms remain poorly understood. In the present study we sought to investigate the cardiopulmonary responses on spontaneously hypertensive rats (SHRs following inhalation of UfCPs (24 h, 172 μg·m-3, to assess whether compromised animals (SHR exhibit a different response pattern compared to the previously studied healthy rats (WKY. Methods Cardiophysiological response in SHRs was analyzed using radiotelemetry. Blood pressure (BP and its biomarkers plasma renin-angiotensin system were also assessed. Lung and cardiac mRNA expressions for markers of oxidative stress (hemeoxygenase-1, blood coagulation (tissue factor, plasminogen activator inhibitor-1, and endothelial function (endothelin-1, and endothelin receptors A and B were analyzed following UfCPs exposure in SHRs. UfCPs-mediated inflammatory responses were assessed from broncho-alveolar-lavage fluid (BALF. Results Increased BP and heart rate (HR by about 5% with a lag of 1–3 days were detected in UfCPs exposed SHRs. Inflammatory markers of BALF, lung (pulmonary and blood (systemic were not affected. However, mRNA expression of hemeoxygenase-1, endothelin-1, endothelin receptors A and B, tissue factor, and plasminogen activator inhibitor showed a significant induction (~2.5-fold; p Conclusion Our finding shows that UfCPs exposure at levels which does not induce detectable pulmonary neutrophilic inflammation, triggers distinct effects in the lung and also at the systemic level in compromised SHRs. These effects are characterized by increased activity of plasma renin-angiotensin system and circulating white blood cells together with moderate increases in the BP, HR and decreases in heart rate variability. This systemic effect is associated with pulmonary, but not cardiac, mRNA induction of biomarkers reflective of oxidative stress; activation of vasoconstriction

  8. Non-detectable levels of 6-thioguanine nucleotides and 6-methylmercaptopurine in a patient treated with azathioprine: a case report

    Science.gov (United States)

    Wong, D R; den Dulk, M O; Derijks,