WorldWideScience

Sample records for nano crystalline ceramic

  1. Effect of Nano-crystalline Ceramic Coats Produced by Plasma Electrolytic Oxidation on Corrosion Behavior of AA5083 Aluminum Alloy

    International Nuclear Information System (INIS)

    Thayananth, T.; Muthupandi, V.; Rao, S. R. Koteswara

    2010-01-01

    High specific strength offered by aluminum and magnesium alloys makes them desirable in modern transportation industries. Often the restrictions imposed on the usage of these alloys are due to their poor tribological and corrosion properties. However, their corrosion properties can be further enhanced by synthesizing ceramic coating on the substrate through Plasma Electrolytic Oxidation (PEO) process. In this study, nano-crystalline alumina coatings were formed on the surface of AA5083 aluminum alloy test coupons using PEO process in aqueous alkali-silicate electrolyte with and without addition of sodium aluminate. X-ray diffraction (XRD) studies showed that the crystallite size varied between 38 and 46 nm and α- and γ- alumina were the dominant phases present in the coatings. Corrosion studies by potentiodynamic polarization tests in 3.5% NaCl revealed that the electrolyte composition has an influence on the corrosion resistance of nano-crystalline oxide layer formed.

  2. Nucleation and crystallization behaviors of nano-crystalline lithium–mica glass–ceramic prepared via sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tohidifar, M.R. [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Alizadeh, P., E-mail: p-alizadeh@modares.ac.ir [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Riello, P. [Department of Molecular Sciences and Nanosystems, University of Ca’Foscari, Venice (Italy)

    2012-06-15

    Graphical abstract: The effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramic, synthesized by sol–gel technique, were investigated. It was found that MgF{sub 2} crystals act as nuclei centers for the mica crystallization so that a large quantity of mica crystallites was obtained following nucleation process. The crystallization activation energy for both the un-nucleated and nucleated samples was measured as 400.2 and 229.6 kJ mol{sup −1}, respectively. The calculated Avrami exponents demonstrated that the growth mechanism of mica crystallites changes from the needle-like to three-dimensional growth with applying the appropriate nucleation treatment ▪. Highlights: ► Crystallization temperature shifts to 625 from 680 °C following nucleation process. ► Activation energy of crystallization for the nucleated specimen is 229.6 kJ mol{sup −1}. ► Crystallization activation energy for the un-nucleated specimen is 400.2 kJ mol{sup −1}. ► Needle-like growth is predominant growth mechanism for un-nucleated sample. ► Three-dimensional growth is predominant growth mechanism for nucleated sample. -- Abstract: The paper investigates the effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramics, taking the composition LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} (x = 0.5) and 8 mass% MgF{sub 2} synthesized by sol–gel technique. Here, X-ray diffraction, thermal analysis and transmission electron microscopy were used to assess the structural evolutions of as-synthesized nano-crystalline lithium–mica glass–ceramics. It was found that MgF{sub 2} crystals perform as nuclei centers for the mica crystallization hence; a large quantity of mica crystallites obtained following the nucleation process at 400 °C for 12 h. For both the un-nucleated and nucleated samples, the crystallization activation energy was measured as 400.2 and 229.6 kJ mol{sup −1

  3. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  4. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  5. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  6. Production of nano-crystalline zirconia powders and fabrication of high strength ultra-fine-grained ceramics

    International Nuclear Information System (INIS)

    Rajendran, S.

    1993-01-01

    Hydrous zirconia containing 2 and 2.5 mol% Y 2 O 3 was prepared by a hydroxide co-precipitation method and portions were dispersed in ethanol before drying(P2), milled in ethanol after drying (P3) or after calcination at 550 deg C (P4) or milled in iso-propanal after calcination at 1000 deg C (P5). The crystallisation behaviour and sintering characteristics of the materials were investigated. The calcined as dried powder (P1) has strongly bonded hard aggregates and the material reached a density of only about 80% of theoretical after sintering at 1500 deg C. Powder characteristics and the sinterability of the alcohol treated materials depended on the conditions of processing and heat treatment. The sinter-activity of the powders decreased from P2 to P5. Powder P3 was composed of relatively weakly bonded crystallites and could be sintered at 1400 deg C, while the powders P4 and P5 contained hard agglomerates and required a sintering temperature of 1450 and 1550 deg C respectively to achieve similar density. Powder (P2) had zirconium alkoxide species on the particle surface which decomposed at about 300 deg C. The calcined powder had very weak agglomerates composed of fine, uniform zirconia crystals and/or aggregates and sintered to high density at 1150 deg C. The final ceramic had a very uniform microstructure with an average grain size of about 150nm and exhibited fracture strength as high as 1700 MPa. A detailed account of the formation of aggregates of strongly bonded crystallites during calcination of hydrous zirconia, influence of alcohol in producing soft agglomerates and the sintering characteristics of the powders is reported. 46 refs., 2 tabs., 15 figs

  7. Synthesis of crystalline ceramics for actinide immobilisation

    International Nuclear Information System (INIS)

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-01-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  8. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  9. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  10. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  11. Determination of crystallinity of ceramic materials from the Ruland Method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Gomes Junior, J.C.; Lima, J.C. de; Riella, H.G.; Kuhnen, N.C.

    2011-01-01

    Some methods found in literature approach the different characteristics between crystalline and amorphous phases by X ray diffraction technique. These methods use the relation between the intensities of the crystalline peaks and background amorphous or the absolute intensity of one of these to determine the relative amount of crystalline and amorphous material. However, a crystalline substance presents shows coherent diffuse scattering and a loss in the intensity of the peaks of diffraction in function of thermal vibrations of atoms and imperfections in the crystalline structure. A correct method for the determination of the crystallinity must take in account these effects. This work has as objective to determine the crystallinity of ceramic materials obtained with the addition of mineral coal bottom ashes, using the X ray diffraction technique and the Ruland Method, that considers the diminution of the intensity of the crystalline peak because of the disorder affects. The Ruland Method shows adequate for the determination of the crystallinity of the ceramic materials. (author)

  12. Sintering characteristics of nano-ceramic coatings

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Popma, R.

    2003-01-01

    This paper concentrates on sintering characteristics of nano-sized ceramic SiO2 particles. The sintering process is studied as a function of temperature using a conventional furnace and using a laser beam. The underlying idea is to combine the nanoceramic sol-gel concept with inkjet technology and

  13. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  14. Effects of irradiation on structural properties of crystalline ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Hurley, G.F.

    1979-01-01

    Stability of crystalline ceramic nuclear waste may be degraded by self-irradiation damage. Changes in density, strength, thermal conductivity, and lattice structure are of concern. Structural damage of ceramics under various radiation conditions is discussed and related to possible effects in nuclear waste

  15. Effects of irradiation on structural properties of crystalline ceramics

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.; Hurley, G.F.

    1979-01-01

    Stability of crystalline ceramic nuclear waste may be degraded by self-irradiation damage. Changes in density, strength, thermal conductivity, and lattice structure are of concern. In this paper, structural damage of ceramics under various radiation conditions is discussed and related to possible effects in nuclear waste

  16. Optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    Semiconducting Zinc Sulphide (ZnS) thin films were deposited on glass substrate using relatively simple Chemical Bath Deposition (CBD) technique. Nano crystalline ZnS thin films were fabricated in the study. Optical characterization of the films showed that the materials are transparent to visible light, opaque to ultraviolet ...

  17. Wear Resistance of Nano Alumina Containing SiO2-B2O3-Na2O Glass-Ceramic on Steel Substrate

    OpenAIRE

    A. Faeghinia; A. Zamanian

    2016-01-01

    The experimental study has been carried out to investigate the tribological properties of nano Alumina reinforced glass-ceramic enamel. The mixtures of (5, 10, 15 wt.%) nano alumina and glass powders have been air sprayed on stainless steel substrate.. The thixotropy, wetting angle and surface tension of used slurry were increased inherently by 15-wt.% nano alumina. By heat treating at 870-640-525 ºC, the homogeneous crystalline sodium silicate phase beside nano alumina was obtained in glass ...

  18. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    International Nuclear Information System (INIS)

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ''logs''; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium

  19. Slip casting nano-particle powders for making transparent ceramics

    Science.gov (United States)

    Kuntz, Joshua D [Livermore, CA; Soules, Thomas F [Livermore, CA; Landingham, Richard Lee [Livermore, CA; Hollingsworth, Joel P [Oakland, CA

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  20. Influence of microstructure on electromechanical properties of nano-crystalline La-Pb(Ni{sub 1/3}Sb{sub 2/3})-PbZrTiO{sub 3} ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H.H.; Lonkar, C.M. [Armament Research and Development Establishment, Pune (India); Balasubramanian, K. [Defence Institute of Advanced Technology (Deemed University), Pune (India)

    2017-10-15

    A ferroelectric ceramic composition, Pb{sub 0.98}La{sub 0.02}(Ni{sub 1/3}Sb{sub 2/3}){sub 0.05}[(Zr{sub 0.52}Ti{sub 0.48}){sub 0.995}] {sub 0.95}O{sub 3}, has been synthesized by columbite precursor method followed by mechanical activation for 10 h (MA-10) using high-energy ball mill. Formation of desired perovskite phase during activation was confirmed from analysis of X-ray diffraction patterns, while powder particle size, in nano-meter range, was revealed from high-resolution transmission electron microscopic (HRTEM) investigations. Samples were sintered between 1170 and 1320 C, and were investigated for microstructure and its influence on electromechanical properties. Increment in grain size with sintering temperature was noticed. 1220 C sintering temperature posed denser and uniform microstructure amongst all the temperatures and also showed composition close to morphotropic phase boundary (MPB) of PZT with optimum tetragonality which resulted in better electromechanical properties, suggesting the suitability of this composition for power harvesting applications. Phase transition studies revealed normal ferroelectric behaviour with transition temperature of 286 C. (orig.)

  1. Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity

    International Nuclear Information System (INIS)

    Suplicz, A.; Szabo, F.; Kovacs, J.G.

    2013-01-01

    Highlights: • BN, talc and TiO 2 in 30 vol% were compounded with polypropylene matrix. • According to the DSC measurements, the fillers are good nucleating agents. • The thermal conductivity of the fillers influences the cooling rate of the melt. • The higher the cooling rate is, the lower the crystallinity in the polymer matrix. - Abstract: Three different nano- and micro-sized ceramic powders (boron-nitride (BN), talc and titanium-dioxide (TiO 2 )) in 30 vol% have been compounded with a polypropylene (PP) matrix. Scanning electron microscopy (SEM) shows that the particles are dispersed smoothly in the matrix and larger aggregates cannot be discovered. The cooling gradients and the cooling rate in the injection-molded samples were estimated with numerical simulations and finite element analysis software. It was proved with differential scanning calorimetry (DSC) measurements that the cooling rate has significant influence on the crystallinity of the compounds. At a low cooling rate BN works as a nucleating agent so the crystallinity of the compound is higher than that of unfilled PP. On the other hand, at a high cooling rate, the crystallinity of the compound is lower than that of unfilled PP because of its higher thermal conductivity. The higher the thermal conductivity is, the higher the real cooling rate in the material, which influences the crystallization kinetics significantly

  2. Nano-sized crystalline drug production by milling technology.

    Science.gov (United States)

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  3. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    Science.gov (United States)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  4. Nano-CT study on nanostructure of porous ceramics

    International Nuclear Information System (INIS)

    Wu Wenquan; Li Wenjie; Guan Yong; Yang Yunhao; Chen Jie; Zhou Jie; Yu Xiyue; Song Xiangxia; Tian Yangchao; Li Wei; Chen Chusheng

    2010-01-01

    The porous structure of ceramic materials has a great impact on their performance. However, the existing characterization techniques fail to give 3D structure of the ceramics. In this work, nano-CT imaging technique was used to study 3D structure of a ceramic fiber tube prepared by a phase inversion technology. The results showed the shape, direction, size distribution, and 3D map of the pores inside the ceramic wall. The pore size is 0.4-1.5 μm, with a porosity of 38.31%. The data can be used to improve their preparation processes and optimize the structure parameters, for applications in chemical, energy, environmental protection and other fields. (authors)

  5. Quantitative determination of the crystalline phases of the ceramic materials utilizing the Rietveld method

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Lima, J.C. de; Kuhnen, N.C.; Riella, H.G.; Maliska, A.M.

    2009-01-01

    Ceramic materials have properties defined by their chemical and micro-structural composition. The quantification of the crystalline phases is a fundamental stage in the determination of the structure, properties and applications of a ceramic material. Within this context, this study aims is the quantitative determination of the crystalline phases of the ceramic materials developed with addition of mineral coal bottom ash, utilizing the X ray diffraction technique, through the method proposed by Rietveld. For the formulation of the ceramic mixtures a {3,3} simplex-lattice design was used, giving ten formulations of three components (two different types of clays and coal bottom ash). The crystalline phases identified in the ceramic materials after sintering at 1150 deg C during two hours are: quartz, tridimite, mullite and hematite. The proposed methodology utilizing the Rietveld method for the quantification relating to crystalline phases of the materials was shown to be adequate and efficient. (author)

  6. Formation of nano quasicrystalline and crystalline phases by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shamah, A.M.; Ibrahim, S. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt); Hanna, F.F., E-mail: fariedhanna@yahoo.com [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2011-02-03

    Research highlights: > Mechanical alloying (MA) is an important method to investigate the formation of nano sized quasicrystalline phases in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} compounds. The second part of the present work is an attempt to examine the possibility of formation of the i-phase of the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, which lies in the region of the perfect i-phase in the ternary phase diagram, by rapid solidification method. To perform the obtained quasi phase mechanical alloying and heat treatment at the rapid solidified sample were done. - Abstract: In the present work, the formation of nano quasicrystalline icosahedral phase in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} alloys has been investigated by mechanical alloying. Mixtures of quasicrystalline and related crystalline phases have been observed under various milling conditions. The X-ray diffraction, differential thermal analysis and electrical resistivity techniques have been used for characterization and physical property measurements. The particle size was calculated by X-ray profile using Williamson-Hall plot method and it was found to be 25-50 nm size.

  7. Formation of nano quasicrystalline and crystalline phases by mechanical alloying

    International Nuclear Information System (INIS)

    Shamah, A.M.; Ibrahim, S.; Hanna, F.F.

    2011-01-01

    Research highlights: → Mechanical alloying (MA) is an important method to investigate the formation of nano sized quasicrystalline phases in Al 86 Cr 14 , Al 84 Fe 16 and Al 62.5 Cu 25 Fe 12.5 compounds. The second part of the present work is an attempt to examine the possibility of formation of the i-phase of the Al 62.5 Cu 25 Fe 12.5 , which lies in the region of the perfect i-phase in the ternary phase diagram, by rapid solidification method. To perform the obtained quasi phase mechanical alloying and heat treatment at the rapid solidified sample were done. - Abstract: In the present work, the formation of nano quasicrystalline icosahedral phase in Al 86 Cr 14 , Al 84 Fe 16 and Al 62.5 Cu 25 Fe 12.5 alloys has been investigated by mechanical alloying. Mixtures of quasicrystalline and related crystalline phases have been observed under various milling conditions. The X-ray diffraction, differential thermal analysis and electrical resistivity techniques have been used for characterization and physical property measurements. The particle size was calculated by X-ray profile using Williamson-Hall plot method and it was found to be 25-50 nm size.

  8. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  9. CoO-doped MgO-Al2O3-SiO2-colored transparent glass-ceramics with high crystallinity

    Science.gov (United States)

    Tang, Wufu; Zhang, Qian; Luo, Zhiwei; Yu, Jingbo; Gao, Xianglong; Li, Yunxing; Lu, Anxian

    2018-02-01

    To obtain CoO-doped MgO-Al2O3-SiO2 (MAS)-colored transparent glass-ceramics with high crystallinity, the glass with the composition 21MgO-21Al2O3-54SiO2-4B2O3-0.2CoO (in mol %) was prepared by conventional melt quenching technique and subsequently thermal treated at several temperatures. The crystallization behavior of the glass, the precipitated crystalline phases and crystallinity were analyzed by X-ray diffraction (XRD). The microstructure of the glass-ceramics was characterized by field emission scanning electron microscopy (FSEM). The transmittance of glass-ceramic was measured by UV spectrophotometer. The results show that a large amount of α-cordierite (indianite) with nano-size was precipitated from the glass matrix after treatment at 1020 °C for 3 h. The crystallinity of the transparent glass-ceramic reached up to 97%. Meanwhile, the transmittance of the glass-ceramic was 74% at 400 nm with a complex absorption band from 450 nm to 700 nm. In addition, this colored transparent glass-ceramic possessed lower density (2.469 g/cm3), lower thermal expansion coefficient (1.822 × 10-6 /℃), higher Vickers hardness (9.1 GPa) and higher bending strength (198 MPa) than parent glass.

  10. Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders

    International Nuclear Information System (INIS)

    Khattab, R.M.; Wahsh, M.M.S.; Khalil, N.M.

    2015-01-01

    According to the wide applications in the field of chemical and engineering industries, forsterite (Mg_2SiO_4)/spinel (MgAl_2O_4) ceramic compositions were the matter of interest of several research works during the last three decades. This work aims at preparation and characterization of improved ceramic bodies based on forsterite and spinel nano powders through controlling the forsterite and spinel contents in the prepared mixes. These prepared ceramic compositions have been investigated through measuring the densification parameters, cold crushing strength as well as volume resistively. Nano spinel was added from 0 to 30 mass% on expense of nano forsterite matrix and fired at 1550 °C for 2 h. The phase composition of the fired samples was examined using x-ray diffraction (XRD) technique. The microstructure of some selected samples was shown using scanning electron microscope (SEM). A pronounced improvement in the sintering, mechanical properties and volume resistively were achieved with increasing of nano spinel addition up to 15 mass%. This is due to the improvement in the matrix of the prepared forsterite/spinel bodies as a result of well distribution of spinel in the forsterite matrix as depicted by SEM analysis. - Highlights: • Ceramic compositions based on nano forsterite/nano-MgAl_2O_4 spinel were synthesized. • CCS was improved (333.78 MPa) through 15 mass% of nano-MgAl_2O_4 spinel addition. • Volume resistivity was enhanced to 203*10"1"3 Ohm cm with 15 mass% of spinel addition. • Beyond 15 mass% spinel, CCS and volume resistivity were decreased.

  11. Structure-Property Relationships in Polymer Derived Amorphous/Nano-Crystalline Silicon Carbide for Nuclear Applications

    International Nuclear Information System (INIS)

    Zunjarrao, Suraj C.; Singh, Abhishek K.; Singh, Raman P.

    2006-01-01

    Silicon carbide (SiC) is a promising candidate for several applications in nuclear reactors owing to its high thermal conductivity, high melting temperature, good chemical stability, and resistance to swelling under heavy ion bombardment. However, fabricating SiC by traditional powder processing route generally requires very high temperatures for pressureless sintering. Polymer derived ceramic materials offer unique advantages such as ability to fabricate net shaped components, incorporate reinforcements and relatively low processing temperatures. Furthermore, for SiC based ceramics fabricated using polymer infiltration process (PIP), the microstructure can be tailored by controlling the processing parameters, to get an amorphous, nanocrystalline or crystalline SiC. In this work, fabrication of polymer derived amorphous and nano-grained SiC is presented and its application as an in-core material is explored. Monolithic SiC samples are fabricated by controlled pyrolysis of allyl-hydrido-poly-carbo-silane (AHPCS) under inert atmosphere. Chemical changes, phase transformations and microstructural changes occurring during the pyrolysis process are studied as a function of the processing temperature. Polymer cross-linking and polymer to ceramic conversion is studied using infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) are performed to monitor the mass loss and phase change as a function of temperature. X-ray diffraction studies are done to study the intermediate phases and microstructural changes. Variation in density is carefully monitored as a function of processing temperature. Owing to shrinkage and gas evolution during pyrolysis, precursor derived ceramics are inherently porous and composite fabrication typically involves repeated cycles of polymer re-infiltration and pyrolysis. However, there is a limit to the densification that can be achieved by this method and porosity in the final materials presents

  12. Synthesis of Nano Crystalline Gamma Alumina from Waste Cans

    Directory of Open Access Journals (Sweden)

    Nada Sadoon Ahmedzeki

    2018-03-01

    Full Text Available In the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5, sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55% and weights of aluminum cans (2, 4, 6, 8 and 10 g. The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS; and maximum yield of alumina solution was 96.3% obtained at 2 mole ratios of reactants, 40% sodium hydroxide concentrations and 10g of aluminum cans respectively. Gamma alumina was acquired by hydrothermal treatment of alumina solution at pH 7 and calcination temperature of 550 ºC. The prepared catalyst was characterized by X-ray diffraction (XRD, N2 adsorption/ desorption isotherms, X-ray fluorescence (XRF and atomic force microscopy (AFM. Results showed good crystallinity of alumina as described by XRD patterns, with surface area of 311.149 m2/g, 0.36 cm3/g pore volume, 5.248 nm pore size and particle size of 68.56 nm respectively.

  13. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    Science.gov (United States)

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    International Nuclear Information System (INIS)

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  15. Study of the effect of nano surface morphology on the stain-resistant property of ceramic tiles

    International Nuclear Information System (INIS)

    Pan, S P; Hung, J K; Liu, Y T

    2014-01-01

    In this study, six types of commercially available ceramic tiles, including nano-structured ceramic tiles and regular ceramic tiles, were selected to investigate the effect of surface morphology on their stain-resistant property. The stain-resistant efficiencies of various ceramic tiles with nano-size surface were measured in order to determine the appropriate method for testing ceramic tiles with nano-structure surface

  16. Formation of Nano-crystalline Todorokite from Biogenic Mn Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Zhu, M; Ginder-Vogel, M; Ni, C; Parikh, S; Sparks, D

    2010-01-01

    Todorokite, as one of three main Mn oxide phases present in oceanic Mn nodules and an active MnO{sub 6} octahedral molecular sieve (OMS), has garnered much interest; however, its formation pathway in natural systems is not fully understood. Todorokite is widely considered to form from layer structured Mn oxides with hexagonal symmetry, such as vernadite ({delta}-MnO{sub 2}), which are generally of biogenic origin. However, this geochemical process has not been documented in the environment or demonstrated in the laboratory, except for precursor phases with triclinic symmetry. Here we report on the formation of a nanoscale, todorokite-like phase from biogenic Mn oxides produced by the freshwater bacterium Pseudomonas putida strain GB-1. At long- and short-range structural scales biogenic Mn oxides were transformed to a todorokite-like phase at atmospheric pressure through refluxing. Topotactic transformation was observed during the transformation. Furthermore, the todorokite-like phases formed via refluxing had thin layers along the c* axis and a lack of c* periodicity, making the basal plane undetectable with X-ray diffraction reflection. The proposed pathway of the todorokite-like phase formation is proposed as: hexagonal biogenic Mn oxide {yields} 10-{angstrom} triclinic phyllomanganate {yields} todorokite. These observations provide evidence supporting the possible bio-related origin of natural todorokites and provide important clues for understanding the transformation of biogenic Mn oxides to other Mn oxides in the environment. Additionally this method may be a viable biosynthesis route for porous, nano-crystalline OMS materials for use in practical applications.

  17. Lava ultimate resin nano ceramic for CAD/ CAM: customization case study.

    Science.gov (United States)

    Koller, M; Arnetzl, G V; Holly, L; Arnetzl, G

    2012-01-01

    Lava Ultimate Resin Nano Ceramic (RNC) blocks are innovative new CAD/CAM materials that make it possible to achieve superior esthetic results in easy steps. The blocks are made of nano ceramic particles embedded in a highly cured resin matrix. Therefore, composite materials can be used to characterize and adjust resin nano ceramic restorations after milling. The milled RNC restorations can be individualized intra-orally or extra-orally, either before or after insertion. Unlike conventional ceramic restorations, customization and glaze firing is neither necessary nor possible with RNC restorations. This opens up the opportunity for intraoral individualization and adaptation of the restorations.

  18. Compaction simulation of nano-crystalline metals with molecular dynamics analysis

    Directory of Open Access Journals (Sweden)

    Khoei A.R.

    2016-01-01

    Full Text Available The molecular-dynamics analysis is presented for 3D compaction simulation of nano-crystalline metals under uniaxial compaction process. The nano-crystalline metals consist of nickel and aluminum nano-particles, which are mixed with specified proportions. The EAM pair-potential is employed to model the formation of nano-particles at different temperatures, number of nano-particles, and mixing ratio of Ni and Al nano-particles to form the component into the shape of a die. The die-walls are modeled using the Lennard-Jones inter-atomic potential between the atoms of nano-particles and die-walls. The forming process is model in uniaxial compression, which is simulated until the full-dense condition is attained at constant temperature. Numerical simulations are performed by presenting the densification of nano-particles at different deformations and distribution of dislocations. Finally, the evolutions of relative density with the pressure as well as the stress-strain curves are depicted during the compaction process.

  19. Formulation of nano-ceramic filters used in separation of heavy metals . Part II: Zirconia ceramic filters

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou EI-Nour, F.H.; Abdel-Kbalik, M.

    2007-01-01

    Zirconia ceramic filters are prepared using polymeric sol-gel process. An optimization of synthesis parameters was studied to give cracked free coated nano porous film with high performance quality. Zirconia ceramic filters are characterized to select tbe optimized conditions that give tbe suitable zirconia filter used in heavy metal separation. The ceramic filters were characterized using BET method for surface measurements, mercury porosimeter for pore size distribution analysis and coating thickness measurements, SEM for microstructural studies and atomic absorption spectrophotometer (AAS) for metal analysis. The results indicated that zirconia ceramic filters. show high separation performance for cadmium, cupper, iron, manganese and lead

  20. Comparison of SRP high-level waste disposal costs for borosilicate glass and crystalline ceramic waste forms

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1982-04-01

    An evaluation of costs for the immobilization and repository disposal of SRP high-level wastes indicates that the borosilicate glass waste form is less costly than the crystalline ceramic waste form. The wastes were assumed immobilized as glass with 28% waste loading in 10,300 reference 24-in.-diameter canisters or as crystalline ceramic with 65% waste loading in either 3400 24-in.-diameter canisters or 5900 18-in.-diameter canisters. After an interim period of onsite storage, the canisters would be transported to the federal repository for burial. Total costs in undiscounted 1981 dollars of the waste disposal operations, excluding salt processing for which costs are not yet well defined, were about $2500 million for the borosilicate glass form in reference 24-in.-diameter canisters, compared to about $2900 million for the crystalline ceramic form in 24-in.-diameter canisters and about $3100 million for the crystalline ceramic form in 18-in.-diameter canisters. No large differences in salt processing costs for the borosilicate glass and crystalline ceramic forms are expected. Discounting to present values, because of a projected 2-year delay in startup of the DWPF for the crystalline ceramic form, preserved the overall cost advantage of the borosilicate glass form. The waste immobilization operations for the glass form were much less costly than for the crystalline ceramic form. The waste disposal operations, in contrast, were less costly for the crystalline ceramic form, due to fewer canisters requiring disposal; however, this advantage was not sufficient to offset the higher development and processing costs of the crystalline ceramic form. Changes in proposed Nuclear Regulatory Commission regulations to permit lower cost repository packages for defense high-level wastes would decrease the waste disposal costs of the more numerous borosilicate glass forms relative to the crystalline ceramic forms

  1. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    International Nuclear Information System (INIS)

    Maddrell, Ewan; Thornber, Stephanie; Hyatt, Neil C.

    2015-01-01

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na 2 O–Al 2 O 3 –B 2 O 3 –SiO 2 glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio

  2. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  3. NANO CRYSTALLINE ZnO CATALYZED ONE POT THREE ...

    African Journals Online (AJOL)

    advances in nanoscience and nanotechnology have led to new research interests in using nanometer-sized particles as .... dichloromethane and then filtered to separate the nano ZnO catalyst. ..... 104, 4063. 31. Matsubara, K.; Fons, P.; Iwata, K.; Yamada, A.; Sakurai, K.; Tampo, N.; Niki, S. Thin Solid. Films 2003, 431, 369.

  4. Electro-mechanical properties of free standing micro- and nano-scale polymer-ceramic composites for energy density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Paritosh; Borkar, Hitesh [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K. S. Krishnan Road, New Delhi, 110012 (India); Singh, B.P.; Singh, V.N. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K. S. Krishnan Road, New Delhi, 110012 (India)

    2015-11-05

    The integration of inorganic fillers in polymer matrix is useful for superior mechanical strength and functional properties of polymer-ceramic composites. We report the fabrication and characterization of polyvinylidene fluoride-CoFe{sub 2}O{sub 4} (PVDF-CFO) (wt% 80:20, respectively) and PVDF-Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}–CoFe{sub 2}O{sub 4} (PVDF-PZT-CFO) (wt% 80:10:10, respectively) free standing 50 μm thick ferroelectric-polymer-ceramic composites films. X-ray diffraction (XRD) patterns and Raman spectra revealed the presence of major semi-crystalline β-PVDF along with α-phase which is responsible for ferroelectric nature in both the composite systems. Ferroelectric, dielectric and mechanical strength measurements were performed in order to evaluate the effects of CFO and PZT inorganic fillers in PVDF matrix. The inclusion of CFO and PZT micro-/nano-particles in PVDF polymer matrix improved the polarization behavior, dielectric properties and mechanical strength. The energy density was calculated by polarization-electric field hysteresis loop and found in the range of 6–8 J/cm{sup 3} may be useful for microelectronics. - Graphical abstract: Large area PVDF-PZT-CFO nano- and micro-composite films have been fabricated for high energy density storage flexible capacitor. Presence of nanocrystalline PZT and CFO particles in polymer matrix significantly enhanced their energy density capacity. - Highlights: • Physical interaction of cobalt iron oxide with polymer matrix results β-PVDF phase. • Evidence of Micro and Nano crystalline CFO and PZT fillers in polymer matrix. • The CFO and PZT fillers provide better mechanical strength to composite films. • PVDF-ceramic nanocomposites show low leakage behavior for high electric field.

  5. Development of crystalline ceramic for immobilization of TRU wastes in V.G. Khlopin Radium Institute

    International Nuclear Information System (INIS)

    Burakov, B.E.; Anderson, E.B.

    1999-01-01

    This paper discusses the Radium Institute's experience in the synthesis of crystalline ceramics based on two groups of actinide host-phases: 1) Zircon/zirconia-(Zn, Ac)SiO 4 /(Zr, Ac)O 2 , where Ac=Pu, Np, Am, Cm; 2) Garnet/perovskite-(Y, Gd, Ac) 3 (Al, Ga, Ac,..) 5 O 12 /(Y, Gd, Ac)(Al, Ga)O 3 . The zircon/zirconia ceramic was suggested as an universal waste form for the immobilization of TRU as well as weapon-grade Pu. Because the position of the Russian Ministry of Atomic Energy (Minatom) does not consider weapons Pu as a waste', the Radium Institute proposed the use of the same ceramic (mainly monophase zirconia ) as a Pu-fuel. The garnet/perovskite ceramic was suggested for the immobilization of military TRU wastes of complex chemical composition. The advantage of this ceramic is that Garnet and Perovskite host-phases can incorporate in their lattices not only actinides, but also other elements including neutron absorbers in a broad range of concentration and in different valence state. Sample of zircon/zirconia ceramic were prepared by hot uniaxial pressing (at temperature T=1300, 1400, 1500degC and pressure P=25 MPa) and sintering (at T=1450, 1490, 1500, 1600degC) methods using different types of initial precursor. Samples of garnet/perovskite ceramic were synthesized by melting method at T=2000degC. Ce, U, Gd were used as TRU stimulants for both types of ceramic. One sample of zircon/zirconia ceramic was doped with 10 wt.% of Pu 239 . Physico-chemical features of these ceramics are described. In conclusion we propose that the pressureless technology based on sintering or melting methods be used for the synthesis of ceramics for the immobilization of all types of TRU wastes. (author)

  6. Transformation from amorphous to nano-crystalline SiC thin films ...

    Indian Academy of Sciences (India)

    Administrator

    phous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering ... Auger electron spectroscopy showed that the carbon incorporation in the .... with a 514 nm Ar+ laser excitation source and the laser.

  7. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K. S. [Savannah River National Laboratory; Marra, J. C. [Savannah River National Laboratory; Amoroso, J. [Savannah River National Laboratory; Tang, M. [Los Alamos National Laboratory

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  8. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  9. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Abstract. Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, ...

  10. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  11. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    Directory of Open Access Journals (Sweden)

    Enrico Bernardo

    2014-03-01

    Full Text Available Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings or functional (bioactive ceramics, luminescent materials, mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs, or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  13. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    Science.gov (United States)

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  14. Nano-crystalline P/M aluminium for automotive applications

    International Nuclear Information System (INIS)

    Hummert, K; Schattevoy, R; Broda, M; Knappe, M; Beiss, P; Klubberg, F; Schubert, T H; Leuschner, R

    2009-01-01

    The reduction of total vehicle weight and lowering of moving masses within the engine are key elements to overcome future emission challenges of the automotive industry. Within a German BMBF funded project the melt spinning technology will be driven to a series production status. The very fast cooling condition of the melt leads to a nano-structure of the aluminium material. This results in new material properties of known alloys. The strength increases dramatically without lowered forming behaviour. With this process the freedom of designing complex alloys is very flexible. Different alloys have been investigated for several applications, where high strength at room and elevated temperatures and/or high wear resistance is required. This paper presents some results regarding the processing, microstructure and mechanical properties of a developed Al-Ni-Fe alloy. This joined research project with partners from the automotive industry as well as automotive suppliers and universities is funded by the German BMBF 'NanoMobile' Program under Project number 03X3008.

  15. Oxidation studies of β-sialon ceramics containing amorphous and / or crystalline intergranular phases

    International Nuclear Information System (INIS)

    Persson, J.; Kall, P.O.; Jansson, K.; Nygren, M.

    1992-01-01

    β-sialon ceramics of equal overall compositions but containing amorphous, partly crystalline and almost completely crystalline intergranular phase(s) have been oxidized in oxygen at 1350 deg C for 20 hours. The obtained weight gain curves do not follow the parabolic rate law (ΔW/A 0 ) 2 = k p t + β. To the extent that crystallization occurs in the oxide scale during the oxidation experiment, the amorphous cross section area through which oxygen most easily diffuses will decrease with time. A brief description of this new rate law is given, and the obtained oxidation curves will be discussed within that framework. 4 refs., 2 tabs., 2 figs

  16. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show ∼80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd 3+ 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under γ-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 μs due to Nd 3+ 4f-4f transitions.

  17. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yagi, Hideki; Yanagitani, Takagimi [Konoshima Chemical Co., Ltd., 80 Kouda, Takuma, Mitoyo-gun, Kagawa 769-1103 (Japan)

    2011-03-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show {approx}80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd{sup 3+} 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under {gamma}-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 {mu}s due to Nd{sup 3+} 4f-4f transitions.

  18. Wear Resistance of Nano Alumina Containing SiO2-B2O3-Na2O Glass-Ceramic on Steel Substrate

    Directory of Open Access Journals (Sweden)

    A. Faeghinia

    2016-09-01

    Full Text Available The experimental study has been carried out to investigate the tribological properties of nano Alumina reinforced glass-ceramic enamel. The mixtures of (5, 10, 15 wt.% nano alumina and glass powders have been air sprayed on stainless steel substrate.. The thixotropy, wetting angle and surface tension of used slurry were increased inherently by 15-wt.% nano alumina. By heat treating at 870-640-525 ºC, the homogeneous crystalline sodium silicate phase beside nano alumina was obtained in glass –ceramic coat. According to the EDAX results, the precipitated reduced Sb and Mo particles at the interface of enamel and steel caused to reasonable adherence of coat and steel. The dry sliding wear tests were carried out using pin on disk method. Results revealed the 0.01 mg wear rate by 30N load at 100 m for nano alumina bearing coats. The wear resistance increased by a factor of 10. According to SEM micrographs, the sliding load transfer by nano alumina particles occurred.

  19. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  20. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    International Nuclear Information System (INIS)

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-01-01

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed

  1. Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Hari Prasad, D.; Kim, H.-R.; Park, J.-S.; Son, J.-W.; Kim, B.-K.; Lee, H.-W.; Lee, J.-H.

    2010-01-01

    Reduced sintering temperature of doped ceria can greatly simplify the fabrication process of solid oxide fuel cells (SOFCs) by utilizing the co-firing of all cell components with a single step. In the present study, nano-crystalline gadolinium doped ceria (GDC) powders of high sinterability at lower sintering temperature has been synthesized by co-precipitation at room temperature. The successful synthesis of nano-crystalline GDC was confirmed by XRD, TEM and Raman spectroscopy analysis. Dilatometry studies showed that GDC prepared by this method can be fully densified (97% relative density) at a sintering temperature of 950 o C which is fairly lower than ever before. It has also been found that the sintered samples have a higher ionic conductivity of 1.64 x 10 -2 S cm -1 at 600 o C which is suitable for the intermediate temperature SOFC application.

  2. Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nano-powders

    International Nuclear Information System (INIS)

    Leconte, Y.; Maskrot, H.; Combemale, L.; Herlin-Boime, N.; Reynaud, C.

    2007-01-01

    Refractory carbide nano-structured ceramics appear to be promising materials for high temperature applications requiring hard materials such as nuclear energy industry. Such carbide materials are usually obtained with micrometric sizes from the high temperature carbo-reduction of an oxide phase in a raw mixture of C black and titania or zirconia. TiC and ZrC nano-powders were produced from an intimate mixture of oxide nano-grains with free C synthesized by laser pyrolysis from the decomposition of a liquid precursor. The temperature and the duration of the thermal treatment leading to the carburization were decreased, allowing the preservation of the nano-scaled size of the starting grains. A solution of titanium iso-prop-oxide was laser-pyrolyzed with ethylene as sensitizer in order to synthesize Ti/C/O powders. These powders were composed of crystalline TiO 2 nano-grains mixed with C. Annealing under argon enabled the formation of TiC through the carburization of TiO 2 by free C. The final TiC mean grain size was about 80 nm. Zr/O/C powders were prepared from a solution of zirconium butoxide and were composed of ZrO 2 crystalline nano-grains and free C. The same thermal treatment as for TiC, but at higher temperature, showed the formation of crystalline ZrC with a final mean grain size of about 40 nm. These two liquid routes of nano-particles synthesis are also compared to the very efficient gaseous route of SiC nano-powders synthesis from a mixture of silane and acetylene. (authors)

  3. Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays.

    Science.gov (United States)

    Kang, Min-Gyu; Oh, Seung-Min; Jung, Woo-Suk; Moon, Hi Gyu; Baek, Seung-Hyub; Nahm, Sahn; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-05-08

    Piezoelectric materials capable of converting between mechanical and electrical energy have a great range of potential applications in micro- and nano-scale smart devices; however, their performance tends to be greatly degraded when reduced to a thin film due to the large clamping force by the substrate and surrounding materials. Herein, we report an effective method for synthesizing isolated piezoelectric nano-materials as means to relax the clamping force and recover original piezoelectric properties of the materials. Using this, environmentally friendly single-crystalline NaxK1-xNbO3 (NKN) piezoelectric nano-rod arrays were successfully synthesized by conventional pulsed-laser deposition and demonstrated to have a remarkably enhanced piezoelectric performance. The shape of the nano-structure was also found to be easily manipulated by varying the energy conditions of the physical vapor. We anticipate that this work will provide a way to produce piezoelectric micro- and nano-devices suitable for practical application, and in doing so, open a new path for the development of complex metal-oxide nano-structures.

  4. Novel Sr{sub 2}LuF{sub 7}–SiO{sub 2} nano-glass-ceramics: Structure and up-conversion luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Yanes, A.C.; Castillo, J. del, E-mail: fjvargas@ull.edu.es; Luis, D.; Puentes, J.

    2016-02-15

    Novel transparent nano-glass-ceramics comprising RE-doped Sr{sub 2}LuF{sub 7} nanocrystals have been obtained by thermal treatment of precursor sol–gel glasses. The precipitated Sr{sub 2}LuF{sub 7} nanocrystals with sizes from 4.5 to 11.5 nm, confirmed by X-Ray Diffraction and Transmission Electron Microscopy images, show a cubic phase structure. The luminescent features of Eu{sup 3+} ions, used as structural probes, evidence the distribution of RE ions into the fluoride nanocrystals. Under 980 nm laser excitation, intense UV, vis and NIR up-conversion emissions were observed and studied in Yb{sup 3+}–Tm{sup 3+}, Yb{sup 3+}–Er{sup 3+} and Yb{sup 3+}–Ho{sup 3+} co-doped nano-glass-ceramics. These results suggest considering these nano-glass-ceramics for potential optical applications as high efficient UV up-conversion materials in UV solid state lasers, infrared tuneable phosphors and photonic integrated devices. - Highlights: • Novel sol-gel glass-ceramics with RE{sup 3+}-Sr{sub 2}LuF{sub 7} doped nanocrystals were obtained. • Eu{sup 3+} probe ion was used to distinguish between amorphous and crystalline environments. • The incorporation of an important fraction of RE ions into nanocrystals was confirmed. • Under 980 nm excitation, intense UV-vis-NIR up-conversion emissions were observed.

  5. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt); King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh (Saudi Arabia); Hanna, Adly [Inorganic Chemistry Department, National Research Centre, Dokki, P.O.Box:12622, Postal code: 11787 Cairo (Egypt)

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  6. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    International Nuclear Information System (INIS)

    Mousa, Sahar; Hanna, Adly

    2013-01-01

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP was studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.

  7. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Brinkman, K.

    2011-09-22

    The Savannah River National Laboratory (SRNL) is developing crystalline ceramic waste forms to incorporate CS/LN/TM high Mo waste streams consisting of perovskite, hollandite, pyrochlore, zirconolite, and powellite phase assemblages. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase crystalline ceramics. Fiscal Year 2011 (FY11) activities included (i) expanding the compositional range by varying waste loading and fabrication of compositions rich in TiO{sub 2}, (ii) exploring the processing parameters of ceramics produced by the melt and crystallize process, (iii) synthesis and characterization of select individual phases of powellite and hollandite that are the target hosts for radionuclides of Mo, Cs, and Rb, and (iv) evaluating the durability and radiation stability of single and multi-phase ceramic waste forms. Two fabrication methods, including melting and crystallizing, and pressing and sintering, were used with the intent of studying phase evolution under various sintering conditions. An analysis of the XRD and SEM/EDS results indicates that the targeted crystalline phases of the FY11 compositions consisting of pyrochlore, perovskite, hollandite, zirconolite, and powellite were formed by both press and sinter and melt and crystallize processing methods. An evaluation of crystalline phase formation versus melt processing conditions revealed that hollandite, perovskite, zirconolite, and residual TiO{sub 2} phases formed regardless of cooling rate, demonstrating the robust nature of this process for crystalline phase development. The multiphase ceramic composition CSLNTM-06 demonstrated good resistance to proton beam irradiation. Electron irradiation studies on the single phase CaMoO{sub 4} (a component of the multiphase waste form) suggested that this material exhibits stability to 1000 years at anticipated self-irradiation doses (2 x 10{sup 10}-2 x 10{sup 11} Gy), but that

  8. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, Jake W., E-mail: jake.amoroso@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James; Dandeneau, Christopher S. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Brinkman, Kyle; Xu, Yun [Clemson University, Clemson, SC 29634 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maio, Vince [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Webb, Samuel M. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94086 (United States); Chiu, Wilson K.S. [University of Connecticut, Storrs, Connecticut 06269-3139 (United States)

    2017-04-01

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. Primary hollandite, pyrochlore/zirconolite, and perovskite phases were identified in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.

  9. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  10. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Preparation of Cu2ZnSnS4 nano-crystalline powder by mechano-chemical method

    Science.gov (United States)

    Alirezazadeh, Farzaneh; Sheibani, Saeed; Rashchi, Fereshteh

    2018-01-01

    Copper zinc tin sulfide (Cu2ZnSnS4, CZTS) is one of the most promising ceramic materials as an absorber layer in solar cells due to its suitable band gap, high absorption coefficient and non-toxic and environmental friendly constituent elements. In this work, nano-crystalline CZTS powder was synthesized by mechanical milling. Elemental powders of Cu, Zn, Sn and were mixed in atomic ratio of 2:1:1:4 according to the stoichiometry of Cu2ZnSnS4 and then milled in a planetary high energy ball mill under argon atmosphere. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffusion reflectance spectroscopy (DRS). XRD results confirm the formation of single-phase CZTS with kesterite structure after 20 h of milling. Also, the mean crystallite size was about 35 nm. SEM results show that after 20 h of milling, the product has a relatively uniform particle size distribution. Optical properties of the product indicate that the band gap of prepared CZTS is 1.6 eV which is near to the optimum value for photovoltaic solar cells showing as a light absorber material in solar energy applications.

  12. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    Science.gov (United States)

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars

    Energy Technology Data Exchange (ETDEWEB)

    Ajiki, Yoshiharu, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp [Micromachine Center, 67 Kanda Sakumagashi, Chiyoda-ku, Tokyo 100-0026 (Japan); Kan, Tetsuo [Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Yahiro, Masayuki; Hamada, Akiko; Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Adachi, Junji [Office for Strategic Research Planning, Kyushu University, 6-10-1 Hakozaki, Higashi, Fukuoka 812-8581 (Japan); Matsumoto, Kiyoshi [IRT Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Shimoyama, Isao, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp [Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); IRT Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2016-04-11

    We propose a silicon (Si) based near-infrared photodetector using self-assembled organic crystalline nano-pillars, which were formed on an n-type Si substrate and were covered with an Au thin-film. These structures act as antennas for near-infrared light, resulting in an enhancement of the light absorption on the Au film. Because the Schottky junction is formed between the Au/n-type Si, the electron excited by the absorbed light can be detected as photocurrent. The optical measurement revealed that the nano-pillar structures enhanced the responsivity for the near-infrared light by 89 (14.5 mA/W) and 16 (0.433 mA/W) times compared with those of the photodetector without nano-pillars at the wavelengths of 1.2 and 1.3 μm, respectively. Moreover, no polarization dependency of the responsivity was observed, and the acceptable incident angle ranged from 0° to 30°. These broad responses were likely to be due to the organic nano-pillar structures' having variation in their orientation, which is advantageous for near-infrared detector uses.

  14. Economic comparison of crystalline ceramic and glass waste forms for HLW disposal

    International Nuclear Information System (INIS)

    McKee, R.W.; Daling, P.M.; Wiles, L.E.

    1983-05-01

    A titanate-based, crystalline ceramic produced by hot isostatic pressing has been proposed as a potentially more stable and improved waste form for high-level nuclear waste disposal compared to the currently favored borosilicate glass waste form. This paper describes the results of a study to evaluate the relative costs for disposal of high-level waste from a 70,000 metric ton equivalent (MTE) system. The entire waste management system, including waste processing and encapsulation, transportation, and final repository disposal, was included in this analysis. The repository concept is based on the current basalt waste isolation project (BWIP) reference design. A range of design basis alternatives is considered to determine if this would influence the relative economics of the two waste forms. A thermal analysis procedure was utilized to define optimum canister sizes to assure that each waste form was compared under favorable conditions. Repository costs are found to favor the borosilicate glass waste form while transportation costs greatly favor the crystalline ceramic waste form. The determining component in the cost comparison is the waste processing cost, which strongly favors the borosilicate glass process because of its relative simplicity. A net cost advantage on the order of 12% to 15% on a waste management system basis is indicated for the glass waste form

  15. An Overview on the Improvement of Mechanical Properties of Ceramics Nano composites

    International Nuclear Information System (INIS)

    Silvestre, J.; Brito, J. D.; Silvestre, N.

    2015-01-01

    Due to their prominent properties (mechanical, stiffness, strength, thermal stability), ceramic composite materials (CMC) have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMC_s have been greatly improved in the last decade. CMC_s are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide) are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMC_s can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMC_s are now changing from classical reinforcement (e.g., microscale fibres) to new types of reinforcement at nano scale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMC_s: Ceramics Nano composites (CNC_s)

  16. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    Science.gov (United States)

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  17. Achievement report for fiscal 1998. Research and development of nano-structural materials for ceramic bearing application (the second year); 1998 nendo seika hokokusho. Ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is made on ceramic bearing using high-performance and low-cost nano-structural materials, and its application is performed to high-quality bearings suitable for energy conservation in automobiles and industrial machines, and bearings for office automation devices, electronics, and aeronautic and maritime development. To achieve these goals, raw material synthesizing technologies, forming technologies, structural control technologies, processing technologies and mass production technologies shall be established. Fiscal 1998 had the following achievements: establishment of nano-structure controlled ceramic material powder synthesizing technology (nano-lamination type composite powder made by using the beads mill co-precipitation method, nano-lamination type composite powder made by using the New Mymill co-precipitation method, nano-lamination type composite powder made by using the controlled liquid phase method, composite nano-structured gel, and nano-powder synthesis); near net forming technology for spherical ceramics; high-speed processing technology for ultra smooth surface; evaluation of rolling fatigue properties of ceramic bearings; and analysis and evaluation of nano-structured materials. Since this alumina-based ceramic bearing can be produced at reduced cost with performance comparable to silicon nitride based bearing, investigations and discussions are being given on the application thereof. (NEDO)

  18. Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation

    Science.gov (United States)

    Gao, Ru-qin; Sun, Qian; Fang, Zhi; Li, Guo-ting; Jia, Meng-zhe; Hou, Xin-mei

    2018-01-01

    Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650°C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ = 0.576 mg·m-3·min-1 and K = 0.048 m3/mg.

  19. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.

    Science.gov (United States)

    Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T

    2006-02-01

    The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.

  20. Engineering high power induction plasma unit at BARC for mass synthesis of refractory nano-ceramics

    International Nuclear Information System (INIS)

    Ghorui, S.; Sahasrabudhe, S.N.; Dhamale, G.; Das, A.K.

    2013-01-01

    Atmospheric pressure RF thermal plasma sources are gaining increasing importance for production of high purity novel nano-materials in different high-end technological applications. Inherent electrode-less features of the discharge together with the large volume and high energy density of the produced plasma ensures contamination free process environment and mass production ability. Reported herewith is the development of an indigenous induction plasma system for mass synthesis of nanopowders of refractory ceramic materials. The system has been tested for continuous synthesis of Al 2 O 3 nano-powder at a rate of more than 600 gm per hour and checked for its viability for bulk production of nano-particles of other refractory ceramics like Yttrium oxide and Neodymium Oxide. From collected evidences, the process of formation of the nano-particles is identified as the evaporation and subsequent homogeneous nucleation. Major features observed for alumina are complete conversion into highly spherical nano-sized particles, small particle sizes, very narrow size distribution, highly crystallite nature and mixed phases depending on the zone of collection. For alumina, the particles are found to exhibit a uni-modal distribution with peak near 15 nm

  1. Direct writing of large-area micro/nano-structural arrays on single crystalline germanium substrates using femtosecond lasers

    Science.gov (United States)

    Li, Lin; Wang, Jun

    2017-06-01

    A direct writing technique for fabricating micro/nano-structural arrays without using a multi-scanning process, multi-beam interference, or any assisted microlens arrays is reported. Various sub-wavelength micro/nano-structural arrays have been directly written on single crystalline germanium substrate surfaces using femtosecond laser pulses. The evolution of the multiscale surface morphology from periodic micro/nano-structures to V-shaped microgrooves has been achieved, and the relationship between array characteristics and laser polarization directions has been discussed. The self-organization model agrees well with the experimental results in this study.

  2. Preparation and mechanical properties of carbon nanotube-silicon nitride nano-ceramic matrix composites

    Science.gov (United States)

    Tian, C. Y.; Jiang, H.

    2018-01-01

    Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.

  3. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium on energy research in its 3rd year (Development of nano-structured materials for ceramic bearing applications); 1999 nendo ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu seika hokokusho. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Coprecipitation in a chloride-containing water solution is utilized to deposit zirconia nano-particles on alumina particles for the manufacture of a composite powder and a sintered body. As compared with a conventional CIP (cold isostatic press)-molded compact, a slip-cast compact is improved in flexural strength from 1.1 to 1.36Gpa. A composite powder granulating unit is installed. Although it is known that use of the citric acid as gelatinizer in the coprecipitation process results in a homogenous ZrO{sub 2}-Al{sub 2}O{sub 3} composite powder, yet a method is contrived to achieve high crystallinity without gelatinizer by freezing and drying a chloride-containing water solution in a microgravity field. In the near-net molding of spherical ceramic particles, an error in diameter of not more than 50{mu}m is realized. A mass production technology is established by which an inexpensive general-purpose alumina nano-structured material is die-compacted for the manufacture of low-cost ceramic bearings. A high-speed super-flat spherical surface processing technology is developed. In a 25kg-load fatigue test conducted for a combination of nano-structured ceramic balls and steel flat plates that bear the balls, a 240-hour life is attained. The bearing steel stands comparison with those available on the market. (NEDO)

  4. Ultraviolet photosensitivity of sulfur-doped micro- and nano-crystalline diamond

    International Nuclear Information System (INIS)

    Mendoza, Frank; Makarov, Vladimir; Hidalgo, Arturo; Weiner, Brad; Morell, Gerardo

    2011-01-01

    The room-temperature photosensitivity of sulfur-doped micro- (MCD), submicro- (SMCD) and nano- (NCD) crystalline diamond films synthesized by hot-filament chemical vapor deposition was studied. The structure and composition of these diamond materials were characterized by Raman spectroscopy, scanning electron microscopy and X-ray diffraction. The UV sensitivity and response time were studied for the three types of diamond materials using a steady state broad UV excitation source and two pulsed UV laser radiations. It was found that they have high sensitivity in the UV region, as high as 10 9 sec -1 mV -1 range, linear response in a broad spectral range below 320 nm, photocurrents around ∼10 -5 A, and short response time better than 100 ns, which is independent of fluency intensity. A phenomenological model was applied to help understand the role of defects and dopant concentration on the materials' photosensitivity

  5. Characterization of nano-crystalline ZrO{sub 2} synthesized via reactive plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Ananthapadmanabhan, P.V. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020 India (India); Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Su, L.T.; Tok, A.I.Y.; Guo, J. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2011-07-25

    Highlights: > Direct conversion of micron-sized zirconium hydride powder to nanocrystalline ZrO{sub 2} powder. > The experimental approach uses reactive plasma processing technique. > The product has been characterized by various analytical tools to support the findings. - Abstract: Nano-crystalline ZrO{sub 2} powder has been synthesized via reactive plasma processing. The synthesized ZrO{sub 2} powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM) and FTIR spectroscopy. The synthesized powder consists of a mixture of tetragonal and monoclinic phases of zirconia. Average crystallite size calculated from the XRD pattern shows that particles with crystallite size 20 nm or less than 20 nm are in tetragonal phase, whereas particles greater than 20 nm are in the monoclinic phase. TEM results show that particles have spherical morphology with maximum percentage of particles distributed in a narrow size from about 15 nm to 30 nm.

  6. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    International Nuclear Information System (INIS)

    Kunj, Saurabh; Sreenivas, K.

    2016-01-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O_2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  7. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Science.gov (United States)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  8. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Kunj, Saurabh; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 INDIA (India)

    2016-05-06

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O{sub 2}) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  9. High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2015-01-01

    Roč. 627, March (2015), s. 326-332 ISSN 0921-5093 Institutional support: RVO:61389021 Keywords : Nano-crystalline material * Selective leaching * Silver * Spark plasma sintering * Strength Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.647, year: 2015 http://dx.doi.org/10.1016/j.msea.2015.01.014

  10. Synthesis of nano-crystalline NiFe2O4 powders in subcritical and supercritical ethanol

    Czech Academy of Sciences Publication Activity Database

    Ćosović, A.; Žák, Tomáš; Glisić, S.; Sokić, M.; Lazarević, S.; Ćosović, V.; Orlović, A.

    2016-01-01

    Roč. 113, JUL (2016), s. 96-105 ISSN 0896-8446 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : supercritical * subcritical * nano-crystalline powders * nickel ferrite * metal oxide * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.991, year: 2016

  11. Nickel oxide crystalline nano flakes: synthesis, characterization and their use as anode in lithium-ion batteries

    DEFF Research Database (Denmark)

    Ahmadi, Majid; Younesi, Reza; Vegge, Tejs

    2014-01-01

    Nickel oxide crystalline nano flakes (NONFs)—only about 10 nm wide—were produced using a simple and inexpensive chemistry method followed by a short annealing in ambient air. In a first step, Ni(OH)2 sheets were synthesized by adding sodium hydroxide (NaOH) drop-wise in a Ni(NO3)2 aqueous solutio...

  12. Microstructure and corrosion behavior of electrodeposited nano-crystalline nickel coating on AZ91 Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zarebidaki, Arman, E-mail: arman.zare@iauyazd.ac.ir; Mahmoudikohani, Hassan, E-mail: hassanmahmoudi.k@gmail.com; Aboutalebi, Mohammad-Reza

    2014-12-05

    Highlights: • Activation, zincating, and Cu electrodeposition were used as pretreatment processes for electrodeposition of nickel coatings. • Nano-crystalline nickel coatings were successfully electrodeposited onto the AZ91 Mg alloys. • Effect of nickel electrodeposited coating on the corrosion resistance of AZ91 Mg alloy has been studied. - Abstract: In order to enhance the corrosion resistance, nickel coating was electrodeposited onto AZ91 Mg alloy. Activation, zincating, and Cu electrodeposition used as pretreatment processes for better adhesion and corrosion performance of the nickel over layer. The corrosion properties of the AZ91 Mg alloy, nickel electroplated AZ91 Mg alloy, and pure nickel was assessed via polarization and electrochemical impedance spectroscopy (EIS) methods in 3.5 wt% NaCl solution. Moreover, the structure of the coating was investigated by means of X-ray diffraction, whereas specimen’s morphology and elemental composition were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS). Measurements revealed that the coating has a nano-crystalline structure with the grain size of 95 nm. Corrosion results showed superior corrosion resistance for the coated AZ91 Mg alloy as the corrosion current density decreased from 2.5 × 10{sup −4} A cm{sup −2}, for the uncoated sample, to 1.5 × 10{sup −5} A cm{sup −2}, for coated specimen and the corrosion potential increased from −1.55 V to −0.98 V (vs. Ag/AgCl) at the same condition.

  13. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig.

    Directory of Open Access Journals (Sweden)

    Karsten K H Gundlach

    2011-04-01

    Full Text Available To test the probable osteoinductive properties of NanoBone, a new highly non-sintered porous nano-crystalline hydroxylapatite bone substitute embedded into a silica gel matrix, granules were implanted subcutaneously and intramuscularly into the back region of 18 mini pigs. After periods of 5 and 10 weeks as well as 4 and 8 months, implantation sites were investigated using histological and histomorphometric procedures. Signs of early osteogenesis could already be detected after 5 weeks. The later periods were characterized by increasing membranous osteogenesis in and around the granules leading to the formation of bone-like structures showing periosteal and tendon-like structures with bone marrow and focal chondrogenesis. Bone formation was better in the subcutaneous than in the intramuscular implantation sites. This ectopic osteogenesis is discussed with regard to the nanoporosity and microporosity of the material, physico-chemical interactions at its surface, the differentiation of osteoblasts, the role of angiogenesis and the probable involvement of growth factors. The results of this preliminary study indicate that this biomaterial has osteoinductive potential and induces the formation of bone structures, mainly in subcutaneous adipose tissue in the pig.

  14. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig.

    Science.gov (United States)

    Götz, Werner; Lenz, Solvig; Reichert, Christoph; Henkel, Kai-Olaf; Bienengräber, Volker; Pernicka, Laura; Gundlach, Karsten K H; Gredes, Tomasz; Gerber, Thomas; Gedrange, Tomasz; Heinemann, Friedhelm

    2010-12-01

    To test the probable osteoinductive properties of NanoBone, a new highly non-sintered porous nano-crystalline hydroxylapatite bone substitute embedded into a silica gel matrix, granules were implanted subcutaneously and intramuscularly into the back region of 18 mini pigs. After periods of 5 and 10 weeks as well as 4 and 8 months, implantation sites were investigated using histological and histomorphometric procedures. Signs of early osteogenesis could already be detected after 5 weeks. The later periods were characterized by increasing membranous osteogenesis in and around the granules leading to the formation of bone-like structures showing periosteal and tendon-like structures with bone marrow and focal chondrogenesis. Bone formation was better in the subcutaneous than in the intramuscular implantation sites. This ectopic osteogenesis is discussed with regard to the nanoporosity and microporosity of the material, physico-chemical interactions at its surface, the differentiation of osteoblasts, the role of angiogenesis and the probable involvement of growth factors. The results of this preliminary study indicate that this biomaterial has osteoinductive potential and induces the formation of bone structures, mainly in subcutaneous adipose tissue in the pig.

  15. Understanding the growth of micro and nano-crystalline AlN by thermal plasma process

    Science.gov (United States)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.

    2012-01-01

    We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.

  16. Deposition of Crystalline Hydroxyapatite Nanoparticles on Y-TZP Ceramic: A Potential Solution to Enhance Bonding Characteristics of Y-TZP Ceramics

    Directory of Open Access Journals (Sweden)

    Abbas Azari

    2017-08-01

    Full Text Available Objectives: Many advantages have been attributed to dental zirconia ceramics in terms of mechanical and physical properties; however, the bonding ability of this material to dental structure and/or veneering ceramics has always been a matter of concern. On the other hand, hydroxyapatite (HA shows excellent biocompatibility and good bonding ability to tooth structure, with mechanically unstable and brittle characteristics, that make it clinically unacceptable for use in high stress bearing areas. The main purpose of this study was to introduce two simple yet practical methods to deposit the crystalline HA nanoparticles on zirconia ceramics. Materials and Methods: zirconia blocks were treated with HA via two different deposition methods namely thermal coating and air abrasion. Specimens were analyzed by scanning electron microscopy, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD.Results: In both groups, the deposition techniques used were successfully accomplished, while the substrate showed no structural change. However, thermal coating group showed a uniform deposition of crystalline HA but in air abrasion method, there were dispersed thin islands of HA.Conclusions: Thermal coating method has the potential to significantly alter the surface characteristics of zirconia. The simple yet practical nature of the proposed method may be able to shift the bonding paradigm of dental zirconia ceramics. This latter subject needs to be addressed in future investigations.Keywords: Zirconium Oxide; Hydroxyapatites; Dental Bonding; Microscopy, Electron, Scanning; X-Ray Diffraction; Spectrometry, X-Ray Emission

  17. Influence of beryllium ceramics nano-structuring by iron atoms on increase of their stability to ionizing radiations effect

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Bitenbaev, M.I

    2007-01-01

    In the work a new results on beryllium ceramics nano-structuring effect by iron oxide atoms on radiation defects quantum yield value G in these materials and defects depth constants in ionizing radiation fields k are presented. Experimental data under dependence of G and k values from concentration of iron atoms in beryllium ceramic matrix are presented. It is shown, that structure modification of beryllium ceramics by feedings on the iron base leads to sharp decrease (almost in 30 times) of radiation defects quantum yield value, i.e. to increase of these ceramics stability enhancement to ionizing radiation effect

  18. Structure and chemical durability of barium borosilicate glass–ceramics containing zirconolite and titanite crystalline phases

    International Nuclear Information System (INIS)

    Li, Huidong; Wu, Lang; Xu, Dong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang

    2015-01-01

    In order to increase the solubility of actinides in the glass matrix, the effects of CaO, TiO 2 , and ZrSiO 4 addition (abbreviated as CTZ, in the mole ratio of 2:2:1) on crystalline phases, microstructure, and chemical durability of barium borosilicate glass–ceramics were investigated. The results show that the samples possess both zirconolite-2M and titanite phase when the CTZ content is greater than or equal to 45 wt.%. For the glass–ceramics with 45 wt.% CTZ (CTZ-45), only zirconolite-2M phase is observed after annealing at 680–740 °C for 2 h. The CTZ-45 possess zirconolite-2M and titanite phases after annealing at 700 °C first, and then annealing at 900–1050 °C for 2 h. Furthermore, the zirconolite-2M and titanite grains show a strip and brick shape, respectively. The CTZ-45 annealing at 950 °C shows the lower normalized leaching rates of B, Na and Nd when compared to that of CTZ-0 and CTZ-55. - Highlights: • CaO, TiO 2 , ZrSiO 4 (CTZ) as nucleating agents were added to barium borosilicate glass. • The samples with 45–55 wt% CTZ possess CaZrTi 2 O 7 -2M and CaTiSiO 5 crystalline phases. • CTZ-45 (45wt% CTZ) possesses only CaZrTi 2 O 7 -2M phase after annealing at 680–740 °C. • CTZ-45 possesses CaZrTi 2 O 7 -2M and CaTiSiO 5 phases after annealing at 900–1050 °C. • CTZ-45 annealing at 950 °C shows the lower leaching rates of B, Na and Nd than CTZ-0 and CTZ-55.

  19. Synthesis, characterization and photoluminescence properties of Dy{sup 3+}-doped nano-crystalline SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sreejarani K.; Sikhwivhilu, Lucky M. [National Centre for Nano-Structured Materials, CSIR, PO Box 395, Pretoria 0001 (South Africa); Hillie, Thembela K., E-mail: thillie@csir.co.za [National Centre for Nano-Structured Materials, CSIR, PO Box 395, Pretoria 0001 (South Africa); Physics Department, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2010-04-15

    Nano-crystalline of tin oxide doped with varying wt% of Dy{sup 3+} was prepared using chemical co-precipitation method and characterised by various advanced techniques such as BET-surface area, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence measurements. Analytical results demonstrated that the nanocrystalline tin oxide is in tetragonal crystalline phase and doping with Dy{sup 3+} could inhibit the phase transformation, increases surface area and decreases the crystallite size. The experimental result on photoluminescence characteristics originating from Dy{sup 3+}-doping in nanocrystalline SnO{sub 2} reveals the dependence of the luminescent intensity on dopant concentration.

  20. Nano-oxides to improve the surface properties of ceramic tiles

    International Nuclear Information System (INIS)

    Rambaldi, E.; Tucci, A.; Esposito, L.; Naldi, D.; Timellini, G.

    2010-01-01

    The aim of the present work is to realise ceramic tiles with superior surface mechanical characteristics and chemical resistance, by the addition of nano-oxides, such as zirconia and alumina, since such advanced ceramics oxides are well known for their excellent mechanical properties and good resistance to chemical etching. In order to avoid any dangerousness, the nanoparticles were used in form of aqueous suspension and they were sprayed, by airbrush, directly onto the dried ceramic support, before firing. To observe the distribution of the nanoparticles and to optimise the surface treatment, SEM-EDS analyses were carried out on the fired samples. XRD analysis was conducted to assess the phases evolution of the different materials during the firing step. The surface mechanical characteristics of the samples have been evaluated by Vickers hardness and scratch test. In addition, also chemical resistance tests were performed. Microstructural observations allowed to understand how alumina and zirconia nanoparticles acted to improve the surface performances of the modified ceramic tiles. (Author) 20 refs.

  1. Synthesis of nano-crystalline Zn-Ni alloy coatings by D.C plating

    International Nuclear Information System (INIS)

    Rizwan, R.; Mehmood, M.; Imran, M.; Akhtar, J.I.

    2006-01-01

    Nano crystalline Zinc-Nickel Alloy coatings were obtained from additive free chloride bath. The aqueous bath composition was varied from ZnCl/sub 2/ -200 g/l to 50 g/l, NiCI/sub 2/ 6H/sub 2/O -200 g/l to 50 g/l and H/sub 3/BO/sub 3/ -40 g/l. XRD patterns of electrodeposited alloys on copper substrate revealed the presence of gamma (Ni/sub 5/Zn/sub 21/) inter-metallic compound and eta (solid solution of nickel in zinc). The apparent grain size measured from FWHM of XRD reflections was found to be about 20nm- 50nm depending upon deposit composition. Analysis by EDX of deposits confirms the presence of Zn (81 to 94%), and Ni (6-19%) depending upon bath composition and current density applied. With increase in bath temperature deposition and dissolution potentials are shifted to nobler values. The temperature also affects the phase composition of alloy deposited. Cyclic Voltametry was performed on platinum substrate and deposits obtained for short duration exhibit voltamograms that reflects strong dependence of alloy components on solution chemistry during initial stage of deposition. Hence, initial composition of the deposit varies with solution chemistry but composition becomes almost independent of solution chemistry for thick deposits. The grain size of the deposits also depends upon the composition of deposit. (author)

  2. preparation, characterization and formulation of nano-ceramic materials to be used for the separation of some heavy metals

    International Nuclear Information System (INIS)

    Zayed, S.L.M.

    2006-01-01

    the synthesis of asymmetric composite and monolithic ceramic filters, with high performance quality, to be used in heavy metals separation is the aim of this study. asymmetric composite ceramic filter consisted of a macroporous or mesoporous substrate coated with several layers having lower pore size than the substrate usually microporous film. on the other hand, asymmetric monolithic ceramic filter is monolithic system having dual pore size distribution. ceramic filters synthesis was performed using polymeric sol-gel process. the optimization of synthesis parameters as well as the characterization was achieved to obtain ceramic filters with high separative properties. the synthesized ceramic filters were characterized using mercury porosimeter for pore size distribution analysis, BET method for specific surface areas measurements and BJH pore size distribution analysis, XRD analysis for crystalline phase identification and SEM for microstructure and morphology studies

  3. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  4. Basic research in crystalline and noncrystalline ceramic systems. Annual report, August 1, 1980-October 31, 1981

    International Nuclear Information System (INIS)

    1981-01-01

    The Basic Research Programs in Ceramics sponsored by the US Department of Energy supports a significant fraction of the research effort and graduate student training in ceramics at MIT. Various research activities involving ceramic materials include electrical properties; kinetic studies; defect structures, defect interactions, grain boundaries and surfaces; sintering studies; and mechanical properties

  5. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic

    International Nuclear Information System (INIS)

    Reau, A.

    2008-01-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC f /SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC f /SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  6. High performance multilayered nano-crystalline silicon/silicon-oxide light-emitting diodes on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Darbari, S; Shahmohammadi, M; Mortazavi, M; Mohajerzadeh, S [Thin Film and Nano-Electronic Laboratory, School of ECE, University of Tehran, Tehran (Iran, Islamic Republic of); Abdi, Y [Nano-Physics Research Laboratory, Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Robertson, M; Morrison, T, E-mail: mohajer@ut.ac.ir [Department of Physics, Acadia University, Wolfville, NS (Canada)

    2011-09-16

    A low-temperature hydrogenation-assisted sequential deposition and crystallization technique is reported for the preparation of nano-scale silicon quantum dots suitable for light-emitting applications. Radio-frequency plasma-enhanced deposition was used to realize multiple layers of nano-crystalline silicon while reactive ion etching was employed to create nano-scale features. The physical characteristics of the films prepared using different plasma conditions were investigated using scanning electron microscopy, transmission electron microscopy, room temperature photoluminescence and infrared spectroscopy. The formation of multilayered structures improved the photon-emission properties as observed by photoluminescence and a thin layer of silicon oxy-nitride was then used for electrical isolation between adjacent silicon layers. The preparation of light-emitting diodes directly on glass substrates has been demonstrated and the electroluminescence spectrum has been measured.

  7. Carrier mobility enhancement of nano-crystalline semiconductor films: Incorporation of redox -relay species into the grain boundary interface

    Science.gov (United States)

    Desilva, L. A.; Bandara, T. M. W. J.; Hettiarachchi, B. H.; Kumara, G. R. A.; Perera, A. G. U.; Rajapaksa, R. M. G.; Tennakone, K.

    Dye-sensitized and perovskite solar cells and other nanostructured heterojunction electronic devices require securing intimate electronic contact between nanostructured surfaces. Generally, the strategy is solution phase coating of a hole -collector over a nano-crystalline high-band gap n-type oxide semiconductor film painted with a thin layer of the light harvesting material. The nano-crystallites of the hole - collector fills the pores of the painted oxide surface. Most ills of these devices are associated with imperfect contact and high resistance of the hole conducting layer constituted of nano-crystallites. Denaturing of the delicate light harvesting material forbid sintering at elevated temperatures to reduce the grain boundary resistance. It is found that the interfacial and grain boundary resistance can be significantly reduced via incorporation of redox species into the interfaces to form ultra-thin layers. Suitable redox moieties, preferably bonded to the surface, act as electron transfer relays greatly reducing the film resistance offerring a promising method of enhancing the effective hole mobility of nano-crystalline hole-collectors and developing hole conductor paints for application in nanostructured devices.

  8. Tuning into single-band red upconversion luminescence in Yb(3+)/Ho(3+) activated nano-glass-ceramics through Ce(3+) doping.

    Science.gov (United States)

    Chen, Daqin; Zhou, Yang; Wan, Zhongyi; Ji, Zhenguo; Huang, Ping

    2015-03-28

    Yb(3+)/Ho(3+) activated glass ceramics containing β-YF3 nanocrystals were successfully fabricated. The green ((5)S2/(5)F4→(5)I8) upconversion emission is dominant in the glass ceramics and is about 160 times stronger than that of the precursor glass, resulting from the partition of lanthanide activators into a low-phonon-energy crystalline lattice and the subsequent low probability of multi-phonon nonradiative relaxation from the (5)S2/(5)F4 and (5)I6 states to the lower ones. Upon the introduction of Ce(3+) ions into nano-glass-ceramics, two efficient cross-relaxation processes between Ho(3+) and Ce(3+), i.e., Ho(3+):(5)S2/(5)F4 + Ce(3+):(2)F5/2→Ho(3+):(5)F5 + Ce(3+):(2)F7/2 and Ho(3+):(5)I6 + Ce(3+):(2)F5/2→Ho(3+):(5)I7 + Ce(3+):(2)F7/2, are demonstrated to greatly suppress the population of the green-emitting (5)S2/(5)F4 state and to enhance the population of the red-emitting (5)F5 one, leading to the intense single-band red UC radiation of Ho(3+).

  9. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3AlC2 ceramics.

    Science.gov (United States)

    Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin

    2018-05-21

    The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.

  10. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  11. formulation of nano-ceramic filters used in separation of heavy metals and nuclear technology

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou El-Nour, F.H.; Abdel-Khalik, M.

    2004-01-01

    the choice of suitable preparation methods and experimental preparation conditions to formulate ceramic filters of stable chemical -and thermal properties and of high mechanical strength and stable structure, which permit their use for separation of heavy metals at high separation conditions and to produce compact matrices suitable for radiation protection are the aim of this study . ceramic filters are characterized by multi- layered body including rigid support and one or more layers with pore size lower than that of the support. the top layer determines.the separation conditions of the whole system. the used ceramic filters include micro-, ultra- and nano-sized materials . alumina and titania substrates were prepared using the wet chemical techniques. optimization of the produced substrates was followed through comparative studies with standard reference commercial substrate. specific surface area measurements and pore size distribution using mercury porosimeter were carried out . the present study led to optimization of the experimental conditions to formulate the suitable substrate used in preparation of filters applied in separation of heavy metals. in addition, their use to produce compact matrices suitable for protection from the hazardous effect of some radioisotopes could applied

  12. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    Science.gov (United States)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane coupling agent can dramatically reduce the average lifetime of dental composites.

  13. Use of nano filtration membrane technology for ceramic industry wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moliner-Salvador, R.; Deratani, A.; Palmeri, J.; Sanchez, E.

    2012-07-01

    A study has been undertaken of an advanced wastewater treatment approach using polymer nano filtration membranes, in an attempt to obtain water of sufficient quality to allow it to be reused in the same production process or, alternatively, to be discharged without any problems. The study has initially focused on the removal of organic matter (reduction of COD) and the most representative ions present in the wastewater, such as Na{sup +}, Mg{sup 2}+, Cl{sup -}, and SO{sub 4}{sup 2}. In a first part of the study, with a view to optimising the experimental phase, a simulation has been performed of the nano filtration process using the Nano Flux software. Among other things, the simulation allows the most suitable membranes to be selected as a function of the permeate flow rate and desired level of retention in the substances to be removed. The subsequent experimentation was carried out in a laboratory tangential filtration system that works with flat membranes. It was found that retention values of about 90% were obtained for the studied substances, with a good permeate flow rate, using low operating pressures. These results demonstrate the feasibility of the studied technology and its potential as a treatment for improving ceramic industry wastewater quality.

  14. Preparation of soft-agglomerated nano-sized ceramic powders by sol-gel combustion process

    International Nuclear Information System (INIS)

    Feng, Q.; Ma, X.H.; Yan, Q.Z.; Ge, C.C.

    2009-01-01

    The soft-agglomerated Gd 2 BaCuO 5 (Gd211) nano-powders were synthesized by sol-gel combustion process with binary ligand and the special pretreatment on gel. The mechanism of the formation of weakly agglomerated structure was studied in detail. The results showed that network structure in gelation process was found to be a decisive factor for preventing agglomeration of colloidal particles. The removal of free water, coordinated water, and most of hydroxyl groups during pretreatment further inhibited the formation of hydrogen bonds between adjacent particles. The soft-agglomeration of the particles was confirmed by isolated particles in calcined Gd211 powders and in green compact, a narrow monomodal pore size distribution of the green compact and the low agglomeration coefficient of the calcined Gd211 powder. Extension this process to synthesis of BaCeO 3 , BaTiO 3 and Ce 0.8 Sm 0.2 O 1.9 powders, also led to weakly agglomerated nano-powders. It suggests that this method represents a powerful and facile method for the creation of doped and multi-component nano-sized ceramic powders.

  15. High-rate nano-crystalline Li{sub 4}Ti{sub 5}O{sub 12} attached on carbon nano-fibers for hybrid supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Naoi, Katsuhiko; Isobe, Yusaku; Aoyagi, Shintaro [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558 (Japan); Ishimoto, Shuichi [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558 (Japan); Nippon Chemi-Con Corporation, 363 Arakawa, Takahagi-shi, Ibaraki 318-8505 (Japan)

    2010-09-15

    A lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12})-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li{sub 4}Ti{sub 5}O{sub 12} electrode has a unique nano-structure consisting of unusually small nano-crystalline Li{sub 4}Ti{sub 5}O{sub 12} (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF). This nano-structured nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L{sup -1} and high power density of 7.5 kW L{sup -1} comparable to conventional EDLCs. (author)

  16. X-ray free electron laser and its application to 3-dimensional imaging of non-crystalline nano-structure

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuya

    2007-01-01

    The Laser in the X-ray region has been anticipated to be realized as a light source to probe the nano-world. Free electron lasers using high energy electron accelerators have been promising the candidates. The finding of the principle of Self-Amplified Spontaneous Emission (SASE) resolved the technological difficulties accompanying the X-ray free electron laser, and the construction of large scale SASE facilities started in western countries. In Japan the construction of an SASE facility started in 2006 to be completed in 2010 at the site of the large synchrotron radiation facility, SPring-8 positioned as a 'critical technology of national importance' by the Japanese government. The principle of the X-ray free electron laser is explained and the outline of the Japanese facility construction plan is presented. Also the application of the X-ray laser to the imaging of non-crystalline nano-structure is introduced. (K.Yoshida)

  17. Nano-Crystalline Diamond Films with Pineapple-Like Morphology Grown by the DC Arcjet vapor Deposition Method

    Science.gov (United States)

    Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao

    2014-08-01

    A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.

  18. Wear resistance of nano- and micro-crystalline diamond coatings onto WC-Co with Cr/CrN interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Polini, Riccardo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy); Barletta, Massimiliano, E-mail: barletta@ing.uniroma2.i [Dipartimento di Ingegneria Meccanica, Universita di Roma Tor Vergata, Via del Politecnico, 1, Rome, 00133 (Italy); Cristofanilli, Giacomo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy)

    2010-12-30

    Cr/CrN bi-layers have been used recently to promote the growth of high quality Hot Filament Chemical Vapour Deposition (HFCVD) diamond coatings onto Co-cemented tungsten carbide (WC-6 wt.%Co) substrates. In the present investigation, the influence of the crystalline size of the diamond coatings on their wear endurance is looked into. Nano- (NDC) and micro-crystalline Diamond Coatings (MDC) were deposited by HFCVD onto untreated and Fluidized Bed (FB) treated Cr/CrN interlayers. NDCs, characterized by a cauliflower-like morphology, showed improved wear resistance. However, the superimposition of NDCs onto Cr/CrN interlayers micro-corrugated by FB treatment was found to be the most promising choice, leading to the formation of highly adherent and wear resistant coatings.

  19. Quantitative analysis of crystalline and remaining glass phases in CaO-B2O3-SiO2 ternary system glass ceramics

    International Nuclear Information System (INIS)

    He Ming; Wu Mengqiang; Zhang Shuren; Zhou Xiaohua; Zhang Ting; Chen Song

    2010-01-01

    Research highlights: → As for CBS ternary system glass ceramics, due to the complex phase compositions, many methods could be difficult to determine quantitatively the absolute amounts of crystalline and remaining oxides. In this study, an available method based on the Rietveld method was used to quantitatively analyze the relative weight fraction and densities of crystalline phases. These above data are used to obtain a table of both relative weight fraction of crystalline phases and densities of all phases including CBS LTCC. Using volume additivity rule, it is possible to analysis quantitatively the absolute weight fraction of crystalline phases and also the oxides molar content in the remaining glass. - Abstract: Based on Rietveld method of X-ray techniques and volume additivity rule, a new method was developed to quantitatively analyze the phase composition of CaO-B 2 O 3 -SiO 2 ternary system glass ceramics. Lattice parameters, densities and relative weight fractions of crystalline phases in CaO-B 2 O 3 -SiO 2 ternary system were obtained by X-ray diffraction (XRD) refinement. According to the relative weight fraction of crystalline phases and densities of various components, the volume additivity rule was revealed by calculating the absolute weight fraction of crystalline phases of CaO-B 2 O 3 -SiO 2 glass ceramics. In addition, molar contents of the oxides in the remaining glass can also be determined by this method. Comparing this method with internal standard method, it is found that the maximum deviations of the crystallinity and the absolute weight fraction of crystalline phases are less than 2.6% and 2.9%, respectively. As a result, quantitative evaluation of CaO-B 2 O 3 -SiO 2 ternary system glass ceramics can be achieved using this method.

  20. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  1. Basic research in crystalline and noncrystalline ceramic systems. Annual report, May 1, 1975--April 1, 1976

    International Nuclear Information System (INIS)

    1976-01-01

    Activities in research programs on ceramics are reported in sections on electric conductivity and dielectric properties, microstructure and properties, ion transport and diffusion, defect interactions and grain boundary phenomena, and future developments

  2. Investigation of mechanical properties and operative deformation mechanism in nano-crystalline Ni–Co/SiC electrodeposits

    International Nuclear Information System (INIS)

    Lari Baghal, S.M.; Amadeh, A.; Heydarzadeh Sohi, M.

    2012-01-01

    Highlights: ► The tensile properties of Ni–Co and Ni–Co/SiC deposits were investigated. ► The SiC particles enhanced tensile strength and ductility of nano-structured composites. ► The deformation mechanism at low and high strain rates were studied. - Abstract: Ni–Co/SiC nano-composites were prepared via electrodeposition from a modified Watts bath containing SiC particles with average particle size of 50 nm, SDS as surfactant and saccharin as grain refiner in appropriate amounts. The effect of nano-particle incorporation on microstructure, mechanical properties and deformation mechanism of electrodeposits were investigated. The mechanical properties of electrodeposits were investigated by Vickers microhardness and tensile tests. The results indicated that incorporation of SiC particles into a 15 nm Ni–Co matrix had no considerable effect on its microhardness and yield strength, that is, dispersion hardening did not operate in this range of grain size. However it was observed that co-deposition of uniform distributed SiC particles can significantly improve the ultimate tensile strength and elongation to failure of the deposits. Calculation of apparent activation volume from tensile test results at different strain rates proved that incorporation of SiC nano-particles are responsible for stress-assisted activation of GB atoms mechanism that can significantly increase the plasticity. Nano-crystalline Ni–Co matrix showed a mixed mod behavior of ductile and brittle fracture whereas incorporation of SiC particles and increasing the strain rate promoted ductile fracture mode.

  3. Comparison of high pressure homogenization and stirred bead milling for the production of nano-crystalline suspensions.

    Science.gov (United States)

    Nakach, Mostafa; Authelin, Jean-René; Perrin, Marc-Antoine; Lakkireddy, Harivardhan Reddy

    2018-05-19

    Currently, the two technologies primarily used for the manufacturing of nano-crystalline suspensions using top down process (i.e. wet milling) are high pressure homogenization (HPH) and stirred bead milling (SBM). These two technologies are based upon different mechanisms, i.e., cavitation forces for HPH and shear forces for stirred bead milling. In this article, the HPH and SBM technologies are compared in terms of the impact of the suspension composition the process parameters and the technological configuration on milling performances and physical quality of the suspensions produced. The data suggested that both HPH and SBM are suitable for producing nano-crystalline suspensions, although SBM appeared more efficient than HPH, since the limit of milling (d 50 ) for SBM was found to be lower than that obtained with HPH (100 nm vs 200 nm). For both these technologies, regardless of the process parameters used for milling and the scale of manufacturing, the relationship of d 90 versus d 50 could be described by a unique master curve (technology signature of milling pathway) outlining that the HPH leads to more uniform particle size distribution as compared to SBM. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Structural, magnetic and electrical characterization of Mg–Ni nano-crystalline ferrites prepared through egg-white precursor

    Energy Technology Data Exchange (ETDEWEB)

    Gabal, M.A., E-mail: mgabalabdonada@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al Angari, Y.M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Zaki, H.M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Physics Department, Faculty of Science, Zagazig University, Zagazig (Egypt)

    2014-08-01

    Soft Ni–Mg nano-crystalline ferrites with the general formula Ni{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} (0≤x≤1) were synthesized through egg-white method. The precursor decomposition was followed by thermal analysis techniques. The obtained ferrites were characterized by X-ray diffraction, Fourier transform infrared and transmission electron microscopy measurements. X-ray diffraction showed the cubic spinel structure with crystallite size variation within the range 20–45 nm. The different structural data obtained were discussed in the view of ionic radii of the entire ions and their distribution within the lattice. The appropriate suggested cation distribution was then confirmed through Fourier transform infrared as well as electrical and magnetic properties measurements. Transmission electron microscopy exhibited a nano-crystal aggregation phenomenon. The observed size of the spherical particles agrees well with that obtained by X-ray diffraction. Hysteresis loop measurements revealed dilution in the obtained magnetic parameters by Mg-substitution due to the preferential occupancy of Mg{sup 2+} ions by the octahedral sites. Ac-electrical conductivity as a function of temperature and frequency exhibited a semi-conducting behavior with conductivity decreases by increasing Mg-content. The change in the slope of the curve indicates the changing in the conduction mechanism from electron hopping to polaron mechanism by increasing temperature. The obtained structural, electrical and magnetic properties were explained based on the cation distribution among tetrahedral and octahedral sites. - Highlights: • Ni–Mg nano-crystalline ferrites were synthesized through egg-white method. • An appropriate cation distribution was suggested. • Conductivity revealed a change in conduction mechanism by increasing temperature. • The effect of Mg-substitution on different properties was studied.

  5. Disposal costs for SRP high-level wastes in borosilicate glass and crystalline ceramic waste forms

    International Nuclear Information System (INIS)

    Rozsa, R.B.; Campbell, J.H.

    1982-01-01

    Purpose of this document is to compare and contrast the overall burial costs of the glass and ceramic waste forms, including processing, storage, transportation, packaging, and emplacement in a repository. Amount of waste will require approximately 10,300 standard (24 in. i.d. x 9-5/6 ft length) canisters of waste glass, each containing about 3260 lb of waste at 28% waste loading. The ceramic waste form requires about one-third the above number of standard canisters. Approximately $2.5 billion is required to process and dispose of this waste, and the total cost is independent of waste form (glass or ceramic). The major cost items (about 80% of the total cost) for all cases are capital and operating expenses. The capital and 20-year operating costs for the processing facility are the same order of magnitude, and their sum ranges from about one-half of the total for the reference glass case to two-thirds of the total for the ceramic cases

  6. Fabrication of nano-scaled polymer-derived SiAlCN ceramic components using focused ion beam

    Science.gov (United States)

    Tian, Ye; Shao, Gang; Wang, Xingwei; An, Linan

    2013-09-01

    Fully dense polymer-derived amorphous silicoaluminum carbonitride (SiAlCN) ceramics were synthesized from polysilazane as preceramic precursors followed by a thermal decomposition process. The nanofabrication of amorphous SiAlCN ceramics was implemented with a focused ion beam (FIB). FIB conditions such as the milling rate, the beam current, and the number of passes were considered. It was found that nanopatterns with a feature size of less than 100 nm could be fabricated onto polymer-derived ceramics (PDCs) precisely and quickly. Specific nanostructures of thin walls, nozzle, and gear have been fabricated as demonstrations, indicating that the FIB technique was a promising method to realize nanostructures on PDCs, especially for microelectromechanical system and micro/nano-sensor applications.

  7. Fabrication of nano-scaled polymer-derived SiAlCN ceramic components using focused ion beam

    International Nuclear Information System (INIS)

    Tian, Ye; Wang, Xingwei; Shao, Gang; An, Linan

    2013-01-01

    Fully dense polymer-derived amorphous silicoaluminum carbonitride (SiAlCN) ceramics were synthesized from polysilazane as preceramic precursors followed by a thermal decomposition process. The nanofabrication of amorphous SiAlCN ceramics was implemented with a focused ion beam (FIB). FIB conditions such as the milling rate, the beam current, and the number of passes were considered. It was found that nanopatterns with a feature size of less than 100 nm could be fabricated onto polymer-derived ceramics (PDCs) precisely and quickly. Specific nanostructures of thin walls, nozzle, and gear have been fabricated as demonstrations, indicating that the FIB technique was a promising method to realize nanostructures on PDCs, especially for microelectromechanical system and micro/nano-sensor applications. (paper)

  8. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  9. Investigation of vitreous and crystalline ceramic materials for immobilization of alpha-contaminated residues

    International Nuclear Information System (INIS)

    Palmer, C.R.; Mellinger, G.B.; Rusin, J.M.

    1981-01-01

    Experimental investigations of two alternatives for immobilizing dispersible solid wastes contaminated with alpha-emitting radionuclides are reviewed. Borosilicate glasses and sintered silicate ceramics are being studied for such wastes, and results so far indicate both may offer attractive alternatives to waste generators. Waste oxide solubilities, de-vitrification behaviour and effects of residual carbon are examined for glasses incorporating incinerator ash and hydrated ferric oxide sludge. Glasses will accommodate these wastes at loadings of 30-60 wt% while maintaining good performance characteristics. A brief comparative evaluation of cold-pressed and sintered ceramics is also described. The effects on process and product properties of the choice of additives, waste loading and sintering temperature were determined. This approach also appears to promise economic waste loadings while achieving relatively durable waste forms. (author)

  10. NanoCrystalline Cellulose isolated from oil palm empty fruit bunch and its potential in cadmium metal removal

    Directory of Open Access Journals (Sweden)

    Lim Yong Hui

    2016-01-01

    Full Text Available NanoCrystalline Cellulose (NCC was isolated via ultrasonic cavitation assisted acid hydrolysis method. Characterization was done using Dynamic Light Scattering (DLS together with Scanning Electron Microscope (SEM imaging to double prove the existence of NCC. DLS measures length of 236.6 nm with width of 34.40 nm, supported by SEM which showed NCC a rod-like shaped particle with large surface area and high porosity. It was then attempted for heavy metal cadmium ion (Cd2+ removal from aqueous solution. The pH implication to the rate of Cd2+ adsorption was investigated by varying the solution to pH 4, pH 7 and pH 10 over a duration of 120 minutes. The removal efficiency was analyzed using Atomic Absorption Spectroscopy (AAS resulting in pH 7 being the most favorable for Cd2+ removal.

  11. A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing

    Czech Academy of Sciences Publication Activity Database

    Talbi, A.; Gimeno, L.; Gerbedoen, J.-C.; Viard, R.; Soltani, A.; Mortet, Vincent; Preobrazhensky, V.; Merlen, A.; Pernod, P.

    2015-01-01

    Roč. 25, č. 2 (2015), s. 1-8, č. článku 125029. ISSN 0960-1317 Institutional support: RVO:68378271 Keywords : hot wire * nano-crystalline diamond * active flow control * anemometry Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.768, year: 2015

  12. Study of the Transformations of Micro/Nano-crystalline Acetaminophen Polymorphs in Drug-Polymer Binary Mixtures.

    Science.gov (United States)

    Maniruzzaman, Mohammed; Lam, Matthew; Molina, Carlos; Nokhodchi, Ali

    2017-07-01

    This study elucidates the physical properties of sono-crystallised micro/nano-sized acetaminophen/paracetamol (PMOL) and monitors its possible transformation from polymorphic form I (monoclinic) to form II (orthorhombic). Hydrophilic Plasdone® S630 copovidone (S630), N-vinyl-2-pyrrolidone and vinyl acetate copolymer, and methacrylate-based cationic copolymer, Eudragit® EPO (EPO), were used as polymeric carriers to prepare drug/polymer binary mixtures. Commercially available PMOL was crystallised under ultra sound sonication to produce micro/nano-sized (0.2-10 microns) crystals in monoclinic form. Homogeneous binary blends of drug-polymer mixtures at various drug concentrations were obtained via a thorough mixing. The analysis conducted via the single X-ray crystallography determined the detailed structure of the crystallised PMOL in its monoclinic form. The solid state and the morphology analyses of the PMOL in the binary blends evaluated via differential scanning calorimetry (DSC), modulated temperature DSC (MTDSC), scanning electron microscopy (SEM) and hot stage microscopy (HSM) revealed the crystalline existence of the drug within the amorphous polymeric matrices. The application of temperature controlled X-ray diffraction (VTXRPD) to study the polymorphism of PMOL showed that the most stable form I (monoclinic) was altered to its less stable form II (orthorhombic) at high temperature (>112°C) in the binary blends regardless of the drug amount. Thus, VTXRD was used as a useful tool to monitor polymorphic transformations of crystalline drug (e.g. PMOL) to assess their thermal stability in terms of pharmaceutical product development and research.

  13. Development of a hard nano-structured multi-component ceramic coating by laser cladding

    International Nuclear Information System (INIS)

    Masanta, Manoj; Ganesh, P.; Kaul, Rakesh; Nath, A.K.; Roy Choudhury, A.

    2009-01-01

    The present paper reports laser-assisted synthesis of a multi-component ceramic composite coating consisting of aluminum oxide, titanium di-boride and titanium carbide (Al 2 O 3 -TiB 2 -TiC). A pre-placed powder mixture of aluminum (Al), titanium oxide (TiO 2 ) and boron carbide (B 4 C) was made to undergo self-propagating high-temperature synthesis (SHS) by laser triggering. Laser subsequently effected cladding of the products of SHS on the substrate. The effect of laser scanning speed on the hardness, microstructure and phase composition of the composite coating was investigated. The coating exhibited an increase in hardness and a decrease in grain size with increase in laser scanning speed. A maximum micro-hardness of 2500 HV 0.025 was obtained. X-ray diffraction (XRD) of the top surface of the coating revealed the presence of aluminum oxide (Al 2 O 3 ), titanium di-boride (TiB 2 ) and titanium carbide (TiC) along with some non-stoichiometric products of the Ti-Al-B-C-O system. Field emission gun scanning electron microscopy (FESEM) and high-resolution transmission electron microscopic (HRTEM) analysis revealed some nano-structured TiB 2 and Al 2 O 3 , which are discussed in detail.

  14. Development of a hard nano-structured multi-component ceramic coating by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Masanta, Manoj [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India); Ganesh, P.; Kaul, Rakesh [Laser Material Processing Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Nath, A.K. [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India); Roy Choudhury, A., E-mail: roychoudhuryasimava@gmail.com [Department of Mechanical Engineering, IIT Kharagpur, West Bengal 721302 (India)

    2009-05-20

    The present paper reports laser-assisted synthesis of a multi-component ceramic composite coating consisting of aluminum oxide, titanium di-boride and titanium carbide (Al{sub 2}O{sub 3}-TiB{sub 2}-TiC). A pre-placed powder mixture of aluminum (Al), titanium oxide (TiO{sub 2}) and boron carbide (B{sub 4}C) was made to undergo self-propagating high-temperature synthesis (SHS) by laser triggering. Laser subsequently effected cladding of the products of SHS on the substrate. The effect of laser scanning speed on the hardness, microstructure and phase composition of the composite coating was investigated. The coating exhibited an increase in hardness and a decrease in grain size with increase in laser scanning speed. A maximum micro-hardness of 2500 HV{sub 0.025} was obtained. X-ray diffraction (XRD) of the top surface of the coating revealed the presence of aluminum oxide (Al{sub 2}O{sub 3}), titanium di-boride (TiB{sub 2}) and titanium carbide (TiC) along with some non-stoichiometric products of the Ti-Al-B-C-O system. Field emission gun scanning electron microscopy (FESEM) and high-resolution transmission electron microscopic (HRTEM) analysis revealed some nano-structured TiB{sub 2} and Al{sub 2}O{sub 3}, which are discussed in detail.

  15. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Scott [Northwestern Univ., Evanston, IL (United States); Poeppelmeier, Ken [Northwestern Univ., Evanston, IL (United States); Mason, Tom [Northwestern Univ., Evanston, IL (United States); Marks, Lawrence [Northwestern Univ., Evanston, IL (United States); Voorhees, Peter [Northwestern Univ., Evanston, IL (United States)

    2016-09-07

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encountered in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.

  16. Effects of neutral particle beam on nano-crystalline silicon thin films, with application to thin film transistor backplane for flexible active matrix organic light emitting diodes

    International Nuclear Information System (INIS)

    Jang, Jin Nyoung; Song, Byoung Chul; Lee, Dong Hyeok; Yoo, Suk Jae; Lee, Bonju; Hong, MunPyo

    2011-01-01

    A novel deposition process for nano-crystalline silicon (nc-Si) thin films was developed using neutral beam assisted chemical vapor deposition (NBaCVD) technology for the application of the thin film transistor (TFT) backplane of flexible active matrix organic light emitting diode (AMOLED). During the formation of a nc-Si thin film, the energetic particles enhance nano-sized crystalline rather microcrystalline Si in thin films. Neutral Particle Beam (NPB) affects the crystallinity in two ways: (1) NPB energy enhances nano-crystallinity through kinetic energy transfer and chemical annealing, and (2) heavier NPB (such as Ar) induces damage and amorphization through energetic particle impinging. Nc-Si thin film properties effectively can be changed by the reflector bias. As increase of NPB energy limits growing the crystalline, the performance of TFT supports this NPB behavior. The results of nc-Si TFT by NBaCVD demonstrate the technical potentials of neutral beam based processes for achieving high stability and reduced leakage in TFT backplanes for AMOLEDs.

  17. Comparison of shear bond strengths of conventional orthodontic composite and nano-ceramic restorative composite: an in vitro study.

    Science.gov (United States)

    Nagar, Namit; Vaz, Anna C

    2013-01-01

    To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X Mono(TM♦), a restorative resin with the traditional orthodontic composite Transbond XT(TM†) and to evaluate the site of bond failure using Adhesive Remnant Index. Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XT(TM†) (Group I) and Ceram-X Mono(TM♦) (Group II) according to manufacturer's protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired 't' test and Chi square test. The mean shear bond strength of Group I (Transbond XT(TM†)) was 12.89 MPa ± 2.19 and that of Group II (Ceram-X Mono(TM)) was 7.29 MPa ± 1.76. Unpaired 't' test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Ceram-X Mono(TM♦) had a lesser mean shear bond strength when compared to Transbond XT(TM†) which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X Mono(TM†) and Transbond XT(TM†) showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.

  18. Comparison of shear bond strengths of conventional orthodontic composite and nano-ceramic restorative composite: An in vitro study

    Directory of Open Access Journals (Sweden)

    Namit Nagar

    2013-01-01

    Full Text Available Objectives: To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X MonoTM♦, a restorative resin with the traditional orthodontic composite Transbond XTTM† and to evaluate the site of bond failure using Adhesive Remnant Index. Materials and Methods: Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XTTM† (Group I and Ceram-X MonoTM♦ (Group II according to manufacturer′s protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired ′t′ test and Chi square test. Results: The mean shear bond strength of Group I (Transbond XTTM† was 12.89 MPa ± 2.19 and that of Group II (Ceram-X MonoTM was 7.29 MPa ± 1.76. Unpaired ′t′ test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Conclusions: Ceram-X MonoTM♦ had a lesser mean shear bond strength when compared to Transbond XTTM† which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X MonoTM† and Transbond XTTM† showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.

  19. Nano-Like Effects in Crystalline Thermoelectric Materials at High Temperatures

    Science.gov (United States)

    Korzhuev, M. A.; Katin, I. V.

    2013-05-01

    The mechanisms of improving the figure of merit Z and power parameter W of thermoelectric materials (TEMs) in the transitions λph→a and λe→a are considered (Here λph and λe are the mean free path of the phonons and electrons in the sample, and a is the inter atomic distance). It is shown that the same mechanisms are responsible for the growth of Z and W crystalline TEMs at high temperatures.

  20. Nano-oxides to improve the surface properties of ceramic tiles

    Directory of Open Access Journals (Sweden)

    Timellini, G.

    2010-10-01

    Full Text Available The aim of the present work is to realise ceramic tiles with superior surface mechanical characteristics and chemical resistance, by the addition of nano-oxides, such as zirconia and alumina, since such advanced ceramics oxides are well known for their excellent mechanical properties and good resistance to chemical etching. In order to avoid any dangerousness, the nanoparticles were used in form of aqueous suspension and they were sprayed, by airbrush, directly onto the dried ceramic support, before firing. To observe the distribution of the nanoparticles and to optimise the surface treatment, SEM-EDS analyses were carried out on the fired samples. XRD analysis was conducted to assess the phases evolution of the different materials during the firing step. The surface mechanical characteristics of the samples have been evaluated by Vickers’ hardness and scratch test. In addition, also chemical resistance tests were performed. Microstructural observations allowed to understand how alumina and zirconia nanoparticles acted to improve the surface performances of the modified ceramic tiles.

    La finalidad de este trabajo es la de realizar baldosas con mejores características mecánicas superficiales, al incorporar óxidos de partículas nanométricas, como la circona y la alúmina, ya que se sabe que estos óxidos confieren unas propiedades mecánicas excelentes además de una buena resistencia al ataque químico. Para evitar cualquier peligro, las partículas nanométricas se usaron en forma de suspensión acuosa y se pulverizaron, por medio de un aerógrafo, directamente sobre el soporte cerámico seco, antes de la cocción. Para observar la distribución de las partículas nanométricas y para optimizar el tratamiento de la superficie, se realizó unos análisis por MEB-EDS sobre las muestras cocidas. Se llevó a cabo un análisis de difracción de rayos X (DRX para evaluar la evolución de las fases de los distintos materiales durante

  1. Sol-gel technology applied to crystalline ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Angelini, P.; Bond, W.D.; Caputo, A.J.; Mack, J.E.; Lackey, W.J.; Lee, D.A.; Stinton, D.P.

    1980-01-01

    The sol-gel process is being developed for the solidification and isolation of high-level nuclear fuel waste. Three gelation methods are being developed for producing alternative waste forms. These include internal gelation for producing spheres of up to 1 mm diam suitable for coating, external gelation, and water extraction methods for producing material suitable for alternate ceramic processing. In this study internal gelation has been used to produce ceramic spheres of various alternative nuclear waste compositions. A gelation system capable of producing 100-g batches has been assembled and used for development. Waste forms containing up to 70 wt % simulated Savannah River Plant waste have been produced. Dopants such as Cs, Sr, Nd, Ru, and Mo were used in some experiments to observe side waste streams and sintering effects. Synroc microspheres were coated with both low-density carbon, high-density impermeable carbon, high-temperature dense SiC, and SiC deposited at temperatures near 900 0 C. Other gelation methods and other alternative waste forms are being developed

  2. Quenched/unquenched nano bioactive glass-ceramics: Synthesis and in vitro bioactivity evaluation in Ringer’s solution with BSA

    Directory of Open Access Journals (Sweden)

    Nabian Nima

    2013-01-01

    Full Text Available The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%. We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer’s solution with bovine serum albumin (BSA for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, surface electron microscope (SEM and transmission electron microscope (TEM. The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.

  3. Contribution to the investigation of phase transitions induced by irradiation in insulating crystalline ceramics

    International Nuclear Information System (INIS)

    Simeone, D.

    2003-01-01

    The author gives a rather detailed overview of his research activities on the behaviour of ceramics subjected to irradiations by charged or not-charged particles. He reports the development of a new application of low incidence X ray diffraction to assess the evolutions within irradiated solids. Coupling this technique with Raman spectroscopy studies enabled the monitoring of order parameter evolution in these solids. He shows that, in some oxides, irradiation effects entail order-disorder type transitions and, more surprisingly, displacive phase transitions. From this experimental work, he developed a modelling of these phase transitions induced by irradiation. Quantitative data obtained on the evolutions of order parameters enabled these phase transitions to be explained within the frame of the thermodynamics of off-equilibrium phenomena

  4. A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig

    Directory of Open Access Journals (Sweden)

    Werner Götz

    2010-04-01

    Full Text Available To test the probable osteoinductive properties of NanoBone®, a new highly non-sintered porous nano-crystallinehydroxylapatite bone substitute embedded into a silica gel matrix, granules were implanted subcutaneously and intramuscularlyinto the back region of 18 mini pigs. After periods of 5 and 10 weeks as well as 4 and 8 months, implantation siteswere investigated using histological and histomorphometric procedures. Signs of early osteogenesis could already be detectedafter 5 weeks. The later periods were characterized by increasing membranous osteogenesis in and around the granulesleading to the formation of bone-like structures showing periosteal and tendon-like structures with bone marrow and focalchondrogenesis. Bone formation was better in the subcutaneous than in the intramuscular implantation sites. This ectopicosteogenesis is discussed with regard to the nanoporosity and microporosity of the material, physico-chemical interactionsat its surface, the differentiation of osteoblasts, the role of angiogenesis and the probable involvement of growth factors. Theresults of this preliminary study indicate that this biomaterial has osteoinductive potential and induces the formation of bonestructures, mainly in subcutaneous adipose tissue in the pig.

  5. Nano crystalline high energy milled 5083 Al powder deposited using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.R., E-mail: mohammadreza.rokni@mines.sdsmt.edu [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Widener, C.A. [Department of Materials and Metallurgical Engineering, Advanced Materials Processing Center, South Dakota School of Mines and Technology (SDSM and T), SD (United States); Nardi, A.T. [United Technologies Research Center, East Hartford, CT (United States); Champagne, V.K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD (United States)

    2014-06-01

    Electron microscopy and nanoindentation are used to investigate the relationship between microstructure and nanohardness of a non-cryomilled, nanocrystalline 5083 Al alloy powder before and after being deposited by cold spray. Microstructural investigations observed the presence of nano grains in the powder microstructure, ranging from 20 to 80 nm and with a typical grain size of 40–50 nm. It was also revealed that the nanocrystalline structure of the powder is retained after cold spraying. As a result, almost no change in nanohardness was indicated between the powder and the particles interior in the cold sprayed layer. However, hardness was substantially higher in some regions in the cold sprayed layer, which was attributed to the particle–particle interfaces or other areas with very small nano grain size. The presence of some un-joined particle remnant lines was also found in the deposition and explained through Critical Velocity Ratio (CVR) of powder particles. Although cold spray is a high deformation process, there is little evidence of dislocations within the nanograins of the cold sprayed layer. The latter observation is rationalized through intragranular dislocation slip and recovery mechanisms.

  6. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  7. The effects of sulfate content on crystalline phase, microstructure, and chemical durability of zirconolite−barium borosilicate glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lang, E-mail: lang.wu@163.com [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Xin; Li, Huidong; Teng, Yuancheng [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Peng, Long [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2016-09-15

    The effects of sulfate content on structure and chemical durability of barium borosilicate glass-ceramics were studied. The results show that the glass-ceramics with 0–1.10 mol% SO{sub 3} possess mainly CaZrTi{sub 2}O{sub 7}-2M phase along with a small amount of CaZrTi{sub 2}O{sub 7}-3T and ZrO{sub 2} phases. The hexagonal CaZrTi{sub 2}O{sub 7}-3T crystals crystallize on the surface of glass-ceramics. For the samples with 1.24–1.55 mol% SO{sub 3}, the main crystalline phases are CaTiSiO{sub 5} and CaZrTi{sub 2}O{sub 7}-2M in the bulk, while a separate sulfate layer containing Na{sub 2}SO{sub 4} and BaSO{sub 4} is observed on the surface. X-ray fluorescence analysis indicates that about 2/3 of the SO{sub 3} originally added has been lost by volatility. The normalized mass loss (NL{sub i}) for Na, B, Ca elements remains almost unchanged (∼10{sup −2} g/m{sup 2}) after 7 days for the samples with 0–1.10 mol% SO{sub 3}. The NL{sub i} for both Na and B increases gradually after 7 days when the SO{sub 3} content is 1.24 mol%. - Highlights: • Strip-shaped CaZrTi{sub 2}O{sub 7}-2M and plate-like CaTiSiO{sub 5} crystals crystallize in the bulk. • CaZrTi{sub 2}O{sub 7}-3T crystals crystallize on the surface for samples with 0–1.10 mol% SO{sub 3}. • A separate sulfate layer crystallizes on the surface when SO{sub 3} exceeds solubility.

  8. Thermal analyses to assess diffusion kinetics in the nano-sized interspaces between the growing crystals of a glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fotheringham, Ulrich, E-mail: ulrich.fotheringham@schott.com [SCHOTT AG, 55014 Mainz (Germany); Wurth, Roman; Ruessel, Christian [Otto-Schott-Institut, Jena University, Jena (Germany)

    2011-08-10

    Highlights: {yields} Macroscopic, routine laboratory methods of the 'Thermal Analysis' type (DSC, DMA) allow a rough description of the kinetics in the nano-sized interstitial spaces of glass ceramics. {yields} These macroscopic measurements support the idea of a rigid zone around the crystals which builds up during ceramization and is part of a negative feedback loop which finally stops crystal growth and Ostwald ripening within the time window of observation. {yields} Ostwald ripening may be provoked by thermally softening said rigid zone. Under certain conditions, this gives rise to a characteristic peak in the DSC. - Abstract: According to a hypothesis by Ruessel and coworkers, the absence of Ostwald ripening during isothermal crystallization of lithium aluminosilicate (LAS) and other glass ceramics indicates the existence of a kinetic hindrance of atomic reorganization in the interstitial spaces between the crystals. Methods of Thermal Analysis (Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA)) which are sensitive to the local atomic rearrangements in the interstitial spaces (including viscous flow) are applied to find support for the idea of kinetic hindrance and the formation of a core shell structure acting as diffusion barrier. Both the DSC-measured calorimetric glass transition and the DMA-measured viscoelastic properties indicate an increase in the time constants of atomic rearrangements and diffusion by at least two orders of magnitude during ceramization. This fits to the above idea. Based on these findings, thermo analytic studies have been performed in order to find out how Ostwald ripening may be provoked.

  9. Room temperature ferromagnetism in nano-crystalline Co:ThO2 powders

    International Nuclear Information System (INIS)

    Bhide, M.K.; Kadam, R.M.; Godbole, S.V.; Tyagi, A.K.; Salunke, H.G.

    2012-01-01

    The major interest in dilute magnetic semiconductors (DMS's) had been directed towards the synthesis of room temperature ferromagnetic (RTF) materials for their potential applications in spintronic devices. Room temperature (RT) ferromagnetism was initially reported in Co doped TiO 2 , ZnO 2 and SnO 2 thin films and in the recent past in transition metal doped wide band gap materials. In the present paper we report the synthesis of Co doped ThO 2 nano powders by urea combustion method. The XRD characterization of 300℃ annealed samples confirmed formation of ThO 2 in the cubic phase and the average crystallite size obtained using Scherrer's formula was around 6 nm

  10. Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers.

    Science.gov (United States)

    Fiocco, L; Bernardo, E; Colombo, P; Cacciotti, I; Bianco, A; Bellucci, D; Sola, A; Cannillo, V

    2014-08-01

    Highly porous scaffolds with composition similar to those of 45S5 and 58S bioglasses were successfully produced by an innovative processing method based on preceramic polymers containing micro- and nano-sized fillers. Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity characteristics, as testified by preliminary in vitro tests. © 2013 Wiley Periodicals, Inc.

  11. Basic research in crystalline and noncrystalline ceramic systems. Annual report, March 1, 1974--February 28, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Research results reported are: heats of transport in hypo- and hyperstoichiometric UO 2 in thermal gradients; fabrication of transparent PLZT; creep in Al 2 O 3 ; ambipolar diffusion and diffusional creep; diffusion-controlled final-stage sintering; sintering mechanism in Al 2 O 3 ; internal stresses in polycrystalline Al 2 O 3 ; x-ray study of the high-temperature alpha form of AgI single crystal; theory of effects of transmutation on radiotracer diffusion in ionic solids; 204 Tl diffusion in KCl at 240 to 700 0 C; diffusion of Ni 2+ in MgO; defect (diffusion) equilibration kinetics in CoO; diffusional contributions to grain boundary-related damping; color boundary migration in doped Al 2 O 3 ; defect studies in MgO and other solids; preparation of Al 2 O 3 -doped MgO; space charges and dielectric losses in MgO; production of thin MgO foils; precipitation in MgO; grain boundary segregation in Li-doped NiO; various research needs in ceramic science; and a test of a prototype ZrO 2 --UO 2 fuel cell. (U.S.)

  12. Nano-crystalline Ag–PbTe thermoelectric thin films by a multi-target PLD system

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, E., E-mail: emilia.cappelli@ism.cnr.it [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Bellucci, A. [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Dip. Fisica, Un. Roma Sapienza, Piazzale Aldo Moro 2, 00185 Rome (Italy); Medici, L. [CNR-IMAA, Tito Scalo, 85050 Potenza (Italy); Mezzi, A.; Kaciulis, S. [CNR-ISMN, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy); Fumagalli, F.; Di Fonzo, F. [Center Nano Science Technology @Polimi, I.I.T., Via Pascoli 70/3, 20133 Milano (Italy); Trucchi, D.M. [CNR-ISM, Montelibretti, Via Salaria Km 29.3, P.O.B. 10, 00016 Rome (Italy)

    2015-05-01

    Highlights: • Thermoelectric PbTe thin films, with increasing Ag percentage, were deposited by PLD. • Almost stoichiometric PbTe (Ag doped) films were grown, as verified by XPS analysis. • GI-XRD established the formation of cubic PbTe, with nano-metric structure (∼35 nm). • Surface resistivity shows an increase in conductivity, with increasing Ag doping. • From Seebeck values and XPS depth analysis, 10% Ag seems to be the solubility limit. - Abstract: It has been evaluated the ability of ArF pulsed laser ablation to grow nano-crystalline thin films of high temperature PbTe thermoelectric material, and to obtain a uniform and controlled Ag blending, through the entire thickness of the film, using a multi-target system in vacuum. The substrate used was a mirror polished technical alumina slab. The increasing atomic percentage of Ag effect on physical–chemical and electronic properties was evaluated in the range 300–575 K. The stoichiometry and the distribution of the Ag component, over the whole thickness of the samples deposited, have been studied by XPS (X-ray photoelectron spectroscopy) and corresponding depth profiles. The crystallographic structure of the film was analyzed by grazing incidence X-ray diffraction (GI-XRD) system. Scherrer analysis for crystallite size shows the presence of nano-structures, of the order of 30–35 nm. Electrical resistivity of the samples, studied by the four point probe method, as a function of increasing Ag content, shows a typical semi-conductor behavior. From conductivity values, carrier concentration and Seebeck parameter determination, the power factor of deposited films was calculated. Both XPS, Hall mobility and Seebeck analysis seem to indicate a limit value to the Ag solubility of the order of 5%, for thin films of ∼200 nm thickness, deposited at 350 °C. These data resulted to be comparable to theoretical evaluation for thin films but order of magnitude lower than the corresponding bulk materials.

  13. Study of clay chemical composition in formation of new phases in crystalline materials ceramic

    International Nuclear Information System (INIS)

    Lima, L.K.S.; Goncalves, W.P.; Silva, V.J.; Dias, G.; Neves, G.A.; Santana, L.N.L.

    2016-01-01

    The knowledge of the characteristics of raw materials and the behavior of these during the heat treatment is crucial before starting any manufacturing process of clay-based products. The objective of this work was to study phase transformations of clay under different heat treatments using conventional oven. To achieve the same were used two clays coming from the municipality of Cubati - PB and kaolin from an industry in the Northeast. The samples were subjected to beneficiation process, crushing, grinding and sieving and further characterized: chemical analysis, particle size, thermal and mineralogical. For heat treatment temperatures employed were 1000, 1100 and 1200 ° C, heating rate 5 ° C / min and residence time of 60min. After this step, the mineralogical characterization was performed by x-ray diffraction technique. Clays with larger particle size fraction below 2um and greater amount of flux oxides showed higher amount of mullite for the temperatures studied. The results also showed nucleation of mullite phase from 1100 °C, a band 2theta in the range of between 20 and 25°, characteristic of amorphous silica and the temperature rise was observed intensification of crystalline phases. (author)

  14. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Prathap Pathi

    2017-01-01

    Full Text Available Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm and is slightly lower (by ~5% at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm silicon and just 1%–2% for thicker (>100 μm cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  15. A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis.

    Science.gov (United States)

    Sato, Katsutoshi; Imamura, Kazuya; Kawano, Yukiko; Miyahara, Shin-Ichiro; Yamamoto, Tomokazu; Matsumura, Syo; Nagaoka, Katsutoshi

    2017-01-01

    Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber-Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr 2 O 3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr 2 O 3 . Furthermore, CO 2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH 3 synthesis, cleavage of the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000

  16. Comparison of epithelial and fibroblastic cell behavior on nano/micro-topographic PCL membranes produced by crystallinity control.

    Science.gov (United States)

    Gümüşderelioğlu, Menemşe; Kaya, F Betül; Beşkardeş, Işıl Gerçek

    2011-06-15

    In this study, the relationship between the cellular morphology and the material surface topography was investigated. Poly(ε-caprolactone) (PCL) membranes were prepared in a wide range of surface wettabilities by means of crystallinity-controlled solvent casting process. Membrane surfaces were characterized by atomic force microscope (AFM), scanning electron microscope (SEM), and static/dynamic water contact angle measurements. It was found that solvent evaporation and non-solvent (methanol) addition to the solvent (THF) are the most decisive parameters to change the surface topography. The non-solvent addition and the decrease in solvent evaporation temperature from room temperature to -20 °C caused increased polymeric chain mobility and crystallization time. Such changes in crystallization parameters led to the formation of micro/nano-sized features on the membrane. Cell culture studies indicated that in contrast to Madin Darby kidney (MDBK) epithelial cells, L929 mouse fibroblast preferred rough and porous surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Nickel oxide crystalline nano flakes: synthesis, characterization and their use as anode in lithium-ion batteries

    Science.gov (United States)

    Ahmadi, Majid; Younesi, Reza; Vegge, Tejs; J-F Guinel, Maxime

    2014-04-01

    Nickel oxide crystalline nano flakes (NONFs)—only about 10 nm wide—were produced using a simple and inexpensive chemistry method followed by a short annealing in ambient air. In a first step, Ni(OH)2 sheets were synthesized by adding sodium hydroxide (NaOH) drop-wise in a Ni(NO3)2 aqueous solution that was then sonicated for up to 60 min, washed and vigorously stirred overnight in deionized water. In a second step, the products of this reaction were annealed in ambient air in the temperature range 285-450 °C producing the desired NONFs. The products were characterized using x-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy including electron diffraction and electron energy-loss spectroscopy. Electrochemical investigations showed that anodes made of these NONFs provided significantly higher discharge capacities (70 to 100% higher) compared to commercial nanometric NiO nanopowder used under the same conditions. Moreover, these NONFs had higher initial capacity retentions at both low and high current densities compared to the same NiO nanopowder.

  18. On the potential of Hg-Photo-CVD process for the low temperature growth of nano-crystalline silicon (Topical review)

    International Nuclear Information System (INIS)

    Barhdadi, A.

    2005-08-01

    Mercury-Sensitized Photo-Assisted Chemical Vapor Deposition (Hg-Photo-CVD) technique opens new possibilities for reducing thin film growth temperature and producing novel semiconductor materials suitable for the future generation of high efficiency thin film solar cells onto low cost flexible plastic substrates. This paper provides an overview of this technique, with the emphasis on its potential in low temperature elaboration of nano-crystalline silicon for the development of thin films photovoltaic technology. (author)

  19. Artificial neural systems using memristive synapses and nano-crystalline silicon thin-film transistors

    Science.gov (United States)

    Cantley, Kurtis D.

    Future computer systems will not rely solely on digital processing of inputs from well-defined data sets. They will also be required to perform various computational tasks using large sets of ill-defined information from the complex environment around them. The most efficient processor of this type of information known today is the human brain. Using a large number of primitive elements (˜1010 neurons in the neocortex) with high parallel connectivity (each neuron has ˜104 synapses), brains have the remarkable ability to recognize and classify patterns, predict outcomes, and learn from and adapt to incredibly diverse sets of problems. A reasonable goal in the push to increase processing power of electronic systems would thus be to implement artificial neural networks in hardware that are compatible with today's digital processors. This work focuses on the feasibility of utilizing non-crystalline silicon devices in neuromorphic electronics. Hydrogenated amorphous silicon (a-Si:H) nanowire transistors with Schottky barrier source/drain junctions, as well as a-Si:H/Ag resistive switches are fabricated and characterized. In the transistors, it is found that the on-current scales linearly with the effective width W eff of the channel nanowire array down to at least 20 nm. The solid-state electrolyte resistive switches (memristors) are shown to exhibit the proper current-voltage hysteresis. SPICE models of similar devices are subsequently developed to investigate their performance in neural circuits. The resulting SPICE simulations demonstrate spiking properties and synaptic learning rules that are incredibly similar to those in biology. Specifically, the neuron circuits can be designed to mimic the firing characteristics of real neurons, and Hebbian learning rules are investigated. Finally, some applications are presented, including associative learning analogous to the classical conditioning experiments originally performed by Pavlov, and frequency and pattern

  20. Synthesis and magnetic properties of hard magnetic (CoFe{sub 2}O{sub 4})-soft magnetic (Fe{sub 3}O{sub 4}) nano-composite ceramics by SPS technology

    Energy Technology Data Exchange (ETDEWEB)

    Fei Chunlong [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China); Zhang Yue [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China); Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan 430062 (China); Yang Zhi; Liu Yong [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China); Xiong Rui, E-mail: wudawujiron@163.co [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China) and Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, Hubei University, Wuhan 430062 (China); Shi Jing [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China); International Center for Materials Physics, Shen Yang 110015 (China); Ruan Xuefeng [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, Wuhan University, Wuhan 430072 (China)

    2011-07-15

    CoFe{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} nano-composite ceramics were synthesized by Spark Plasma Sintering. The X-ray diffraction patterns show that all samples are composed of CoFe{sub 2}O{sub 4} and Fe{sub 3}O{sub 4} phases when the sintering temperature is below 900 {sup o}C. It is found that the magnetic properties strongly depend on the sintering temperature. The two-step hysteresis loops for samples sintered below 500 {sup o}C are observed, but when sintering temperature reaches 500 {sup o}C, the step disappears, which indicates that the CoFe{sub 2}O{sub 4} and Fe{sub 3}O{sub 4} are well exchange coupled. As the sintering temperature increases from 500 to 800 {sup o}C, the results of X-ray diffractometer indicate the constriction of crystalline regions due to the ion diffusion at the interfaces of CoFe{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} phases, which have great impact on the magnetic properties. - Research highlights: In this work, a series of CoFe{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} nano-composite ceramics were prepared through SPS. The magnetic properties of these ceramics have been studied in detail. It is found that the magnetic properties strongly depend on the sintering temperature.

  1. Synthesis, structural characterization of nano ZnTiO3 ceramic: An effective azo dye adsorbent and antibacterial agent

    Directory of Open Access Journals (Sweden)

    R.S. Raveendra

    2014-12-01

    Full Text Available Nanocrystalline meta-zinc titanate (ZnTiO3 ceramic was prepared using a self-propagating solution combustion synthesis (SCS for the first time using urea as fuel. The product was calcined at 800 °C for 2 h to improve the crystallinity. Powder X-ray diffraction (PXRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDAX, high resolution transmission electron microscopy (HR-TEM and UV–vis absorption spectroscopy were used to characterize the final product. PXRD results show that the ilmenite type rhombohedral structure was formed when the sample was calcined at 800 °C for 2 h. Adsorption experiments were performed with cationic malachite green (MG dye. ∼96% dye was adsorbed onto nanocrystalline ZnTiO3 ceramic at pH 9 for 30 min of the contact time. The optimum adsorbent dose was found to be 0.45 g/L of dye. Langmuir–Hinshelwood model was used to study adsorption kinetics and first order kinetic model best describes the MG adsorption on ZnTiO3. Antibacterial activity was investigated against gram negative Klebsiella aerogenes, Pseudomonas desmolyticum, Escherichia coli, and gram positive Staphylococcus aureus bacteria by agar well diffusion method. Nanocrystalline ZnTiO3 ceramic showed significant effect on all the four bacterial strains at the concentration of 1000 and 1500 μg per well.

  2. Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+:ZnAl2O4 and Pr3+:YF3 nano-crystals

    International Nuclear Information System (INIS)

    Yu, Yunlong; Li, Xiaoyan

    2016-01-01

    Highlights: • Glass ceramic containing ZnAl 2 O 4 and YF 3 nano-crystals is fabricated. • Mn 2+ and Pr 3+ are selectively incorporated into ZnAl 2 O 4 and YF 3 , respectively. • The luminescence color can be tuned by adjusting the excitation wavelength. - Abstract: Glass ceramic containing spinel ZnAl 2 O 4 :Mn 2+ and orthorhombic YF 3 :Pr 3+ nano-crystals has been successfully prepared by a melt-quenching technique. X-ray diffraction and transmission electron microscopy demonstrated that two nano-phases, i.e. ZnAl 2 O 4 and YF 3 , were homogeneously distributed among the glass matrix. Importantly, the selective incorporation of Pr 3+ ions into the Y 3+ nine-fold coordinated sites of YF 3 and the segregation of Mn 2+ dopants in the Zn 2+ tetrahedral sites of ZnAl 2 O 4 were confirmed based on the excitation/emission spectra and the crystal field calculation. Under blue light excitation, both Pr 3+ and Mn 2+ in the glass ceramic can be simultaneously excited, and emit red and green luminescence, respectively, owing to the suppression of energy transfer between them. The luminescence color of the obtained glass ceramic can be easily tuned by adjusting the excitation wavelength. These results indicate the potential application of the glass ceramic as converting phosphor to generate white-light after coupling with the blue LED chip.

  3. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Yashika [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Department of Electronic Science, University of Delhi-South Campus, New Delhi 110021 (India); Arun, P., E-mail: arunp92@physics.du.ac.in [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Naudi, A.A.; Walz, M.V. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Instituto de Física del Litoral (CONICET-UNL), Guemes 3450, 3000 Santa Fe (Argentina)

    2016-08-01

    Tin sulphide nano-crystalline thin films were fabricated on glass and Indium Tin Oxide (ITO) substrates by thermal evaporation method. The crystal structure orientation of the films was found to be dependent on the substrate. Residual stress existed in the films due to these orientations. This stress led to variation in lattice parameter. The nano-crystalline grain size was also found to vary with film thickness. A plot of band-gap with grain size or with lattice parameter showed the existence of a family of curves. This implied that band-gap of SnS films in the preview of the present study depends on two parameters, lattice parameter and grain size. The band-gap relation with grain size is well known in the nano regime. Experimental data fitted well with this relation for the given lattice constants. The manuscript uses theoretical structure calculations for different lattice constants and shows that the experimental data follows the trend. Thus, confirming that the band gap has a two variable dependency. - Highlights: • Tin sulphide films are grown on glass and ITO substrates. • Both substrates give differently oriented films. • The band-gap is found to depend on grain size and lattice parameter. • Using data from literature, E{sub g} is shown to be two parameter function. • Theoretical structure calculations are used to verify results.

  4. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    International Nuclear Information System (INIS)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei; Xiang, Weidong; Ji, Zhenguo

    2015-01-01

    Highlights: • Ga 2 O 3 and YF 3 dual-phase embedded glass ceramics were fabricated. • RE 3+ and Cr 3+ dopants incorporated into YF 3 and Ga 2 O 3 lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga 2 O 3 and β-YF 3 nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu 3+ or Tm 3+ ) and transition metal (Cr 3+ ) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu 3+ (or Tm 3+ ) ions partitioned into the crystallized orthorhombic YF 3 nanophases, while Cr 3+ ones entered into the precipitated cubic Ga 2 O 3 nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm 3+ blue and Cr 3+ deep-red emissions are easily achieved in the Tm 3+ /Cr 3+ co-doped dual-phase glass ceramics

  5. Nano-regime Length Scales Extracted from the First Sharp Diffraction Peak in Non-crystalline SiO2 and Related Materials: Device Applications

    Directory of Open Access Journals (Sweden)

    Phillips James

    2010-01-01

    Full Text Available Abstract This paper distinguishes between two different scales of medium range order, MRO, in non-crystalline SiO2: (1 the first is ~0.4 to 0.5 nm and is obtained from the position of the first sharp diffraction peak, FSDP, in the X-ray diffraction structure factor, S(Q, and (2 the second is ~1 nm and is calculated from the FSDP full-width-at-half-maximum FWHM. Many-electron calculations yield Si–O third- and O–O fourth-nearest-neighbor bonding distances in the same 0.4–0.5 nm MRO regime. These derive from the availability of empty Si dπ orbitals for back-donation from occupied O pπ orbitals yielding narrow symmetry determined distributions of third neighbor Si–O, and fourth neighbor O–O distances. These are segments of six member rings contributing to connected six-member rings with ~1 nm length scale within the MRO regime. The unique properties of non-crystalline SiO2 are explained by the encapsulation of six-member ring clusters by five- and seven-member rings on average in a compliant hard-soft nano-scaled inhomogeneous network. This network structure minimizes macroscopic strain, reducing intrinsic bonding defects as well as defect precursors. This inhomogeneous CRN is enabling for applications including thermally grown ~1.5 nm SiO2 layers for Si field effect transistor devices to optical components with centimeter dimensions. There are qualitatively similar length scales in nano-crystalline HfO2 and phase separated Hf silicates based on the primitive unit cell, rather than a ring structure. Hf oxide dielectrics have recently been used as replacement dielectrics for a new generation of Si and Si/Ge devices heralding a transition into nano-scale circuits and systems on a Si chip.

  6. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics; Elaboration de ceramiques nanostructurees en carbure de silicium: de la synthese de la poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A.

    2008-12-15

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC{sub f}/SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  7. The effect of crystalline and shape anisotropy on the magnetic properties of Co and Ni nano wires

    International Nuclear Information System (INIS)

    Golipour, R.; Khayyatian, A.; Ramazani, A.; Almasi Kashi, M.

    2007-01-01

    Co and Ni magnetic nano wires with different diameter and deposition time were fabricated into the alumina template using ac electrodeposition, For Ni nano wires with 30 nm diameter the coercivity initially increased then dropped with deposition time, while it only increased with deposition time for all the other diameters. In general, the results showed that the coercivity reduced with diameter. The maximum coercivity was obtained for the Co nano wire made with 30 nm diameter and 30 s deposition time and further electrodeposition time causes a reduction of the coercivity. The effect of crystal and shape anisotropy on the magnetic properties were investigated and the results revealed that the crystal anisotropy has dominant role on the coercive field of Co nano wires, while there is a competitive effect between both the anisotropies for the Ni nano wires changing the coercivity

  8. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-10-05

    Highlights: • Ga{sub 2}O{sub 3} and YF{sub 3} dual-phase embedded glass ceramics were fabricated. • RE{sup 3+} and Cr{sup 3+} dopants incorporated into YF{sub 3} and Ga{sub 2}O{sub 3} lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga{sub 2}O{sub 3} and β-YF{sub 3} nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu{sup 3+} or Tm{sup 3+}) and transition metal (Cr{sup 3+}) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu{sup 3+} (or Tm{sup 3+}) ions partitioned into the crystallized orthorhombic YF{sub 3} nanophases, while Cr{sup 3+} ones entered into the precipitated cubic Ga{sub 2}O{sub 3} nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm{sup 3+} blue and Cr{sup 3+} deep-red emissions are easily achieved in the Tm{sup 3+}/Cr{sup 3+} co-doped dual-phase glass ceramics.

  9. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.-M. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, L.; Kantiranis, N. [Department of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Lazaridis, N.K. [Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, K.; Chatzistavrou, X. [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M., E-mail: kpar@auth.gr [Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  10. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation

    International Nuclear Information System (INIS)

    Goudouri, O.-M.; Kontonasaki, E.; Papadopoulou, L.; Kantiranis, N.; Lazaridis, N.K.; Chrissafis, K.; Chatzistavrou, X.; Koidis, P.; Paraskevopoulos, K.M.

    2014-01-01

    An attachment between the dental ceramic and the surrounding marginal tissues in fixed prosthetic restorations could eliminate secondary carries prevalence. The development of dental ceramics with apatite forming ability could provide the biological surface required for selective spread and attachment of specific cell types able to promote tissue attachment. Dental ceramics/bioactive glass composites synthesized by the sol gel method have been previously reported to develop carbonated hydroxyapatite (HCAp) in biomimetic solutions, requiring though a high amount of bioactive glass, which resulted in the compromise of their mechanical integrity. Thus, the aim of the present work was the synthesis and characterization of an experimental sol–gel derived dental ceramic with low amount of bioactive glass and the evaluation of its in vitro bioactivity. Differential thermal and thermogravimetric analysis (TG–DTA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffractometry (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to evaluate the crystal structure and the in vitro apatite forming ability of the synthesized material. The results of this study indicated the successful sol–gel synthesis of an experimental dental ceramic containing low amount of bioactive glass that presented similar structural and morphological characteristics with a commercial feldspathic dental ceramic, while exhibiting in vitro bioactivity. The apatite forming ability of the experimental sol–gel derived feldspathic dental ceramic may trigger the appropriate cellular mechanisms towards the establishment of attachment with the surrounding connective tissue. This attachment could provide a barrier to oral bacteria penetration, prolonging the life expectation of the restorations. - Highlights: • Synthesis of a bioactive sol–gel dental ceramic for fixed prosthetic restorations. • The sol–gel technique promoted the crystallization of

  11. Nano-crystal growth in cordierite glass ceramics studied with X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bras, Wim; Clark, Simon M.; Greaves, G. N.; Kunz, Martin; van Beek, W.; Radmilovic, V.

    2009-01-16

    The development of monodisperse crystalline particles in cordierite glass doped with Cr3+ after a two-step heat treatment is elucidated by a combination of time-resolved small and wide angle x-ray scattering (SAXS/WAXS) experiments with electron microscopy. The effects of bulk and surface crystallization can clearly be distinguished, and the crystallization kinetics of the bulk phase is characterized. The internal pressure due to structural differences between the crystalline and amorphous phase is measured but the physical cause of this pressure can not unambiguously be attributed. The combined measurements comprise a nearly full characterization of the crystallization processes and the resulting sample morphology.

  12. Hot isostatically-pressed aluminosilicate glass-ceramic with natural crystalline analogues for immobilizing the calcined high-level nuclear waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Raman, S.

    1993-12-01

    The additives Si, Al, MgO, P 2 O 5 were mechanically blended with fluorinelsodium calcine in varying proportions. The batches were vacuum sealed in stainless steel canisters and hot isostatically pressed at 20,000 PSI and 1000 C for 4 hours. The resulting suite of glass-ceramic waste forms parallels the natural rocks in microstructural and compositional heterogeneity. Several crystalline phases ar analogous in composition and structure to naturally occurring minerals. Additional crystalline phases are zirconia and Ca-Mg borate. The glasses are enriched in silica and alumina. Approximately 7% calcine elements occur dissolved in this glass and the total glass content in the waste forms averages 20 wt%. The remainder of the calcine elements are partitioned into crystalline phases at 75 wt% calcine waste loading. The waste forms were tested for chemical durability in accordance with the MCC1-test procedure. The leach rates are a function of the relative proportions of additives and calcine, which in turn influence the composition and abundances of the glass and crystalline phases. The DOE leach rate criterion of less than 1 g/m 2 -day is met by all the elements B, Cs and Na are increased by lowering the melt viscosity. This is related to increased crystallization or devitrification with increases in MgO addition. This exploratory work has shown that the increases in waste loading occur by preferred partitioning of the calcine components among crystalline and glass phases. The determination of optimum processing parameters in the form of additive concentration levels, homogeneous blending among the components, and pressure-temperature stabilities of phases must be continued to eliminate undesirable effects of chemical composition, microstructure and glass devitrification

  13. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    Science.gov (United States)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  14. Nano crystalline Bi{sub 2}(VO{sub 5}) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Arti, E-mail: artidabhur@gmail.com; Khasa, S.; Dahiya, M. S. [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Department of Applied Physics, G. J. University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Glass composition 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3}, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi{sub 2}(VO{sub 5}) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V{sub 2}O{sub 5}-crystal were observed along with the nano crystalline Bi{sub 2}(VO{sub 5}) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi{sub 2}(VO{sub 5}) nano-crystallite was ~30 nm for samples annealed at 400°C and ~42 nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi{sub 2}(VO{sub 5}) crystallite.

  15. Structural morphology, upconversion luminescence and optical thermometric sensing behavior of Y2O3:Er(3+)/Yb(3+) nano-crystalline phosphor.

    Science.gov (United States)

    Joshi, C; Dwivedi, A; Rai, S B

    2014-08-14

    Infrared-to-visible upconverting rare earths Er(3+)/Yb(3+) co-doped Y2O3 nano-crystalline phosphor samples have been prepared by solution combustion method followed by post-heat treatment at higher temperatures. A slight increase in average crystallite size has been found on calcinations verified by X-ray analysis. Transmission electron microscopy (TEM) confirms the nano-crystalline nature of the as-prepared and calcinated samples. Fourier transform infrared (FTIR) analysis shows the structural changes in as-prepared and calcinated samples. Upconversion and downconversion emission recorded using 976 and 532 nm laser sources clearly demonstrates a better luminescence properties in the calcinated samples as compared to as-prepared sample. Upconversion emission has been quantified in terms of standard chromaticity diagram (CIE) showing a shift in overall upconversion emission of as-prepared and calcinated samples. Temperature sensing behaviour of this material has also been investigated by measurement of fluorescence intensity ratio (FIR) of various signals in green emission in the temperature range of 315 to 555 K under 976 nm laser excitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Sintered powder cores of high Bs and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-06-01

    Full Text Available Nano-crystalline Fe-rich Fe84.3Si4B8P3Cu0.7 alloy ribbon with saturation magnetic flux density (Bs close to Si-steel exhibits much lower core loss (Wt than Si-Steels. Low glass forming ability of this alloy limits fabrication of magnetic cores only to stack/wound types. Here, we report on fabrication, structural, thermal and magnetic properties of bulk Fe84.3Si4B8P3Cu0.7 cores. Partially crystallized ribbons (obtained after salt-bath annealing treatment were crushed into powdered form (by ball milling, and were compacted to high-density (∼88% bulk cores by spark plasma sintering (SPS. Nano-crystalline structure (consisting of α-Fe grain in remaining amorphous matrix similar to wound ribbon cores is preserved in the compacted cores. At 50 Hz, cores sintered at Ts = 680 K show Wt 1 kHz. A trade-off between porosity and electrical resistivity is necessary to get low Wt at higher f. In the f range of ∼1 to 100 kHz, we have shown that the cores mixed with SiO2 exhibit much lower Wt than Fe-powder cores, non-oriented Si-steel sheets and commercially available sintered cores. We believe our core material is very promising to make power electronics/electrical devices much more energy-efficient.

  17. Microtensile Bond Strength Compared Between CAD/CAM Feldspathic and Resin Nano Ceramics

    Science.gov (United States)

    2015-07-27

    tend to be brittle and prone to fracture, while flexible materials are less resistant to wear. Teeth have evolved with hard enamel that is brittle...ceramic fractures: the Hertzian cone crack (24), often resulting from surface damage on the occlusal surface that extends deeper into the restoration...and radial cracks that form at the cementation zone (25). Fracture mechanics and fractography are both important fields utilized in assessing the

  18. Control of Grain Boundaries and Defects in Nano-Engineered Transparent Scintillator Ceramics

    Science.gov (United States)

    2013-03-01

    milled   rather   than   mixed   with   a   mortar   and   pestle   before   sintering,   these   particulates   were   not...Technology   for   Advanced  Ceramics  (STAC),  Yokohama,   Japan  (Jun.  2010).     S.  R.  Podowitz,  N.  Haegel,  R

  19. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.; Sengupta, D. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR), Durgapur, 713209 West Bengal (India); Kasinadhuni, U. [Department of Engineering Physics, Bengal College of Engineering and Technology, Durgapur, West Bengal (India); Mondal, B. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); Mukherjee, K., E-mail: kalisadhanm@yahoo.com [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India)

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  20. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    International Nuclear Information System (INIS)

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-01-01

    Highlights: • Thin TiO 2 layer is deposited on conducting substrate using sol–gel based dip coating. • TiO 2 nano-particles are synthesized using hydrothermal route. • Thick TiO 2 particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO 2 passivation layer is introduced between the mesoporous TiO 2 nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO 2 nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO 2 compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO 2 layer in between the mesoporous TiO 2 nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons

  1. Site selective spectroscopy in BaYF{sub 5}:RE{sup 3+} (RE = Eu, Sm) nano-glass–ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, J. del, E-mail: fjvargas@ull.edu.es [Dpto. Física, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Yanes, A.C. [Dpto. Física, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Abe, S.; Smet, P.F. [LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Center for Nano- and Biophotonics (NB Photonics), Ghent University (Belgium)

    2015-06-25

    Highlights: • We obtained sol–gel transparent nGCs with Eu{sup 3+}, Sm{sup 3+}-doped cubic BaYF{sub 5} nanocrystals. • Eu{sup 3+}-doped BaYF{sub 5} NCs were prepared by solvothermal method. • Their luminescent properties were studied and compared with the Eu{sup 3+}-doped nGCs. • Eu{sup 3+}/Sm{sup 3+} were used as probe ions in the nGCs to distinguish different environments. • The incorporation of a large fraction of RE ions into the BaYF{sub 5} NCs was confirmed. - Abstract: Trivalent rare-earth (RE = Eu, Sm) doped transparent nano-glass–ceramics comprising BaYF{sub 5} nanocrystals were successfully obtained by appropriate heat-treatment of the corresponding precursor sol–gel glasses. Their structural and spectroscopic properties were investigated and compared with those for Eu{sup 3+}-doped-BaYF{sub 5} nanocrystals prepared by a solvothermal method. X-ray Diffraction, Transmission Electron Microscopy and Energy Dispersive X-ray Spectroscopy measurements confirmed the distribution of BaYF{sub 5} nanocrystals in the glass matrix, presenting a cubic phase structure with space group Fm-3m. In order to achieve a further structural characterization, the luminescence properties of the Eu{sup 3+} and Sm{sup 3+} dopants were also used as sensitive probes. The reduction in the emission intensities of hypersensitive transitions {sup 5}D{sub 0} → {sup 7}F{sub 2} and {sup 4}G{sub 5/2} → {sup 6}H{sub 9/2} for Eu{sup 3+} and Sm{sup 3+} ions respectively, along with time-resolved measurements, confirm the distribution of a significant fraction of RE ions into the fluoride nanocrystal environment. These results suggest that BaYF{sub 5} nano-glass–ceramics doped with Eu{sup 3+} or Sm{sup 3+} can be considered as potential red-emitting phosphors for the development of white LEDs under near UV excitation.

  2. TARGETED DISRUPTION OF HYDROXYL CHEMISTRY AND CRYSTALLINITY IN NATURAL FIBERS FOR THE ISOLATION OF CELLULOSE NANO-FIBERS VIA ENZYMATIC TREATMENT

    Directory of Open Access Journals (Sweden)

    Sreekumar Janardhnan

    2011-04-01

    Full Text Available Cellulose is the Earth’s most abundant biopolymer. Exploiting its environmentally friendly attributes such as biodegradability, renewability, and high specific strength properties are limited by our inability to isolate them from the secondary cell wall in an economical manner. Intermolecular and intramolecular hydrogen bonding between the cellulose chains is the major force one needs to overcome in order to isolate the cellulose chain in its microfibrillar form. This paper describes how a hydrogen bond-specific enzyme disrupts the crystallinity of the cellulose, bringing about internal defibrillation within the cell wall. Bleached kraft softwood pulp was treated with a fungus (OS1 isolated from an elm tree infected with Dutch elm disease. FT-IR spectral analysis indicated a significant reduction in the density of intermolecular and intramolecular hydrogen bonding within the fiber. X-ray spectrometry indicated a reduction in the crystallinity. The isolated nano-cellulose fibers also exhibited better mechanical strength compared to those isolated through conventional methods. The structural disorder created in the crystalline region in the plant cell wall by hydrogen bond-specific enzymes is a key step forward in the isolation of cellulose at its microfibrillar level.

  3. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  4. Effects of sintering processes on mechanical properties and microstructure of TiB2–TiC + 8 wt% nano-Ni composite ceramic cutting tool material

    International Nuclear Information System (INIS)

    Zou Bin; Huang Chuanzhen; Song Jinpeng; Liu Ziye; Liu Lin; Zhao Yan

    2012-01-01

    Highlights: ► TiB 2 –TiC + 8 wt% nano-Ni ceramic tool material was sintered by six processes. ► The properties of material depended mainly on the holding stages and duration. ► SP1 process was involved with the multiple holding stages and longer duration. ► SP1 process led to many pores, and coarsening and brittle rupture of grains. ► Tool material sintered by SP6 process exhibited the optimum mechanical properties. - Abstract: TiB 2 –TiC composite powder was prepared by ball-milled with ethanol and vacuum dry, and TiB 2 –TiC + 8 wt% nano-Ni composite ceramic cutting tool material was sintered using vacuum hot-pressed sintering technique by six processes which included the different holding stages and times. The effects of sintering processes on the mechanical properties and microstructure were investigated. The polished surface and fracture surface of TiB 2 –TiC + 8 wt% nano-Ni ceramics sintered by the different sintering processes were observed by scanning electron microscope (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometry (EDS), and the relationships between mechanical properties and microstructure were discussed. The mechanical properties and microstructure depended mainly on the total holding time and the different holding stages. The longer holding time and multiple holding stages led to coarsening of TiB 2 and TiC grains, formation of pores and the brittle rupture of grains, which deteriorated the mechanical properties of TiB 2 –TiC + 8 wt% nano-Ni ceramic. TiB 2 –TiC + 8 wt% nano-Ni composite ceramic cutting tool material sintered by SP6 process exhibited the optimum resultant mechanical properties because of its finer microstructure and higher relative density, and its flexural strength, fracture toughness and hardness were 916.8 MPa, 7.80 MPa m 1/2 and 22.54 GPa, respectively.

  5. Glycerin purification using asymmetric nano-structured ceramic membranes from production of waste fish oil biodiesel

    Science.gov (United States)

    Maghami, M.; Sadrameli, S. M.; Shamloo, M.

    2018-02-01

    Biodiesel is an environmental friendly alternative liquid transportation fuel that can be used in diesel engines without major modifications. The scope of this research work is to produce biodiesel from waste fish oil and its purification from the byproducts using a ceramic membrane. Transesterification of waste fish oil was applied for the biodiesel production using methanol in the presence of KOH as a catalyst. Effect of catalyst weight percent, temperature and methanol to oil molar ratio (MR) on the biodiesel yield have been studied and the results show that highest methyl ester yield of 79.2% has been obtained at 60 °C, MR: 6 and 1% KOH. The produced biodiesel purified by a ceramic membrane. Membrane flux and glycerin removal at different operating conditions such as temperature, trans-membrane pressures and cross flow velocities have been measured. Glycerin purity by membrane method is 99.97% by weight at the optimum condition. The highest membrane flux occurred at 50 °C temperature, 1 bar pressure and 3 m/s velocity.

  6. In-Flight Formation of Nano-Crystalline Titanium Dioxide Powder in a Plasma Jet and Its Characterization

    International Nuclear Information System (INIS)

    Ananthapadmanabhan, P. V.; Thiyagarajan, T. K.; Sreekumar, K. P.; Vijay, M.; Selvarajan, V.; Yu, Jiaguo; Liu, Shengwei

    2010-01-01

    Nanocrystalline titanium dioxide powder was synthesized by in-flight oxidation of titanium dihydride (TiH 2 ) powder in a thermal plasma jet. TiH 2 powder was injected into the thermal plasma jet and allowed to react with oxygen injected downstream the jet. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. It is suggested that the thermo-chemistry of the oxidation process contributes significantly to the formation of nano-sized titania. The large energy released during the oxidation process dissociates the TiO 2 particles into TiO (g) and titanium vapour, which recombine downstream with oxygen and form nano particles of TiO 2 .

  7. Development of advanced pump impeller fabrication technology using direct nano- ceramic dispersion casting for long time erosion durability

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Jin Ju

    2008-09-01

    Many components of pump impeller of nuclear power plants is generally made of stainless steel and Al-bronze with superior corrosion resistance to sea water. However, they should be replaced by one- to five-year period because of material damage by a very big cavitation impact load, even though their designed durability is twenty years. Especially, in case of Young-Gwang nuclear power plant located at the west sea, damage of components of pump impeller is so critical due to the additional damage by solid particle erosion and hence their replacement period is very short as several months compared to other nuclear power plants. In addition, it is very difficult to maintain and repair the components of pump impeller since there is no database on the exact durability and damage mechanism. Therefore, in this study, fabrication technology of new advanced materials modified by dispersion of nano-carbide and -oxide ceramics into the matrix is developed first. Secondly, technology to estimate the dynamic damage by solid particle erosion is established and hence applied to the prediction of the service life of the components of pump impeller

  8. Influence of beryllium ceramics nano-structuring by iron atoms on increase of their stability to ionizing radiations effect; Vliyanie nanostrukturirovaniya berillievykh keramik atomami zheleza na povyshenie ikh ustojchivosti k vozdejstviyu ioniziruyushchikh izluchenij

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Bitenbaev, M I [Fiziko-Tekhnicheskij Inst., Almaty (Kazakhstan)

    2007-07-01

    In the work a new results on beryllium ceramics nano-structuring effect by iron oxide atoms on radiation defects quantum yield value G in these materials and defects depth constants in ionizing radiation fields k are presented. Experimental data under dependence of G and k values from concentration of iron atoms in beryllium ceramic matrix are presented. It is shown, that structure modification of beryllium ceramics by feedings on the iron base leads to sharp decrease (almost in 30 times) of radiation defects quantum yield value, i.e. to increase of these ceramics stability enhancement to ionizing radiation effect.

  9. Coloration of metallic and/or ceramic surfaces obtained by atomic layer deposited nano-coatings

    International Nuclear Information System (INIS)

    Guzman, L.; Vettoruzzo, F.; Laidani, N.

    2016-01-01

    By depositing single layer coatings by means of physical vapor techniques, tailoring of their coloration is generally complex because a given color can be obtained only by very high composition control. Physical vapor deposition (PVD) processes are expensive and cannot be easily used for obtaining conformal coating on three-dimensional objects. Moreover PVD coatings exhibit intrinsic defects (columnar structures, pores) that affect their functional properties and applications such as barrier layers. Atomic layer deposition (ALD) technology delivers conformal coatings on different materials with very low defectiveness. A straightforward coloration can be obtained by a combination of two types of layers with different refraction index, deposited to high thickness precision. Computer simulation studies were performed to design the thickness and architecture of multilayer structures, to a total thickness of approximately 100 nm, suitable to modify the typical coloration of some materials, without altering their other physical and chemical properties. The most promising nano-layered structures were then deposited by ALD and tested with regard to their optical properties. Their total thicknesses were specified in such a way to be technically feasible and compatible with future industrial production. The materials employed in this study to build the optical coatings, are two oxides (Al_2O_3, TiO_2) deposited at 120 °C and two nitrides (AlN, TiN), which need a deposition temperature of 400 °C. The possibility of using such modern deposition technology for esthetic and decorative purposes, while maintaining the functional properties, opens perspectives of industrial applications. - Highlights: • Computer simulation is done to design multilayers made of Al_2O_3, TiO_2, AlN, and TiN. • Total thickness (< 120 nm) is specified to be compatible with industrial production. • The most promising nano-layered structures are then produced and optically tested. • An

  10. Study of Phase Transformations on Nano-Crystalline (La,Sr)(Mn,Fe)O3 Systems by High-Pressure Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Chandra, Usha; Mudgal, Prerana; Kumar, Manoj

    2006-01-01

    We report pressure-dependent 57Fe Moessbauer studies on a nano-crystalline perovskite La0.8Sr0.2(Mn0.8Fe0.2) O3 system up to 10 GPa using diamond anvil cell. At ambient pressure, iron is present as Fe3+ and Fe4+ in two different environments. Pressure seems to affect the higher symmetry site of Fe4+, while the octahedral site containing Fe3+ remains almost unaffected. Phase transformations are observed at pressures 0.52 GPa and 3.7 GPa respectively. A sudden increase in the isomer shift at 0.52 GPa is related to the reduction of Fe4+ ions while at 3.7 GPa, a structural transition is observed with sudden drop in isomer shift indicating Fe3+ ions in identical environment. Quadrupole splittings increase continuously with pressures up to 10 GPa

  11. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2002-01-01

    nano-crystalline powders of ω(Al 2 O 3 ) = 95%, ω(TiO 2 ) = 3%, and ω(SiO 2 ) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) μm. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nano-structured ceramic coatings is significantly improved

  12. Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions.

    Science.gov (United States)

    Huang, Jing; Huang, Guohe; An, Chunjiang; He, Yuan; Yao, Yao; Zhang, Peng; Shen, Jian

    2018-03-12

    Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Coloration of metallic and/or ceramic surfaces obtained by atomic layer deposited nano-coatings

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, L., E-mail: luisg47@gmail.com [Fondazione Bruno Kessler (FBK), Centro Materiali e Microsistemi, Functional Materials & Photonic Structures Unit, via Sommarive 18, 38123 Trento (Italy); Vettoruzzo, F. [Ronda High Tech, via Vegri 83, 36010 Zane’, Vicenza (Italy); Laidani, N. [Fondazione Bruno Kessler (FBK), Centro Materiali e Microsistemi, Functional Materials & Photonic Structures Unit, via Sommarive 18, 38123 Trento (Italy)

    2016-02-29

    By depositing single layer coatings by means of physical vapor techniques, tailoring of their coloration is generally complex because a given color can be obtained only by very high composition control. Physical vapor deposition (PVD) processes are expensive and cannot be easily used for obtaining conformal coating on three-dimensional objects. Moreover PVD coatings exhibit intrinsic defects (columnar structures, pores) that affect their functional properties and applications such as barrier layers. Atomic layer deposition (ALD) technology delivers conformal coatings on different materials with very low defectiveness. A straightforward coloration can be obtained by a combination of two types of layers with different refraction index, deposited to high thickness precision. Computer simulation studies were performed to design the thickness and architecture of multilayer structures, to a total thickness of approximately 100 nm, suitable to modify the typical coloration of some materials, without altering their other physical and chemical properties. The most promising nano-layered structures were then deposited by ALD and tested with regard to their optical properties. Their total thicknesses were specified in such a way to be technically feasible and compatible with future industrial production. The materials employed in this study to build the optical coatings, are two oxides (Al{sub 2}O{sub 3}, TiO{sub 2}) deposited at 120 °C and two nitrides (AlN, TiN), which need a deposition temperature of 400 °C. The possibility of using such modern deposition technology for esthetic and decorative purposes, while maintaining the functional properties, opens perspectives of industrial applications. - Highlights: • Computer simulation is done to design multilayers made of Al{sub 2}O{sub 3}, TiO{sub 2}, AlN, and TiN. • Total thickness (< 120 nm) is specified to be compatible with industrial production. • The most promising nano-layered structures are then produced and

  14. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  15. Influence of Abutment Design on Stiffness, Strength, and Failure of Implant-Supported Monolithic Resin Nano Ceramic (RNC) Crowns.

    Science.gov (United States)

    Joda, Tim; Huber, Samuel; Bürki, Alexander; Zysset, Philippe; Brägger, Urs

    2015-12-01

    Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation. © 2014 Wiley Periodicals, Inc.

  16. Maxillary sinus floor augmentation using a nano-crystalline hydroxyapatite silica gel: case series and 3-month preliminary histological results.

    Science.gov (United States)

    Canullo, Luigi; Dellavia, Claudia; Heinemann, Friedhelm

    2012-03-20

    The aim of this case series is to histologically examine a new hydroxyapatite in sinus lift procedure after 3 months. Ten 2-stage sinus lifts were performed in 10 healthy patients having initial bone height of 1-2mm and bone width of 5mm, asking for a fixed implant-supported rehabilitation. After graft material augmentation, a rough-surfaced mini-implant was inserted to maintain stability of the sinus widow. A bioptical core containing a mini-implant was retrieved 3 months after maxillary sinus augmentation with NanoBone(®) and processed for undecalcified histology. From the histomorphometric analysis, NanoBone(®) residuals accounted for the 38.26% ± 8.07% of the bioptical volume, marrow spaces for the 29.23% ± 5.18% and bone for the 32.51% ± 4.96% (new bone: 20.64% ± 2.96%, native bone: 11.87% ± 3.27%). Well-mineralized regenerated bone with lamellar parallel-fibred structure and Haversian systems surrounded the residual NanoBone(®) particles. The measured bone-to-implant contact amounted to 26.02% ± 5.46%. No connective tissue was observed at the implant boundary surface. In conclusion, the tested material showed good histological outcomes also 3 months after surgery. In such critical conditions, the use of a rough-surfaced mini-implant showed BIC values supposed to be effective also in case of functional loading. Although longer follow-up and a wider patient size are needed, these preliminary results encourage further research on this biomaterial for implant load also under early stage and critical conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement.

    Science.gov (United States)

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC(®) Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink(®) II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus(®) (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Combination of CEREC(®) Blocs PC and Variolink(®) II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Variolink(®) II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used.

  18. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.

    Science.gov (United States)

    Lv, Qing; Deng, Meng; Ulery, Bret D; Nair, Lakshmi S; Laurencin, Cato T

    2013-08-01

    Composites of biodegradable polymers and bioactive ceramics are candidates for tissue-engineered scaffolds that closely match the properties of bone. We previously developed a porous, three-dimensional poly (D,L-lactide-co-glycolide) (PLAGA)/nanohydroxyapatite (n-HA) scaffold as a potential bone tissue engineering matrix suitable for high-aspect ratio vessel (HARV) bioreactor applications. However, the physical and cellular properties of this scaffold are unknown. The present study aims to evaluate the effect of n-HA in modulating PLAGA scaffold properties and human mesenchymal stem cell (HMSC) responses in a HARV bioreactor. By comparing PLAGA/n-HA and PLAGA scaffolds, we asked whether incorporation of n-HA (1) accelerates scaffold degradation and compromises mechanical integrity; (2) promotes HMSC proliferation and differentiation; and (3) enhances HMSC mineralization when cultured in HARV bioreactors. PLAGA/n-HA scaffolds (total number = 48) were loaded into HARV bioreactors for 6 weeks and monitored for mass, molecular weight, mechanical, and morphological changes. HMSCs were seeded on PLAGA/n-HA scaffolds (total number = 38) and cultured in HARV bioreactors for 28 days. Cell migration, proliferation, osteogenic differentiation, and mineralization were characterized at four selected time points. The same amount of PLAGA scaffolds were used as controls. The incorporation of n-HA did not alter the scaffold degradation pattern. PLAGA/n-HA scaffolds maintained their mechanical integrity throughout the 6 weeks in the dynamic culture environment. HMSCs seeded on PLAGA/n-HA scaffolds showed elevated proliferation, expression of osteogenic phenotypic markers, and mineral deposition as compared with cells seeded on PLAGA scaffolds. HMSCs migrated into the scaffold center with nearly uniform cell and extracellular matrix distribution in the scaffold interior. The combination of PLAGA/n-HA scaffolds with HMSCs in HARV bioreactors may allow for the generation of engineered

  19. Phase relations in crystalline ceramic nuclear waste forms the system UO/sub 2 + x/-CeO2-ZrO2-ThO2 at 12000C in air

    International Nuclear Information System (INIS)

    Pepin, J.G.; McCarthy, G.J.

    1981-01-01

    Steady-state phase relations in the system UO/sub 2 + x/-CeO 2 -ZrO 2 -ThO 2 were determined for application to phase relations in the high-level crystalline ceramic nuclear waste form Supercalcine-Ceramics. Samples were treated at 1200 0 C at an oxygen partial pressure of 0.21 atm and a total pressure of 1 atm. Phase assemblages were found to be composed of cubic solid solutions of the flourite structure type, solid solutions based on ZrO 2 , and orthorhombic solid solutions based on U 3 O 8

  20. Electronic and structural properties of micro-and nanometre-sized crystalline copper monoxide ceramics investigated by positron annihilation

    International Nuclear Information System (INIS)

    Druzhkov, A.P.; Gizhevskii, B.A.; Arbuzov, V.L.; Shalnov, K.V.; Naumov, S.V.; Perminov, D.A.; Kozlov, E.A.

    2002-01-01

    Electronic and structural properties of copper monoxide (CuO) sintered as a common ceramic and nanoceramic are studied by positron annihilation spectroscopy. A CuO nanoceramic with crystallite size ranging from 15 to 90 nm was prepared from a common one by shock-wave loading. It is found that the momentum distribution of valence electrons in CuO is shifted, as compared with metallic copper, towards higher momentum values. This result is related to the effect of the Cu 3d-O 2p hybridization in the Cu-O ionic covalent bond formation. It is found that open volumes, identified mainly as small agglomerates of oxygen vacancies, appear at the nanoceramic crystallite interfaces. The degree of the Cu-O bond covalency decreases locally at the crystallite interfaces because of an oxygen deficit. The nanocrystalline state in CuO is shown to be thermally stable up to 700 K. (author)

  1. Electronic and structural properties of micro-and nanometre-sized crystalline copper monoxide ceramics investigated by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Druzhkov, A.P. [Institute of Metal Physics, Ural Branch Russian Academy of Sciences, Ekaterinburg (Russian Federation)]. E-mail: druzhkov@imp.uran.ru; Gizhevskii, B.A.; Arbuzov, V.L.; Shalnov, K.V.; Naumov, S.V.; Perminov, D.A. [Institute of Metal Physics, Ural Branch Russian Academy of Sciences, Ekaterinburg (Russian Federation); Kozlov, E.A. [All-Russian R and D Institute of Technical Physics, Snezhinsk (Russian Federation)

    2002-09-02

    Electronic and structural properties of copper monoxide (CuO) sintered as a common ceramic and nanoceramic are studied by positron annihilation spectroscopy. A CuO nanoceramic with crystallite size ranging from 15 to 90 nm was prepared from a common one by shock-wave loading. It is found that the momentum distribution of valence electrons in CuO is shifted, as compared with metallic copper, towards higher momentum values. This result is related to the effect of the Cu 3d-O 2p hybridization in the Cu-O ionic covalent bond formation. It is found that open volumes, identified mainly as small agglomerates of oxygen vacancies, appear at the nanoceramic crystallite interfaces. The degree of the Cu-O bond covalency decreases locally at the crystallite interfaces because of an oxygen deficit. The nanocrystalline state in CuO is shown to be thermally stable up to 700 K. (author)

  2. Elaboration of silicon carbides nano particles (SiC): from the powder synthesis to the sintered ceramic; Elaboration de ceramiques nanostructurees en carbure de silicium (SiC): de la synthese de poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMA), 91 - Gif-sur-Yvette (France)

    2008-07-01

    Materials for the reactor cores of the fourth generation will need materials supporting high temperatures with fast neutrons flux. SiC{sub f}/SiC ceramics are proposed. One of the possible elaboration process is to fill SiC fiber piece with nano particles SiC powder and to strengthen by sintering. The aim of this thesis is to obtain a nano structured SiC ceramic as a reference for the SiC{sub f}/SiC composite development and to study the influence of the fabrication parameters. (A.L.B.)

  3. Hydroxyapatite additive influenced the bioactivity of bioactive nano-titania ceramics and new bone-forming capacity

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhensheng [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Yang Xiaozhan [Chongqing University of Technology, School of Optoelectronic Information (China); Guo Hongfeng [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China); Yang Xiaochao; Sun Lili [Third Military Medical University, College of Biomedical Engineering and Medical Imaging (China); Dong Shiwu, E-mail: shiwudong@gmail.com [Third Military Medical University, Tissue Engineering Research Center of Chongqing, Department of Anatomy, College of Basic Medical Sciences (China)

    2012-09-15

    Bioceramics plays an important role in bone-substitutes. In this study, titania porous ceramics with excellent bioactivity were prepared using hydroxyapatite (HA, 10 vol.% contents) as a grain growth inhibitor. The pure TiO{sub 2} porous ceramics were also prepared as a control. After sintered at 1,000 Degree-Sign C with a pressureless sintering method, the particle size of the pure TiO{sub 2} and TiO{sub 2}/HA (10 vol.%) porous ceramics were 450 and 310 nm, respectively. Each of the porous ceramics presented numerous pores, which were cross-connected. The size of the pores ranged from 100 to 300 {mu}m. There were also profuse micropores inside the pore wall and between the particles. A SBF soaking experiment demonstrated that the HA additive played an important role in promoting apatite formation. The cell proliferation demonstrated that osteoblasts on the TiO{sub 2}/HA (10 vol.%) porous ceramics proliferated faster than that on the pure TiO{sub 2} ceramics. The histological sections and EDX assay results of the two porous ceramics also illustrated that TiO{sub 2}/HA (10 vol.%) composite ceramics combined with Ca and P elements induced much better apatite formation than that of the pure TiO{sub 2} ceramics. These results indicated that titania ceramics combined with HA holds great promise for bone-substitutes.

  4. Rapid thermal processing of nano-crystalline indium tin oxide transparent conductive oxide coatings on glass by flame impingement technology

    International Nuclear Information System (INIS)

    Schoemaker, S.; Willert-Porada, M.

    2009-01-01

    Indium tin oxide (ITO) is still the best suited material for transparent conductive oxides, when high transmission in the visible range, high infrared reflection or high electrical conductivity is needed. Current approaches on powder-based printable ITO coatings aim at minimum consumption of active coating and low processing costs. The paper describes how fast firing by flame impingement is used for effective sintering of ITO-coatings applied on glass. The present study correlates process parameters of fast firing by flame impingement with optoelectronic properties and changes in the microstructure of suspension derived nano-particulate films. With optimum process parameters the heat treated coatings had a sheet resistance below 0.5 kΩ/ □ combined with a transparency higher than 80%. To characterize the influence of the burner type on the process parameters and the coating functionality, two types of methane/oxygen burner were compared: a diffusion burner and a premixed burner

  5. Synergism of Electrospinning and Nano-alumina Trihydrate on the Polymorphism, Crystallinity and Piezoelectric Performance of PVDF Nanofibers

    Science.gov (United States)

    Khalifa, Mohammed; Deeksha, B.; Mahendran, Arunjunairaj; Anandhan, S.

    2018-03-01

    Poly(vinlylidene fluoride) (PVDF) is known for its electroactive phases, which can be nucleated by incorporating nanoparticles into PVDF to enhance its piezoelectric performance. In this study, the synergistic effect of electrospinning and nano alumina trihydrate (ATH) filler was used to enhance the electroactive β phase of PVDF. Electrospun nanofibers of PVDF/ATH nanocomposite (PANCF) were synthesized with different loadings of ATH. The presence of ATH enhances the surface charges of the electrospun droplets, leading to thinner fibers. The highest β-phase content was found to be 70.1% for PANCF with 10% ATH. The piezoelectric performance of the nanofiber mats was studied using an indigenous setup. The highest voltage output of 840 mV was produced by PANCF with 10% ATH. These nanofibers could be a promising material in the field of sensors, actuators and energy-harvesting applications.

  6. An assessment of the homogeneity of nano-crystalline Fe–Cu powders as studied by means of APT

    KAUST Repository

    Wille, Catharina

    2009-04-01

    In this contribution the homogeneity of mechanically alloyed Fe-Cu powders for two different compositions (Fe-10 and Fe-2.5 at%Cu) has been systematically characterised by atom probe tomography. Since Fe-Cu exhibits the Invar effect, it is among the most attractive systems for technical application. Furthermore, this system is immiscible and characterised by a large positive heat of mixing. In combination with the widespread application and accessibility, this predestines Fe-Cu as a binary model alloy to elaborate the enforced nonequilibrium enhanced solubility for immiscible systems. Depending on the parameters composition and milling time, results on the extension of the solubility limit and on the homogeneity of the alloy are presented, discussed and compared to earlier works. Only for the alloy with lower Cu content and for the prolonged milling time of 50 h, chemical homogeneity of the sample as measured by the atom probe was fully reached on the nano-scale. For all other parameter combinations homogeneity could not be achieved, even for long milling times and for those samples that appear to be homogeneous via X-ray analysis. Moreover, impurities were determined, mostly stemming from the fabrication procedure. The arrangement and homogeneity of the most common impurity, oxygen, was evaluated from atom probe data for different samples. Thus, the local concentration, segregation effects and the distribution of impurities could be quantified on the nano-scale, depending on the different nominal compositions and processing parameters. Additionally, structural information could be gained employing transmission electron microscopy and diffraction measurements. (C) 2008 Elsevier B.V. All rights reserved.

  7. An assessment of the homogeneity of nano-crystalline Fe-Cu powders as studied by means of APT

    Energy Technology Data Exchange (ETDEWEB)

    Wille, Catharina, E-mail: cwille@ump.gwdg.de [Georg-August-University Goettingen, Institute for Materials Physics, Goettingen 37077 (Germany); Al-Kassab, Talaat [Georg-August-University Goettingen, Institute for Materials Physics, Goettingen 37077 (Germany); Choi, Pyuck-Pa [Korea Institute of Science and Technology, Nano-Materials Research Center, Seoul (Korea, Republic of); Kwon, Young-Soon [Research Center for Machine Parts and Materials Processing, University of Ulsan, Ulsan (Korea, Republic of); Kirchheim, Reiner [Georg-August-University Goettingen, Institute for Materials Physics, Goettingen 37077 (Germany)

    2009-04-15

    In this contribution the homogeneity of mechanically alloyed Fe-Cu powders for two different compositions (Fe-10 and Fe-2.5 at%Cu) has been systematically characterised by atom probe tomography. Since Fe-Cu exhibits the Invar effect, it is among the most attractive systems for technical application. Furthermore, this system is immiscible and characterised by a large positive heat of mixing. In combination with the widespread application and accessibility, this predestines Fe-Cu as a binary model alloy to elaborate the enforced nonequilibrium enhanced solubility for immiscible systems. Depending on the parameters composition and milling time, results on the extension of the solubility limit and on the homogeneity of the alloy are presented, discussed and compared to earlier works. Only for the alloy with lower Cu content and for the prolonged milling time of 50 h, chemical homogeneity of the sample as measured by the atom probe was fully reached on the nano-scale. For all other parameter combinations homogeneity could not be achieved, even for long milling times and for those samples that appear to be homogeneous via X-ray analysis. Moreover, impurities were determined, mostly stemming from the fabrication procedure. The arrangement and homogeneity of the most common impurity, oxygen, was evaluated from atom probe data for different samples. Thus, the local concentration, segregation effects and the distribution of impurities could be quantified on the nano-scale, depending on the different nominal compositions and processing parameters. Additionally, structural information could be gained employing transmission electron microscopy and diffraction measurements.

  8. An assessment of the homogeneity of nano-crystalline Fe-Cu powders as studied by means of APT

    International Nuclear Information System (INIS)

    Wille, Catharina; Al-Kassab, Talaat; Choi, Pyuck-Pa; Kwon, Young-Soon; Kirchheim, Reiner

    2009-01-01

    In this contribution the homogeneity of mechanically alloyed Fe-Cu powders for two different compositions (Fe-10 and Fe-2.5 at%Cu) has been systematically characterised by atom probe tomography. Since Fe-Cu exhibits the Invar effect, it is among the most attractive systems for technical application. Furthermore, this system is immiscible and characterised by a large positive heat of mixing. In combination with the widespread application and accessibility, this predestines Fe-Cu as a binary model alloy to elaborate the enforced nonequilibrium enhanced solubility for immiscible systems. Depending on the parameters composition and milling time, results on the extension of the solubility limit and on the homogeneity of the alloy are presented, discussed and compared to earlier works. Only for the alloy with lower Cu content and for the prolonged milling time of 50 h, chemical homogeneity of the sample as measured by the atom probe was fully reached on the nano-scale. For all other parameter combinations homogeneity could not be achieved, even for long milling times and for those samples that appear to be homogeneous via X-ray analysis. Moreover, impurities were determined, mostly stemming from the fabrication procedure. The arrangement and homogeneity of the most common impurity, oxygen, was evaluated from atom probe data for different samples. Thus, the local concentration, segregation effects and the distribution of impurities could be quantified on the nano-scale, depending on the different nominal compositions and processing parameters. Additionally, structural information could be gained employing transmission electron microscopy and diffraction measurements.

  9. Homogenized electromechanical properties of crystalline and ceramic relaxor ferroelectric 0.58Pb(Mg1/3Nb2/3)O3 0.42PbTiO3

    Science.gov (United States)

    Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.

    2007-10-01

    A modelling framework that incorporates the peculiarities of microstructural features, such as the spatial correlation of crystallographic orientations and morphological texture in piezoelectrics, is established. The mathematical homogenization theory of a piezoelectric medium is implemented using the finite element method by solving the coupled equilibrium electrical and mechanical fields. The dependence of the domain orientation on the macroscopic electromechanical properties of crystalline as well as polycrystalline ceramic relaxor ferroelectric 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 (PMN-42% PT) is studied based on this model. The material shows large anisotropy in the piezoelectric coefficient ejK in its crystalline form. The homogenized electromechanical moduli of polycrystalline ceramic also exhibit significantly anisotropic behaviours. An optimum texture at which the piezoceramic exhibits its maximum longitudinal piezoelectric response is identified.

  10. Effect of calcination temperature on the H{sub 2}O{sub 2} decomposition activity of nano-crystalline Co{sub 3}O{sub 4} prepared by combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, M.Th. [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Abu-Zied, B.M., E-mail: babuzied@aun.edu.eg [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt); Mansoure, T.H. [Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut (Egypt)

    2013-06-01

    Cobalt oxide nano-particles were prepared by combustion method using urea as a combustion fuel. The effects of calcination temperature, 350–1000 °C, on the physicochemical, surface and catalytic properties of the prepared Co{sub 3}O{sub 4} nano-particles were studied. The products were characterized by thermal analyses (TGA and DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Textural features of the obtained catalysts were investigated using nitrogen adsorption at −196 °C. X-ray diffraction confirmed that the resulting oxide was pure single-crystalline Co{sub 3}O{sub 4} nano-particles. Transmission electron microscopy indicating that, the crystallite size of Co{sub 3}O{sub 4} nano-crystals was in the range of 8–34 nm. The catalytic activities of prepared nano-crystalline Co{sub 3}O{sub 4} catalysts were tested for H{sub 2}O{sub 2} decomposition at 35–50 °C temperature range. Experimental results revealed that, the catalytic decomposition of H{sub 2}O{sub 2} decreases with increasing the calcination temperature. This was correlated with the observed particle size increase accompanying the calcination temperature rise.

  11. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  12. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  13. Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement.

    Science.gov (United States)

    Azari, Abbas; Nikzad, Sakineh; Yazdani, Arash; Atri, Faezeh; Fazel Anvari-Yazdi, Abbas

    2017-07-01

    The poor bonding strength of zirconia to different dental substrates is one of the challenging issues in restorative dentistry. Hydroxyapatite is an excellent biocompatible material with fine bonding properties. In this study, it was hypothesized that hydroxyapatite coating on zirconia would improve its bond strength. Forty-five zirconia blocks were prepared and randomly divided into three groups: hydroxyapatite coating, sandblasting, and no preparation (control). The blocks were bonded to cement and the micro-shear bond strength was measured following load application. The bond strength values were analyzed with the Kruskal-Wallis test in 3 groups and paired comparisons were made using the Mann-Whitney U test. The failure patterns of the specimens were studied by a stereomicroscope and a scanning electron microscope and then analyzed by the chi-square test (significance level = 0.05). Deposition of hydroxyapatite on the zirconia surface significantly improved its bond strength to the resin cement in comparison with the control specimens (p improved the bond strength quality and values.

  14. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.es [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Martin, E. [Dpto. Mecanica, Maquinas, Motores Termicos y Fluidos, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Stefanov, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Alpuim, P. [Departamento de Fisica, Universidade do Minho, 4800-058 Guimaraes (Portugal); Chiussi, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. Black-Right-Pointing-Pointer UV-ELA technique causes a rapid heating that provokes the H{sub 2} desorption from the Si surface and bulk material. Black-Right-Pointing-Pointer Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. Black-Right-Pointing-Pointer These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO{sub 2}. Black-Right-Pointing-Pointer To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. Black-Right-Pointing-Pointer The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25

  15. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    International Nuclear Information System (INIS)

    Conde, J.C.; Martín, E.; Stefanov, S.; Alpuim, P.; Chiussi, S.

    2012-01-01

    Highlights: ► nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. ► UV-ELA technique causes a rapid heating that provokes the H 2 desorption from the Si surface and bulk material. ► Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. ► These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO 2 . ► To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. ► The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25 ns pulse length and energy densities ranging from 50 mJ/cm 2 to 400 mJ/cm 2 have been calculated. Numerical results allowed us to estimate the dehydrogenation

  16. High-Performance Flexible Single-Crystalline Silicon Nanomembrane Thin-Film Transistors with High- k Nb2O5-Bi2O3-MgO Ceramics as Gate Dielectric on a Plastic Substrate.

    Science.gov (United States)

    Qin, Guoxuan; Zhang, Yibo; Lan, Kuibo; Li, Lingxia; Ma, Jianguo; Yu, Shihui

    2018-04-18

    A novel method of fabricating flexible thin-film transistor based on single-crystalline Si nanomembrane (SiNM) with high- k Nb 2 O 5 -Bi 2 O 3 -MgO (BMN) ceramic gate dielectric on a plastic substrate is demonstrated in this paper. SiNMs are successfully transferred to a flexible polyethylene terephthalate substrate, which has been plated with indium-tin-oxide (ITO) conductive layer and high- k BMN ceramic gate dielectric layer by room-temperature magnetron sputtering. The BMN ceramic gate dielectric layer demonstrates as high as ∼109 dielectric constant, with only dozens of pA current leakage. The Si-BMN-ITO heterostructure has only ∼nA leakage current at the applied voltage of 3 V. The transistor is shown to work at a high current on/off ratio of above 10 4 , and the threshold voltage is ∼1.3 V, with over 200 cm 2 /(V s) effective channel electron mobility. Bending tests have been conducted and show that the flexible transistors have good tolerance on mechanical bending strains. These characteristics indicate that the flexible single-crystalline SiNM transistors with BMN ceramics as gate dielectric have great potential for applications in high-performance integrated flexible circuit.

  17. Synthesis, characterization and structural control of nano crystalline molybdenum oxide MoO{sub 3} single phase by low cost technique

    Energy Technology Data Exchange (ETDEWEB)

    Afify, H.H.; Hassan, S.A. [Solid State Department, Physics Division, National Research Centre, 33 El Bohouthst. (fromer El Tahrirst.), Dokki, P.O. 12622, Giza (Egypt); Abouelsayed, A., E-mail: as.abouelsayed@gmail.com [Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouthst. (fromer El Tahrirst.), Dokki, P.O. 12622, Giza (Egypt); Demian, S.E. [Solid State Department, Physics Division, National Research Centre, 33 El Bohouthst. (fromer El Tahrirst.), Dokki, P.O. 12622, Giza (Egypt); Zayed, H.A. [Physics Department, Faculty of Girls for Art, Sciences and Education, Ain Shams University (Egypt)

    2016-06-15

    Thermodynamically stable α- MoO{sub 3} thin film is prepared without any other phases of the molybdenum oxides. Simple and low coast spray pyrolysis technique is used. Growth conditions are optimized to produce pure α- MoO{sub 3} with controlled crystallite size and surface morphology. Small angle (GAXRD) diffractometer is used to elucidate the structure. Profile shape function (PSF) model is made for the experimental data. WinFit software is going first to fit (PSF) to use the refined profile parameters for determination of crystallite size and internal residual strain. The (GAXRD) patterns prove the existence of α- MoO{sub 3} only with layered structure, indicated by the appearance of only (0k0). The calculated crystallite sizes and the strain are found to range from 10 to 28 nm and 0.28%–0.05% respectively. Ultraviolet and Visible transmission measurements were performed over a wavelength range 190–2500 nm on the MoO{sub 3} thin films synthesized by spray pyrolysis technique at different substrate temperature. The two sub-bands corresponds to the electronic transition between the molybdenum oxidation states Mo{sup 4+}, Mo{sup 5+} and Mo{sup 6+} are observed. Quantitative information on the temperature-induced blue shift of the sub-bands was obtained by fitting the spectra with Lorentz functions. The transition from Mo{sup 5+} to Mo{sup 6+} oxidation states show a blue shift up to Tc = 325 °C. Above Tc, the transition Mo{sup 5+} to Mo{sup 6+} increases more drastically, resulting in an anomaly in the temperature-induced shift at Tc. The anomaly can be attributed to the amorphous-to-crystalline phase transition at 325 °C. In addition, both refractive index and extinction coefficient are calculated as a function of substrate temperature. - Highlights: • Single phase α-MoO{sub 3} nano crystalline MoO{sub 3} thin films have been synthesized. • Amorphous-to-crystalline phase transition occurs at 325 °C for MoO{sub 3} thin films. • A clear

  18. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    Science.gov (United States)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  19. The influence of metal interlayers on the structural and optical properties of nano-crystalline TiO 2 films

    KAUST Repository

    Yang, Yong

    2012-03-01

    TiO 2-M-TiO 2 (M = W, Co and Ag) multilayer films have been deposited on glass substrates using reactive magnetron sputtering, then annealed in air for 2 h at 500°C. The structure, surface morphology and optical properties of the films have been studied using X-ray diffraction, Raman spectroscopy, atomic force microscopy and UV-vis spectroscopy. The TiO 2-W-TiO 2 and TiO 2-Co-TiO 2 films showed crystalline phases, whereas the TiO 2-Ag-TiO 2 films remained in the amorphous state. The crystallization temperature for the TiO 2-M-TiO 2 films decreased significantly compared with pure TiO 2 film deposited on quartz. Detailed analysis of the Raman spectra suggested that the crystallization of TiO 2-M-TiO 2 films was associated with the large structural deformation imposed by the oxidation of intermediate metal layers. Moreover, the optical band gap of the films narrowed due to the appearance of impurity levels as the metal ions migrated into the TiO 2 matrix. These results indicate that the insertion of intermediate metal layers provides a feasible access to improve the structural and optical properties of anatase TiO 2 films, leading to promising applications in the field of photocatalysis. © 2011 Elsevier B.V. All rights reserved.

  20. Texture of the nano-crystalline AlN thin films and the growth conditions in DC magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Shakil Khan

    2015-08-01

    Full Text Available DC reactive magnetron sputtering technique has been used for the preparation of AlN thin films. The deposition temperature and the flow ratio of N2/Ar were varied and subsequent dependency of the films crystallites orientation/texture has been addressed. In general, deposited films were found hexagonal polycrystalline with a (002 preferred orientation. The X-ray diffraction (XRD data revealed that the film crystallinity improves, with the increase of substrate temperature from 300 °C to 500 °C. The dropped in full width half maximum (FWHM of the XRD rocking curve value further confirmed it. However, increasing substrate temperature above 500 °C or reducing the nitrogen condition (from 60 to 30% in the environment induced the growth of crystallites with (102 and (103 orientations. The rise of rocking curve FWHM for the corresponding conditions depicted that the films texture quality deteriorated. A further confirmation of the variation in film texture/orentation with the growth conditions has been obtained from the variation in FWHM values of a dominant E1 (TO mode in the Fourier transform infrared (FTIR spectra and the E2 (high mode in Raman spectra. We have correlated the columnar structure in AFM surface analyses with the (002 or c-axis orientation as well. Spectroscopic ellipsometry of the samples have shown a higher refractive index at 500 °C growth temperature.

  1. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    Science.gov (United States)

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Nair, Lakshmi S; Khan, Yusuf M; Deng, Meng; Laurencin, Cato T

    2007-01-01

    A number of bone tissue engineering approaches are aimed at (i) increasing the osteconductivity and osteoinductivity of matrices, and (ii) incorporating bioactive molecules within the scaffolds. In this study we examined the growth of a nano-crystalline mineral layer on poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for tissue engineering. In addition, the influence of the mineral precipitate layer on protein adsorption on the scaffolds was studied. Scaffolds were mineralized by incubation in simulated body fluid (SBF). Scanning electron microscopy (SEM) analysis revealed that mineralized scaffolds possess a rough surface with a plate-like nanostructure covering the surface of microspheres. The results of protein adsorption and release studies showed that while the protein release pattern was similar for PLAGA and mineralized PLAGA scaffolds, precipitation of the mineral layer on PLAGA led to enhanced protein adsorption and slower protein release. Mineralization of tissue-engineered surfaces provides a method for both imparting bioactivity and controlling levels of protein adsorption and release.

  3. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2016-03-01

    Full Text Available It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM, especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  4. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bo; Zhao, Hongwei, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com; Zhao, Dan; Zhang, Peng; Yang, Yihan; Han, Lei [School of Mechanical Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China); Kui, Hailin, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com [School of Transportation, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China)

    2016-03-15

    It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  5. Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites

    Science.gov (United States)

    Vijaya Babu, K.; Satyanarayana, G.; Sailaja, B.; Santosh Kumar, G. V.; Jalaiah, K.; Ravi, M.

    2018-06-01

    Nano-crystalline nickel ferrites are interesting materials due to their large physical and magnetic properties. In the present work, two kinds of spinel ferrites Ni0.8M0.2Fe2O4 (M = Cu, Co) are synthesized by using sol-gel auto-combustion method and the results are compared with NiFe2O4. The structural properties of synthesized ferrites are determined by using X-ray powder diffraction; scanning electron microscope and Fourier transform infrared spectroscopy. The cation distribution obtained from X-ray diffraction show that cobalt/copper occupies only tetrahedral site in spinel lattice. The lattice constant increases with the substitution of cobalt/copper. The structural parameters like bond lengths, tetrahedral and octahedral edges have been varied with the substitution. The microstructural study is carried out by using SEM technique and the average grain size is increased with nickel ferrite. The initial permeability (μi) is improving with the substitution. The observed g-value from ESR is approximately equal to standard value.

  6. Low Thermal Conductivity of Bulk Amorphous Si1- x Ge x Containing Nano-Sized Crystalline Particles Synthesized by Ball-Milling Process

    Science.gov (United States)

    Muthusamy, Omprakash; Nishino, Shunsuke; Ghodke, Swapnil; Inukai, Manabu; Sobota, Robert; Adachi, Masahiro; Kiyama, Makato; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro; Santhanakrishnan, Harish; Ikeda, Hiroya; Hayakawa, Yasuhiro

    2018-06-01

    Amorphous Si0.65Ge0.35 powder containing a small amount of nano-sized crystalline particles was synthesized by means of the mechanical alloying process. Hot pressing for 24 h under the pressure of 400 MPa at 823 K, which is below the crystallization temperature, allowed us to obtain bulk amorphous Si-Ge alloy containing a small amount of nanocrystals. The thermal conductivity of the prepared bulk amorphous Si-Ge alloy was extremely low, showing a magnitude of less than 1.35 Wm-1 K-1 over the entire temperature range from 300 K to 700 K. The sound velocity of longitudinal and transverse waves for the bulk amorphous Si0.65Ge0.35 were measured, and the resulting values were 5841 m/s and 2840 m/s, respectively. The estimated mean free path of phonons was kept at the very small value of ˜ 4.2 nm, which was mainly due to the strong scattering limit of phonons in association with the amorphous structure.

  7. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    International Nuclear Information System (INIS)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-01-01

    Highlights: • The stability of Co x Fe (2-x) O 3 nanoparticles enhances. • Energy losses increases. • Anisotropy of NP is high. - Abstract: This paper is dedicated to investigate the effect of Co 2+ ions in magnetite Fe 3 O 4 nano-particles with stoichiometric formula Co x Fe 3-x O 4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co 2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV–Vis Spectrometer (UV–Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of Co x Fe 3-x O 4 nanoparticles with the major band at 887 cm −1 , which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co 2+ content. The decrease in enthalpy with increase in Co 2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co 2+ content in B-site of Fe 3 O 4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of Co x Fe 3-x O 4 nanoparticles are significantly increased. From UV–Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  8. Investigation on the formation of Cu-Fe nano crystalline super-saturated solid solution developed by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, M., E-mail: m.mojtahedi@gmail.com [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Goodarzi, M.; Aboutalebi, M.R. [School of Materials Science and Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114 (Iran, Islamic Republic of); Ghaffari, M. [Department of Electrical and Electronics Engineering, UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Soleimanian, V. [Department of Physics, Faculty of Science, Shahrekord University, P.O. Box 115, Shahrekord (Iran, Islamic Republic of)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer The deformation of the mechanically alloyed Cu-Fe powder is anisotropic. Black-Right-Pointing-Pointer The Rietveld method is more proper and results in smaller crystallite size than the Scherer and Williamson-Hall methods. Black-Right-Pointing-Pointer A dual phase super saturated solid solution achieved after 96 h of milling of the mixtures with 30, 50 and 70 wt.% of Iron. Black-Right-Pointing-Pointer A final proportion of approximately 85% FCC and 15% BCC structure obtained in all of the applied compositions. - Abstract: In this study, the formation of super saturated solid solution in the binary Cu-Fe system was investigated. Three powder blends with 30, 50 and 70 wt.% of Fe were milled for different times to 96 h. The variations of lattice parameter and inter-planar spacing were calculated and analyzed using X-ray diffraction analysis (XDA). The anisotropy of lattice deformation in the FCC phase was studied and the obtained results were compared to milled pure Cu powder. Furthermore, crystallite size was calculated using Scherer formula in comparison with Rietveld full profile refinement method. Considering the previous studies about the formation of non-equilibrium FCC and BCC phases, the phase evolution has been discussed and the proportion of each phase was calculated using Rietveld refinement method. Supplementary studies on the evolution of microstructure and formation of solid solution were carried out using high resolution transmission electron microscopy (HRTEM). Finally, high angle annular dark field (HAADF) imaging was utilized to find out the level of homogeneity in the resulting phases. While true alloying takes place in each phase, the final structure consists of both FCC and BCC nano-crystallites.

  9. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    Science.gov (United States)

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Safia, E-mail: safia_anjum@hotmail.com [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Tufail, Rabia [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Rashid, Khalid [PCSIR Laboratories Lahore (Pakistan); Zia, Rehana [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Riaz, S. [Centre for Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2017-06-15

    Highlights: • The stability of Co{sub x}Fe{sub (2-x)}O{sub 3} nanoparticles enhances. • Energy losses increases. • Anisotropy of NP is high. - Abstract: This paper is dedicated to investigate the effect of Co{sup 2+} ions in magnetite Fe{sub 3}O{sub 4} nano-particles with stoichiometric formula Co{sub x}Fe{sub 3-x}O{sub 4} where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co{sup 2+} doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV–Vis Spectrometer (UV–Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles with the major band at 887 cm{sup −1}, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co{sup 2+} content. The decrease in enthalpy with increase in Co{sup 2+} concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co{sup 2+} content in B-site of Fe{sub 3}O{sub 4} structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles are significantly increased. From UV–Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  11. Nano vitrocerâmica de escória de aciaria Glass-ceramic from steelmaking slag

    OpenAIRE

    Eduardo Bellini Ferreira; Edgar Dutra Zanotto; Luis Augusto Marconi Scudeller

    2002-01-01

    The manufacture of glass-ceramics is an alternative route for the commercial use of metallurgical slags. Such types of glass-ceramics may find commercial applications owing to their low cost, good mechanical properties and superior visual aspect. Besides, due to the elimination of that industrial residue from the environment and also due to the possibility of replacement of natural stones such as marbles and granites, the use of slags is an activity with strong ecological appeal. While the us...

  12. The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic).

    Science.gov (United States)

    Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.

  13. Nano-crystalline p-ZnGa{sub 2}Te{sub 4}/n-Si as a new heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Sakr, G.B. [Nano-Science Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Fouad, S.S. [Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Nano-Science Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Semicondcutor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel Basset, D.M. [Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yakuphanoglu, F. [Physics Department, Faculty of Science and Arts, Firat University, Elazig (Turkey)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► ZnGa{sub 2}Te{sub 4}/Si thin film was prepared by thermal evaporation technique. ► XRD and AFM graphs support the nano-crystalline of the studied device. ► Dark current–voltage characteristics of the heterojunction diode were investigated. ► Electrical parameters and conduction mechanism were determined. ► Conduction mechanisms were controlled by TE, SCLC and TCLC. -- Abstract: In this communication, ZnGa{sub 2}Te{sub 4} thin film was prepared by thermal evaporation technique on n-Si substrate. P-ZnGa{sub 2}Te{sub 4}/n-Si heterojunction diode was fabricated. The structure of ZnGa{sub 2}Te{sub 4} thin film was checked by XRD pattern and confirmed by AFM micrographs. The dark current–voltage characteristics of the heterojunction diode were investigated to determine the electrical parameters and conduction mechanism as a function of forward and reverse biasing conditions in the range (−10 V to 10 V) at temperature interval (303–423 K). The conduction mechanism was controlled by thermionic emission, space charge limited (SCLC) and trap-charge limited current (TCLC) mechanisms. The basic parameters such as the series resistance R{sub s}, the shunt resistance R{sub sh}, the ideality factor n and the barrier height φ{sub b} of the diode, the total density of trap states N{sub 0} and the exponential trapping distribution P{sub o} were determined. The obtained results showed that ZnGa{sub 2}Te{sub 4} is a good candidate for the applications of electronic devices.

  14. Evaluation at 290 degrees Celsius and 8 MPa of the anticorrosion properties of hydrothermal ceramic nano deposits on preoxidized 304l Ss

    Energy Technology Data Exchange (ETDEWEB)

    Lopez G, N.; Marin A, M.; Medina A, A. L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Galicia A, G., E-mail: natali_log@hotmail.com [Universidad Veracruzana, Instituto de Ingenieria, Av. Juan Pablo II s/n, Fracc. Costa Verde, 94294 Boca del Rio, Veracruz (Mexico)

    2017-09-15

    In the present paper, we present the electrochemical evaluation carried out under reductive conditions (molar ratio H{sub 2}:O{sub 2} >5), at 290 degrees Celsius and 8 MPa, of preoxidized 304l Ss with hydrothermal deposits of nanoparticles of TiO{sub 2} and ZrO{sub 2}. The anticorrosion properties of the deposits were studied by Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization Resistance (LPR). After electrochemical tests, the samples were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (Sem). It was found by EIS that both, ZrO{sub 2} and TiO{sub 2} produce an increase in the charge transfer resistance (R{sub CT}) of preoxidized 304l Ss. At the same time, by LPR we observed that the studied ceramic nano deposits decrease the corrosion rate (Cr) and corrosion current density (i{sub corr}), however, in most of the cases the Electrochemical Corrosion Potential (Ecp) is slightly higher in the presence of the ceramic nano deposits that the one of preoxidized 304l Ss. After holding time at 290 degrees Celsius, when the impedance (Z) increases, the capacitance increases also, which is attributed to a surface increase due to the roughness of the oxide formed at this temperature under a reductive environment. The observed electrochemical behavior has a dependence on the homogeneity and thickness of the deposits, as has been corroborated by Sem and XRD. The best electrochemical results are obtained when two conditions are fulfilled: The bigger the effective coated area and the lower the deposit thickness. (Author)

  15. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Prasanth; Zhao Xiaohui; Kim, Jae-Kwang; Manuel, James; Chauhan, Ghanshyam S. [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)], E-mail: jhahn@gnu.ac.kr; Nah, Changwoon [Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14 Duckjin-dong, Jeonju 561-756 (Korea, Republic of)

    2008-12-30

    A series of nanocomposite polymer electrolytes (NCPEs) comprising nanoparticles of BaTiO{sub 3}, Al{sub 2}O{sub 3} or SiO{sub 2} were prepared by electrospinning technique. The nano-sized ceramic fillers were incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HEP)] membranes during the electrospinning process. The resultant porous membranes are good absorbent of the liquid electrolyte and exhibit high electrolyte retention capacity. The presence of the ceramic nanoparticles has positive effect on the mechanical properties of the membranes. The ionic conductivity and the electrochemical stability window of the electrospun P(VdF-HFP)-based polymer are enhanced by the presence of the fillers. The cell Li/LiFePO{sub 4} based on the NCPE containing BaTiO{sub 3} delivers a discharge capacity of 164 mAh/g, which corresponds to 96.5% utilization of the active material. In comparison, the performance of Li/LiFePO{sub 4} cells with NCPEs containing Al{sub 2}O{sub 3} and SiO{sub 2} was observed to be lower with respective discharge capacities of 153 and 156 mAh/g. The enhanced performance of the BaTiO{sub 3}-based-NCPE is attributed mainly to its better interaction with the host polymer and compatibility with lithium metal.

  16. Applications of Piezoelectric Ceramics

    Indian Academy of Sciences (India)

    Applications of Piezoelectric Ceramics. Piezoelectric Actuators. Nano and Micropositioners. Vibration Control Systems. Computer Printers. Piezoelectric Transformers,Voltage Generators, Spark Plugs, Ultrasonic Motors,. Ultrasonic Generators and Sensors. Sonars, Medical Diagnostic. Computer Memories. NVFRAM ...

  17. Metallic nano-particles in lustre glazed ceramics from the 15th century in Seville studied by PIXE and RBS

    International Nuclear Information System (INIS)

    Polvorinos del Rio, A.; Castaing, J.; Aucouturier, M.

    2006-01-01

    Lustre ceramics, found in a workshop located in Triana (Sevilla), have been analysed to determine the composition of glazes including the metallic particle layers giving rise to the lustre effect. PIXE and RBS were used for the elemental composition and the sub-surface concentration profiles, respectively. Copper and silver at the origin of the lustre are detected by PIXE. RBS gives access to the detailed distribution of the elements in the surface layers. The simulation of RBS spectra confirms the occurrence of thin layers (less than 300 nm) containing metallic silver and/or copper. The results are compared with those obtained on other types of lustre ceramics

  18. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Wei [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); School of Dentistry, The University of Western Australia, WA 6009 (Australia); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Hu, Xiaozhi, E-mail: xiao.zhi.hu@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Ichim, Paul [School of Dentistry, The University of Western Australia, WA 6009 (Australia); Sun, Xudong [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2012-12-15

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic-matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic-matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  19. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field / development of nano-structured materials for ceramic bearing application (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu (daiichi nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of developing high efficient ceramic bearing using nano-structured materials, technical development was proceeded with of raw material powder treatment, forming sintering, processing, structural analysis, property evaluation, etc. As to the study of manufacturing of ceramic balls, the following were conducted by the method developed at Osaka Prefectural Institute of Industrial Technology: coprecipitation laminate processing of ZrO2-Al2O3 system to alumina powder at Okumura Crucible Mfg. Co. Ltd., spherial press processing and sintering at Kyocera Co. Ltd., and precise machining at Nippon Pillow Block Mfg., Co. Ltd. The performance as bearing was measured of the ceramic balls obtained such as surface coarseness, sphericity, crush strength and fatigue life. Surface coarseness and sphericity were the same as those of bearing use silicon nitride, but crush strength was considerably low. In the experiment on rolling fatigue strength as bearing, separation occurred within 100 hours even at a load of 100kgf. It is thought that this is because of the pores remaining on the surface, and the measures to be taken for long life were studied. 12 refs., 64 figs., 27 tabs.

  20. Enhanced thermoelectric properties of nano SiC dispersed Bi2Sr2Co2Oy Ceramics

    Science.gov (United States)

    Hu, Qiujun; Wang, Kunlun; Zhang, Yingjiu; Li, Xinjian; Song, Hongzhang

    2018-04-01

    The thermoelectric properties of Bi2Sr2Co2Oy + x wt% nano SiC (x = 0.00, 0.025, 0.05, 0.1, 0.2, and 0.3) prepared by the solid-state reaction method were investigated from 300 K to 923 K. The resistivity can be reduced effectively by adding a small amount of SiC nano particles, which is attributed to the increase of the carrier concentration. At the same time, the Seebeck coefficients can be improved effectively due to the energy filtering effect that low energy carriers are strongly dispersed at the interface between the SiC nano particles and the matrix. The decrease of thermal conductivity is due to the increase of the scattering ability of the phonons by the SiC nanoparticles distributed at the boundary of the matrix. As a result, the Bi2Sr2Co2Oy + x wt% SiC composites exhibit better thermoelectric properties. The maximum ZT value 0.24 is obtained when x = 0.05 at 923 K. Compared with the sample without SiC nano particles, the ZT value is increased by about 59.7%.

  1. Remineralization potential of nano-hydroxyapatite on enamel and cementum surrounding margin of computer-aided design and computer-aided manufacturing ceramic restoration

    Science.gov (United States)

    Juntavee, Niwut; Juntavee, Apa; Plongniras, Preeyarat

    2018-01-01

    Objective This study investigates the effects of nano-hydroxyapatite (NHA) gel and Clinpro (CP) on remineralization potential of enamel and cementum at the cavosurface area of computer-aided design and computer-aided manufacturing ceramic restoration. Materials and methods Thirty extracted human mandibular third molars were sectioned at 1 mm above and below the cemento–enamel junction to remove the cemento–enamel junction portions and replaced them with zirconia ceramic disks by bonding them to the crown and root portions with resin cement. The enamel and cementum with an area of 4×4 mm2 surrounding the ceramic disk was demineralized with carbopol. The demineralized surfaces were treated with either NHA or CP, while 1 group was left with no treatment. Vickers microhardness of enamel and cementum were determined before demineralization, after demineralization, and after remineralization. Analysis of variance and Tukey multiple comparisons were used to determine statistically significant differences at 95% level of confidence. Scanning electron microscopy and X-ray diffraction were used to evaluate for surface alterations. Results The mean ± SD of Vickers microhardness for before demineralization, after demineralization, and after remineralization for enamel and cementum were 377.37±22.99, 161.95±10.54, 161.70±5.92 and 60.37±3.81, 17.65±0.91, 17.04±1.00 for the no treatment group; 378.20±18.76, 160.72±8.38, 200.08±8.29 and 62.58±3.37, 18.38±1.33, 27.99±2.68 for the NHA groups; and 380.53±25.14, 161.94±5.66, 193.16±7.54 and 62.78±4.75, 19.07±1.30, 24.46±2.02 for the CP groups. Analysis of variance indicated significant increase in microhardness of demineralized enamel and cementum upon the application of either NHA or CP (pmanufacturing ceramic. PMID:29780246

  2. Synthesis and characterization of nano-crystalline Ce1-xGd xO2-x/2 (x = 0-0.30) solid solutions

    DEFF Research Database (Denmark)

    Jadhav, L. D.; Chourashiya, M. G.; Jamale, A. P.

    2010-01-01

    glycine-nitrate process (GNP) has been presented. Evolution of structural and morphological properties of nano-powders as a function of heat treatment has also been studied. The prepared samples were characterized using TG-DTA, FT-IR, Raman spectroscopy, XRD, SEM, etc. In addition, the effect of Gd......In recent years, doped ceria is an established and promising candidate as solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC). In this investigation, synthesis and characterizations of nano-crystalline Gd doped ceria, (Ce1-xGdxO2-x/2, where x = 0-0.3), prepared using...... of sintered samples was observed to hinder with an increase in Gd content....

  3. Effect of Endodontic Access on the Failure Load of Lithium Disilicate and Resin Nano-ceramic CADCAM Crowns

    Science.gov (United States)

    2017-06-09

    Sabourin et al. described a technique using air abrasion to access ceramic crowns. No cracking , chipping or catastrophic fracture occured, but the...the first drop in axial load and was confirmed with simultaneous visualization of crack formation. The force in newtons (N) was recorded at the time...adhesion-dentin and enamel bonding. Inside Dentistry 2008; 2(1): www.dentalaegis.com/special-issues. 17. Borges GA, Caldas D, Taskonak B

  4. [Evaluation of alumina effects on the mechanical property and translucency of nano-zirconia all-ceramics].

    Science.gov (United States)

    Jiang, Li; Zhao, Yong-qi; Zhang, Jing-chao; Liao, Yun-mao; Li, Wei

    2010-06-01

    To study the effects of alumina content on sintered density, mechanical property and translucency of zirconia nanocomposite all-ceramics. Specimens of zirconia nanocomposite all-ceramics were divided into five groups based on their alumina content which are 0% (control group), 2.5%, 5.0%, 7.5% and 10.0% respectively. The sintered densities were measured using Archimedes' method. Specimens' bending strengths were measured with three-point bending test (ISO 6872). The visible light transmittances were measured with spectrophotometric arrangements and the fractured surfaces were observed using scanning electron microscope (SEM). The control group of pure zirconia could be sintered to the theoretical density under pressure-less sintering condition. The bending strength was (1100.27 ± 54.82) MPa, the fracture toughness was (4.96 ± 0.35) MPa×m(1/2) and the transmittance could reach 17.03%. The sintered density and transmittance decreased as alumina content increased from 2.5% to 10%. However, the fracture toughness only increased slightly. In all four alumina groups, the additions of alumina had no significant effect on samples' bending strengths (P > 0.05). When the content of alumina was 10%, fracture toughness of specimens reached (6.13 ± 0.44) MPa×m(1/2) while samples' transmittance declined to 6.21%. SEM results showed that alumina particles had no significant effect on the grain size and distribution of tetragonal zirconia polycrystals. Additions of alumina to yttria-tetragonal zirconia polycrystals could influence its mechanical property and translucency. Additions of the other phase to zirconia ceramics should meet the clinical demands of strength and esthetics.

  5. Synthesis of meso-crystalline Al2O3 nano-platelet coatings using combustion chemical vapor deposition (C-CVD)

    CSIR Research Space (South Africa)

    Dhonge, BP

    2014-09-01

    Full Text Available , National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa b Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India Abstract Meso...

  6. A simple and efficient approach for synthesis of 1,4-dihydro-pyridines using nano-crystalline solid acid catalyst

    Directory of Open Access Journals (Sweden)

    A. Moatari

    2013-09-01

    Full Text Available A simple highly versatile and efficient synthesis of various 1,4-dihydropyridines in the condensation of aromatic aldehydes with β-dicarbonyl compounds and ammonium acetate in the presence of nano-sulfated zirconia, nano-structured ZnO, nano-γ-alumina and nano-ZSM-5 zeolites, as catalyst in the ethanol at moderate temperature is presented. The advantages of method are short reaction times and milder conditions and easy work-up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.DOI: http://dx.doi.org/10.4314/bcse.v27i3.12

  7. Advances in spectral conversion for photovoltaics: up-converting Er3+ doped YF3 nano-crystals in transparent glass ceramic

    Science.gov (United States)

    Marques-Hueso, Jose; Chen, Daqin; MacDougall, Sean K. W.; Wang, Yuansheng; Richards, Bryce S.

    2011-09-01

    Up- and down-conversion (UC, DC) constitute two singular routes to achieve improved energy harvesting of sunlight by changing its shape of the solar spectrum. To obtain a significant conversion rate two main challenges have to be overcome: i) the excited lanthanide ions have to emit efficiently, a target which has been better accomplished for DC materials; ii) the absorption in the lanthanide-based UC and DC layers has to be high to ensure a sizeable fraction of photons can be harvested. In this paper, we review such materials and their use as spectral converters for photovoltaics (PV), paying special attention to the UC and DC processes in lanthanide glasses in fluoride matrices. We discuss the challenges that need to be overcome in order to implement these materials in real PV devices. Finally, we will present the synthesis of erbium (Er3+) doped YF3 nano-crystals embedded in transparent glass ceramic (TGC) by melt quenching. This material presents a low phonon energy environment for the Er3+ ions due to the fluoride crystals, while the silica glass provides chemical and mechanical stability to the compound.

  8. Effects of pressure and temperature on pore structure of ceramic synthesized from rice husk: A small angle neutron scattering investigation

    Energy Technology Data Exchange (ETDEWEB)

    Raut Dessai, R., E-mail: reshooin@yahoo.com [Department of Physics, Goa University, Taleigao Plateau, Goa 403 206 (India); Desa, J.A.E. [Department of Physics, Goa University, Taleigao Plateau, Goa 403 206 (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-07-05

    Highlights: ► A porous ceramic has been prepared from silica obtained from rice husk. ► The ceramic has a hierarchical pore structure from micrometric to nano-metric. ► Small Angle Neutron Scattering data indicate nano-pore connectivity to micro-pores. ► Pore morphology can be tuned by compaction pressure and sintering temperature. -- Abstract: Ceramic powder has been synthesized from rice husk as the source of silica. In order to probe the evolution of its hierarchical mesoscopic and microscopic porous structure, the ceramic powder was compacted at different pressures and was sintered at different temperatures. A glassy ceramic to crystalline transition under thermal treatment (up to 1000 °C) was revealed by X-ray diffraction. Existence of pores in two widely separated length scales was indicated by small angle neutron scattering with the smaller ones having mass fractal arrangement. Although no significant change in small pore structure under thermal effect was indicated, a significant modification of the same has been revealed by small angle neutron scattering at different compaction pressures. Connectivity between the pores was ascertained from scattering experiments on the ceramic compact impregnated with heavy water. Scanning electron microscopy shows the microstructure to undergo appreciable coalescence of micrometric ceramic particles for sintering temperature and pressure changes.

  9. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  10. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  11. Investigation of amorphous and crystalline phosphates in magnesium phosphate ceramics with solid-state H-1 and P-31 NMR spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Mali, G.; Mácová, Petra

    2017-01-01

    Roč. 43, č. 8 (2017), s. 6571-6579 ISSN 0272-8842 R&D Projects: GA MŠk(CZ) LO1219 Keywords : sol-gel processes * spectroscopy * MgO * chemically-bonded ceramics Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 2.986, year: 2016 http://www.sciencedirect.com/science/article/pii/S027288421730278X

  12. Enhancing upconversion emission of Er, Yb co-doped highly transparent YF3 films by synergistic tuning nano-textured morphology and crystallinity

    International Nuclear Information System (INIS)

    Qu, Ming-Hao; Wang, Ru-Zhi; Chen, Yan; Zhang, Ying; Li, Kai-Yu; Zhou, Hua; Yan, Hui

    2014-01-01

    Highly transparent Er, Yb codoped YF 3 upconversion films were successfully prepared by electron beam deposition method. The effects of the substrate temperature on the morphology, crystallinity and emission characteristics of Er, Yb codoped YF 3 films were studied carefully. It was found that the morphology and crystallinity varied from smooth amorphous to root-intertwined polycrystalline structure with the substrate temperature increase. Besides, the emission characteristics of the films can be modulated by the synergy of their surface morphologies and crystallinities. Remarkably, a large enhancement of the upconversion emission, up to five decades while only an insignificant decrease of the optical transmittance (10% at most), was achieved by forming root-intertwined polycrystalline structures. These highly transparent upconversion films may have good potential for enhancing the conversion efficiency of wide band-gap solar cells. -- Highlights: • Er, Yb co-dopedYF 3 upconversion films have been successfully prepared. • The upconversion property can be modulated by morphology and crystallinity. • The upconversion transparent YF 3 films are promising for solar cells applications

  13. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    International Nuclear Information System (INIS)

    Yi, Wei; Hu, Xiaozhi; Ichim, Paul; Sun, Xudong

    2012-01-01

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic–matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic–matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  14. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great ...

  15. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au.

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-05-28

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  16. Engineering and Scaling the Spontaneous Magnetization Reversal of Faraday Induced Magnetic Relaxation in Nano-Sized Amorphous Ni Coated on Crystalline Au

    Science.gov (United States)

    Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen

    2016-01-01

    We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction. PMID:28773549

  17. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    International Nuclear Information System (INIS)

    Qi Jianquan; Wang Yu; Wan Pingchen; Long Tuli; Chan, Helen Lai Wah

    2005-01-01

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  18. Temperature-dependent impedance spectroscopy of La0.8Sr0.2FeO3 nano-crystalline material

    Science.gov (United States)

    Kafa, C. A.; Triyono, D.; Laysandra, H.

    2017-04-01

    LaFeO3 is a material with perovskite structure which electrical properties frequently investigated. Research are done due to the exhibition of excellent gas sensing behavior through resistivity comparison from the p-type semiconductor. Sr doping on LaFeO3 or La1-xSrxFeO3 are able to improve the electrical conductivity through structural modification. Using Sr dopant concentration (x) of 0.2, La0.8Sr0.2FeO3 nano-crystal pellet was synthesized. The synthesis used sol-gel method, followed by gradual heat treatment and uniaxial compaction. XRD characterization shows that the structure of the sample is Orthorhombic Perovskite. Topography of the sample by SEM reveals grain and grain boundary existence with emerging agglomeration. The electrical properties of the material, as functions of temperature and frequency, were measured by Impedance Spectroscopy method using RLC meter, for temperatures of 303-373K. Through the Nyquist plot and Bode plot, the electrical conductivity of La0.8Sr0.2FeO3 is contributed by the grain and grain boundary. Finally, the electrical permittivities of La0.8Sr0.2FeO3 are increasing with temperature increase, with the highest achieved when measured at 1 kHz frequency.

  19. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis

    International Nuclear Information System (INIS)

    Binupriya, A.R.; Sathishkumar, M.; Vijayaraghavan, K.; Yun, S.-I.

    2010-01-01

    Bioreduction efficacy of both active (AB) and inactive (IB) cells/biomass of Aspergillus oryzae var. viridis and their respective cell-free extracts (ACE and ICE) to convert trivalent aurum to gold nanoparticles were tested in the present study. Strong plasmon resonance of gold nanoparticles was observed between 540 and 560 nm in the samples obtained from AB, IB, ACE and ICE. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were performed to examine the formation of gold nanoparticles. Comparing all four forms of A. oryzae var. viridis, ICE showed high gold nanoparticle productivity. The nanoparticles formed were quite uniform in shape and ranged in size from 10 to 60 nm. In addition some triangle, pentagon and hexagon-shaped nanoplates with size range of 30-400 nm were also synthesized especially at lower pH. Organics from the inactive cells are believed to be responsible for reduction of trivalent aurum to nano-sized gold particles. Organic content of the ICE was found to be double the amount of ACE. High productivity of gold nanoparticles by metabolic-independent process opens up an interesting area of nanoparticle synthesis using waste fungal biomass from industries.

  20. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis

    Energy Technology Data Exchange (ETDEWEB)

    Binupriya, A.R. [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Sathishkumar, M., E-mail: cvemuthu@nus.edu.sg [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Vijayaraghavan, K. [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Yun, S.-I., E-mail: siyun@chonbuk.ac.kr [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2010-05-15

    Bioreduction efficacy of both active (AB) and inactive (IB) cells/biomass of Aspergillus oryzae var. viridis and their respective cell-free extracts (ACE and ICE) to convert trivalent aurum to gold nanoparticles were tested in the present study. Strong plasmon resonance of gold nanoparticles was observed between 540 and 560 nm in the samples obtained from AB, IB, ACE and ICE. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were performed to examine the formation of gold nanoparticles. Comparing all four forms of A. oryzae var. viridis, ICE showed high gold nanoparticle productivity. The nanoparticles formed were quite uniform in shape and ranged in size from 10 to 60 nm. In addition some triangle, pentagon and hexagon-shaped nanoplates with size range of 30-400 nm were also synthesized especially at lower pH. Organics from the inactive cells are believed to be responsible for reduction of trivalent aurum to nano-sized gold particles. Organic content of the ICE was found to be double the amount of ACE. High productivity of gold nanoparticles by metabolic-independent process opens up an interesting area of nanoparticle synthesis using waste fungal biomass from industries.

  1. Effect of ambient pressure on the crystalline phase of nano TiO2 particles synthesized by a dc thermal plasma reactor

    International Nuclear Information System (INIS)

    Banerjee, I.; Karmakar, Soumen; Kulkarni, Naveen V.; Nawale, Ashok B.; Mathe, V. L.; Das, A. K.; Bhoraskar, S. V.

    2010-01-01

    The synthesis of nanoparticles of titanium dioxide (TiO 2 ) with varying percentages of anatase and rutile phases is reported. This was achieved by controlling the operating pressure in a transferred-arc, direct current thermal plasma reactor in which titanium vapors are evaporated, and then exposed to ambient oxygen. The average particle size remained around 15 nm in each case. The crystalline structure of the as-synthesized nanoparticles of TiO 2 was studied with X-ray diffraction analysis; whereas the particle morphology was investigated with the help of transmission electron microscopy. The precursor species responsible for the growth of these nanoparticles was studied with the help of optical emission spectroscopy. As inferred from the X-ray diffraction analysis, the relative abundance of anatase TiO 2 was found to be dominant when synthesized at 760 Torr, and the same showed a decreasing trend with decreasing chamber pressure. The study also reveals that anatase TiO 2 is a more effective photocatalytic agent in degrading methylene blue by comparison to its rutile phase.

  2. Correlation between microstructure and optical properties of nano-crystalline TiO{sub 2} thin films prepared by sol-gel dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Mechiakh, R., E-mail: raouf_mechiakh@yahoo.fr [Departement de Medecine, Faculte de Medecine, Universite Hadj Lakhdar, Batna (Algeria); Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria); Sedrine, N. Ben; Chtourou, R. [Laboratoire de Photovoltaique de Semi-conducteurs et de Nanostructures, Centre de Recherche des Sciences et Technologies de l' Energie, BP.95, Hammam-Lif 2050 (Tunisia); Bensaha, R. [Laboratoire de Ceramiques, Universite Mentouri Constantine (Algeria)

    2010-11-15

    Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO{sub 2} thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO{sub 2} thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO{sub 2} thin films. The results show that the TiO{sub 2} thin films crystallize in anatase phase between 400 and 800 deg. C, and into the anatase-rutile phase at 1000 deg. C, and further into the rutile phase at 1200 deg. C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO{sub 2} thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 deg. C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.

  3. Fabrication of transparent ceramics using nanoparticles

    Science.gov (United States)

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  4. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  5. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  6. Ceramic nanostructures and methods of fabrication

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  7. Book Review: Nano physics & Nano technology

    Directory of Open Access Journals (Sweden)

    Abdolkhaled Zaree

    2012-12-01

    Full Text Available During last decades, there are a lot of emphases on studying material behavior in atomic scale. In most scientific and engineering fields, one can see the effect of nanotechnology. The aim of nanoscience is to design and fabrication of new and applicable materials. Nowadays, Nano is a popular science which chemists, physicist, doctors, engineers, financial managers and environment's fans for creating a good life via nanoscience have a great cooperation with each others. Materials in nano scale such as nanotubes and nanowires have extraordinary properties which by optimization of these properties in nano scale and then develop these properties to macro scale, they've been challenging issues. For instance, materials in nano scale improve mechanical properties of polymers and metallic materials via nano particles and on the other hand by producing a thin film on surfaces improve surface hardening. Besides, nanotechnology is in hi-tech industries such as magnetic devices, surface coating, and biomaterial, material having sensors, polymers, gels, ceramics and intelligent membrane. Nano-carbon tubes are considered intelligent due to the fact that they couple electrochemical and elastic properties simultaneously, hence have greater activation energy density in comparison with other intelligent materials. Studying nanoscience is important because it causes the life to be better. Future Materials and structures will have a lot of outstanding properties. Intelligent machines can repair, recycle and reconstruct themselves. All these features are only possible in nano zone. Nano in engineering science can provide the possibility of making light missiles for exploring space. The reduced weight can be achieved by replacing traditional materials with hybrid nanocomposites.

  8. Crystalline Bioceramic Materials

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2005-06-01

    Full Text Available A strong interest in the use of ceramics for biomedical engineering applications developed in the late 1960´s. Used initially as alternatives to metallic materials in order to increase the biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics; bioactive or surface reactive bioceramics and bioresorbable ceramics. This review will only refer to bioceramics “sensus stricto”, it is to say, those ceramic materials constituted for nonmetallic inorganic compounds, crystallines and consolidated by thermal treatments of powders to high temperatures. Leaving bioglasses, glass-ceramics and biocements apart, since, although all of them are obtained by thermal treatments to high temperatures, the first are amorphous, the second are obtained by desvitrification of a glass and in them vitreous phase normally prevails on the crystalline phases and the third are consolidated by means of a hydraulic or chemical reaction to room temperature. A review of the composition, physiochemical properties and biological behaviour of the principal types of crystalline bioceramics is given, based on the literature data and on the own experience of the authors.

    A finales de los años sesenta se despertó un gran interés por el uso de los materiales cerámicos para aplicaciones biomédicas. Inicialmente utilizados como una alternativa a los materiales metálicos, con el propósito de incrementar la biocompatibilidad de los implantes, las biocerámicas se han convertido en una clase diversa de biomateriales, incluyendo actualmente tres tipos: cerámicas cuasi inertes; cerámicas bioactivas o reactivas superficialmente y cerámicas reabsorbibles o biodegradables. En la presente revisión se hace referencia a las biocerámicas en sentido estricto, es decir, a aquellos materiales constitutitos por compuestos inorgánicos no metálicos, cristalinos y consolidados

  9. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  10. Electrical and mechanical properties of 0.5Ba (Zr0.2Ti0.8)O3-0.5 (Ba0.7Ca0.3)TiO3 (BZT-BCT) lead free ferroelectric ceramics reinforced with Al2O3 nano-oxide

    International Nuclear Information System (INIS)

    Adhikari, Prativa; Mazumder, R.

    2014-01-01

    Piezoelectric ceramics are widely used as actuator, resonator, and spark igniter. Recently, much attention has been paid to prepare 0.5Ba (Zr 0.2 Ti 0.8 )O 3 -0.5 (Ba 0.7 Ca 0.3 )TiO 3 (BZT-BCT) piezoelectric ceramics because of its good dielectric, piezoelectric properties and environment friendly nature. However, piezoelectric ceramics based on BaTiO 3 suffer from low reliability and poor mechanical properties such as strength and toughness. For practical application improvement of the mechanical properties of BaTiO 3 -based ceramics is strongly required. A novel method has been used to improve the mechanical properties of structural ceramics by reinforcement of oxide (Al 2 O 3 , MgO, ZrO 2 and Stabilized-ZrO 2 ) or non-oxide (SiC) particles. It is well known that electrical properties of ferroelectric ceramics generally degrade with non-ferroelectric additives and decrease in sinterability usually encountered with refractory oxide additives. Use of nano-oxide additives may drastically reduce the amount of additive and electrical property may not degrade much. In this report we would show the electrical and mechanical properties of BZT-BCT with Al 2 O 3 nano oxide additive. Modified BZT-BCT nanocomposites were prepared by mixing and sintering of solid state synthesized Zr, Ca modified barium titanate powder and small amount (0.1-2.0 vol %) of nano-oxides, i.e. Al 2 O 3 . Effect of sintering temperature, time, particle size of the nano-oxide additives on electrical (dielectric constant, loss factor, Curie temperature, d 33 ) and mechanical (flexural strength, fracture toughness, hardness) properties were studied. We obtained ∼ 94% dense BZT-BCT reinforced with Al 2 O 3 nano-oxide at 1300℃ without degrading electrical properties (dielectric constant (4850), low dissipation factor (0.0242)) and superior mechanical properties (flexural strength - 60.3 MPa, Vickers hardness-750-800 MPa). (author)

  11. Dy3+-doped nano-glass ceramics comprising NaAlSiO4 and NaY9Si6O26 nanocrystals for white light generation

    International Nuclear Information System (INIS)

    Bagga, Ruchika; Achanta, Venu Gopal; Goel, Ashutosh; Ferreira, José M.F.; Singh, Narinder Pal; Singh, Davinder Paul; Falconieri, Mauro; Sharma, Gopi

    2013-01-01

    Highlights: ► Environment safe glass ceramics were fabricated via heat treatment. ► Optical and structural properties were studied before and after heat treatment. ► White light generation with single RE 3+ ion-doping was observed under UV excitation. ► Emission color temperature was between fluorescent tube and daylight values. - Abstract: The radiative emission properties of the Dy 3+ ions in oxyfluoride glasses and glass ceramics have been investigated for the generation of white light. The X-ray diffraction pattern of the glass ceramics reveals the presence of NaAlSiO 4 nanocrystals along with secondary phase of NaY 9 Si 6 O 26 in the glass matrix after a suitable thermal treatment of the pristine glasses. Intense white light emission has been observed when the samples are excited with 350 nm light. Yellow to blue emission intensity ratios and chromaticity color coordinates have been determined from the visible luminescence spectra. All color coordinates are found to lie in the white region of the chromaticity color diagram proposing the suitability of the present studied materials for color display devices.

  12. Nature of radiation damage in ceramics

    International Nuclear Information System (INIS)

    Bunch, J.M.

    1976-01-01

    Efforts to determine the equivalence between different sources of radiation damage in ceramics are reviewed. The ways in which ceramics differ from metals are examined and proposed mechanisms for creation and stabilization of defects in insulators are outlined. Work on radiation damage in crystalline oxides is summarized and suggestions for further research are offered

  13. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic

    Science.gov (United States)

    Poinern, GJE; Brundavanam, R; Le, X Thi; Djordjevic, S; Prokic, M; Fawcett, D

    2011-01-01

    Hydroxyapatite (HAP) is a widely used biocompatible ceramic in many biomedical applications and devices. Currently nanometer-scale forms of HAP are being intensely investigated due to their close similarity to the inorganic mineral component of the natural bone matrix. In this study nano-HAP was prepared via a wet precipitation method using Ca(NO3)2 and KH2PO4 as the main reactants and NH4OH as the precipitator under ultrasonic irradiation. The Ca/P ratio was set at 1.67 and the pH was maintained at 9 during the synthesis process. The influence of the thermal treatment was investigated by using two thermal treatment processes to produce ultrafine nano-HAP powders. In the first heat treatment, a conventional radiant tube furnace was used to produce nano-particles with an average size of approximately 30 nm in diameter, while the second thermal treatment used a microwave-based technique to produce particles with an average diameter of 36 nm. The crystalline structure and morphology of all nanoparticle powders produced were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Both thermal techniques effectively produced ultrafine powders with similar crystalline structure, morphology and particle sizes. PMID:22114473

  14. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al 2 O 3 with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material

  15. Coupling in-situ X-ray micro- and nano-tomography and discrete element method for investigating high temperature sintering of metal and ceramic powders

    Directory of Open Access Journals (Sweden)

    Yan Zilin

    2017-01-01

    Full Text Available The behaviour of various powder systems during high temperature sintering has been investigated by coupling X-ray microtomography and discrete element method (DEM. Both methods are particularly relevant to analyse particle interactions and porosity changes occurring during sintering. Two examples are presented. The first one deals with a copper powder including artificially created pores which sintering has been observed in situ at the European synchrotron and simulated by DEM. 3D images with a resolution of 1.5 μm have been taken at various times of the sintering cycle. The comparison of the real displacement of particle centers with the displacement derived from the mean field assumption demonstrates significant particle rearrangement in some regions of the sample. Although DEM simulation showed less rearrangement, it has been able to accurately predict the densification kinetics. The second example concerns multilayer ceramic capacitors (MLCCs composed of hundreds of alternated metal electrode and ceramic dielectric layers. The observation of Ni-based MLCCs by synchrotron nanotomography at Argon National Laboratory with a spatial resolution between 10 and 50 nm allowed understanding the origin of heterogeneities formed in Ni layers during sintering. DEM simulations confirmed this analysis and provided clues for reducing these defects.

  16. Ethane dehydrogenation over nano-Cr{sub 2}O{sub 3} anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xian-Zhu; Luo, Xiao-Xiong; Luo, Jing-Li; Chuang, Karl T.; Sanger, Alan R. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G2G6 (Canada); Krzywicki, Andrzej [NOVA Chemicals Corp., Calgary, Alberta T2P5C6 (Canada)

    2011-02-01

    Ethane and electrical power are co-generated in proton ceramic fuel cell reactors having Cr{sub 2}O{sub 3} nanoparticles as anode catalyst, BaCe{sub 0.8}Y{sub 0.15}Nd{sub 0.05}O{sub 3-{delta}} (BCYN) perovskite oxide as proton conducting ceramic electrolyte, and Pt as cathode catalyst. Cr{sub 2}O{sub 3} nanoparticles are synthesized by a combustion method. BaCe{sub 0.8}Y{sub 0.15}Nd{sub 0.05}O{sub 3-{delta}} (BCYN) perovskite oxides are obtained using a solid state reaction. The power density increases from 51 mW cm{sup -2} to 118 mW cm{sup -2} and the ethylene yield increases from about 8% to 31% when the operating temperature of the solid oxide fuel cell reactor increases from 650 C to 750 C. The fuel cell reactor and process are stable at 700 C for at least 48 h. Cr{sub 2}O{sub 3} anode catalyst exhibits much better coke resistance than Pt and Ni catalysts in ethane fuel atmosphere at 700 C. (author)

  17. Application of artificial neural network and adaptive neuro-fuzzy inference system to investigate corrosion rate of zirconium-based nano-ceramic layer on galvanized steel in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Mousavifard, S.M.; Attar, M.M.; Ghanbari, A.; Dadgar, M.

    2015-01-01

    Highlights: • Film formation of Zr-based conversion coating under different conditions was investigated. • We study the effect of some parameters on anticorrosion performance of conversion coating. • Optimization of processing conditions for surface treatment of galvanized steel was obtained. • Modeling and predicting corrosion current density of treated surfaces was performed using ANN and ANFIS. - Abstract: A nano-ceramic Zr-based conversion solution was prepared and optimization of Zr concentration, pH, temperature and immersion time for the treatment of hot-dip galvanized steel (HDG) was performed. SEM microscopy was utilized to investigate the microstructure and film formation of the layer and the anticorrosion performance of conversion coating was studied using polarization test. Artificial intelligence systems (ANN and ANFIS) were applied on the data obtained from polarization test and the models for predicting corrosion current density values were attained. The outcome of these models showed proper predictability of the methods. The influence of input parameters was discussed and the optimized conditions for Zr-based conversion layer formation on the galvanized steel were obtained as follows: pH 3.8–4.5, Zr concentration of about 100 ppm, ambient temperature and immersion time of about 90 s

  18. Application of artificial neural network and adaptive neuro-fuzzy inference system to investigate corrosion rate of zirconium-based nano-ceramic layer on galvanized steel in 3.5% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Mousavifard, S.M. [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, A. [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Dadgar, M. [Textile Engineering Department, Neyshabur University, Neyshabur (Iran, Islamic Republic of)

    2015-08-05

    Highlights: • Film formation of Zr-based conversion coating under different conditions was investigated. • We study the effect of some parameters on anticorrosion performance of conversion coating. • Optimization of processing conditions for surface treatment of galvanized steel was obtained. • Modeling and predicting corrosion current density of treated surfaces was performed using ANN and ANFIS. - Abstract: A nano-ceramic Zr-based conversion solution was prepared and optimization of Zr concentration, pH, temperature and immersion time for the treatment of hot-dip galvanized steel (HDG) was performed. SEM microscopy was utilized to investigate the microstructure and film formation of the layer and the anticorrosion performance of conversion coating was studied using polarization test. Artificial intelligence systems (ANN and ANFIS) were applied on the data obtained from polarization test and the models for predicting corrosion current density values were attained. The outcome of these models showed proper predictability of the methods. The influence of input parameters was discussed and the optimized conditions for Zr-based conversion layer formation on the galvanized steel were obtained as follows: pH 3.8–4.5, Zr concentration of about 100 ppm, ambient temperature and immersion time of about 90 s.

  19. Synthesis and characterization of nano hydroxyapatite using reverse micro emulsions as nano reactors

    International Nuclear Information System (INIS)

    Amin, S.; Siddique, T.

    2015-01-01

    In the present work reverse micro emulsion has been employed as nano reactors to synthesize nano crystalline Hydroxyapatite (HA). Two precursors; calcium and phosphate with different counter ions of each were used for the synthesis of HA at two different temperatures. To maintain the emulsified nano reactor, cyclohexane, TX-100 and 1-butanol including phosphate precursor was the continuous phase while aqueous Ca precursor solution was taken as the dispersed phase. Nano crystalline particles thus produced were evaluated on the basis of synthesis route, counter ions and temperature. It has been shown that emulsified nano reactors control the morphology, particle size and minimize phase transformation of HA. Characterizations of nano powder of HA are carried out using x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). HA crystallite size was found to be in the range of 20-25 nm whereas the morphology of nano particles changed from spheres to rods. (author)

  20. Ge nano-layer fabricated by high-fluence low-energy ion implantation

    International Nuclear Information System (INIS)

    Lu Tiecheng; Dun Shaobo; Hu Qiang; Zhang Songbao; An Zhu; Duan Yanmin; Zhu Sha; Wei Qiangmin; Wang Lumin

    2006-01-01

    A Ge nano-layer embedded in the surface layer of an amorphous SiO 2 film was fabricated by high-fluence low-energy ion implantation. The component, phase, nano-structure and luminescence properties of the nano-layer were studied by means of Rutherford backscattering, glancing incident X-ray diffraction, laser Raman scattering, transmission electron microscopy and photoluminescence. The relation between nano-particle characteristics and ion fluence was also studied. The results indicate that nano-crystalline Ge and nano-amorphous Ge particles coexist in the nano-layer and the ratio of nano-crystalline Ge to nano-particle Ge increases with increasing ion fluence. The intensity of photoluminescence from the nano-layer increases with increasing ion fluence also. Prepared with certain ion fluences, high-density nano-layers composed of uniform-sized nano-particles can be observed

  1. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  2. Up-conversion and near infrared luminescence in Er3+/Yb3+ co-doped glass-ceramic containing MgGa2O4 nano-crystals

    International Nuclear Information System (INIS)

    Sun, Jiaju; Yu, Lixin; Li, Fuhai; Wei, Shuilin; Li, Songchu

    2016-01-01

    The MgO–Ga 2 O 3 –SiO 2 (MG-S) glasses and nanocrystalline glass-ceramics (GCs) containing MgGa 2 O 4 nanocrystals codoped with Er 3+ and Yb 3+ were prepared by a simple sol–gel method. The formation of MgGa 2 O 4 nanocrystals in the GCs was confirmed by the X-ray diffraction (XRD). Their morphology was investigated applying high-resolution transmission electron microscopy (HRTEM). Stark splitting of near infrared (NIR) and up-conversion (UC) emission implies that the Er 3+ is incorporated into MgGa 2 O 4 nanocrystals. The effect of the MgO, Ga 2 O 3 content and sintering temperature on the structure of the prepared samples was systematically studied. Under 980 nm excitation, intense UC and NIR emission (1530 nm) were observed in the MG-S GCs by efficient energy transfer from Yb 3+ to Er 3+ . The two-photon process was confirmed to be responsible for both the green and red UC emissions. - Highlights: • It is interesting that the CIE chromaticity coordinates of the several prepared CaMO 4 :Eu samples by a hydrothermal method are very close to the standard of white light.

  3. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  4. COMPARISON OF TWO TEMPERATURE MEASUREMENT METHODS BY UPCONVERSION FLUORESCENCE SPECTRA OF ERBIUM-DOPED LEAD-FLUORIDE NANO-GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    V. A. Aseev

    2015-05-01

    Full Text Available The study and compare of two temperature measurement methods is performed for the case of a lead-fluoride nano-glassceramics in the range from 317 to 423 K with a view to their application to temperature sensors. A method of temperature measurement by means of violet, green and red upconversion fluorescence spectra regression on latent structures and a method of temperature measurement by two fluorescence bands intensity ratio in green range are considered. It is shown that a four-dimensional space of latent structures is an optimum one in terms of temperature measurement accuracy. It made possible temperature determining with a relative error not larger than 0.15% at temperatures higher than 340 K by making use of fluorescence spectra training set with the step of 10 K. The method using two green bands fluorescence intensity ratio is inferior by the accuracy. Independence of pump power fluctuations is a significant advantage of the second method. To take advantage of the first method a stabilization of the pump power is necessary. The results of the work can be taken into account while developing optical temperature sensors with a better performance (in relation to accuracy and measurement range compared to existing ones which utilize temperature redistribution of fluorescence intensities in two closely-spaced bands or temperature dependence of fluorescence lifetime.

  5. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  6. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    International Nuclear Information System (INIS)

    Smith, Alan M.; Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L.; Grover, Liam M.

    2015-01-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity

  7. Crystallite-growth, phase transition, magnetic properties, and sintering behaviour of nano-CuFe2O4 powders prepared by a combustion-like process

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Walther, Till; Hesse, Dietrich; Ebbinghaus, Stefan G.

    2014-01-01

    The synthesis of nano-crystalline CuFe 2 O 4 powders by a combustion-like process is described herein. Phase formation and evolution of the crystallite size during the decomposition process of a (CuFe 2 )—precursor gel were monitored up to 1000 °C. Phase-pure nano-sized CuFe 2 O 4 powders were obtained after reaction at 750 °C for 2 h resulting in a crystallite size of 36 nm, which increases to 96 nm after calcining at 1000 °C. The activation energy of the crystallite growth process was calculated as 389 kJ mol −1 . The tetragonal⇄cubic phase transition occurs between 402 and 419 °C and the enthalpy change (ΔH) was found to range between 1020 and 1229 J mol −1 depending on the calcination temperature. The optical band gap depends on the calcination temperature and was found between 2.03 and 1.89 eV. The shrinkage and sintering behaviour of compacted powders were examined. Dense ceramic bodies can be obtained either after conventional sintering at 950 °C or after a two-step sintering process at 800 °C. Magnetic measurements of both powders and corresponding ceramic bodies show that the saturation magnetization rises with increasing calcination-/sintering temperature up to 49.1 emu g −1 (2.1 µ B fu −1 ), whereas the coercivity and remanence values decrease. - Graphical abstract: A cheap one-pot synthesis was developed to obtain CuFe 2 O 4 nano-powders with different crystallite sizes (36–96 nm). The optical band gaps, phase transition temperatures and enthalpies were determined depending on the particle size. The sintering behaviour of nano CuFe 2 O 4 was studied in different sintering procedures. The magnetic behaviour of the nano-powders as well as the corresponding ceramic bodies were investigated. - Highlights: • Eco-friendly and simple synthesis for nano CuFe 2 O 4 powder using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the synthesis. • Determination of the optical band gap

  8. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  9. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  10. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  11. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  12. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  13. Comparison of mechanical and friction properties of composite materials based on AlMg2 containing nano-dimensional particles of crystalline graphite and nanofibers of gamma oxide of aluminum

    Science.gov (United States)

    Aborkin, A. V.; Babin, D. M.; Soboĺkov, A. V.

    2018-04-01

    The method of mechanical synthesis in a planetary ball mill was used for production of composite powders based on the AlMg2 alloy containing 1 wt. % of nanosized particles of crystalline graphite or γ-Al2O3. The resulting powders are consolidated by the sintering under pressure. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, the structural-phase composition of bulk composite materials was studied. Comparative analysis of the microhardness, the conditional yield stress at compression, and the friction coefficient of bulk composite materials is carried out. It has been found out that the mechanical properties of composites reinforced with γ-Al2O3 nanofibers are higher than when reinforcing with nanoscale particles of crystalline graphite.

  14. Ceramics: Durability and radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  15. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  16. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  17. Spectroscopic ellipsometry characterization of nano-crystalline diamondfilms prepared at various substrate temperatures and pulsed plasma frequencies using microwave plasma enhanced chemical vapor deposition apparatus with linear antenna delivery

    Czech Academy of Sciences Publication Activity Database

    Mistrík, J.; Janíček, P.; Taylor, Andrew; Fendrych, František; Fekete, Ladislav; Jäger, Aleš; Nesládek, M.

    2014-01-01

    Roč. 571, č. 1 (2014), s. 230-237 ISSN 0040-6090 R&D Projects: GA ČR GA13-31783S; GA MŠk(CZ) LM2011026 Grant - others: COST Nano TP(XE) MP0901; OP VK(XE) CZ.1.07/2.3.00/20.0306 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * thin films * microwave plasma-enhanced chemical vapor deposition * pulsed plasma * low deposition temperature Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.759, year: 2014

  18. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  19. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  20. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  1. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    Science.gov (United States)

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  2. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Directory of Open Access Journals (Sweden)

    Gabriela Mera

    2015-04-01

    Full Text Available The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs. Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  3. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers.

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-04-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  4. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  5. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite

    International Nuclear Information System (INIS)

    Mesquita, Joao Paulo de; Teixeira, Ivo F.; Donnici, Claudio L.; Pereira, Fabiano V.

    2011-01-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  6. Preparation mechanism of (Bi{sub 2}O{sub 3}){sub 0.75}(Dy{sub 2}O{sub 3}){sub 0.25} nano-crystalline solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Li Rong [Nano-science and Nano-technology Research Center, School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); UCCS: Unite de Catalyse et de Chimie du Solide - UMR CNRS 8181, ENSCL, Batiment C7, BP 90108, 59652 Villeneuve d' Ascq Cedex (France); Zhen Qiang, E-mail: zhenqiang@263.ne [Nano-science and Nano-technology Research Center, School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Drache, Michel; Rubbens, Annick; Vannier, Rose-Noelle [UCCS: Unite de Catalyse et de Chimie du Solide - UMR CNRS 8181, ENSCL, Batiment C7, BP 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2010-04-02

    (Bi{sub 2}O{sub 3}){sub 0.75}(Dy{sub 2}O{sub 3}){sub 0.25} nanopowder was prepared by reverse chemical titration co-precipitation method. The reaction mechanism during the precipitation process was discussed by thermodynamic analysis. Thermal decomposition behavior of the precursor was investigated using X-ray diffractometry and TG-MS analysis. The precursor was calcined at 500 {sup o}C for 3 h to obtain (Bi{sub 2}O{sub 3}){sub 0.75}(Dy{sub 2}O{sub 3}){sub 0.25} nanopowder. Using the nanopowder, pellets with relative density higher than 94% were obtained at 700 {sup o}C for 2 h by pressureless sintering, and the grains remained at the nano-scale with size of 72 nm.

  7. Repair bond strength of resin composite to bilayer dental ceramics

    Science.gov (United States)

    2018-01-01

    PURPOSE The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at 37℃. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS There were statistically significant differences among the tested surface treatments within the all tested fracture types (P.00125). CONCLUSION This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types. PMID:29713430

  8. The effect of spark plasma sintering on lithium disilicate glass-ceramics.

    Science.gov (United States)

    Al Mansour, Fatima; Karpukhina, Natalia; Grasso, Salvatore; Wilson, Rory M; Reece, Mike J; Cattell, Michael J

    2015-10-01

    To evaluate the effects of spark plasma sintering (SPS) on the microstructure of lithium disilicate glass-ceramics. IPS e.max CAD glass-ceramic samples were processed using spark plasma sintering (SPS) and conventionally sintered (CS) as a comparison. Specimens were sintered at varying temperatures (T1: 840°C, T2: 820°C, T3: 800°C), heating rates (HR1: 150°C/min, HR2: 300°C/min, HR3: 500°C/min) and pressures (P1: 15MPa, P2: 50MPa, P3: 70MPa). IPS e.max Press glass powder samples were densified at 750 and 800°C (50 or 200MPa pressure). Samples were characterized using XRD, HTXRD, and SEM and quantitative image analysis. There was a significant increase in median crystal size (MCS) between the CS and the SPS T1 groups. A statistical difference (p>0.05) in MCS between SPS T1 and SPS T2 groups was observed. The SPS HR3 sample produced a smaller MCS than the CS, SPS HR1 and HR2 groups (pglass samples resulted in fine fibrils or graduated lithium disilicate crystals. The effects of SPS were used to refine the microstructure of IPS e.max CAD lithium disilicate glass-ceramics. Densification by SPS of IPS e.max Press glass resulted in textured and fine nano-crystalline microstructures. SPS generated glass-ceramic microstructures may have unique properties and could be useful in the production of CAD/CAM materials for dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. The effect of doped zinc on the structural properties of nano-crystalline (Se{sub 0.8}Te{sub 0.2}){sub 100-x}Zn{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arun, E-mail: arunkumar82@pu.ac.in [Department of Physics, Panjab University, Chandigarh, INDIA-160014. (India); Guru Nanak National College, Doraha, Panjab, INDIA-141421. (India); Singh, Harkawal; Gill, P. S. [Sri Guru Gobind Singh College, Sector-26, Chandigarh, INDIA-160026. (India); Goyal, Navdeep, E-mail: n.goyal@pu.ac.in [Department of Physics, Panjab University, Chandigarh, INDIA-160014. (India)

    2016-05-06

    The effect of metallic zinc (Zn) on the structural properties of (Se{sub 0.8}Te{sub 0.2}){sub 1-X}Zn{sub X} (x=0, 2, 6, 8, 10) samples analyzed by X-ray Diffraction (XRD). The presence of sharp peaks in XRD patterns confirmed the crystalline nature of the samples and is indexed in orthorhombic crystal structure. XRD studies predicts that the average particle size of all the samples are about 46.29 nm, which is less than 100 nm and hence have strong tendency of agglomeration. Williamson-Hall plot method was used to evaluate the lattice strain. The dislocation density and no. of unit cells of the samples were calculated which show the inverse relation with each other. Morphology index derived from FWHM of XRD data explains the direct relationship with the particle size.

  10. Glass Ceramic Formulation Data Package

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  11. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.

  12. Mechanical properties of ceramic-polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Nano crystalline powders of Barium Sodium Niobate (BNN with the composition Ba3–2x Na4+x R Nb10 O30 with (R stands for rare earth = 0, x = 0 have been prepared by conventional ceramic technique. Barium Sodium Niobate can form a wide range of solid solutions, incorporating rare earth and alkali, alkaline earth elements with different compositions. The powder belonged to tungsten bronze type structure with tetragonal symmetry and lattice constants a = b = 1.2421 nm and c = 0.3903 nm. XRD (X-ray Diffraction SEM (Scanning Electron Microscope and AFM (Atomic Force Microscope studies revealed that the particle size is in the nanometer range. Composites are prepared by mixing powders of BNN with polystyrene at different volume fractions of the BNN. Melt mixing technique is carried out in a Brabender Plasticoder at a rotor speed of 60 rpm (rotations per minute for composite preparation. Mechanical properties such as stress-strain behavior, Young’s modulus, tensile strength, strain at break etc. are evaluated. Addition of filler enhances the mechanical properties of the polymer such as Young’s modulus and tensile strength. The composites showed the trend of perfect adhesion between the filler and the polymer. The filler particles are distributed relatively uniform fashion in all composites and the particles are almost spherical in shape with irregular boundaries. To explore more carefully the degree of interfacial adhesion between the two phases, the results are analyzed by using models featuring adhesion parameter. The experimental results are compared with theoretical predictions.

  13. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Deo, M.N. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kothiyal, G.P., E-mail: gpkoth@barc.gov.in [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-03-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO{sub 2}-50CaO-15P{sub 2}O{sub 5}-(10 - x)Fe{sub 2}O{sub 3}-xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca{sub 3}Si{sub 2}O{sub 7}) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  14. Effect of ZnO on phase emergence, microstructure and surface modifications of calcium phosphosilicate glass/glass-ceramics having iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Dixit, A.; Bhattacharya, S.; Jagannath; Deo, M.N.; Kothiyal, G.P.

    2010-01-01

    The effect of ZnO on phase emergence and microstructure properties of glass and glass-ceramics with composition 25SiO 2 -50CaO-15P 2 O 5 -(10 - x)Fe 2 O 3 -xZnO (where x = 0, 2, 5, 7 mol%) has been studied. They have been characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Surface modifications of these glass-ceramics in simulated body fluid have been studied using Fourier transform infrared reflection spectroscopy (FTIR), XPS and SEM. Results have shown a decrease in the fraction of non-bridging oxygen with increase in zinc oxide content. Emergence of crystalline phases in glass-ceramics at different heat treatment temperatures was studied using XRD. When glass is heat treated at 800 deg. C calcium phosphate, hematite and magnetite are developed as major phases in the glass-ceramics samples with ZnO up to 5 mol%. In addition to these, calcium silicate (Ca 3 Si 2 O 7 ) phase is also observed when glass is heat treated at 1000 deg. C. The microstructure of the glass-ceramics heat treated at 800 deg. C exhibits the formation of nano-size (40-50 nm) grains. On heat treatment at 1000 deg. C crystallites grow to above 50 nm size and more than one phase are observed in the microstructure. The formation of thin flake-like structure with coarse particles is observed at high zinc oxide concentration (x = 7 mol%). In vitro studies have shown the surface modifications and formation of Ca-P-rich layer on the glass-ceramics when immersed in simulated body fluids (SBF) for different durations. The bioactive response was found to depend on ZnO content.

  15. Evaluating the Type of Light Transmittance in Mono Crystalline, Poly Crystalline and Sapphire Brackets- An Invitro Spectrofluorometer Study.

    Science.gov (United States)

    Mohamed, Jauhar P; Kommi, Pradeep Babu; Kumar, M Senthil; Hanumanth; Venkatesan; Aniruddh; Arvinth; Kumar, Arani Nanda

    2016-08-01

    Most of the patients seek orthodontic treatment to improve the smile, which improves the facial profile by means of fixed appliances i.e., brackets and wires. The brackets are of different types like stainless steel and ceramic. Ceramic brackets were considered as aesthetic appliance which was divided into mono-crystalline, polycrystalline and sapphire brackets. The light transmittance might influence the degree of curing adhesive material in mono crystalline, polycrystalline and sapphire brackets. The aim of the present study was to evaluate the translucency and intensity of three different aesthetic brackets (mono crystalline, poly crystalline and sapphire ceramic brackets) and to determine their influence on shear bond strength of the brackets. The adhesive remnant index was also measured after debonding of the brackets from the tooth surface. Twenty six samples each of monocrystalline, polycrystalline and sapphire brackets (total 78 ceramic brackets) were used for the study. The bracket samples were subjected to optical fluorescence test using spectrofluorometer to measure the intensity of the brackets. Seventy eight extracted premolar teeth were procured and divided into 3 groups. The brackets were then bonded to the tooth using Transbond XT (3M Unitek) light cure composite material and cured with new light cure unit (Light Emitting Diode) of wood pecker company (400-450nm) for 30 seconds, and these samples were subjected to shear bond strength test with Instron Universal Testing Machine (UNITEK-94100) with a load range between 0 to 100 KN with a maximum cross head speed of 0.5mm/min. ARI (Adhesive Remnant Index) scores were evaluated according to Artun and Bergland scoring system using stereomicroscope at 20x magnification. The light absorption values obtained from spectrofluorometeric study were 3300000-3500000 cps for group 1 (monocrystalline ceramic brackets), 6000000-6500000 cps for Group 2 (polycrystalline ceramic brackets) and 2700000 -3000000 cps for

  16. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  17. Study of clay chemical composition in formation of new phases in crystalline materials ceramic; Estudo da composicao quimica de argilas na formacao de novas fases cristalinas em materiais ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Lima, L.K.S.; Goncalves, W.P.; Silva, V.J.; Dias, G.; Neves, G.A.; Santana, L.N.L., E-mail: lizandralima15@gmail.com, E-mail: lisiane@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia dos Materiais

    2016-07-01

    The knowledge of the characteristics of raw materials and the behavior of these during the heat treatment is crucial before starting any manufacturing process of clay-based products. The objective of this work was to study phase transformations of clay under different heat treatments using conventional oven. To achieve the same were used two clays coming from the municipality of Cubati - PB and kaolin from an industry in the Northeast. The samples were subjected to beneficiation process, crushing, grinding and sieving and further characterized: chemical analysis, particle size, thermal and mineralogical. For heat treatment temperatures employed were 1000, 1100 and 1200 ° C, heating rate 5 ° C / min and residence time of 60min. After this step, the mineralogical characterization was performed by x-ray diffraction technique. Clays with larger particle size fraction below 2um and greater amount of flux oxides showed higher amount of mullite for the temperatures studied. The results also showed nucleation of mullite phase from 1100 °C, a band 2theta in the range of between 20 and 25°, characteristic of amorphous silica and the temperature rise was observed intensification of crystalline phases. (author)

  18. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551

  19. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly.

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO(2) (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO(2). To determine the optimum addition levels for nano-ZrO(2), ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO(2) were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO(2) resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.

  20. Applications and Nano toxicity of Carbon Nano tubes and Graphene in Biomedicine Caitlin Fisher

    International Nuclear Information System (INIS)

    Rider, A.E.; Han, Z.J.; Kumar, S.; Levchenko, L.; Ostrikov, K.K.

    2012-01-01

    Owing to their unique mechanical, electrical, optical, and thermal properties, carbon nano structures including carbon nano tubes and graphenes show great promise for advancing the fields of biology and medicine. Many reports have demonstrated the promise of these carbon nano structures and their hybrid structures (composites with polymers, ceramics, and metal nanoparticles, etc.) for a variety of biomedical areas ranging from bio sensing, drug delivery, and diagnostics, to cancer treatment, tissue engineering, and bio terrorism prevention. However, the issue of the safety and toxicity of these carbon nano structures, which is vital to their use as diagnostic and therapeutic tools in biomedical fields, has not been completely resolved. This paper aims to provide a summary of the features of carbon nano tube and graphene-based materials and current research progress in biomedical applications. We also highlight the current opinions within the scientific community on the toxicity and safety of these carbon structures

  1. Electrical and thermal properties of lead titanate glass ceramics

    International Nuclear Information System (INIS)

    Shankar, J.; Deshpande, V.K.

    2011-01-01

    Glass samples with composition of (50-X)PbO-(25+X)TiO 2 -25B 2 O 3 (where X=0, 5, 10 and 12.5 mol%) were prepared using conventional quenching technique. The glass transition temperature, T g and crystallization temperature T c were determined from the DTA. These glass samples were converted to glass ceramics by following two stage heat treatment schedule. The glass ceramic samples were characterized by XRD, SEM and dielectric constant measurements. The XRD results revealed the formation of ferroelectric lead titanate (PT) as a major crystalline phase in the glass ceramics. The density increases and the CTE decreases for all glass ceramics with increase in X (mol%). This may be attributed to increase in PT phase. The SEM results which show rounded crystallites of lead titanate, also supports other results. Hysteresis loops observed at room temperature confirms the ferroelectric nature of glass ceramics. The optimized glass ceramic sample exhibits high dielectric constant which is of technical importance. -- Research Highlights: →Lead titanate glass ceramics prepared by conventional quenching technique. →Lead titanate is a major crystalline phase in the glass ceramics. →The ferroelectric nature of glass ceramics is confirmed by the hysteresis study. →The high value of ε observed at room temperature is quite promising in the study.

  2. Preparation and Characterization of Microfiltration Ceramic Membranes Based on Natural Quartz Sand

    Directory of Open Access Journals (Sweden)

    Andrei Ivanets

    2017-06-01

    Full Text Available The effect of phase and chemical composition of natural quartz sand, binder and burnable additives was studied. The conditions of application of the membrane and biocide layers on the formation of porous ceramic and microfiltration membranes were investigated. It is shown that a crystalline oxide of Si(IV is determinant for obtaining the ceramic materials. The presence of carbonates (calcite, dolomite, aragonite, etc. and crystalline aluminosilicates (microcline, albite, phlogopit, etc. leads to a decrease in mechanical strength of ceramics. The biocide coating designed to protect the ceramic membrane surfaces from biofouling was applied and its anti-bacterial activity was shown.

  3. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  4. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  5. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network.

    Science.gov (United States)

    Albero, Alberto; Pascual, Agustín; Camps, Isabel; Grau-Benitez, María

    2015-10-01

    The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness.

  6. The radiolysis of lithium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tiliks, J; Supe, A; Kizane, G; Tiliks, J Jr [Latvia Univ., Riga (Latvia). Dept. of Chemistry; Grishmanov, V; Tanaka, S

    1998-03-01

    The radiolysis of Li{sub 2}O ceramics exposed to accelerated electrons (5 MeV) at 380 K was studied in the range of high absorbed doses up to 250 MGy. The formation of radiation defects (RD) and radiolysis products (RP) was demonstrated to occur simultaneously in the regions of (1) the regular crystalline lattice and (2) an enhanced content of the intrinsic defects and impurities. The production of the electronic RD and RP is more efficient in the region of the defected lattice than that at the site of the regular crystalline lattice. However, the stability of RD and RP formed in the region of the intrinsic defects is far less than those produced at the crystalline lattice, since most of the first mentioned RD and RP disappears with irradiation dose due to the radiation stimulated recombination. By this means the enhanced quantity of RD and RP is localized in the Li{sub 2}O ceramics irradiated to absorbed dose of 40-50 MGy, and hence this can influence the tritium release parameters. As soon as the intrinsic defects have been consumed in the production of RD and RP and the recombination of unstable electronic RD and RP takes place (at dose of {approx}100 MGy), the radiolysis of Li{sub 2}O ceramics occurs only at the crystalline lattice. Furthermore, the concentration of RD and RP increases monotonically and tends to the steady-state level. (author)

  7. Hydrogen separation from high temperature CO-containing syn-gas flow using molecular ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soudarev, A.; Konakov, G.; Souryaninov, A.; Molchanov, A. [Boyko Research Engineering Ceramic Heat Engines Center Ltd., St. Petersburg (Russian Federation); Lelait, L.; Stevens, P.H. [European Inst. for Power Studies, Karlsruhe (Germany)

    2006-07-01

    Poisoning of the platinum (Pt) metals used as catalysts for proton exchange membrane fuel cells (PEMFCs) can negatively impact on PEMFC operation efficiency. In order to address this issue, a supply of hydrogen with a carbon monoxide (CO) admixtures is required. This paper provided details of a new type of molecular ceramic membrane (MCM) that allows the separation of hydrogen (H{sub 2}) from the hydrocarbon fuel reforming products that contain CO and has higher temperature and pressure capacity than other membranes. After various tests, alumo-magnesium spinel (AMS) was selected as the most promising porous material for the ceramic multi-layer membrane. The crystalline structure of the AMS showed good thermo-dynamic stability during tests that ranged between 20 and 1400 degrees C, as well as a chemical resistance relative to the effects of the aggressive fuel cell environment, and no exposure to the oxidation-recovery processes in the CO and H{sub 2} flow. The macroporous substrate of the AMS and the membrane selection layers have the same composition. The formation of the carrier was conducted by a semi-dry molding on a hydraulic press. Formation of the nano-porous structure in the carrier macro-pores by the polysilicon acid sol solution treatment allowed the synthesis of the amorphous silica and crystobalite crystals with a developed surface and nano-dimension subporosity. Test results have shown that the MCM has optimum penetrability and selectivity values as well as admissible thermo-mechanical properties. H{sub 2} flow through the membrane was 1.5-1.7 times greater than the CO flow. It was concluded that the AMS-based membrane devices will increase the efficiency of the PEMFC power plants and reduce their degradation capacity. 2 refs., 1 tab., 1 fig.

  8. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  9. The world of Nano

    International Nuclear Information System (INIS)

    Noh, Seung Jeong; Hyun, Jun Won; An, Yong Hyeon; Lee, Sung Uk; Jee, Hye Gu; Kim, Young Seon

    2006-07-01

    The contents of this book are the beginning of nano technology, definition of nano, commercialization of nano technology, prospect of nano technology, survive with nano t-, development strategy of n-t in the U.S, and Japan, Korea, and other countries, comparison of development strategy of n-t among each country, various measurement technology for practical n-t, scanning tunneling microscopy, nano device, carbon nano tube, nano belt and nano wire, application of sensor in daily life, energy, post-Genome period and using as medicine with nano bio technology.

  10. Study of Ion Transport Behaviour in (PVA-NH4I):SIO2 Nano Composite Polymer Electrolyte

    Science.gov (United States)

    Tripathi, Mridula; Trivedi, Shivangi; Upadhyay, Ruby; Singh, Markandey; Pandey, N. D.; Pandey, Kamlesh

    2013-07-01

    Development and characterization of Poly vinyl alcohol (PVA) based nano composite polymer electrolytes comprising of (PVA-NH4I):SiO2 is reported. Sol-gel derived silica powder of nano dimension has been used as ceramic filler for development of nano composite electrolyte. Formation of nano composites, change in the structural and microscopic properties of the system have been investigated by X-ray differaction, SEM and conductivity.

  11. Nano Fertilizers

    Directory of Open Access Journals (Sweden)

    Hatice DAĞHAN

    2017-06-01

    Full Text Available Agricultural land is decreasing day by day due to erosion, environmental pollution, unconscious irrigation and fertilization. On the other hand, it is necessary to increase agricultural production in order to meet the needs of the developing industry as well as the nutritional needs of the growing population. In the recent years, nano fertilizers have begun to be produced to obtain the highest amount and quality of production from the unit area. Previous research shows that nano fertilizers cause an increase in the use efficiency of plant nutrients, reduce soil toxicity, minimize the potential adverse effects of excessive chemical fertilizer use, and reduce fertilizer application frequency. Nano fertilizers are important in agriculture to increase crop yield and nutrient use efficiency, and to reduce excessive use ofchemical fertilizers. The most important properties of these fertilizers are that they contain one or more of macro and micronutrients, they can be applied frequently in small amounts and are environmentally friendly. However, when applied at high doses, they exhibit decreasing effects on plant growth and crop yields, similar to chemical fertilizers. In this review, the definition, importan ce, and classification of nano fertilizers, their application in plant production, advantages and disadvantages and the results obtained in this field were discussed.

  12. Optical Characterization of Nano- and Microcrystals of EuPO₄ Created by One-Step Synthesis of Antimony-Germanate-Silicate Glass Modified by P₂O₅.

    Science.gov (United States)

    Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik

    2017-09-09

    Technology of active glass-ceramics (GC) is an important part of luminescent materials engineering. The classic method to obtain GC is based on annealing of parent glass in proper temperature and different time periods. Generally, only the bulk materials are investigated as a starting host for further applications. However, the effect of an additional heat-treatment process on emission and structural properties during GC processing is omitted. Here, we focus on the possibility of obtaining transparent glass-ceramic doped with europium ions directly with a melt-quenching method. The influence of phosphate concentration (up to 10 mol %) on the inversion symmetry of local environment of Eu 3+ ions in antimony-germanate-silicate (SGS) glass has been investigated. The Stark splitting of luminescence spectra and the local asymmetry ratio estimated by relation of (⁵D₀→⁷F₂)/(⁵D₀→⁷F₁) transitions in fabricated glass confirms higher local symmetry around Eu 3+ ions. Based on XRD and SEM/EDX measurements, the EuPO₄ nano- and microcrystals with monoclinic geometry were determined. Therefore, in our experiment, we confirmed possibility of one-step approach to fabricate crystalline structures (glass-ceramic) in Eu-doped SGS glass without additional annealing process.

  13. Industrial ceramics

    International Nuclear Information System (INIS)

    Mengelle, Ch.

    1999-04-01

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO 2 and PuO 2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  14. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  15. Acoustic study of nano-crystal embedded PbO–P2O5 glass

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Glasses; acoustical properties; nanostructured materials; glass ceramic. 1. Introduction. During the last two decades, studies of different physical properties of nano-crystal embedded glass matrix have attracted attention of technologists as well as scientists for fabrication of glass ceramic through controlled crysta-.

  16. Effect of Adhesive Type on the Shear Bond Strength of Metal Brackets to Two Ceramic Substrates

    OpenAIRE

    Mohammad Sadegh Ahmad Akhoundi; Farzaneh Aghajani; Javad Chalipa; Amir Hooman Sadrhaghighi

    2014-01-01

    Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin.Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting,...

  17. An Experimental Study on Mechanical Modeling of Ceramics Based on Microstructure

    Directory of Open Access Journals (Sweden)

    Ya-Nan Zhang

    2015-11-01

    Full Text Available The actual grinding result of ceramics has not been well predicted by the present mechanical models. No allowance is made for direct effects of materials microstructure and almost all the mechanical models were obtained based on crystalline ceramics. In order to improve the mechanical models of ceramics, surface grinding experiments on crystalline ceramics and non-crystalline ceramics were conducted in this research. The normal and tangential grinding forces were measured to calculate single grit force and specific grinding energy. Grinding surfaces were observed. For crystalline alumina ceramics, the predictive modeling of normal force per grit fits well with the experimental result, when the maximum undeformed chip thickness is less than a critical depth, which turns out to be close to the grain size of alumina. Meanwhile, there is a negative correlation between the specific grinding energy and the maximum undeformed chip thickness. With the decreasing maximum undeformed chip thickness, the proportions of ductile removal and transgranular fracture increase. However, the grinding force models are not applicable for non-crystalline ceramic fused silica and the specific grinding energy fluctuates irregularly as a function of maximum undeformed chip thickness seen from the experiment.

  18. Improvement microstructural and damage characterization of ceramic composites Y{sub 2}O{sub 3} – V{sub 2}O{sub 5} with MgO nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Issa, T. T., E-mail: alazbrh@yahoo.com; Hasan, J. M.; Abdullah, E. T. [University of Baghdad, College of Science, Physics Department, Jaderiha, Baghdad (Iraq); Shokr, F. S. [King Abdul Aziz Universit, Faculty of Science& Art, Physics Department, Rabigh, KSA (Saudi Arabia)

    2016-04-21

    Compacted samples of Y{sub 2}O{sub 3}-V{sub 2}O{sub 5} – MgO Nano – particles wt. % sintered at different sintering temperature (700, 900, 1100, 1300) ) C° for 2 hours under static air were investigated by x-ray diffraction and differential thermal analysis(DTA), to identify the phase present .Microstructure examination achieved by scanning electron microscopy .Sintered density and porosity were measured for all sintered samples .Compression was tested too and the Brake down voltage and dielectric strength were measure for all sintered samples .The clear improvement were noticed in both microstructure and damage characterization respectively after existing the MgO Nano-particles, by increasing in about 30% in sintered density and 25% for the compressive strength .The improvement also noticed on both brake down voltage and dielectric strength.

  19. Extraction and characterization of cellulose nano whiskers from balsa wood

    International Nuclear Information System (INIS)

    Morelli, Carolina L.; Bretas, Rosario E.S.; Marconcini, Jose M.; Pereira, Fabiano V.; Branciforti, Marcia C.

    2011-01-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  20. Toughening by nano-scaled twin boundaries in nanocrystals

    International Nuclear Information System (INIS)

    Zhou, Haofei; Qu, Shaoxing; Yang, Wei

    2010-01-01

    Joint enhancement on strength and toughness provides a cutting-edge research frontier for metals and alloys. Conventional strengthening methods typically lead to suppressed ductility and fracture toughness. In this study, large-scale atomic simulation on the fracture process is performed featuring nanocrystals embedded with nano-scaled twin boundaries (TBs). Four toughening mechanisms by nano-scaled TBs are identified: (i) crack blunting through dislocation accommodation along the nano-scaled TBs; (ii) crack deflection in a manner of intragranular propagation; (iii) daughter crack formation along the nano-scaled TBs that further enhances the toughness and (iv) curved TB planes owing to an excessive pileup of geometrically necessary dislocations. These toughening mechanisms jointly dictate the mechanical behavior of nano-structured materials, and provide insights into the application of nano-scaled TBs with an aim to simultaneously obtain enhanced strength and toughness. New approaches to introduce these coherent internal defects into the nanostructure of crystalline materials are also proposed

  1. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2010-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...

  2. Liquid crystalline dihydroazulene photoswitches

    DEFF Research Database (Denmark)

    Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.

    2015-01-01

    A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...... phase behavior and it was possible to convert one such compound partly into its vinylheptafulvene (VHF) isomer upon irradiation with light when in the liquid crystalline phase. This conversion resulted in an increase in the molecular alignment of the phase. In time, the meta-stable VHF returns...... to the DHA where the alignment is maintained. The systematic structural variation has revealed that a biaryl spacer between the DHA and the alkyl chain is needed for liquid crystallinity and that the one aromatic ring in the spacer cannot be substituted by a triazole. This work presents an important step...

  3. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    Science.gov (United States)

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  4. Polymer-derived-SiCN ceramic/graphite composite as anode material with enhanced rate capability for lithium ion batteries

    Science.gov (United States)

    Graczyk-Zajac, M.; Fasel, C.; Riedel, R.

    2011-08-01

    We report on a new composite material in view of its application as a negative electrode in lithium-ion batteries. A commercial preceramic polysilazane mixed with graphite in 1:1 weight ratio was transformed into a SiCN/graphite composite material through a pyrolytic polymer-to-ceramic conversion at three different temperatures, namely 950 °C, 1100 °C and 1300 °C. By means of Raman spectroscopy we found successive ordering of carbon clusters into nano-crystalline graphitic regions with increasing pyrolysis temperature. The reversible capacity of about 350 mAh g-1 was measured with constant current charging/discharging for the composite prepared at 1300 °C. For comparison pure graphite and pure polysilazane-derived SiCN ceramic were examined as reference materials. During fast charging and discharging the composite material demonstrates enhanced capacity and stability. Charging and discharging in half an hour lead to about 200 and 10 mAh g-1, for the composite annealed at 1300 °C and pure graphite, respectively. A clear dependence between the final material capacity and pyrolysis temperature is found and discussed with respect to possible application in batteries, i.e. practical discharging potential limit. The best results in terms of capacity recovered under 1 V and high rate capability were also obtained for samples synthesized at 1300 °C.

  5. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  6. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  7. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  8. Fiscal 1997 achievement report. Research and development of synergy ceramics; 1997 nendo synergy ceramics no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development is conducted on two subjects, that is, 1) hyper organized structure control technology and 2) structural element control technology. In addition, joint research and development is conducted on the creation of new materials by hyper organized structure controlling, hyper organized structure controlling for ceramics by a structurization reaction process, designing of precursors to ceramics, and the hyper organized structure control for ceramics by nanostructure process control. The joint research and development endeavors further deal with re-entrusted projects which involve researches on sintered structure control by powdery particulate structure control; dynamic process of synergy ceramics; oxynitride liquids, glasses, and glass-ceramics; and multifunctional ceramic laminates for engineering applications. Under subject 1), researches are made on the development of precursors into ceramics by utilizing chemical reactions of organic metal compounds, and analyses are conducted into the effects, exerted by the molecular structures of precursors and the conditions of a reaction for their development into ceramics, on the microstructures and various properties of the ceramics to be composed. Under subject 2), high strength, great hardness, and high resistance to wear are realized by allowing the precipitation of nano-particulates in crystals of a fine and very compact sintered body of alumina. (NEDO)

  9. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  10. CERAMIC WASTE FORM DATA PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  11. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Science.gov (United States)

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  12. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  13. Multiscale Modeling of Non-crystalline Ceramics (Glass)

    Science.gov (United States)

    2011-02-01

    4). 5.3 Approach: We will produce high silica glasses with additions of up to 10 wt% of network formers and modifiers using Momentive’s lab scale...Aij , rij , ρ, and Cij are constants, which are provided by van Beest et al. (16); we refer to equation 2 as the BKS potential. 7.2 Generating...Optischer und Elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253–287. 16. van Beest , B. W. H.; Kramer, G. J.; van Santen, R. A. Force-fields for

  14. Multiscale Modeling of Non-crystalline Ceramics (Glass)

    Science.gov (United States)

    2013-03-01

    Aberdeen Proving Ground, MD 2011. 79. Du, Q.; Gunzburger, M. D.; Lehoucq, R. B.; Zhou, K. A nonlocal vector calculus , nonlocal volume-constrained... textbook , ur = − 2µǫ ( J10 − (λ+µ)µ ζJ11 ) π(λ+ 2µ) , uz = 2ǫ ( (λ+µ) λ+2µ ζJ01 + J 0 0 ) π , σz = − 4µǫ (ζJ02 + J 0 1 ) (λ+ µ) πa(λ+ 2µ) , τrz...80). (Throughout, boldface type denotes a vector and a boldface variable with an overbar denotes a tensor.) Equation 31 is a local formulation because

  15. Growth and Characterization of Indium Doped ZnO Nano wires Using Thermal Evaporation Method

    International Nuclear Information System (INIS)

    Abrar Ismardi; Dee, C.F.; Majlis, B.Y.

    2011-01-01

    Indium doped ZnO nano wires were grown on silicon substrate using vapor thermal deposition method without using any catalyst. Morphological structures were extensively investigated using field emission scanning electron microscopy (FESEM) and show that the nano wires have uniformly hexagonal nano structures with diameters less than 100 nm and lengths from one to a few microns. The sample was measured for elemental composition with energy dispersive X-ray (EDX) spectroscopy, Zn, In and O elements were found on the sample. XRD spectrum of indium doped ZnO nano wires revealed that the nano wires have a high crystalline structure. (author)

  16. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  17. Nano-architecture of metal-organic frameworks

    Science.gov (United States)

    Milichko, Valentin A.; Zalogina, Anastasiia; Mingabudinova, Leila R.; Vinogradov, Alexander V.; Ubyivovk, Evgeniy; Krasilin, Andrei A.; Mukhin, Ivan; Zuev, Dmitry A.; Makarov, Sergey V.; Pidko, Evgeny A.

    2017-09-01

    Change the shape and size of materials supports new functionalities never found in the sources. This strategy has been recently applied for porous crystalline materials - metal-organic frameworks (MOFs) to create hollow nanoscale structures or mesostructures with improved functional properties. However, such structures are characterized by amorphous state or polycrystallinity which limits their applicability. Here we follow this strategy to create such nano- and mesostructures with perfect crystallinity and new photonics functionalities by laser or focused ion beam fabrication.

  18. optical, electrical and solid state properties of nano crystalline zinc ...

    African Journals Online (AJOL)

    Vincent

    electrical conductivity decreases as the energy increases while the optical conductivity increases gradually ... reflection coatings on window glass, video screen, camera ... are used for photo-thermal-devices. .... Transmission measurements were performed at normal ... The absorption coefficient (α) was determined from the.

  19. PYRIDINES USING NANO-CRYSTALLINE SOLID ACID CATALYST ...

    African Journals Online (AJOL)

    Preferred Customer

    Mass spectra were recorded on a Shimadzu Gas Chromatograph Mass ... M. The molar ratio of zinc acetate dehydrate and diethanolamine was 1.0. ... calculated by using BET equation; pore volume and pore size distribution were calculated ...

  20. Thick Nano-Crystalline Diamond films for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Dawedeit, Christoph [Technical Univ. of Munich (Germany)

    2010-06-30

    This Diplomarbeit deals with the characterization of 9 differently grown diamond samples. Several techniques were used to determine the quality of these specimens for inertial confinement fusion targets. The quality of chemical vapor deposition diamond is usually considered in terms of the proportion of sp3-bonded carbon to sp2-bonded carbon in the sample. For fusion targets smoothness, Hydrogen content and density of the diamonds are further important characteristics. These characteristics are analyzed in this thesis. The research for thesis was done at Lawrence Livermore National Laboratory in collaboration with the Fraunhofer Institut für angewandte Festkörperphysik Freiburg, Germany. Additionally the Lehrstuhl fuer Nukleartechnik at Technical University of Germany supported the work.

  1. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  2. NANO CRYSTALLINE ZnO CATALYZED ONE POT THREE ...

    African Journals Online (AJOL)

    Also some of them have displayed a remarkable assay in the treatment of important diseases including Alzheimer's [10], high blood pressure [11], and as inhibitors of. HIV virus [12]. Moreover; chromenes can also be utilized as cosmetics and pigments [13] and served as potential biodegradable agrochemicals [14].

  3. Nano-technology and nano-toxicology

    OpenAIRE

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of ...

  4. Solution processed nanogap organic diodes based on liquid crystalline materials

    Science.gov (United States)

    Wang, Yi-Fei; Iino, Hiroaki; Hanna, Jun-ichi

    2017-09-01

    Co-planar nanogap organic diodes were fabricated with smectic liquid crystalline materials of the benzothienobenzothiophene (BTBT) derivative by a spin-coating technique. A high rectification ratio of the order of 106 at ±3 V was achieved when a liquid crystalline material of 2,7-didecyl benzothieno[3,2-b][1]benzothiophene (10-BTBT-10) was used in a device configuration of Al/10-BTBT-10/pentafluorobenzenethiol-treated Au on a glass substrate, which was 4 orders higher than that of the device based on non-liquid crystalline materials of 2,7-dibutyl benzothieno[3,2-b][1]benzothiophene (4-BTBT-4) and BTBT. Similar results were also observed when another liquid crystalline material of ω, ω'-dioctylterthiophene (8-TTP-8) and a non-liquid crystalline material of terthiophene (TTP) were used. These improved rectifications can be ascribed to the self-assembly properties and controllable molecular orientation of liquid crystalline materials, which made uniform perpendicular oriented polycrystalline films favorable for superior charge transport in nano-channels.

  5. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst

    International Nuclear Information System (INIS)

    Dhand, Vivek; Prasad, J. Sarada; Rao, M. Venkateswara; Bharadwaj, S.; Anjaneyulu, Y.; Jain, Pawan Kumar

    2013-01-01

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30–40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp 2 hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 °C. - Highlights: ►Flame synthesized carbon nano onions with 30–40 nm diameters. ►LPG/air, diffusion type flame used in absence of catalyst to produce nano onions. ►Carbon nano onion production rate is 5 g/hr and with 70% purity.

  6. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J S; Geisler, P; Bruening, C; Kern, J; Prangsma, J C; Wu, X; Feichtner, Thorsten; Ziegler, J; Weinmann, P; Kamp, M; Forchel, A; Hecht, B [Wilhelm-Conrad-Roentgen-Center for Complex Material Systems, University of Wuerzburg (Germany); Biagioni, P [CNISM, Dipartimento di Fisica, Politecnico di Milano (Italy)

    2011-07-01

    Deep subwavelength integration of high-definition plasmonic nano-structures is of key importance for the development of future optical nanocircuitry. So far the experimental realization of proposed extended plasmonic networks remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large but thin chemically grown single-crystalline gold flakes. After immobilization on any arbitrary surface, they serve as an ideal basis for focused-ion beam milling. We present high-definition ultra-smooth gold nanostructures with reproducible nanosized features over micrometer lengthscales. By comparing multi- and single-crystalline optical antennas we prove that the latter have superior optical properties which are in good agreement with numerical simulations.

  7. Glassy and Metastable Crystalline BaTi2O5 by Containerless Processing

    Science.gov (United States)

    Yoda, Shinichi; Kentei Yu, Yu; Kumar, Vijaya; Kameko, Masashi

    metastable a-and b-BaTi2 O5 are constructed with non-centrosymmetric geometry TiO5 polyhedra, which provides higher potential for yielding high dielectric constants, pyroelectric and nonlinear op-tical properties than that of normal 4-or 6-coordinate Ti-O polyhedra. In addition, all lanthanide elements can be doped into the unusual glassy BaTi2 O5 structure to open up new possibilities for creating new bulk glasses, metastable phases and nano-crystalline ceramics with peculiar electronic and optical properties, such as giant permittivity and strong upconversion luminescence. References [1] Y. Akishige, K. Fukano, and H. Shigematsu, Jpn. J. Appl. Phys. p2, 42, L946 (2003). [2] J. Yu, Y. Arai, T. Masaki, T. Ishikawa, S. Yoda, S. Kohara, H. Taniguchi, M. Itoh, and Y. Kuroiwa, Chem. Matter. 18 p.2169 (2006) [3] J. Yu, S. Kohara, S. Nozawa, K. Itoh, S. Miyoshi, Y. Arai, A. Masuno, H. Taniguchi, M. Itoh, M. Takata, T. Fukunaga, S. Koshihara, Y. Kuroiwa, and S. Yoda, Chem. Matter. 21, p259 (2009).

  8. Crystalline structure of metals

    International Nuclear Information System (INIS)

    Holas, A.

    1972-01-01

    An attempt is made to find the crystalline structure of metals on the basis of the existing theory of metals. The considerations are limited to the case of free crystals, that is, not subjected to any stresses and with T=0. The energy of the crystal lattice has been defined and the dependence of each term on structures and other properties of metals has been described. The energy has been used to find the values of crystalline structure parameters as the values at which the energy has an absolute minimum. The stability of the structure has been considered in cases of volume changes and shearing deformations. A semiqualitative description has been obtained which explains characteristic properties of one-electron metals. (S.B.)

  9. Thermodynamics of Crystalline States

    CERN Document Server

    Fujimoto, Minoru

    2013-01-01

    Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed  theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...

  10. Sol-gel applications for ceramic membrane preparation

    Science.gov (United States)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  11. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping

    1993-01-01

    In order to employ molecular dynamics (MD) methods, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations using MD methods has been performed to obtain the equilibrium crystalline beam structure. The effect of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Schiffer et al. depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  12. Zinc Oxide Nano crystals Synthesized by Quenching Technique

    International Nuclear Information System (INIS)

    Norhayati Abu Bakar; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahya

    2011-01-01

    This paper reports an attempt to synthesize non toxic zinc oxide (ZnO) nano crystals using a simple quenching technique. The hot zinc oxide powder was quenched in hexane solution to obtain ZnO nano crystals. As the result, diameter size of the synthesized ZnO is 200 nm. It was also exhibited a good crystalline with wurtzite phase. The nano crystals properties of ZnO were revealed from good absorbance and green luminescence under UV exposure. This may be related with oxygen vacancy ionization during the annealing process. (author)

  13. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    International Nuclear Information System (INIS)

    Almaguer-Flores, Argelia; Silva-Bermudez, Phaedra; Galicia, Rey; Rodil, Sandra E.

    2015-01-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO 2 and ZrO 2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO 2 > ZrO 2 ) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO 2 , which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO 2 and ZrO 2 coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO 2 and a-ZrO 2 than on their c-oxide counterpart. • E. coli adhesion on a-TiO 2 was lower than on the c-TiO 2

  14. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  15. Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high-level nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Flintoff, J.F.

    1984-01-01

    Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives by 1000 0 C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm 3 , depending upon the formulation. Major phases are CaF 2 , CaZrTi 207 , CaTiO 3 , monoclinic ZrO 2 , and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO 2 , CaO, and SiO 2 ) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U 238 . The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO 2 . Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm 3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF 2 , Al 203 , and ZrSi 04 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides. 17 references, 3 figures, 5 tables

  16. Liquid crystalline order of carbon nanotubes

    Science.gov (United States)

    Georgiev, Georgi; Ahlawat, Aditya; Mulkern, Brian; Doyle, Robert; Mongeau, Jennifer; Ogilvie, Alex

    2007-03-01

    Topological defects formed during phase transitions in liquid crystals provide a direct proof of the standard Cosmological model and are direct links to the Early Universe. On the other hand in Nanotechnology, carbon nanotubes can be manipulated and oriented directly by changing the liquid crystalline state of the nanotubes, in combination with organic liquid crystals. Currently there are no nano-assemblers, which makes the liquid crystal state of the nanotubes, one of the few ways of controlling them. We show the design of a fast and efficient polarized light ellipsometric system (a new modification of previous optical systems) that can provide fast quantitative real time measurements in two dimensions of the formation of topological defects in liquid crystals during phase transitions in lab settings. Our aim is to provide fundamental information about the formation of optically anisotropic structures in liquid crystals and the orientation of carbon nanotubes in electric field.

  17. Synthesis of silver nanoparticles deposited in porous ceramic by γ-irradiation

    International Nuclear Information System (INIS)

    Nguyen Thuy Ai Trinh; Ngo Manh Thang; Nguyen Thi Kim Lan; Dang Van Phu; Nguyen Quoc Hien; Bui Duy Du

    2015-01-01

    Silver nanoparticles (Ag nano) were deposited in porous ceramic (PC) that was functionalized with aminosilane (AS) agent (PC-AS-Ag nano) by gamma Co-60 irradiation of the PC-AS/Ag"+ mixture using polyvinylpyrrolidone (PVP) as stabilizer. Effect of dose on the formation of Ag nano was investigated. Characteristics of the nanocomposite material (PC-AS-Ag nano) were determined by ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), transmission electron microscopy (TEM) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Results indicated that Ag nano size was ⁓ 9 nm and the Ag nano content in PC-AS-Ag nano material was about of 341 ± 51 mg/kg at dose of 14-20 kGy. Thus, gamma Co-60 irradiation method has the advantage of creation of small Ag nanoparticles with fairly homogenous distribution in PC material. (author)

  18. Nano-technology and nano-toxicology.

    Science.gov (United States)

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  19. Ceramic Hosts for Fission Products Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Peter C Kong

    2010-07-01

    Natural spinel, perovskite and zirconolite rank among the most leach resistant of mineral forms. They also have a strong affinity for a large number of other elements and including actinides. Specimens of natural perovskite and zirconolite were radioisotope dated and found to have survived at least 2 billion years of natural process while still remain their loading of uranium and thorium . Developers of the Synroc waste form recognized and exploited the capability of these minerals to securely immobilize TRU elements in high-level waste . However, the Synroc process requires a relatively uniform input and hot pressing equipment to produce the waste form. It is desirable to develop alternative approaches to fabricate these durable waste forms to immobilize the radioactive elements. One approach is using a high temperature process to synthesize these mineral host phases to incorporate the fission products in their crystalline structures. These mineral assemblages with immobilized fission products are then isolated in a durable high temperature glass for periods measured on a geologic time scale. This is a long term research concept and will begin with the laboratory synthesis of the pure spinel (MgAl2O4), perovskite (CaTiO3) and zirconolite (CaZrTi2O7) from their constituent oxides. High temperature furnace and/or thermal plasma will be used for the synthesis of these ceramic host phases. Nonradioactive strontium oxide will be doped into these ceramic phases to investigate the development of substitutional phases such as Mg1-xSrxAl2O4, Ca1-xSrxTiO3 and Ca1-xSrxZrTi2O7. X-ray diffraction will be used to establish the crystalline structures of the pure ceramic hosts and the substitution phases. Scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) will be performed for product morphology and fission product surrogates distribution in the crystalline hosts. The range of strontium doping is planned to reach the full substitution of the divalent

  20. Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

    International Nuclear Information System (INIS)

    Gutierrez-Gonzalez, C.F.; Agouram, S.; Torrecillas, R.; Moya, J.S.; Lopez-Esteban, S.

    2012-01-01

    Highlights: ► A cryogenic route has been used to obtain ceramic/metal nanostructured powders. ► The powders present good homogeneity and dispersion of metal. ► The metal nanoparticle size distributions are centred in 17–35 nm. ► Both phases, ceramic and metal, present a high degree of crystallinity. ► Good metal/ceramic interfaces due to epitaxial growth, studied by HRTEM. -- Abstract: This work describes a wet-processing route based on spray-freezing and subsequent lyophilization designed to obtain nanostructured ceramic/metal powders. Starting from the ceramic powder and the corresponding metal salt, a water-based suspension is sprayed on liquid nitrogen. The frozen powders are subsequently freeze-dried, calcined and reduced. The material was analyzed using X-ray diffraction analysis at all stages. High resolution transmission electron microscopy studies showed a uniform distribution of metal nanoparticles on the ceramic grain surfaces, good interfaces and high crystallinity, with an average metal particle size in the nanometric range.

  1. Assessment of DNA damage in ceramic workers.

    Science.gov (United States)

    Anlar, Hatice Gul; Taner, Gokce; Bacanli, Merve; Iritas, Servet; Kurt, Turker; Tutkun, Engin; Yilmaz, Omer Hinc; Basaran, Nursen

    2018-02-24

    It is known that ceramic workers are potentially exposed to complex mixture of chemicals such as silica, inorganic lead, lime, beryllium and aluminum that can be associated with an increased risk of several diseases. All operations in the ceramic industries such as mixing, moulding, casting, shaking out and finishing jobs, have been associated with the higher exposure levels and in most of the silica-related industries, average overall exposure exceeded permissible exposure levels for respirable crystalline silica. The aim of this study was to evaluate the possible genotoxic damage in ceramic workers exposed to complex mixture of chemicals mainly crystalline silica. For this purpose, the blood and buccal epithelial cell samples were taken from the ceramic workers (n = 99) and their controls (n = 81). The genotoxicity was assessed by the alkaline comet assay in isolated lymphocytes and whole blood. Micronucleus (MN), binucleated (BN), pyknotic (PYC), condensed chromatin (CC), karyolytic (KYL), karyorrhectic (KHC) and nuclear bud (NBUD) frequencies in buccal epithelial cells and plasma 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) levels were also evaluated. In the study, 38 workers were diagnosed with silicosis, 9 workers were suspected to have silicosis, whereas 52 workers were found to be healthy. DNA damage in blood and lymphocytes; MN, CC + KHC, PYC frequencies in buccal epithelial cells and 8-oxodG levels in plasma were increased in workers compared to their controls. These results showed that occupational chemical mixture exposure in ceramic industry may cause genotoxic damage that can lead to important health problems in the workers.

  2. The crystallinity of calcium phosphate powders influenced by the conditions of neutralized procedure with citric acid additions

    International Nuclear Information System (INIS)

    Li Chengfeng

    2009-01-01

    Calcium phosphate powders with nano-sized crystallinity were synthesized by neutralization using calcium hydroxide and orthophosphoric acid with the assistance of citric acid. The influence of processing parameters, such as free or additive citric acid, synthetic temperature and ripening time, on the crystallinity of hydroxyapatite were investigated. The results of X-ray diffraction and microstructure observations showed that the crystallinity and morphology of nano-sized hydroxyapatite particles were influenced by the presence or absence of citric acid. It was found that the crystallinities and crystallite sizes of hydroxyapatite powders prepared with the additive citric acid increased with increasing synthetic temperature and ripening time. Especially, the crystallinities of (h k 0) planes were raised and more homogeneously grown particles were obtained with increasing synthetic temperature

  3. Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Joshi, C.; Rai, R.N.; Rai, S.B.

    2012-01-01

    Glass-ceramics and ceramics containing nano-crystals of different phases doped with Er 3+ /Yb 3+ ions have been successfully prepared by heat treatment of the precursor oxyhalide glasses synthesized by the melt-quench method. X-ray diffraction patterns and transmission electron microscopy (TEM) images verify the precipitation of nano-crystals. Emission of Er 3+ enhances several times when Yb 3+ ion is added with the matrix. The Stark splitting and the intensity of different emission bands increase to a great extent when we approach to ceramics from glasses via glass-ceramics. The intensity of the blue and green emission bands increases much faster than the red and NIR emission bands. Intense upconversion emission observed by the naked eye has been quantified in terms of standard chromaticity diagram (CIE). Power dependence study shows that the upconversion of NIR radiation to visible radiation takes place mainly via photon avalanche (PA) process.

  4. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Directory of Open Access Journals (Sweden)

    Lu X

    2012-04-01

    Full Text Available Xiaoli Lu1,2, Yang Xia1, Mei Liu1, Yunzhu Qian3, Xuefeng Zhou4, Ning Gu4, Feimin Zhang1,41Institute of Stomatology, Nanjing Medical University, Nanjing, 2Nantong Stomatological Hospital, Nantong, 3Center of Stomatology, The Second Affiliated Hospital of Suzhou University, Suzhou, 4Suzhou Institute, Southeast University, Suzhou, People's Republic of ChinaAbstract: To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride] and anionic [poly(sodium 4-styrenesulfonate] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05. Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.Keywords: layer-by-layer, diatomite, nanoceramics, zirconia (ZrO2, dental materials

  5. Evaluation of a novel multiple phase veneering ceramic.

    Science.gov (United States)

    Sinthuprasirt, Pannapa; van Noort, Richard; Moorehead, Robert; Pollington, Sarah

    2015-04-01

    To produce a new veneering ceramic based on the production of a multiple phase glass-ceramic with improved performance in terms of strength and toughness. A composition of 60% leucite, 20% diopside and 20% feldspathic glass was prepared, blended and a heat treatment schedule of 930°C for 5 min was derived from differential thermal analysis (DTA) of the glasses. X-ray diffraction (XRD) and SEM analysis determined the crystalline phases and microstructure. Chemical solubility, biaxial flexural strength (BFS), fracture toughness, hardness, total transmittance and coefficient of thermal expansion (CTE) were all measured in comparison to a commercial veneering ceramic (VITA VM9). Thermal shock resistance of the leucite-diopside and VITA VM9 veneered onto a commercial high strength zirconia (Vita In-Ceram YZ) was also assessed. Statistical analysis was undertaken using Independent Samples t-test. Weibull analysis was employed to examine the reliability of the strength data. The mean chemical solubility was 6 μg/cm(2) for both ceramics (P=1.00). The mean BFS was 109 ± 8 MPa for leucite-diopside ceramic and 79 ± 11 MPa for VITA VM9 ceramic (P=0.01). Similarly, the leucite-diopside ceramic demonstrated a significantly higher fracture toughness and hardness. The average total transmittance was 46.3% for leucite-diopside ceramic and 39.8% for VITA VM9 (P=0.01). The leucite-diopside outperformed the VITA VM9 in terms of thermal shock resistance. Significance This novel veneering ceramic exhibits significant improvements in terms of mechanical properties, yet retains a high translucency and is the most appropriate choice as a veneering ceramic for a zirconia base core material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Synthesis and characterization of hydroxyapatite/alumina ceramic ...

    Indian Academy of Sciences (India)

    39

    In the present work, nano crystalline hydroxyapatite/alumina (HAp-Al2O3) composite was .... powder was dried in hot air oven at 80 °C for 24 hours. ... weekly, and the culture medium was changed twice in a week. 4. Results and Discussion.

  7. Manufacturing of Porous Ceramic Preforms Based on Halloysite Nanotubes (Hnts

    Directory of Open Access Journals (Sweden)

    Kujawa M.

    2016-06-01

    Full Text Available The aim of this study was to determine the influence of manufacturing conditions on the structure and properties of porous halloysite preforms, which during pressure infiltration were soaked with a liquid alloy to obtain a metal matrix composite reinforced by ceramic, and also to find innovative possibilities for the application of mineral nanotubes obtained from halloysite. The method of manufacturing porous ceramic preforms (based on halloysite nanotubes as semi-finished products that are applicable to modern infiltrated metal matrix composites was shown. The ceramic preforms were manufactured by sintering of halloysite nanotubes (HNT, Natural Nano Company (USA, with the addition of pores and canals forming agent in the form of carbon fibres (Sigrafil C10 M250 UNS SGL Group, the Carbon Company. The resulting porous ceramic skeletons, suggest innovative application capabilities mineral nanotubes obtained from halloysite.

  8. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  9. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  10. WORKSHOP: Crystalline beams

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Following pioneer work by specialists at the Soviet Novosibirsk Laboratory some ten years ago, interest developed in the possibility of 'freezing' ion beams in storage rings by pushing cooling (to smooth out beam behaviour) to its limits, the final goal being to lock the ions into a neat crystal pattern. After advances by groups working on laser cooled ions in traps, and with several cooling rings now in operation, a workshop on crystalline ion beams was organized recently by the GSI (Darmstadt) Laboratory and held at Wertheim in Germany

  11. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  12. Preparation of basalt-based glass ceramics

    Directory of Open Access Journals (Sweden)

    MIHOVIL LOGAR

    2003-06-01

    Full Text Available Local and conventional raw materials–massive basalt from the Vrelo locality on Kopaonik mountain–have been used as starting materials to test their suitability for the production of glass-ceramics. Crystallization phenomena of glasses of the fused basalt rocks were studied by X-ray phase analysis, optical microscopy and other techniques. Various heat treatments were used, and their influences, on controlling the microstructures and properties of the products were studied with the aim of developing high strength glass-ceramic materials. Diopside CaMg(SiO32 and hypersthene ((Mg,FeSiO3 were identifies as the crystalline phases. The final products contained considerable amounts of a glassy phase. The crystalline size was in range of 8–480 mm with plate or needle shape. Microhardness, crashing strength and wears resistence of the glass-ceramics ranged from 6.5–7.5, from 2000–6300 kg/cm2 and from 0.1–0.2 g/cm, respectively.

  13. D. C. plasma-sprayed coatings of nano-structured alumina-titania-silica

    CERN Document Server

    Jiang Xian Liang

    2002-01-01

    nano-crystalline powders of omega(Al sub 2 O sub 3) = 95%, omega(TiO sub 2) = 3%, and omega(SiO sub 2) = 2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D.C. plasma was used to spray the agglomerated nano-crystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Experimental results show that the agglomerated nano-crystalline particles are spherical, with a size from (10-90) mu m. The flow ability of the nano-crystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nano-structure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nano-structured coatings. Although the nano-structured coatings have a lo...

  14. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping; Sessler, A.M.

    1993-01-01

    In order to employ Molecular Dynamics method, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  15. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, J.; Li, X.P.

    1993-01-01

    In order to employ the Molecular Dynamics method, commonly used in condensed matter physics, the authors have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. They include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  16. Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior.

    Science.gov (United States)

    Xu, Pengyun; Coyle, Thomas W; Pershin, Larry; Mostaghimi, Javad

    2018-03-16

    Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. Yb 2 O 3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb 2 O 3 , with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Crystallization and properties of a spodumene-willemite glass ceramic

    International Nuclear Information System (INIS)

    Hu, A.M.; Li, M.; Dali, D.L. Mao; Liang, K.M.

    2005-01-01

    Spodumene-willemite glass ceramics were produced by replacement of Al 2 O 3 in lithium aluminium silicate by ZnO. With replacement of Al 2 O 3 by ZnO, the batch melting temperature, glass transition temperature (T g ) and crystallization temperature (T p ) all decreased. The main crystalline phases precipitated were eucriptite, β-spodumene and willemite (Zn 2 SiO 4 ). All compositions of glass ceramics showed bulk crystallization. As ZnO content increased, the grain sizes and thermal expansion coefficients increased, while the flexural strength and fracture toughness of the glass-ceramics increased first, and then decreased. The mechanical properties were correlated with crystallization and morphology of glass ceramics

  18. Valorization of sugarcane bagasse ash: producing glass-ceramic materials.

    Science.gov (United States)

    Teixeira, S R; Magalhães, R S; Arenales, A; Souza, A E; Romero, M; Rincón, J M

    2014-02-15

    Some aluminosilicates, for example mullite and wollastonite, are very important in the ceramic and construction industries. The most significant glass-ceramic for building applications has wollastonite as the main crystal phase. In this work we report on the use of sugarcane bagasse ash (SCBA) to produce glass-ceramics with silicates as the major crystalline phases. The glasses (frits) were prepared by mixing ash, limestone (calcium and magnesium carbonates) and potassium carbonate as the fluxing agent. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The results showed that glass-ceramic material can be produced with wollastonite as the major phase, at a temperature lower than 900 °C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Science.gov (United States)

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  20. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  1. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  2. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  3. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  4. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  5. Controlled Synthesis of Manganese Dioxide Nano structures via a Facile Hydrothermal

    International Nuclear Information System (INIS)

    Pang, R.S.C.; Chin, S.F.; Ye, Ch. Ling

    2012-01-01

    Manganese dioxide nano structures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO 2 nano structures. MnO 2 nano structures comprise of spherical nano particulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO 2 nano structures of sea-urchin-like and nano rods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nano structures underwent notable phase transformation from d-MnO 2 to a-MnO 2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  6. Oxidation of nano-reinforced polyolefins

    International Nuclear Information System (INIS)

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  7. Comparing Titanium Release from Ceramic Tiles using a waste material characterization test - Influence of Calcium and Organic Matter concentrations

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Hansen, Steffen Foss; Astrup, Thomas Fruergaard

    2015-01-01

    Nanomaterials are beneficial in the building industry to enhance or add certain features to commonly used materials. One example is the use of nano-titanium dioxide in the surface coating of ceramic tiles, to make the tiles surface self-cleaning. At the end of life stage, ceramic tiles might...... to assess if nano-titanium dioxide coated ceramic tiles are suitable for depositing in a landfill or not. Specifically, we used compliance batch test method, which is a simple test evaluating the release from a solid material to an aqueous media during 24 hrs. If nano-Ti particles are released from solid...... immediately after the 24 hrs. test using single particle ICPMS and Transmission Electron Microscopy imaging. The preliminary results suggest that nanoparticulate titanium is released from both tiles – with and without nano-titanium dioxide coating. The size distributions of the released particles are similar...

  8. Liquid crystalline order in polymers

    CERN Document Server

    Blumstein, Alexandre

    1978-01-01

    Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli

  9. Fabrication and characterization of glass–ceramics materials developed from steel slag waste

    International Nuclear Information System (INIS)

    He, Feng; Fang, Yu; Xie, Junlin; Xie, Jun

    2012-01-01

    Highlights: ► Steelmaking slag (SS) is one of the most common industrial wastes. ► Glass–ceramics produced from SS is observed to have good properties. ► A large volume of raw SS can be recycled. ► The utilization of SS could reduce solid waste pollution. -- Abstract: In this study, glass–ceramic materials were produced from SS (steel slag) obtained from Wuhan Iron and Steel Corporation in China. The amount of SS used in glass batch was about 31–41 wt.% of the total batch mixture. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of the parent glass samples were identified, respectively. X-ray diffraction (XRD) revealed that multiple crystalline phases coexisted in the glass–ceramics, and the main crystalline phase was wollastonite (CaSiO 3 ). SEM observation indicated that there was an increase in the amount of crystalline phase in the glass–ceramics when the CaO content and crystallization time increased. It was also found that the glass–ceramics with fine microstructure enhance mechanical properties and erosion wear resistance. The obtained glass–ceramics showed a maximum bending strength of 145.6 MPa and very nice wear resistance. Therefore, it is feasible to produce nucleated glass–ceramics materials for building and decorative materials from SS.

  10. Synthesis of nucleated glass-ceramics using oil shale fly ash

    International Nuclear Information System (INIS)

    Luan Jingde; Li Aimin; Su Tong; Cui Xiaobo

    2010-01-01

    Nucleated glass-ceramics materials were produced from oil shale fly ash obtained from Huadian thermal power plant in China with the addition of analytic reagent CaO. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of two parent glass samples with different alkalinity (Ak=m CaO /m SiO 2 ) were identified as Tn 1 = 810 deg. C, Tc 1 = 956 deg. C and Tn 2 = 824 o C, Tc 2 = 966 deg. C, respectively. X-ray diffraction (XRD) analysis of the produced nucleated glass-ceramics materials revealed that there was a coexistence phenomenon of multi-crystalline phase and the main crystalline phase was anorthite ([Ca,Na][AI,Si] 2 Si 2 O 8 ). The microstructure of the glass-ceramics materials was examined by scanning electron microscope (SEM). SEM observation indicated that there was an increase in the quantity of sphere-shaped crystals when crystallization time increased. Furthermore, the increase of alkalinity caused more amorphous phase occurring in glass-ceramics materials. Through the tests of physical and mechanical properties, the glass-ceramics materials with more crystalline phase and fine microstructure had high density, fine performance of resisting compression (328.92 MPa) and negligible water absorption. Through chemical resistance tests, the glass-ceramics samples showed strong corrosion resistance. Overall results indicated that it was a feasible attempt to produce nucleated glass-ceramics materials for building and decorative materials from oil shale fly ash.

  11. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite; Preparacao e caracterizacao de nanocristais de celulose funcionalizados com CMA utilizados na preparacao de nanocomposito de quitosana reticulado

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Joao Paulo de; Teixeira, Ivo F; Donnici, Claudio L; Pereira, Fabiano V [Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG (Brazil)

    2011-07-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  12. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  13. Effect of synthesis methods with different annealing temperatures on micro structure, cations distribution and magnetic properties of nano-nickel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, Karimat [XRD Lab, Physics Department, Faculty of Science, Ain-Shams University, Cairo (Egypt); Mohamed, Mohamed Bakr, E-mail: mbm1977@yahoo.com [XRD Lab, Physics Department, Faculty of Science, Ain-Shams University, Cairo (Egypt); Hamdy, Sh.; Ata-Allah, S.S. [Reactor Physics Department, NRC, Atomic Energy Authority, P.O. Box 13759, Cairo (Egypt)

    2017-02-01

    Nano-crystalline NiFe{sub 2}O{sub 4} was synthesized by citrate and sol–gel methods at different annealing temperatures and the results were compared with a bulk sample prepared by ceramic method. The effect of methods of preparation and different annealing temperatures on the crystallize size, strain, bond lengths, bond angles, cations distribution and degree of inversions were investigated by X-ray powder diffraction, high resolution transmission electron microscope, Mössbauer effect spectrometer and vibrating sample magnetometer. The cations distributions were determined at both octahedral and tetrahedral sites using both Mössbauer effect spectroscopy and a modified Bertaut method using Rietveld method. The Mössbauer effect spectra showed a regular decrease in the hyperfine field with decreasing particle size. Saturation magnetization and coercivity are found to be affected by the particle size and the cations distribution. - Highlights: • Annealed nano NiFe{sub 2}O{sub 4} was prepared by different methods. • The crystallite sizes are critical. • Mössbauer spectra show superparamagnetic doublet. • Cations distributions by MÓ§ssbauer and Bertaut method are constituents. • Cations distribution are significantly affects the magnetic properties.

  14. Crystalline lens radioprotectors

    International Nuclear Information System (INIS)

    Belkacemi, Y.; Pasquier, D.; Castelain, B.; Lartigau, E.; Warnet, J.M.

    2003-01-01

    During more than a half of century, numerous compounds have been tested in different models against radiation-induced cataract. In this report, we will review the radioprotectors that have been already tested for non-human crystalline lens protection. We will focus on the most important published studies in this topic and the mechanisms of cyto-protection reported in. vitro and in. vivo from animals. The most frequent mechanisms incriminated in the cyto-protective effect are: free radical scavenging, limitation of lipid peroxidation, modulation of cycle progression increase of intracellular reduced glutathione pool, reduction of DNA strand breaks and limitation of apoptotic cell death. Arnifostine (or Ethyol) and anethole dithiolethione (or Sulfarlem), already used clinically as chemo- and radio-protectants, could be further test?r for ocular radioprotection particularly for radiation-induced cataract. (author)

  15. Conductive nano composites based on cellulose nano fiber coated poly aniline via in situ polymerization

    International Nuclear Information System (INIS)

    Silva, Michael J. da; Sanches, Alex O.; Malmonge, Luiz F.; Malmonge, Jose A.; Medeiros, Eliton S. de; Rosa, Morsyleide F.

    2011-01-01

    Cellulose nano fiber (CNF) was extracted by acid hydrolysis from cotton microfibril and nano composites of CNF/PANI-DBSA were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA/aniline and aniline/oxidant were varied and the nano composites were characterized by four probes direct current (dc) electrical conductivity, ultraviolet-visible (UV-Vis-NIR) and FTIR spectroscopy and X-ray diffraction (XRD). Electrical conductive about ∼10 -1 S/cm was research and was independent of DBSA/aniline molar ratio between 2-4 and the aniline/oxidant molar ratio between 1-5. X-ray patterns of the samples show crystalline peaks characteristic of cellulose I. The FTIR spectra confirmed the presence of PANI and CNF in all samples. (author)

  16. Structural and impedance characterization of ceramics prepared from NPK fertilizer

    Directory of Open Access Journals (Sweden)

    Diouma Kobor

    2015-06-01

    Full Text Available One of the main objectives of this work was to study the possibilities of valorising the phosphates through the development of a conductive ceramics using NPK fertilizer as a precursor. Phosphorus based powders were synthesized using solid state technique from NPK fertilizer, lithium chloride and iron chloride at different temperatures up to 900 °C and ceramic samples were prepared by the powder pressing and sintering at 1100 °C. XRD spectra of the calcined powders show various sharp peaks indicating a relatively high degree of crystallinity and presence of different crystalline phases, such as: phosphorus based crystalline compounds (AlPO4 and LiFePO4, ferrite (Fe3O4 and DyFeO3, CaSO4 and K3DyCl6. The prepared phosphorus based ceramics showed very interesting electrical and dielectric properties. Thus, in the future the obtained ceramics could find application in electronic or energy storage devices. However, further investigations are necessary to understand the exact chemical composition and structural characteristics of this material, to better understand the origin of the obtained electrical and dielectric behaviour.

  17. Groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Palmqvist, K.

    1990-06-01

    The aim of this project was to make detailed descriptions of the geological conditions and the different kinds of leakage in some tunnels in Sweden, to be able to describe the presence of ground water in crystalline bedrock. The studies were carried out in TBM tunnels as well as in conventionally drilled and blasted tunnels. Thanks to this, it has been possible to compare the pattern and appearance of ground water leakage in TBM tunnels and in blasted tunnels. On the basis of some experiments in a TBM tunnel, it has been confirmed that a detailed mapping of leakage gives a good picture of the flow paths and their aquiferous qualities in the bedrock. The same picture is found to apply even in cautious blasted tunnels. It is shown that the ground water flow paths in crystalline bedrock are usually restricted to small channels along only small parts of the fractures. This is also true for fracture zones. It has also been found that the number of flow paths generally increases with the degree of tectonisation, up to a given point. With further tectonisation the bedrock is more or less crushed which, along with mineral alteration, leaves only a little space left for the formation of water channels. The largest individual flow paths are usually found in fracture zones. The total amount of ground water leakage per m tunnel is also greater in fracture zones than in the bedrock between the fracture zones. In mapping visible leakage, five classes have been distinguished according to size. Where possible, the individual leak inflow has been measured during the mapping process. The quantification of the leakage classes made in different tunnels are compared, and some quantification standards suggested. A comparison of leakage in different rock types, tectonic zones, fractures etc is also presented. (author)

  18. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  19. Electrical characterization of strontium titanate borosilicate glass ceramics system with bismuth oxide addition using impedance spectroscopy

    International Nuclear Information System (INIS)

    Thakur, O.P.; Kumar, Devendra; Parkash, Om; Pandey, Lakshman

    2003-01-01

    The ac electrical data, measured in the frequency range 0.1 kHz-1 MHz, were used to study the electrical response of strontium titanate borosilicate glass ceramic system with bismuth oxide addition. Complex plane plots from these electrical data for various glass ceramic samples reveal contributions from simultaneously operating polarization mechanisms to overall dielectric behavior. The complex modulus (M * ) representation of electrical data for various glass ceramic samples were found to be more informative. Equivalent circuit models, which represent the electrical behavior of glass ceramic samples, were determined using complex non-linear least square (CNLS) fitting. An attempt has been made to understand the dielectric behavior of various glass ceramics in terms of contributions arising from different polarization processes occurring at glassy matrix, crystalline phases, glass to crystal interface region and blocking electrodes. Glass ceramics containing SrTiO 3 and TiO 2 (rutile) phases show thermally stable dielectric behavior

  20. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  1. The CHF enhancement on pool boiling using nano-fluids

    International Nuclear Information System (INIS)

    Chang, Won Joon; Jeong, Yong Hoon

    2009-01-01

    A increase of CHF was observed with nano-fluid. The addition of nano-particle helped to increase the wettability. This happens with the decrease in bubble diameter, breakup of bubbles and avoidance of bubble coalescence. CHF increase or decrease depends upon competition between high wettability and high instability. An optimum nano-fluid concentration is needed which must have high crystalline content. When the concentration reaches at a critical value, CHF will tend to a constant value. Deposition of nano-particles increasing the wettability and the rewetting are cause of CHF enhancement. It delay the growth of dry patch by increasing of wettability and lead to CHF enhancement. Now, we must define the wettability of nano-fluids. At case of nano-fluids using metallic particle, the explanation using contact angle using was reasonable. But, at case of nan-fluids using hydrophobic CNT, this explanation can't be acceptable. Moreover, at case of surfactant solution, contact angle was very low. But CHF enhancement was not great. So, wettability about nano-fluids must be defined anew for explanation of CHF enhancement. I suggest the extension of micro layer are acceptable concept for increasing wettability using nano-fluids

  2. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  3. Study of the structural evolutions of crystalline tungsten oxide films prepared using hot-filament CVD

    International Nuclear Information System (INIS)

    Feng, P X; Wang, X P; Zhang, H X; Yang, B Q; Wang, Z B; Gonzalez-BerrIos, A; Morell, G; Weiner, B

    2007-01-01

    Structural evolutions of tungsten oxide(WO 3 ) samples on different substrates are studied using Raman spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The WO 3 samples are prepared using hot-filament CVD techniques. The focus of the study is on the evolutions of nano structures at different stages following deposition time. The experimental measurements reveal evolutions of the surface structures from uniform film to fractal-like structures, and eventually to nano particles, and crystalline structures from mono (0 1 0) crystalline thin film to polycrystalline thick film developments. The effect of high temperature on the nanostructured WO 3 is also investigated. Well-aligned nanoscale WO 3 rod arrays are obtained at a substrate temperature of up to 1400 deg. C. Further increasing the substrate temperature yields microscale crystalline WO 3 particles

  4. Magnetic and bioactivity evaluation of ferrimagnetic ZnFe 2O 4 containing glass ceramics for the hyperthermia treatment of cancer

    Science.gov (United States)

    Shah, Saqlain A.; Hashmi, M. U.; Alam, S.; Shamim, A.

    2010-02-01

    Glass ceramics of the composition xZnO·25Fe 2O 3·(40- x)SiO 2·25CaO·7P 2O 5·3Na 2O were prepared by the melt-quench method using oxy-acetylene flame. Glass-powder compacts were sintered at 1100 °C for 3 h and then rapidly cooled at -10 °C. X-ray diffraction (XRD) revealed 3 prominent crystalline phases: ZnFe 2O 4, CaSiO 3 and Ca 10(PO 4) 6(OH) 2. Vibrating sample magnetometer (VSM) data at 10 KOe and 500 Oe showed that saturation magnetization, coercivity and hence hysteresis area increased with the increase in ZnO content. Nano-sized ZnFe 2O 4 crystallites were of pseudo-single domain structure and thus coercivity increased with the increase in crystallite size. ZnFe 2O 4 exhibited ferrimagnetism due to the random distribution of Zn 2+ and Fe 3+ cations at tetrahedral A sites and octahedral B sites. This inversion/random distribution of cations was probably due to the surface effects of nano-ZnFe 2O 4 and rapid cooling of the material from 1100 °C (thus preserving the high temperature state of the random distribution of cations). Calorimetric measurements were carried out using magnetic induction furnace at 500 Oe magnetic field and 400 KHz frequency. The data showed that maximum specific power loss and temperature increase after 2 min were 26 W/g and 37 °C, respectively for the sample containing 10% ZnO. The samples were immersed in simulated body fluid (SBF) for 3 weeks. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDX) and XRD results confirmed the growth of precipitated hydroxyapatite phase after immersion in SBF, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to the living tissues in physiological environment.

  5. Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer

    International Nuclear Information System (INIS)

    Shah, Saqlain A.; Hashmi, M.U.; Alam, S.; Shamim, A.

    2010-01-01

    Glass ceramics of the composition xZnO.25Fe 2 O 3 .(40-x)SiO 2 .25CaO.7P 2 O 5 .3Na 2 O were prepared by the melt-quench method using oxy-acetylene flame. Glass-powder compacts were sintered at 1100 deg. C for 3 h and then rapidly cooled at -10 deg. C. X-ray diffraction (XRD) revealed 3 prominent crystalline phases: ZnFe 2 O 4 , CaSiO 3 and Ca 10 (PO 4 ) 6 (OH) 2 . Vibrating sample magnetometer (VSM) data at 10 KOe and 500 Oe showed that saturation magnetization, coercivity and hence hysteresis area increased with the increase in ZnO content. Nano-sized ZnFe 2 O 4 crystallites were of pseudo-single domain structure and thus coercivity increased with the increase in crystallite size. ZnFe 2 O 4 exhibited ferrimagnetism due to the random distribution of Zn 2+ and Fe 3+ cations at tetrahedral A sites and octahedral B sites. This inversion/random distribution of cations was probably due to the surface effects of nano-ZnFe 2 O 4 and rapid cooling of the material from 1100 deg. C (thus preserving the high temperature state of the random distribution of cations). Calorimetric measurements were carried out using magnetic induction furnace at 500 Oe magnetic field and 400 KHz frequency. The data showed that maximum specific power loss and temperature increase after 2 min were 26 W/g and 37 deg. C, respectively for the sample containing 10% ZnO. The samples were immersed in simulated body fluid (SBF) for 3 weeks. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDX) and XRD results confirmed the growth of precipitated hydroxyapatite phase after immersion in SBF, suggesting that the ferrimagnetic glass ceramics were bioactive and could bond to the living tissues in physiological environment.

  6. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.

    2015-01-01

    Highlights: • Nano zinc phosphate coating on mild steel was developed. • Nano zinc phosphate coatings on mild steel showed enhanced corrosion resistance. • The nano ZnO increases the number of nucleating sites for phosphating. • Faster attainment of steady state during nano zinc phosphating. - Abstract: Nano crystalline zinc phosphate coatings were developed on mild steel surface using nano zinc oxide particles. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The particles size of the nano zinc phosphate coating developed was also characterized by TEM analysis. Potentiodynamic polarization and electrochemical impedance studies were carried out in 3.5% NaCl solution. Significant variations in the coating weight, morphology and corrosion resistance were observed as nano ZnO concentrations were varied from 0.25 to 2 g/L in the phosphating baths. The results showed that nano ZnO particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal ZnO particles in the phosphating baths). Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano ZnO. The activation effect brought about by the nano ZnO reduces the amount of accelerator (NaNO 2 ) required for phosphating

  7. Nano devices and sensors

    CERN Document Server

    Liaw, Shien-Kuei; Chung, Yung-Hui

    2016-01-01

    This volume on semiconductor devices focuses on such topics as nano-imprinting, lithography, nanowire charge-trapping, thermo-stability in nanowires, nano-electrodes, and voltage and materials used for fabricating and improving electrical characteristics of nano-materials.

  8. Electrical characterization of Ge–Sb–Te phase change nano-pillars using conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Bae, Byeong-Ju; Hong, Sung-Hoon; Hwang, Seon-Yong; Hwang, Jae-Yeon; Yang, Ki-Yeon; Lee, Heon

    2009-01-01

    The electrical characteristic of phase change material was studied in nano-scale using nanoimprint lithography and a conducting atomic force microscopy measurement system. Nanoimprint lithography was used to fabricate the nano-scale phase change material pattern. A Pt-coated AFM tip was used as a top electrode to measure the electrical characteristics of the GST nano-pillar. The GST nano-pillar, which is 200 nm in diameter, was amorphized by 2 V and 5 ns reset pulse and was then brought back to the crystalline phase by applying 1.3 V and 150 ns set pulse. Using this measurement system, the GST nano-pillar was switched between the amorphous and crystalline phases more than five times. The results of the reset and the set current measurement with the GST nano-pillar sizes show that the reset and the set currents also decreased with the decrease of the GST pillar size

  9. Hardness of basaltic glass-ceramics

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Estrup, Maja

    2009-01-01

    The dependence of the hardness of basaltic glass-ceramics on their degree of crystallisation has been explored by means of differential scanning calorimetry, optical microscopy, x-ray diffraction, and Vickers indentation. Different degrees of crystallisation in the basaltic glasses were achieved...... by varying the temperature of heat treatment. The predominant crystalline phase in the glass was identified as augite. It was found that the hardness of the glass phase decreased slightly with an increase in the degree of crystallisation, while that of the augite phase drastically decreased....

  10. Radiation damage in nuclear waste ceramics

    International Nuclear Information System (INIS)

    Turcotte, R.P.; Roberts, F.P.; Rusin, J.M.; Wald, J.W.

    1982-01-01

    The text contains a number of specific observations about the radiation-induced changes in glass, glass-ceramic, and supercalcine nuclear waste forms. Other, more general conclusions can be summarized: Radiation-induced property changes follow an exponential ingrowth curve to saturation. Actinide host phases in both crystalline waste forms become X-ray amorphous. The magnitudes of the waste-form density changes observed could not be directly related to observed changes in the primary actinide phases. Although large crystal-structure changes occur in the materials studied, obvious physical degradation was not observed

  11. Conductive ceramic composition and method of preparation

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  12. Effect of Adhesive Type on the Shear Bond Strength of Metal Brackets to Two Ceramic Substrates

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2014-04-01

    Full Text Available Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin.Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5-55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM.The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05. There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected.Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations.

  13. Fabrication and properties of La2-xGdxHf2O7 transparent ceramics

    International Nuclear Information System (INIS)

    Wang, Zhengjuan; Zhou, Guohong; Zhang, Fang; Qin, Xianpeng; Ai, Jianping; Wang, Shiwei

    2016-01-01

    La 2-x Gd x Hf 2 O 7 (x=0–2.0) transparent ceramics were fabricated through vacuum sintering from nano-powders synthesized by a simple combustion method. The phase composition of the powders and final ceramics, the in-line transmittance, microstructures and density of the ceramics were investigated. With the increasing of Gd content, the ceramics maintained the cubic pyrochlore structure, and the lattice parameters decreased, whilst the densities increased linearly. All the ceramics were transparent. The highest in-line transmittance was 76.1% at 800 nm (x=1.2). With high density (7.91–8.88 g/cm 3 ) and effective atomic number, some of the La 2-x Gd x Hf 2 O 7 (x=0–2.0) transparent ceramics are promising candidates for scintillator hosts. - Highlights: • A new series of La 2-x Gd x Hf 2 O 7 transparent ceramics were fabricated by vacuum sintering using combustion-synthesized powders. • All the ceramics are transparent and the in-line transmittance can reach to 76.1% at 800 nm when x=1.2. • The Gd content has effects on the crystal structure, in-line transmittance, microstructures and densities of the ceramics. • With high density (7.91~8.88 g/cm3) and effective atomic number, some of the La2-xGdxHf2O7 transparent ceramics are promising candidates for scintillator hosts.

  14. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  15. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  16. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  17. The role of nano-particles in the field of thermal spray coating technology

    Science.gov (United States)

    Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas

    2005-06-01

    Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.

  18. [Ceramic inlays and onlays].

    Science.gov (United States)

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  19. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  20. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  1. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  2. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  3. Preparation and spectral analysis of a new Tb3+-doped CaO-MgO-SiO2 glass ceramics

    International Nuclear Information System (INIS)

    Cheng Jinshu; Tian Peijing; Zheng Weihong; Xie Jun; Chen Zhenxia

    2009-01-01

    Tb 3+ -doped CaO-MgO-SiO 2 glass ceramics have been prepared and characterized. The structure and optical properties of the glass ceramics were studied by XRD, SEM, Raman, and fluorescence spectra. The precipitated crystalline phase in the glass ceramics was columnar CaMgSi 2 O 6 . Raman spectra showed the introduction of rare earth nearly had no influence on the sample structure. Fluorescence measurements showed that Tb 3+ ions entered into the diopside crystalline phase and induced a much stronger emission in the glass ceramics than that in the corresponding glass. With increase of Tb 3+ content and the introduction of Gd 3+ , the fluorescence intensity of the luminescent glass ceramic increased

  4. Fabrication and characterization of low temperature co-fired cordierite glass–ceramics from potassium feldspar

    International Nuclear Information System (INIS)

    Wu, Jianfang; Li, Zhen; Huang, Yanqiu; Li, Fei; Yang, Qiuran

    2014-01-01

    Highlights: • Low cost cordierite glass–ceramics were fabricated from potassium feldspar. • The glass–ceramics could be highly densified below 950 °C. • The glass–ceramics exhibit extraordinary properties. • The glass–ceramics can be used as LTCC substrates. • The excess SiO 2 improved the microstructure and properties of the glass–ceramics. -- Abstract: Cordierite glass–ceramics for low temperature co-fired ceramic (LTCC) substrates were fabricated successfully using potassium feldspar as the main raw material. The sintering and crystallization behaviors of the glass–ceramics were investigated by the differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscope (FESEM). The results indicated that the glass–ceramics could be highly densified at 850 °C and the cordierite was the main crystalline phase precipitated from the glasses in the temperature range between 900 and 925 °C. The study also evaluated the physical properties including dielectric properties, thermal expansion and flexural strength of the glass–ceramics. The glass–ceramics showed low dielectric constants in the range of 6–8 and low dielectric losses in the range of 0.0025–0.01. The coefficients of thermal expansion (CTEs) are between 4.32 and 5.48 × 10 −6 K −1 and flexural strength of the glass–ceramics are 90–130 MPa. All of those qualify the glass–ceramics for further research to be used as potential LTCC substrates in the multilayer electronic substrate field. Additionally, the excess SiO 2 acted as a great role in improving the sinterability of the glasses, and the microstructure and dielectric properties of the relevant glass–ceramics

  5. Effects of Surface Morphology ZnAl2O4 of Ceramic Materials on Osteoblastic Cells Responses

    International Nuclear Information System (INIS)

    Suarez-Franco, J.L.; Fernandez-Pedrero, J.A.; Ivarez-Perez, M.A.; Garcia-Hipolito, M.; Surarez-Rosales, M.; Fregoso, O.; Juarez-Islas, J.A.; Ivarez-Perez, M.A.

    2013-01-01

    Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nano structure thin films of ZnAl 2 O 4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl 2 O 4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl 2 O 4 nano structured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nano structure ceramic improves cell-material interaction with enhanced spreading and filopodia with multiple cellular extensions on the surface of the ceramic and enhancing cell viability/proliferation in comparison with bulk ceramic surfaces used as control. Altogether, these results suggest that zinc aluminate nano structured materials have a great potential to be used in dental implant and bone substitute applications.Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nano structure thin films of ZnAl 2 O 4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl 2 O 4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl 2 O 4 nano structured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nano structure ceramic improves

  6. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  7. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics

    KAUST Repository

    Hang, Qiming

    2013-09-07

    0.67BiFeO3-0.33BaTiO3 multiferroic ceramics doped with x mol% MnO2 (x = 2–10) were synthesized by solid-state reaction. The formation of a perovskite phase with rhombohedral symmetry was confirmed by X-ray diffraction (XRD). The average grain sizes were reduced from 0.80 μm to 0.50 μm as increasing the Mn-doped levels. Single crystalline nature of the grains was revealed by high-resolution transmission electron microscopy (HRTEM) images and electron diffraction patterns. Polar nano-sized ferroelectric domains with an average size of 9 nm randomly distributed in the ceramic samples were revealed by TEM images. Ferroelectric domain lamellae (71° ferroelectric domains) with an average width of 5 nm were also observed. Vibrational modes were examined by Raman spectra, where only four Raman peaks at 272 cm−1 (E-4 mode), 496 cm−1 (A 1-4 mode), 639 cm−1, and 1338 cm−1 were observed. The blue shifts in the E-4 and A 1-4 Raman mode frequencies were interpreted by a spring oscillator model. The dieletric constants of the present ceramics as a function of the Mn-doped levels exhibited a V-typed curve. They were in the range of 350–700 measured at 103 Hz, and the corresponding dielectric losses were in range of 0.43–0.96, approaching to 0.09 at 106 Hz.

  8. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics

    KAUST Repository

    Hang, Qiming; Zhou, Wenke; Zhu, Xinhua; Zhu, Jianmin; Liu, Zhiguo; Al-Kassab, Talaat

    2013-01-01

    0.67BiFeO3-0.33BaTiO3 multiferroic ceramics doped with x mol% MnO2 (x = 2–10) were synthesized by solid-state reaction. The formation of a perovskite phase with rhombohedral symmetry was confirmed by X-ray diffraction (XRD). The average grain sizes were reduced from 0.80 μm to 0.50 μm as increasing the Mn-doped levels. Single crystalline nature of the grains was revealed by high-resolution transmission electron microscopy (HRTEM) images and electron diffraction patterns. Polar nano-sized ferroelectric domains with an average size of 9 nm randomly distributed in the ceramic samples were revealed by TEM images. Ferroelectric domain lamellae (71° ferroelectric domains) with an average width of 5 nm were also observed. Vibrational modes were examined by Raman spectra, where only four Raman peaks at 272 cm−1 (E-4 mode), 496 cm−1 (A 1-4 mode), 639 cm−1, and 1338 cm−1 were observed. The blue shifts in the E-4 and A 1-4 Raman mode frequencies were interpreted by a spring oscillator model. The dieletric constants of the present ceramics as a function of the Mn-doped levels exhibited a V-typed curve. They were in the range of 350–700 measured at 103 Hz, and the corresponding dielectric losses were in range of 0.43–0.96, approaching to 0.09 at 106 Hz.

  9. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  10. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  11. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  12. Synthesis, deposition and crystal growth of CZTS nanoparticles onto ceramic tiles

    Directory of Open Access Journals (Sweden)

    Ivan Calvet

    2015-09-01

    Full Text Available The work presents a simple solvothermal method for CZTS nanoparticles preparation using hexadecylamine (HDA as a capping agent. The as-prepared CZTS powder was deposited as ink using Doctor Blade technique onto ceramic tile, as a substrate substituting the typical soda-lime glass. The as-prepared film was thermal treated at different temperatures in order to enhance the thin film crystallinity. CZTS crystal growth onto ceramic tile was obtained successfully for the first time.

  13. Neutron transmission through crystalline Fe

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Kilany, M.; El-Mesiry, M.S.

    2004-01-01

    The neutron transmission through crystalline Fe has been calculated for neutron energies in the range 10 4 < E<10 eV using an additive formula. The formula permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-section as a function of temperature and crystalline form. The obtained agreement between the calculated values and available experimental ones justifies the applicability of the used formula. A feasibility study on using poly-crystalline Fe as a cold neutron filter and a large Fe single crystal as a thermal one is given

  14. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  15. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  16. Electronic Conductivity of Vanadium-Tellurite Glass-Ceramics

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng; Bragatto, Caio B.

    2013-01-01

    In this paper, we investigate the electronic conductivity of 2TeO2-V2O5 glass-ceramics with crystallinity ranging from 0 to 100 wt.%, i.e., from entirely amorphous to completely crystalline. The glass is prepared by the melt quenching technique, and the crystal is prepared by subsequent heat...... spectroscopy. We find similar activation energies for both glass and crystal, implying that they have similar conduction mechanisms, i.e., thermally activated hopping. The electronic conductivity of 2TeO2-V2O5 glass is about one order of magnitude higher than that of the corresponding crystal......, and a percolation phenomenon occurs at a glass fraction of 61 wt.%, increasing from a lower conductivity in the crystal to a higher conductivity in the glass. We explain the behavior of electronic conduction in the 2TeO2-V2O5 glass-ceramics by considering constriction effects between particles as well...

  17. Manufacturing of porous oxide ceramics by replication of plant morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Sieber, H.; Rambo, C.; Cao, J.; Vogli, E.; Greil, P. [Erlangen-Nuernberg Univ., Erlangen (DE). Dept. of Materials Science (III) Glass and Ceramics

    2002-07-01

    Biomorphic oxide ceramics of alumina, mullite and zirconia with a directed pore morphology on the micrometer level were manufactured from bioorganic plant structures by sol-gel processing as well as sol-assisted nano-powder infiltrations. The inherent open porous morphology of natural grown rattan palms was used for vacuum-infiltration with aluminum isopropoxide (Al(OC{sub 3}H{sub 7}){sub 3}), zirconium oxichloride (ZrOCl{sub 2}.8H{sub 2}O) and SiO{sub 2} nano powder. Hydrolysis of the sols by adding HNO{sub 3} and pyrolysis in inert atmosphere at 800 C resulted in the formation of biocarbon/ceramic replica of the original wood morphology. The specimens were sintered in air at temperatures up to 1600 C to yield porous oxide ceramics with an unidirected pore structure similar to the original plant material. Repeated infiltration, hydrolysis and annealing steps were applied to increase the density of the ceramic materials. (orig.)

  18. Spectroscopic Properties of Neodymium and Erbium-Doped Magnesium Oxide Ceramics

    Science.gov (United States)

    2015-09-01

    universally >99% of theoretical. Powder x-ray diffraction (XRD) analysis was employed to determine the crystalline phases in doped MgO ceramics after the...different sintering steps. Powders of sintered pellets were prepared by grinding fragments in a glass mortar and pestle to avoid crystalline...than anticipated for the doped MgO. Somewhat more conclusive information on the extent of successful RE doping was derived from the XRD analysis

  19. New ceramic materials

    International Nuclear Information System (INIS)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  20. Transparent ceramics for armor and EM window applications

    OpenAIRE

    Patel, Parimal J.; Gilde, Gary A.; Dehmer, Peter G.; McCauley, James W.

    2000-01-01

    Recently, the U.S. Army Research Laboratory (ARL) has focused increased attention on the development of transparent armor material systems for a variety of applications. Future combat and non-combat environments will require lightweight, threat adjustable, multifunctional, and affordable armor. Current glass/polycarbonate technologies are not expected to meet the increased requirements. Results over the past few years indicate that the use of transparent crystalline ceramics greatly improve t...

  1. Mounting for ceramic scroll

    Science.gov (United States)

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  2. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  3. Luminescence and host lattice structure of crystalline micro and nanoparticles co-doped with lanthanide ions

    International Nuclear Information System (INIS)

    Zurba, Nadia Khaled; Ferreira, Jose Maria da Fonte

    2012-01-01

    This article reports the investigation of crystalline micro and nanoparticles codoped with lanthanide ions, aiming at correlate their host lattice structure and chemical composition to the luminescence features. For this purpose, five phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy coupled to energy dispersive X-ray (EDX) spectroscopy, and photoluminescence (PL) spectroscopy, namely performed by their chromatic coordinates, radiance, luminance and PL emission spectra. This type of investigation concerning the optical characterization of luminescent crystalline micro and nanoparticles doped with lanthanide ions might be useful for scientific and practical applications, such as in light-emitting devices, luminescent paintings, ceramics, sensors, in nanoscience and nanotechnology. (author)

  4. Dynamic fatigue on repolarization of lead zirconate-titanate base ceramics with various ferroelectric hardness

    International Nuclear Information System (INIS)

    Gavrilyachenko, V.G.; Semenchev, A.F.; Sklyarova, E.N.; Kuznetsova, E.M.

    2006-01-01

    One studied experimentally changes of the residual polarization in lead zirconate-titanate base ceramics with various ferroelectric hardness under the effect of a strong varying field. The twinning and untwinning of crystallites accompanying repolarization is assumed to be the basic mechanism of propagation of the crystalline structure defects governing the fatigue rates of the ferroelectric-soft ceramics. In ferroelectric-hard ceramics crystallites the stable configurations of mechanical twins, the result of the secondary twinning, are formed when the hysteresis loop is formed. At repolarization in the mentioned structures one observes no motion of the twin boundaries, and the fatigue rates are low ones [ru

  5. Effect of milling on the damping behavior of nano-structured copper

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, Narasimalu; Thein, Maung Aye; Gupta, Manoj

    2004-02-05

    In the present study, elemental Cu powder was mechanically milled (MMed) for 10 h to reduce the grain (crystalline) size in the nano-range (<100 nm). The mechanically milled powder (10 h-MMed) and elemental powder without mechanical milling (MM) (0 h-MMed) was consolidated by die-cold compaction and were further hot extruded at different temperatures to maintain a crystallite size within the nano-range. Further, the specimen was tested by a novel free-free type suspended beam arrangement, coupled with circle-fit approach to determine damping characteristics. The characterization results help to understand the effect of the nano-size grains on the overall damping capacity of the bulk samples compared to a normal micro-crystalline sample. Results show that the damping capacity of the nano-grained material increases due to the presence of process induced microstructural changes similar to the damping behavior of a micro-grain sized specimen.

  6. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  7. Fabrication and thermal oxidation of ZnO nano fibers prepared via electro spinning technique

    International Nuclear Information System (INIS)

    Baek, Jeongha; Park, Juyun; Kim, Don; Kang, Yongcheol; Koh, Sungwi; Kang, Jisoo

    2012-01-01

    Materials on the scale of nano scale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nano fibers using the electro spinning method for potential uses of solar cells and sensors. After ZnO nano fibers were obtained, calcination temperature effects on the ZnO nano fibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nano fibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nano fibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nano fibers. These techniques have helped US deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nano fibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised

  8. [Microstructure and mechanical property of a new IPS-Empress 2 dental glass-ceramic].

    Science.gov (United States)

    Luo, Xiao-ping; Watts, D C; Wilson, N H F; Silsons, N; Cheng, Ya-qin

    2005-03-01

    To investigate the microstructure and mechanical properties of a new IPS-Empress 2 dental glass-ceramic. AFM, SEM and XRD were used to analyze the microstructure and crystal phase of IPS-Empress 2 glass-ceramic. The flexural strength and fracture toughness were tested using 3-point bending method and indentation method respectively. IPS-Empress 2 glass-ceramic mainly consisted of lithium disilicate crystal, lithium phosphate and glass matrix, which formed a continuous interlocking structure. The crystal phases were not changed before and after hot-pressed treatment. AFM showed nucleating agent particles of different sizes distributed on the highly polished ceramic surface. The strength and fracture toughness were 300 MPa and 3.1 MPam(1/2). The high strength and fracture toughness of IPS-Empress 2 glass ceramic are attributed to the fine lithium disilicate crystalline, interlocking microstructure and crack deflection.

  9. Ceramic and glass radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Readey, D.W.; Cooley, C.R. (comps.)

    1977-01-01

    This report contains 14 individual presentations and 6 group reports on the subject of glass and polycrystalline ceramic radioactive waste forms. It was the general consensus that the information available on glass as a waste form provided a good basis for planning on the use of glass as an initial waste form, that crystalline ceramic forms could also be good waste forms if much more development work were completed, and that prediction of the chemical and physical stability of the waste form far into the future would be much improved if the basic synergistic effects of low temperature, radiation and long times were better understood. Continuing development of the polycrystalline ceramic forms was recommended. It was concluded that the leach rate of radioactive species from the waste form is an important criterion for evaluating its suitability, particularly for the time period before solidified waste is permanently placed in the geologic isolation of a Federal repository. Separate abstracts were prepared for 12 of the individual papers; the remaining two were previously abstracted.

  10. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Understanding Microstructural Properties of Perovskite Ceramics through Their Wet-Chemical Synthesis

    NARCIS (Netherlands)

    Stawski, Tomasz

    2011-01-01

    This thesis comprises of seven full research chapters on the morphology, properties and processing of sol-gel precursor systems of barium titanate and lead zirconate titanate thin films and powders. In all the considered problems, the synthesis leading to nano-sized perovskite ceramics constitutes

  12. The make up of crystalline bedrock - crystalline body and blocks

    International Nuclear Information System (INIS)

    Huber, M.; Huber, A.

    1986-01-01

    Statements of a geological nature can be made on the basis of investigations of the bedrock exposed in southern Black Forest and these can, in the form of prognoses, be applied to the crystalline Basement of northern Switzerland. Such statements relate to the average proportions of the main lithological groups at the bedrock surface and the surface area of the granite body. Some of the prognoses can be compared and checked with the results from the deep drilling programme in northern Switzerland. Further, analogical interferences from the situation in the southern Black Forest allow predictions to be made on the anticipated block structure of the crystalline Basement. (author)

  13. Comparison of the microstructure and composition of aboriginal ceramics, from indigenous site Caninhas, with the obtained ones in the region

    International Nuclear Information System (INIS)

    Matos, C.C.; Nakano, F.P.; Taguchi, S.P.; Camargo-Vernilli, D.; Ribeiro, R.B.; Rosa, S.J. L.

    2009-01-01

    The archaeological site of Caninhas is made of funeral and combustion structures and various objects of aboriginal daily use. These parts and fragments were safe and inventoried, constituting approximately 4000 units. The objective of this project was to analyze the microstructure and composition of archaeological ceramics, and ceramics made of argil current of the zone. The crystalline phases were identified by X-Rays Diffraction (XRD), elementary composition was obtained by X-Rays Fluorescence (XRF) and Energy Dispersive Spectrometry (EDS), and the microstructure was evaluated by Scanning Electron Microscope (SEM). Composition and microstructure of archaeological ceramics are different of current ceramics, indicating the effect of lixiviation in function of the time and the microstructural evolution due different ceramic processing. These results are valuable for the archaeological area studies, mainly for the cultural denoting which represents. The relation between some studies is basic to add knowledge: use of the ceramic materials engineering for archaeology application. (author)

  14. neutron transmission through crystalline materials

    International Nuclear Information System (INIS)

    El Mesiry, M.S.

    2011-01-01

    The aim of the present work is to study the neutron transmission through crystalline materials. Therefore a study of pyrolytic graphite (PG) as a highly efficient selective thermal neutron filter and Iron single crystal as a whole one, as well as the applicability of using their polycrystalline powders as a selective cold neutron filters is given. Moreover, the use of PG and iron single crystal as an efficient neutron monochromator is also investigated. An additive formula is given which allows calculating the contribution of the total neutron cross-section including the Bragg scattering from different )(hkl planes to the neutron transmission through crystalline iron and graphite. The formula takes into account their crystalline form. A computer CFe program was developed in order to provide the required calculations for both poly- and single-crystalline iron. The validity of the CFe program was approved from the comparison of the calculated iron cross-section data with the available experimental ones. The CFe program was also adapted to calculate the reflectivity from iron single crystal when it used as a neutron monochromator The computer package GRAPHITE, developed in Neutron Physics laboratory, Nuclear Research Center, has been used in order to provide the required calculations for crystalline graphite in the neutron energy range from 0.1 meV to 10 eV. A Mono-PG code was added to the computer package GRAPHITE in order to calculate the reflectivity from PG crystal when it used as a neutron monochromator.

  15. Diverse topics in crystalline beams

    International Nuclear Information System (INIS)

    Wei, Jie; Draeseke, A.; Sessler, A.M.; Li, Xiao-Ping

    1995-01-01

    Equations of motion are presented, appropriate to interacting charged particles of diverse charge and mass, subject to the external forces produced by various kinds of magnetic fields and radio-frequency (rf) electric fields in storage rings. These equations are employed in the molecular dynamics simulations to study the properties of crystalline beams. The two necessary conditions for the formation and maintenance of crystalline beams are summarized. The transition from ID to 2D, and from 2D to 3D is explored, and the scaling behavior of the heating rates is discussed especially in the high temperature limit. The effectiveness of various cooling techniques in achieving crystalline states has been investigated. Crystalline beams made of two different species of ions via sympathetic cooling are presented, as well as circulating ''crystal balls'' bunched in all directions by magnetic focusing and rf field. By numerically reconstructing the original experimental conditions of the NAP-M ring, it is found that only at extremely low beam intensities, outside of the range of the original measurement, proton particles can form occasionally-passing disks. The proposed New ASTRID ring is shown to be suitable for the formation and maintenance of crystalline beams of all dimensions

  16. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    Science.gov (United States)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  17. Nano-Ag complexes prepared by γ-radiolysis and their structures and physical properties

    International Nuclear Information System (INIS)

    Kim, Hwa-Jung; Choi, Seong-Ho; Park, Hae-Jun

    2012-01-01

    In this study, nano-silver (nano-Ag) complexes showing different properties have been synthesized as follows. Polypyrrolidone (PVP)-stabilized silver colloids (NAg), nano-Ag bound to silica (SiO 2 ) (NSS), and nano-Ag bound to a complex of SiO 2 and polyaniline (PANI) (NSSPAI) were prepared via γ-irradiation at room temperature. NAg and NSS used PVP as a colloidal stabilizer, while NSSPAI did not use PVP as a colloidal stabilizer. Interesting bonding properties occurred in the nano-Ag complex and anticipated structural changes were clearly shown through a surface analysis of x-ray photoelectron spectroscopy (XPS). The morphologies by field emission-scanning electron microscopy (FE-SEM) analysis showed that nano-Ag complexes have various particle sizes ranging from 10 to 30 nm. NSS (average, 10 nm) and NSSPAI (average, 30 nm) showed a uniformly spherical shape and size, while NAg did not. From the reflection peaks in the x-ray diffraction (XRD) patterns, surface crystallinity of the nano-Ag complexes was indicated to be in the same degree as that of NSSPAI>NSS>NAg. Also, in the contact angle (CA) determination, surface hydrophobicity of NSSPAI was stronger than those of NSS and NAg, relatively. The different nano-Ag complexes prepared by γ-irradiation can be applicable in various industry fields due to the increase in specific property. - Highlights: ► Nano-Ag complexes showing different properties have been synthesized via γ-irradiation. ► Nano-Ag colloid (NAg), nano-Ag bound to SiO 2 (NSS), nano-Ag bound to SiO 2 and PANI complex (NSSPAI). ► Nano-Ag complexes were the same based on Ag metal. ► Results clearly showed fascinating/different physical properties. ► Different nano-Ag complexes can be applicable in various industry fields.

  18. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  19. Factors controlling crystallization of miserite glass-ceramic.

    Science.gov (United States)

    Muhammed, Fenik K; Moorehead, Robert; van Noort, Richard; Pollington, Sarah

    2015-12-01

    The purpose of this study was to investigate a range of variables affecting the synthesis of a miserite glass-ceramic (GC). Miserite glass was synthesized by the melt quench technique. The crystallization kinetics of the glass were determined using Differential Thermal Analysis (DTA). The glasses were ground with dry ball-milling and then sieved to different particle sizes prior to sintering. These particle sizes were submitted to heat treatment regimes in a high temperature furnace to form the GC. The crystal phases of the GC were analyzed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to examine the microstructure of the cerammed glass. XRD analysis confirmed that the predominant crystalline phase of the GC was miserite along with a minor crystalline phase of cristobalite only when the particle size is <20 μm and the heat treatment at 1000°C was carried out for 4h and slowly cooled at the furnace rate. For larger particle sizes and faster cooling rates, a pseudowollastonite crystalline phase was produced. Short sintering times produced either a pseudowollastonite or xonotolite crystalline phase. The current study has shown that particle size and heat treatment schedules are major factors in controlling the synthesis of miserite GC. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. The Nano Solar Case

    DEFF Research Database (Denmark)

    Hollensen, Svend; Lindgren, Peter

    2011-01-01

    ISO PAINT Nordic A/S produces roof coatings, facade painting as well as specialised products for surface treatments. The company decided that they would develop a nano solar ICT based project having the capacity to change the whole cost structure of a building, for example by a nano roof coating...

  1. Radionuclide migration in crystalline rock fractures

    International Nuclear Information System (INIS)

    Hoelttae, P.

    2002-01-01

    Crystalline rock has been considered as a host medium for the repository of high radioactive spent nuclear fuel in Finland. The geosphere will act as an ultimate barrier retarding the migration of radionuclides to the biosphere if they are released through the technical barriers. Radionuclide transport is assumed to take place along watercarrying fractures, and retardation will occur both in the fracture and within the rock matrix. To be able to predict the transport and retardation of radionuclides in rock fractures and rock matrices, it is essential to understand the different phenomena involved. Matrix diffusion has been indicated to be an important mechanism, which will retard the transport of radionuclides in rock fractures. Both dispersion and matrix diffusion are processes, which can have similar influences on solute breakthrough curves in fractured crystalline rock. In this work, the migration of radionuclides in crystalline rock fractures was studied by means of laboratory scale column methods. The purpose of the research was to gain a better understanding of various phenomena - particularly matrix diffusion - affecting the transport and retardation behaviour of radionuclides in fracture flow. Interaction between radionuclides and the rock matrix was measured in order to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of underground repositories for spent nuclear fuel. Rock samples of mica gneiss and of unaltered, moderately altered and strongly altered tonalite represented different rock features and porosities offering the possibility to determine experimental boundary limit values for parameters describing both the transport and retardation of radionuclides and rock matrix properties. The dominant matrix diffusion behaviour was demonstrated in porous ceramic column and gas diffusion experiments. Demonstration of the effects of matrix diffusion in crystalline rock fracture succeeded for the

  2. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  3. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  4. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  5. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  6. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  7. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  8. Integrated Sensing of Alcohols by CNT Blended HAp Nano Ceramics

    Directory of Open Access Journals (Sweden)

    Shaikh R. ANJUM

    2016-11-01

    Full Text Available The research work reports the application of carbon nanotubes (CNT blended Hydroxyapatite (HAp composites as ideal thick film substrates for the detection of hazardous and flammable methanol vapours. The main objective of this work is to improve the temperature-dependent sensitivity of the sensor for the detection of lower methanol concentration. In this study, the sensing ability of native HAp and CNT blended HAp thick films is studied for the detection of methanol vapours present in ambient air individually and in the form of a mixture of methanol, ethanol, and propanol. The sensing parameters are studied using two probe electrical method. The sensor substrate is made by means of doping of different concentrations of CNT in HAp. The sensing of methanol vapours is studied at a fixed concentration of 100 ppm. Native HAp substrate shows good sensitivity for methanol at room temperature; however, its sensing performance is inferior to the CNT blended materials. The blended composites exhibit impressive sensing ability compared with native HAp in terms of sensitivity, response/ recovery time and maximum uptake limit. The sensing mechanism for methanol detection, the role of HAp as a parent material and CNT as an additive, is explained using a suitable sensing mechanism.

  9. Percolative ionic conduction in the LiAlSiO4 glass-ceramic system

    International Nuclear Information System (INIS)

    Biefeld, R.M.; Pike, G.E.; Johnson, R.T. Jr.

    1977-01-01

    The effect f crystallinity on the lithium ion conductivity in LiAlSiO 4 glass and glass-ceramic solid electrolytes has been determined. The ionic conductivity is thermally activated with an activation energy and pre-exponential factor that change in a marked and nonsimple manner as the volume fraction of crystallinity changes. These results are explained by using a continuum percolation model (effective-medium approximation) which assumes that ionic conduction in the glass-ceramic is almost entirely within the glass phase until the crystalline volume fraction rises above approx. 55%. The LiAlSiO 4 system would seem to be nearly ideal for application of percolation theory since the crystalline phase, β eucryptite, has nearly the same composition as the glass phase. Hence, as the crystallite volume fraction increases in the glass ceramic, the residual glass composition and conductivity remain the same. This is the first application of percolation theory to ionic transport in glass-ceramics and excellent agreement is obtained between theory and experiment for the LiAlSiO 4 system

  10. Solid state reaction in alumina nanoparticles/LZSA glass-ceramic composites

    International Nuclear Information System (INIS)

    Montedo, O.K.; Oliveira, A.N. de; Raupp-Pereira, F.

    2016-01-01

    Full text: The aim of this work is to present results related to solid state reactions on LZSA glass-ceramic composites containing alumina reinforcement nano-particles. A LZSA (Li2O-ZrO2-SiO2-Al2O3) glass-ceramic has been prepared by sintering of powders and characterized. Composites containing 0 to 77 vol.% of alumina nanoparticles (27-43 nm APS, 35 m2.g-1 SSA) and a 16.9Li2O•5.0ZrO2•65.1SiO2•8.6Al2O3 glass-ceramic matrix have been prepared. X-ray diffractometry studies have been performed in order of investigating the solid state reactions occurring in LZSA-based composites. Results of the XRD patterns have been related to the coefficient of thermal expansion (CTE), Young modulus, and dielectric constant, showing that, in comparison with the glass-ceramic composition, the composites showed a decrease of CTE with the alumina concentration increasing, due to the increasing of beta-spodumeness formation (solid solution of beta-spodumene, Li2O.Al2O3.4-10SiO2). The performance of the glass-ceramic was improved with the alumina nano-particles addition, showing potential of using in the preparation of Low Thermal Co-fired Ceramics (LTCC). (author)

  11. A standardless method of quantitative ceramic analysis using X-ray powder diffraction

    International Nuclear Information System (INIS)

    Mazumdar, S.

    1999-01-01

    A new procedure using X-ray powder diffraction data for quantitative estimation of the crystalline as well as the amorphous phase in ceramics is described. Classification of the crystalline and amorphous X-ray scattering was achieved by comparison of the slopes at two successive points of the powder pattern at scattering angles at which the crystalline and amorphous phases superimpose. If the second slope exceeds the first by a stipulated value, the intensity is taken as crystalline; otherwise the scattering is considered as amorphous. Crystalline phase analysis is obtained by linear programming techniques using the concept that each observed X-ray diffraction peak has contributions from n component phases, the proportionate analysis of which is required. The method does not require the measurement of calibration data for use as an internal standard, but knowledge of the approximate crystal structure of each phase of interest in the mixture is necessary. The technique is also helpful in qualitative analysis because each suspected phase is characterized by the probability that it will be present when a reflection zone is considered in which the suspected crystalline phase could contribute. The amorphous phases are determined prior to the crystalline ones. The method is applied to ceramic materials and some results are presented. (orig.)

  12. Selecting Ceramics - Introduction

    OpenAIRE

    Cassidy, M.

    2002-01-01

    AIM OF PRESENTATION: To compare a number of materials for extracoronal restoration of teeth with particular reference to CAD-CAM ceramics. CASE DESCRIPTION AND TREATMENT CARRIED OUT: This paper will be illustrated using clinical examples of patients treated using different ceramic restorations to present the advantages and disadvantages and each technique. The different requirements of tooth preparation, impression taking and technical procedures of each system will be presented and compar...

  13. Cavitation damage of ceramics

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Marinin, V.G.

    1988-01-01

    Consideration is given to results of investigation of ceramic material damage under the effect of cavitation field on their surface, formed in water under the face of exponential concentrator, connected with ultrasonic generator UZY-3-0.4. Amplitude of vibrations of concentrator face (30+-2)x10 -6 m, frequency-21 kHz. It was established that ceramics resistance to cavitation effect correlated with the product of critical of stress intensity factor and material hardness

  14. Controlling the near-field excitation of nano-antennas with phase-change materials.

    Science.gov (United States)

    Kao, Tsung Sheng; Chen, Yi Guo; Hong, Ming Hui

    2013-01-01

    By utilizing the strongly induced plasmon coupling between discrete nano-antennas and quantitatively controlling the crystalline proportions of an underlying Ge2Sb2Te5 (GST) phase-change thin layer, we show that nanoscale light localizations in the immediate proximity of plasmonic nano-antennas can be spatially positioned. Isolated energy hot-spots at a subwavelength scale can be created and adjusted across the landscape of the plasmonic system at a step resolution of λ/20. These findings introduce a new approach for nano-circuitry, bio-assay addressing and imaging applications.

  15. New solid laser: Ceramic laser. From ultra stable laser to ultra high output laser

    International Nuclear Information System (INIS)

    Ueda, Kenichi

    2006-01-01

    An epoch-making solid laser is developed. It is ceramic laser, polycrystal, which is produced as same as glass and shows ultra high output. Ti 3+ :Al 2 O 3 laser crystal and the CPA (chirped pulse amplification) technique realized new ultra high output lasers. Japan has developed various kinds of ceramic lasers, from 10 -2 to 67 x 10 3 w average output, since 1995. These ceramic lasers were studied by gravitational radiation astronomy. The scattering coefficient of ceramic laser is smaller than single crystals. The new fast ignition method is proposed by Institute of Laser Engineering of Osaka University, Japan. Ultra-intense short pulse laser can inject the required energy to the high-density imploded core plasma within the core disassembling time. Ti 3+ :Al 2 O 3 crystal for laser, ceramic YAG of large caliber for 100 kW, transparent laser ceramic from nano-crystals, crystal grain and boundary layer between grains, the scattering coefficient of single crystal and ceramic, and the derived release cross section of Yb:YAG ceramic are described. (S.Y.)

  16. Ageing of low-firing prehistoric ceramics in hydrothermal conditions

    Directory of Open Access Journals (Sweden)

    Petra Zemenová

    2012-03-01

    Full Text Available Remains of a prehistoric ceramic object, a moon-shaped idol from the Bronze Age found in archaeological site Zdiby near Prague in the Czech Republic, were studied especially in terms of the firing temperature. Archaeological ceramics was usually fired at temperatures below 1000 °C. It contained unstable non-crystalline products, residua after calcination of clay components of a ceramic material. These products as metakaolinite can undergo a reverse rehydration to a structure close to kaolinite. The aim of this work was to prove whether the identified kaolinite in archaeological ceramics is a product of rehydration. The model compound containing high amount of kaolinite was prepared in order to follow its changes during calcination and hydrothermal treatment. Archaeological ceramics and the model compound were treated by hydrothermal ageing and studied by XRF, XRD and IR analyses. It was proved that the presence of kaolinite in the border-parts of the archaeological object was not a product of rehydration, but that it originated from the raw materials.

  17. Laser synthesis of nanostructured ceramics from liquid precursors

    International Nuclear Information System (INIS)

    Wilden, Johannes; Fischer, Georg

    2007-01-01

    The free-form net shape laser synthesis of nanostructured ceramics from liquid precursors enables a residual stress-free production of high temperature resistant ceramic units and components for the use in microsystem engineering. Due to the use of molecular compounded liquid, ceramic precursors the resulting ceramic components show outstanding properties, for example high purity and a nanostructured material design. The use of pulsed lasers enables a defined input of energy required to pyrolyse the precursor material into a crystalline ceramic, so the active volume can be reduced significantly compared to other processes, for example pyrolysis by furnace. In this paper several methods for a further minimization of the active volume are presented. The investigations determined different factors affecting the process. Realizing selective experiments allows a determination of their influencing level and the definition of a working area to produce three-dimensional components with high aspect ratio. By several studies, e.g., scanning electron microscopy, transmission electron microscopy as well as X-ray diffraction analysis, the atomic structure and composition of the created components were analyzed and valued, so the different reaction processes can be described extensively

  18. Glycation precedes lens crystallin aggregation

    International Nuclear Information System (INIS)

    Swamy, M.S.; Perry, R.E.; Abraham, E.C.

    1987-01-01

    Non-enzymatic glycosylation (glycation) seems to have the potential to alter the structure of crystallins and make them susceptible to thiol oxidation leading to disulfide-linked high molecular weight (HMW) aggregate formation. They used streptozotocin diabetic rats during precataract and cataract stages and long-term cell-free glycation of bovine lens crystallins to study the relationship between glycation and lens crystallin aggregation. HMW aggregates and other protein components of the water-soluble (WS) and urea-soluble (US) fractions were separated by molecular sieve high performance liquid chromatography. Glycation was estimated by both [ 3 H]NaBH 4 reduction and phenylboronate agarose affinity chromatography. Levels of total glycated protein (GP) in the US fractions were about 2-fold higher than in the WS fractions and there was a linear increase in GP in both WS and US fractions. This increase was parallelled by a corresponding increase in HMW aggregates. Total GP extracted by the affinity method from the US fraction showed a predominance of HMW aggregates and vice versa. Cell-free glycation studies with bovine crystallins confirmed the results of the animals studies. Increasing glycation caused a corresponding increase in protein insolubilization and the insoluble fraction thus formed also contained more glycated protein. It appears that lens protein glycation, HMW aggregate formation, and protein insolubilization are interrelated

  19. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  20. The history of ceramic filters.

    Science.gov (United States)

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.