WorldWideScience

Sample records for nano composite materials

  1. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  2. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  3. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  4. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    Science.gov (United States)

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  5. Some Fundamental Aspects of Mechanics of Nano composite Materials and Structural Members

    International Nuclear Information System (INIS)

    Guz, A.N.; Rushchitsky, J.J.

    2013-01-01

    This paper is devoted to formulation and analysis of fundamental aspects of mechanics of nano composite materials and structural members. These aspects most likely do not exhaust all of the possible fundamental characteristics of mechanics of nano composite materials and structural members, but, nevertheless, they permit to form the skeleton of direction of mechanics in hand. The proposed nine aspects are described and commented briefly.

  6. Improvement of performance of ultra-high performance concrete based composite material added with nano materials

    Directory of Open Access Journals (Sweden)

    Pang Jinchang

    2016-03-01

    Full Text Available Ultra-high performance concrete (UHPC, a kind of composite material characterized by ultra high strength, high toughness and high durability. It has a wide application prospect in engineering practice. But there are some defects in concrete. How to improve strength and toughness of UHPC remains to be the target of researchers. To obtain UHPC with better performance, this study introduced nano-SiO2 and nano-CaCO3 into UHPC. Moreover, hydration heat analysis, X-Ray Diffraction (XRD, mercury intrusion porosimetry (MIP and nanoindentation tests were used to explore hydration process and microstructure. Double-doped nanomaterials can further enhance various mechanical performances of materials. Nano-SiO2 can promote early progress of cement hydration due to its high reaction activity and C-S-H gel generates when it reacts with cement hydration product Ca(OH2. Nano-CaCO3 mainly plays the role of crystal nucleus effect and filling effect. Under the combined action of the two, the composite structure is denser, which provides a way to improve the performance of UHPC in practical engineering.

  7. Exergy analysis of the solar still integrated nano composite phase change materials

    International Nuclear Information System (INIS)

    Methre, V.K.; Eswaramoorthy, M.

    2015-01-01

    This paper communicates the exergy analysis of solar still integrated with nano composite phase change materials for design and operating parameters. Al_2O_3 nano materials (50 nm) is dispersed by weight ratio in paraffin wax at melting state and its thermophysical properties are evaluated using developed correlation. Exergy balance equation for basin liner, thermal energy storage, glass cover and saline water is developed and exergy efficiency is analysed. It is found that exergy efficiency is improved by higher weight ratio of Al_2O_3 nano materials with paraffin wax alone. (author)

  8. Preparation and characterization of nano hydroxyapatite/polymeric composites materials. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); El-Rashidy, Zenab M. [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); Salama, Aida A. [Biophysics Dept., Faulty of Science, El-Azhar Univ., Cairo (Egypt)

    2011-10-17

    Highlights: {yields} The formation and coating of CHA increased by increasing polymer content. {yields} The size of the prepared CHA was within nano-range scale. {yields} The composites had homogeneity and CHA formed within the polymeric matrix. - Abstract: The present study is focused on preparation of nano composite materials and the effect of citric acid on their different properties. The formation of nano HA and its interaction with chitosan (C), gelatin (G) polymers and citric acid (CA) materials were studied. The Fourier Transformed Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), and scanning electron microscope (SEM) were used to characterize these composite materials. The compressive strength (CS) was also measured to know the reinforcement of the prepared composites. The results show that carboxylic and amino groups play crucial role for HA formation on chitosan-gelatin polymeric matrix in the presence of citric acid (CA). The formation of nano HA particles and its average size of crystallite is increased with increase of CG content and decreased with addition of CA. Also, the HA formation and binding strength between its particles are improved into the composites especially with CA. The nano-composites containing the best ratio of nHA (70%) with CA (0.2 M) are promising for medical applications in the future.

  9. Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomin Cai

    2017-07-01

    Full Text Available The cooperative effects between the PANI (polyaniline/nano-NiO (nano nickel oxide composite electrode material and redox electrolytes (potassium iodide, KI for supercapacitor applications was firstly discussed in this article, providing a novel method to prepare nano-NiO by using β-cyelodextrin (β-CD as the template agent. The experimental results revealed that the composite electrode processed a high specific capacitance (2122.75 F·g−1 at 0.1 A·g−1 in 0.05 M KI electrolyte solution, superior energy density (64.05 Wh·kg−1 at 0.2 A·g−1 in the two-electrode system and excellent cycle performance (86% capacitance retention after 1000 cycles at 1.5 A·g−1. All those ultra-high electrical performances owe to the KI active material in the electrolyte and the PANI coated nano-NiO structure.

  10. Magnetically responsive (nano) composites as perspective materials for environmental technology applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    -, č. 0 (2010), s. 85-90 R&D Projects: GA MPO(CZ) 2A-1TP1/094; GA MŠk OC09052 Institutional research plan: CEZ:AV0Z60870520 Keywords : magnetically responsive materials * ( nano )biocomposites * environmental technology Subject RIV: JI - Composite Materials

  11. The Properties of Nano Silver (Ag-Geopolymer as Antibacterial Composite for Functional Surface Materials

    Directory of Open Access Journals (Sweden)

    Armayani. M

    2017-01-01

    Full Text Available The purpose of this research was to produce and characterize nano silver (Ag-geopolymer composite for functional surface materials. Geopolymer matrix was synthesized through alkali activation of metakaolin and nano silver was added into geopolymers paste with a mass of 0, 0.5 g, 1 g, 1.5 g and 2 g keeping the mass of metakaolin constant. The mixture was cured at 70°C/1 hour and stored for 7 days before conducting any measurements. The structure of the resulting composite was examined by using Rigaku Mini Flex II x-ray diffraction (XRD. Scanning Electron Microscopy (SEM coupled with Energy Dispersive Spectroscopy (EDS was used to examine the morphology of the composite surface as well as the capability of the composite to isolate the growth of bacteria. The thermal properties of composites in terms of their working temperature and enthalpy were examined by using Perkin Elmer Differential Scanning Calorimetry (DSC. The heat resistance of composite was observed through calcination at 750°C for 18 hours. The results indicate that the resulting composites were able resist up 750°C. SEM examinations showed that nano Ag-geopolymer composites were effectively restraining the growth of bacteria. It is suggested that nano Ag-geopolymer composites are suitable for functional surface applications such as floor and wall, kitchen ware utensils, hospital instruments, art and decoration materials.

  12. Properties of the chalcogenide–carbon nano tubes and graphene composite materials

    International Nuclear Information System (INIS)

    Singh, Abhay Kumar; Kim, JunHo; Park, Jong Tae; Sangunni, K.S.

    2015-01-01

    Highlights: • Chalcogenides. • Melt quenched. • Composite materials. • Multi walled carbon nano tubes. • Bilayer graphene. - Abstract: Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se 55 Te 25 Ge 20, Se 55 Te 25 Ge 20 + 0.025% multi walled carbon nano tubes and Se 55 Te 25 Ge 20 + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se 55 Te 25 Ge 20 ) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids

  13. Performance evaluation on solar still integrated with nano-composite phase change materials

    International Nuclear Information System (INIS)

    Rajasekhar, G.; Eswaramoorthy, M.

    2015-01-01

    This paper communicates the performance evaluation of single slope solar still integrated with nano-composite phase change materials and compare with the experimental results of with and without phase change materials. A solar still with 1 m"2 surface area is developed with non-selective coating of absorber sheet with the provision of thermal energy storage materials. The solar still is tested on typical days with and without thermal energy storage materials. It is found that from the experimental studies that nano-materials (Al_2O_3) dispersed in paraffin wax is giving better cumulative yield of distillate than paraffin wax alone and without paraffin wax thermal storage. The daily efficiency of the solar still is computed for solar still with nano-composite phase change materials is 45% and solar still paraffin wax alone thermal storage is 40% and solar still without any thermal storage is 38%. It is concluded from the experimental studies; solar still integrated with nano-composite phase change materials gives better performance than with and without phase change material alone. (authors)

  14. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  15. Radiation Processing of Active Biodegradable Green Nano Composite Materials for Packaging Purposes

    International Nuclear Information System (INIS)

    AbdEl-Rehim, Hassan A.; Hegazy, El-Sayed A.; Raafat, Ahmed

    2011-01-01

    Clean and green reduction process of silver ions and graphene (GO) into nanosilver metal and graphene (GR) nanosheets respectively was achieved via gamma irradiation. The efficiency of gamma radiation to reduce silver ions and graphene oxide (GO) was investigated using UV-vis spectroscopy. Effects of gaseous atmosphere type, dispersion pH value, capping agent type and irradiation dose on GR nano-sheets formation were investigated. The presence of capping agent such as sodium carboxymethyl cellulose (CMC) or cellulose acetate is proven to be crucial. The obtained GR nanosheets and nanosilver metals are characterized using atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD) as well as thermo-gravimetric analyzer (TGA) and differential scanning calorimeter (DSC). Effectiveness, simplicity, reproducibility, and low energy consumption are the merits of using the Gamma radiation technique. Furthermore, the capping agent is eco-friendly and the dispersion is stable for months at room temperature. This approach can open up large-scale production of GR nanosheets and nanosilver metals. The prepared Nano-silver can be mixed with different natural polymer like CA to form Nano-composite films. The excellent physical properties of CA did not affect by addling Ag. The ionizing radiation has un-significant effect on the properties of CA-Ag nano composites films The CA-Ag nano composites posses biological activity towards different microorganisms. On other hand graphene or graphene oxide dispersions might be of interesting for producing biological active packaging films. Go as nanofillers has used for fabrication of a biocomposite with chitosan. The significantly improved in Chitosan /Go nano composites physical properties, including mechanical property, electrical conductivity, and structural stability, was demonstrated. Properties of the CA-Ag and Chitosan /Go nano composites suggest

  16. Radiation Processing of Active Biodegradable Green Nano Composite Materials for Packaging Purposes

    Energy Technology Data Exchange (ETDEWEB)

    AbdEl-Rehim, Hassan A.; Hegazy, El-Sayed A.; Raafat, Ahmed [National Center for Radiation Research and Technology NCRRT, Atomic Energy Authority, Cairo, Egypt P. O. Box 29, Nasr City, Cairo (Egypt)

    2011-07-01

    Clean and green reduction process of silver ions and graphene (GO) into nanosilver metal and graphene (GR) nanosheets respectively was achieved via gamma irradiation. The efficiency of gamma radiation to reduce silver ions and graphene oxide (GO) was investigated using UV-vis spectroscopy. Effects of gaseous atmosphere type, dispersion pH value, capping agent type and irradiation dose on GR nano-sheets formation were investigated. The presence of capping agent such as sodium carboxymethyl cellulose (CMC) or cellulose acetate is proven to be crucial. The obtained GR nanosheets and nanosilver metals are characterized using atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD) as well as thermo-gravimetric analyzer (TGA) and differential scanning calorimeter (DSC). Effectiveness, simplicity, reproducibility, and low energy consumption are the merits of using the Gamma radiation technique. Furthermore, the capping agent is eco-friendly and the dispersion is stable for months at room temperature. This approach can open up large-scale production of GR nanosheets and nanosilver metals. The prepared Nano-silver can be mixed with different natural polymer like CA to form Nano-composite films. The excellent physical properties of CA did not affect by addling Ag. The ionizing radiation has un-significant effect on the properties of CA-Ag nano composites films The CA-Ag nano composites posses biological activity towards different microorganisms. On other hand graphene or graphene oxide dispersions might be of interesting for producing biological active packaging films. Go as nanofillers has used for fabrication of a biocomposite with chitosan. The significantly improved in Chitosan /Go nano composites physical properties, including mechanical property, electrical conductivity, and structural stability, was demonstrated. Properties of the CA-Ag and Chitosan /Go nano composites suggest

  17. IMPROVING AIRCRAFT PARTS DUE TO USING NANO-COMPOSITE AND MICRO-COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Hassany Merhdad Boer

    2017-01-01

    Full Text Available In this paper it is investigated how to make composite carbon nanofiber/ epoxy resin and carbon micro-fiber / epoxy resin. Also, these materials' features are compared and it is shown how effective and benefitial are the received products containing carbon nano- and micro-fibers.In this study, epoxy composites were prepared in order to improve their mechanical and electrical properties. Ergo, carbon nanofibers and carbon microfibers were used as fillers. On the one hand, purchased microfibers were incorporatedinto the epoxy resin to produce epoxy/carbon microfiber composites via mechanical mixing at 1800 rpm in different concentrations (0.0125, 0.0225, 0.05, and 0.1.On the other hand, carbon nanofibers were prepared via electrospining method at room temperature, then epoxy/carbon nanofiber nanocomposites were prepared at mixing temperature of 60 °C at 1200 rpm at different concentrations (0.0125, 0.05, and 0.1.Morphology of samples was investigated via Field Emission Scanning Electron Microscopy (FESEM. Mechanical properties of samples were investigated via tensile and bending tests. Tensile test results revealed that incorporation of 0.0125 wt% carbon naofibers increased the epoxy resins modulus about 200%. Bending strength of sample containing 0.1wt% carbon microfibers had the most increment (from 20 to 100 MPa.

  18. Nano-Engineered Hierarchical Advanced Composite Materials for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Composites are widely used throughout aerospace engineering and in numerous other applications where structures that possess high strength and toughness properties...

  19. Fast Reacting Nano Composite Energetic Materials: Synthesis and Combustion Characterization

    Science.gov (United States)

    2015-08-24

    nanoenergetic composites finding extensive use in ordnance and industrial applications, because of its high heat of combustion (~32 kJ/g) (S. H. Fischer ...2011. Farley, Cory. "Reactions of Aluminum with Halogen Containing Oxides." Dissertation. Lubbock, TX, May 2013. Gesner, Jeff , Michelle Pantoya, and...characteristics of novel hybrid nanoenergetic formulations." Combustion and Flame 158 (2011): 964- 978. S. H. Fischer , M. C. Grubelich. "Theoretical

  20. Mechanical and microstructure of reinforced hydroxyapatite/calcium silicate nano-composites materials

    International Nuclear Information System (INIS)

    Beheri, Hanan H.; Mohamed, Khaled R.; El-Bassyouni, Gehan T.

    2013-01-01

    Highlights: ► Nano sized of HA and CS powders were prepared. ► Mechanical of HACS composites enhanced with content of CS. ► The apatite formation onto the composites is proved. -- Abstract: In this study, the nano sized hydroxyapatite (HA) and calcium silicate (CS) powders prepared by both chemical precipitation and sol–gel methods respectively. Biphasic nano-composites materials containing different ratios of HA and CS were fabricated and assessed using X-ray diffraction (XRD), Fourier transmission infrared reflectance (FT-IR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The effect of variation of ratios between HA and CS on mechanical properties, microstructure and in vitro study was studied. The results proved that the mechanical properties were enhanced with increasing the CS ratio in the composite. In vitro study proved the formation and nucleation of apatite onto composites surfaces which contain low content of CS after one week of immersion. Finally, it is concluded that the HACS composites containing high HA content at the expense of CS content will be promising for bone substitute’s applications, especially in load bearing sites.

  1. Electrical property and characterization of nano-SnO2/wollastonite composite materials

    International Nuclear Information System (INIS)

    Sun, Zhiming; Bai, Zhiqiang; Shen, Hongling; Zheng, Shuilin; Frost, Ray L.

    2013-01-01

    Graphical abstract: Resistivity as a function of different factors: hydrolysis temperature and time. Highlights: ► We have synthesized nano-tin oxide deposited on the surface of wollastonite. ► The antistatic properties were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. ► The results showed that the nano-SnO 2 /wollastonite composite materials showed better antistatic properties. ► The surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains. - Abstract: Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO 2 /wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO 2 coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO 2 /wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 10 4 Ω cm to 2.533 × 10 3 Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO 2 nanoparticles on the surface of wollastonite was proposed. The infrared spectrum indicated

  2. Electrical property and characterization of nano-SnO{sub 2}/wollastonite composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Bai, Zhiqiang; Shen, Hongling [Qinhuangdao Glass Research Design Institute, Qinhuangdao 066000 (China); Zheng, Shuilin, E-mail: shuilinzh@yahoo.com.cn [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-03-15

    Graphical abstract: Resistivity as a function of different factors: hydrolysis temperature and time. Highlights: ► We have synthesized nano-tin oxide deposited on the surface of wollastonite. ► The antistatic properties were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. ► The results showed that the nano-SnO{sub 2}/wollastonite composite materials showed better antistatic properties. ► The surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains. - Abstract: Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO{sub 2}/wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO{sub 2} coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO{sub 2}/wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 10{sup 4} Ω cm to 2.533 × 10{sup 3} Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO{sub 2} nanoparticles on the surface of wollastonite was proposed

  3. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    Science.gov (United States)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane coupling agent can dramatically reduce the average lifetime of dental composites.

  4. Micro/nano composited tungsten material and its high thermal loading behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jinglian, E-mail: fjl@csu.edu.cn; Han, Yong; Li, Pengfei; Sun, Zhiyu; Zhou, Qiang

    2014-12-15

    Tungsten (W) is considered as promising candidate material for plasma facing components (PFCs) in future fusion reactors attributing to its many excellent properties. Current commercial pure tungsten material in accordance with the ITER specification can well fulfil the performance requirements, however, it has defects such as coarse grains, high ductile–brittle transition temperature (DBTT) and relatively low recrystallization temperature compared with its using temperature, which cannot meet the harsh wall loading requirement of future fusion reactor. Grain refinement has been reported to be effective in improving the thermophysical and mechanical properties of W. In this work, rare earth oxide (Y{sub 2}O{sub 3}/La{sub 2}O{sub 3}) and carbides (TiC/ZrC) were used as dispersion phases to refine W grains, and micro/nano composite technology with a process of “sol gel – heterogeneous precipitation – spray drying – hydrogen reduction – ordinary consolidation sintering” was invented to introduce these second-phase particles uniformly dispersed into W grains and grain-boundaries. Via this technology, fine-grain W materials with near-full density and relatively high mechanical properties compared with traditional pure W material were manufactured. Preliminary transient high-heat flux tests were performed to evaluate the thermal response under plasma disruption conditions, and the results show that the W materials prepared by micro/nano composite technology can endure high-heat flux of 200 MW/m{sup 2} (5 ms)

  5. Porous quasi three-dimensional nano-Mn3O4 + PbO2 composite as supercapacitor electrode material

    International Nuclear Information System (INIS)

    Dan Yuanyuan; Lin Haibo; Liu Xiaolei; Lu Haiyan; Zhao Jingzhe; Shi Zhan; Guo Yupeng

    2012-01-01

    Highlights: ► We prepare nano-PbO 2 + Mn 3 O 4 composite material by composite deposition method. ► The nano-PbO 2 + Mn 3 O 4 composite has porous quasi three-dimensional structure. ► Maximum electrochemically effective area (R F ) of the composite is 72. ► The composite shows high specific capacitance up to ∼340 F g −1 . ► A general knowledge of the pesudocapacitance behavior of the composite is acquired. - Abstract: Nano-Mn 3 O 4 + PbO 2 composite electrode materials with different compositions are prepared by anodic composite electrodeposition in Pb 2+ plating solution containing suspended nano-Mn 3 O 4 particles (40–60 nm). The particles are synthesized via one-step homogeneous precipitation at low temperature. The composite materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) analyses. The results indicate that the composite composed of γ-Mn 3 O 4 and β-PbO 2 is porous and quasi three-dimensional (3D), and its maximum electrochemically effective area ratio (R F ) is 72. The capacitance performance of the composite is determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge–discharge test. The composite shows a high specific capacitance up to 338 F g −1 .

  6. Nano-modified cement composites and its applicability as concrete repair material

    Science.gov (United States)

    Manzur, Tanvir

    Nanotechnology or Nano-science, considered the forth industrial revolution, has received considerable attention in the past decade. The physical properties of a nano-scaled material are entirely different than that of bulk materials. With the emerging nanotechnology, one can build material block atom by atom. Therefore, through nanotechnology it is possible to enhance and control the physical properties of materials to a great extent. Composites such as concrete materials have very high strength and Young's modulus but relatively low toughness and ductility due to their covalent bonding between atoms and lacking of slip systems in the crystal structures. However, the strength and life of concrete structures are determined by the microstructure and mass transfer at nano scale. Cementitious composites are amenable to manipulation through nanotechnology due to the physical behavior and size of hydration products. Carbon nanotubes (CNT) are nearly ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. So there is a great potential to utilize CNT in producing new cement based composite materials. It is evident from the review of past literature that mechanical properties of nanotubes reinforced cementitious composites have been highly variable. Some researches yielded improvement in performance of CNT-cement composites as compared to plain cement samples, while other resulted in inconsequential changes in mechanical properties. Even in some cases considerable less strengths and modulus were obtained. Another major difficulty of producing CNT reinforced cementitious composites is the attainment of homogeneous dispersion of nanotubes into cement but no standard procedures to mix CNT within the cement is available. CNT attract more water to adhere to their surface due to their high aspect ratio which eventually results in less workability of the cement mix. Therefore, it is extremely important to develop a suitable mixing technique and an

  7. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  8. Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests

    Science.gov (United States)

    Özdemir, T.; Güngör, A.; Akbay, I. K.; Uzun, H.; Babucçuoglu, Y.

    2018-03-01

    It is important to have a shielding material that is not easily breaking in order to have a robust product that guarantee the radiation protection of the patients and radiation workers especially during the medical exposure. In this study, nano sized lead oxide (PbO) particles were used, for the first time, to obtain an elastomeric composite material in which lead oxide nanoparticles, after the surface modification with silane binding agent, was used as functional material for radiation shielding. In addition, the composite material including 1%, 5%, 10%, 15% and 20% weight percent nano sized lead oxide was irradiated with doses of 81, 100 and 120 kGy up to an irradiation period of 248 days in a gamma ray source with an initial dose rate of 21.1 Gy/h. Mechanical, thermal properties of the irradiated materials were investigated using DSC, DMA, TGA and tensile testing and modifications in thermal and mechanical properties of the nano lead oxide containing composite material via gamma irradiation were reported. Moreover, effect of bismuth-III oxide addition on radiation attenuation of the composite material was investigated. Nano lead oxide and bismuth-III oxide particles were mixed with different weight ratios. Attenuation tests have been conducted to determine lead equivalent values for the developed composite material. Lead equivalent thickness values from 0.07 to 0.65 (2-6 mm sample thickness) were obtained.

  9. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: Kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Beherei, Hanan H. [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Physics Dept., Faculty of Science, El-Taif University (Saudi Arabia); El Bassyouni, Gehan T. [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Medical Physics Dept., Faculty of Medicine, El-Taif University (Saudi Arabia); El Mahallawy, Nahed [Design and Production Engineering Department, Faculty of Engineering, Ain Shams University on secondment to the German University in Cairo (Egypt)

    2013-10-15

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO{sub 2} powders were prepared via sol–gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO{sub 2} were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO{sub 2} or SiO{sub 2}/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. - Graphical abstract: Nano-structures of (a) HA, (b) ZnO and (c) SiO{sub 2} powders. Highlights: • The nano-structured composites containing different ratios of HA, ZnO and SiO{sub 2} were prepared. • ZnO helps improve the mechanical properties of HA composites. • SiO{sub 2} helps improve the bioactivity of HA composites.

  10. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    Science.gov (United States)

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The Properties of Nano TiO2-Geopolymer Composite as a Material for Functional Surface Application

    Directory of Open Access Journals (Sweden)

    Syamsidar D.

    2017-01-01

    Full Text Available The aim of this study is to examine the properties of Nano TiO2-geopolymer as a material for functional surface applications such as walls, floors, bench top, arts and decoration materials. Class-C fly ash and metakaolin were used as raw materials to produce geopolymers pastes (binder. Geopolymers were synthesized through alkali activation method cured at 50°C for 2 hours using molar oxide ratios of SiO2/Al2O3 = 3.0, Na2O/SiO2 = 0.2, and H2O/Na2O = 10. Nano TiO2 was added into geopolymers paste at different concentration namely 0 wt%, 5wt%, 10wt% and 15wt % relative the weight of fly ash or metakaolin. The measurements were commenced after the samples aged 7 days. The samples made from fly ash were immersed in 1 M H2SO4 solution for 3 days for acid resistance examination. The self-cleaning properties of the composites were observed by immersing the sample into red clays solution. The X-Ray Diffraction (XRD was performed to examine the structure and phase of the samples before and after acid resistance measurement. Scanning Electron Microscopy (SEM was performed to examine the surface morphology of the resulting composites. The measurements results showed that Nano TiO2–geopolymers composite can be applied as functionally surface materials.

  12. Polyurethane/organo clay nano composite materials via in-situ polymerization

    International Nuclear Information System (INIS)

    Rehab, A.; Agag, T; Akelah, A.; Shalaby, N.

    2005-01-01

    Polyurethane/organo clay nano composites have been synthesized via in situ polymerization. The organo clay firstly prepared by intercalation of lyamine or amino lauric acid into montmorillonite-clay (MMT) through ion exchange process. The syntheses of polyurethane/organo clay hybrid films containing different ratio of clay were carried out by swelling the organo clay, into diol and diamine or into different kinds of diols, followed by addition of diisocyanate. The nano composites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and x-ray diffraction. X-ray analysis showed that the d-spacing increased to more than 44A since there is no peaks corresponding to do spacing in organo clay with all the ratios (1, 5, 10, 20%). Also, SEM results confirm the dispersion of nanometer silicate layers in the polyurethane matrix. This indicated that the clay was completely exfoliated and homogeneous dispersion in the polyurethane matrix. Also, it was found that the presence of organo clay leads to improvement the mechanical properties. Since, the tensile strength increased with increasing the organo clay contents to 20% by the ratio 194% in compared to the 1H: with 0% organo clay. Also, the elongation is a decreases with increasing the organo clay contents. The results shown the tensile strength of PU/SMA/ALA-MMT nano composites is high by 6-7 times than the corresponding to PU/Tvr-MMT

  13. Development of Novel Nano Polymer Composite Material for Solar Energy Conversion

    International Nuclear Information System (INIS)

    Sheha, E.; Elrasasi, T.Y.; El mansy, M.K.; Abdallah, B.

    2014-01-01

    PVA: Co 5 (OH) 8 (NO 3 ) 2 •2H 2 O polymer composite has been produced by casting of aqueous solution of mixed composite component. The nano polymer composites were characterized using structure techniques; XRD, SEM, FT-IR and TGA. The results indicated the formation composite without PVA degree of crystallinity variation. The measurements of electrical conductivity for the composites illustrated domination of ion conduction with activation energy (0.65-0.90) eV. The optical absorption illustrated an absorption peak around (530-540) nm which suggest electronic direct transition via energy gap width (1.90-2.16) eV. The electrochemical illustrated electrochemical band gap (1.97-3.26) eV

  14. Synthesis of LiFePO4/Graphene Nano composite and Its Electrochemical Properties as Cathode Material for Li-Ion Batteries

    International Nuclear Information System (INIS)

    Ma, X.; Chen, G.; Liu, Q.; Zeng, G.; Wu, T.

    2014-01-01

    LiFePO 4 /graphene nano composite was successfully synthesized by rheological phase method and its electrochemical properties as the cathode materials for lithium ion batteries were measured. As the iron source in the synthesis, FeOOH nano rods anchored on graphene were first synthesized. The FeOOH nano rods precursors and the final LiFePO 4 /graphene nano composite products were characterized by XRD, SEM, and TEM. While the FeOOH precursors were nano rods with 5-10 nm in diameter and 10-50 nm in length, the LiFePO 4 were nanoparticles with 20-100 nm in size. Compared with the electrochemical properties of LiFePO 4 particles without graphene nano sheets, it is clear that the graphene nano sheets can improve the performances of LiFePO 4 as the cathode material for lithium ion batteries. The as-synthesized LiFePO 4 /graphene nano composite showed high capacities and good cyclabilities. When measured at room temperature and at the rate of 0.1 C (1 C = 170 mA g -1 ), the composite showed a discharge capacity of 156 mA h g -1 in the first cycle and a capacity retention of 96% after 15 cycles. The improved performances of the composite are believed to be the result of the three-dimensional conducting network formed by the flexible and planar graphene nano sheets.

  15. Fe{sub 2}O{sub 3}-Poly-pyrrole hybrid nano-composite materials for super-capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mallouki, M.; Tran-Van, F.; Sarrazin, C.; Chevrot, C. [Cergy-Pontoise Univ., Lab. de Physicochimie des Polymeres et des Interfaces (LPPI), EA 2528 95 (France); Fauvarque, J.F. [CNAM, Lab. d' Electrochimie Industrielle, 75 - Paris (France); Simon, P. [Universite Paul Sabatier, CIRIMAT-LCMIE, UMR 5085, 31 - Toulouse (France); De, A. [Saha Institute of Nuclear Physics, Calcutta (India)

    2004-07-01

    Fe{sub 2}O{sub 3}-Poly-pyrrole hybrid nano-composite materials chemically synthesized from colloid particles of iron oxide in aqueous solution have been processed to realize electrode materials for super-capacitor applications. The performances have been evaluated by cyclic voltammetry and galvano-static techniques in a three-electrode cell. The capacitance of Fe{sub 2}O{sub 3}-PPy hybrid nano-composite doped with para-toluene-sulfonate reaches 47 mAh/g in PC/NEt{sub 4}BF{sub 4} with a good stability during cycling (loss of 3% after 1000 cycles). Transmission Electronic Microscopy indicates a porous nano-structure with spherical particles in a range of 400-500 nm which ensures a good accessibility of the electrolyte in the bulk of the electro-active hybrid material. Preliminary studies with room temperature ionic liquid show promising results since the specific capacitance reaches 427 F/g in 1- ethyl-3-methyl-imidazolium bis((tri-fluoro-methyl)sulfonyl)amide (EMITFSI). (authors)

  16. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  17. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  18. High performance nano-composite technology development

    International Nuclear Information System (INIS)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D.; Kim, E. K.; Jung, S. Y.; Ryu, H. J.; Hwang, S. S.; Kim, J. K.; Hong, S. M.; Chea, Y. B.; Choi, C. H.; Kim, S. D.; Cho, B. G.; Lee, S. H.

    1999-06-01

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  19. Nano semiconducting materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2.

  20. Physics-Based Simulation and Experiment on Blast Protection of Infill Walls and Sandwich Composites Using New Generation of Nano Particle Reinforced Materials

    Science.gov (United States)

    Irshidat, Mohammad

    A critical issue for the development of nanotechnology is our ability to understand, model, and simulate the behavior of small structures and to make the connection between nano structure properties and their macroscopic functions. Material modeling and simulation helps to understand the process, to set the objectives that could guide laboratory efforts, and to control material structures, properties, and processes at physical implementation. These capabilities are vital to engineering design at the component and systems level. In this research, experimental-computational-analytical program was employed to investigate the performance of the new generation of polymeric nano-composite materials, like nano-particle reinforced elastomeric materials (NPREM), for the protection of masonry structures against blast loads. New design tools for using these kinds of materials to protect Infill Walls (e.g. masonry walls) against blast loading were established. These tools were also extended to cover other type of panels like sandwich composites. This investigation revealed that polymeric nano composite materials are strain rate sensitive and have large amount of voids distributed randomly inside the materials. Results from blast experiments showed increase in ultimate flexural resistance achieved by both unreinforced and nano reinforced polyurea retrofit systems applied to infill masonry walls. It was also observed that a thin elastomeric coating on the interior face of the walls could be effective at minimizing the fragmentation resulting from blast. More conclusions are provided with recommended future research.

  1. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects.

    Science.gov (United States)

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-19

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ∼10(-8) Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.

  2. Polymer/Layered Silicate Nano composites

    International Nuclear Information System (INIS)

    Bakhit, M.E.E.H.

    2012-01-01

    Polymer–clay nano composites have attracted the attention of many researchers and experimental results are presented in a large number of recent papers and patents because of the outstanding mechanical properties and low gas permeabilities that are achieved in many cases. Polymer-clay nano composites are a new class of mineral-field polymer that contain relatively small amounts (<10%) of nanometer-sized clay particles. Polymer/clay nano composites have their origin in the pioneering research conducted at Toyota Central Research Laboratories and the first historical record goes back to 1987. The matrix was nylon-6 and the filler MMT. Because of its many advantages such as high mechanical properties, good gas barrier, flame retardation, etc. polymer/clay nano composites have been intensely investigated and is currently the subject of many research programs. Nano composite materials are commercially important and several types of products with different shapes and applications including food packaging films and containers, engine parts, dental materials, etc. are now available in markets. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or prepolymers from solution, in-situ polymerization, melt intercalation etc. In this study, new nano composite materials were produced from the components of rubber (Nbr, SBR and EPDM) as the polymeric matrix and organically modified quaternary alkylammonium montmorillonite in different contents (3, 5, 7, and 10 phr) as the filler by using an extruder then, the rubber nano composite sheets were irradiated at a dose of 0, 50, 75, 100 and 150 KGy using Electron beam Irradiation technique as a crosslinking agent. These new materials can be characterized by using various analytical techniques including X-ray diffractometer XRD, Thermogravimetric analyzer TGA, scanning electron microscope (SEM), transmission electron microscope (TEM),Fourier transform

  3. Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: For electrochemical sensor applications.

    Science.gov (United States)

    Gautam, Vineeta; Singh, Karan Pratap; Yadav, Vijay Laxmi

    2018-06-01

    In this paper, we are presenting the preparation and characterization of "polyaniline/multiwalled carbon nanotubes/carboxymethyl cellulose" based novel composite material. It's morphological, thermal, structural, and electrochemical properties were investigated by using different instrumental techniques. During the in-situ chemical polymerization of aniline in the aqueous suspension of CMC and MWCNTs, the particle size change in two different ways "top to bottom" (low molecular weight oligomers grows in size) and "bottom to top" (long fibers of CMC fragmented in the reaction mixture). The combination of these two processes facilitated the fabrication of an integrated green-nano-composite material. In addition, a little amount of conductive nanofillers (MWCNTs) boosts the electrical and electrocatalytic properties of the material. Electron-rich centers of benzenoid rings exhibited π-π stacking with sp 2 carbon of MWCNTs. CMC dominantly impact on the properties of PANI, negatively charged carboxylate group of CMC ionically bonded with protonated amine/imine. FTIR and Raman analysis confirmed that the material has dominated quinoid units and effective charge transfer. Hydroxyl and carboxyl groups and bonded water molecules of CMC results in a network of hydrogen bonds (which induced directional property). PANI/MWCNTs/CMC have nanobead-like structures (TEM analysis), large surface area, large pore volume, small pore diameter (BET and BJH studies) and good dispersion ability in the aqueous phase. Nanostructures of aligned PANI exhibited excellent electrochemical properties have attracted increasing attention. Modified carbon paste electrode was used for electrocatalytic detection of ascorbic acid (as a model analyte). The sensor exhibited a linear range 0.05 mM-5 mM, sensitivity 100.63 μA mM -1  cm -2 , and limit of detection 0.01 mM. PANI/MWCNTs/CMC is suitable nanocomposite material for apply electroactive/conducting ink and membrane (which could be

  4. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chang [School of Physics and Material Science, Anhui University, Hefei 230036 (China); Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China); Fang Qingqing, E-mail: physfangqq@126.com [School of Physics and Material Science, Anhui University, Hefei 230036 (China) and Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China); Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong [School of Physics and Material Science, Anhui University, Hefei 230036 (China); Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China)

    2012-05-15

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0-20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<-5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<-5 dB and RL<-8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was -29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: Black-Right-Pointing-Pointer We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. Black-Right-Pointing-Pointer ZnO dielectric property increased absorption effect and absorption bandwidth. Black-Right-Pointing-Pointer Absorbing frequence of composites is expanding to low frequency direction. Black-Right-Pointing-Pointer The craft of high energy ball milling is easy to realize commerce production.

  5. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    International Nuclear Information System (INIS)

    Zhou Chang; Fang Qingqing; Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong

    2012-01-01

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0–20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<−5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<−5 dB and RL<−8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was −29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: ► We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. ► ZnO dielectric property increased absorption effect and absorption bandwidth. ► Absorbing frequence of composites is expanding to low frequency direction. ► The craft of high energy ball milling is easy to realize commerce production.

  6. Preparation of Diatomite Supported Nano Zinc Oxide Composite Photocatalytic Material and Study on its Formaldehyde Degradation

    Science.gov (United States)

    Xiao, Liguang; Pang, Bo

    2017-09-01

    This experiment used zinc nitrate as precursor, ethanol as solvent and polyethylene glycol as dispersant, diatomite as carrier, diatomite loaded nano Zinc Oxide was prepared by sol-gel method, in addition, the formaldehyde degradation was studied by two kinds of experimental methods: preparation and loading, preparation and post loading, The samples were characterized by SEM, XRD, BET and IR. Experimental results showed that: Diatomite based nano Zinc Oxide had a continuous adsorption and degradation of formaldehyde, formaldehyde gas with initial concentration was 0.7mg/m3, after 36h degradation, the concentration reached 0.238mg/m3, the degradation rate reached to 66%.

  7. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Shabani Shayeh, J. [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Ehsani, A., E-mail: a.ehsani@qom.ac.ir [Department of Chemistry, Faculty of Science, University of Qom, P.O. Box 37185-359, Qom (Iran, Islamic Republic of); Ganjali, M.R.; Norouzi, P. [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Endocrinology & Metabolism Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Jaleh, B. [Physics Department, Bu-Ali Sina University, Hamedan 65174 (Iran, Islamic Republic of)

    2015-10-30

    Graphical abstract: - Highlights: • PANI/rGO/AuNPs as a ternary composite synthesized by electrodeposition. • Presence of rGO/AuNPs caused increasing the stability of electrodes. • Composite represented high specific capacitance, specific power and specific energy values than PANI. - Abstract: Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge–discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm{sup −2}. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g{sup −1}, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  8. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Shabani Shayeh, J.; Ehsani, A.; Ganjali, M.R.; Norouzi, P.; Jaleh, B.

    2015-01-01

    Graphical abstract: - Highlights: • PANI/rGO/AuNPs as a ternary composite synthesized by electrodeposition. • Presence of rGO/AuNPs caused increasing the stability of electrodes. • Composite represented high specific capacitance, specific power and specific energy values than PANI. - Abstract: Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge–discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm"−"2. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g"−"1, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  9. 1D Nano materials 2012

    International Nuclear Information System (INIS)

    Yanqiu Zhu, Y.; Ma, R.; Whitby, R.; Acquah, S.

    2013-01-01

    We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers

  10. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  11. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies

    Science.gov (United States)

    Wu, Xiaomian; Liu, Xiaochen; Wei, Jie; Ma, Jian; Deng, Feng; Wei, Shicheng

    2012-01-01

    Background Compared with titanium (Ti) and other metal implant materials, poly(ether-ether ketone) (PEEK) shows outstanding biomechanical properties. A number of studies have also reported attractive bioactivity for nano-TiO2 (n-TiO2). Methods In this study, n-TiO2/PEEK nanocomposites were prepared, taking advantage of the unique properties of both PEEK polymer and n-TiO2. The in vitro and in vivo bioactivity of these nanocomposites was assessed against a PEEK polymer control. The effect of surface morphology or roughness on the bioactivity of the n-TiO2/PEEK nanocomposites was also studied. n-TiO2/PEEK was successfully fabricated and cut into disks for physical and chemical characterization and in vitro studies, and prepared as cylindrical implants for in vivo studies. Their presence on the surface and dispersion in the composites was observed and analyzed by scanning and transmission electron microscopy and X-ray photoelectron spectroscopy. Results Bioactivity evaluation of the nanocomposites revealed that pseudopods of osteoblasts preferred to anchor at areas where n-TiO2 was present on the surface. In a cell attachment test, smooth PEEK showed the lowest optical density value (0.56 ± 0.07) while rough n-TiO2/PEEK exhibited the highest optical density value (1.21 ± 0.34, P PEEK was approximately twice as large as that of PEEK (P PEEK, especially if it has a rough composite surface. A n-TiO2/PEEK composite with a rough surface could be a novel alternative implant material for orthopedic and dental applications. PMID:22419869

  12. Effect of Material Parameters on Mechanical Properties of Biodegradable Polymers/Nanofibrillated Cellulose (NFC) Nano Composites

    Science.gov (United States)

    Yottha Srithep; Ronald Sabo; Craig Clemons; Lih-Sheng Turng; Srikanth Pilla; Jun Peng

    2012-01-01

    Using natural cellulosic fibers as fillers for biodegradable polymers can result in fully biodegradable composites. Biodegradable composites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. The objective of this study was to determine how various additives (i.e.,...

  13. FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident.

    Science.gov (United States)

    Chen, Meiqing; Wu, Pingxiao; Yu, Langfeng; Liu, Shuai; Ruan, Bo; Hu, Haihui; Zhu, Nengwu; Lin, Zhang

    2017-05-01

    A FeOOH-loaded MnO 2 nano-composite was developed as an emergency material for Tl(I) pollution incident. Structural characterizations showed that FeOOH successfully loaded onto MnO 2 , the nanosheet-flower structure and high surface area (191 m 2  g -1 ) of material contributed to the excellent performance for Tl(I) removal. FeOOH-loaded MnO 2 with a Fe/Mn molar ratio of 1:2 exhibited a noticeable enhanced capacity for Tl(I) removal compared to that of pure MnO 2 . The outstanding performance for Tl(I) removal involves in extremely high efficiency (achieved equilibrium and drinking water standard within 4 min) and the large maximum adsorption capacity (450 mg g -1 ). Both the control-experiment and XPS characterization proved that the removal mechanism of Tl(I) on FeOOH-loaded MnO 2 included adsorption and oxidation: the oxidation of MnO 2 played an important role for Tl(I) removal, and the adsorption of FeOOH loaded on MnO 2 enhanced Tl(I) purification at the same time. In-depth purification of Tl(I) had reach drinking water standards (0.1 μg L -1 ) at pH above 7, and there wasn't security risk produced from the dissolution of Mn 2+ and Fe 2+ . Moreover, the as-prepared material could be utilized as a recyclable adsorbent regenerated by using NaOH-NaClO binary solution. Therefore, the synthesized FeOOH-loaded MnO 2 in this study has the potential to be applied as an emergency material for thallium pollution incident. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process

    Science.gov (United States)

    Bamdad Barari; Thomas K. Ellingham; Issam I. Ghamhia; Krishna M. Pillai; Rani El-Hajjar; Lih-Sheng Turng; Ronald Sabo

    2016-01-01

    Plant derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties compared to other natural fibers. However, efforts to produce nano-composites on a large scale using CNF have yet to be investigated. In this study, scalable CNF nano-composites were made from isotropically porous CNF preforms using a freeze drying process. An improvised...

  15. One-step solution combustion synthesis of Fe{sub 2}O{sub 3}/C nano-composites as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peiyang; Deng, Jiachun; Li, Ying [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Liang, Wei, E-mail: liangwei@tyut.edu.cn [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Kun [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Kang, Litao, E-mail: kangltxy@gmail.com [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zeng, Shaozhong; Yin, Shanhui; Zhao, Zhigang [Chery Automobile Co. Ltd., Wuhu 241006 (China); Liu, Xuguang; Yang, Yongzhen [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, Feng [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-03-25

    Highlights: • Fe{sub 2}O{sub 3}/C composite anode materials were prepared by a solution combustion process. • The carbon content could be adjusted by regulating the ratio of oxidizer/fuel. • The Fe{sub 2}O{sub 3}/C composite showed capacity 470 mA h g{sup −1} at the 80th cycle at 125 mA g{sup −1}. -- Abstract: This article describes a one-step solution combustion route (within 30 min at 350 °C in air) to prepare Fe{sub 2}O{sub 3} anode materials for lithium ion batteries (LIBs) from Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O solution with citric acid. XRD, SEM-EDX and TEM showed that the product consisted a mixture of nano-sized α-Fe{sub 2}O{sub 3} and γ-Fe{sub 2}O{sub 3} crystals that agglomerated into porous particles. Significantly, in situ formed carbon could be introduced into the product (i.e., Fe{sub 2}O{sub 3}/C nano-composites) by simply increasing the dosage of citric acid in the precursor solution. The as-prepared Fe{sub 2}O{sub 3}/C nano-composite exhibited high reversible capacities of 470 and 419 mA h g{sup −1} at the 80th and 200th cycles with a current density of 125 mA g{sup −1}, which are much higher than those of counterparts without carbon (i.e., Fe{sub 2}O{sub 3} nano-particles). Comparison experiments correlated with the performance improvement of Fe{sub 2}O{sub 3}/C nano-composites with in situ formed carbon, well-developed mesopores and relatively high specific surface areas.

  16. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    Science.gov (United States)

    Shabani Shayeh, J.; Ehsani, A.; Ganjali, M. R.; Norouzi, P.; Jaleh, B.

    2015-10-01

    Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge-discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm-2. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g-1, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  17. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...

  18. Nano-structures Enhanced Novel Composite Electrode Material for Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode material for use in Li-ion batteries while maintaining high level of...

  19. MnFe 2 O 4 /bentonite nano composite as a novel magnetic material ...

    African Journals Online (AJOL)

    It is also found that the presence of bentonite in the magnetic composite has not made any changes in the spinel structure of MnFe2O4. SEM images of the sorbent shows nanocomposite with a uniform structure and nanochannels from 0.3 to 0.8 mμ in diameter having a surface area of 130 m2 g-1. The results also revealed ...

  20. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  1. Composite material

    Science.gov (United States)

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  2. Nano materials Synthesis, Applications, and Toxicity 2012

    International Nuclear Information System (INIS)

    Nadagouda, M.N.; Lytle, D.A.; Speth, Th.F.; Dionysiou, D.D.; Mukhopadhyay, Sh.M.

    2013-01-01

    Nano technology presents new opportunities to create better materials and products. Nano materials find wide applications in catalysis, energy production, medicine, environmental remediation, automotive industry, and other sectors of our society. Nano material-containing products are already available globally and include automotive parts, defense application, drug delivery devices, coatings, computers, clothing, cosmetics, sports equipment, and medical devices. This special issue includes emerging advances in the field, with a special emphasis given to nano material synthesis and applications. There is an increasing interest in identifying magnetically separable catalysts for the degradation of wastewater. In this issue, A. Perumal et al. report an investigation of temperature-dependent magnetic properties and photo catalytic activity of CoFe 2 O 4 -Fe 3 O 4 magnetic nano composites (MNCs) synthesized by hydrothermal processes. These MNCs have saturation magnetization of 90 emu/g and coercivity (HC) of 530 Oe. The photo catalytic activity of the MNCs has been examined on the reduction of methyl orange (MO), a colored compound used in dyeing and printing textiles. The MNCs act as an excellent photo catalyst on the degradation of organic contaminants and degrade 93% of MO in 5 hours of UV irradiation. The photo catalytic activity of MNCs is attributed to remarkably high band gap energy and small particle size. Also, the MNCs with reproducible photo catalytic activity are easily separated from water media by applying an external magnetic field and they act as a promising catalyst for the remediation of textile wastewater. Microwaves can play an important role in orchestrating nano materials for a wide range of technological applications

  3. Composite materials

    International Nuclear Information System (INIS)

    Sambrook, D.J.

    1976-01-01

    A superconductor composite is described comprising at least one longitudinally extending superconductor filament or bundle of sub-filaments, each filament or bundle of sub-filaments being surrounded by and in good electrical contact with a matrix material, the matrix material comprising a plurality of longitudinally extending cells of a metal of high electrical conductivity surrounded by a material of lower electrical conductivity. The high electrical conductivity material surrounding the superconducting filament or bundle of sub-filaments is interrupted by a radially extending wall of the material of the lower electrical conductivity, the arrangement being such that at least two superconductor filaments or sub-filaments are circumferentially circumscribed by a single annulus of the material of high electrical conductivity. The annulus is electrically interrupted by a radially extending wall of the material of low electrical conductivity

  4. Effects of sintering processes on mechanical properties and microstructure of TiB2–TiC + 8 wt% nano-Ni composite ceramic cutting tool material

    International Nuclear Information System (INIS)

    Zou Bin; Huang Chuanzhen; Song Jinpeng; Liu Ziye; Liu Lin; Zhao Yan

    2012-01-01

    Highlights: ► TiB 2 –TiC + 8 wt% nano-Ni ceramic tool material was sintered by six processes. ► The properties of material depended mainly on the holding stages and duration. ► SP1 process was involved with the multiple holding stages and longer duration. ► SP1 process led to many pores, and coarsening and brittle rupture of grains. ► Tool material sintered by SP6 process exhibited the optimum mechanical properties. - Abstract: TiB 2 –TiC composite powder was prepared by ball-milled with ethanol and vacuum dry, and TiB 2 –TiC + 8 wt% nano-Ni composite ceramic cutting tool material was sintered using vacuum hot-pressed sintering technique by six processes which included the different holding stages and times. The effects of sintering processes on the mechanical properties and microstructure were investigated. The polished surface and fracture surface of TiB 2 –TiC + 8 wt% nano-Ni ceramics sintered by the different sintering processes were observed by scanning electron microscope (SEM), X-ray diffraction (XRD) and energy-dispersive spectrometry (EDS), and the relationships between mechanical properties and microstructure were discussed. The mechanical properties and microstructure depended mainly on the total holding time and the different holding stages. The longer holding time and multiple holding stages led to coarsening of TiB 2 and TiC grains, formation of pores and the brittle rupture of grains, which deteriorated the mechanical properties of TiB 2 –TiC + 8 wt% nano-Ni ceramic. TiB 2 –TiC + 8 wt% nano-Ni composite ceramic cutting tool material sintered by SP6 process exhibited the optimum resultant mechanical properties because of its finer microstructure and higher relative density, and its flexural strength, fracture toughness and hardness were 916.8 MPa, 7.80 MPa m 1/2 and 22.54 GPa, respectively.

  5. Nano-materials for solar energy conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Boiteux, G.; Ltaief, A.; Barlier, V.

    2006-01-01

    Nano-materials present an important development potential in the field of photovoltaic conversion in opening new outlooks in the reduction of the solar energy cost. The organic or hybrid solar cells principle is based on the electron-hole pairs dissociation, generated under solar radiation on a conjugated polymer, by chemical species acting as electrons acceptors. The two ways based on fullerenes dispersion or on TiO 2 particles in a semi-conductor polymer (MEH-PPV, PVK) are discussed. The acceptors concentration is high in order to allow the conduction of the electrons on a percolation way, the polymer providing the holes conduction. A new preparation method of the mixtures MEH-PPV/fullerenes based on the use of specific solvents has allowed to produce fullerenes having nano-metric sizes ranges. It has then been possible to decrease the fullerenes concentration allowing the dissociation and the transport of photoinduced charges. The way based on the in-situ generation of TiO 2 from an organometallic precursor has allowed to obtain dispersions of nano-metric inorganic particles. The optimization of the photovoltaic properties of these nano-composites requires a particular adjustment of their composition and size ranges leading to a better control of the synthesis processes. (O.M.)

  6. Radiation synthesis of the nano-scale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong, Ni; Zhicheng, Zhang; Xuewu, Ge; Xiangling, Xu [Department of Applied Chemistry, Univ. of Science and Technology of China, Hefei (China)

    2000-03-01

    Some recent research jobs on fabricating the nano-scale materials via {gamma}-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  7. Radiation synthesis of the nano-scale materials

    International Nuclear Information System (INIS)

    Ni Yonghong; Zhang Zhicheng; Ge Xuewu; Xu Xiangling

    2000-01-01

    Some recent research jobs on fabricating the nano-scale materials via γ-irradiation in our laboratory are simply summarized in this paper. The main contents contain four aspects: (1) the preparation of metal alloy - powders; (2) the fabrication of polymer -metal nano-composites in aqueous solution, micro-emulsion and emulsion systems; (3) the synthesis of metal sulfide nano-particles and (4) the preparation of the ordered nano-structure materials. The corresponding preparation processes are also simply described. (author)

  8. Nano materials for Cancer Phototheranostics

    International Nuclear Information System (INIS)

    Huang, P.; Ling, D.; Song, J; Liu, G.; Xie, J.

    2016-01-01

    The rapid development of advanced nano technology promises the integration of multiple diagnostic/therapeutic modalities into one nano platform for cancer theranostics. This issue compiles 3 review articles and 7 high-quality original research articles related to the field of nano material-based cancer theranostics. Photo therapies, such as photothermal therapy (PTT), photodynamic therapy (PDT), or photo-triggered drug/gene delivery, have gained considerable attention because of specific spatiotemporal selectivity and minimal invasiveness. Considering the inherent biocompatibility and biodegradability of proteins and peptides, P. Huang and coworkers summarized recent advances in the development of protein/peptide-based photothermal cancer theranostics, using protein/peptide as delivery vehicles or synthesis bio templates of PTT agents. M. G. O∼Toole and coworkers developed a near-infrared (NIR) responsive oligonucleotide-coated (AS1411, hairpin, or both) gold nanoplate loaded with doxorubicin (DOX), which is demonstrated to be nontoxic to cells without triggered release, while being acutely toxic to cells after 5 minutes of laser exposure to trigger DOX release. K. Na and coworkers described an acidic tumor pH-responsive nanophotomedicine (pH-NanoPM), which was prepared by self-assembly of a pH-responsive polymeric photo sensitizer (pH-PPS) consisting of pH-cleavable methoxypolyethylene glycol (pH-C-mPEG), for targeted PDT

  9. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  10. Electron emission from nano-structured carbon composite materials and fabrication of high-quality electron emitters by using plasma technology

    International Nuclear Information System (INIS)

    Hiraki, H.; Hiraki, A.; Jiang, N.; Wang, H. X.

    2006-01-01

    Many trials have been done to fabricate high-quality electron-emitters from nano-composite carbon materials (such as nano-diamond, carbon nano tubes and others) by means of a variety of plasma chemical-vapor-deposition (CVD) techniques. Based upon the mechanism of electron emission, we have proposed several strategic guide lines for the fabrication of good emitters. Then, following these lines, several types of emitters were tried. One of the emitters has shown a worldclass, top ranking for fabricating very bright lamps: namely, a low turn-on voltage (0.5 ∼ 1 V/μm to induce 10 μA/cm 2 emission current) to emit a 1 mA/cm 2 current at 3 V/μm and 100 mA/cm 2 current at a slightly higher applied voltage. The bright lamps are Mercury-free fluorescence lamps to exhibit brightness of ∼10 5 cd/m 2 with high efficiency of ∼100 lm/w.

  11. Pharmaceutical Applications of Polymeric Nano materials

    International Nuclear Information System (INIS)

    Wu, L.; Sun, L.

    2011-01-01

    With significant attention focused on nano science and nano technology in recent years, nano materials have been used in a wide variety of applications such as automotive, environmental, energy, catalysis, biomedical, drug delivery, and polymeric industries. Among those fields, the application of nano materials with pharmaceutical science is an emerging and rapidly growing field and has drawn increasing attention recently. Research and development in this field is mainly focused on several aspects such as the discoveries of novel functional nano materials, exploration on nanoparticles with controlled and targeted drug delivery characteristics, and investigation of bio functionalized and diagnostic nano materials. In this special issue, we have invited a few papers related to recent advances in pharmaceutical application of polymeric nano materials

  12. Hybrid Nano composite Membranes for PEMFC Applications

    International Nuclear Information System (INIS)

    Niepceron, F.

    2008-03-01

    This work aims at validating a new concept of hybrid materials for the realization of proton exchange membranes, an essential constituent of PEM fuel cells. The originality of this nano-composite hybrid concept corresponds to a separation of the membrane's properties. We investigated the preparation of composite materials based on an inert, relatively low cost, polymer matrix (PVDF-HFP) providing the mechanical stability embedding inorganic fillers providing the necessary properties o f proton-conduction and water retention. The first step of this work consisted in the modification of fumed silica to obtain a proton-conducting filler. An ionic exchange capacity (CEI) equal to 3 meq/g was obtained by the original grafting of sodium poly(styrene-sulfonate) chains from the surface of particles. Nano-composite hybrid membranes PVDF-HFP/functionalized silica were accomplished by a film casting process. The coupling of the morphological and physicochemical analyses validated the percolation of the inorganic phase for 30 wt.% of particles. Beyond 40 % of loading, measured protonic conductivity is higher than the reference membrane Nafion 112. Finally, these membranes presented high performances, above 0.8 W/cm 2 , in single-cell fuel cell tests. A compromise is necessary according to the rate of loading between performances in fuel cell and mechanical properties of the membrane. 50 % appeared as best choice with, until 90 C, a remarkable thermal stability of the performances. (author)

  13. Micromechanics of Composite Materials

    CERN Document Server

    Dvorak, George

    2013-01-01

    This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into a rich fabric of the subject, which has been explored by several researchers over the last 40 years.   The first  part of the book reviews anisotropic elasticity theory, and then it describes the frequently used procedures and theorems for bounding and estimating overall properties, local fields and energy changes in elastic inhomogeneities, heterogeneous media, fiber composites and functionally graded materials.  Those are caused by mechanical loads and by phase eigenstrains, such as thermal, transformation and inelastic strains, and also by cavities and cracks.    Worked examples show that the eigendeformations may...

  14. Thermal properties and heat storage analysis of palmitic acid-TiO_2 composite as nano-enhanced organic phase change material (NEOPCM)

    International Nuclear Information System (INIS)

    Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C.

    2016-01-01

    Highlights: • Novel composite of palmitic acid and TiO_2 nanoparticles with enhanced thermal energy storage capabilities • The composite is thermally reliable and chemically stable. • Thermal conductivity of the composite increases significantly with the loading. - Graphical Abstract: - Abstract: In the present study, the phase change behavior of prepared novel composites of palmitic acid and solid nanoparticles of titanium dioxide (TiO_2) for thermal energy storage has been investigated. The nanoparticles are dispersed into the base fluid in various mass fractions (0.5, 1, 3, and 5%), and their effects on the thermo-physical properties have been investigated. Structural analysis has been carried out by using FESEM, and crystallography was checked by XRD technique. The chemical/functional groups of the base fluid and composite PCMs have been analyzed by using FT-IR spectrum. The observations showed that the TiO_2 nanoparticles do not affect the chemical structure of palmitic acid; however they improve the chemical stability. The phase transition temperature and latent heat of fusion has shown the significant stability with the increase in nanoparticle weight fractions. The accelerated thermal cycle test of the composite shows good thermal reliability for 1500 melt/freeze cycles. Thermal conductivity of palmitic acid increased gradually by 12.7, 20.6, 46.6, and 80% for the nanoparticle weight fractions of 0.5, 1, 3, and 5% respectively. Based on the results, it can be mentioned that the prepared palmitic acid based nano-enhanced organic phase change composite materials can be very well used as potential solar thermal energy storage materials.

  15. Template-assisted growth of nano structured functional materials

    International Nuclear Information System (INIS)

    Ying, K.K.; Nur Ubaidah Saidin; Khuan, N.I.; Suhaila Hani Ilias; Foo, C.T.

    2012-01-01

    Template-assisted growth is an important nano electrochemical deposition technique for synthesizing one-dimensional (1-D) nano structures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodization of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nano structures in the form of nano wires using PAA templates as scaffolds. Axial heterostructure and homogeneous nano wires formed by engineering materials configuration via composition and/ or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to alucidate the microstructures, morphologies and chemical compositions of the nano wires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nano structures have useful applications as critical components in nano sensor devices and various areas of nano technology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals. (Author)

  16. Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors

    International Nuclear Information System (INIS)

    Vellakkat, Mini; Hundekkal, Devendrappa

    2016-01-01

    Nanostructured ternary composite of polyaniline (PANI), Co 3 O 4 nanoparticles, and Chitosan (CS) has been prepared by an in situ chemical oxidation method, and the nanocomposites (CPAESCO) were used as supercapacitor electrodes. The Co 3 O 4 nanoparticles are uniformly coated with CS and PANI layers in it. Different techniques (Fourier transform infrared spectrophotometry, x-ray diffraction, thermal gravimetric analysis, UV−visible spectroscopy, scanning electron microscopy, transmission electron microscopy and electro chemical analysis-cyclic voltammetry, galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy) were used to analyse the optical, structural, thermal, chemical and supercapacitive aspects of the nanocomposites. Core/double shell ternary composite electrode exhibits significantly increased specific capacitance than PANI/Co 3 O 4 or PANI/CS binary composites in supercapacitors. The ternary nanocomposite with 40% nanoparticle exhibits a highest specific capacitance reaching 687 F g −1 , Energy density of (95.42 Wh kg −1 at 1 A g −1 ) and power density of (1549 W kg −1 at 3 A g −1 ) and outstanding cycling performance, with, 91% capacitance retained over 5000 cycles. It is found that this unique bio compatible nano composite with synergy is a new multifunctional material which will be useful in the design of supercapacitor electrodes and other energy conversion devices too. (paper)

  17. Nano materials for Medical and Dental Applications

    International Nuclear Information System (INIS)

    Yub Kwon, T.; Oh, D.S.; Narayanan, R.

    2015-01-01

    Welcome to this special issue. Nano science and nano technology concepts are applicable across all fields of science and a more widespread application of nano materials and nano technologies is imminent or already occurring in many areas, including health care. Today is scientists take those cutting-edge technologies and concepts and apply them to medicine and dentistry. They are finding a wide variety of ways to make medical and dental materials at the nano scale to take advantage of their enhanced physical and biological properties.The purpose of this special issue is to publish high-quality research papers as well as review articles addressing recent advances in the field of nano materials for medical and dental applications. A particular interest is given to papers exploring or discussing nano materials and nano technologies related to delivery system, bonding substitutes, and surface modification techniques applicable in these areas. For this special issue, several investigators were invited to contribute original research findings that can stimulate continuing efforts to understand the cutting-edge applications of nano materials in medicine and dentistry.

  18. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  19. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite

    International Nuclear Information System (INIS)

    Mesquita, Joao Paulo de; Teixeira, Ivo F.; Donnici, Claudio L.; Pereira, Fabiano V.

    2011-01-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  20. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  1. Design and Fabrication of Al2O3-(W, TiC-TiN-Mo-Ni Nano-composite Cermet Tool Materials with Graded Structures

    Directory of Open Access Journals (Sweden)

    NI Xiu-ying

    2018-02-01

    Full Text Available Based on the analysis on temperature and stress distributions, as well as fatigue crack propagation in cutting tools, a model for designing compositional distribution and microstructure with graded characteristics was proposed. The addition of ductile phase and the introduction of the graded structure are beneficial to slow down the fatigue crack propagation rate and improve tool life.Al2O3-(W,TiC-TiN-Mo-Ni nano-composite tool material with graded structures was fabricated via two stage hot pressing sintering process, and the microstructure and mechanical properties were studied. The results show that the surface hardness, fracture toughness of inner layer and bending strength of the cermet with sintered gradient structure reach 19.258GPa, 10.015MPa·m1/2 and 1017.475MPa,respectively.The performance requirements to cutting tools were met. The dimple cleavage and torn edge of the binding phase in the fracture surfaces can be beneficial to the improvement of the fracture toughness and bending strength,so the resistance to fatigue crack propagation of tools is improved.

  2. Multilayer Electroactive Polymer Composite Material

    Science.gov (United States)

    Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  3. Effect of lateral size of graphene nano-sheets on the mechanical properties and machinability of alumina nano-composites

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Saggar, Richa; Tatarko, P.; Grasso, S.; Saunders, T.; Dlouhý, Ivo; Reece, M. J.

    2016-01-01

    Roč. 42, č. 6 (2016), s. 7533-7542 ISSN 0272-8842 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Alumina * Graphene nano-sheets * Nano-composites * Mechanical properties * Machinability Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.986, year: 2016

  4. Nano Engineered Energetic Materials (NEEM)

    Science.gov (United States)

    2011-01-12

    Dryer, FL; Aksay, IA, Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion, ACS NANO 3, 13, 3945-3954, 2009. 16. Weismiller...loading) which was not observed in other heterogeneous mixtures. Additional details on nano fuels (including graphene ) with liquid oxidizers can be...to the high reflectance of some samples black high temperature spray paint was used on ends of the samples to decrease ignition delay times and

  5. Carbon Nano tube Composites for Electronic Packaging Applications: A Review

    International Nuclear Information System (INIS)

    Aryasomayajula, L.; Wolter, K.J.

    2013-01-01

    Composite engineering comprises of metal matrix composites. They have high strength-weight ratio, better stiffness, economical production, and ease of availability of raw materials. The discovery of carbon nano tubes has opened new possibilities to face challenges better. Carbon Nano tubes are known for their high mechanical strength, excellent thermal and electrical properties. Recent research has made progress in fabricating carbon nano tube metal matrix and polymer-based composites. The methods of fabrication of these composites, their properties and possible applications restricted to the field of electronic packaging have been discussed in this paper. Experimental and theoretical calculations have shown improved mechanical and physical properties like tensile stress, toughness, and improved electrical and thermal properties. They have also demonstrated the ease of production of the composites and their adaptability as one can tailor their properties as per the requirement. This paper reviews work reported on fabricating and characterizing carbon- nano tube-based metal matrix and polymer composites. The focus of this paper is mainly to review the importance of these composites in the field of electronics packaging.

  6. Hydrogen Storage in Carbon Nano-materials

    International Nuclear Information System (INIS)

    David Eyler; Michel Junker; Emanuelle Breysse Carraboeuf; Laurent Allidieres; David Guichardot; Fabien Roy; Isabelle Verdier; Edward Mc Rae; Moulay Rachid Babaa; Gilles Flamant; David Luxembourg; Daniel Laplaze; Patrick Achard; Sandrine Berthon-Fabry; David Langohr; Laurent Fulcheri

    2006-01-01

    This paper presents the results of a French project related to hydrogen storage in carbon nano-materials. This 3 years project, co-funded by the ADEME (French Agency for the Environment and the Energy Management), aimed to assess the hydrogen storage capacity of carbon nano-materials. Four different carbon materials were synthesized and characterized in the frame of present project: - Carbon Nano-tubes; - Carbon Nano-fibres; - Carbon Aerogel; - Carbon Black. All materials tested in the frame of this project present a hydrogen uptake of less than 1 wt% (-20 C to 20 C). A state of the art of hydrogen storage systems has been done in order to determine the research trends and the maturity of the different technologies. The choice and design of hydrogen storage systems regarding fuel cell specifications has also been studied. (authors)

  7. Action of colloidal silica films on different nano-composites

    Directory of Open Access Journals (Sweden)

    S. Abdalla

    Full Text Available Nano-composite films have been the subject of extensive work to develop the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nano-particles size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that form an insulating film between conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of 4 high pure amorphous polymer films: polymethylmethacrylate (PMMA, polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher break down performance is a character of polyimide PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer. Keywords: Dielectric break down, Polymers, Nano-composite, Colloidal silica

  8. PREFACE: International Conference on Structural Nano Composites (NANOSTRUC 2012)

    Science.gov (United States)

    Njuguna, James

    2012-09-01

    Dear Colleagues It is a great pleasure to welcome you to NanoStruc2012 at Cranfield University. The purpose of the 2012 International Conference on Structural Nano Composites (NanoStruc2012) is to promote activities in various areas of materials and structures by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. NanoStruc brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to structural materials, engineering structures, nanocomposites, modelling and simulations, and their related application areas. The conference is split in 7 panel sessions, Metallic Nanocomposites and Coatings, Silica based Nanocomposites, safty of Nanomaterials, Carboin based Nanocomposites, Multscale Modelling, Bio materials and Application of Nanomaterials. All accepted Papers will be published in the IOP Conference Series: Materials Science and Engineering (MSE), and included in the NanoStruc online digital library. The abstracts will be indexed in Scopus, Compedex, Inspec, INIS (International Nuclear Information System), Chemical Abstracts, NASA Astrophysics Data System and Polymer Library. Before ending this message, I would like to acknowledge the hard work, professional skills and efficiency of the team which ensured the general organisation. As a conclusion, I would like to Welcome you to the Nanostruc2012 and wish you a stimulating Conference and a wonderful time. On behalf of the scientific committee, Signature James Njuguna Conference Chair The PDF of this preface also contains committee listings and associates logos.

  9. Electric characteristics of thin films and gas sensors with varying conductivity: from purely organic materials to nano-composite architectures

    International Nuclear Information System (INIS)

    Pradeau, Jean Paul

    1998-01-01

    This research thesis reports a work which aimed at producing active molecular devices which could be used for gas detection, and which notably display better electric characteristics than existing ones. The author first outlines that these devices present a high sensitivity, and then discusses why they display these reliability problems in terms of electric characteristics. Thus, he studied the influence of the electrode/material interface, and the influence of the material thickness on measured electric characteristics. He highlighted the non negligible influence of a control of physical-chemical properties of the electrode/material interface on the measurement of electric characteristics. Then, in order to solve these problems, the author proposes and reports the study of a mixing, within the same material, of organic molecules (for detection purposes) and metallic particles (for transduction purposes) [fr

  10. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Tatarko, Peter; Grasso, S.; Hu, Ch.; Boccaccini, A. R.; Dlouhý, Ivo; Reece, M.J.

    2013-01-01

    Roč. 14, č. 5 (2013), Art.N. 055007 ISSN 1468-6996 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : silica * graphene/graphene-oxide nano platelets * nano composites * mechanical properties * sintering Subject RIV: JI - Composite Materials Impact factor: 2.613, year: 2013

  11. Nano-composite stainless steel

    Science.gov (United States)

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  12. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  13. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-Filled Composites

    OpenAIRE

    Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam

    2013-01-01

    Objectives: The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel...

  14. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    2004-01-01

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  15. Emerging areas of Nano and Smart Materials

    OpenAIRE

    Partha Ghosal

    2016-01-01

    ‘There’s plenty of room at the bottom’ – In 1959, one of the most brilliant physicists the world has ever seen, Richard P. Feynmann, gave us a beautiful introduction to nano-science. Today, after almost seven decades, nano-materials and related technologies are not just a simple extension of regular research and miniaturisation of materials, but have become the prime driver of advancement in science and technology all over the world. Over the past few decades, new societal requirement haveeme...

  16. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    Science.gov (United States)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  17. Mechanical properties of cement concrete composites containing nano-metakaolin

    Science.gov (United States)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  18. Nano-scale Materials and Nano-technology Processes in Environmental Protection

    International Nuclear Information System (INIS)

    Vissokov, Gh; Tzvetkoff, T.

    2003-01-01

    A number of environmental and energy technologies have benefited substantially from nano-scale technology: reduced waste and improved energy efficiency; environmentally friendly composite structures; waste remediation; energy conversion. In this report examples of current achievements and paradigm shifts are presented: from discovery to application; a nano structured materials; nanoparticles in the environment (plasma chemical preparation); nano-porous polymers and their applications in water purification; photo catalytic fluid purification; hierarchical self-assembled nano-structures for adsorption of heavy metals, etc. Several themes should be considered priorities in developing nano-scale processes related to environmental management: 1. To develop understanding and control of relevant processes, including protein precipitation and crystallisation, desorption of pollutants, stability of colloidal dispersion, micelle aggregation, microbe mobility, formation and mobility of nanoparticles, and tissue-nanoparticle interaction. Emphasis should be given to processes at phase boundaries (solid-liquid, solid-gas, liquid-gas) that involve mineral and organic soil components, aerosols, biomolecules (cells, microbes), bio tissues, derived components such as bio films and membranes, and anthropogenic additions (e.g. trace and heavy metals); 2. To carry out interdisciplinary research that initiates Noel approaches and adopts new methods for characterising surfaces and modelling complex systems to problems at interfaces and other nano-structures in the natural environment, including those involving biological or living systems. New technological advances such as optical traps, laser tweezers, and synchrotrons are extending examination of molecular and nano-scale processes to the single-molecule or single-cell level; 3. To integrate understanding of the roles of molecular and nano-scale phenomena and behaviour at the meso- and/or macro-scale over a period of time

  19. Mixed nano/micro-sized calcium phosphate composite and EDTA root surface etching improve availability of graft material in intrabony defects: an in vivo scanning electron microscopy evaluation.

    Science.gov (United States)

    Gamal, Ahmed Y; Iacono, Vincent J

    2013-12-01

    The use of nanoparticles of graft materials may lead to breakthrough applications for periodontal regeneration. However, due to their small particle size, nanoparticles may be eliminated from periodontal defects by phagocytosis. In an attempt to improve nanoparticle retention in periodontal defects, the present in vivo study uses scanning electron microscopy (SEM) to evaluate the potential of micrograft particles of β-tricalcium phosphate (β-TCP) to enhance the binding and retention of nanoparticles of hydroxyapatite (nHA) on EDTA-treated and non-treated root surfaces in periodontal defects after 14 days of healing. Sixty patients having at least two hopeless periodontally affected teeth designated for extraction were randomly divided into four treatment groups (15 patients per group). Patients in group 1 had selected periodontal intrabony defects grafted with nHA of particle size 10 to 100 nm. Patients in group 2 were treated in a similar manner but had the affected roots etched for 2 minutes with a neutral 24% EDTA gel before grafting of the associated vertical defects with nHA. Patients in group 3 had the selected intrabony defects grafted with a composite graft consisting of equal volumes of nHA and β-TCP (particle size 63 to 150 nm). Patients in group 4 were treated as in group 3 but the affected roots were etched with neutral 24% EDTA as in group 2. For each of the four groups, one tooth was extracted immediately, and the second tooth was extracted after 14 days of healing for SEM evaluation. Fourteen days after surgery, all group 1 samples were devoid of any nanoparticles adherent to the root surfaces. Group 2 showed root surface areas 44.7% covered by a single layer of clot-blended grafted particles 14 days following graft application. After 14 days, group 3 samples appeared to retain fibrin strands devoid of grafted particles. Immediately extracted root samples of group 4 had adherent graft particles that covered a considerable area of the root surfaces

  20. Nano-material and method of fabrication

    Science.gov (United States)

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  1. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    Sun, X.C.

    2000-01-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe 78 Si 9 B 13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  2. Microstructure characterization and magnetic properties of nano structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.C

    2000-07-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe{sub 78}Si{sub 9}B{sub 13} ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy [eds.]; selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  3. Nano-Reinforcement of Interfaces in Prepreg-Based Composites Using a Carbon Nanotubes Spraying Method

    KAUST Repository

    Almuhammadi, Khaled

    2012-01-01

    of epoxy resins used as matrix materials for CFRP composites can be increased by the addition of nano-sized fillers such as Carbon nanotubes (CNTs). CNTs are particularly well suited for this purpose because of their nano-scale diameter and high aspect

  4. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose

    2016-01-01

    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core-shell...... or decorated particles. Based on the simulation results, a reactor system employing a confined jet mixer in the first and a counter-flow mixer in the second stage was designed and built. The two-stage functionality and synthesis capacity is shown on the example of single- and two-stage syntheses of pure...... and mixed-phase NiO and YSZ particles....

  5. Composite material dosimeters

    Science.gov (United States)

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  6. Synthesis and characterization of poly-o-anisidine Sn(IV tungstate: A new and novel ‘organic–inorganic’ nano-composite material and its electro-analytical applications as Hg(II ion-selective membrane electrode

    Directory of Open Access Journals (Sweden)

    Asif A. Khan

    2012-07-01

    Full Text Available An organic–inorganic nano-composite poly-o-anisidine Sn(IV tungstate was chemically synthesized by sol–gel mixing of the incorporation of organic polymer o-anisidine into the matrices of inorganic ppt of Sn(IV tungstate in different mixing volume ratios. This composite material has been characterized using various analytical techniques like XRD (X-ray diffraction, FTIR (Fourier transform infrared, SEM (Scanning electron microscopy, TEM (Transmission electron microscopy and simultaneous TGA (Thermogravimetric analysis studies. On the basis of distribution studies, the material was found to be highly selective for Hg(II. Using this nano-composite cation exchanger as electro-active material, a new heterogeneous precipitate based on ion-sensitive membrane electrode was developed for the determination of Hg(II ions in solutions. The membrane electrode was mechanically stable, with a quick response time, and can be operated within a wide pH range. The electrode was also found to be satisfactory in electrometric titrations.

  7. Corrosion resistant composite materials

    International Nuclear Information System (INIS)

    Ul'yanin, E.A.

    1986-01-01

    Foundations for corrosion-resistant composite materials design are considered with account of components compatibility. Fibrous and lamellar composites with metal matrix, dispersion-hardened steels and alloys, refractory metal carbides-, borides-, nitrides-, silicides-based composites are described. Cermet compositions and fields of their application, such as protective coatings for operation in agressive media at high temperatures, are presented

  8. Characterization and bioactivity of nano-submicro octacalcium phosphate/gelatin composite

    International Nuclear Information System (INIS)

    Miura, Kei-ichiro; Anada, Takahisa; Honda, Yoshitomo; Shiwaku, Yukari; Kawai, Tadashi; Echigo, Seishi; Takahashi, Tetsu; Suzuki, Osamu

    2013-01-01

    The present study was designed to investigate the physicochemical and bioactive properties of a nano-submicro sized octacalcium phosphate (OCP)-dispersed gelatin (Gel) composite (nano-submicro OCP/Gel) used as a bone substitute material in various bone defects. Well-grown, synthesized OCP was mechanically ground from 100 to 300 μm-sieved granules to particles that were approximately 500 nm in size. Then, 50 wt% of the nano-submicro OCP was mixed with porcine skin-derived acid extracted gelatin. The mixture was molded and lyophilized and then subjected to dehydrothermal crosslinking. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that the structure of OCP was retained even after mechanical grinding to a nano-submicro scale level as well as inclusion in the Gel matrix. The bioactivity of nano-submicro OCP/Gel was examined by immersing the composite in simulated body fluid (SBF) for 7 days and by implanting it in rat critical-sized calvaria defects for 8 weeks. The nano-submicro OCP tended to convert to low crystalline hydroxyapatite (HA) in SBF as assessed by XRD. The nano-submicro OCP/Gel exhibited osteoconductivity in vivo, yielding new bone formation that was closely associated with the implanted composite. These results suggest that the nano-submicro OCP/Gel composite exhibits similar osteoconductivity as observed in other OCP-based materials previously reported and could be used as a bone substitute material for repairing various defects in bone.

  9. Characterization and bioactivity of nano-submicro octacalcium phosphate/gelatin composite

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Kei-ichiro [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai (Japan); Anada, Takahisa; Honda, Yoshitomo [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Shiwaku, Yukari [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan); Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai (Japan); Kawai, Tadashi; Echigo, Seishi; Takahashi, Tetsu [Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai (Japan); Suzuki, Osamu, E-mail: suzuki-o@m.tohoku.ac.jp [Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai (Japan)

    2013-10-01

    The present study was designed to investigate the physicochemical and bioactive properties of a nano-submicro sized octacalcium phosphate (OCP)-dispersed gelatin (Gel) composite (nano-submicro OCP/Gel) used as a bone substitute material in various bone defects. Well-grown, synthesized OCP was mechanically ground from 100 to 300 μm-sieved granules to particles that were approximately 500 nm in size. Then, 50 wt% of the nano-submicro OCP was mixed with porcine skin-derived acid extracted gelatin. The mixture was molded and lyophilized and then subjected to dehydrothermal crosslinking. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that the structure of OCP was retained even after mechanical grinding to a nano-submicro scale level as well as inclusion in the Gel matrix. The bioactivity of nano-submicro OCP/Gel was examined by immersing the composite in simulated body fluid (SBF) for 7 days and by implanting it in rat critical-sized calvaria defects for 8 weeks. The nano-submicro OCP tended to convert to low crystalline hydroxyapatite (HA) in SBF as assessed by XRD. The nano-submicro OCP/Gel exhibited osteoconductivity in vivo, yielding new bone formation that was closely associated with the implanted composite. These results suggest that the nano-submicro OCP/Gel composite exhibits similar osteoconductivity as observed in other OCP-based materials previously reported and could be used as a bone substitute material for repairing various defects in bone.

  10. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  11. Nano-Particle Enhanced Polymer Materials for Space Flight Applications

    Science.gov (United States)

    Criss, Jim M., Jr.; Powell, William D.; Connell, John W.; Stallworth-Bordain, Yemaya; Brown, Tracy R.; Mintz, Eric A.; Schlea, Michelle R.; Shofne, Meisha L.

    2009-01-01

    Recent advances in materials technology both in polymer chemistry and nano-materials warrant development of enhanced structures for space flight applications. This work aims to develop spacecraft structures based on polymer matrix composites (PMCs) that utilize these advancements.. Multi-wall carbon nano-tubes (MWCNTs) are expected ·to increase mechanical performance, lower coefficient of thermal expansion (CTE), increase electrical conductivity (mitigate electrostatic charge), increase thermal conductivity, and reduce moisture absorption of the resultant space structures. In this work, blends of MWCNTs with PETI-330 were prepared and characterized. The nano-reinforced resins were then resin transfer molded (RTM) into composite panels using M55J carbon fabric and compared to baseline panels fabricated from a cyanate ester (RS-3) or a polyimide (PETI-330) resin containing no MWCNTs. In addition, methods of pre-loading the fabric with the MWCNTs were also investigated. The effects of the MWCNTs on the resin processing properties and on the composite end-use properties were also determined.

  12. CO oxidation on Alsbnd Au nano-composite systems

    Science.gov (United States)

    Rajesh, C.; Majumder, C.

    2018-03-01

    Using first principles method we report the CO oxidation behaviour of Alsbnd Au nano-composites in three different size ranges: Al6Au8, Al13Au42 and a periodic slab of Alsbnd Au(1 1 1) surface. The clusters prefer enclosed structures with alternating arrangement of Al and Au atoms, maximising Auδ-sbnd Alδ+ bonds. Charge distribution analysis suggests the charge transfer from Al to Au atoms, corroborated by the red shift in the density of states spectrum. Further, CO oxidation on these nano-composite systems was investigated through both Eley - Rideal and Langmuir Hinshelwood mechanism. While, these clusters interact with O2 non-dissociatively with an elongation of the Osbnd O bond, further interaction with CO led to formation of CO2 spontaneously. On contrary, the CO2 evolution by co-adsorption of O2 and CO molecules has a transition state barrier. On the basis of the results it is inferred that nano-composite material of Alsbnd Au shows significant promise toward effective oxidative catalysis.

  13. Polyurethane/nano-hydroxyapatite composite films as osteogenic platforms.

    Science.gov (United States)

    Jackson, Bailey K; Bow, Austin J; Kannarpady, Ganesh; Biris, Alexandru S; Anderson, David E; Dhar, Madhu; Bourdo, Shawn E

    2018-05-02

    A wide variety of biomaterials are utilized in tissue engineering to promote cell proliferations in vitro or tissue growth in vivo. The combination of cells, extracellular matrices, and biocompatible materials may make it possible to grow functional living tissues ranging from bone to nerve cells. In bone regeneration, polymeric scaffolds can be enhanced by the addition of bioactive materials. To this end, this study designed several ratios of polyurethane (PU) and nano-hydroxyapatite (nHA) composites (PU-nHA ratios: 100/0, 90/10, 80/20, 70/30, 60/40 w/w). The physical and mechanical properties of these composites and their relative cellular compatibility in vitro were determined. The chemical composition and crystallinity of the composites were confirmed using X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Atomic force microscopy, nano-indentation, and contact angle measurements were used to evaluate surface properties. The results showed a significant increase in surface roughness and a decrease in contact angle when the nHA concentration increased above 20%, resulting in a significant increase in hydrophilicity. These surface property changes influenced cellular behavior when MC 3T3-E1 cells were seeded on the composites. All composites were cytocompatible. There was a linear increase in cell proliferation on the 80/20 and 70/30 composites only, whereas subjective evaluation demonstrated noticeable clusters or nodules of cells (considered hallmarks of osteogenic differentiation) in the absence of any osteogenic inducers only on the 90/10 and 80/20 composites. Cellular data suggests that the 80/20 composite was an optimal environment for cell adhesion, proliferation, and, potentially, osteogenic differentiation in vitro.

  14. Nano-material aspects of shock absorption in bone joints.

    Science.gov (United States)

    Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.

  15. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  16. Preparation and characterization of PVC /ENR/CNTs Nano composites

    International Nuclear Information System (INIS)

    Ratnam, C.T.; Nur Azrini Ramlee; Keong, C.C.

    2011-01-01

    Poly (vinyl chloride), PVC/ epoxidized natural rubber blend, ENR/ carbon nano tubes, CNTs were prepared by using melt and solution blending methods. Addition of 2 phr of CNTs found to cause a drop in the tensile strength, Ts of the 50/ 50 PVC/ ENR blend. The nano composites prepared by the melt blending method exhibited higher values of Ts compared to the nano composites prepared by solution blending. Melt blending found to be an efficient method to prepare PVC/ ENR/ CNTs nano composites. (author)

  17. Nano-hydroxyapatite/poly ε-caprolactone composite 3D scaffolds for mastoid obliteration

    International Nuclear Information System (INIS)

    Kim, S E; Yun, H S; Hyun, Y T; Shin, J W; Song, J J

    2009-01-01

    The aim of this study is to evaluate the use of our nano-HA/PCL composite 3D scaffolds as graft materials for mastoid cavity obliteration in an animal model. Nano-HA particles were synthesized by chemical precipitation technique and mixed them with PCL solution to make composite paste. 3D scaffolds were fabricated by a paste extruding deposition process. The nano-HA/PCL 3D scaffolds showed good in vivo bone regeneration behaviour in a rabbit model after 4 and 8 week implantation. To characterize the 3D scaffolds as a grafting material for mastoid obliteration, mastoid cavities were introduced in rats and implanted the scaffolds. After two week implantation, histological examination showed good tissue ingrowth and new bone formation behaviour. It can be argued that our nano-HA/PCL composite 3D scaffold is a promising alternative material for mastoid obliteration.

  18. A review on mechanical properties of magnesium based nano composites

    Science.gov (United States)

    Tarafder, Nilanjan; Prasad, M. Lakshmi Vara

    2018-04-01

    A review was done on Magnesium (Mg) based composite materials reinforced with different nano particles such as TiO2, Cu, Y2O3, SiC, ZrO2 and Al2O3. TiO2 and Al2O3 nanoparticles were synthesised by melt deposition process. Cu, Y2O3, SiC and ZrO2 nanoparticles were synthesised by powder metallurgy process. Composite microstructural characteristics shows that the nano-size reinforcements are uniformly distributed in the composite matrix and also minimum porosity with solid interfacial integrity. The mechanical properties showed yield strength improvement by 0.2 percentage and Ultimate tensile strength (UTS) was also improved for all the nano-particles. But UTS was adversely affected with TiO2 reinforcement while ductility was increased. With Cu reinforcement elastic modulus, hardness and fracture resistance increased and improved the co-efficient of thermal expansion (CTE) of Mg based matrix. By Y2O3 reinforcement hardness, fracture resistance was improved and ductility reached maximum by 0.22 volume percentage of Y2O3 and decreased with succeeding increase in Y2O3 reinforcement. The readings exposed that mechanical properties were gathered from the composite comprising 2.0 weight percentage of Y2O3. Ductility and fracture resistance increased with ZrO2 reinforcement in Mg matrix. Using Al2O3 as reinforcement in Mg composite matrix hardness, elastic modulus and ductility was increased but porosity reduced with well interfacial integrity. Dissipation of energy in the form of damping capacity was resolved by classical vibration theory. The result showed that an increasing up to 0.4 volume percentage alumina content increases the damping capacity up to 34 percent. In another sample, addition of 2 weight percentage nano-Al2O3 particles showed big possibility in reducing CTE from 27.9-25.9×10-6 K-1 in Magnesium, tensile and yield strength amplified by 40MPa. In another test, Mg/1.1Al2O3 nanocomposite was manufactured by solidification process followed by hot extrusion

  19. Characterization of nano structured metallic materials

    International Nuclear Information System (INIS)

    Marin A, M.; Gutierrez W, C.; Cruz C, R.; Angeles C, C.

    1997-01-01

    Nowadays the search of new materials with specific optical properties has carried out to realize a series of experiments through the polymer synthesis [(C 3 N 3 ) 2 (NH) 3 ] n doped with gold metallic nanoparticles. The thermal stability of a polymer is due to the presence of tyazine rings contained in the structure. The samples were characterized by High Resolution Transmission Electron Microscopy, X-ray diffraction by the Powder method, Ft-infrared and its thermal properties by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA). One of the purposes of this work is to obtain nano structured materials over a polymeric matrix. (Author)

  20. Effect of antimicrobial agents on cellulose acetate nano composites properties

    International Nuclear Information System (INIS)

    Rodriguez, Francisco J.; Bruna, Julio E.; Galotto, Maria J.; Guarda, Abel; Sepulveda, Hugo

    2011-01-01

    Nano composites based on cellulose acetate, Cloisite 30B, triethyl citrate and thymol or cinnamaldehyde were prepared using a dissolution casting technique. The effect of thymol and cinnamaldehyde on the cellulose acetate nano composite properties was evaluated by XRD and DSC. Important changes on the thermal properties and morphological structure were observed according to thymol and cinnamaldehyde content. (author)

  1. Effect of antimicrobial agents on cellulose acetate nano composites properties

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Francisco J.; Bruna, Julio E.; Galotto, Maria J.; Guarda, Abel; Sepulveda, Hugo, E-mail: francisco.rodriguez.m@usach.cl [Center for the Development of Nanoscience and Nanotechnology (CEDENNA). Universidad de Santiago de Chile. Faculty of Technology. Department of Food Science and Technology. Food Packaging Laboratory. Santiago (Chile)

    2011-07-01

    Nano composites based on cellulose acetate, Cloisite 30B, triethyl citrate and thymol or cinnamaldehyde were prepared using a dissolution casting technique. The effect of thymol and cinnamaldehyde on the cellulose acetate nano composite properties was evaluated by XRD and DSC. Important changes on the thermal properties and morphological structure were observed according to thymol and cinnamaldehyde content. (author)

  2. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    OpenAIRE

    Farzin Heravi; Mohammad Ramezani; Maryam Poosti; Mohsen Hosseini; Arezoo Shajiei; Farzaneh Ahrari

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM). The extrac...

  3. Graphene reinforced alumina nano-composites

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Tatarko, Peter; Grasso, S.; Khaliq, J.; Dlouhý, Ivo; Reece, M.J.

    2013-01-01

    Roč. 64, NOV (2013), s. 359-369 ISSN 0008-6223 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : fracture toughness determination * ceramic-matrix composites * carbon nanotubes Subject RIV: JI - Composite Materials Impact factor: 6.160, year: 2013

  4. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  5. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Khalil, H.P.S.A.; Khalil, H.P.S.A.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S.

    2014-01-01

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  6. Gamma radiation effects on nano composites of Ag nanoparticles in Zn O matrices

    International Nuclear Information System (INIS)

    Villasenor C, L. S.

    2015-01-01

    The study of gamma radiation effects in nano composites of silver nanoparticles in a Zn O matrix has been performed in this work. First, silver nanoparticles (AgNPs) were synthesized by colloidal methods, with two different mean average sizes, 48 nm and 24 nm respectively. These nanoparticles were characterized by transmission electron microscopy (Tem) and UV-Vis spectroscopy (UV-Vis). Then, with the synthesized AgNPs, nano composites in a matrix of Zn O were prepared. The first nano composite was prepared with the 48 nm AgNPs at 9.5 weight % of silver (Ag) and the second nano composite with the 24 nm nanoparticles at 1.0 weight % of Ag. Both nano composites were analyzed by scanning electron microscopy (Sem). The formation of the Zn O phase in the nano composite was corroborated through X-ray diffraction analysis. It was observed that the presence of AgNPs during the formation of the AgNPs/Zn O nano composite modified the size and morphology of the structures obtained compared to those of the pure Zn O without nanoparticles, however both exhibit a radial structure. Then, the nano composite at 9.5 weight % of Ag was irradiated with gamma rays at doses of 1, 20 and 50 kGy. Samples were analyzed by Sem and the Bet technique, before and after being irradiated, in order to determine the effect of gamma radiation in the morphology, porosity and surface area of the studied material. Even when there are changes in porosity and Surface area, this difference is not very significant for some applications, however it will have to be considered during the design of a specific application of the nano composites. On the other hand, no morphology modifications were identified on the samples irradiated at the studied doses, with the electron microscopy techniques used. (Author)

  7. LDPE/HDPE/Clay Nano composites: Effects of Compatibilizer on the Structure and Dielectric Response

    International Nuclear Information System (INIS)

    David, Z.E.; Ngo, A.D.

    2013-01-01

    PE/clay nano composites were prepared by mixing a commercially available premixed polyethylene/O-MMT master batch into a polyethylene blend matrix containing 80 wt% low-density polyethylene and 20 wt% high-density polyethylene with and without anhydride modified polyethylene (PE-MA) as the compatibilizer using a corotating twin-screw extruder. In this study, the effect of nano clay and compatibilizer on the structure and dielectric response of PE/clay nano composites has been investigated. The microstructure of PE/clay nano composites was characterized using wide-angle X-ray diffraction (WAXD) and a scanning electron microscope (SEM). Thermal properties were examined using differential scanning calorimetry (DSC). The dielectric response of neat PE was compared with that of PE/clay nano composite with and without the compatibilizer. The XRD and SEM results showed that the PE/O-MMT nano composite with the PE-MA compatibilizer was better dispersed. In the nano composite materials, two relaxation modes are detected in the dielectric losses. The first relaxation is due to a Maxwell-Wagner-Sillars interfacial polarization, and the second relaxation can be related to dipolar polarization. A relationship between the degree of dispersion and the relaxation rate f m ax of Maxwell-Wagner-Sillars was found and discussed.

  8. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  9. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    Science.gov (United States)

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  10. Electrically conductive composite material

    Science.gov (United States)

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  11. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    Science.gov (United States)

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  12. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  13. Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic Sn and graphite oxide: an outstanding anode material for lithium-ion batteries.

    Science.gov (United States)

    Ye, Fei; Zhao, Bote; Ran, Ran; Shao, Zongping

    2014-04-01

    A facile method for the large-scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3-30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and transmission electron microscopy. The as-prepared SnO2 /graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer-sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm(-3). By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g(-1) is achieved even after 50 cycles at 100 mA g(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation, Characterization, and Modeling of Carbon Nano fiber/Epoxy Nano composites

    International Nuclear Information System (INIS)

    Sun, L.H.; Yang, Z.G.; Ounaies, Z.; Whalen, C.A.; Gao, X.L.

    2011-01-01

    There is a lack of systematic investigations on both mechanical and electrical properties of carbon nano fiber (CNF)-reinforced epoxy matrix nano composites. In this paper, an in-depth study of both static and dynamic mechanical behaviors and electrical properties of CNF/epoxy nano composites with various contents of CNFs is provided. A modified Halpin-Tsai equation is used to evaluate the Young's modulus and storage modulus of the nano composites. The values of Young's modulus predicted using this method account for the effect of the CNF agglomeration and fit well with those obtained experimentally. The results show that the highest tensile strength is found in the epoxy nano composite with a 1.0 wt % CNFs. The alternate-current (AC) electrical properties of the CNF/epoxy nano composites exhibit a typical insulator-conductor transition. The conductivity increases by four orders of magnitude with the addition of 0.1 wt % (0.058 vol %) CNFs and by ten orders of magnitude for nano composites with CNF volume fractions higher than 1.0 wt % (0.578 vol %). The percolation threshold (i.e., the critical CNF volume fraction) is found to be at 0.057 vol %.

  15. Composite Material Switches

    Science.gov (United States)

    Javadi, Hamid (Inventor)

    2002-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  16. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  17. Preliminary characterization in the development of the nano composite low density polyethylene with attapulgite clay

    International Nuclear Information System (INIS)

    Domingos, Luanda G.; Rego, Jose K.M.A. do; Ito, Edson N.; Acchar, Wilson

    2011-01-01

    The aim of this study was a preliminary study of the physical, thermal and rheological properties of the materials to be used in the development of nano composite low density polyethylene (LDPE) with Brazilian attapulgite clay (ATP), with and without the use of a compatibilizing agent interfacial, polyethylene grafted with maleic anhydride (PE-g-MAH). The materials were characterized by X-ray diffraction (XRD), thermogravimetry (TG) and torque rheometry. The materials were characterized and potentially could be developed polymeric nano composites with technological applications using attapulgite fibers in the nanometer scale. (author)

  18. Are nano-composites and nano-ionomers suitable for orthodontic bracket bonding?

    Science.gov (United States)

    Uysal, Tancan; Yagci, Ahmet; Uysal, Banu; Akdogan, Gülsen

    2010-02-01

    The aim of this study was to test nano-composite (Filtek Supreme Plus Universal) and a newly introduced nano-ionomer (Ketac N100 Light Curing Nano-Ionomer) restorative to determine their shear bond strength (SBS) and failure site locations in comparison with a conventional light-cure orthodontic bonding adhesive (Transbond XT). Sixty freshly extracted human maxillary premolar teeth were arbitrarily divided into three equal groups. The brackets were bonded to the teeth in each group with different composites, according to the manufacturers' instructions. The SBS values of the brackets were recorded in Megapascals (MPa) using a universal testing machine. Adhesive remnant index scores were determined after failure of the brackets. The data were analysed using analysis of variance, Tukey honestly significant difference, and chi-square tests. The results demonstrated that group 1 (Transbond XT, mean: 12.60 +/- 4.48 MPa) had a higher SBS than that of group 2 (nano-composite, mean: 8.33 +/- 5.16 MPa; P nano-ionomer, mean: 6.14 +/- 2.12 MPa; P Nano-composites and nano-ionomers may be suitable for bonding since they fulfil the previously suggested SBS ranges for clinical acceptability, but they are inferior to a conventional orthodontic composite.

  19. Nano materials for Renewable Energy Storage: Synthesis, Characterization, and Applications

    International Nuclear Information System (INIS)

    Rather, S.U.; Zacharia, R.; Stephan, A.M.; Petrov, L.A.; Nair, J.R.

    2015-01-01

    Nano technology and nano scale materials have been part of human history and in use since centuries. Staining of glass windows hundreds of years ago is one of the examples where people created beautiful works without knowing that they are using nano processing. The beginning of modern era of nano technology dates back to the talk of the Nobel laureate Professor Richard Feynman in There plenty of room at the bottom. Professor Feynman hypothesized that in near future scientists would be able to control and modulate individual molecules and atoms. After a decade, Professor Norio Taniguchi introduced the magical word nano technology. However, in 1981, the introduction of scanning tunnelling microscope enabled the scientists to see the materials in nano scale that propagated the new age of nano technology.

  20. Review on the Synthesis and Applications of Nano materials

    International Nuclear Information System (INIS)

    Liu, X.; Tang, Y.; Liang, B.; Zhong, Z.

    2013-01-01

    Recently, Fe 3 O 4 nano materials have attracted tremendous attention because of their favorable electric and magnetic properties. Fe 3 O 4 nano structures with various morphologies have been successfully synthesized and have been used in many fields such as lithium-ion batteries (LIBs), wastewater treatment, and magnetic resonance imaging (MRI) contrast agents. In this paper, we provide an in-depth discussion of recent development of Fe 3 O 4 nano materials, including their effective synthetic methods and potential applications.

  1. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  2. Superconducting composites materials

    International Nuclear Information System (INIS)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.

    1991-01-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr

  3. Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles

    International Nuclear Information System (INIS)

    Gao, Zhifang; Zhao, Lei

    2015-01-01

    Highlights: • Nano-fillers were synthesized by a simple urea process. • Ternary filler system with synthesized nano-hybrid fillers was investigated. • Using of nano-hybrid filler for prevent nanofiller aggregation was presented. - Abstract: Nano-AlN particles, AlN/graphene nano-hybrids (AlN/GE) and AlN/carbon nanotubes nano-hybrids (AlN/CNTs) were prepared. The structures, morphologies of synthesized nano-materials were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the morphologies of the synthesized nano-materials were obviously different. In addition, the thermal conductivity of epoxy composites could be effectively improved by adding the produced nano-fillers. Especially, the epoxy composite with AlN/GE nano-hybrids had the highest enhancement in thermal conductivity comparison to the pure epoxy. Moreover, the density of epoxy composites with the synthesized nano-fillers was decreased and the corresponding thermal stability was enhanced

  4. Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites

    International Nuclear Information System (INIS)

    Huang, Jun; Rodrigue, Denis

    2015-01-01

    Highlights: • SWCNT and NCC can effectively improve the mechanical properties of nano-composites. • SWCNT is more effective than NCC to increase modulus and strength. • Longer NCC is more effective to improve the mechanical properties of nano-composites. • It is more economic to use NCC than SWCNT to improve mechanical properties. - Abstract: Using beam and tetrahedron elements to simulate nanocrystalline cellulose (NCC), single wall carbon nanotube (SWCNT) and polypropylene (PP), finite element method (FEM) is used to predict the mechanical properties of nano-composites. The bending, shear and torsion behaviors of nano-composites are especially investigated due to the limited amount of information in the present literature. First, mixed method (MM) and FEM are used to compare the bending stiffness of NCC/PP and SWCNT/PP composites. Second, based on mechanics of materials, the shear moduli of both types of nano-composites are obtained. Finally, fixing the number of fibers and for different volume contents, four NCC lengths are used to determine the mechanical properties of the composites. The bending and shearing performances are also compared between NCC and SWCNT based composites. In all cases, the elastic–plastic analyses are carried out and the stress or strain distributions for specific regions are also investigated. From all the results obtained, an economic analysis shows that NCC is more interesting than SWCNT to reinforce PP

  5. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  6. Tribological properties of silicate materials on nano and microscale

    International Nuclear Information System (INIS)

    Tordjeman, Ph.; Morel, N.; Ramonda, M.

    2009-01-01

    We studied the friction properties of four model silicate materials at the nanoscale and microscale. From nanotribology, we characterized the tribological properties at single asperity contact scale and from microtribology, we characterized the tribological properties at multi asperity contact scale. First, for each material we measured chemical composition by XPS, Young's modulus by acoustical microscopy and roughness σ by atomic force microscopy (AFM). Second, we measured the nanofriction coefficients with an AFM and the microfriction coefficients with a ball probe tribometer, for three hardnesses of the ball probe. We identified one friction mechanism at the nanoscale (sliding friction) and two friction mechanisms at the microscale (sliding friction and yielding friction). Comparison of the nano and microfriction coefficients at the same sliding friction regime shown, that the tribological properties of these materials didn't depend on roughness.

  7. Evaluating Weathering of Food Packaging Polyethylene-Nano-clay Composites: Release of Nanoparticles and their Impacts.

    Science.gov (United States)

    Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E

    2018-01-01

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites

  8. [Study on biocompatibility of hydroxyapatite/high density polyethylene (HA/HDPE) nano-composites artificial ossicle].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Tan, Guolin; Zhou, Kechao; Huang, Suping; Zhao, Yanzhong; Li, Zhiyou; Huang, Boyun

    2008-06-01

    This study was aimed to evaluate the biocompatibility of Hydroxyapatite/High density polyethylene (HA/ HDPE) nano-composites artificial ossicle. The percentage of S-period cells were detected by flow cytometry after L929 cells being incubated with extraction of the HA/HDPE nano-composites; the titanium materials for clinical application served as the contrast. In addition, both materials were implanted in animals and the histopathological evaluations were conducted. There were no statistically significant differences between the two groups (P >0.05). The results demonstrated that the HA/HDPE nano-composite artificial ossicle made by our laboratory is of a good biocompatibility and clinical application outlook.

  9. Preparation and performance of ZnO/Polyaniline nano-composite for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.P.; Chang, X.C.; Wang, Z.M.; Han, K.F.; Zhu, H. [Beijing Univ. of Chemical Technology, Beijing (China). School of Science

    2010-07-01

    Supercapacitors combine the advantages of traditional capacitors and batteries. In this study, a zinc oxide (ZnO-PANI) nano-composite material was fabricated in order to investigate its behaviour in a supercapacitor application. The ZnO nano-powder was synthesized using the sol-gel method. An inverted emulsion polymerization method was then used to prepare the ZnO/PANI nanocomposite. X-ray diffraction (XRD) analyses demonstrated that the prepared ZnO had a hexagonal structure. The ZnO/PANI composite electrode was prepared. Electrochemical impedance spectroscopy (EIS) analyses indicated that the nano-composite material functioned well as an electrode. The highest capacitance rating achieved by the electrode was 31.82 F per g. 6 refs., 4 figs.

  10. Repair of articular cartilage and subchondral defects in rabbit knee joints with a polyvinyl alcohol/nano-hydroxyapatite/polyamide 66 biological composite material.

    Science.gov (United States)

    Guo, Tao; Tian, Xiaobin; Li, Bo; Yang, Tianfu; Li, Yubao

    2017-11-15

    This study sought to prepare a new PVA/n-HA/PA66 composite to investigate the repair of articular cartilage and subchondral defects in rabbit knee joints. A 5 × 5 × 5 mm-sized defect was created in the patellofemoral joints of 72 healthy adult New Zealand rabbits. The rabbits were then randomly divided into three groups (n = 24): PVA/n-HA+PA66 group, polyvinyl alcohol (PVA) group, and control (untreated) group. Cylindrical PVA/n-HA+PA66, 5 × 5 mm, comprised an upper PVA layer and a lower n-HA+PA66 layer. Macroscopic and histological evaluations were performed at 4, 8, 12, and 24 weeks, postoperatively. Type II collagen was measured by immunohistochemical staining. The implant/cartilage and bone interfaces were observed by scanning electron microscopy. At 24 weeks postoperatively, the lower PVA/n-HA+PA66 layer became surrounded by cartilage, with no obvious degeneration. In the PVA group, an enlarged space was observed between the implant and the host tissue that had undergone degeneration. In the control group, the articular cartilage had become calcified. In the PVA/n-HA+PA66 group, positive type II collagen staining was observed between the composite and the surrounding cartilage and on the implant surface. In the PVA group, positive staining was slightly increased between the PVA and the surrounding cartilage, but reduced on the PVA surface. In the control group, reduced staining was observed throughout. Scanning electron microscopy showed increased bone tissue in the lower n-HA+PA66 layer that was in close approximation with the upper PVA layer of the composite. In the PVA group, the bone tissue around the material had receded, and in the control group, the defect was filled with bone tissue, while the superior aspect of the defect was filled with disordered, fibrous tissue. The diphase biological composite material PVA/n-HA+PA66 exhibits good histocompatibility and offers a satisfactory substitute for articular cartilage and subchondral bone.

  11. Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Ibrahim, I. D.; Jamiru, T.; Sadiku, E. R.; Agwuncha, S. Ch.; Kupolati, W. K.

    2016-01-01

    The use of plant fibers, polymer, and nanoparticles for composite has gained global attention, especially in the packaging, automobile, aviation, building, and construction industries. Nano composites materials are currently in use as a replacement for traditional materials due to their superior properties, such as high strength-to-weight ratio, cost effectiveness, and environmental friendliness. Sisal fiber (SF) was treated with 5% NaOH for 2 hours at 70"°C. A mixed blend of sisal fiber and recycled polypropylene (rPP) was produced at four different fiber loadings: 10, 20, 30, and 40 wt.%, while nano clay was added at 1, 3, and 5 wt.%. Maleic anhydride grafted polypropylene (MAPP) was used as the compatibilizer for all composites prepared except the untreated sisal fibers. The characterization results showed that the fiber treatment, addition of MAPP, and nano clay improved the mechanical properties and thermal stability and reduced water absorption of the SF/rPP nano composites. The tensile strength, tensile modulus, and impact strength increased by 32.80, 37.62, and 5.48%, respectively, when compared to the untreated SF/rPP composites. Water absorption was reduced due to the treatment of fiber and the incorporation of MAPP and nano clay.

  12. Structural, Magnetic, and Transport Properties of Polymer-Nano ferrite Composites

    International Nuclear Information System (INIS)

    Imam, N.G.G.

    2013-01-01

    In this work, a series of (x) BaTiO 3 / (1-x) Ni 0.5 Zn 0.5 Fe 2 O 4 nano composite samples were prepared using citrate auto combustion and the samples were classified into three groups.In first group: A series of (x) BaTiO 3 / (1-x) Ni 0.5 Zn 0.5 Fe 2 O 4 ; 0.0≤ x ≤ 1.0 were prepared by double sintering technique and citrate auto combustion method in comparison study due to different characterization analysis. The comparison reveals that from X-ray diffraction; all the samples from the two methods formed in single phase in both; cubic spinel structure NiZnFe 2 O 4 (NZF) ferrite and perovskite tetragonal structure BaTiO 3 (BTO).In group two, in another compassion, multiferroic hybrid nano composites based on different polymers as a matrix for the prepared magnetoelectric biferroic nano composite system 0.5 BaTiO 3 / 0.5Ni 0.5 Zn 0.5 Fe 2 O 4 that has been prepared by citrate auto combustion method. Four different polymers namely poly aniline (PANI), polyvinyl acetate (PVAc), Polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG), with fixed ration (1:1) with respect to the dispersed magnetoelectric nano composite.In group three, the nano composites materials with formula (1-y) [0.5 BaTiO 3 / 0.5 Ni 0.5 Zn 0.5 Fe 2 O 4 ] / (y) (PEG); 0.0 ≤y ≤+ 1.0, have been prepared at room temperature by weight mixing and cold pressing. Physical properties of nano composite materials consisting different ratios of polyethylene glycol were investigated. With the variation of y content, typical magnetic hysteresis loops of nano composites have been observed in the nano composites at room temperature. When PEG content increase, the saturation magnetization decrease. Meanwhile, the coercive force tends to stable. Additionally, the dielectric constant (ε ' ) and dielectric loss factor (ε '' ) of nano composites materials shift toward higher frequency. The value of (ε ' ) decreased with increasing frequency, which indicates that the major contribution

  13. Nano-silica as the go material on heat resistant tunnel lining

    Science.gov (United States)

    Omar, Faizah; Osman, S. A.; Mutalib, A.

    2018-04-01

    This paper is concerned with passive fire protection method of protective concrete mix that is made up of fly ash, polypropylene fibre, and nano-silica. Nano-silica is focused on as the innovative material to be used in the composition of the protective concrete mix. The previous experimental studies which analyse the performance of passive fire protection on tunnels are discussed. This paper also discusses passive fire protection. The fire protection materials and behaviour analyses of tunnel structure are also presented. At the end of the paper, the recommendation of the optimum composition concrete material with fly ash, polypropylene fibre and nano-silica as tunnel lining fire protective materials is proposed.

  14. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    Science.gov (United States)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  15. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2

    International Nuclear Information System (INIS)

    Pu Hongting; Liu Lu; Chang Zhihong; Yuan Junjie

    2009-01-01

    Organic/inorganic composite membranes based on polybenzimidazole (PBI) and nano-SiO 2 were prepared in this work. However, the preparation of PBI/SiO 2 composite membrane is not easy since PBI is insoluble in water, while nano-SiO 2 is hydrophilic due to the hydrophilicity of nano-SiO 2 and water-insolubility of PBI. Thus, a solvent-exchange method was employed to prepare the composite membrane. The morphology of the composite membranes was studied by scanning electron microscopy (SEM). It was revealed that inorganic particles were dispersed homogenously in the PBI matrix. The thermal stability of the composite membrane is higher than that of pure PBI, both for doped and undoped membranes. PBI/SiO 2 composite membranes with up to 15 wt% SiO 2 exhibited improved mechanical properties compared with PBI membranes. The proton conductivity of the composite membranes containing phosphoric acid was studied. The nano-SiO 2 in the composite membranes enhanced the ability to trap phosphoric acid, which improved the proton conductivity of the composite membranes. The membrane with 15 wt% of inorganic material is oxidatively stable and has a proton conductivity of 3.9 x 10 -3 S/cm at 180 deg. C.

  16. Preparation and Characterization of Graphene-Based Magnetic Hybrid Nano composite

    International Nuclear Information System (INIS)

    Jashiela Wani Jusin; Madzlan Aziz

    2016-01-01

    Graphene-based magnetic hybrid nano composite has the advantage of exhibiting better performance as platform or supporting materials to develop novel properties of composite by increasing selectivity of the targeted adsorbate. The hybrid nano material was prepared by mixing and hydrolysing iron (II) and iron (III) salt precursors in the presence of GO dispersion through coprecipitation method followed by in situ chemical reduction of GO. The effect of weight loading ratio of Fe to GO (4:1, 2.5:1, 1:1 and 1:4) on structural properties of the hybrid nano materials was investigated. The presence of characteristic peaks in FTIR spectra indicated that GO has been successfully oxidized from graphite while the decrease in oxygenated functional groups and peaks intensity evidenced the formation of hybrid nano materials through the subsequent reduction process. The presence of characteristic peaks in XRD pattern denoted that magnetite nanoparticles disappeared at higher loading of GO. TEM micrograph showed that the best distribution of iron oxide particles on the surface of hybrid nano material occurred when the loading ratio of Fe to GO was fixed at 2:5 to 1. The reduced graphene oxide (RGO) sheets in the hybrid materials showed less wrinkled sheet like structure compared to GO due to exfoliation and reduction process during the synthesis. The layered morphology of GO degrades at higher concentrations of iron oxide. (author)

  17. Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery.

    Science.gov (United States)

    Iqbal, Shahid; Bahadur, Ali; Saeed, Aamer; Zhou, Kebin; Shoaib, Muhammad; Waqas, Muhammad

    2017-09-15

    Lithium-ion battery (LIB) is a revolutionary step in the electric energy storage technology for making green environment. In the present communication, a LIB anode material was constructed by using graphene/polyaniline/CuS nanocomposite (GR/PANI/CuS NC) as a high-performance electrode. Initially, pure covellite CuS nanoplates (NPs) of the hexagonal structure were synthesized by hydrothermal route and then GR/PANI/CuS NC was fabricated by in-situ polymerization of aniline in the presence of CuS NPs and graphene nanosheets (GR NSs) as host matrix. GR/PANI/CuS NC-based LIB has shown the superior reversible current capacity of 1255mAhg -1 , a high cycling stability with more than 99% coulombic efficiency over 250 cycles even at a high current density of 5Ag -1 , low volume expansion, and excellent power capabilities. Galvanostatic charge/discharge tests and cyclic voltammetry analysis were used to investigate electrochemical properties. The electrochemical test proves that GR/PANI/CuS NC is promising anode material for LIB. The crystal phases and purity of the GR/PANI/CuS NC were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, size, chemical composition, and phase structure of the synthesized GR/PANI/CuS NC. Copyright © 2017. Published by Elsevier Inc.

  18. Ceramic compositions based on nano forsterite/nano magnesium aluminate spinel powders

    International Nuclear Information System (INIS)

    Khattab, R.M.; Wahsh, M.M.S.; Khalil, N.M.

    2015-01-01

    According to the wide applications in the field of chemical and engineering industries, forsterite (Mg_2SiO_4)/spinel (MgAl_2O_4) ceramic compositions were the matter of interest of several research works during the last three decades. This work aims at preparation and characterization of improved ceramic bodies based on forsterite and spinel nano powders through controlling the forsterite and spinel contents in the prepared mixes. These prepared ceramic compositions have been investigated through measuring the densification parameters, cold crushing strength as well as volume resistively. Nano spinel was added from 0 to 30 mass% on expense of nano forsterite matrix and fired at 1550 °C for 2 h. The phase composition of the fired samples was examined using x-ray diffraction (XRD) technique. The microstructure of some selected samples was shown using scanning electron microscope (SEM). A pronounced improvement in the sintering, mechanical properties and volume resistively were achieved with increasing of nano spinel addition up to 15 mass%. This is due to the improvement in the matrix of the prepared forsterite/spinel bodies as a result of well distribution of spinel in the forsterite matrix as depicted by SEM analysis. - Highlights: • Ceramic compositions based on nano forsterite/nano-MgAl_2O_4 spinel were synthesized. • CCS was improved (333.78 MPa) through 15 mass% of nano-MgAl_2O_4 spinel addition. • Volume resistivity was enhanced to 203*10"1"3 Ohm cm with 15 mass% of spinel addition. • Beyond 15 mass% spinel, CCS and volume resistivity were decreased.

  19. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Directory of Open Access Journals (Sweden)

    R. Udaiyakumar

    2018-06-01

    Full Text Available With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor. Keywords: Nanoparticles, Nano-composite, Dispersion, Birefringence, Beat length

  20. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    Science.gov (United States)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  1. Nano-tribology and materials in MEMS

    CERN Document Server

    Satyanarayana, N; Lim, Seh

    2013-01-01

    This book brings together recent developments in the areas of MEMS tribology, novel lubricants and coatings for nanotechnological applications, biomimetics in tribology and fundamentals of micro/nano-tribology. Tribology plays important roles in the functioning and durability of machines at small length scales because of the problems associated with strong surface adhesion, friction, wear etc. Recently, a number of studies have been conducted to understand tribological phenomena at nano/micro scales and many new tribological solutions for MEMS have been proposed.

  2. Novel Nano composite Optical Plastics: Dispersion of Titanium in Polyacrylates

    International Nuclear Information System (INIS)

    Suri, G.; Tyagi, M.; Seshadri, G.; Khandal, R.K.; Verma, G.L.

    2010-01-01

    Polyacrylates have become the preferred materials for optical applications replacing the conventionally used glass due to their superior optical clarity. The major disadvantage with polyacrylates is their low (1.40-1.50) refractive index besides their poor impact resistance. The improvements in refractive index as well as mechanical properties can be achieved by way of incorporation of metals or metal compounds in the matrix. A novel methodology for the incorporation of high refractive index metals into low refractive index polymeric materials to improve the refractive index and impact resistance of the latter has been developed. With the in-situ formation of nanoparticles of TiO 2 , the refractive index of polyacrylates improved from 1.45 to 1.53 and the Abbe number increased from 40 to 57. One of the interesting dimension of this study pertains to the possibility of tailor-making of the two key optical properties of materials by way of varying the amount of TiO 2 being formed in-situ. Thermal stability and impact resistance of nano dispersed (4.3% by wt. of Ti) polyacrylates are found to be better than the neat polyacrylates. Moreover, TiO 2 -containing polyacrylate is of light weight. TEM, SEM, and IR analysis confirms the in-situ formation of nanoparticles of TiO 2 . Gamma irradiation has been used as an eco-friendly technique for polymerization. The developed compositions can be cast polymerized into clear and bubble free material for optical applications.

  3. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Science.gov (United States)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  4. Synthesis of Metal Polymer Nano composites Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Mostafa, R.S.S.

    2012-01-01

    we prepared a series of CdS/PVA and Ag/PVA nano composites via facile and novel synthetic steps. Our synthetic route is simpler; it does not need expensive oxidizing agents, surfactants, templates and complicated apparatus. The present work contains five chapters in addition to the list of figures, tables, abbreviations and references. The first two chapters are concerned with the introduction and reviews of previous studies. Chapter 3 describes the preparation methodology, experimental setup and techniques used in the CdS/PVA and Ag/PVA nano composites processing and analysis. CdS and Ag nanoparticles with different particle sizes were prepared via chemical method and gamma irradiation method. Several techniques were used to detect the structural changes of the nano composites due to interaction between CdS or Ag ions and PVA. These are: UV-Visible spectrophotometer, Transmission Electron microscope (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectrophotometer, and thermogravimetric analysis. Chapter 4 includes the obtained results and their discussions: Ultraviolet/Visible spectroscopy (UV/VIS) investigated that the as-prepared nano composites have improved optical properties. Such incremented optical properties were attributed to the nano scale dispersion (nm). The improvement in the optical properties is considered to be dependent on, Cd 2+ :S 2- molar ratio, Ag concentration, Pva content and irradiation dose. The calculated band gap energies for CdS/PVA nano composites are higher than that of bulk of CdS indicating the strong quantum confinement. The increases in band gap energy have been attributed to the crystalline size dependent properties. Transmission electron microscope images illustrated that the nano structured CdS/PVA films were found to be dispersed spherical nanoparticles with good structural homogeneity and polydispersity at either lower concentration of CdCl 2 and/or irradiation dose. Nano rod structure of CdS accompanied

  5. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-01-01

    of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses

  6. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  7. Fabrication and thermomechanical properties of nano-SiC/carbon nano-tubes composites

    International Nuclear Information System (INIS)

    Lanfant, Briac

    2014-01-01

    Ceramic carbides materials such as SiC, due to their refractory nature and their low neutron absorption are believed to be promising candidates for high temperature nuclear or aerospace applications. However, SiC brittleness has limited its structural application. In this context this work examines in a first part the possibilities to perform dense nano-structured SiC matrix by SPS without the use of sintering additive. Indeed a reduction of grain size (below 100 nm) accompanied by a high final density seem to be the solutions to counteract the brittleness and thus to improve mechanical properties. Dense (95%) and nano-structured (grain size around 100 nm) SiC samples were obtained thanks to the realization of an effective dispersion technique and the study on the sintering parameters effect. High hardness (2200 Hv) and decent fracture toughness (3.0 MPa.m1/2) were achieved. This first work also showed the preponderant influence of recurrent pollutants (oxygen and carbon) found in SiC powders on the final microstructure and mechanical properties of sintered samples. The oxygen as silica or silicon oxycarbide seems to promote densification mechanisms while free carbon (3.5 %wt) causes lower grain size and densification state. Mechanical properties with carbon are also negatively impacted (950 Hv and 2.4 MPa.m1/2). Such degradation is due by the specific localization of carbon structure between the grains. In return of the expected mechanical properties improvement by reducing the grain size, the thermal conductivity is drastically decrease of due to the phonon scattering at the grain boundaries. With the aim of reducing this effect, a second study was initiated by introducing multi-walled carbon nano-tubes (MWCNTs) into the SiC matrix. The MWCNTs by exhibiting a high toughness could also help to enhance the mechanical properties. Green bodies with different amounts of well dispersed MWCNTs (0 %wt to 5 %wt) were realized. Like free carbon, MWCNTs are located between

  8. Proton-conductive nano zeolite-PVA composite film as a new water-absorbing electrolyte for water electrolysis

    Directory of Open Access Journals (Sweden)

    M. Nishihara

    2018-03-01

    Full Text Available In this study, organic-inorganic composite electrolyte membranes are developed for a novel water-absorbing porous electrolyte water electrolysis cell. As the materials of the composite electrolyte membrane, 80 wt% of a proton-conducting nano zeolite (H-MFI as an electrolyte and 20 wt% of poly(vinyl alcohol (PVA as a cross-linkable matrix are used. The nano zeolite is prepared by a milling process. The nano zeolite-PVA composite membrane precursors are prepared by spraying onto a substrate, followed by cross-linking. The resulting nano zeolite-cross-linked PVA composite films are then evaluated for their properties such as proton conductivity as electrolyte membranes for the water-absorbing porous electrolyte water electrolysis cell. It is confirmed that conventional materials such as zeolites and PVA can be used for the water electrolysis as an electrolyte.

  9. Investigation of Catalytic Effects and Compositional Variations in Desorption Characteristics of LiNH2-nanoMgH2

    Directory of Open Access Journals (Sweden)

    Sesha S. Srinivasan

    2017-07-01

    Full Text Available LiNH2 and a pre-processed nanoMgH2 with 1:1 and 2:1 molar ratios were mechano-chemically milled in a high-energy planetary ball mill under inert atmosphere, and at room temperature and atmospheric pressure. Based on the thermogravimetric analysis (TGA experiments, 2LiNH2-nanoMgH2 demonstrated superior desorption characteristics when compared to the LiNH2-nanoMgH2. The TGA studies also revealed that doping 2LiNH2-nanoMgH2 base material with 2 wt. % nanoNi catalyst enhances the sorption kinetics at lower temperatures. Additional investigation of different catalysts showed improved reaction kinetics (weight percentage of H2 released per minute of the order TiF3 > nanoNi > nanoTi > nanoCo > nanoFe > multiwall carbon nanotube (MWCNT, and reduction in the on-set decomposition temperatures of the order nanoCo > TiF3 > nanoTi > nanoFe > nanoNi > MWCNT for the base material 2LiNH2-nanoMgH2. Pristine and catalyst-doped 2LiNH2-nanoMgH2 samples were further probed by X-ray diffraction, Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, thermal programmed desorption and pressure-composition-temperature measurements to better understand the improved performance of the catalyst-doped samples, and the results are discussed.

  10. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  11. Preparation and characterization of reduced graphene oxide/copper composites incorporated with nano-SiO2 particles

    International Nuclear Information System (INIS)

    Zhang, Xinjiang; Dong, Pengyu; Zhang, Benguo; Tang, Shengyang; Yang, Zirun; Chen, Yong; Yang, Wenchao

    2016-01-01

    Reduced graphene oxide/copper (rGO/Cu) composites incorporated with nano-SiO 2 particles were successfully fabricated using the raw materials of GO dispersion, hydrophilic nano-SiO 2 and electrolytic Cu powder. The as-prepared composites were characterized by X-ray diffraction, field-emission scanning electron microscope and energy dispersive spectroscopy. Microstructural observation of the composite powders indicated that the graphene oxide (GO) was effectively reduced by N 2 H 4 ·H 2 O addition in the composite slurry, and the nano-SiO 2 particles and rGO sheets were randomly and completely mixed with Cu particles. The as-sintered composites exhibited the small rGO agglomerations in the Cu matrix, and the more nano-SiO 2 additions led to the agglomerations increase. The mechanical property testing revealed that rGO/Cu composites with nano-SiO 2 incorporation exhibited the higher hardness and strength, compared with the rGO/Cu composite and as-cast pure Cu. However, the strengthening in the composites with higher SiO 2 content accompanied with the expense of compressive ductility. Microstructural formation and strengthening mechanism of the composites are also discussed in details. - Highlights: • Nano-SiO 2 incorporated rGO/Cu composites were successfully fabricated. • The more nano-SiO 2 additions led to the agglomerations increase in the composites. • The nano-SiO 2 incorporated composites exhibited the better hardness and strength. • The formation and strengthening mechanism of the composite was discussed in detail.

  12. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2013-12-01

    Full Text Available Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2 nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM. The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05. There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001. L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  13. Comparison between properties of polyurethane nano composites prepared by two different methods

    International Nuclear Information System (INIS)

    Barmar, M.; Barikani, M.; Fereidoonnia, M.

    2009-01-01

    In this work, a thermoplastic polyurethane elastomer model based on polytetramethylene glycol. toluene diisocyanate and 1,4-butanediol was selected and synthesized. According to this model two types of polyurethane nano composites were prepared by in situ polymerization and melt intercalation procedures. The organo-modified nano clay was used in nano composites samples in 0.4 weight percent level. The prepared nano composites were studied by WAXD, tensile and thermal analysis. Thermal properties of the nano composites were higher than those of pure polyurethane elastomers. Nano composites prepared via melt intercalation method showed a lower tensile strength and hardness than those prepared through in situ polymerization method

  14. Conductive nano composites based on cellulose nano fiber coated poly aniline via in situ polymerization

    International Nuclear Information System (INIS)

    Silva, Michael J. da; Sanches, Alex O.; Malmonge, Luiz F.; Malmonge, Jose A.; Medeiros, Eliton S. de; Rosa, Morsyleide F.

    2011-01-01

    Cellulose nano fiber (CNF) was extracted by acid hydrolysis from cotton microfibril and nano composites of CNF/PANI-DBSA were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA/aniline and aniline/oxidant were varied and the nano composites were characterized by four probes direct current (dc) electrical conductivity, ultraviolet-visible (UV-Vis-NIR) and FTIR spectroscopy and X-ray diffraction (XRD). Electrical conductive about ∼10 -1 S/cm was research and was independent of DBSA/aniline molar ratio between 2-4 and the aniline/oxidant molar ratio between 1-5. X-ray patterns of the samples show crystalline peaks characteristic of cellulose I. The FTIR spectra confirmed the presence of PANI and CNF in all samples. (author)

  15. Effect of different polishing systems on the surface roughness of nano-hybrid composites

    OpenAIRE

    Brijesh Patel; Naveen Chhabra; Disha Jain

    2016-01-01

    Objective: The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Background: Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Materials and Methods: Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of...

  16. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique.

    Science.gov (United States)

    Sahoo, Bichitra Nanda; Balasubramanian, Kandasubramanian

    2014-12-15

    We have elucidated a cost effective fabrication technique to produce superhydrophobic polyvinylidene fluoride (PVDF/DMF/candle soot particle and PVDF/DMF/camphor soot particle composite) porous materials. The water repellent dry composite was formed by the interaction of non-solvent (methanol) into PVDF/carbon soot particles suspension in N,N-dimethylformamide (DMF). It is seen that longer quenching time effectively changes the surface morphology of dry composites. The nano broccoli like hierarchical microstructure with micro or nano scaled roughen surface was obtained for PVDF/DMF/camphor soot particle, which reveals water contact angle of 172° with roll off angle of 2°. However, composite coating of PVDF/DMF/candle soot particle shows nano cauliflower like hierarchical, which illustrates water contact angle of 169° with roll off angle of 3°. To elucidate the enhancement of water repellent property of PVDF composites, we further divulge the evolution mechanism of nano cauliflower and nano broccoli structure. In order to evaluate the water contact angle of PVDF composites, surface diffusion of water inside the pores is investigated. Furthermore, the addition of small amount of carbon soot particles in composite not only provides the crystallization of PVDF, but also leads to dramatical amendment of surface morphology which increases the surface texture and roughness for superhydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-filled Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the shear bond strength (SBS of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI was also evaluated using a stereomicroscope. Results: AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91± 2.13 and Filtek TM Supreme XT (6.04± 2.01. Statistical analysis revealed a significant difference between groups II and III (P 0.05. Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Conclusion: Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets.

  18. Reduction reactions applied for synthesizing different nano-structured materials

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque Brocchi, Eduardo de; Correia de Siqueira, Rogério Navarro [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Motta, Marcelo Senna [Basck Ltd. (United Kingdom); Moura, Francisco José, E-mail: moura@puc-rio.br [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil); Solórzano-Naranjo, Ivan Guillermo [Department of Materials Engineering, PUC-Rio, Rua Marquês de São Vicente, 225, Gávea, 22453-900 Rio de Janeiro, RJ (Brazil)

    2013-06-15

    Different materials have been synthesized by alternative routes: nitrates thermal decomposition to prepare oxide or co-formed oxides and reduction by hydrogen or graphite to obtain mixed oxides, composites or alloys. These chemical-based synthesis routes are described and thermodynamics studies and kinetics data are presented to support its feasibility. In addition, selective reduction reactions have been applied to successfully produce metal/ceramic composites, and alloys. Structural characterization has been carried out by X-ray Diffraction and, more extensively, Transmission Electron Microscopy operating in conventional diffraction contrast (CTEM) and high-resolution mode (HRTEM), indicated the possibility of obtaining oxide and alloy crystals of sizes ranging between 20 and 40 nm. - Highlights: • The viability in obtaining Ni–Co, Cu–Al, Mn–Al co-formed nano oxides was evaluated. • Partial and complete H{sub 2} reduction were used to produce alloy, composite and Spinel. • XRD, TEM and HREM techniques were used to characterize the obtained nanostructures.

  19. Coating material composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Maeda, Yutaka.

    1969-01-01

    A coating material composition is provided which can easily be cross-linked by irradiation with active energy, particularly electron beams and ultraviolet light, using a mixture of a prepolymer (a) with an addition reaction product (b). Such compositions have coating properties as good as thermosetting acrylic or amino alkyd resins. The prepolymer (a) is produced by primarily reacting at least 0.1 mol of saturated cyclocarboxylic acid anhydrides and/or alpha-, beta-ethylene unsaturated carboxylic acid anhydrides by addition reaction with one mol of hydroxyl radicals of a basic polymer having a molecular weight of 1,000 to 100,000, the basic polymer being obtained from 1%-40% of a hydroxyl radical containing vinyl monomer and at least 30% of (meth)acrylate monomer. One mol of the sum of hydroxyl radicals and carboxyl radicals of the primary reaction product undergoes a secondary addition reaction with at least 0.1 mol of an epoxy radical-containing vinyl monomer to form the prepolymer(a). The addition reaction product(b) is produced by reacting an epoxy radical-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The coating material composition contains a majority of a mixture consisting of 10%-90% of (a) and 90%-10% of (b) above by weight. Four examples of the production of basic polymers, seven examples of the production of prepolymers, seven examples of the production of oligomers, and five examples of applications are given. (Iwakiri, K.)

  20. SeZnSb alloy and its nano tubes, graphene composites properties

    Directory of Open Access Journals (Sweden)

    Abhay Kumar Singh

    2013-04-01

    Full Text Available Composite can alter the individual element physical property, could be useful to define the specific use of the material. Therefore, work demonstrates the synthesis of a new composition Se96-Zn2-Sb2 and its composites with 0.05% multi-walled carbon nano tubes and 0.05% bilayer graphene, in the glassy form. The diffused amorphous structure of the multi walled carbon nano tubes and bilayer gaphene in the Se96-Zn2-Sb2 alloy have been analyzed by using the Raman, X-ray photoluminescence spectroscopy, Furrier transmission infrared spectra, photoluminescence, UV/visible absorption spectroscopic measurements. The diffused prime Raman bands (G and D have been appeared for the multi walled carbon nano tubes and graphene composites, while the X-ray photoluminescence core energy levels peak shifts have been observed for the composite materials. Subsequently the photoluminescence property at room temperature and a drastic enhancement (upto 80% in infrared transmission percentage has been obtained for the bilayer graphene composite, along with optical energy band gaps for these materials have been evaluated 1.37, 1.39 and 1.41 eV.

  1. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  2. The nano-materials, at the heart of the nano galaxy; Les nano-materiaux, au coeur de la galaxie nano

    Energy Technology Data Exchange (ETDEWEB)

    Le Marois, G. [Direction Generale de l' Industrie, des Technologies de l' Information et des Postes, 75 - Paris (France); Carlac, D. [Societe Developpement et Conseil, 51 - Reims (France)

    2004-02-01

    The researches on nano-materials are continuously increasing in most of industrialized countries. Between 1998 and 2003, the corresponding investment has been multiplied by six in Europe, eight in Usa and in Japan, to reach 3 milliards of euros in the world. Based on the nano-technologies development, these materials would represent the main part of the market at short and middle dated. Many examples of utilization are presented. (A.L.B.)

  3. Advanced Nano hybrid Materials: Surface Modification and Applications

    International Nuclear Information System (INIS)

    Liu, L.H.; Metivier, R.; Wang, Sh.; Wang, Sh.; Hui Wang

    2012-01-01

    The field of functional nano scale hybrid materials is one of the most promising and rapidly emerging research areas in materials chemistry. Nano scale hybrid materials can be broadly defined as synthetic materials with organic and inorganic components that are linked together by noncovalent bonds (Class I, linked by hydrogen bond, electrostatic force, or van der Waals force) or covalent bonds (Class II) at nanometer scale. The unlimited possible combinations of the distinct properties of inorganic, organic, or even bioactive components in a single material, either in molecular or nano scale dimensions, have attracted considerable attention. This approach provides an opportunity to create a vast number of novel advanced materials with well-controlled structures and multiple functions. The unique properties of advanced hybrid nano materials can be advantageous to many fields, such as optical and electronic materials, biomaterials, catalysis, sensing, coating, and energy storage. In this special issue, the breadth of papers shows that the hybrid materials is attracting attention, because of both growing fundamental interest, and a route to new materials. Two review articles and seven research papers that report new results of hybrid materials should gather widespread interest.

  4. Studies on structural properties of clay magnesium ferrite nano composite

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Singh, Mandeep [Department of Chemistry, Punjab Agricultural University, Ludhiana-141004 (India); Jeet, Kiran, E-mail: kiranjeet@pau.edu; Kaur, Rajdeep [Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana-141004 (India)

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  5. Mechanical properties of the weld line defect in micro injection molding for various nano filled polypropylene composites

    International Nuclear Information System (INIS)

    Xie Lei; Ziegmann, Gerhard

    2011-01-01

    is increased to 30%, the E modulus and tensile strength of micro weld line were increased again compared with the low loading level. → Finally, an empirical prediction equation for micro injection molded weld line strength of nano PP composites was proposed for higher nano filler loading fraction than 10 wt%. - Abstract: The nano filled functional polymer materials have been widely processed with micro injection molding technology for micro electromechanical systems (MEMS) fabrication. As the unfavorable defect in micro injection molding parts, weld line brings reduced mechanical and physical properties, especially for nano filled composites. In this study, polypropylene (PP) was compounded respectively with carbon nano fibers (CNFs) and TiO 2 nano particles at various weight fractions (10, 20, 30, 35 wt%) through co-screws internal mixing. The morphological, thermal and rheological properties of nano composites were characterized by wider angle X-ray diffraction (WXRD), different scanning calorimeter (DSC) and high pressure capillary rheometer. Additionally, under the constant setting of injection molding process parameters in injection molding machine, micro tensile samples with weld lines for each nano filled PP composite were produced. The tensile tests were served as the characterizing method for weld line mechanical properties. The results show that when the CNFs is filled higher than 10 wt%, the tensile strength of samples with weld lines made of nano composites become lower than neat PP. While the raising CNFs content contributes to the improved E modulus of micro injection molded weld lines. Additionally, with the increasing fraction of CNFs in PP, the weld line area's elongation percent is decreased. Whereas for case of TiO 2 , the 10 wt% is the threshold for micro injection molded weld line tensile strength turning from decrease trend to increase. The same as CNFs, elongation of micro weld line samples were in general lower than neat PP as well, due to

  6. Synthesis and characterization of nano-Li1.95FeSiO4/C composite as cathode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang Xiaobing; Chen Honghui; Zhou Shibiao; Chen Yuandao; Yang Jifeng; Ren Yurong; Wang Haiyan; Qu Meizhen; Pan Zhonglai; Yu Zuolong

    2012-01-01

    Li 1.95 FeSiO 4 /C and Li 2 FeSiO 4 /C composites were synthesized by a traditional solid-state reaction method and then discussed comparatively through the results of X-ray diffraction (XRD), scanning electron microscopy (SEM), the Brunauer–Emmet–Teller (BET) method, the charge–discharge test and electrochemical impedance spectra measurement, respectively. The results demonstrated that the Li 1.95 FeSiO 4 /C composite could exhibit much better battery performance in terms of the discharge capacity, cycling stability and rate capability in comparison with the Li 2 FeSiO 4 /C composite. At 0.2C and 5C, it delivered a discharge capacity of 142 mAh g −1 and 93 mAh g −1 , respectively, and after 100 cycles at 1C, 95.1% of its initial capacity was retained.

  7. Composite materials processing, applications, characterizations

    CERN Document Server

    2017-01-01

    Composite materials are used as substitutions of metals/traditional materials in aerospace, automotive, civil, mechanical and other industries. The present book collects the current knowledge and recent developments in the characterization and application of composite materials. To this purpose the volume describes the outstanding properties of this class of advanced material which recommend it for various industrial applications.

  8. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    Science.gov (United States)

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (Porthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  9. Tailored sPP/Silica Nano composite for Eco friendly Insulation of Extruded HVDC Cable

    International Nuclear Information System (INIS)

    Dang, B.; He, J.; Hu, J.; Zhou, Y.

    2015-01-01

    Cross-linked polyethylene (XLPE) is a thermosetting material that cannot be recycled at the end of its lifetime. This study investigated the potential of syndiotactic polypropylene (sPP)/silica as an eco friendly extruded insulation system for HVDC cables. We investigated the morphology, Fourier transform infrared, and thermal, thermomechanical, and electrical behaviors of sPP modified with 0.5-3% nano silica. We found that the silica/sPP nano composite without cross-linking offered a suitable mechanical modulus at room temperature and sufficient intensity at high temperatures, and adding nano silica modified by a silane coupling agent to the sPP resulted in significant DC resistivity and space charge improvement. The optimal nano silica content in the sPP was determined by balancing the mechanical and thermomechanical characteristics and the DC resistivity. The sPP/silica nano composite reported here shows great potential as a candidate insulation material for future eco friendly extruded HVDC cables.

  10. Fabrication of Nano-CeO2 and Application of Nano-CeO2 in Fe Matrix Composites

    International Nuclear Information System (INIS)

    Tiebao, W.; Chunxiang, C.; Xiaodong, W.; Guobin, L.

    2010-01-01

    It is expatiated that nano-CeO2 is fabricated by the direct sedimentation method. The components and particles diameter of nano-CeO2 powders are analyzed by XRD and SEM . The thermodynamic analysis and acting mechanism of nano-CeO2 with Al in Fe matrix composites are researched, which shows that the reaction is generated between CeO2 and Al in the composite, that is, 3CeO2+4Al - 2Al2O3+3[Ce], which obtains Al2O3 and active [Ce] during the sintering process. The active [Ce] can improve the performance of CeO2/Fe matrix composites. The suitable amount of CeO2 is about 0.05% in CeO2/Fe matrix composites. SEM fracture analysis shows that the toughness sockets in nano-CeO2/Fe matrix composites are more than those in no-added nano-CeO2 composites, which can explain that adding nano-CeO2 into Fe matrix composite, the toughness of the composite is improved significantly. Applied nano-CeO2 to Fe matrix diamond saw blades shows that Fe matrix diamond saw blade is sharper and of longer cutting life than that with no-added nano-CeO2.

  11. Manufacture of Nano Structures in Polymer Material

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Pedersen, H.C.; Staun, Jacob

    2003-01-01

    The incorporation of micro and nano technology into the products of the future is an area of increasing interest. The ideas for new products based on this technology often take their starting point in specific scientific fields whereas the subsequent design and product development not necessarily...... is based on a systematic approach including manufacturing processes and production system capabilities. The process chain associated with micro and nano injection moulding usually comprises silicon or photoresist mastering, electroforming and polymer processing. Additionally, if the produced polymer...... components are to be used in a microsystem, subsequent handling and assembly is necessary. The present paper describes the process chain related to the manufacture of optical gratings with nanometer-sized structures. The problems of each process step and the challenges of establishing a coherent production...

  12. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite; Preparacao e caracterizacao de nanocristais de celulose funcionalizados com CMA utilizados na preparacao de nanocomposito de quitosana reticulado

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Joao Paulo de; Teixeira, Ivo F; Donnici, Claudio L; Pereira, Fabiano V [Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG (Brazil)

    2011-07-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  13. [Study on the antibacterial activity of four kinds of nano-hydroxyapatite composites against Enterococcus faecalis].

    Science.gov (United States)

    Liu, Yi; Zhou, Rongjing; Wu, Hongkun

    2015-06-01

    This study aims to compare and determine a kind of nano-hydroxyapatite composite material with good antibacterial efficacy on Enterococcusfaecalis (E. faecalis) in vitro. We investigated the antimicrobial activity of four kinds of nano-hydroxyapatite composites, namely, silver/hydroxyapatite composite nanoparticles (Ag/nHA), yttrium/hydroxyapatite composite nanoparticles (Yi/nHA), cerium/hydroxyapatite composite nanoparticles (Ce/nHA), and hydroxyapatite nanoparticles (nHA), against E. faecalis in vitro using the agar diffusion and broth dilution method by measuring the growth inhibition zone and the minimum inhibitory concentration (MIC), respectively. The agar diffusion test results showed that Ag/nHA displayed an obvious growth inhibition zone, whereas Yi/nHA, Ce/nHA, and nHA showed no influence on E. faecalis. The MIC value of Ag/nHA was 1.0 g.L-1, and the three other materials had no effect on E.faecalis even at the high concentration of 32.0 g.L-1. Ag/nHA display a potential antimicrobial efficacy to planktonic E.faecalis. Whereas, the three other kinds of nano-hydroxyapatite composites (Yi/nHA, Ce/nHA, nHA) show no influence.

  14. Polymer-layered silicate nano composite by UV-radiation curing: an original synthesis

    International Nuclear Information System (INIS)

    Keller, L.; Decker, C.; Zahouily, K.; Miehe-Brendle, J.; Le Meins, J.M.

    2004-01-01

    Full text.Because of the many hopes which they raise, the nano composite materials are the subject of an increasing number of scientific publications. Indeed, the intimate association of a polymer matrix and silicate nano-platelets leads to the formation of materials having mechanical and barriers properties improved (fire, gas, humidity...). A literature survey shows that these materials are generally produced by a thermal polymerization, which presents two major disadvantages: the use of organic solvents and a great consumption of energy. To overcome such limitations, photo initiated polymerization was chosen to synthesize nano composite materials. By this technology, called UV radiation curing, a solvent-free resin is transformed within seconds into a solid polymer upon exposure to UV-radiation at ambient temperature. The principal objective of this study was to develop photopolymerizable systems with clay particles having a layer structure (phyllosilicates). The clay mineral was made organophilic by treatment with an alkylammonium salt to allow the acrylate resin to penetrate into the expanded galleries. A morphological characterization of the materials obtained was carried out by X-rays diffraction and electronic microscopy transmission. The polymerization of the various resins under the UV exposure was followed in situ by using the real-time infrared spectroscopy (RT-FTIR) and attenuated total reflection (ATR). The results obtained show that the presence of the organo clay does not modify much the polymerization kinetics. The nano composite material thus obtained is transparent, insoluble in the organic solvents and presents improved mechanical properties, compared to the neat resin and the micro composite, for a load factor ranging between 2 and 5%wt. The addition of nanoparticles also makes it possible to reduce efficiently the brightness of coatings UV and finally confers to this material barriers properties higher than that of the photo crosslinked

  15. Advances in multiscale modeling of materials behavior: from nano to macro scales

    International Nuclear Information System (INIS)

    Zbib, Hussein M.

    2004-01-01

    Full text.The development of micromechanical devices, thin films, nano layered structures and nano composite coating materials, such as those used in microelectronics, transportation, medical diagnostics and implant industries, requires the utilization of materials that possess a high degree of material reliability, structural stability, mechanical strength, high ductility, toughness and resistance to fracture and fatigue. To achieve these properties many of these devices can be constructed from micro/nano structured materials, which often exhibit enhanced mechanical strength and ductility when compared to conventional materials. However, although the promise of such materials has been demonstrated in laboratories, it has not made inroads into commercial manufacturing in the area of structural materials. A primary impediment to bringing these technologies to the market is the inability to scale up from small scale laboratory experiments to manufacturing methods. Our work at WSU has been to develop theories and computational tools, verified by experiments, which are required to understand and design micro and nano structured materials for various structural applications. The results of this work have a major impact on this emerging industry and are being used in many national and international research institutes

  16. Magnetic losses in composite materials

    International Nuclear Information System (INIS)

    Ramprecht, J; Sjoeberg, D

    2008-01-01

    We discuss some of the problems involved in homogenization of a composite material built from ferromagnetic inclusions in a nonmagnetic background material. The small signal permeability for a ferromagnetic spherical particle is combined with a homogenization formula to give an effective permeability for the composite material. The composite material inherits the gyrotropic structure and resonant behaviour of the single particle. The resonance frequency of the composite material is found to be independent of the volume fraction, unlike dielectric composite materials. The magnetic losses are described by a magnetic conductivity which can be made independent of frequency and proportional to the volume fraction by choosing a certain bias. Finally, some concerns regarding particles of small size, i.e. nanoparticles, are treated and the possibility of exciting exchange modes are discussed. These exchange modes may be an interesting way to increase losses in composite materials

  17. Graphene nano-devices and nano-composites for structural, thermal and sensing applications

    Science.gov (United States)

    Yavari, Fazel

    In this dissertation we have developed graphene-based nano-devices for applications in integrated circuits and gas sensors; as well as graphene-based nano-composites for applications in structures and thermal management. First, we have studied the bandgap of graphene for semiconductor applications. Graphene as a zero-bandgap material cannot be used in the semiconductor industry unless an effective method is developed to open the bandgap in this material. We have demonstrated that a bandgap of 0.206 eV can be opened in graphene by adsorption of water vapor molecules on its surface. Water molecules break the molecular symmetries of graphene resulting in a significant bandgap opening. We also illustrate that the lack of bandgap in graphene can be used to our advantage by making sensors that are able to detect low concentrations of gas molecules mixed in air. We have shown that 1-2 layers of graphene synthesized by chemical vapor deposition enables detection of trace amounts of NO 2 and NH3 in air at room temperature and atmospheric pressure. The gas species are detected by monitoring changes in electrical resistance of the graphene film due to gas adsorption. The sensor response time is inversely proportional to the gas concentration. Heating the film expels chemisorbed molecules from the graphene surface enabling reversible operation. The detection limits of ~100 parts-per-billion (ppb) for NO2 and ~500 ppb for NH3 obtained using this device are markedly superior to commercially available NO2 and NH3 detectors. This sensor is fabricated using individual graphene sheets that are exquisitely sensitive to the chemical environment. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. To overcome these problems we have developed a gas sensor based on a porous 3D network of graphene sheets called graphene foam

  18. Modal analysis of pre and post impacted nano composite laminates

    Directory of Open Access Journals (Sweden)

    R. Velmurugan

    Full Text Available Modal analysis is carried out on pre and post impacted nano composite laminates. The laminates are prepared using 3, 5 and 8 layers of 610gsm glass woven roving mats(WRM with epoxy resin and montmorillonite(MMT clay content is varied from 1% to 5%. Impulse hammer technique is used to find natural frequency and damping factor of laminates. Medium velocity impact tests are conducted by using a gas gun. The vibration responses of natural frequency and damping factor are obtained and are studied for laminates with all edges clamped boundary conditions. Results show considerable improvement in natural frequency and damping factor due to nano clay addition. It is also seen that the nano clay controls the delamination due to impact loading.

  19. Properties of nanoclay PVA composites materials

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2012-03-01

    Full Text Available Polyvinyl alcohol (PVA/ Na-rich Montmorillonite (MMT nanocomposites were prepared using solution method to create polymer-clay nanocomposite (PCN material. The PCN material was studied using X-ray diffraction (XRD, demonstrating polymer-clay intercalation that has a high d-spacing (lower diffraction angles in the PCN XRD pattern, compared to the pure MMT clay XRD pattern, which has a low d-spacing (high diffraction angles. The nano-scanning electron microscope (NSEM was used to study the morphological image of the PVA, MMT and PCN materials. The results showed that intercalation that took place between the PVA and MMT produced the PCN material. The mechanical properties of the pure PVA and the intercalated polymer material were studied. It was found that the small amount of MMT clay made the tensile modulus and percentage of the total elongation of the nano-composite significantly higher than the pure PVA polymer value, due to polymer-clay intercalation. The thermal stability of the intercalated polymer has been studied using thermal analytical techniques such as thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The results showed that the PCN material is more thermally stable than the pure PVA polymer.

  20. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    International Nuclear Information System (INIS)

    Kwon, Hansang; Cho, Seungchan; Kawasaki, Akira; Leparoux, Marc

    2012-01-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al 4 C 3 ) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al 4 C 3 . Along with the CNT and the nano-SiC, Al 4 C 3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. (paper)

  1. Carbon/carbon composite materials

    International Nuclear Information System (INIS)

    Thebault, J.; Orly, P.

    2006-01-01

    Carbon/carbon composites are singular materials from their components, their manufacturing process as well as their characteristics. This paper gives a global overview of these particularities and applications which make them now daily used composites. (authors)

  2. Structure-property relationships of multiferroic materials: A nano perspective

    Science.gov (United States)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  3. Composite materials design and applications

    CERN Document Server

    Gay, Daniel; Tsai, Stephen W

    2002-01-01

    PART ONE. PRINCIPLES OF CONSTRUCTIONCOMPOSITE MATERIALS, INTEREST AND PROPERTIESWhat is Composite Material Fibers and MatrixWhat can be Made Using Composite Materials?Typical Examples of Interest on the Use of Composite MaterialsExamples on Replacing Conventional Solutions with CompositesPrincipal Physical PropertiesFABRICATION PROCESSESMolding ProcessesOther Forming ProcessesPractical Hints in the Manufacturing ProcessesPLY PROPERTIESIsotropy and AnisotropyCharacteristics of the Reinforcement-Matrix MixtureUnidirectional PlyWoven FabricsMats and Reinforced MatricesMultidimensional FabricsMetal Matrix CompositesTestsSANDWICH STRUCTURES:What is a Sandwich Structure?Simplified FlexureA Few Special AspectsFabrication and Design ProblemsNondestructive Quality ControlCONCEPTION AND DESIGNDesign of a Composite PieceThe LaminateFailure of LaminatesSizing of LaminatesJOINING AND ASSEMBLYRiveting and BoltingBondingInsertsCOMPOSITE MATERIALS AND AEROSPACE CONSTRUCTIONAircraftHelicoptersPropeller Blades for AirplanesTur...

  4. Preparation and characterization of poly(lactic acid)/ zinc-aluminium layered double hydroxide nano composites

    International Nuclear Information System (INIS)

    Eili Mahboobeh; Wan Mohd Zin Wan Yunus; Zobir Hossein; Mansor Ahmad; Norazowa Ibrahim

    2009-01-01

    Full text: Poly (lactic acid)/ stearate - zinc aluminum layered double hydroxide/ (PLA/ SZnAl LDH) nano composites were prepared via solution intercalation process using a modified ZnAl LDH. The anionic clay Zn 3 Al-NO 3 -LDH was prepared by a co-precipitation method and then modified with stearate ions by ion exchange process. Stearate-ZnAl LDH particles were then homogeneously dispersed in PLA matrix by a solution casting method. The pristine and modified ZnAl LDH was characterized by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy which suggested that the modification was successful. The XRD analysis showed that during modification of LDH, the basal spacing increased from 8.83 Angstrom to 40.1 Angstrom. The PLA/ ZnAl LDH nano composites were characterized by tensile testing and XRD. The obtained nano composites showed dramatic enhancements in elongation at break as compared to those of the pure PLA. XRD results indicated that the materials formed are nano composites. (author)

  5. 3-dimensional free standing micro-structures by proton beam writing of Su 8-silver nanoParticle polymeric composite

    Science.gov (United States)

    Igbenehi, H.; Jiguet, S.

    2012-09-01

    Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.

  6. Characterization of dispersion of a nano composites PP/TiO2 non modified

    International Nuclear Information System (INIS)

    Soares, Igor L.; Tavares, Maria I.B.; Silva, Vanessa A. da; Legramanti, Cintia; Luetkmeyer, Leandro

    2011-01-01

    Polymeric nano composites are composite materials where an inorganic particle, which has a dimension in the nanometer range, is dispersed in a polymer matrix. Nano composites, using polypropylene (PP) as matrix polymer and titanium dioxide (TiO 2 ) as filler, have great versatility in marketing applications, this factor is inherent in the PP and the inherent ability photo degraded TiO 2 particles. This combination can lead to a widely used material and a degradation time after discharge reduced, there by becoming, a residue of low environmental impact. This study aimed to evaluate the dispersion and particle distribution of TiO 2 , non modified, in PP matrix, using the process of preparation by melt extrusion pathway and characterization of the materials obtained: on the molecular dynamics, using low field NMR solid state, measures the relaxation time spin-network (T 1 H); morphology using XRD technique, and thermal analysis technique with the TGA of pure PP and nano composites PP/TiO 2 . (author)

  7. Effect of Amount of 3-Methacryloxy Propyl Thrimethoxysilane Coupling Agent and Nano Filling Structure on Physic-Mechanical Properties of Dental Resin Composite

    Directory of Open Access Journals (Sweden)

    Farbod Tondnevis

    2017-07-01

    Full Text Available Many researchers in the field of dental polymeric base nano composite investigated the effect filling morphology and filling material content on mechanical and physical properties of construction after setting reaction. Our present study concentrated on the effect of ϒ metacryloxy propyloxt tri metoxy silane (ϒ MPS content as coupling agent (orgnic material on physical and mechanical performance of nano composite material. It was shown that despite of contraction after setting reaction, all this properties improved and efficient silanization can efficiently affect structural integrity of dental filling nano composite

  8. Multifunctional Composite Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymeric composite materials that are currently utilized in aircraft structures are susceptible to significant damage from lightning strikes. Enhanced electrical...

  9. Standardization, Calibration, and Evaluation of Tantalum-Nano rGO-SnO2 Composite as a Possible Candidate Material in Humidity Sensors

    Science.gov (United States)

    Karthick, Subbiah; Lee, Han-Seung; Kwon, Seung-Jun; Natarajan, Rethinam; Saraswathy, Velu

    2016-01-01

    The present study focuses the development and the evaluation of humidity sensors based on reduced graphene oxide—tin oxide (rGO-SnO2) nanocomposites, synthesized by a simple redox reaction between GO and SnCl2. The physico-chemical characteristics of the nanocomposites were analyzed by XRD, TEM, FTIR, and Raman spectroscopy. The formation of SnO2 crystal phase was observed through XRD. The SnO2 crystal phase anchoring to the graphene sheet was confirmed through TEM images. For the preparation of the sensors, tantalum substrates were coated with the sensing material. The sensitivity of the fabricated sensor was studied by varying the relative humidity (RH) from 11% to 95% over a period of 30 days. The dependence of the impedance and of the capacitance with RH of the sensor was measured with varying frequency ranging from 1 kHz to 100 Hz. The long-term stability of the sensor was measured at 95% RH over a period of 30 days. The results proved that rGO-SnO2 nanocomposites are an ideal conducting material for humidity sensors due to their high sensitivity, rapid response and recovery times, as well as their good long-term stability. PMID:27941598

  10. Standardization, Calibration, and Evaluation of Tantalum-Nano rGO-SnO2 Composite as a Possible Candidate Material in Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Subbiah Karthick

    2016-12-01

    Full Text Available The present study focuses the development and the evaluation of humidity sensors based on reduced graphene oxide—tin oxide (rGO-SnO2 nanocomposites, synthesized by a simple redox reaction between GO and SnCl2. The physico-chemical characteristics of the nanocomposites were analyzed by XRD, TEM, FTIR, and Raman spectroscopy. The formation of SnO2 crystal phase was observed through XRD. The SnO2 crystal phase anchoring to the graphene sheet was confirmed through TEM images. For the preparation of the sensors, tantalum substrates were coated with the sensing material. The sensitivity of the fabricated sensor was studied by varying the relative humidity (RH from 11% to 95% over a period of 30 days. The dependence of the impedance and of the capacitance with RH of the sensor was measured with varying frequency ranging from 1 kHz to 100 Hz. The long-term stability of the sensor was measured at 95% RH over a period of 30 days. The results proved that rGO-SnO2 nanocomposites are an ideal conducting material for humidity sensors due to their high sensitivity, rapid response and recovery times, as well as their good long-term stability.

  11. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    Science.gov (United States)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  12. Self-sensing and thermal energy experimental characterization of multifunctional cement-matrix composites with carbon nano-inclusions

    Science.gov (United States)

    D'Alessandro, A.; Pisello, A. L.; Sambuco, Sara; Ubertini, F.; Asdrubali, F.; Materazzi, A. L.; Cotana, F.

    2016-04-01

    The recent progress of Nanotechnology allowed the development of new smart materials in several fields of engineering. In particular, innovative construction materials with multifunctional enhanced properties can be produced. The paper presents an experimental characterization on cement-matrix pastes doped with Carbon Nanotubes, Carbon Nano-fibers, Carbon Black and Graphene Nano-platelets. Both electro-mechanical and thermo-physical investigations have been carried out. The conductive nano-inclusions provide the cementitious matrix with piezo-resistive properties allowing the detection of external strain and stress changes. Thereby, traditional building materials, such as concrete and cementitious materials in general, would be capable of self-monitoring the state of deformation they are subject to, giving rise to diffuse sensing systems of structural integrity. Besides supplying self-sensing abilities, carbon nano-fillers may change mechanical, physical and thermal properties of cementitious composites. The experimental tests of the research have been mainly concentrated on the thermal conductivity and the optical properties of the different nano-modified materials, in order to make a critical comparison between them. The aim of the work is the characterization of an innovative multifunctional composite capable of combining self-monitoring properties with proper mechanical and thermal-energy efficiency characteristics. The potential applications of these nano-modified materials cover a wide range of possibilities, such as structural elements, floors, geothermal piles, radiant systems and more.

  13. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  14. Composite materials for aircraft structures

    National Research Council Canada - National Science Library

    Baker, A. A; Dutton, Stuart; Kelly, Donald

    2004-01-01

    ... materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly- 2nd ed. p. cm. - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hos...

  15. Synthesis and characterization of nano silver ferrite composite

    International Nuclear Information System (INIS)

    Murthy, Y.L.N.; Kondala Rao, T.; Kasi viswanath, I.V.; Singh, Rajendra

    2010-01-01

    We report the synthesis of nano sized silver ferrite composite having the empirical formula AgFeO 2 by a co-precipitation method. The resulting powders are thin platelets, transparent and a rich ruby red in color in transmission. The X-ray diffraction (XRD) powder data consisted of only nine reflections, and the analysis showed the unit cell to be rhombohedral. The powders showed extensive XRD line broadening and the sizes of the crystals are calculated to be in the range 4-36.5 nm. The morphology of the silver ferrite composite studied using scanning electron microscope showed nano sized particles. The particle size is found to increase with increase in annealing temperature. The magnetic behavior, measured using a vibrating sample magnetometer, indicated a change from paramagnetic to ferromagnetic with increase in particle size.

  16. Cirrus Dopant Nano-Composite Coatings

    Science.gov (United States)

    2014-11-01

    coatings without alteration to the existing plating process. Glen Slater, Cirrus Materials | Stephen Flint, Auckland UniServices Ltd Report...ADDRESS(ES) University of Auckland ,Cirrus Materials, Auckland , New Zealand, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...JiA/ g THE UNIVERSITY ’-" OF AUCKLAND NEW ZEALAND Te Whare Wanan a o Thmaki Makaurau ~"""’ • ........,." ... Southwest Pacific Basin . p

  17. Final Report - Recovery Act - Development and application of processing and process control for nano-composite materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [ORNL; Armstrong, Beth L [ORNL; Maxey, L Curt [ORNL; Sabau, Adrian S [ORNL; Wang, Hsin [ORNL; Hagans, Patrick [A123 Systems, Inc.; Babinec, Sue [A123 Systems, Inc.

    2013-08-01

    Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other

  18. CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.); and Babinec, S. (A123 Systems, Inc.)

    2012-12-15

    Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System’s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other

  19. Development of nano-composite membranes to improve alkaline fuel cell performance

    CSIR Research Space (South Africa)

    Nonjola, P

    2011-09-01

    Full Text Available The work presented here describes modification of commercially available polysulfone (PSU) as well as the formation of nano-composite membrane i.e. TiO2 nano particles incorporated into anion exchange polymer matrix....

  20. Poly (lactic acid organoclay nano composites for paper coating applications

    Directory of Open Access Journals (Sweden)

    Tatcha Sonjui

    2014-10-01

    Full Text Available Poly(lactic acid or PLA is a well-known biodegradable polymer derived from renewable resources such as corn strach, tapioca strach, and sugar cane. PLA is the most extensively utilized biodegradable polyester with potential to replace conventional petrochemical-based polymers. However, PLA has some drawbacks, such as brittleness and poor gas barrier properties. Nano composite polymers have experience and increasing interest due to their characteristics, especially in mechanical and thermal properties. The objectives of this research were to prepare PLA formulations using three different PLAs. The formulas giving high gloss coating film were selected to prepare nano composite film by incorporated with different amount of various types of organoclays. The physical properties of the PLA coating films were studied and it was found that the PLA 7000D with 0.1%w/w of Cloisite 30B provided decent viscosity for coating process. In addition, the nano composite coating films showed good physical properties such as high gloss, good adhesion, and good hardness. There is a possibility of using the obtained formulation as a paper coating film.

  1. Achievement report for fiscal 1998. Research and development of nano-structural materials for ceramic bearing application (the second year); 1998 nendo seika hokokusho. Ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is made on ceramic bearing using high-performance and low-cost nano-structural materials, and its application is performed to high-quality bearings suitable for energy conservation in automobiles and industrial machines, and bearings for office automation devices, electronics, and aeronautic and maritime development. To achieve these goals, raw material synthesizing technologies, forming technologies, structural control technologies, processing technologies and mass production technologies shall be established. Fiscal 1998 had the following achievements: establishment of nano-structure controlled ceramic material powder synthesizing technology (nano-lamination type composite powder made by using the beads mill co-precipitation method, nano-lamination type composite powder made by using the New Mymill co-precipitation method, nano-lamination type composite powder made by using the controlled liquid phase method, composite nano-structured gel, and nano-powder synthesis); near net forming technology for spherical ceramics; high-speed processing technology for ultra smooth surface; evaluation of rolling fatigue properties of ceramic bearings; and analysis and evaluation of nano-structured materials. Since this alumina-based ceramic bearing can be produced at reduced cost with performance comparable to silicon nitride based bearing, investigations and discussions are being given on the application thereof. (NEDO)

  2. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  3. Composite Materials in Overhead Lines

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kjærsgaard; Holbøll, Joachim

    2009-01-01

    towers and recently conductors based on composite materials are available at transmission levels. In this paper it is investigated which composite based solutions are available in connection with complete overhead line systems including insulators, towers and conductors. The components are reviewed......The use of composite materials, e.g. fibreglass materials, in overhead transmission line systems is nothing new. Composite based insulators have been applied to transmission lines for over 30 years, mainly as suspension and post insulators and often as an option for special applications. Also...... with respect to solved and persisting known failures/problems of both mechanical and electrical nature. Major challenges related to extensive use of composite materials in an overhead line system are identified, as are possible benefits - both when using standard as well as customised composite components, e...

  4. Superconducting composites materials. Materiaux composites supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kerjouan, P; Boterel, F; Lostec, J; Bertot, J P; Haussonne, J M [Centre National d' Etudes des Telecommunications (CNET), 22 - Lannion (FR)

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We first realized a composite material glass/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs.

  5. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Naheed Saba

    2014-08-01

    Full Text Available The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.

  6. Strain-Detecting Composite Materials

    Science.gov (United States)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  7. Nano-Scale Positioning Design with Piezoelectric Materials

    Directory of Open Access Journals (Sweden)

    Yung Yue Chen

    2017-12-01

    Full Text Available Piezoelectric materials naturally possess high potential to deliver nano-scale positioning resolution; hence, they are adopted in a variety of engineering applications widely. Unfortunately, unacceptable positioning errors always appear because of the natural hysteresis effect of the piezoelectric materials. This natural property must be mitigated in practical applications. For solving this drawback, a nonlinear positioning design is proposed in this article. This nonlinear positioning design of piezoelectric materials is realized by the following four steps: 1. The famous Bouc–Wen model is utilized to present the input and output behaviors of piezoelectric materials; 2. System parameters of the Bouc–Wen model that describe the characteristics of piezoelectric materials are simultaneously identified with the particle swam optimization method; 3. Stability verification for the identified Bouc–Wen model; 4. A nonlinear feedback linearization control design is derived for the nano-scale positioning design of the piezoelectric material, mathematically. One important contribution of this investigation is that the positioning error between the output displacement of the controlled piezoelectric materials and the desired trajectory in nano-scale level can be proven to converge to zero asymptotically, under the effect of the hysteresis.

  8. Mechanics in Composite Materials and Process

    International Nuclear Information System (INIS)

    Lee, Dae Gil

    1993-03-01

    This book includes introduction of composite materials, stress, in-plane stiffness of laminates strain rate, ply stress, failure criterion and bending, composite materials micromechanics, composite plates and micromechanics of composite materials. It also deals with process of composite materials such as autoclave vacuum bag degassing process, connection of composite materials, filament winding process, resin transfer molding, sheet molding compound and compression molding.

  9. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    Science.gov (United States)

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Performance enhancement of quantum dot-sensitized solar cells based on polymer nano-composite catalyst

    International Nuclear Information System (INIS)

    Seo, Hyunwoong; Gopi, Chandu V.V.M.; Kim, Hee-Je; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2017-01-01

    Highlights: •We studied polymer nano-composite containing TiO 2 nano-particles as a catalyst. •Polymer nano-composite was applied for quantum dot-sensitized solar cells. •Polymer nano-composite catalyst was considerably improved with TiO 2 nano-particles. •Polymer nano-composite showed higher photovoltaic performance than conventional Au. -- Abstract: Polymer nano-composite composed of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) and TiO 2 nano-particles was deposited on fluorine-doped tin oxide substrate and applied as an alternative to Au counter electrode of quantum dot-sensitized solar cell (QDSC). It became surface-richer with the increase in nano-particle amount so that catalytic reaction was increased by widened catalytic interface. Electrochemical impedance spectroscopy and cyclic voltammetry clearly demonstrated the enhancement of polymer nano-composite counter electrode. A QDSC based on polymer nano-composite counter electrode showed 0.56 V of V OC , 12.24 mA cm −2 of J SC , 0.57 of FF, and 3.87% of efficiency and this photovoltaic performance was higher than that of QDSC based on Au counter electrode (3.75%).

  11. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chu, Xiaobing [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Cai, Yurong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Tong, Peijian [The First Affiliated Hospital, Zhejiang Chinese Medicine University, Hangzhou 310006 (China); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic.

  12. Preparation and characterization of antimicrobial nano-hydroxyapatite composites

    International Nuclear Information System (INIS)

    Yu, Juhong; Chu, Xiaobing; Cai, Yurong; Tong, Peijian; Yao, Juming

    2014-01-01

    Deep infection of prosthesis is one of the most frequent complications after joint replacement. One of the most effective ways is to introduce directly some antibiotics in the local site of the surgery. In the present study, an antimicrobial composite has been fabricated using nano-hydroxyapatite particles as carriers for the antimicrobial drug of vancomycin hydrochloride (VAN) and the mixture of oxidation sodium alginate (OSA) and gelatin (GT) as a sticky matrix. Samples have been characterized using X-ray diffraction instrument (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectra, Brunauer–Emmett–Teller (BET) methods, the rotational rheometer and the texture analyzer. The release of VAN from nano-hydroxyapatite (nHAP) particles was detected by the ultraviolet–visible (UV–vis) spectrophotometer and then bactericidal property of the composite was evaluated using the Staphylococcus aureus (S. aureus) as a bacterial model. Experimental results showed that the composite possessed an adhesive property derived from the gel of OSA and GT, which implied that the composite could bond directly to the fracture surface of bones in surgery. Furthermore, VAN was loaded efficiently on the surface of nHAP particles and could be released slowly from these particles, which endowed the composite with an obvious and continuous antimicrobial performance. The sticky and antimicrobial composite may has a potential application in arthroplasty to overcome deep infection in a simple and direct manner. - Highlights: • A sticky and antimicrobial composite has been designed to overcome deep infection. • The composite was composed of antibiotic, antibiotic carrier and a viscous matrix. • The sticky matrix was obtained by blending of oxidation sodium alginate and gelatin. • Hydroxyapatite nanoparticle could be used as carrier to control release of antibiotic

  13. Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method

    International Nuclear Information System (INIS)

    Narasimha Murthy, I.; Venkata Rao, D.; Babu Rao, J.

    2012-01-01

    Highlights: ► Nano structured fly ash has been produced by 30 h milling time. ► Al–fly ash nano composites were produced by ultrasonic cavitation route. ► A homogeneous distribution of nano fly ash particles was observed in the matrix. ► No additional contamination in the nano composites from the atmosphere. ► Presence of nano fly ash leads to improvement in the strength of the composites. -- Abstract: In this paper an attempt has been made to modify the micro sized fly ash into nano structured fly ash using high energy ball mill. Ball milling was carried out for the total duration of 30 h. The sample was taken out after every 5 h of milling for characterizing. The nano structured fly ash was characterized for its crystallite size and lattice strain by using X-ray diffractometer. It was found that a steady decrease in the crystallite size and increased lattice strain was observed with milling time; the crystallite size at 30 h milling time was found to be 23 nm. The fresh fly ash particles are mostly spherical in shape; whereas the shape of the 30 h milled fly ash particles is irregular and the surface morphology is rough. Al–fly ash nano composites were produced by ultrasonic cavitation route successfully. Scanning electron microscopy images of nano composites reveal a homogeneous distribution of the nano fly ash particles in the AA 2024 matrix. Energy dispersive spectroscopy analysis of nano composites reveals that the fabricated nano composite did not contain any additional contamination from the atmosphere. As the amount of nano fly ash is increasing the hardness of the composite also increasing. The nano fly ash addition leads to improvement in the compression strength of the composites.

  14. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Science.gov (United States)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  15. Stress development in particulate, nano-composite and polymeric coatings

    Science.gov (United States)

    Jindal, Karan

    2009-12-01

    The main goal of this research is to study the stress, structural and mechanical property development during the drying of particulate coatings, nano-composite coatings and VOC compliant refinish clearcoats. The results obtained during this research establish the mechanism for the stress development during drying in various coating systems. Coating stress was measured using a controlled environment stress apparatus based on cantilever deflection principle. The stress evolution in alumina coatings made of 0.4 mum size alumina particles was studied and the effect of a lateral drying was investigated. The stress does not develop until the later stages of drying. A peak stress was observed during drying and the peak stress originates due to the formation of pendular rings between the particles. Silica nanocomposite coatings were fabricated from suspension of nano sized silicon dioxide particles (20 nm) and polyvinyl alcohol (PVA) polymer. The stress in silica nano-composite goes through maximum as the amount of polymer in the coating increases. The highest final stress was found to be ˜ 110MPa at a PVA content of 60 wt%. Observations from SEM, nitrogen gas adsorption, camera imaging, and nano-indentation were also studied to correlate the coatings properties during drying to measured stress. A model VOC compliant two component (2K) acrylic-polyol refinish clearcoat was prepared to study the effects of a new additive on drying, curing, rheology and stress development at room temperature. Most of the drying of the low VOC coatings occurred before appreciable (20%) crosslinking. Tensile stress developed in the same timeframe as drying and then relaxed over a longer time scale. Model low VOC coatings prepared with the additive had higher peak stresses than those without the additive. In addition, rheological data showed that the additive resulted in greater viscosity buildup during drying.

  16. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins.

    Science.gov (United States)

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson's chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited significantly lower inflammatory response on the 90th day of implantation.

  17. Designing a New Nano-Plant Composite of Cucurbita pepo for Wound Repair of Skin in Male Albino Mice: A New Nano Approach for Skin Repair

    Directory of Open Access Journals (Sweden)

    Nooshin Naghsh

    2013-06-01

    Full Text Available Background & Objective : The Cucurbita pepo is one of plants that are functional in traditional therapy. This plant has antioxidant and skin damage repair properties. This study investigated the effect of Cucurbita pepo nano silver as a new nano-plant composition in wound repair skin in male mice.   Materials & Methods: In this investigation, male albino mice were places in 8 groups, each containing 8 animals. Group I – VIII were treated with nano silver (500, 250, and 125 ppm concentrations and different concentrations of extracts [70%, 50%, and 25%] and the control group received a mixture of 25% Cucurbita pepo extract (125 ppm nano silver. The eighth group, as control, was treated with sterile deionizer water after the induction of wound skin. The average diameter of the wounds was measured 28 days after treatment in the control and treatment groups. These data were analyzed using the t-test and ANOVA statistical method.   Results: The results of this study showed that ethanol extraction (80% has its highest repair effect 28 days post treatment. The average diameter of the wounds in the control group was 1.16 ±. 0.46 cm, which was decreased to 0 cm and 0.12 ±. 0.23 cm in the ethanol extract (70% of the Cucurbita pepo and component groups, respectively (p value ≤ 0.01.   Conclusion: In this project, nano silver-Cucurbita pepo ethanol extraction for wound repair in albino male mice was more effective than single materials. These findings show that the repair synergic effects are between alcoholic extract and nano silver in this nano composite.

  18. Biotechnology and Composite Materials

    Science.gov (United States)

    1993-04-01

    means. Silk made from the caterpillar, Bombyx mori , has outstanding mechanical and good thermal properties. The Bombyx mori synthesises the components of...Silk Proteins for Composite Fibers 185 In natural systems, the two c=nm=n sources of silks are the dch!sticated silkworm, mori , and the orb weaving...unit cell remain parallel to their original orientation during deformation. This prevents the formation of any voids or gaps in the model. Using the

  19. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  20. Electrochemical Synthesis of Graphene/MnO2 Nano-Composite for Application to Supercapacitor Electrode.

    Science.gov (United States)

    Jeong, Kwang Ho; Lee, Hyeon Jeong; Simpson, Michael F; Jeong, Mun

    2016-05-01

    Graphene/MnO2 nano-composite was electrochemically synthesized for application to an electrode material for electrochemical supercapacitors. The nanosized needle-like MnO2 was obtained by use of a graphene substrate. The prepared composite exhibited an ideal supercapacitive behavior. A capacitance retention of 94% was achieved with a 4 h deposition time (an initial capacitance of 574 mF/cm2 at a scan rate of 20 mV/s) and the retention declined with further deposition time. The results demonstrate enhanced contact between the electrode and electrolyte and improved power density as an electrochemical capacitor.

  1. Reduction of space charge breakdown in e-beam irradiated nano/polymethyl methacrylate composites

    International Nuclear Information System (INIS)

    Zheng Feihu; Zhang Yewen; An Zhenlian; Dong Jianxing; Lei Qingquan

    2013-01-01

    Fast discharge of numerous space charges in dielectric materials can cause space charge breakdown. This letter reports the role of nanoparticles in affecting space charge breakdown of nano/polymethyl methacrylate composites. Space charge distributions in the composites, implanted by electron beam irradiation, were measured by pressure wave propagation method. The results show that the nanoparticles have significant effects on the isothermal charge decay and space charge breakdown in the nanocomposites. The resistance to space charge breakdown in the nanocomposites is attributed to the combined action of the introduction of deep trapping states and the scattering effect by the added nanoparticles.

  2. A nano-graphite/paraffin phase change material with high thermal conductivity

    International Nuclear Information System (INIS)

    Li, Min

    2013-01-01

    Highlights: ► Paraffin and NG formed a nanoscale compound. ► The thermal conductivity increased gradually with the content of NG. ► The thermal conductivity of the material containing 10% NG were 0.9362 W/m K. - Abstract: Nano-graphite (NG)/paraffin composites were prepared as composite phase change materials. NG has the function of improving the thermal conductivity of the composite. The microstructure and thermal properties of the materials were examined with environmental scanning electron microscopy and differential scanning calorimetry. The results indicated that the NG layers were randomly dispersed in the paraffin, and the thermal conductivity increased gradually with the content of NG. Thermal conductivity of the material containing 10% NG were 0.9362 W/m K

  3. Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nano-particles

    International Nuclear Information System (INIS)

    Zhang Zhaozhu; Su Fenghua; Wang Kun; Jiang Wei; Men Xuehu; Liu Weimin

    2005-01-01

    The carbon fabric composites filled with the particulates of polyfluo-150 wax (PFW), nano-particles of ZnO (nano-ZnO), and nano-particles of SiC (nano-SiC), respectively, were prepared by dip-coating of the carbon fabric in a phenolic resin containing the particulates to be incorporated and the successive curing. The friction and wear behaviors of the carbon fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration are evaluated on a Xuanwu-III high-temperature friction and wear tester. The morphologies of the worn surfaces of the filled carbon fabric composites and the counterpart steel pins are analyzed by means of scanning electron microscopy. The effect of the fillers on the adhesion strength of the adhesive is evaluated using a DY35 universal materials tester. It is found that the fillers PFW, nano-ZnO, and nano-SiC contribute to significantly increasing anti-wear abilities of the carbon fabric composites, however, nano-SiC increase the friction coefficient of the carbon fabric composites. The wear rates of the composites at elevated temperature above 180 deg. C are much larger than that below 180 deg. C, which attribute to the degradation and decomposition of the adhesive resin at an excessively elevated temperature. That the interface bonding strength among the carbon fabric, the adhesive, and the particles is significantly increased after solidification and with the transferred film of the varied features largely account for the increased wear-resistance of the filled carbon fabric composites as compared with the unfilled one

  4. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nano materials

    International Nuclear Information System (INIS)

    Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y.; Mostofizadeh, A.

    2011-01-01

    In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nano technology which is called carbon-related nano materials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nano materials. Carbon nano materials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nano materials such as zero-dimensional carbon nano materials (including fullerene, carbon-encapsulated metal nanoparticles, nano diamond, and onion-like carbons), one-dimensional carbon nano materials (including carbon nano fibers and carbon nano tubes), and two-dimensional carbon nano materials (including graphene and carbon nano walls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nano materials.

  5. Handbook of damage mechanics nano to macro scale for materials and structures

    CERN Document Server

    2015-01-01

    This authoritative reference provides comprehensive coverage of the topics of damage and healing mechanics. Computational modeling of constitutive equations is provided as well as solved examples in engineering applications. A wide range of materials that engineers may encounter are covered, including metals, composites, ceramics, polymers, biomaterials, and nanomaterials. The internationally recognized team of contributors employ a consistent and systematic approach, offering readers a user-friendly reference that is ideal for frequent consultation. Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures is ideal for graduate students and faculty, researchers, and professionals in the fields of Mechanical Engineering, Civil Engineering, Aerospace Engineering, Materials Science, and Engineering Mechanics.

  6. Thermoluminescence properties of graphene–nano ZnS composite

    International Nuclear Information System (INIS)

    Sharma, Geeta; Gosavi, S.W.

    2014-01-01

    This work describes the thermoluminescence (TL) of graphene oxide (GO), reduced graphene oxide (RGO) and graphene–nano ZnS composite. Graphene oxide was synthesized using Hummer's method and then reduced to graphene by hydrazine hydrate. G–ZnS was synthesized via in-situ reduction of graphene oxide (GO) and zinc nitrate [Zn(NO 3 ) 2 ] by sodium sulfide (Na 2 S). The structures of samples were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). XRD pattern confirmed the formation of graphene oxide, reduced graphene oxide and G–ZnS lattice. The p-XRD spectrum of G–ZnS shows peaks of ZnS superimposed on those of graphene and the particle size of ZnS in the complex is less than 10 nm. Ultra thin graphene and graphene oxide sheets with size ranging between tens to several hundreds of square nanometers are observed in TEM images. The TEM micrographs of G–ZnS show that ZnS particles are embedded in graphene sheets and the average particle size of ZnS particles in the composite is less than 10 nm. Samples of RGO, GO and G–ZnS were exposed to different doses of γ-rays in the range of 1 Gy to 50 kGy. The reduced graphene oxide (RGO) did not show any thermoluminescence emission. The thermoluminescence glow curve of GO has a single broad peak whose peak position varied between 500 and 550 K with an absorbed dose increasing from 1 Gy to 5000 Gy. GO shows most intense TL peak, positioned at 523.6 K for a dose of 10 kGy. The glow curves of G–ZnS over the entire range of irradiation have single peak positioned between 492 and 527 K with variation in dose from 1 Gy to 50 kGy. G–ZnS shows the most intense TL glow curve for a dose of 50 kGy. The TL response curve of G–ZnS is found to be linear over a larger dose range from 1 Gy to 50 kGy whereas the response curve of GO shows linearity only at low doses up to 100 Gy. -- Highlights: • Graphene oxide, reduced graphene oxide and graphene–nano ZnS were synthesized. • TL of

  7. Composite materials for cryogenic structures

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1978-01-01

    The paper is concerned with the composition, mechanical properties and capabilities of various types of composite materials for cryogenic structures. Attention is given to high-pressure plastic laminates, low-pressure plastic laminates, metal-matrix laminates, and aggregates (low-temperature concretes). The ability of these materials to match the strength and modulus of stainless steels suggests that their usage will substantially increase as alloying elements become scarce and more expensive

  8. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    OpenAIRE

    Nurit Beyth; Yael Houri-Haddad; Avi Domb; Wahid Khan; Ronen Hazan

    2015-01-01

    Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The ...

  9. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  10. The Degradation of Mechanical Properties in Halloysite Nano clay-Polyester Nano composites Exposed in Seawater Environment

    International Nuclear Information System (INIS)

    Saharudin, M.S.; Saharudin, M. Sh.; Wei, J.; Shyha, I.; Inam, F.

    2016-01-01

    Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nano composites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nano clay-polyester nano composites. Results confirmed that the addition of halloysite nano clay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nano clay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease). Young s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease). The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease). The impact toughness dropped from 0.71 kJ/m"2 to 0.48 kJ/m"2 (32% decrease). Interestingly, the fracture toughnessκ_1C increased with the addition of halloysite nano clay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nano clay-matrix interface influenced by seawater absorption and agglomeration of halloysite nano clay.

  11. Nano-modification to improve the ductility of cementitious composites

    International Nuclear Information System (INIS)

    Yeşilmen, Seda; Al-Najjar, Yazin; Balav, Mohammad Hatam; Şahmaran, Mustafa; Yıldırım, Gürkan; Lachemi, Mohamed

    2015-01-01

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO 3 was more effective compared to nano-silica. However, the crystal structure of CaCO 3 played a very important role in the range of expected improvements

  12. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  13. Study on Carbon Nano composite Counter electrode for Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Chen, Y.; Zhang, H.; Lin, J.

    2012-01-01

    Carbon nano composite electrodes were prepared by adding carbon nano tubes (CNTs) into carbon black as counter electrodes of dye-sensitized solar cells (DSSCs). The morphology and structure of carbon nano composite electrodes were studied by scanning electron microscopy. The influence of CNTs on the electrochemical performance of carbon nano composite electrodes is investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Carbon nano composite electrodes with CNTs exhibit a highly interconnected network structure with high electrical conductivity and good catalytic activity. The influence of different CNTs content in carbon nano composite electrodes on the open-circuit voltage, short-circuit current, and filling factor of DSSCs is also investigated. DSSCs with 10% CNTs content exhibit the best photovoltaic performance in our experiments.

  14. Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes

    Science.gov (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2009-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  15. Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties

    International Nuclear Information System (INIS)

    Zenou, M; Kotler, Z; Sa’ar, A

    2016-01-01

    We study the electrical properties of aluminum structures printed by the laser forward transfer of molten, femtoliter droplets in air. The resulting printed material is an aluminum/aluminum-oxide nano-composite. By controlling the printing conditions, and thereby the droplet volume, its jetting velocity and duration, it is possible to tune the electrical resistivity to a large extent. The material resistivity depends on the degree of oxidation which takes place during jetting and on the formation of electrical contact points as molten droplets impact the substrate. Evidence for these processes is provided by FIB cross sections of printed structures. (paper)

  16. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  17. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2015-01-01

    Full Text Available Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.

  18. Optimizing Energy Conversion: Magnetic Nano-materials

    Science.gov (United States)

    McIntyre, Dylan; Dann, Martin; Ilie, Carolina C.

    2015-03-01

    We present herein the work started at SUNY Oswego as a part of a SUNY 4E grant. The SUNY 4E Network of Excellence has awarded SUNY Oswego and collaborators a grant to carry out extensive studies on magnetic nanoparticles. The focus of the study is to develop cost effective rare-earth-free magnetic materials that will enhance energy transmission performance of various electrical devices (solar cells, electric cars, hard drives, etc.). The SUNY Oswego team has started the preliminary work for the project and graduate students from the rest of the SUNY 4E team (UB, Alfred College, Albany) will continue the project. The preliminary work concentrates on analyzing the properties of magnetic nanoparticle candidates, calculating molecular orbitals and band gap, and the fabrication of thin films. SUNY 4E Network of Excellence Grant.

  19. Magnetic properties of nano-multiferroic materials

    Science.gov (United States)

    Ramam, Koduri; Diwakar, Bhagavathula S.; Varaprasad, Kokkarachedu; Swaminadham, Veluri; Reddy, Venu

    2017-11-01

    Latent magnetization in the multiferroics can be achieved via the structural distortion with respect to particle size and destroying the spiral spin structure, which plays the vital role in high-performance applications. In this investigation, multifunctional single phase Bi1-xLaxFe1-yCoyO3 nanomaterials were synthesized by co-precipitation technique. The chemical composition, phase genesis, morphology and thermal characteristics of the Bi1-xLaxFe1-yCoyO3 were studied by FTIR, XRD, SEM/EDS, TEM and TGA. XRD studies confirmed single phase distorted rhombohedral structure in Bi1-xLaxFe1-yCoyO3. The novelty in magnetic behavior of the Bi0.85La0.15Fe0.75Co0.25O3 multiferroic at room temperature showed both ferro and anti-ferromagnetic nature with higher order remanent magnetization among other nanocomposites in this study. This magnetic anomaly in Bi0.85La0.15Fe0.75Co0.25O3 is due to doping and size effects on the crystal structure that leads to spin-orbit interactions. Besides, Bi0.85La0.15Fe0.75Co0.25O3 integrated graphene oxide (GO) nanocomposite has shown the change in the magnetic hysteresis that indicates the effect of the semiconducting behavior of GO on the ordered magnetic moments in the multiferroic. This kind of magnetic anomaly could form advanced multiferroic devices.

  20. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu

    2017-10-01

    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  1. Marginal and internal fit of nano-composite CAD/CAM restorations

    Directory of Open Access Journals (Sweden)

    So-Hyun Park

    2016-02-01

    Full Text Available Objectives The purpose of this study was to compare the marginal and internal fit of nano-composite CAD-CAM restorations. Materials and Methods A full veneer crown and an mesio-occluso-distal (MOD inlay cavity, which were prepared on extracted human molars, were used as templates of epoxy resin replicas. The prepared teeth were scanned and CAD-CAM restorations were milled using Lava Ultimate (LU and experimental nano-composite CAD/CAM blocks (EB under the same milling parameters. To assess the marginal and internal fit, the restorations were cemented to replicas and were embedded in an acrylic mold for sectioning at 0.5 mm intervals. The measured gap data were pooled according to the block types and measuring points for statistical analysis. Results Both the block type and measuring point significantly affected gap values, and their interaction was significant (p = 0.000. In crowns and inlays made from the two blocks, gap values were significantly larger in the occlusal area than in the axial area, while gap values in the marginal area were smallest (p < 0.001. Among the blocks, the restorations milled from EB had a significantly larger gap at all measuring points than those milled from LU (p = 0.000. Conclusions The marginal and internal gaps of the two nano-composite CAD/CAM blocks differed according to the measuring points. Among the internal area of the two nano-composite CAD/CAM restorations, occlusal gap data were significantly larger than axial gap data. The EB crowns and inlays had significantly larger gaps than LU restorations.

  2. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    is successfully justified comparing predicted results with experimental data obtained in the HETEK-project on creep, relaxation, and shrinkage of very young concretes cured at a temperature of T = 20^o C and a relative humidity of RH = 100%. The model is also justified comparing predicted creep, shrinkage......, and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding...... in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus...

  3. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  4. Comparison of mechanical and friction properties of composite materials based on AlMg2 containing nano-dimensional particles of crystalline graphite and nanofibers of gamma oxide of aluminum

    Science.gov (United States)

    Aborkin, A. V.; Babin, D. M.; Soboĺkov, A. V.

    2018-04-01

    The method of mechanical synthesis in a planetary ball mill was used for production of composite powders based on the AlMg2 alloy containing 1 wt. % of nanosized particles of crystalline graphite or γ-Al2O3. The resulting powders are consolidated by the sintering under pressure. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, the structural-phase composition of bulk composite materials was studied. Comparative analysis of the microhardness, the conditional yield stress at compression, and the friction coefficient of bulk composite materials is carried out. It has been found out that the mechanical properties of composites reinforced with γ-Al2O3 nanofibers are higher than when reinforcing with nanoscale particles of crystalline graphite.

  5. Study of thermal properties and the dispersion state of nano composites epoxy/clay

    International Nuclear Information System (INIS)

    Paz, Juliana D.; Bertholdi, Jonas; Toledo, Tais C.; Folgueras, Marilena V.; Pezzin, Sergio H.; Coelho, Luiz A.F.

    2011-01-01

    This work investigates an exfoliation/intercalation of nano clays in an epoxy resin by means of x-rays diffraction, scanning electronic microscopy, thermal gravimetric analysis and dilatometric analysis. A comparison of two techniques for preparing nano composites is addressed: mechanical stirring and sonication. X-rays analysis showed that an exfoliation/intercalation is occurring in some samples. TG analysis indicated and increase in thermal stability of the nano composites compared to the neat resin. Finally, dilatometric analysis indicates and increase in Tg for nano composites compared to the neat resin. (author)

  6. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  7. Nuclear magnetic resonance applied to the study of polymeric nano composites

    International Nuclear Information System (INIS)

    Tavares, Maria Ines Bruno

    2011-01-01

    Polymers and nanoparticles based nano composites were prepared by intercalation by solution. The obtained nano composites were characterized mainly by the nuclear magnetic spectroscopy (NMR), applying the analysis of carbon-13 (polymeric matrix), silicon-29 (nanoparticle), and by determination of spin-lattice relaxation of the hydrogen nucleus (T 1 H) (polymeric matrix). The NMR have presented a promising technique in the characterization of the nano charge dispersion in the studied polymeric matrixes.

  8. Seawater Durability of Nano-Montmorillonite Modified Single-Lap Joining Epoxy Composite Laminates

    OpenAIRE

    ULUS, Hasan; KAYBAL, Halil Burak; DEMİR, Okan; TATAR, Ahmet Caner; SENYURT, Muhammed Ali; AVCI, Ahmet

    2018-01-01

    The objective of this study was to investigate of nano-montmorillonite modified epoxy composite single-lap bonded joints, after being exposed to seawater immersion in order to understand the effect of seawater environment on their performance. To prepare the nano adhesives, nano montmorillonite (2 wt %) was incorporated into epoxy resin. Composite bonded specimens which manufactured with VARIM (Vacuum Assisted Resin Infusion Method) were prepared accordance with ASTM D5868-01 and immersed in ...

  9. Room temperature synthesis of high temperature stable lanthanum phosphate–yttria nano composite

    International Nuclear Information System (INIS)

    Sankar, Sasidharan; Raj, Athira N.; Jyothi, C.K.; Warrier, K.G.K.; Padmanabhan, P.V.A.

    2012-01-01

    Graphical abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Highlights: ► A novel lanthanum phosphate–Y 2 O 3 nano composite is synthesized for the first time using a modified facile sol gel process. ► The composite becomes crystalline at 600 °C and X-ray diffraction pattern is indexed for monoclinic LaPO 4 and cubic yttria. ► The composite synthesized was tested up to 1300 °C and no reaction between the phases of the constituents is observed with the morphologies of the phases being retained. -- Abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Lanthanum phosphate (80 wt%)–yttria (20 wt%) nano composite (LaPO 4 –20%Y 2 O 3 ), has an average particle size of ∼70 nm after heat treatment of precursor at 600 °C. TG–DTA analysis reveals that stable phase of the composite is formed on heating the precursor at 600 °C. The TEM images of the composite show rod shape morphology of LaPO 4 in which yttria is acquiring near spherical shape. Phase identification of the composite as well as the phase stability up to 1300 °C was carried out using X-ray diffraction technique. With the phases being stable at higher temperatures, the composite synthesized should be a potential material for high temperature applications like thermal barrier coatings and metal melting applications.

  10. Nano-materials Enabled Thermoelectricity from Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-13

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m2 window at a 206C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  11. Generation of nano roughness on fibrous materials by atmospheric plasma

    International Nuclear Information System (INIS)

    Kulyk, I; Scapinello, M; Stefan, M

    2012-01-01

    Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.

  12. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  13. Preparation and mechanical properties of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites.

    Science.gov (United States)

    Geven, Mike A; Barbieri, Davide; Yuan, Huipin; de Bruijn, Joost D; Grijpma, Dirk W

    2015-01-01

    Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with varying amounts of nano-hydroxyapatite and subsequent photo-crosslinking. The incorporation of the nano-hydroxyapatite into the composites was examined by thermogravimetric analysis, scanning electron microscopy and gel content measurements. The mechanical properties were investigated by tensile testing and trouser tearing experiments. Our results show that nano-hydroxyapatite particles can readily be incorporated into photo-crosslinked poly(trimethylene carbonate) networks. Compared to the networks without nano-hydroxyapatite, incorporation of 36.3 wt.% of the apatite resulted in an increase of the E modulus, yield strength and tensile strength from 2.2 MPa to 51 MPa, 0.5 to 1.4 N/mm2 and from 1.3 to 3.9 N/mm2, respectively. We found that composites containing 12.4 wt.% nano-hydroxyapatite had the highest values of strain at break, toughness and average tear propagation strength (376% , 777 N/mm2 and 3.1 N/mm2, respectively).

  14. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties

    Science.gov (United States)

    Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.

    2017-01-01

    Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.

  15. Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors.

    Science.gov (United States)

    Pant, Bishweshwar; Park, Mira; Ojha, Gunendra Prasad; Park, Juhyeong; Kuk, Yun-Su; Lee, Eun-Jung; Kim, Hak-Yong; Park, Soo-Jin

    2018-07-15

    A combination of electrospinning technique and hydrothermal process was carried out to fabricate zinc oxide nano-flakes wrapped carbon nanofibers (ZnO/CNFs) composite as an effective electrode material for supercapacitor. The morphology of the as-synthesized composite clearly revealed that the carbon nanofibers were successfully wrapped with ZnO nano-flakes. The electrochemical performance of the as-synthesized nanocomposite electrode was evaluated by the cyclic voltammetry (CV), galvanostatic charge-discharge (GDC), and electrochemical impedance spectroscopy (EIS), and compared with the pristine ZnO nanofibers. It was found that the composite exhibited a higher specific capacitance (260 F/g) as compared to pristine ZnO NFs (118 F/g) at the scan rate of 5 mV/s. Furthermore, the ZnO/CNFs composite also exhibited good capacity retention (73.33%). The obtained results indicated great potential applications of ZnO/CNFs composite in developing energy storage devices with high energy and power densities. The present work might provide a new route for utilizing ZnO based composites for energy storage applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The effect of soda immersion on nano hybrid composite resin discoloration

    Directory of Open Access Journals (Sweden)

    M. Chair Effendi

    2014-03-01

    Full Text Available Background: Composite resin is the tooth-colored restorative material which most of the people are fond of due to their aesthetic value. The composite resin discoloration may happen because of the intrinsic and extrinsic factors. Soda water is one of the beverages which can cause the composite resin discoloration. Purpose: The study was aimed to determine the effect of soda immersion on nano hybrid composite resin discoloration. Methods: The study was an experimental laboratory study using 100 shade A3 nano hybrid composite resin specimens with the diameter of 5 mm and density of 2mm. The samples were divided into 5 groups, each group was immersed in different beverages. The beverages were mineral water; lemon-flavored soda; strawberry-flavored soda; fruit punch-flavored soda; and orange-flavored soda for 3, 7, 14 and 21 days respectively, in the temperature of 37o C. The discoloration measurement utilizes Spectrophotometer, Vita Easy Shade, and uses CIEL*a*b* method. Results: The result showed that the duration of immersion in soda had an effect on the Nano hybrid composite resin discoloration. Strawberry and fruit punch- flavored soda were the most influential components toward the discoloration. Nevertheless, the generally-occurred discoloration was clinically acceptable (∆E ≤ 3,3. Conclusion: The study suggested that the soda immersion duration has effect on Nano hybrid composite resin discoloration.Latar belakang: Resin komposit adalah material sewarna gigi yang diminati masyarakat karena memiliki nilai estetik yang baik. Perubahan warna resin komposit dapat terjadi karena faktor intrinsik dan ekstrinsik. Minuman soda merupakan salah satu minuman yang dapat menyebabkan perubahan warna pada resin komposit. Tujuan: Tujuan dari penelitian ini untuk meneliti perubahan warna resin komposit nanohibrida akibat perendaman dalam minuman soda. Metode: Metode yang digunakan pada penelitian ini adalah eksperimental laboratorik dengan menggunakan

  17. Optical Properties and Surface Morphology of Nano-composite PMMA: TiO2 Thin Films

    International Nuclear Information System (INIS)

    Lyly Nyl Ismail; Ahmad Fairoz Aziz; Habibah Zulkefle

    2011-01-01

    There are two nano-composite PMMA: TiO 2 solutions were prepared in this research. First solution is nano-composite PMMA commercially available TiO 2 nanopowder and the second solution is nano-composite PMMA with self-prepared TiO 2 powder. The self-prepared TiO 2 powder is obtained by preparing the TiO 2 sol-gel. Solvo thermal method were used to dry the TiO 2 sol-gel and obtained TiO 2 crystal. Ball millers were used to grind the TiO 2 crystal in order to obtained nano sized powder. Triton-X was used as surfactant to stabilizer the composite between PMMA: TiO 2 . Besides comparing the nano-composite solution, we also studied the effect of the thin films thickness on the optical properties and surface morphology of the thin films. The thin films were deposited by sol-gel spin coating method on glass substrates. The optical properties and surface characterization were measured with UV-VIS spectrometer equipment and atomic force microscopy (AFM). The result showed that nano-composite PMMA with self prepared TiO 2 give high optical transparency than nano-composite PMMA with commercially available TiO 2 nano powder. The results also indicate as the thickness is increased the optical transparency are decreased. Both AFM images showed that the agglomerations of TiO 2 particles are occurred on the thin films and the surface roughness is increased when the thickness is increased. High agglomeration particles exist in the AFM images for nano-composite PMMA: TiO 2 with TiO 2 nano powder compare to the other nano-composite solution. (author)

  18. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  19. Nano-Reinforcement of Interfaces in Prepreg-Based Composites Using a Carbon Nanotubes Spraying Method

    KAUST Repository

    Almuhammadi, Khaled

    2012-11-01

    Multi-scale reinforcement of composite materials is a topic a great interest owing to the several advantages provided, e.g. increased stiffness, improved aging resistance, and fracture toughness. It is well known, that the fracture toughness of epoxy resins used as matrix materials for CFRP composites can be increased by the addition of nano-sized fillers such as Carbon nanotubes (CNTs). CNTs are particularly well suited for this purpose because of their nano-scale diameter and high aspect ratio which allow enhancing the contact area and adhesion to the epoxy matrix. On the other hand, CNTs can also be used to improve the interlaminar strength of composite, which is the resistance offered to delamination. Several fabrication techniques have been devised to this purpose, such as powder dispersion [51-53], spraying [54], roll coating [2] and electrospinning [55, 56]. The aim of this work is to extend the knowledge in this field. In particular, MWCNTs were dispersed throughout the interface of a carbon fiber composite laminate ([0o]16) through spraying and the resulting fracture toughness was investigated in detail. To this purpose, Double Cantilever Beam (DCB) specimens were fabricated by placing 0.5 wt.% CNTs at the interface of mid-plane plies and the fracture toughness was determined using the ASTM standard procedures. For comparison, baseline samples were prepared using neat prepregs. In order to corroborate the variation of fracture toughness to the modifications of interfacial damage mechanisms, Scanning Electron Microscopy (SEM) of the failed surfaces was also undertaken. The results of this work have shown that functionalized MWCNTs can enhance the interlaminar fracture toughness; indeed, compared to the neat case, an average increase around 17% was observed. The SEM analysis revealed that the improved fracture toughness was related to the ability of the Nano-reinforcement to spread the damage through crack bridging, i.e. CNTs pull-out and peeling.

  20. Eco-nano composite films containing copper as potential antimicrobial active packaging

    Energy Technology Data Exchange (ETDEWEB)

    Bruna, Julio E.; Gonzalez, Valeska; Rodriguez, Francisco; Guarda, Abel; Galotto, Maria Jose, E-mail: julio.bruna@usach.cl [Center for the Development of Nanoscience and Nanotechnology, Packaging Laboratory, University of Santiago de Chile. Santiago (Chile)

    2011-07-01

    The antimicrobial efficiency of Cellulose Acetate/MMTCu and Chitosan/MMTCu nano composites against Escherichia Coli 0157:H7 n/t has been studied in the present work. The MMT modified with copper were obtained using cation interchange in solution and the nano composites films were prepared using casting solution technique, being the biodegradable polymer (Cellulose Acetate or Chitosan) the main component and the montmorillonite modified with copper, the minority component. Characterization of MMTCu and the nano composites (CA/MMTCu and Ch/MMTCu), were carried out using XRD, AA, TGA, DSC and microbiological analysis. The nano composites showed to be more stable at higher temperature, resulting from the incorporation of MMTCu into the polymer. On the other hand, the results indicated that the antibacterial effect of nano composite increased with the proportion of MMTCu added. (author)

  1. Preparation of polymer-organo clay nano composites through the spray drying process

    International Nuclear Information System (INIS)

    Bernardo, Paulo R.A.; Pessan, Luiz A.; Carvalho, Antonio J.F. de; Vidotti, Suel E.

    2011-01-01

    The objective of the work was the study and preparation of polymer nano composites with montmorillonite organo clays (MMT) through the spray drying process. A new technique was proposed and tested to obtaining polymer nano composites, based on the use of the spray drying process to produce a nano composite with high clay content. The process consisted of the following stages: clay intercalation in water solution, with after addition of polyvinyl alcohol (PVOH) and a hydro soluble polyester ionomer (GEROLPS20) as exfoliation agents; spray drying the mixture obtained; incorporation powder in EVOH, PET e PP matrix. The effects of exfoliation agent on morphological and thermal properties of the nano composites were studied by XRD, transmission electron microscopy (TEM) and TGA. The results demonstrate that the process of spray drying is an innovative way to obtain a nano composite with high clay content. (author)

  2. Eco-nano composite films containing copper as potential antimicrobial active packaging

    International Nuclear Information System (INIS)

    Bruna, Julio E.; Gonzalez, Valeska; Rodriguez, Francisco; Guarda, Abel; Galotto, Maria Jose

    2011-01-01

    The antimicrobial efficiency of Cellulose Acetate/MMTCu and Chitosan/MMTCu nano composites against Escherichia Coli 0157:H7 n/t has been studied in the present work. The MMT modified with copper were obtained using cation interchange in solution and the nano composites films were prepared using casting solution technique, being the biodegradable polymer (Cellulose Acetate or Chitosan) the main component and the montmorillonite modified with copper, the minority component. Characterization of MMTCu and the nano composites (CA/MMTCu and Ch/MMTCu), were carried out using XRD, AA, TGA, DSC and microbiological analysis. The nano composites showed to be more stable at higher temperature, resulting from the incorporation of MMTCu into the polymer. On the other hand, the results indicated that the antibacterial effect of nano composite increased with the proportion of MMTCu added. (author)

  3. Synthesis of new aluminum nano hybrid composite liner for energy saving in diesel engines

    International Nuclear Information System (INIS)

    Tiruvenkadam, N.; Thyla, P.R.; Senthilkumar, M.; Bharathiraja, M.; Murugesan, A.

    2015-01-01

    Highlights: • Nano hybrid composite cylinder liner (NL) was developed to replace cast iron liner. • NL improved engine performance, combustion and reduced emissions except NO x . • Teardown analysis provides the suitability of NL for diesel engine. • The developed aluminum NL saved 43.75% of weight than cast iron cylinder liner. - Abstract: This work aims to replace the conventional cast iron cylinder liner (CL) in diesel engine by introducing lightweight aluminum (Al) 6061 nano hybrid composite cylinder liner (NL) by analyzing the performance, combustion, and emission characteristics of an engine. NL was fabricated by bottom pouring stir casting technique with nano- and micro-reinforcement materials. Experimental results proved that the use of NL increased brake thermal efficiency, in-cylinder pressure, heat release rate, and reduced carbon monoxide, hydrocarbon, and smoke emission in comparison with CL. However, oxides of nitrogen slightly increased with the use of the new liner. No differences in wear or other issues were noted during the engine teardown after 1 year of operation and 2000 h of running. Thus, NL has been recommended to replace the CL to save the energy and to reap environmental benefits

  4. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    Energy Technology Data Exchange (ETDEWEB)

    Parali, Levent, E-mail: levent.parali@cbu.edu.tr [Department of Electronics and Automation, Celal Bayar University, Manisa (Turkey); Şabikoğlu, İsrafil [Department of Physics, Celal Bayar University, Manisa (Turkey); Kurbanov, Mirza A. [Institute of Physics, Academy of Sciences of Azerbaijan, Baku (Azerbaijan)

    2014-11-01

    Highlights: • We prepared hybrid structured piezocomposites. • We examine thermostimulated depolarization of piezocomposites. • We examine frequency characteristic of piezocomposites with SiO{sub 2} and BaTiO{sub 3}. • The piezocomposites can be used in acoustic applications at 5 Hz–40 kHz. - Abstract: A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO{sub 3}, SiO{sub 2} to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO{sub 3} or SiO{sub 2}), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT–PVDF) and the hybrid structure (PZT–PVDF–BaTiO{sub 3}) composite are compared. The d{sub 33} value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d{sub 33} value and the coupling factor of the hybrid structure (PZT–HDPE–SiO{sub 2}) have exhibited about 68 and 52% increase according to microstructure composite (PZT–HDPE), respectively.

  5. Investigation on Nano composite Membrane of Multi walled Carbon Nano tube Reinforced Polycarbonate Blend for Gas Separation

    International Nuclear Information System (INIS)

    Kausar, A.

    2016-01-01

    Carbon nano tube has been explored as a nano filler in high performance polymeric membrane for gas separation. In this regard, nano composite membrane of polycarbonate (PC), poly(vinylidene fluoride-co-hexafluoropropylene) (PVFHFP), and multi walled carbon nano tube (MWCNT) was fabricated via phase inversion technique. Poly (ethylene glycol) (PEG) was employed for the compatibilization of the blend system. Two series of PC/PVFHFP/PEG were developed using purified P-MWCNT and acid functional A-MWCNT nano filler. Scanning and transmission electron micrographs have shown fine nano tube dispersion and wetting by matrix, compared with the purified system. Tensile strength and Young s modulus of PC/PVFHFP/PEG/MWCNT-A 1-5 were found to be in the range of 63.6-72.5 MPa and 110.6-122.1 MPa, respectively. The nano composite revealed 51% increase in Young s modulus and 28% increase in tensile stress relative to the pristine blend. The A-MWCNT was also effective in enhancing the perm selectivity αCO 2 /N 2 (31.2-39.9) of nano composite membrane relative to the blend membrane (21.6). The permeability ρCO 2 of blend was 125.6 barrer; however, the functional series had enhancedρCO 2 values ranging from 142.8 to 186.6 barrer. Moreover, A-MWCNT loading improved the gas diffusivity of PC/PVFHFP/PEG/MWCNT-A 1-5; however, filler content did not significantly influence the CO 2 and N 2 solubility.

  6. Plasma-arc reactor for production possibility of powdered nano-size materials

    International Nuclear Information System (INIS)

    Hadzhiyski, V; Mihovsky, M; Gavrilova, R

    2011-01-01

    Nano-size materials of various chemical compositions find increasing application in life nowadays due to some of their unique properties. Plasma technologies are widely used in the production of a range of powdered nano-size materials (metals, alloys, oxides, nitrides, carbides, borides, carbonitrides, etc.), that have relatively high melting temperatures. Until recently, the so-called RF-plasma generated in induction plasma torches was most frequently applied. The subject of this paper is the developments of a new type of plasma-arc reactor, operated with transferred arc system for production of disperse nano-size materials. The new characteristics of the PLASMALAB reactor are the method of feeding the charge, plasma arc control and anode design. The disperse charge is fed by a charge feeding system operating on gravity principle through a hollow cathode of an arc plasma torch situated along the axis of a water-cooled wall vertical tubular reactor. The powdered material is brought into the zone of a plasma space generated by the DC rotating transferred plasma arc. The arc is subjected to Auto-Electro-Magnetic Rotation (AEMR) by an inductor serially connected to the anode circuit. The anode is in the form of a water-cooled copper ring. It is mounted concentrically within the cylindrical reactor, with its lower part electrically insulated from it. The electric parameters of the arc in the reactor and the quantity of processed charge are maintained at a level permitting generation of a volumetric plasma discharge. This mode enables one to attain high mean mass temperature while the processed disperse material flows along the reactor axis through the plasma zone where the main physico-chemical processes take place. The product obtained leaves the reactor through the annular anode, from where it enters a cooling chamber for fixing the produced nano-structure. Experiments for AlN synthesis from aluminium power and nitrogen were carried out using the plasma reactor

  7. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Directory of Open Access Journals (Sweden)

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  8. In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications

    Directory of Open Access Journals (Sweden)

    Khaled R. Mohamed

    2014-03-01

    Full Text Available The present work aims to study the in vitro properties of nano-hydroxyapatite/chitosan–gelatin composite materials. In vitro behavior was performed in simulated body fluid (SBF to verify the formation of apatite layer onto the composite surfaces. The in vitro data proved the deposition of calcium and phosphorus ions onto hydroxyapatite /polymeric composite surfaces especially those containing high concentrations of polymer content. The degradation of the composites decreased with increase in the polymeric matrix content and highly decreased in the presence of citric acid (CA, especially these composites which contain 30% polymeric content. The water absorption of the composites increased with increase in the polymeric content and highly increased with CA addition. The Fourier transformed infrared reflectance (FT-IR and scanning electron microscope (SEM for the composites confirmed the formation of bone-like apatite layer on the composite surfaces, especially those containing high content of polymers (30% with 0.2 M of CA. These promising composites have suitable properties for bio-applications such as bone grafting and bone tissue engineering applications in the future.

  9. Composite Materials: An Educational Need.

    Science.gov (United States)

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  10. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  11. Durability of aircraft composite materials

    Science.gov (United States)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  12. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material.

    Science.gov (United States)

    Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung

    2017-07-01

    Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-11-03

    With growing world population and decreasing fossil fuel reserves we need to explore and utilize variety of renewable and clean energy sources to meet the imminent challenge of energy crisis. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable energy harvester from wasted heat, its mass scale usage is yet to be developed. By transforming window glasses into generators of thermoelectricity, this doctoral work explores engineering aspects of using the temperature gradient between the hot outdoor heated by the sun and the relatively cold indoor of a building for mass scale energy generation. In order to utilize the two counter temperature environments simultaneously, variety of techniques, including: a) insertion of basic metals like copper and nickel wire, b) sputtering of thermoelectric films on side walls of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses. The practical demonstration of thermoelectric windows has been validated using a finite element model to predict the behavior of thermoelectric window under variety of varying conditions. MEMS based characterization platform has been fabricated for thermoelectric characterization of thin films employing van der Pauw and four probe modules. Enhancement of thermoelectric properties of the nano- manufactured pillars due to nano-structuring, achieved through mechanical alloying of micro-sized thermoelectric powders, has been explored. Modulation of thermoelectric properties of the nano-structured thermoelectric pillars by addition of sulfur to nano-powder matrix has also been investigated in detail. Using the best possible p

  14. Design and fabrication of carbon fibers with needle-like nano-HA coating to reinforce granular nano-HA composites.

    Science.gov (United States)

    Wang, Xudong; Zhao, Xueni; Zhang, Li; Wang, Wanying; Zhang, Jing; He, Fuzhen; Yang, Jianjun

    2017-08-01

    Carbon fibers (CFs) with needle-like nano-hydroxyapatite (nHA) coating were first used as reinforcing materials named nHA-CFs to improve the mechanical properties of pure HA. A powder mixture containing nHA-CFs and granular nano-HA (gHA) was directly sintered by hot pressing at appropriate sintering pressure and temperature. A three-phase nHA-CFs/gHA composite was designed, fabricated, and used as an artificial bone. Results show that the bending strengths of the nHA-CFs/gHA composite are approximately 41.1% and 59.2% higher than those of CFs/gHA composite and pure HA, respectively. The possible reinforcing mechanism of nHA-CFs in the composite is also proposed at the end. When nHA-CFs are applied for preparation of nHA-CFs/gHA composites, the internal stress on its phase boundary with gHA matrix generated during cooling of sintered is significantly reduced due to the presence of the nHA coatings. It infers that nHA coatings on CFs might act as a bridge to control the forming of interfacial gaps between the gHA matrix and the CFs effectively. Our work provides additional insights into the feasibility of nHA-CFs/gHA composites as load-bearing implant materials in clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    International Nuclear Information System (INIS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-01-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm"2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  16. Nano-lignin filled natural rubber composites: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    C. Jiang

    2013-05-01

    Full Text Available This paper presents a novel strategy to prepare nano-lignin and its composites with natural rubber. The nanolignin was ontained by fabricating colloidal lignin-Poly (diallyldimethylammonium chloride (PDADMAC complexes (LPCs via self-assembly technology. The characteristics of LPCs were investigated by zeta potential, dynamic light scattering (DLS, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR and ultraviolet – visible (UV-vis absorption measurements. The results indicated that PDADMAC intensively interacted with lignin by cation-π and π-π interactions, and lignin particles were stable in aqueous solution with an average particle size less than 100 nm. LPCs accelerated the vulcanization of NR/LPCs nanocomposites. Morphological studies and Dynamic mechanical analysis (DMA showed the homogeneous dispersion of LPCs in the NR matrix and the strong interfacial adhesion between them. The nanoscale dispersion of LPCs significantly enhanced the thermal stability and mechanical properties of NR/LPCs nanocomposites.

  17. Synthesis of Poly aniline-Montmorillonite Nano composites Using H2O2 as the Oxidant

    International Nuclear Information System (INIS)

    Binitha, N.; Binitha, N.; Suraja, V.; Zahira Yaakob; Sugunan, S.

    2011-01-01

    Poly aniline montmorillonite nano composite was prepared using H 2 O 2 as the oxidant. The catalytic environment of montmorillonite favours polymerization. Intercalation and composite formation was proven from various techniques such as XRD, FTIR, DRS and thermal analysis. XRD patterns give the dimension of the intercalated PANI, from the shift of 2θ values, which is in the nano range. FTIR showed that PANI composite formation occurred without affecting the basic clay layer structure. Thus the successful development of an alternative cheap route for poly aniline-montmorillonite nano composite was well established. (author)

  18. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  19. A review of mechanical and tribological behaviour of polymer composite materials

    Science.gov (United States)

    Prabhakar, K.; Debnath, S.; Ganesan, R.; Palanikumar, K.

    2018-04-01

    Composite materials are finding increased applications in many industrial applications. A nano-composite is a matrix to which nanosized particles have been incorporated to drastically improve the mechanical performance of the original material. The structural components produced using nano-composites will exhibit a high strength-to-weight ratio. The properties of nano-composites have caused researchers and industries to consider using this material in several fields. Polymer nanocomposites consists of a polymer material having nano-particles or nano-fillers dispersed in the polymer matrix which may be of different shapes with at least one of the dimensions less than 100nm. In this paper, comprehensive review of polymer nanocomposites was done majorly in three different areas. First, mechanical behaviour of polymer nanocomposites which focuses on the mechanical property evaluation such as tensile strength, impact strength and modulus of elasticity based on the different combination of filler materials and nanoparticle inclusion. Second, wear behavior of Polymer composite materials with respect to different impingement angles and variation of filler composition using different processing techniques. Third, tribological (Friction and Wear) behaviour of nanocomposites using various combination of nanoparticle inclusion and time. Finally, it summarized the challenges and prospects of polymer nanocomposites.

  20. The Effect of Drawing Ratio on Mechanical Property of Nano-Hybrid Polyimide Composite Films

    Directory of Open Access Journals (Sweden)

    CHEN Hao

    2017-06-01

    Full Text Available In order to investigate the impact of drawing ratio of inorganic nano-hybrid polyamide three-layer composite films,the stretched composite films with different draw ratio were prepared by drawing partial imido polyamide film and then through the ring closing reaction in the high temperature,and the draw ratio was 0% ,2% , 4% ,6% ,8% ,10% ,12% ,14% etc. Under the same conditions,we made different draw ratio of three-layer composite film tensile test with the electronic universal material testing machine. The results show: doped inorganic nanometer oxide made PI film elastic modulus increase slightly,the tensile strength and elongation at break decrease obviously,but the nano hybrid three-layer composite PI films still had good mechanical properties; The yield of polyimide film should be caused by forced high-elastic deformation of polyimide molecular chain,and it had nothing to do with whether doped inorganic nano-oxide or whether through stretched processing; With the increase of draw ratio,the elastic modulus of the nano hybrid three-layer composite PI films existed the trend of first increased and then slow down gradually,and the tensile strength and elongation at break first decreased and then increased.

  1. Effect of organo clay addition on thermal properties of poly lactide/ polycaprolactone (PLA/ PCL) nano composites

    International Nuclear Information System (INIS)

    Siti Zulaiha Hairaldin; Wan Md Zin Wan Yunus; Norazoma Ibrahim

    2010-01-01

    In this study, melt blending technique was applied to prepare poly lactide/polycaprolactone (PLA/ PCL) nano composites with various blends. Montmorillonite (MMT) was used as an addition to the matrix. In this study, melt blending technique was applied to prepare poly lactide/polycaprolactone (PLA/ PCL) nano composites. Montmorillonite (MMT) was used as an addition to the matrix with various percentages. The other one is modified clay prepared by modifying the nature of montmorillonite with octadecylamine (ODA) to improve the characteristic of PLA/ PCL blends. X-ray diffraction (XRD) results indicated intercalation of the PLA/ PCL into silicate nano size interlayers galleries of the nano composites. The presence of modified clays in nano composite was confirmed by FTIR spectrum. TGA and DTG results show addition of MMT and modified clay ODA-MMT improved the thermal stability of the PLA/ PCL blends. (author)

  2. Strain distributions in nano-onions with uniform and non-uniform compositions

    International Nuclear Information System (INIS)

    Duan, H L; Karihaloo, B L; Wang, J; Yi, X

    2006-01-01

    Nano-onions are ellipsoidal or spherical particles consisting of a core surrounded by concentric shells of nanometre size. Nano-onions produced by self-assembly and colloidal techniques have different structures and compositions, and thus differ in the state of strains. The mismatch of the thermal expansion coefficients and lattice constants between neighbouring shells induces stress/strain fields in the core and shells, which in turn affect their physical/mechanical properties and/or the properties of the composites containing them. In this paper, the strains in embedded and free-standing nano-onions with uniform and non-uniform compositions are studied in detail. It is found that the strains in the nano-onions can be modified by adjusting their compositions and structures. The results are useful for the band structure engineering of semiconductor nano-onions

  3. The Potential of Nano materials for Drug Delivery, Cell Tracking, and Regenerative Medicine 2014

    International Nuclear Information System (INIS)

    Vasilev, K.; Vasilev, K.; Chen, H.; Murray, P.; Mantovani, D.

    2014-01-01

    Nano materials have become the building blocks of revolutionary technologies that have opened unprecedented opportunities across the entire global economy. Nano materials are particulates of various shapes and forms and assemblies that typically have a size range between 1 and 100 nm. Nature has designed and used nano materials for billions of years. For instance, proteins and viruses are complex nano engineered structures that have been designed by Nature to perform highly specific and refined roles. It was only in the last two decades that we learned how to engineer and use materials at the nano scale in a relatively large scale. Despite revolutionizing many technologies, these materials are far from the perfection that Nature has created. Thus, scientists and engineers are presented with enormous challenges and opportunities to explore, interrogate, and utilize the unique properties of nano materials to improve standards of living and drive economic prosperity

  4. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    International Nuclear Information System (INIS)

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  5. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    Science.gov (United States)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  6. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    International Nuclear Information System (INIS)

    Cai, Yurong; Yu, Juhong; Kundu, Subhas C.; Yao, Juming

    2016-01-01

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  7. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yurong; Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kundu, Subhas C. [Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, West Bengal 721302 (India); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-15

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  8. Optimization of Fluorescent Silicon Nano material Production Using Peroxide/ Acid/ Salt Technique

    International Nuclear Information System (INIS)

    Abuhassan, L.H.

    2009-01-01

    Silicon nano material was prepared using the peroxide/ acid/ salt technique in which an aqueous silicon-based salt solution was added to H 2 O 2 / HF etchants. In order to optimize the experimental conditions for silicon nano material production, the amount of nano material produced was studied as a function of the volume of the silicon salt solution used in the synthesis. A set of samples was prepared using: 0, 5, 10, 15, and 20 ml of an aqueous 1 mg/ L metasilicate solution. The area under the corresponding peaks in the infrared (ir) absorption spectra was used as a qualitative indicator to the amount of the nano material present. The results indicated that using 10 ml of the metasilicate solution produced the highest amount of nano material. Furthermore, the results demonstrated that the peroxide/ acid/ salt technique results in the enhancement of the production yield of silicon nano material at a reduced power demand and with a higher material to void ratio. A model in which the silicon salt forms a secondary source of silicon nano material is proposed. The auxiliary nano material is deposited into the porous network causing an increase in the amount of nano material produced and a reduction in the voids present. Thus a reduction in the resistance of the porous layer, and consequently reduction in the power required, are expected. (author)

  9. UV resistibility of a nano-ZnO/glass fibre reinforced epoxy composite

    International Nuclear Information System (INIS)

    Wong, Tsz-ting; Lau, Kin-tak; Tam, Wai-yin; Leng, Jinsong; Etches, Julie A.

    2014-01-01

    Highlights: • A GFRE composite with UV resistibility is introduced. • The bonding behaviour and UV resistibility of the composite were studied upon the addition of nano-ZnO particles. • The solvent effect in the dispersion of nano-ZnO particles was also studied. • The nano-ZnO/GFRE composite shows effective UV absorption with enhanced bonding behaviour. - Abstract: The harmfulness of ultraviolet (UV) radiation (UVR) to human health and polymer degradation has been the focus recently in all engineering industries. A polymer-based composite filled with nano-ZnO particles can enhance its UV resistibility. It has been found that the use of appropriate amount of nano-ZnO/Isopropyl alcohol solvent to prepare a UV resistant nano-ZnO/glass fibre reinforced epoxy (ZGFRE) composite can effectively block the UV transmission with negligible influence on the crystal structure of its resin system. This paper aims at investigating the interfacial bonding behaviour and UV resistibility of a ZGFRE composite. The solvent effect in relation to the dispersion properties of ZnO in the composite is also discussed. XRD results indicated that 20 wt% Isopropyl alcohol was an effective solvent for filling nano-ZnO particles into an epoxy. SEM examination also showed that the bonding behaviour between glass fibre and matrix was enhanced after filling 20 wt% nano-ZnO particles with 20 wt% Isopropyl alcohol into the composite. Samples filled with 20 wt% nano-ZnO/Isopropyl alcohol and 40 wt% nano-ZnO/Isopropyl alcohol has full absorption of UVA (315–400 nm), UVB (280–315 nm) and a part of UVC (190–280 nm)

  10. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    Science.gov (United States)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to

  11. Radiation effect on characterization and physical properties of polymer nano composites

    International Nuclear Information System (INIS)

    Tawfik, E.K.M.

    2013-01-01

    Polymeric materials are of interest in scientific and technological research, because they can be tailored to meet specific requirement for a verity of applications, this is mainly due to their light weight, good mechanical strength, and optical properties.From which, Poly Vinyl Alcohol (PVA) is one of the most important polymeric materials, because it has many applications in industry and is of relatively low cost in manufacture. It is well documented that electrical and optical properties of polymers can be improved to a desired limit through suitable doping. In this concern, and since Ag + is a fast conducting ion in a number of crystalline and amorphous materials, its incorporation within a polymeric system may be expected to enhance its electrical and optical properties. In the present study the PVA/Ag nano composite with different contents of inorganic phase of (2, 3, 4, 5, 6, 7, and 8) wt % were prepared by reduction of Ag + ions in PVA solution using gamma irradiation with different dose of (15, 25, 50, 75, 100) kGy. The Ag particle size was found to be around 14.0 nm based on the UV-Vis spectroscopy and Dynamic Light Scattering (DLS) measurements. Also, the structural studies of the synthesized PVA/Ag nano composites have been carried out through FTIR, and XRD studies. Further, the dependence of the optical and electrical properties of PVA on the concentration of the embedded nano-Ag was reported. As well, the effects of γ- irradiation have been studied applying UV-Vis spectroscopy and electrical characteristics measurements, respectively.

  12. Si quantum dots for nano electronics: From materials to applications

    International Nuclear Information System (INIS)

    Lombardo, S.; Spinella, C.; Rimini, E.

    2005-01-01

    This paper reviews the subject of Si quantum dots embedded in dielectric and its application to the realization of non volatile semiconductor memories. In the first part of the paper various approaches for the analysis of the materials through transmission electron microscopy (TEM) are critically discussed. The advantages coming from an innovative application of energy filtered TEM are put in clear evidence. The paper then focuses on the synthesis of the materials: two different methodologies for the realization of the dots, both based on chemical vapor deposition are described in detail, and physical models providing some understanding of the observed phenomenology are reported. We then discuss the application of this nano technology to the realization of the storage nodes in non volatile semiconductor memories. The following sections describe the electrical characteristics found in the test devices and some key aspects are described in terms of quantitative models. The test devices show several performance advantages, indicating that the approach is an excellent candidate for the realization of Flash memories of the nano electronic era

  13. Nanomanufacturing : nano-structured materials made layer-by-layer.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  14. Evaluation of Synthesized Nano hydroxyapatite-Nano cellulose Composites as Biocompatible Scaffolds for Applications in Bone Tissue Engineering

    International Nuclear Information System (INIS)

    Herdocia-Lluberes, C.S.; Herdocia-Lluberes, C.S.; Laboy-Lopez, S.; Morales, S.; Gonzalez-Roobles, T.J.; Gonzalez-Feliciano, J.A.; Nicolau, E.; Laboy-Lopez, S.; Gonzalez-Roobles, T.J.; Nicolau, E.

    2015-01-01

    Basic calcium phosphate (BCP) crystals have been associated with many diseases due to their activation of signaling pathways that lead to their mineralization and deposition in intra-articular and peri articular locations in the bones. In this study, hydroxyapatite (HAp) has been placed in a polysaccharide network as a strategy to minimize this deposition. This research consisted of the evaluation of varying proportions of the polysaccharide network, cellulose nano crystals (CNC_s), and HAp synthesized via a simple sol-gel method. The resulting biocompatible composites were extensively characterized by means of thermogravimetric analysis (TGA), powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), zeta potential, and scanning electron microscopy (SEM). It was found that an nHAp = CNC ratio presented greater homogeneity in the size and distribution of the nanoparticles without compromising the crystalline structure. Also, incorporation of bone morpho genetic protein 2 (BMP-2) was performed to evaluate the effects that this interaction would have in the constructs. Finally, the osteoblast cell (hFOB 1.19) viability assay was executed and it showed that all of the materials promoted greater cell proliferation while the nHAp > CNC proportion with the inclusion of the BMP-2 protein was the best composite for the purpose of this study

  15. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    International Nuclear Information System (INIS)

    Lim, Seungmin; Mondal, Paramita

    2014-01-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage

  16. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  17. Asymmetric Dielectric Elastomer Composite Material

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  18. Study of Ion Transport Behaviour in (PVA-NH4I):SIO2 Nano Composite Polymer Electrolyte

    Science.gov (United States)

    Tripathi, Mridula; Trivedi, Shivangi; Upadhyay, Ruby; Singh, Markandey; Pandey, N. D.; Pandey, Kamlesh

    2013-07-01

    Development and characterization of Poly vinyl alcohol (PVA) based nano composite polymer electrolytes comprising of (PVA-NH4I):SiO2 is reported. Sol-gel derived silica powder of nano dimension has been used as ceramic filler for development of nano composite electrolyte. Formation of nano composites, change in the structural and microscopic properties of the system have been investigated by X-ray differaction, SEM and conductivity.

  19. Nano-engineered composites: interlayer carbon nanotubes effect

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Glaucio, E-mail: carleyone@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Geraldo, Viviany; Oliveira, Sergio de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Avila, Antonio Ferreira [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica

    2013-11-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with Almost-Equal-To 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  20. Nano-engineered composites: interlayer carbon nanotubes effect

    International Nuclear Information System (INIS)

    Carley, Glaucio; Geraldo, Viviany; Oliveira, Sergio de; Avila, Antonio Ferreira

    2013-01-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with ≈ 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  1. An Overview on the Improvement of Mechanical Properties of Ceramics Nano composites

    International Nuclear Information System (INIS)

    Silvestre, J.; Brito, J. D.; Silvestre, N.

    2015-01-01

    Due to their prominent properties (mechanical, stiffness, strength, thermal stability), ceramic composite materials (CMC) have been widely applied in automotive, industrial and aerospace engineering, as well as in biomedical and electronic devices. Because monolithic ceramics exhibit brittle behaviour and low electrical conductivity, CMC_s have been greatly improved in the last decade. CMC_s are produced from ceramic fibres embedded in a ceramic matrix, for which several ceramic materials (oxide or non-oxide) are used for the fibres and the matrix. Due to the large diversity of available fibres, the properties of CMC_s can be adapted to achieve structural targets. They are especially valuable for structural components with demanding mechanical and thermal requirements. However, with the advent of nanoparticles in this century, the research interests in CMC_s are now changing from classical reinforcement (e.g., microscale fibres) to new types of reinforcement at nano scale. This review paper presents the current state of knowledge on processing and mechanical properties of a new generation of CMC_s: Ceramics Nano composites (CNC_s)

  2. Antimicrobial Activity of Hippurate Nano composite and Its Cytotoxicity Effect in Combination with Cytarabine against HL-60

    International Nuclear Information System (INIS)

    Al Ali, S.H.H.; Al-Qubaisi, M.; Ismail, M.; El Zowalaty, M.; Hussein, M.Z.; Ismail, M.

    2013-01-01

    Hippuric acid (HA) was intercalated into a zinc-layered hydroxide (ZLH) by direct reaction of an aqueous suspension of zinc oxide with an aqueous solution of hippuric acid to obtain hippurate nano composite (HAN). Various concentrations of hippuric acid (0.05, 0.2, and 0.4 molar) were used for the synthesis of the nano composite. The as-synthesized HAN using 0.2 molar was found to give a well-ordered layered nano composite material with an increase in the basal spacing to 21.3 Å which indicated the insertion of hippurate organic moiety into the ZLH interlayers. The cytotoxicity of HAN in combination with cytarabine against human promyelocytic leukemia cells (HL-60) was tested using MTT cell viability assay and trypan blue dye exclusion assay. The combination of cytarabine with HAN showed higher tumor suppression efficiency as compared to that of cytarabine alone. The IC 50 values of HAN/cytarabine combination and cytarabine alone were μg/mL and μg/mL, respectively. DNA fragmentation was also studied, and the exposure of HL-60 cells to cytarabine produced % DNA fragmentation compared to % when cells were exposed to combination of cytarabine with HAN. The antimicrobial activity of hippuric acid and HAN nano composite was carried out against Gram-positive bacteria, Gram-negative bacteria, and yeasts. It was found that Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus were more sensitive to HAN compared to Bacillus subtilis and Salmonella choleraesuis

  3. Microwave plasma CVD of NANO structured tin/carbon composites

    Science.gov (United States)

    Marcinek, Marek [Warszawa, PL; Kostecki, Robert [Lafayette, CA

    2012-07-17

    A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.

  4. Characterization of nano-composite PVD coatings for wear-resistant applications

    NARCIS (Netherlands)

    Galvan, D.; Pei, Y.T.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    Various methodologies for the characterization of nano-composite coatings are discussed, which consist TiC nano-particles distributed in an amorphous hydrocarbon (a-C:H) matrix. Complications that arise from the influence of coating roughness and underlying substrate on the properties are evaluated

  5. Multiwavelength anomalous diffraction and diffraction anomalous fine structure to study composition and strain of semiconductor nano structures

    International Nuclear Information System (INIS)

    Favre-Nicolin, V.; Proietti, M.G.; Leclere, C.; Renevier, H.; Katcho, N.A.; Richard, M.I.

    2012-01-01

    The aim of this paper is to illustrate the use of Multi-Wavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) spectroscopy for the study of structural properties of semiconductor nano-structures. We give a brief introduction on the basic principles of these techniques providing a detailed bibliography. Then we focus on the data reduction and analysis and we give specific examples of their application on three different kinds of semiconductor nano-structures: Ge/Si nano-islands, AlN capped GaN/AlN Quantum Dots and AlGaN/AlN Nano-wires. We show that the combination of MAD and DAFS is a very powerful tool to solve the structural problem of these materials of high technological impact. In particular, the effects of composition and strain on diffraction are disentangled and composition can be determined in a reliable way, even at the interface between nano-structure and substrate. We show the great possibilities of this method and give the reader the basic tools to undertake its use. (authors)

  6. Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Qiu Linlin; Zhang Shichao; Zhang Lan; Sun, Mingming; Wang Weikun

    2010-01-01

    Poly(pyrrole-co-aniline) (PPyA) copolymer nanofibers were prepared by chemical oxidation method with cetyltrimethyl ammonium chloride (CTAC) as template, and the nano-sulfur/poly(pyrrole-co-aniline) (S/PPyA) composite material in lithium batteries was achieved via co-heating the mixture of PPyA and sublimed sulfur at 160 deg. C for 24 h. The component and structure of the materials were characterized by FTIR, Raman, XRD, and SEM. PPyA with nanofiber network structure was employed as a conductive matrix, adsorbing agent and firm reaction chamber for the sulfur cathode materials. The nano-dispersed composite exhibited a specific capacity up to 1285 mAh g -1 in the initial cycle and remained 866 mAh g -1 after 40 cycles.

  7. Functionalized Multi walled Carbon Nano tubes-Reinforced Viny lester/Epoxy Blend Based Nano composites: Enhanced Mechanical, Thermal, and Electrical Properties

    International Nuclear Information System (INIS)

    Praharaj, A. P.; Behera, D.; Bastia, T. K.; Rout, A. K.

    2015-01-01

    This paper presents a study on the mechanical, thermal, and electrical characterization of a new class of low cost multiphase nano composites consisting of Vinyl ester resin/epoxy (VER/EP) blend (40:60 w/w) reinforced with amine functionalized multi walled carbon nano tubes (f-MWCNTs). Five different sets of VER/EP nano composites are fabricated with addition of 0, 1, 3, 5, and 7 wt.% of f-MWCNTs. A detailed investigation of mechanical properties like tensile strength, impact strength, Young’s modulus, and hardness, thermal properties like thermogravimetric analysis (TGA) and thermal conductivity, electrical properties like dielectric strength, dielectric constant, and electrical conductivity, and corrosive and swelling properties of the nano composites has been carried out. Here, we report significant improvement in all the above properties of the fabricated nano composites with nano filler (f-MWCNTs) addition compared to the virgin blend (0 wt. nano filler loading). The properties are best observed in case of 5 wt.% nano filler loading with gradual deterioration thereafter which may be due to the nucleating tendency of the nano filler particles. Thus the above nano composites could be a preferable candidate for a wide range of structural, thermal, electrical, and solvent based applications.

  8. composite materials under static loading

    Directory of Open Access Journals (Sweden)

    Hamrat Mostefa

    2018-01-01

    Full Text Available This work constitutes a contribution to the analysis of the behavior of beams repaired by composite materials. To analyze the overall behavior and failure modes of the beams, an experimental study of nine reinforced concrete beams, pre-cracked and then repaired by composite materials was conducted. Six beams were pre-cracked and repaired in the tensioned part (bending repair and in the other two beams on the tensioned and lateral parts with strips in the shape of U (shear repair. A comparative study was made between the ultimate moments measured experimentally and those calculated by the theoretical models. Compared to the control beam, the resistance gain for the beams repaired in bending is 50% to 90%, while that of beams repaired in shear is from 120% to177 %. The beams repaired in shear exhibit a ductile rupture in bending. However, the beams repaired in bending were failed by the lift-off of composite or by failure of concrete cover layer (except for beams repaired by fiber glass. BAEL99, EC2-04 and ACI318-08 models give the best prediction of the ultimate moments with a mean value of 1.16 for the ratio of MExp./Mtheor. and a mean standard deviation of 0.33.

  9. Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions

    International Nuclear Information System (INIS)

    Benea, Lidia; Başa, Sorin-Bogdan; Dănăilă, Eliza; Caron, Nadège; Raquet, Olivier; Ponthiaux, Pierre; Celis, Jean-Pierre

    2015-01-01

    Highlights: • The friction and wear properties of Ni/nano-WC composite were studied. • Nano-WC reinforcement decreased friction coefficient in dry and wet conditions. • Nano-WC reinforcement fraction was seen to be 12 wt.%. • Nanohardness increased by 27% compared to nickel without WC reinforcements. • Ennoblement of OCP corresponding to the Ni/nano-WC composite coating. - Abstract: The fretting and wear behaviors of Ni/nano-WC composite coatings were studied by considering the effect of fretting frequency of 1 Hz during 10,000 cycles, at different applied loads in dry or wet conditions. The studies were performed on a ball-on-disk tribometer and the results were compared with pure Ni coating. The nanohardness of pure Ni and Ni/nano-WC composite coatings was tested by nanoindentation technique. To evaluate the wet wear (tribocorrosion) behavior the open circuit potential (OCP) was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors (PWRs). The results show that Ni/nano-WC composite coatings exhibited a low friction coefficient, high nanohardness and wear resistance compared with pure Ni coatings under similar experimental conditions. Ni/nano-WC composite coatings were obtained on stainless steel support by electrochemical codeposition of nano-sized WC particles (diameter size of ∼60 nm) with nickel, from a standard nickel Watts plating bath. The surface morphology and the composition of the coatings were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) respectively

  10. The Effect of Drawing Ratio on Mechanical Property of Nano-Hybrid Polyimide Composite Films

    OpenAIRE

    CHEN Hao; YANG Rui-xiao; WU Chuan-gang; FAN Yong

    2017-01-01

    In order to investigate the impact of drawing ratio of inorganic nano-hybrid polyamide three-layer composite films,the stretched composite films with different draw ratio were prepared by drawing partial imido polyamide film and then through the ring closing reaction in the high temperature,and the draw ratio was 0% ,2% , 4% ,6% ,8% ,10% ,12% ,14% etc. Under the same conditions,we made different draw ratio of three-layer composite film tensile test with the electronic universal material testi...

  11. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  12. Progress in nano-electro optics characterization of nano-optical materials and optical near-field interactions

    CERN Document Server

    Ohtsu, Motoichi

    2005-01-01

    This volume focuses on the characterization of nano-optical materials and optical-near field interactions. It begins with the techniques for characterizing the magneto-optical Kerr effect and continues with methods to determine structural and optical properties in high-quality quantum wires with high spatial uniformity. Further topics include: near-field luminescence mapping in InGaN/GaN single quantum well structures in order to interpret the recombination mechanism in InGaN-based nano-structures; and theoretical treatment of the optical near field and optical near-field interactions, providing the basis for investigating the signal transport and associated dissipation in nano-optical devices. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  13. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  14. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  15. Development of SBR-Nano clay Composites with Epoxidized Natural Rubber as Compatibilizer

    International Nuclear Information System (INIS)

    Rajasekar, R.; Das, Ch.K.; Gert Heinrich, G.; Das, A.

    2009-01-01

    The significant factor that determines the improvement of properties in rubber by the incorporation of nano clay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nano clay will not contribute for the good dispersion of nano filler in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nano clay in the matrix polymer. Epoxidized natural rubber and organically modified nano clay composites (EC) were prepared by solution mixing. The nano clay employed in this study is Cloisite 20A. The obtained nano composites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nano clay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nano clay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.

  16. Synthesis of Carbon Nano tubes: A Revolution in Material Science for the Twenty-First Century

    International Nuclear Information System (INIS)

    Allaf, Abd. W.

    2003-01-01

    The aim of this work is to explain the preparation procedures of single walled carbon nano tubes using arc discharge technique. The optimum conditions of carbon nano tubes synthesis are given. It should be pointed out that this sort of materials would be the twenty-first century materials

  17. Study on Electrochemical Performance of Carbonnanotubes/Fey 04 Composite Electrode Material

    Directory of Open Access Journals (Sweden)

    WANG Fang--yong

    2017-02-01

    Full Text Available For single super capacitor materials,each material has its own unique advantages and defects. In this paper, the synthesis of complex multi walled carbon nanotubes with Fe304 nanoparticles by simple hydrothermal method. Composite performance for Fe3 OQ nanoparticles adsorbed on carbon nano tube wall composed of reticular structure morphology. Synergy of two component,provides the binary nanometer compound larger specific capacity, excellent properties and good cycle stability. The experimental results proved that the improvement effects of CNT carbon materials on the electrochemical properties of pseudocapacitive electrode material,and CNT/Fe3 OQ nano- composites applied to supercapacitor electrode material.

  18. Two-year clinical comparison of a flowable-type nano-hybrid composite and a paste-type composite in posterior restoration.

    Science.gov (United States)

    Hirata-Tsuchiya, Shizu; Yoshii, Shinji; Ichimaru-Suematsu, Miki; Washio, Ayako; Saito, Noriko; Urata, Mariko; Hanada, Kaori; Morotomi, Takahiko; Kitamura, Chiaki

    2017-08-01

    The purpose of the present study was to compare the clinical efficacy between a flowable-type nano-hybrid composite and a paste-type composite for posterior restoration. Of 62 posterior teeth in 33 patients (mean age: 34.1 years), 31 were filled with a paste-type composite (Heliomolar [HM] group), and another 31 with a flowable nano-hybrid composite (MI FIL [MI] group). Clinical efficacy was evaluated at 2 years after the restoration. There were no differences for retention, surface texture deterioration, anatomical form change, deterioration of marginal adaptation, and secondary caries, while a statistical difference was found for marginal discoloration, which was significantly greater in the HM group (P < 0.05). Furthermore, color matching in the MI group was superior to that in the HM group immediately after the restoration throughout the study period. The present 2-year clinical evaluation of different composites showed that the flowable nano-hybrid composite could be an effective esthetic material for posterior restoration. © 2016 John Wiley & Sons Australia, Ltd.

  19. Effect of Addition of Colloidal Silica to Films of Polyimide, Polyvinylpyridine, Polystyrene, and Polymethylmethacrylate Nano-Composites

    OpenAIRE

    Abdalla, Soliman; Al-Marzouki, Fahad; Obaid, Abdullah; Gamal, Salah

    2016-01-01

    Nano-composite films have been the subject of extensive work for developing the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nanoparticle size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that forms the insulating film between the conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of...

  20. Bonding performance of self-adhesive flowable composites to enamel, dentin and a nano-hybrid composite.

    Science.gov (United States)

    Peterson, Jana; Rizk, Marta; Hoch, Monika; Wiegand, Annette

    2018-04-01

    This study aimed to analyze bond strengths of self-adhesive flowable composites on enamel, dentin and nano-hybrid composite. Enamel, dentin and nano-hybrid composite (Venus Diamond, Heraeus Kulzer, Germany) specimens were prepared. Three self-adhesive composites (Constic, DMG, Germany; Fusio Liquid Dentin, Pentron Clinical, USA; Vertise Flow, Kerr Dental, Italy) or a conventional flowable composite (Venus Diamond Flow, Heraeus Kulzer, Germany, etch&rinse technique) were applied to enamel and dentin. Nano-hybrid composite specimens were initially aged by thermal cycling (5000 cycles, 5-55 °C). Surfaces were left untreated or pretreated by mechanical roughening, Al 2 O 3 air abrasion or silica coating/silanization. In half of the composite specimens, an adhesive (Optibond FL, Kerr Dental, Italy) was used prior to the application of the flowable composites. Following thermal cycling (5000 cycles, 5-55 °C) of all specimens, shear bond strengths (SBS) and failure modes were analyzed (each subgroup n = 16). Statistical analysis was performed by ANOVAs/Bonferroni post hoc tests, Weibull statistics and χ 2 -tests (p composites on enamel and dentin were significantly lower (enamel: composite (enamel: 13.0 ± 5.1, dentin: 11.2 ± 6.3), and merely adhesive failures could be observed. On the nano-hybrid composite, SBS were significantly related to the pretreatment. Adhesive application improved SBS of the conventional, but not of the self-adhesive composites. The self-adhesive composite groups showed less cohesive failures than the reference group; the occurence of cohesive failures increased after surface pretreatment. Bonding of self-adhesive flowable composites to enamel and dentin is lower than bonding to a nano-hybrid composite.

  1. A study on a nano-scale materials simulation using a PC cluster

    International Nuclear Information System (INIS)

    Choi, Deok Kee; Ryu, Han Kyu

    2002-01-01

    Not a few scientists have paid attention to application of molecular dynamics to chemistry, biology and physics. With recent popularity of nano technology, nano-scale analysis has become a major subject in various engineering fields. A underlying nano scale analysis is based on classical molecular theories representing molecular dynamics. Based on Newton's law of motions of particles, the movement of each particles is to be determined by numerical integrations. As the size of computation is closely related with the number of molecules, materials simulation takes up huge amount of computer resources so that it is not until recent days that the application of molecular dynamics to materials simulations draw some attention from many researchers. Thanks to high-performance computers, materials simulation via molecular dynamics looks promising. In this study, a PC cluster consisting of multiple commodity PCs is established and nano scale materials simulations are carried out. Micro-sized crack propagation inside a nano material is displayed by the simulation

  2. Development and evaluation of fast forming nano-composite hydrogel for ocular delivery of diclofenac.

    Science.gov (United States)

    Li, Xingyi; Zhang, Zhaoliang; Chen, Hao

    2013-05-01

    In this paper, a fast forming nano-composite hydrogel was developed for potential application in ocular drug delivery. The optical transmission (OT) as well as rheological properties of nano-composite hydrogel was characterized. The developed nano-composite hydrogel given a high diclofenac micelles loading and provided a sustained release manner of diclofenac within 6h. The developed nano-composite hydrogel formulation was administrated into the eye as flowable solution, quickly forming a hydrogel that is able to resist of the blinking and flushing of tear, yet resulting in the prolonged residence time of pre-corneal. In vivo eye irritation test suggested that the developed nano-composite hydrogel was none-eye irritation might be suitable for various ocular applications. In vivo pharmacokinetic study indicated that the developed nano-composite hydrogel could significantly increase the bioavailability of diclofenac and maintain the concentration of diclofenac in aqueous humor above MEC at least 24h after administration as compared with that of the commercial diclofenac sodium eye drops, which might be able to reduce the frequency of administration for patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Modern filaments for composite materials

    International Nuclear Information System (INIS)

    Krivelli-Viskonti, I.

    1982-01-01

    Analysis of modern state and ways to improve properties of different filaments for the forecast of the filament application in composite materials has been conducted. In the near future as before the greatest attention will be paid to fibre glass, as this material is widely used in the reinforcing of organic matrices. Carbon and kevlar filaments are the most prospective ones. For the service at medium, high or superhigh temperatures selection of matrix material is more significant than selection of filament. Organic matrices can not be used at temperatures > 250 deg C: this is already the range of metal matrix application. Though at temperatures above room one many filaments can be used, boron filaments and metal wire are the only reinforcing materials, inspite of the fact that carbon filaments are successfully used for metal matrix reinforcing. At very high temperatures only carbon filaments or silicon carbide ones can be used, but their cost is very high and besides economical problems there are many difficulties of technical character

  4. Preparation and Photocatalytic Performance of Bamboo-Charcoal-Supported Nano-ZnO Composites

    Directory of Open Access Journals (Sweden)

    Yunlong ZHOU

    2018-02-01

    Full Text Available Nano-ZnO/bamboo charcoal composites were prepared by precipitation with bamboo charcoal as support. Nano-ZnO/bamboo charcoal composites were characterized by XRD, SEM and EDS. Photocatalytic degradation processes of methyl orange were studied. The results indicate that the structure of nano-ZnO is of the wurtzite type and the grain size is about 19-54 nm. The best preparation temperature for these composites is 500℃. The composites have better photocatalytic degradation ability than pure ZnO under UV irradiation. Photocatalytic degradation of methyl orange with the composites obeys first-order kinetics, and the composites can be recycled.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17397

  5. Nano Enabled Thermo-Mechanical Materials in Adhesive Joints: A New Paradigm to Materials Functionality (Preprint)

    National Research Council Canada - National Science Library

    Roy, Ajit K; Ganguli, Sabyasachi; Sihn, Sangwook; Qu, Liangti; Dai, Liming

    2006-01-01

    One of the barriers in achieving adequate through-thickness thermal conductivity in composite materials and also in composite joints is the extremely low thermal conductivity of resins (polymer) or adhesives (typically 0.3 W/mK...

  6. Evaluation of a new nano-filled restorative material for bonding orthodontic brackets.

    Science.gov (United States)

    Bishara, Samir E; Ajlouni, Raed; Soliman, Manal M; Oonsombat, Charuphan; Laffoon, John F; Warren, John

    2007-01-01

    To compare the shear bond strength of a nano-hybrid restorative material, Grandio (Voco, Cuxhaven, Germany), to that of a traditional adhesive material (Transbond XT; 3M Unitek, Monrovia, CA, USA) when bonding orthodontic brackets. Forty teeth were randomly divided into 2 groups: 20 teeth were bonded with the Transbond adhesive system and the other 20 teeth with the Grandio restorative system, following manufacturer's instructions. Student t test was used to compare the shear bond strength of the 2 systems. Significance was predetermined at P 5 .05. The t test comparisons (t = 0.55) of the shear bond strength between the 2 adhesives indicated the absence of a significant (P = .585) difference. The mean shear bond strength for Grandio was 4.1 +/- 2.6 MPa and that for Transbond XT was 4.6 +/- 3.2 MPa. During debonding, 3 of 20 brackets (15%) bonded with Grandio failed without registering any force on the Zwick recording. None of the brackets bonded with Transbond XT had a similar failure mode. The newly introduced nano-filled composite materials can potentially be used to bond orthodontic brackets to teeth if its consistency can be more flowable to readily adhere to the bracket base.

  7. Protein-material interactions: From micro-to-nano scale

    International Nuclear Information System (INIS)

    Tsapikouni, Theodora S.; Missirlis, Yannis F.

    2008-01-01

    The article presents a survey on the significance of protein-material interactions, the mechanisms which control them and the techniques used for their study. Protein-surface interactions play a key role in regenerative medicine, drug delivery, biosensor technology and chromatography, while it is related to various undesired effects such as biofouling and bio-prosthetic malfunction. Although the effects of protein-surface interaction concern the micro-scale, being sometimes obvious even with bare eyes, they derive from biophysical events at the nano-scale. The sequential steps for protein adsorption involve events at the single biomolecule level and the forces driving or inhibiting protein adsorption act at the molecular level too. Following the scaling of protein-surface interactions, various techniques have been developed for their study both in the micro- and nano-scale. Protein labelling with radioisotopes or fluorescent probes, colorimetric assays and the quartz crystal microbalance were the first techniques used to monitor protein adsorption isotherms, while the surface force apparatus was used to measure the interaction forces between protein layers at the micro-scale. Recently, more elaborate techniques like total internal reflection fluorescence (TIRF), Fourier transform infrared spectroscopy (FTIR), surface plasmon resonance, Raman spectroscopy, ellipsometry and time of flight secondary ion mass spectrometry (ToF-SIMS) have been applied for the investigation of protein density, structure or orientation at the interfaces. However, a turning point in the study of protein interactions with the surfaces was the invention and the wide-spread use of atomic force microscopy (AFM) which can both image single protein molecules on surfaces and directly measure the interaction force

  8. Functional properties of extruded nano composites based on cassava starch, polyvinyl alcohol and montmorillonite

    International Nuclear Information System (INIS)

    Debiagi, Flavia; Mali, Suzana

    2011-01-01

    The objectives of this work were to produce expanded nano composites (foams) based on starch, PVA and sodium montmorillonite and characterize them according to their expansion index (EI), density, water absorption capacity (WSC), mechanical properties and X-ray diffraction. The nano composites were prepared in a single-screw extruder using different starch contents (97.6 - 55.2 g/100 g formulation), PVA (0 - 40 g/100 g formulation), unmodified nano clay - Closite - Na (0 - 4. 8 g/100 g formulation) and glycerol (20 g/100 g formulation) as plasticizer. The addition of montmorillonite and PVA resulted in an increase of EI and a decrease of density of the samples, and reduced WSC and increased the mechanical strength of the foams. Through the analysis of X-ray diffraction can be observed that the addition of montmorillonite led to production of intercalated nano composites in all samples. (author)

  9. Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites

    International Nuclear Information System (INIS)

    Jung, Jinwoo; Kim, Jaewoo; Uhm, Young Rang; Jeon, Jae-Kyun; Lee, Sol; Lee, Hi Min; Rhee, Chang Kyu

    2010-01-01

    The thermal properties of micro-sized boron nitride (BN) and nano-sized BN dispersed high density polyethylene (HDPE) composites were investigated by means of differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Nano-BN powder was prepared by using a ball mill process before it was mixed in HDPE. To enhance the dispersivity of nano-BN in the polymer matrix, the surfaces of the nano-particles were treated with low density polyethylene (LDPE) which was dissolved in the cyclohexane solvent. The average particle sizes of micro-BN powder and LDPE coated nano-BN powder were ∼10 μm and ∼100 nm respectively. Dispersion and distribution of 5 wt% and 20 wt% of micro-BN and nano-BN respectively mixed in HDPE were observed by using the scanning electron microscope (SEM). According to the thermal analyses of pure HDPE, micro-BN/HDPE, and nano-BN/HDPE, 20 wt% nano-BN/HDPE composite shows the lowest enthalpy of fusion (ΔH m ) and better thermal conductive characteristics compared to the others.

  10. Materiomics: biological protein materials, from nano to macro

    Science.gov (United States)

    Cranford, Steven; Buehler, Markus J

    2010-01-01

    Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature’s materials have been hindered by our lack of fundamental understanding of these materials’ intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties

  11. Effect of graphene oxide nano filler on dynamic behaviour of GFRP composites

    Science.gov (United States)

    Pujar, Nagabhushan V.; Nanjundaradhya, N. V.; Sharma, Ramesh S.

    2018-04-01

    Nano fillers like Alumina oxide, Titanium oxide, Carbon nano tube, Nano clay have been used to improve the mechanical and damping properties of fiber reinforced polymer composites. In the recent years Graphene oxide nano filler is receiving considerable attention for its outstanding properties. Literature available shows that Graphene oxide nano filler can be used to improve the mechanical properties. The use of Graphene oxide in vibration attenuation by enhancing the passive damping in fiber reinforced polymer composite has not been fully explored. The objective of this work is to investigate the dynamic behaviour of Glass fiber-reinforced composite embedded with Graphene oxide nano filler. Graphene oxide is dispersed in epoxy resin with various concentration (0.1%, 0.5% and 1%wt) using ultra-sonification process. Composite laminates were made using the traditional hand-lay-up followed by vacuum bag process. Experimental modal analysis using traditional `strike method' is used to evaluate modal parameters using FFT analyzer and Data Acquisition System. Experiments were carried out for two different fiber orientations viz 0 ➙ & 45 ➙ and two boundary conditions (Free-Free and Cantilever). The modal parameters such as natural frequency, mode shape, damping ratio were studied. This research work demonstrates the vibration damping behaviour with incorporation of Graphene oxide and provides a basic understanding of the damping characteristics in design and manufacture of high performance composites.

  12. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    Science.gov (United States)

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  13. Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants

    Directory of Open Access Journals (Sweden)

    D. Chaitanya Kumar Rao

    2016-08-01

    Full Text Available Nano-catalysts containing copper–cobalt oxides (Cu–Co–O have been synthesized by the citric acid (CA complexing method. Copper (II nitrate and Cobalt (II nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope (SEM, Energy Dispersive Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, CuCo-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of CuCo-I nano-catalyst.

  14. A nano lamella NbTi–NiTi composite with high strength

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiang [Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Applied Physics of Jiangxi Academy of Sciences, Nanchang 330029 (China); State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); Jiang, Daqiang [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); School of Mechanical and Chemical Engineering, The University of Western Australia, WA 6009 (Australia); Hao, Shijie; Yu, Cun; Zhang, Junsong [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China); Ren, Yang [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lu, Deping; Xie, Shifang [Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Institute of Applied Physics of Jiangxi Academy of Sciences, Nanchang 330029 (China); Cui, Lishan, E-mail: lishancui63@126.com [State Key Laboratory of Heavy Oil Processing and Department of Materials Science and engineering, China University of Petroleum, Beijing 102249 (China)

    2015-05-01

    A hypereutectic Nb{sub 60}Ti{sub 24}Ni{sub 16} (at%) alloy was prepared by vacuum induction melting, and a nano lamellae NbTi–NiTi composite was obtained by hot-forging and wire-drawing of the ingot. Microscopic analysis showed that NbTi and NiTi nano lamellae distributed alternatively in the composite, and aligned along the wire axial direction, with a high volume fraction (~70%) of NbTi nano lamellae. In situ synchrotron X-ray diffraction analysis revealed that stress induced martensitic transformation occurred upon loading, which would effectively weaken the stress concentration at the interface and avoid the introduction of defects into the nano reinforced phase. Then the embedded NbTi nano lamellae exhibited a high elastic strain up to 2.72%, 1.5 times as high as that of the Nb nanowires embedded in a conventional plastic matrix, and the corresponding stress carried by NbTi was evaluated as 2.53 GPa. The high volume fraction of NbTi nano lamellae improved the translation of high strength from the nano reinforced phase into bulk properties of the composite, with a platform stress of ~1.7 GPa and a fracture strength of ~1.9 GPa.

  15. Fracture surface analysis on nano-SiO{sub 2}/epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Rongguo [Institute of Fundamental Mechanics and Material Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Hunan 411105 (China)], E-mail: zhaorongguo@xtu.edu.cn; Luo Wenbo [Institute of Fundamental Mechanics and Material Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Hunan 411105 (China)

    2008-06-15

    Fracture surface morphologies of nano-SiO{sub 2}/epoxy composite with different weight percentage of SiO{sub 2} are investigated using scanning electron microscopy. Two types of curing agent, dimethylbenzanthracene (DMBA) and methyltetrahydrophthalic anhydride (MeTHPA), are individually used for preparing the composites. It is found that the fracture surface morphology of the composite cured by DMBA shows as radial striations, which suggests a rapid brittle fracture mode, while the fracture surface morphology of the composite cured by MeTHPA shows as regularly spaced 'rib' markings, which indicates a stick-slip motion during the fracture process. Furthermore, the uniaxial tensile behavior under constant loading rate and ambient temperature are investigated. It is shown that the elastic modulus of the composite cured by DMBA firstly increases, and then decreases with the mass fraction of nano-SiO{sub 2} particles, but the elongation of the composite cured by MeTHPA is reversed with increasing fraction of nano-SiO{sub 2} particles. For nano-SiO{sub 2}/epoxy composite cured with MeTHPA that possesses a suitable fraction of nano-SiO{sub 2}, an excellent synthetic mechanical property on elastic modulus and elongation is obtained.

  16. Preparation of the Jaws Damaged Parts from Composite Biopolymers Materials

    Directory of Open Access Journals (Sweden)

    Riyam A. Al-husseini

    2017-10-01

    Full Text Available Composite materials composing of fusing two materials or more are disaccorded in mechanical and physical characteristics, The studied the effect of changing in the reinforcement percentage by Hydroxyapatite Prepared nano world via the size of the nanoscale powder manufacturing manner chemical precipitation and microwave powders were two types their preparations have been from natural sources: the first type of eggshells and the other from the bones of fish in mechanical Properties which include the tensile strength, elastic modulus, elongation, hardness and tear for composite material consisting of Silicone rubber (SIR reinforced by (µ-n-HA, after strengthening silicone rubber Protect proportions (5,10,15,20 wt% of Article achieved results that increase the additive lead to increased hardness while tougher and modulus of elasticity decreases with added as shown in the diagrams.

  17. Nano-Composite Foam Sensor System in Football Helmets.

    Science.gov (United States)

    Merrell, A Jake; Christensen, William F; Seeley, Matthew K; Bowden, Anton E; Fullwood, David T

    2017-12-01

    American football has both the highest rate of concussion incidences as well as the highest number of concussions of all contact sports due to both the number of athletes and nature of the sport. Recent research has linked concussions with long term health complications such as chronic traumatic encephalopathy and early onset Alzheimer's. Understanding the mechanical characteristics of concussive impacts is critical to help protect athletes from these debilitating diseases and is now possible using helmet-based sensor systems. To date, real time on-field measurement of head impacts has been almost exclusively measured by devices that rely on accelerometers or gyroscopes attached to the player's helmet, or embedded in a mouth guard. These systems monitor motion of the head or helmet, but do not directly measure impact energy. This paper evaluates the accuracy of a novel, multifunctional foam-based sensor that replaces a portion of the helmet foam to measure impact. All modified helmets were tested using a National Operating Committee Standards for Athletic Equipment-style drop tower with a total of 24 drop tests (4 locations with 6 impact energies). The impacts were evaluated using a headform, instrumented with a tri-axial accelerometer, mounted to a Hybrid III neck assembly. The resultant accelerations were evaluated for both the peak acceleration and the severity indices. These data were then compared to the voltage response from multiple Nano Composite Foam sensors located throughout the helmet. The foam sensor system proved to be accurate in measuring both the HIC and Gadd severity index, as well as peak acceleration while also providing additional details that were previously difficult to obtain, such as impact energy.

  18. Lifetime Prediction of Nano-Silica based Glass Fibre/Epoxy composite by Time Temperature Superposition Principle

    Science.gov (United States)

    Anand, Abhijeet; Banerjee, Poulami; Prusty, Rajesh Kumar; Ray, Bankin Chandra

    2018-03-01

    The incorporation of nano fillers in Fibre reinforced polymer (FRP) composites has been a source of experimentation for researchers. Addition of nano fillers has been found to improve mechanical, thermal as well as electrical properties of Glass fibre reinforced polymer (GFRP) composites. The in-plane mechanical properties of GFRP composite are mainly controlled by fibers and therefore exhibit good values. However, composite exhibits poor through-thickness properties, in which the matrix and interface are the dominant factors. Therefore, it is conducive to modify the matrix through dispersion of nano fillers. Creep is defined as the plastic deformation experienced by a material for a temperature at constant stress over a prolonged period of time. Determination of Master Curve using time-temperature superposition principle is conducive for predicting the lifetime of materials involved in naval and structural applications. This is because such materials remain in service for a prolonged time period before failure which is difficult to be kept marked. However, the failure analysis can be extrapolated from its behaviour in a shorter time at an elevated temperature as is done in master creep analysis. The present research work dealt with time-temperature analysis of 0.1% SiO2-based GFRP composites fabricated through hand-layup method. Composition of 0.1% for SiO2nano fillers with respect to the weight of the fibers was observed to provide optimized flexural properties. Time and temperature dependence of flexural properties of GFRP composites with and without nano SiO2 was determined by conducting 3-point bend flexural creep tests over a range of temperature. Stepwise isothermal creep tests from room temperature (30°C) to the glass transition temperature Tg (120°C) were performed with an alternative creep/relaxation period of 1 hour at each temperature. A constant stress of 40MPa was applied during the creep tests. The time-temperature superposition principle was

  19. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    Science.gov (United States)

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    International Nuclear Information System (INIS)

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M. Imran; Hussain, Muhammad Asif

    2016-01-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi 2 , Ni 3 Ti, and Ni 4 Ti 3 . The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni 3 Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi 2 , Ni 3 Ti and Ni 4 Ti 3 were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  1. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    Energy Technology Data Exchange (ETDEWEB)

    Akmal, Muhammad, E-mail: muhammad.akmal@giki.edu.pk [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Raza, Ahmad, E-mail: ahmadrazac@yahoo.com [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Khan, Muhammad Mudasser; Khan, M. Imran [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Hussain, Muhammad Asif [Department of Chemical Engineering, Kangwon National University, Samcheok, 25913 (Korea, Republic of)

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi{sub 2}, Ni{sub 3}Ti, and Ni{sub 4}Ti{sub 3}. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni{sub 3}Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi{sub 2}, Ni{sub 3}Ti and Ni{sub 4}Ti{sub 3} were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  2. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Directory of Open Access Journals (Sweden)

    R. Senthilkumar

    2015-01-01

    Full Text Available Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014 alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  3. Preparation of Multi-walled Carbon Nano tubes/ Natural Rubber Composite by Wet Mixing Method

    International Nuclear Information System (INIS)

    Azira Abdul Aziz; Azira Abdul Aziz; Che Su Mat Saad; Mohamad Rusop Mahmood

    2011-01-01

    Natural rubber/multi-walled carbon nano tubes (Nr/MWCNTs) nanocomposite is formed by incorporating nano tubes in a polymer solution and subsequently evaporating the solvent. Using this technique, nano tubes will be dispersed homogeneously in the NR matrix in an attempt to increase the mechanical properties of these nano composites. Mechanical test results show an increase in the tensile strength for up to 19 times in relation to pure NR. In addition to mechanical testing, the morphology of the MWNTs into NR was studied by Field Emission Scanning Electron Microscopy (FESEM) in order to understand the morphology of the resulting system. Slight shift noted from Raman analyses from each different wt. % of MWCNTs with the NR due to the stress transfer that indicates reinforcement of the nano tubes. (author)

  4. Composites materials: the technology of future

    International Nuclear Information System (INIS)

    Ahmed, M.N.; Memon, I.R.; Ahmad, F.; Zafar, N.

    2001-01-01

    Composite materials have a long history of usage. Their precise beginnings are not known; however all recorded history contains references to some form of composite material. e.g. straw was used by man to strengthen mud bricks thousands of years ago. This article presents the use of advanced composites materials in aircraft and space industry. Its brief history, use in military and civil aviation, use in space program, future usage, advantages in terms of cost, weight and strength. Use of composites in unmanned aerial vehicles and problems associated with usage of composites materials are also discussed. (author)

  5. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  6. Nano structured materials studied by coherent X-ray diffraction

    International Nuclear Information System (INIS)

    Gulden, Johannes

    2013-03-01

    Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the

  7. Nano structured materials studied by coherent X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gulden, Johannes

    2013-03-15

    Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the

  8. Raman Mapping for the Investigation of Nano-phased Materials

    Science.gov (United States)

    Gouadec, G.; Bellot-Gurlet, L.; Baron, D.; Colomban, Ph.

    Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to 0.5 \\upmu {text{ m}^3} and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.

  9. Fabrication and Characterization of Micro- and Nano- Gd2O3 Dispersed HDPE/EPM Composites

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Kim, Jae Woo; Jun, Ji Heon; Lee, Sol; Rhee, Chang Kyu

    2010-01-01

    Hydrophobic polymer mixed with Gd 2 O 3 can be used in nuclear industry as a neutron shield because of its neutron attenuating and absorbing property, while it was reported that the smaller particles dispersed polymer composites can enhance radiation shielding efficiency compared to larger particles dispersed ones. However, preparations of such materials are difficult because of the poor dispersion of the fine particles in the polymer matrix. Surface modification of the nanoparticles is therefore required for the homogeneous dispersion of the particles in the polymer matrix. In this study, pulverization of the micro-Gd 2 O 3 particles and simultaneous surface coating of the nanoparticles by polymeric surfactant low density polyethylene (LDPE) were performed by using one-step of high energy wet ball-mill. Dispersion and neutron shielding effect of the nano- and micro-Gd 2 O 3 fillers in mixed polymer of ethylene propylene monomer (EPM) and high density polyethylene (HDPE) were examined

  10. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    Girolamo, J. de

    2007-11-01

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  11. Recent advances in syntheses and biomedical applications of nano-rare earth metal-organic framework materials

    Directory of Open Access Journals (Sweden)

    Xin Pengyan

    2017-12-01

    Full Text Available In recent years,the syntheses of nano-rare earth metal-organic framework (MOF materials and their applications in biomedicine,especially in the diagnosis and treatment of cancer have attracted extensive attentions.On the one hand,nano-rare earth MOFs,which have unique optical and magnetic properties,are promising multimodal imaging contrast agents for biomedical imaging,such as fluorescence imaging and magnetic resonance imaging.On the other hand,nano-rare earth MOFs have various compositions and structures,and excellent intrinsic properties such as large specific surface area,high pore volume and tunable pore size,which enable them to perform as promising nanoplatforms for drug delivery.Therefore,nano-rare earth MOFs may provide a new platform for the development of diagnostic and therapeutic reagents.In this article,the recent advances in the syntheses of nano-rare earth MOFs and their applications in biomedicine are summarized.

  12. Evaluating weathering of food packaging polyethylene-nano-clay composites: Release of nanoparticles and their impacts

    Science.gov (United States)

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to...

  13. Nano-enhanced food contact materials and the in vitro toxicity to human intestinal cells of nano-ZnO at low dose

    International Nuclear Information System (INIS)

    Claonadh, Niall O; Casey, Alan; Mukherjee, Sanchali Gupta; Chambers, Gordon; Lyons, Sean; Higginbotham, Clement

    2011-01-01

    Nano Zinc Oxide (nZnO) has been shown to display antimicrobial effects which have lead to its application in a number of areas such as antimicrobial surface coatings, anti bacterial wound dressings and more recently in polymer composite systems for use in food contact materials. Concerns have been raised due to the incorporation of nanoparticles in food packaging stemming from the possibility of repeated low dose direct exposure, through ingestion, primarily due to degradation and nanoparticle leaching from the polymer composite. To address these concerns, composites consisting of nZnO and polyethylene were formed using twin screw extrusion to mimic commercial methods of food contact material production. A leaching study was performed using Atomic Absorption Spectroscopy in order to determine the concentration of nZnO leached from the composite. Composite stability studies were performed and a leached nZnO concentration was evaluated. This concentration range was then utilised in a series of tests aimed at determining the toxicity response associated with nZnO when exposed to an intestinal model. In this study two human colorectal carcinoma cell lines, HT29 (ATCC No: HTB-38) and SW480 (ATTC No: CCL-228), were employed as a model to represent areas exposed by ingestion. These lines were exposed to a concentration range of nZnO which incorporated the concentration leached from the composites. The cytotoxic effects of nZnO were evaluated using four cytotoxic endpoints namely the Neutral Red, Alamar Blue, Coomassie Blue and MTT assays. The results of these studies are presented and their implications for the use on nano ZnO in direct food contact surfaces will be discussed.

  14. Nano-enhanced food contact materials and the in vitro toxicity to human intestinal cells of nano-ZnO at low dose

    Energy Technology Data Exchange (ETDEWEB)

    Claonadh, Niall O; Casey, Alan; Mukherjee, Sanchali Gupta; Chambers, Gordon [Nanolab Research Centre, Focas Institute, Dublin Institute of Technology, Dublin (Ireland); Lyons, Sean; Higginbotham, Clement, E-mail: Niall.OClaonadh@DIT.ie, E-mail: Alan.Casey@DIT.ie [Materials Research Institute, Athlone Institute of Technology, Westmeath (Ireland)

    2011-07-06

    Nano Zinc Oxide (nZnO) has been shown to display antimicrobial effects which have lead to its application in a number of areas such as antimicrobial surface coatings, anti bacterial wound dressings and more recently in polymer composite systems for use in food contact materials. Concerns have been raised due to the incorporation of nanoparticles in food packaging stemming from the possibility of repeated low dose direct exposure, through ingestion, primarily due to degradation and nanoparticle leaching from the polymer composite. To address these concerns, composites consisting of nZnO and polyethylene were formed using twin screw extrusion to mimic commercial methods of food contact material production. A leaching study was performed using Atomic Absorption Spectroscopy in order to determine the concentration of nZnO leached from the composite. Composite stability studies were performed and a leached nZnO concentration was evaluated. This concentration range was then utilised in a series of tests aimed at determining the toxicity response associated with nZnO when exposed to an intestinal model. In this study two human colorectal carcinoma cell lines, HT29 (ATCC No: HTB-38) and SW480 (ATTC No: CCL-228), were employed as a model to represent areas exposed by ingestion. These lines were exposed to a concentration range of nZnO which incorporated the concentration leached from the composites. The cytotoxic effects of nZnO were evaluated using four cytotoxic endpoints namely the Neutral Red, Alamar Blue, Coomassie Blue and MTT assays. The results of these studies are presented and their implications for the use on nano ZnO in direct food contact surfaces will be discussed.

  15. Omega-3 PUFA concentration by a novel PVDF nano-composite membrane filled with nano-porous silica particles.

    Science.gov (United States)

    Ghasemian, Samaneh; Sahari, Mohammad Ali; Barzegar, Mohsen; Ahmadi Gavlighi, Hasan

    2017-09-01

    In this study, polyvinylidene fluoride (PVDF) and nano-porous silica particle were used to fabricate an asymmetric nano-composite membrane. Silica particles enhanced the thermal stability of PVDF/SiO 2 membranes; increasing the decomposition temperature from 371°C to 408°C. Cross sectional morphology showed that silica particles were dispersed in polymer matrix uniformly. However, particle agglomeration was found at higher loading of silica (i.e., 20 by weight%). The separation performance of nano-composite membranes was also evaluated using the omega-3 polyunsaturated fatty acids (PUFA) concentration at a temperature and pressure of 30°C and 4bar, respectively. Silica particle increased the omega-3PUFA concentration from 34.8 by weight% in neat PVDF to 53.9 by weight% in PVDF with 15 by weight% of silica. Moreover, PVDF/SiO 2 nano-composite membranes exhibited enhanced anti-fouling property compared to neat PVDF membrane. Fouling mechanism analysis revealed that complete pore blocking was the predominant mechanism occurring in oil filtration. The concentration of omega-3 polyunsaturated fatty acids (PUFA) is important in the oil industries. While the current methods demand high energy consumptions in concentrating the omega-3, membrane separation technology offers noticeable advantages in producing pure omega-3 PUFA. Moreover, concentrating omega-3 via membrane separation produces products in the triacylglycerol form which possess better oxidative stability. In this work, the detailed mechanisms of fouling which limits the performance of membrane separation were investigated. Incorporating silica particles to polymeric membrane resulted in the formation of mixed matrix membrane with improved anti-fouling behaviour compared to the neat polymeric membrane. Hence, the industrial potential of membrane processing to concentrate omega-3 fatty acids is enhanced. Copyright © 2017. Published by Elsevier Ltd.

  16. Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes

    International Nuclear Information System (INIS)

    Li, Juan; Ru, Qiang; Hu, Shejun; Sun, Dawei; Zhang, Beibei; Hou, Xianhua

    2013-01-01

    A novel multi-step design of spherical nano-SnSb/MCMB/carbon core–shell composite for high stability and long life lithium battery electrodes has been introduced. The core–shell composite was successfully synthesized via co-precipitation and subsequent pyrolysis. The resultant composite sphere consisted of nanosized SnSb alloy and mesophase carbon microbeads (MCMB, 10 μm) embedded in a carbon matrix pyrolyzed from glucose and petroleum pitch, in which the MCMB was treated to be the inner core to offer mechanical support and efficient electron conducting pathway. The composite material exhibited a unique stability with a retention discharge capacity rate of 83.52% with reversible capacity of 422.5 mAh g −1 after 100 cycles and a high initial coulombic efficiency of 83.53%. The enhanced electrochemical performance is attributed to the structural stability of the composite sphere during the charging–discharging process

  17. Synthesis of nano-structured materials by laser-ablation and their application to sensors

    International Nuclear Information System (INIS)

    Okada, T.; Suehiro, J.

    2007-01-01

    We describe the synthesis of nano-structured materials of ZnO and Pd by laser ablation and their applications to sensors. The synthesis of ZnO nano-wires was performed by nano-particle assisted deposition (NPAD) where nano-crystals were grown with nano-particles generated by laser-ablating a ZnO sintered target in an Ar background gas. The synthesized ZnO nano-wires were characterized with a scanning electron microscopy and the photoluminescent characteristics were examined under an excitation with the third harmonics of a Nd:YAG laser. The nano-wires with a diameter in the range from 50 to 150 nm and a length of up to 5 μm were taken out of the substrate by laser blow-off technique and/or sonication. It was confirmed that the nano-wires showed the stimulated emission under optical pumping, indicating a high quality of the crystalinity. Pd nano-particles were generated by laser-ablating a Pd plate in pure water. The transmission electron microscope observation revealed that Pd nano-particles with a diameter in the range from 3 nm to several tens of nanometers were produced. Using these nano-structured materials, we successfully fabricated sensors by the dielectrophoresis techniques. In the case of the ultraviolet photosensor, a detection sensitivity of 10 nW/cm 2 was achieved and in the case of hydrogen sensing, the response time of less than 10 s has been demonstrated with Pd nano-particles

  18. Study of rheological, viscoelastic and vulcanization behavior of sponge EPDM/NR blended nano- composites

    International Nuclear Information System (INIS)

    Bashir, M Arshad; Shahid, M; Ahmed, Riaz; Yahya, A G

    2014-01-01

    In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent δ, and viscosity variation during vulcanization of sponge nano composites.The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix

  19. Study of rheological, viscoelastic and vulcanization behavior of sponge EPDM/NR blended nano-composites

    International Nuclear Information System (INIS)

    Bashir, M. A.; Shahid, M.; Ahmed, R.; Yahya, A. G.

    2013-01-01

    In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent d, and viscosity variation during vulcanization of sponge nano composites. The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix. (author)

  20. Materiomics: biological protein materials, from nano to macro

    Directory of Open Access Journals (Sweden)

    Steven Cranford

    2010-11-01

    Full Text Available Steven Cranford, Markus J BuehlerCenter for Materials Science and Engineering, Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAAbstract: Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and

  1. Oxidation Behavior of AlN/h-BN Nano Composites at High Temperature

    International Nuclear Information System (INIS)

    Jin Haiyun; Huang Yinmao; Feng Dawei; He Bo; Yang Jianfeng

    2011-01-01

    Both AlN/ nano h-BN composites and AlN/ micro h-BN composites were fabricated. The high temperature oxidation behaviors were investigated at 1000deg. C and 1300deg. C using a cycle-oxidation method. The results showed that there were little changes of both nano composites and monolithic AlN ceramic at temperature of 1000deg. C. And at 1300deg. C, the oxidation dynamics curve of composites could be divided into two courses: a slowly weight increase and a rapid weight decrease, but the oxidation behavior of nano composites was better than micro composites. It was due to that the uniform distribution of oxidation production (Al 18 B 4 O 33 ) surround the AlN grains in nano composites and the oxidation proceeding was retarded. The XRD analysis and SEM observations showed that there was no BN remained in the composites surface after 1300deg. C oxidation and the micropores remain due to the vaporizing of B 2 O 3 oxidized by BN.

  2. Composite material and method of making

    Science.gov (United States)

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  3. Building energetic material from novel salix leaf-like CuO and nano-Al through electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yan Jun; Li, Xueming [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing (China)

    2016-11-15

    In this study, an energetic material was prepared by depositing nano-Al on CuO arrays via electrophoretic deposition (EPD), which offers a feasible route for nano-Al integration. The morphology and structure of the CuO arrays and Al/CuO composites were characterized by scanning electron microscopy and X-ray diffraction. The CuO arrays were homogenously salix leaf-like structure with a width of ⁓150 to 200 nm. The energy density of Al/CuO composites was approximate to 1454.5 J/g by integrating the differential scanning calorimetry (DSC) plot and the combustion performance was recorded by a high-speed camera. Moreover, the combustion flames were violent and the whole reaction process only lasted 72.2 ms, indicating that the energy of the Al/CuO nanothermite can be released effectively.

  4. Corrigendum to Photo catalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-Zn O and Nano clay Composite

    International Nuclear Information System (INIS)

    Bak, S. A.; Song, M. S.; Nam, I.T.; Lee, W.G.

    2015-01-01

    In the published paper entitled Photo catalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-Zn O and Nano clay Composite [1], we mistakenly used Laponite in our paper. The corrected name is Laponite (BYK Corporations products). So we are making some changes from Laponite to Laponite (BYK Corporations products) in our paper.

  5. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers

    KAUST Repository

    Li, Tao

    2013-01-01

    Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30-35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO2, N2 and CH4. Both, permeability (PCO2 up to 145barrer) and gas selectivity (CO2/N2 up to 97 and CO2/CH4 up to 30) can be increased at low ZIF- loading. The CO2/CH4 selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO2 separation from methane and other gas streams. They are easy to

  6. EFFECT OF SURFACE SEALING ON STAIN RESISTANCE OF A NANO-HYBRID RESIN COMPOSITE*

    Directory of Open Access Journals (Sweden)

    Günçe SAYGI

    2015-04-01

    Full Text Available Purpose: This study investigated the influence of sealant application on stain resistance of a nanohybrid resin composite compared to the efficacy of a bonding agent used as a surface sealant on prolonging color stability of the resin composite. Materials and Methods: 28 disc-shaped materials were prepared from a nano-hybrid resin composite Filtek Z550 and assigned to four groups: G1K: nonsealed; G2:Adper Single Bond; G3: Fortify ; G4: Biscover LV. After 24 h storage in distilled water at 37˚C, all specimens were subjected to thermocycling and immersed into coffee solution. Color measurements were performed using spectrophotometer (VITA Easyshade; Vident according to CIEL*a*b* system. Results: Color change values were significantly different among the groups in each evaluation period except for after thermocycling (p<0.05. For 7 days evaluation period, the difference between G3 and G4 group was statistically significant while G4 exhibited statistically significant differences (p<0.05 and p<0.0001 respectively compared to control (G1 in 14 day whereas no significant difference was found between GI and GII in 28-day evaluation period. However, ΔE values of sealed specimens (GIII, GIV differed significantly from non-sealed (GI specimens after 28 days of immersion in coffee solution (p<0.05 and p<0.0001 respectively. Conclusion: It may be concluded that using a bonding agent as a surface sealant does not increase stain resistance of resin composites of the sealants evaluated. Biscover LV showed the highest efficacy to prolong color stability of the resin composite.

  7. Nano materials for the Local and Targeted Delivery of Osteoarthritis Drugs

    International Nuclear Information System (INIS)

    Periyasamy, P.C.; Leijten, J.C.H.; Dijkstra, P.J.; Karperien, M.; Post, J.N.

    2012-01-01

    Nano technology has found its potential in every possible field of science and engineering. It offers a plethora of options to design tools at the nanometer scale, which can be expected to function more effectively than micro- and macro systems for specific applications. Although the debate regarding the safety of synthetic nano materials for clinical applications endures, it is a promising technology due to its potential to augment current treatments. Various materials such as synthetic polymer, biopolymers, or naturally occurring materials such as proteins and peptides can serve as building blocks for adaptive nano scale formulations. The choice of materials depends highly on the application. We focus on the use of nanoparticles for the treatment of degenerative cartilage diseases, such as osteoarthritis (OA). Current therapies for OA focus on treating the symptoms rather than modifying the disease. The usefulness of OA disease modifying drugs is hampered by side effects and lack of suitable drug delivery systems that target, deliver, and retain drugs locally. This challenge can be overcome by using nano technological formulations. We describe the different nano drug delivery systems and their potential for cartilage repair. This paper provides the reader basal understanding of nano materials and aims at drawing new perspectives on the use of existing nano technological formulations for the treatment of osteoarthritis.

  8. A novel approach in preparing polymer/nano-CaCO3 composites

    Institute of Scientific and Technical Information of China (English)

    Zhengying LIU; Runze YU; Mingbo YANG; Jianmin FENG; Wei YANG; Bo YIN

    2008-01-01

    An novel compounding process using nano-CaCO3 aqueous suspension for preparing polymer/ nano-CaCO3 composites with nanoparticles dispersed at the nanoscale is reported. The process is called the mild mixing method. In this method, the pre-dispersed nano-particle suspensions are blended with melting polymers in a weak shearing field using an extruder, followed by removing the water from the vent. The four typical poly-meric nanocomposites were prepared by mild mixing method. The dispersion of nano-CaCO3 in the matrix of the polymer at the nanoscale was confirmed by scanning electron microscopy (SEM). The molecular weights of polycarbonate (PC) and its nanocomposite showed that the degradation had not occurred during the mild mixing processing. The mechanical properties of the composite with 1.5 wt-% nano-CaCO3 improve slightly. It proved that this approach is suitable for the preparation of nano-composites based on both polar and non-polar polymers.

  9. PREFACE: Fullerene Nano Materials (Symposium of IUMRS-ICA2008)

    Science.gov (United States)

    Miyazawa, Kun'ichi; Fujita, Daisuke; Wakahara, Takatsugu; Kizuka, Tokushi; Matsuishi, Kiyoto; Ochiai, Yuichi; Tachibana, Masaru; Ogata, Hironori; Mashino, Tadahiko; Kumashiro, Ryotaro; Oikawa, Hidetoshi

    2009-07-01

    This volume contains peer-reviewed invited and contributed papers that were presented in Symposium N 'Fullerene Nano Materials' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Over twenty years have passed since the discovery of C60 in 1985. The discovery of superconductivity of C60 in 1991 suggested infinite possibilities for fullerenes. On the other hand, a new field of nanocarbon has been developed recently, based on novel functions of the low-dimensional fullerene nanomaterials that include fullerene nanowhiskers, fullerene nanotubes, fullerene nanosheets, chemically modified fullerenes, endohedral fullerenes, thin films of fullerenes and so forth. Electrical, electrochemical, optical, thermal, mechanical and various other properties of fullerene nanomaterials have been investigated and their novel and anomalous nature has been reported. Biological properties of fullerene nanomaterials also have been investigated both in medical applications and toxicity aspects. The recent research developments of fullerene nanomaterials cover a variety of categories owing to their functional diversity. This symposium aimed to review the progress in the state-of-the-art technology based on fullerenes and to offer the forum for active interdisciplinary discussions. 24 oral papers containing 8 invited papers and 22 poster papers were presented at the two-day symposium. Topics on the social acceptance of nanomaterials including fullerene were presented on the first day of the symposium. Biological impacts of nanomaterials and the importance of standardization of nanomaterials characterization were also shown. On the second day, the synthesis, properties, functions and applications of various fullerene nanomaterials were shown in both the oral and poster presentations. We are grateful to all invited speakers and many participants for valuable contributions and active discussions

  10. Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.J. [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Ru, H.Q., E-mail: ruhq@smm.neu.edu.cn [Department of Materials Science and Engineering, School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Zhang, N.; Liang, B. [Key Laboratory of Advanced Materials Manufacturing Technology of Liaoning Province, Shenyang University, Shenyang, Liaoning 110044 (China)

    2012-03-25

    Highlights: Black-Right-Pointing-Pointer Addition of nano-SiC particles enhances residual strength and critical temperature. Black-Right-Pointing-Pointer Young's modulus decreases with increasing quenching temperature. Black-Right-Pointing-Pointer Linear relationship between residual strength and thermal shock times is obtained. Black-Right-Pointing-Pointer Rougher fracture surfaces in the SiC-AlON composites are observed. - Abstract: Aluminum oxynitride (AlON) has been considered as a potential ceramic material for high-performance structural and advanced refractory applications. Thermal shock resistance is a major concern and an important performance index of high-temperature ceramics. While silicon carbide (SiC) particles have been proven to improve mechanical properties of AlON ceramic, the high-temperature thermal shock behavior was unknown. The aim of this investigation was to identify the thermal shock resistance and underlying mechanisms of AlON ceramic and 8 wt% SiC-AlON composites over a temperature range between 175 Degree-Sign C and 275 Degree-Sign C. The residual strength and Young's modulus after thermal shock decreased with increasing quenching temperature and thermal shock times due to large temperature gradients and thermal stresses caused by abrupt water-quenching. A linear relationship between the residual strength and thermal shock times was observed in both pure AlON and SiC-AlON composites. The addition of nano-sized SiC particles increased both residual strength and critical temperature from 200 Degree-Sign C in the monolithic AlON to 225 Degree-Sign C in the SiC-AlON composites due to the toughening effect, the lower coefficient of thermal expansion and higher thermal conductivity of SiC. The enhancement of the thermal shock resistance in the SiC-AlON composites was directly related to the change of fracture mode from intergranular cracking along with cleavage-type fracture in the AlON to a rougher fracture surface with ridge

  11. Morphology and microstructure of composite materials

    Science.gov (United States)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

  12. A composite material based on recycled tires

    Science.gov (United States)

    Malers, L.; Plesuma, R.; Locmele, L.

    2009-01-01

    The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.

  13. Modeling Networks and Dynamics in Complex Systems: from Nano-Composites to Opinion Formation

    Science.gov (United States)

    Shi, Feng

    Complex networks are ubiquitous in systems of physical, biological, social or technological origin. Components in those systems range from as large as cities in power grids, to as small as molecules in metabolic networks. Since the dawn of network science, significant attention has focused on the implications of dynamics in establishing network structure and the impact of structural properties on dynamics on those networks. The first part of the thesis follows this direction, studying the network formed by conductive nanorods in nano-materials, and focuses on the electrical response of the composite to the structure change of the network. New scaling laws for the shear-induced anisotropic percolation are introduced and a robust exponential tail of the current distribution across the network is identified. These results are relevant especially to "active" composite materials where materials are exposed to mechanical loading and strain deformations. However, in many real-world networks the evolution of the network topology is tied to the states of the vertices and vice versa. Networks that exhibit such a feedback are called adaptive or coevolutionary networks. The second part of the thesis examines two closely related variants of a simple, abstract model for coevolution of a network and the opinions of its members. As a representative model for adaptive networks, it displays the feature of self-organization of the system into a stable configuration due to the interplay between the network topology and the dynamics on the network. This simple model yields interesting dynamics and the slight change in the rewiring strategy results in qualitatively different behaviors of the system. In conclusion, the dissertation aims to develop new network models and tools which enable insights into the structure and dynamics of various systems, and seeks to advance network algorithms which provide approaches to coherently articulated questions in real-world complex systems such as

  14. Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite.

    Science.gov (United States)

    Sionkowska, Alina; Kaczmarek, Beata

    2017-09-01

    3D porous composites based on the blend of chitosan, collagen and hyaluronic acid with the addition of nano-hydroxyapatite were prepared. SEM images for the composites were made and the structure was assessed. Mechanical properties were studied using a Zwick&Roell Testing Mashine. In addition, the porosity and density of composites were measured. The concentration of calcium ions released from the material was detected by the complexometric titration method. The results showed that in 3D porous sponge based on the blend of chitosan, collagen and hyaluronic acid, inorganic particles of nanohydroxyapatite can be incorporated, as well as that the properties of 3D composites depend on the material composition. Mechanical parameters and thermal stability of ternary biopolymeric blends were improved by the addition of hydroxyapatite. Moreover, the porosity of ternary materials was higher than in materials based on pure chitosan or collagen. All composites were characterized by a porous structure with interconnected pores. Calcium ions can be released from the composite during its degradation in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  16. Rare-earth element doped Si3N4/SiC micro/nano-composites-RT and HT mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Lojanová, Š.; Tatarko, P.; Chlup, Zdeněk; Hnatko, M.; Dusza, J.; Lenčéš, Z.; Šajgalík, P.

    2010-01-01

    Roč. 30, č. 9 (2010), s. 1931-1944 ISSN 0955-2219 Institutional research plan: CEZ:AV0Z20410507 Keywords : Si3N4 * SiC * Nano-composites * Fracture toughness * Hardness * Strength * Creep Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.574, year: 2010

  17. Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles

    International Nuclear Information System (INIS)

    Pourjavadi, Ali; Fakoorpoor, Seyed Mahmoud; Khaloo, Alireza; Hosseini, Payam

    2012-01-01

    Highlights: ► Nano-SiO 2 fully compensates compressive but not flexural strength. ► Nano-SiO 2 has the major contribution both to yield stress and viscosity. ► Lower dosages of SAP could reduce viscosity and yield stress of pastes. -- Abstract: The application of superabsorbent polymer (SAP) as an internal curing agent for cement based composites results in benefits such as reduced autogenous shrinkage and cracking. However, a reduction in compressive and flexural strength usually occurs due to the empty voids remained in the matrix after deswelling of SAP particles. Nanoparticles are good candidates for improving the mechanical performance of cementitious materials, due to their multiple mechanisms of action, not the least their high pozzolanic activity. In the present work, the capability of amorphous nano-SiO 2 (NS) as the most widely used nanoparticle in cementitious materials, for retrieving mechanical properties of SAP-containing pastes was evaluated, and its impact on setting time and rheological properties was measured. It was found that small dosages of NS could offset the negative effect of SAP on compressive strength but flexural strength was not fully compensated. Optimization of the dosages of NS and SAP could reduce the negative influences on the yield stress and viscosity whilst improving mechanical performance. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to monitor the changes in microstructure and composition.

  18. Influence of nano-material on the expansive and shrinkage soil behavior

    International Nuclear Information System (INIS)

    Taha, Mohd Raihan; Taha, Omer Muhie Eldeen

    2012-01-01

    This paper presents an experimental study performed on four types of soils mixed with three types of nano-material of different percentages. The expansion and shrinkage tests were conducted to investigate the effect of three type of nano-materials (nano-clay, nano-alumina, and nano-copper) additive on repressing strains in compacted residual soil mixed with different ratios of bentonite (S1 = 0 % bentonite, S2 = 5 % bentonite, S3 = 10 % bentonite, and S4 = 20 % bentonite). The soil specimens were compacted under the condition of maximum dry unit weight and optimum water content (w opt ) using standard compaction test. The physical and mechanical results of the treated samples were determined. The untreated soil values were used as control points for comparison purposes. It was found that with the addition of optimum percentage of nano-material, both the swell strain and shrinkage strain reduced. The results show that nano-material decreases the development of desiccation cracks on the surface of compacted samples without decrease in the hydraulic conductivity.

  19. Emerging boom in nano magnetic particle incorporated high-Tc superconducting materials and technologies - A South African perspective

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2009-01-01

    Full Text Available With a strategy to establish and embrace the emerging nano particle incorporated superconductivity technology (based on the HTS materials and nano magnetic particles) in South Africa, the author has initiated the following research activity in South...

  20. Tribological properties of silica-graphene nano platelet composites

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Tatarko, P.; Saggar, Richa; Grasso, S.; Mani, M.K.; Dlouhý, Ivo; Dusza, J.; Reece, M.J.

    2014-01-01

    Roč. 40, č. 8 (2014), s. 12067-12074 ISSN 0272-8842 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : wear resistance * friction coefficient * graphene nano-platelets * silica * SPS Subject RIV: JG - Metallurgy Impact factor: 2.605, year: 2014

  1. Deformation processed Al/Ca nano-filamentary composite conductors for HVDC applications

    Science.gov (United States)

    Czahor, C. F.; Anderson, I. E.; Riedemann, T. M.; Russell, A. M.

    2017-07-01

    Efficient long-distance power transmission is necessary as the world continues to implement renewable energy sources, often sited in remote areas. Light, strong, high-conductivity materials are desirable for this application to reduce both construction and operational costs. In this study an Al/Ca (11.5% vol.) composite with nano-filamentary reinforcement was produced by powder metallurgy then extruded, swaged, and wire drawn to a maximum true strain of 12.7. The tensile strength increased exponentially as the filament size was reduced to the sub-micron level. In an effort to improve the conductor’s ability to operate at elevated temperatures, the deformation-processed wires were heat-treated at 260°C to transform the Ca-reinforcing filaments to Al2Ca. Such a transformation raised the tensile strength by as much as 28%, and caused little change in ductility, while the electrical conductivity was reduced by only 1% to 3%. Al/Al2Ca composites are compared to existing conductor materials to show how implementation could affect installation and performance.

  2. Nano-graphene oxide composite for in vivo imaging

    Directory of Open Access Journals (Sweden)

    Jang SC

    2018-01-01

    Full Text Available Sung-Chan Jang,1,2,* Sung-Min Kang,1,* Jun Young Lee,3,* Seo Yeong Oh,1 AT Ezhil Vilian,4 Ilsong Lee,1,2 Young-Kyu Han,4 Jeong Hoon Park,3 Wan-Seob Cho,5,* Changhyun Roh,2,6 Yun Suk Huh1 1Department of Biological Engineering, Biohybrid Systems Research Center (BSRC, Inha University, Incheon, 2Biotechnology Research Division, 3Radiation Instrumentation Research Division, Advanced Radiation Technology Institute (ARTI, Korea Atomic Energy Research Institute (KAERI, Jeongeup, 4Department of Energy and Materials Engineering, Dongguk University, Seoul, 5Laboratory of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 6Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST, Daejeon, Republic of Korea *These authors contributed equally to this work Introduction: Positron emission tomography (PET tracers has the potential to revolutionize cancer imaging and diagnosis. PET tracers offer non-invasive quantitative imaging in biotechnology and biomedical applications, but it requires radioisotopes as radioactive imaging tracers or radiopharmaceuticals. Method: This paper reports the synthesis of 18F-nGO-PEG by covalently functionalizing PEG with nano-graphene oxide, and its excellent stability in physiological solutions. Using a green synthesis route, nGO is then functionalized with a biocompatible PEG polymer to acquire high stability in PBS and DMEM. Results and discussion: The radiochemical safety of 18F-nGO-PEG was measured by a reactive oxygen species and cell viability test. The biodistribution of 18F-nGO-PEG could be observed easily by PET, which suggested the significantly high sensitivity tumor uptake of 18F-nGO-PEG and in a tumor bearing CT-26 mouse compared to the control. 18F-nGO-PEG was applied successfully as an efficient radiotracer or drug agent in vivo using PET imaging. This article is expected to assist many researchers in the fabrication of

  3. Chemically designed Pt/PPy nano-composite for effective LPG gas sensor.

    Science.gov (United States)

    Gaikwad, Namrata; Bhanoth, Sreenu; More, Priyesh V; Jain, G H; Khanna, P K

    2014-03-07

    Simultaneous in situ reduction of hexachloroplatinic acid by the amine group in the pyrrole monomer and oxidation of pyrrole to form polypyrrole (PPy) was examined. The reactions were performed at various temperatures to understand the degree of reduction of platinum precursor as well as doping of polypyrrole with Pt(II) chloro-complex. Spectroscopic images revealed different morphologies for the Pt/PPy nano-composite prepared at various temperatures. The as-prepared Pt/PPy nano-composite samples were tested for their ability to sense liquefied petroleum gas (LPG) which resulted in excellent sensing at relatively low temperature. The porous nature and ohmic contact between the PPy and platinum nanoparticles makes the as-prepared Pt/PPy nano-composite highly useful for sensors as well as electronic applications.

  4. Evaluation of the acquirement of nano composites of polypropylene and a bentonite organophilized by different methodologies

    International Nuclear Information System (INIS)

    Paiva, Lucilene B. de; Morales, Ana R.; Branciforti, Marcia C.; Bretas, Rosario E.S.

    2009-01-01

    This work describes the organophilization of an argentinean sodium bentonite with a quaternary ammo nium salt, by two methodologies: cation exchange in aqueous dispersion and intercalation in semi-solid medium. The modified samples were used in the preparation of nano composites, with polypropylene as a matrix and polypropylene-graft-maleic anhydride as a coupling agent, through melt intercalation by using a twin-screw micro extruder. The organophilic bentonites were characterized by the swelling capacity test in water and in xylene and by X-ray diffraction, and the nano composites were characterized by X-ray diffraction and transmission electronic microscopy. The results showed that were obtained nano composites with structures partially intercalated and exfoliated. (author)

  5. Evaluation of shear bond strength of orthodontic brackets bonded with nano-filled composites.

    Science.gov (United States)

    Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam

    2013-09-01

    The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel) were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was also evaluated using a stereomicroscope. AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91±2.13) and Filtek TM Supreme XT (6.04±2.01). Statistical analysis revealed a significant difference between groups II and III (P 0.05). Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets.

  6. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite

    Science.gov (United States)

    Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.

    2017-01-01

    In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.

  7. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  8. PLGA/Nano-Zn O Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    International Nuclear Information System (INIS)

    Stankovic, A.; Stevanovic, M.; Sezen, M.; Milenkovic, M.; Kaisarevic, S.; Andric, N.

    2016-01-01

    Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (Zn O) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical Zn O nanoparticles (nano-Zn O) have been synthesized via microwave synthesis method. In addition to obtaining nano-Zn O, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-Zn O) and this was done by a simple physicochemical solvent/non solvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-Zn O particles are spherical, uniform, and with diameters below 1μ. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG_2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth micro dilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans)

  9. PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Ana Stanković

    2016-01-01

    Full Text Available Copolymer poly (DL-lactide-co-glycolide (PLGA is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans.

  10. Magnetic nanoparticles based nano-composites: synthesis, contribution of the fillers dispersion and the chains conformation on the reinforcement properties

    International Nuclear Information System (INIS)

    Robbes, Anne-Sophie

    2011-01-01

    The mechanical properties of polymeric nano-composite films can be considerably enhanced by the inclusion of inorganic nanoparticles due to two main effects: (i) the local structure of fillers dispersion and (ii) the potential modification of the chains conformation and dynamics in the vicinity of the filler/polymer interface. However, the precise mechanisms which permit to correlate these contributions at nano-metric scale to the macroscopic mechanical properties of the materials are actually poorly described. In such a context, we have synthesized model nano-composites based on magnetic nanoparticles of maghemite γ-Fe 2 O 3 (naked or grafted with a polystyrene (PS) corona by radical controlled polymerization) dispersed in a PS matrix, that we have characterized by combining small angle scattering (X-Ray and neutron) and transmission electronic microscopy. By playing on different parameters such as the particle size, the concentration, or the size ratio between the grafted chains and the ones of the matrix in the case of the grafted fillers, we have obtained nano-composite films a large panel of controlled and reproducible controlled filler structures, going from individual nanoparticles or fractal aggregates up to the formation of a connected network of fillers. By applying an external magnetic field during the film processing, we succeeded in aligning the different structures along the direction of the field and we obtained materials with remarkable anisotropic reinforcement properties. The conformation of the chains of the matrix, experimentally determined thanks to the specific properties of neutron contrast of the system, is not affected by the presence of the fillers, whatever their confinement, the dispersion the fillers or their chemical state surface. The alignment of the fillers along the magnetic field has allowed us to describe precisely the evolution of the reinforcement modulus of the materials with the structural reorganization of the fillers and

  11. Fire retardancy assessment of polypropylene composite filed with nano clay prepared from Iraqi bentonite

    Science.gov (United States)

    Kareem Salih, Watheq

    2018-05-01

    Fire retardants have an extraordinary importance because of their role in saving the people, property and reducing the damages and minimizing the dangers resulting from fires and burning of polymeric composites which are used in different civil and industrial fields. The work in this paper can be divided into two main stages. In first one nano-clay was manufactured from Iraqi bentonite and it was characterized using AFM, XRD, XRF, SEM, and BET. The AFM test showed the particle size of prepared nano clay was about 99.25 nm. In the second stage, polypropylene/nano clay composites at three low loading percents (0%,2%,4%,6%) were formulated via twin screw extruder. The fire retardancy tests included burning rate according to ASTM:D-635 and maximum flame height of flame according to ASTM:D-3014. Besides, the mechanical tests and thermal behavior of prepared samples were investigated. The results showed that (4%) of nano-clay had the maximum fire retardancy and while at (2%) loading, the maximum value of tensile strength and Yong modulus were obtained. The maximum heat of fusion was recorded for 6% nano clay sample. The final results assessment confirmed on the possibility of using low loadings of prepared nano clay to improve the fire retardancy, mechanical and thermal properties successfully.

  12. Experimental and numerical characterization of scalable cellulose nano-fiber composite

    Science.gov (United States)

    Barari, Bamdad

    Fiber-reinforced polymer composites have been used in recent years as an alternative to the conventional materials because of their low weight, high mechanical properties and low processing temperatures. Most polymer composites are traditionally made using reinforcing fibers such as carbon or glass fibers. However, there has been recent interest in making these reinforcing fibers from natural resources. The plant-derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties at the nano-scale that are much superior to the mechanical properties of the traditional natural fibers (such as jute, hemp, kenaf, etc) used in the natural-fiber based polymer composites. Because CNF is bio-based and biodegradable, it is an attractive 'green' alternative for use in automotive, aerospace, and other engineering applications. However, efforts to produce CNF based nano-composites, with successful scaling-up of the remarkable nanoscale properties of CNF, have not met with much success and form an active area of research. The main goals of this research are to characterize the scalable CNF based nano composites using experimental methods and to develop effective models for flow of polymeric resin in the CNF-based porous media used during the proposed manufacture of CNF nano-composites. In the CNF composite characterization section, scalable isotropic and anisotropic CNF composites were made from a porous CNF preforms created using a freeze drying process. Formation of the fibers during freeze-drying process can change the micro skeleton of the final preform structure as non-aligned or isotropic and aligned or anisotropic CNF. Liquid Composite Molding (LCM) processes form a set of liquid molding technologies that are used quite commonly for making the conventional polymer composites. An improvised vacuum-driven LCM process was used to make the CNF-based nanocomposites from CNF preforms using a 'green' epoxy resin with high bio-content. Under the topic of

  13. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    Science.gov (United States)

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  14. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  15. Porous Nano-Si/Carbon Derived from Zeolitic Imidazolate Frameworks@Nano-Si as Anode Materials for Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Song, Yonghai; Zuo, Li; Chen, Shouhui; Wu, Jiafeng; Hou, Haoqing; Wang, Li

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •The porous cage-like carbon/Si nanocomposites were synthesized based on nano-Si@ZIF-8-templatedmethod. •The nano-Si was uniformly embedded in porous amorphous carbon matrices. •The porous dodecahedral carbon framework effectively accommodates the volume variation of Si during the discharge/charge process. •The Si/C nanocomposites exhibit superior reversible capacity of 1168 mA h g −1 after 100 cycles. -- Abstract: Novel porous cage-like carbon (C)/nano-Si nanocomposites as anode materials for lithium-ion batteries (LIBs) was prepared based on nano-Si@zeolitic imidazolate frameworks (ZIF-8)-templated method. In this strategy, p-aminobenzoic acid was initially grafted onto nano-Si to form benzoic acid-functionalized nano-Si, and then nano-Si@ZIF-8 was constructed by alternately growing Zn(NO 3 ) 2 ·6H 2 O and 2-methylimidazolate on benzoic acid-functionalized nano-Si under ultrasound. The novel porous cage-like nano-Si/C nanocomposites were fabricated by pyrolyzing the resulted nano-Si@ZIF-8 and washing with HCl to remove off ZnO. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Raman spectra and N 2 adsorption/desorption isotherms were employed to characterize the porous cage-like nano-Si/C nanocomposites. The resulted nano-Si/C nanocomposites as anode materials for LIBs showed a high reversible capacity of ∼1168 mA h g −1 at 100 mA g −1 after 100 cycles, which was higher than many previously reported Si/C nanocomposites. The porous nanostructure, high specific surface area and good electrical conductivity of the cage-like nano-Si/C nanocomposites contributed together to the good performance for LIBs. It might open up a new way for application of silicon materials

  16. Spectral absorption of unpolarized light through nano-materials in the absence of a magnetic field

    Directory of Open Access Journals (Sweden)

    Luminosu I.

    2008-01-01

    Full Text Available A study of optical properties, such as light absorption, of a colloidal nano-material, provides information on the biphasic, solid - liquid system microstructure. The nano-material under study is a magnetic liquid (ferrofluid. The disperser agent is petroleum mineral oil and the dispersed material is a brown spar powder (nano-particles. The stabilizer is oleic acid. Light absorption through ferrofluid samples reveals the tendency of solid particles in a colloidal solution to form aggregates. The paper emphasizes the linear dependence between the spectral absorption coefficient, concentration and wavelength. The aggregates cause deviations of the extinction coefficient from values according to the Bouger-Lambert-Beer law. Fe3O4 aggregates sized 58.76 nm are formed in the system. The average number of nano-particles forming aggregates is 6. The magnetic liquid to be studied is secure stable and, thus, trustful in technological and biological applications.

  17. Novel Nano-Composite Catalysts for Renewable Energy Storage Applications

    Science.gov (United States)

    Devaguptapu, Surya Vamsi

    and stability of oxides by engineering their morphology and nanostructures. The high performance bifunctional oxide catalyst is carbon free and can eventually overcome the stability issue for reversible fuel cell and metal-air battery applications. In addition, we have synthesized highly active transition metal doped Carbon Nano Tubes of very small thickness called Graphene Tubes which when integrated with metal oxides can lead to enhanced activity and durability for ORR and OER with current density as high as 25mAcm-2 at 1.6V vs RHE for OER and an onset potential of 1.0V vs RHE during ORR. Finally, we conclude by giving a brief description of the Hydrogen Economy and the role that ammonia decomposition can play in achieving the potential of hydrogen economy. We detail the synthesis procedures of some highly active transition metal nitride- alkali metal imide composites and study their activity for ammonia decomposition. The catalysts show conversion efficiencies as high as 95%.

  18. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  19. Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation

    International Nuclear Information System (INIS)

    Batra, Uma; Kapoor, Seema; Sharma, J. D.

    2011-01-01

    Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work--fluoridated bioglass (Cao-P 2 O 5 -Na 2 O 3 -CaF 2 ) and unfluoridated bioglass (Cao-P 2 O 5 -Na 2 O 3 ) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm, respectively. The pellets were sintered at four different temperatures i.e. 1000 deg. C, 1150 deg. C, 1250 deg. C and 1350 deg. C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with α-TCP (tricalcium phosphate) and β-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 deg. C and 1150 deg. C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 deg. C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 deg. C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 deg. C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and sintered pellets, showing higher bioactivity in the

  20. Composites and blends from biobased materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, S.S. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  1. Friction material composites copper-metal-free material design perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2015-01-01

    This book examines material composites used in connection with brake friction, their design and safety. To aid in understanding, the essentials of friction are explained. This second edition was extended to include friction material composites without copper, as they offer an environmentally friendlier option. The second edition is intended to support beginners by offering insights into the essentials of friction material composites, helping them to develop a broader understanding of brake friction materials. Friction materials find wide-ranging applications in household and industrial appliances, brake pads for automotive applications, rail brake friction pads and composition brake blocks. This second edition is an introductory volume to a set of related books, and is based on the author’s experience and expertise with various material manufacturers, brake manufacturers, vehicle manufacturers, researchers and testing labs around the world with which the author has been associated for the past 28 years.

  2. Structural and Magnetic Properties of Type-M Barium Ferrite - Thermoplastic Natural Rubber Nano composites

    International Nuclear Information System (INIS)

    Nurhidayaty Mokhtar

    2012-01-01

    Structural and magnetic properties of type-M barium ferrite (BaFe 12 O 19 ) nanoparticles (∼ 20 nm) embedded in non-magnetic thermoplastic natural rubber (TPNR) matrices were investigated. The TPNR matrices were prepared from high density polyethylene (HDPE) and natural rubber (NR) in the weight ratios of 80:20 and 60:40, respectively, with 10 wt % of NR in the form of liquid natural rubber (LNR) which act as a comparabilities. BaFe 12 O 19 - filled nano composites with 2 - 12 wt % BaFe 12 O 19 ferrite were prepared using a melt- blending technique. Magnetic hysteresis was measured using a vibrating sample magnetometer (VSM) in a maximum field of 10 kOe at room temperature (25 degree Celsius). The saturation magnetisation (MS), remanence (MR) and coercivity (Hc) were derived from the hysteresis loops. The results show that the structural and magnetic properties of nano composites depend on both the ferrite content and the composition of the natural rubber or plastic in the nano composites. All the nano composites exhibit an exchange bias-like phenomenon resulting from the exchange coupling of spins at the interface between the core ferrimagnetic region and the disordered surface region of the nanoparticles. (author)

  3. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode

    Science.gov (United States)

    Eom, KwangSup; Joshi, Tapesh; Bordes, Arnaud; Do, Inhwan; Fuller, Thomas F.

    2014-03-01

    In this study, a Si-graphene composite, which is composed of nano Si particles and nano-sized multi-layer graphene particles, and micro-sized multi-layer graphene plate conductor, was used as the anode for Li-ion battery. The Si-graphene electrode showed the high capacity and stable cyclability at charge/discharge rate of C/2 in half cell tests. Nickel cobalt aluminum material (NCA) was used as a cathode in the full cell to evaluate the practicality of the new Si-graphene material. Although the Si-graphene anode has more capacity than the NCA cathode in this designed full cell, the Si-graphene anode had a greater effect on the full-cell performance due to its large initial irreversible capacity loss and continuous SEI formation during cycling. When fluoro-ethylene carbonate was added to the electrolyte, the cyclability of the full cell was much improved due to less SEI formation, which was confirmed by the decreases in the 1st irreversible capacity loss, overpotential for the 1st lithiation, and the resistance of the SEI.

  4. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  5. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    Science.gov (United States)

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of high energy electron beam (10 MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Z., E-mail: zhr_soltani@yahoo.com [Health Physics and Radiation Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ziaie, F. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Polymer Group, Golestan University, Golestan (Iran, Islamic Republic of); Beigzadeh, A.M. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10 MeV electron beam at doses of 75 to 250 kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100 °C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  7. Composite Materials for Low-Temperature Applications

    Science.gov (United States)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  8. Composites as structural materials in fusion reactors

    International Nuclear Information System (INIS)

    Megusar, J.

    1989-01-01

    In fusion reactors, materials are used under extreme conditions of temperature, stress, irradiation, and chemical environment. The absence of adequate materials will seriously impede the development of fusion reactors and might ultimately be one of the major difficulties. Some of the current materials problems can be solved by proper design features. For others, the solution will have to rely on materials development. A parallel and balanced effort between the research in plasma physics and fusion-related technology and in materials research is, therefore, the best strategy to ultimately achieve economic, safe, and environmentally acceptable fusion. The essential steps in developing composites for structural components of fusion reactors include optimization of mechanical properties followed by testing under fusion-reactor-relevant conditions. In optimizing the mechanical behavior of composite materials, a wealth of experience can be drawn from the research on ceramic matrix and metal matrix composite materials sponsored by the Department of Defense. The particular aspects of this research relevant to fusion materials development are methodology of the composite materials design and studies of new processing routes to develop composite materials with specific properties. Most notable examples are the synthesis of fibers, coatings, and ceramic materials in their final shapes form polymeric precursors and the infiltration of fibrous preforms by molten metals

  9. Removal of light petroleum hydrocarbons from water sources using polypropylene and titanium dioxide nano-composite

    Directory of Open Access Journals (Sweden)

    H. Karyab

    2016-08-01

    Full Text Available Background: Petroleum hydrocarbons are the most important pollutants which threat human health and aquatics. Adsorbents are one of the common equipment in water pollution management; however, their applications have been associated with limitations. Objective: To evaluate the potential of polypropylene/titanium dioxide Nano-composite in adsorption of light petroleum hydrocarbons from water sources. Methods: This experimental study was conducted at school of health, Qazvin University of Medical Sciences in 2014-15. Activation of polypropylene fibers, with 1 cm length and 300 microns diameters, was achieved with wet heating. To synthesize of nano-composite the fibers were coated with nano-titanium dioxide with 20 nm diameter. The sonication was performed at 26 kHz and 100 W of power in 40ºc. The morphology of the fractured surfaces of impact specimens was examined by FESEM. The adsorption rate of petrol and gasoline, as surrogate of TPH, was evaluated in different retention time within polyamide mesh aperture diameter of 250 nm. Average of TPH adsorbing, per unit weight of adsorbent, were analyzed with analysis of variance and Scheffe post hoc tests. Findings: The FESEM micrographs showed that the dispersion of the nano-Tio2 particles was relatively good and only few aggregations exist. The maximum adsorption capacity of petrol and gasoline was obtained in 30 minute. The adsorption rate of gasoline was 6.49±0.10 g/g and oil was 7.01±0.13 g/g. Conclusion: According to the results and in comparison with commercial imported adsorbents, the synthesized Nano-composite had favorable performance. The results show that the polypropylene/Tio2 Nano-composite can be used effectively in light petroleum hydrocarbons removal from polluted water sources.

  10. Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method

    Science.gov (United States)

    Pal, Arpan; Poria, Suswagata; Sutradhar, Goutam; Sahoo, Prasanta

    2018-03-01

    In the present study, the effects of WC nano-particles content on the microstructure, hardness, wear, and friction behavior of aluminum matrix composites are investigated. Al-WC nano composites with varying wt% of WC (0, 1, 1.5, and 2) are fabricated using ultrasonic cavitation assisted stir-cast method. The microstructure of the nano-composite samples is analyzed using optical microscopy and scanning electron microscopy. Elemental composition is determined by energy dispersive x-ray analysis. Vicker’s microhardness test is performed in different locations on the composite sample surface with a load of 50 gf and 10s dwell time. Wear and friction of the composites under dry sliding is studied using a pin-on-disk tribotester for varying normal load (10–40 N) and sliding speed (0.1–0.4 m/s). Uniform distribution of nano-WC is observed over composite surface without noticeable clustering. Reinforcement of nano-WC particles improves wear resistance and frictional behavior of the composite. Hardness is seen to increase with increase in wt% of nano-particles. Wear behavior of composites depends on formation of layers over the surface mixed with oxidized debris and counter-face particles. Wear mechanism changes from adhesion to abrasion with increase in wt% of hard nano particles.

  11. Nanocellulose based polymer composite for acoustical materials

    Science.gov (United States)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  12. Gamma radiation effects on nano composites of Ag nanoparticles in Zn O matrices; Efectos de la radiacion gamma en nanocompositos de nanoparticulas de Ag en matrices de ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Villasenor C, L. S.

    2015-07-01

    The study of gamma radiation effects in nano composites of silver nanoparticles in a Zn O matrix has been performed in this work. First, silver nanoparticles (AgNPs) were synthesized by colloidal methods, with two different mean average sizes, 48 nm and 24 nm respectively. These nanoparticles were characterized by transmission electron microscopy (Tem) and UV-Vis spectroscopy (UV-Vis). Then, with the synthesized AgNPs, nano composites in a matrix of Zn O were prepared. The first nano composite was prepared with the 48 nm AgNPs at 9.5 weight % of silver (Ag) and the second nano composite with the 24 nm nanoparticles at 1.0 weight % of Ag. Both nano composites were analyzed by scanning electron microscopy (Sem). The formation of the Zn O phase in the nano composite was corroborated through X-ray diffraction analysis. It was observed that the presence of AgNPs during the formation of the AgNPs/Zn O nano composite modified the size and morphology of the structures obtained compared to those of the pure Zn O without nanoparticles, however both exhibit a radial structure. Then, the nano composite at 9.5 weight % of Ag was irradiated with gamma rays at doses of 1, 20 and 50 kGy. Samples were analyzed by Sem and the Bet technique, before and after being irradiated, in order to determine the effect of gamma radiation in the morphology, porosity and surface area of the studied material. Even when there are changes in porosity and Surface area, this difference is not very significant for some applications, however it will have to be considered during the design of a specific application of the nano composites. On the other hand, no morphology modifications were identified on the samples irradiated at the studied doses, with the electron microscopy techniques used. (Author)

  13. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  14. Bulk Oxygen Isotopic Composition of Ultracarbonaceous Antarctic Micrometeorites with the NanoSIMS

    Science.gov (United States)

    Kakazu, Y.; Engrand, C.; Duprat, J.; Briani, G.; Bardin, N.; Mostefaoui, S.; Duhamel, R.; Remusat, L.

    2014-09-01

    We analyzed the carbon and oxygen isotope ratios of two UCAMMs with the NanoSIMS in order to understand the origin and formation of UCAMMs. One UCAMM has 16O-rich composition and a highly heterogeneous oxygen isotopic distribution.

  15. Tribological behavior of Nano-Al2O3 and PEEK reinforced PTFE composites

    Science.gov (United States)

    Wang, Banghan; Lv, Qiujuan; Hou, Genliang

    2017-01-01

    The Nano-Al2O3 and PEEK particles synergetic filled PTFE composites were prepared by mechanical blending-molding-sintering method. The tribological behavior of composites with different volume fraction of fillers was tested on different test conditions by a MMW-1A block-on-ring friction and wear tester. The transfer film on counterpart 5A06 Aluminum alloy ring was inspected and anslyzed with scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The results demonstrated that the lowest friction coefficient was gained when the PTFE composite was filled with only 10% PEEK. The friction coefficient decreases gradually with the increasing content of PEEK. The special wear rate of 10% PEEK/PTFE were decreased clearly with filled different contents of nano-Al2O3 particles. The special wear rate of the sample with 5% nano-Al2O3 and 10% PEEK had the lowest volume wear rate. The sliding speed effect significantly on the tribological behavior of nano-Al2O3/PEEK/PTFE composites.

  16. Fabrication of Surface Level Cu/Si Cp Nano composites by Friction Stir Processing Route

    International Nuclear Information System (INIS)

    Srinivasan, R. C.; Karunanithi, M.

    2015-01-01

    Friction stir processing (FSP) technique has been successfully employed as low energy consumption route to prepare copper based surface level nano composites reinforced with nano sized silicon carbide particles (Si Cp). The effect of FSP parameters such as tool rotational speed, processing speed, and tool tilt angle on microstructure and microhardness was investigated. Single pass FSP was performed based on Box-Behnken design at three factors in three levels. A cluster of blind holes 2 mm in diameter and 3 mm in depth was used as particulate deposition technique in order to reduce the agglomeration problem during composite fabrication. K-type thermocouples were used to measure temperature histories during FSP. The results suggest that the heat generation during FSP plays a significant role in deciding the microstructure and microhardness of the surface composites. Microstructural observations revealed a uniform dispersion of nano sized Si Cp without any agglomeration problem and well bonded with copper matrix at different process parameter combinations. X-ray diffraction study shows that no intermetallic compound was produced after processing. The microhardness of nano composites was remarkably enhanced and about 95% more than that of copper matrix

  17. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  18. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration.

    Science.gov (United States)

    Alothman, Othman Y; Almajhdi, Fahad N; Fouad, H

    2013-09-24

    The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G' increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue regeneration due to their acceptable

  19. Fabrication, electrochemical and electrocatalytic properties of carbon nanotube@nano-SiO{sub 2}BenV/phosphomolybdic acid polynary nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiang; Wang, Jing; Wang, Wen-Bo [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Chen, Meng [Department of Material Science, Fudan University, 220 Handan Road, Shanghai 200433 (China); Qian, Dong-Jin, E-mail: djqian@fudan.edu.cn [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2017-06-30

    Highlights: • Carbon nanotube@nano-SiO{sub 2}BenV(+86-21-65643666)/PMA polynary nanocomposites were prepared. • Functionalized silica nanoparticles covalently attached on the MWNT surfaces. • The nanocomposites showed reversible redox properties of viologen and PMA. • The nanocomposites acted as efficient heterogeneous catalysts for bromate reduction. - Abstract: Organic-inorganic nano-materials have attracted growing attention due to their potential applications for optoelectronic devices, sensors, and heterogeneous catalysts. We reported here on the preparation of polynary nanocomposites composed of poly(4-vinylpyridine) (P4VP) functionalized multi-walled carbon nanotubes (MWNTP4VP), silica nanoparticles (nano-SiO{sub 2}), viologens, and/or phosphomolybdic acid (PMA), in which the MWNTP4VP, nano-SiO{sub 2}, and viologens were covalently connected while PMA was electrostatically adsorbed. Thermogravimetric analysis revealed that the nanocomposites were composed of about 40–45% MWNTs, 40–45% nanoSiO{sub 2}, as well as 10–15% organic species and others. The preparation processes and compositions of the nanocomposites were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Field emission transmission electron microscopic images revealed that the nano-SiO{sub 2}BenV particles were strongly attached to the MWNTP4VP surfaces to form MWNTP4VP@nano-SiO{sub 2}BenV triad nano-cores. Cyclic voltammograms of the MWNTP4VP@nano-SiO{sub 2}BenV casting films showed three couples of redox waves in the potential range between −0.8 and 0 V (vs Ag/AgCl), designated to the electron transfer process of viologen substituents of MWNTP4VP@nano-SiO{sub 2}BenV{sup 2+} ↔ MWNTP4VP@nano-SiO{sub 2}BenV{sup +}· and their dimers. Further, three couples of redox waves were recorded for the casting films of MWNTP4VP@nano-SiO{sub 2}BenV/PMA polynary nanocomposites in the potential range between −0.2 and 0.8 V, designated to three

  20. Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane

    Directory of Open Access Journals (Sweden)

    Yili Qu

    2010-06-01

    Full Text Available Yili Qu1,3, Ping Wang1,3, Yi Man1, Yubao Li2, Yi Zuo2, Jidong Li21State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064, China; 2Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China; 3These authors contributed equally to this workAbstract: Nano-hydroxyapatite/polyamide 66 (nHA/PA66 composite with good bioactivity and osteoconductivity was employed to develop a novel porous membrane with asymmetric structure for guided bone regeneration (GBR. In order to test material cytotoxicity and to investigate surface-dependent responses of bone-forming cells, the morphology, proliferation, and cell cycle of bone marrow stromal cells (BMSCs of rats cultured on the prepared membrane were determined. The polygonal and fusiform shape of BMSCs was observed by scanning electronic microscopy (SEM. The proliferation of BMSCs cultured on nHA/PA66 membrane tested by the MTT method (MTT: [3-{4,5-dimethylthiazol-2yl}-2,5-diphenyl-2H-tetrazoliumbromide] was higher than that of negative control groups for 1 and 4 days’ incubation and had no significant difference for 7 and 11 days’ culture. The results of cell cycle also suggested that the membrane has no negative influence on cell division. The nHA/PA66 membranes were then implanted into subcutaneous sites of nine Sprague Dawley rats. The wounds and implant sites were free from suppuration and necrosis in all periods. All nHA/PA66 membranes were surrounded by a fibrous capsule with decreasing thickness 1 to 8 weeks postoperatively. In conclusion, the results of the in vitro and in vivo studies reveal that nHA/PA66 membrane has excellent biocompatibility and indicate its use in guided tissue regeneration (GTR or GBR.Keywords: hydroxyapatite/polyamide, barrier membrane, biocompatibility, guided bone regeneration

  1. Fabrication of nano structural biphasic materials from phosphogypsum waste and their in vitro applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: Kh_rezk966@yahoo.com [Biomaterials Department, National Research Centre, Dokki, Cairo (Egypt); Mousa, Sahar M. [Chemistry Department, Science and Art College, King Abdulaziz University, Rabigh Campus, P.O. Box 344, 21911 Rabigh (Saudi Arabia); Inorganic Chemistry Department, National Research Centre, Dokki, P.O. Box 12622, 11787 Cairo (Egypt); El Bassyouni, Gehan T. [Biomaterials Department, National Research Centre, Dokki, Cairo (Egypt); Medical Physics Department, College of Medicine, Taif University (Saudi Arabia)

    2014-02-01

    Graphical abstract: (a) Schema of the process, (b) TEM of nano particles of biphasic materials and (c) SEM of post-immersion. - Highlights: • Ratio of HA and β-TCP phases were controlled by thermal treatment. • HA partially decomposed into β-TCP with other bioactive phases. • Calcined HA at 900 °C is the best for the bioactivity behavior. - Abstract: In this study, a novel process of preparing biphasic calcium phosphate (BCP) is proposed. Also its bioactivity for the utilization of the prepared BCP as a biomaterial is studied. A mixture of calcium hydroxyapatite (HAP) and tricalcium phosphate (β-TCP) could be obtained by thermal treatment of HAP which was previously prepared from phosphogypsum (PG) waste. The chemical and phase composition, morphology and particle size of prepared samples was characterized by X-ray diffraction (XRD), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The bioactivity was investigated by soaking of the calcined samples in simulated body fluid (SBF). Results confirmed that the calcination temperatures played an important role in the formation of calcium phosphate (CP) materials. XRD results indicated that HAP was partially decomposed into β-TCP. The in vitro data confirmed that the calcined HAP forming BCP besides other phases such as pyrophosphate and silica are bioactive materials. Therefore, BCP will be used as good biomaterials for medical applications.

  2. Comparative study on nano-Zirconium Oxide Materials used in Nuclear Technology

    International Nuclear Information System (INIS)

    Khalil, T.; Dakroury, G.A.; Abou El-Nour, F.; Abdel-Khlik, M.

    2004-01-01

    Nano-ZrO 2 powders were prepared using two advanced methods, namely SoI-GeI and Gelation techniques. Y 2 O 3 , Ce0 2 and Mg0 were used as stabilizers during the preparation processes. The function of these materials is to stabilize the meta stable tetragonal Zr0 2 phase responsible for the nano character of produced materials. The applied experimental procedures proved to be suitable to produce nano powders composed of crystallites of few nano-meter size with an interfacial component formed by all atoms situated in the grain boundaries. These two structure components (nano-sized crystallites and boundaries) of comparable volume fractions are crucial for the nano-structure materials. Powder agglo-meration, contamination during processing and remaining of the residual pores in the bodies were overcome during the sintering process of the powder by special treatment. Different analytical procedures such as DTA-TG, specific surface area, pore size analysis, density, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out for Zr0 2 produced by both SoI-GeI and Gelation techniques

  3. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  4. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    Science.gov (United States)

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC

  5. Chemical composition of lunar material.

    Science.gov (United States)

    Maxwell, J A; Abbey, S; Champ, W H

    1970-01-30

    Chemical and emission spectrographic analyses of three Apollo 11 samples, 10017-29, 10020-30, and 10084-132, are given. Major and minor constituents were determined both by conventional rock analysis methods and by a new composite scheme utilizing a lithium fluoborate method for dissolution of the samples and atomic absorption spectroscopy and colorimetry. Trace constituents were determined by optical emission spectroscopy involving a d-c arc, air-jet controlled.

  6. Rational molecular dynamics scheme for predicting optimum concentration loading of nano-additive in phase change materials

    Directory of Open Access Journals (Sweden)

    Monisha Rastogi

    2015-10-01

    Full Text Available The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO and surface functionalized single walled carbon nanotubes (SWCNT. Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8 % surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications.

  7. Rational molecular dynamics scheme for predicting optimum concentration loading of nano-additive in phase change materials

    Science.gov (United States)

    Rastogi, Monisha; Vaish, Rahul; Madhar, Niyaz Ahamad; Shaikh, Hamid; Al-Zahrani, S. M.

    2015-10-01

    The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8 % surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications.

  8. Fibrous and textile materials for composite applications

    CERN Document Server

    Fangueiro, Raul

    2016-01-01

    This book focuses on the fibers and textiles used in composite materials. It presents both existing technologies currently used in commercial applications and the latest advanced research and developments. It also discusses the different fiber forms and architectures, such as short fibers, unidirectional tows, directionally oriented structures or advanced 2D- and 3D-textile structures that are used in composite materials. In addition, it examines various synthetic, natural and metallic fibers that are used to reinforce polymeric, cementitious and metallic matrices, as well as fiber properties, special functionalities, manufacturing processes, and composite processing and properties. Two entire chapters are dedicated to advanced nanofiber and nanotube reinforced composite materials. The book goes on to highlight different surface treatments and finishes that are applied to improve fiber/matrix interfaces and other essential composite properties. Although a great deal of information about fibers and textile str...

  9. Elastic Property Simulation of Nano-particle Reinforced Composites

    Directory of Open Access Journals (Sweden)

    He Jiawei

    2016-01-01

    Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.

  10. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Meng, Lingyin [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Mu, Guiqin [Maize Research Institute of Sichuan Agricultural University, Wenjiang 611130 (China); Zhao, Maojun; Zou, Ping [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Zhang, Yunsong, E-mail: yaanyunsong@126.com [College of Science, Sichuan Agricultural University, Yaan 625014 (China)

    2016-08-15

    Highlights: • Nano-ZnO/yeast composites were fabricated by alkali hydrothermal method. • Nano-ZnO was in-situ achieved and anchored on the yeast surface. • Alkali and hydrothermal process cause more exposed funcitional groups on yeast. • Nano-ZnO/yeast composites show higher Pb{sup 2+} adsorption ability than pristine yeast. • Nano-ZnO and exposed functional groups synergistically participate in adsorption. - Abstract: Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb{sup 2+} ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb{sup 2+} concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb{sup 2+} (31.72 mg g{sup −1}) is 2.03 times higher than that of pristine yeast (15.63 mg g{sup −1}). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb{sup 2+} via synergistic effect.

  11. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    International Nuclear Information System (INIS)

    Zhang, Wei; Meng, Lingyin; Mu, Guiqin; Zhao, Maojun; Zou, Ping; Zhang, Yunsong

    2016-01-01

    Highlights: • Nano-ZnO/yeast composites were fabricated by alkali hydrothermal method. • Nano-ZnO was in-situ achieved and anchored on the yeast surface. • Alkali and hydrothermal process cause more exposed funcitional groups on yeast. • Nano-ZnO/yeast composites show higher Pb"2"+ adsorption ability than pristine yeast. • Nano-ZnO and exposed functional groups synergistically participate in adsorption. - Abstract: Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb"2"+ ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb"2"+ concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb"2"+ (31.72 mg g"−"1) is 2.03 times higher than that of pristine yeast (15.63 mg g"−"1). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb"2"+ via synergistic effect.

  12. Mechanics of composite materials: Unified micromechanical approach

    International Nuclear Information System (INIS)

    Aboundi, J.

    1991-01-01

    Although many books have been written on the mechanics of composite materials, only a vew few have been devoted almost exclusively to the micromechanics aspects. The present monograph is devoted primarily to the micromechanics of fiber and particle reinforced composites with some additional treatment of laminates as well. Thus, this book would probably be more suitable as a reference book than a textbook

  13. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars

    International Nuclear Information System (INIS)

    Li, Y; Menon, C; Ng, H W; Gates, B D

    2014-01-01

    Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR. (paper)

  14. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  15. Development of Nano TiO2–Geopolymer Functional Composite as Antifouling Bricks

    Directory of Open Access Journals (Sweden)

    Kusuma Wardani Nurul

    2017-01-01

    Full Text Available The purpose of study is to examine the ability of nano TiO2 – geopolymer functional composite as antifouling bricks. The samples were synthesized through alkali-activation method at 70°C for 1 hour by mixing metaclay with TiO2 nanoparticles and activated with sodium silicate solution. There were two series of samples produced, namely, GT_A with addition of 2% nanoTiO2 and GT_B with addition of 4% nano TiO2 relative to the mass of metaclay. The samples were immersed in water and in 1M H2SO4 solution for 4 days to examine the resistance of composites in hars environment. The x-ray diffraction (XRD was performed to examine the chemical compositions of the samples before and after environmental test. The morphology of the samples surfaces was examined by using Scanning Electron Microscopy (SEM coupled with energy dispersive spectroscopy (EDS. Based on this study, sample GT_A shows its excellent properties as antifouling bricks. The addition of nano TiO2 was found to improve the quality of geopolymers as a high performance bricks.

  16. Stimulated transformation in nano-layered composites with Se0.6Te0.4

    International Nuclear Information System (INIS)

    Malyovanik, M.; Shipljak, M.; Cheresnya, V.; Ivan, I.; Csik, A.; Kokenyesi, S.; Debrecen Univ.

    2005-01-01

    Complete text of publication follows. The main types of the photo-induced structural transformations (PST) in chalcogenide glasses and amorphous layers can be systematized as i) structural transformations within amorphous phase, ii) photo-induced crystallization or amorphyzation, iii) photo-induced mass transport. These main known types of PST can be further detailed, for example concerning photo-induced anisotropy, photo- bleaching, etc., and are widely investigated. But the fundamentals of these effects even in the most known compositions like AsSe, As 2 S 3 are not clear, especially for the nanostructures, where the possible cluster formation, size restrictions and interface conditions may essentially influence the parameters of the material. Furthermore, the basic applied problem related to the PST consists of the possibility of digital or analog optical information storage, phase change memory, fabrication of elements for optics and photonics. These applications require determined spectral and temperature range of functioning, increased sensitivity, transformation rates and stability of the memory at the same time. The realization of such requirements can be expected in nanosized objects made of chalcogenides due to the suitable change of thermodynamical parameters, conductivity, optical and other characteristics. The establishment of correlations between the compositional modulation at nanoscale-dimensions (3-10 nm) in Se 0.6 Te 0.4 and the changes of the optical and electrical parameters as well as the possible improvement of optical recording process in comparison with homogeneous Se 0.6 Te 0.4 films were the aims of the present work. Two types of nano-multilayers, namely Se 0.6 Te 0.4 /SiO x and Se 0.6 Te 0.4 /As 2 S 3 were investigated with respect to the thermo- or light-stimulated structural transformations, since they strongly di r by the possibility of intermixing or crystallization in a steady-state process of heating or laser illumination. Photo

  17. Three-Dimensional SnS Decorated Carbon Nano-Networks as Anode Materials for Lithium and Sodium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yanli Zhou

    2018-02-01

    Full Text Available The three-dimensional (3D SnS decorated carbon nano-networks (SnS@C were synthesized via a facile two-step method of freeze-drying combined with post-heat treatment. The lithium and sodium storage performances of above composites acting as anode materials were investigated. As anode materials for lithium ion batteries, a high reversible capacity of 780 mAh·g−1 for SnS@C composites can be obtained at 100 mA·g−1 after 100 cycles. Even cycled at a high current density of 2 A·g−1, the reversible capacity of this composite can be maintained at 610 mAh·g−1 after 1000 cycles. The initial charge capacity for sodium ion batteries can reach 333 mAh·g−1, and it retains a reversible capacity of 186 mAh·g−1 at 100 mA·g−1 after 100 cycles. The good lithium or sodium storage performances are likely attributed to the synergistic effects of the conductive carbon nano-networks and small SnS nanoparticles.

  18. Nano-cracks in a synthetic graphite composite for nuclear applications

    Science.gov (United States)

    Liu, Dong; Cherns, David

    2018-05-01

    Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1-2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation.

  19. Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes

    Science.gov (United States)

    Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.

    2014-01-01

    Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.

  20. Preparation and mechanical properties of carbon nanotube-silicon nitride nano-ceramic matrix composites

    Science.gov (United States)

    Tian, C. Y.; Jiang, H.

    2018-01-01

    Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.

  1. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    Science.gov (United States)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  2. Nano-Doped Monolithic Materials for Molecular Separation

    Directory of Open Access Journals (Sweden)

    Caleb Acquah

    2017-01-01

    Full Text Available Monoliths are continuous adsorbents that can easily be synthesised to possess tuneable meso-/macropores, convective fluid transport, and a plethora of chemistries for ligand immobilisation. They are grouped into three main classes: organic, inorganic, and hybrid, based on their chemical composition. These classes may also be differentiated by their unique morphological and physicochemical properties which are significantly relevant to their specific separation applications. The potential applications of monoliths for molecular separation have created the need to enhance their characteristic properties including mechanical strength, electrical conductivity, and chemical and thermal stability. An effective approach towards monolith enhancement has been the doping and/or hybridization with miniaturized molecular species of desirable functionalities and characteristics. Nanoparticles are usually preferred as dopants due to their high solid phase dispersion features which are associated with improved intermolecular adsorptive interactions. Examples of such nanomaterials include, but are not limited to, carbon-based, silica-based, gold-based, and alumina nanoparticles. The incorporation of these nanoparticles into monoliths via in situ polymerisation and/or post-modification enhances surface adsorption for activation and ligand immobilisation. Herein, insights into the performance enhancement of monoliths as chromatographic supports by nanoparticles doping are presented. In addition, the potential and characteristics of less common nanoparticle materials such as hydroxyapatite, ceria, hafnia, and germania are discussed. The advantages and challenges of nanoparticle doping of monoliths are also discussed.

  3. Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Prajakta R.; Krishnamurthy, V.N.; Joshi, Satyawati S. [Department of Chemistry, University of Pune, Pune 411007 (India)

    2006-12-15

    A comparative study of the thermal decomposition of ammonium perchlorate (AP)/hydroxy terminated polybutadiene (HTPB) based composite propellants has been carried out in presence and absence of nano iron oxide at different heating rates in a dynamic nitrogen atmosphere using differential scanning calorimetry. The pronounced effect was a lowering of the high temperature decomposition by 49 C. A higher heat release up to 40% was observed in presence of nano ferric oxide (3.5 nm). The kinetic parameters were evaluated using the Kissinger method. The increase of the rate constant in the catalyzed propellant confirmed the enhancement of the catalytic activity of ammonium perchlorate. The scanning electron micrographs of nano Fe{sub 2}O{sub 3} incorporated in HTPB revealed a well-separated characteristic necklace-like structure of {alpha}-Fe{sub 2}O{sub 3} particles at high magnification. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  4. Optimization of Nano-Carbon Materials for Hydrogen Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Yakobson, Boris I [Rice University

    2013-08-02

    Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures of high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.

  5. Bio-Based Nano Composites from Plant Oil and Nano Clay

    Science.gov (United States)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  6. Hot-wire chemical vapor synthesis for a variety of nano-materials with novel applications

    International Nuclear Information System (INIS)

    Dillon, A.C.; Mahan, A.H.; Deshpande, R.; Alleman, J.L.; Blackburn, J.L.; Parillia, P.A.; Heben, M.J.; Engtrakul, C.; Gilbert, K.E.H.; Jones, K.M.; To, R.; Lee, S-H.; Lehman, J.H.

    2006-01-01

    Hot-wire chemical vapor deposition (HWCVD) has been demonstrated as a simple economically scalable technique for the synthesis of a variety of nano-materials in an environmentally friendly manner. For example we have employed HWCVD for the continuous production of both carbon single- and multi-wall nanotubes (SWNTs and MWNTs). Unanticipated hydrogen storage on HWCVD-generated MWNTs has led insight into the adsorption mechanism of hydrogen on metal/carbon composites at near ambient temperatures that could be useful for developing a vehicular hydrogen storage system. Recent efforts have been focused on growing MWNT arrays on thin nickel films with a simple HWCVD process. New data suggests that these MWNT arrays could replace the gold black coatings currently used in pyroelectric detectors to accurately measure laser power. Finally, we have very recently employed HWCVD for the production of crystalline molybdenum and tungsten oxide nanotubes and nanorods. These metal oxide nanorods and nanotubes could have applications in catalysis, batteries and electrochromic windows or as gas sensors. A summary of the techniques for growing these novel materials and their various potential applications is provided

  7. Specimen preparation for nano-scale investigation of cementitious repair material.

    Science.gov (United States)

    Azarsa, Pejman; Gupta, Rishi

    2018-04-01

    Cementitious Repair Materials (CRMs) in the construction industry have been used for many decades now and has become a very important part of activities in cement world. The performance of some of these CRMs when applied to retrofitting concrete structural elements is also well documented. However, the characterization of some of the CRMs at the micro- and nano level is not fully documented. The first step to studying materials at the microscopic level is to be able to fabricate proper specimens for microscopy. In this study, a special and newly developed class of CRM was selected and fabricated by Focused Ion Beam (FIB) using well-known "Lift-out" technique. The prepared specimen was later examined using various analytical techniques such as energy dispersive x-ray analysis using one of the highest and most stable Scanning Transmission Electron Holography Microscopy (STEHM) around the world. This process enabled understanding of the composition, morphology, and spatial distribution of various phases of the CRM. It was observed that the microstructure consisted of a very fine, compact, and homogenous amorphous structure. X-ray analysis indicated that there was considerable deviation between the Si/Ca ratios for the hydrated product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Facile Preparation of Nano-Bi₂MoO₆/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation.

    Science.gov (United States)

    Cai, Lu; Gong, Jiuyan; Liu, Jianshe; Zhang, Hailong; Song, Wendong; Ji, Lili

    2018-02-09

    In this work, a new nano-Bi₂MoO₆/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-vis diffuse reflection spectroscopy (DRS) were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi₂MoO₆ crystals were well-deposited on the surface of Bi₂MoO₆/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB) under the visible light (λ > 420 nm) irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi₂MoO₆/diatomite composite with the mass ratio of Bi₂MoO₆ to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h⁺ and•O 2- . As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation.

  9. DC ionic conductivity of NaNO3: γ-Al2O3 composite solid electrolyte system

    International Nuclear Information System (INIS)

    Madhava Rao, M.V.; Narender Reddy, S.; Sadananda Chary, A.

    2005-01-01

    We present DC ionic conductivity measurements on composites formed between Na + ion conductor (NaNO 3 ) and dispersed insulating oxide (alumina). Enhancement of conductivity is noticed to increase with mole percent (m/o) of the dispersoid. The maximum enhancement observed is more than two orders of magnitude with respect to the host material. X-ray diffraction and differential scanning calorimetry studies ruled out the formation of solid solutions between the host material and the dispersoid. The experimental data indicating higher conductivity in dispersed system is interpreted in terms of the formation of space charge layer between the host material and the dispersoid in which defect concentration increases and that is thought to be the possible mechanism of conductivity enhancement. Activation energies obtained from the conductivity data in the extrinsic conduction region indicated least value for the systems at threshold mole percentage

  10. Characterizations of nano-TiO{sub 2}/diatomite composites and their photocatalytic reduction of aqueous Cr (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qing; Li, Hui; Zheng, Shuilin, E-mail: shuilinzh@sina.com; Sun, Zhiming, E-mail: szmcumtb@hotmail.com

    2014-08-30

    Graphical abstract: Nano-TiO{sub 2}/diatomite (DIA) composites were successfully synthesized by a typical hydrolysis precipitation method. The composites show good photocatalytic activity and stability for aqueous Cr (VI) removal. - Highlights: • TiO{sub 2} nanoparticles/diatomite composite was synthesized and characterized. • The composite exhibited a good photocatalytic performance in Cr (VI) reduction. • The photocatalyst showed good photocatalytic stability. • The composite is a promising material for Cr (VI) photocatalytic reduction. - Abstract: In this paper, the TiO{sub 2} nanoparticles were immobilized on diatomite (DIA) via a typical hydrolysis precipitation process using TiCl{sub 4} as precursor. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). TiO{sub 2} nanoparticles with the average grain size of around 7–14 nm were well deposited on the surface of diatomite. The photocatalytic activity toward the reduction of aqueous Cr (VI) was demonstrated under UV light. The influence of initial pH values, catalyst amount, illumination intensity and initial concentration of Cr (VI) on photocatalytic reduction of Cr (VI) were investigated. Compared with the commercial TiO{sub 2} (P25, Degussa), the TiO{sub 2}/DIA composites had better reactive activity because of their relatively higher adsorption capacity. Furthermore, the prepared photocatalyst exhibited relatively good photocatalytic stability depending on the reusability tests.

  11. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    International Nuclear Information System (INIS)

    Faghihi, K.; Ashouri, M.; Feyzi, A.

    2013-01-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  12. Synthesis and characterization of new polyimide/organo clay nano composites containing benzophenone moieties in the main chain

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, K.; Ashouri, M.; Feyzi, A., E-mail: k-faghihi@araku.ac.ir [Arak University, Faculty of Science, Organic Polymer Chemistry Research Laboratory, 38158-879 Arak (Iran, Islamic Republic of)

    2013-08-01

    A series of nano composites consist of organic polyimide and organo-modified clay content varying from 0 to 5 wt %, were successfully prepared by in situ polymerization. Polyimide used as a matrix of nano composite was prepared through the reaction of 1,4-bis [4-aminophenoxy] butane and 3,3,4,4-benzophenone tetra carboxylic dianhydride in N,N-dimethylacetamide (Dmac). The resulting nano composite films were characterized by Ft-IR spectroscopy, X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  13. Influence of Compatibilizer and Processing Conditions on Morphology, Mechanical Properties, and Deformation Mechanism of PP/Clay Nano composite

    International Nuclear Information System (INIS)

    Akbari, B.; Bagheri, R.

    2012-01-01

    Polypropylene/montmorillonite nano composite was prepared by melt intercalation method using a twin-screw extruder with starve feeding system in this paper. The effects of compatibilizer, extruder rotor speed and feeding rate on properties of nano composite were investigated. Structure, tensile, and impact properties and deformation mechanism of the compounds were studied. For investigation of structure and deformation mechanisms, X-ray diffraction (XRD) and transmission optical microscopy (TOM) techniques were utilized, respectively. The results illustrate that introduction of the compatibilizer and also variation of the processing conditions affect structure and mechanical properties of nano composite.

  14. Composite materials for wind power turbine blades

    DEFF Research Database (Denmark)

    Brøndsted, P.; Lilholt, H.; Lystrup, Aa.

    2005-01-01

    , and industrial potential. The important technologies of today are prepreg (pre-impregnated) technology and resin infusion technology. The mechanical properties of fiber composite materials are discussed, with a focus on fatigue performance. Damage and materials degradation during fatigue are described. Testing...

  15. Functional properties of extruded nano composites based on cassava starch, polyvinyl alcohol and montmorillonite

    International Nuclear Information System (INIS)

    Debiagi, Flavia; Matsuda, Daniel K.M.; Marengo, Vitor A.; Vercelheze, Ana Elisa S.; Mali, Suzana

    2011-01-01

    The objectives of this work were to produce biodegradable trays based on cassava starch (native or modified by acid), sugarcane fibers and nano clay (sodium montmorillonite) and also to characterize the produced trays according to their density, tensile strength, X-ray diffraction and biodegradability. The trays were obtained by thermoforming into a hydraulic press coupled to a Teflon mold (18 x 23 cm) at 130 degree C/ 20 min and 100 bars of pressure. The peak related to the nano clay (2 = 7.1 o ) were not observed in XRD patterns of the trays, suggesting the formation of an exfoliated structure in the nano composite. The addition of modified starch increased tensile strength and density of the samples, and the addition of fibers and nano clays decreased the tensile strength of native and modified starch trays. The weight loss of trays was not affected by the starch type, however the addition of fibers increased the biodegradation and the addition of nano clays decreased. (author)

  16. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  17. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Paşcu, Elena I.; Stokes, Joseph; McGuinness, Garrett B., E-mail: garrett.mcguinness@dcu.ie

    2013-12-01

    Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw = 90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 μm. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (± 0.33 kPa) for electrospun samples of PHBV only to 1.4 kPa (± 0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples

  18. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering

    International Nuclear Information System (INIS)

    Paşcu, Elena I.; Stokes, Joseph; McGuinness, Garrett B.

    2013-01-01

    Electrospinning of fibrous scaffolds containing nano-hydroxyapatite (nHAp) embedded in a matrix of functional biomacromolecules offers an attractive route to mimicking the natural bone tissue architecture. Functional fibrous substrates will support cell attachment, proliferation and differentiation, while the role of HAp is to induce cells to secrete extracellular matrix (ECM) for mineralization to form bone. Electrospinning of biomaterials composed of polyhydroxybutyrate-co-(3-hydroxyvalerate) with 2% valerate fraction (PHBV), nano-hydroxyapatite (nHAp), and Bombyx mori silk fibroin essence (SF), Mw = 90KDa, has been achieved for nHAp and SF solution concentrations of 2 (w/vol) % each and 5 (w/vol) % each. The structure and properties of the nanocomposite fibrous membranes were investigated by means of Scanning Electron Microscopy in combination with Energy Dispersive X-Ray Analysis (SEM/EDX), Fourier Transformed Infrared Spectroscopy (FT-IR), uniaxial tensile and compressive mechanical testing, degradation tests and in vitro bioactivity tests. SEM images showed smooth, uniform and continuous fibre deposition with no bead formation, and fibre diameters of between 10 and 15 μm. EDX and FT-IR confirmed the presence of nHAp and SF. After one month in deionised water, tests showed less than 2% weight loss with the samples retaining their fibrous morphology, confirming that this material biodegrades slowly. After 28 days of immersion in Simulated Body Fluid (SBF) an apatite layer was visible on the surface of the fibres, proving their bioactivity. Preliminary in vitro biological assessment showed that after 1 and 3 days in culture, cells were attached to the fibres, retaining their morphology while presenting a flattened appearance and elongated shape on the surface of fibres. Young's modulus was found to increase from 0.7 kPa (± 0.33 kPa) for electrospun samples of PHBV only to 1.4 kPa (± 0.54 kPa) for samples with 2 (w/vol) % each of nHAp and SF. Samples

  19. Comparison of shear bond strengths of conventional orthodontic composite and nano-ceramic restorative composite: An in vitro study

    Directory of Open Access Journals (Sweden)

    Namit Nagar

    2013-01-01

    Full Text Available Objectives: To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X MonoTM♦, a restorative resin with the traditional orthodontic composite Transbond XTTM† and to evaluate the site of bond failure using Adhesive Remnant Index. Materials and Methods: Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XTTM† (Group I and Ceram-X MonoTM♦ (Group II according to manufacturer′s protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired ′t′ test and Chi square test. Results: The mean shear bond strength of Group I (Transbond XTTM† was 12.89 MPa ± 2.19 and that of Group II (Ceram-X MonoTM was 7.29 MPa ± 1.76. Unpaired ′t′ test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Conclusions: Ceram-X MonoTM♦ had a lesser mean shear bond strength when compared to Transbond XTTM† which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X MonoTM† and Transbond XTTM† showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.

  20. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials production

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Tanaka, K.; Asaji, T. [Tateyama Machine Co., Ltd., 30 Shimonoban, Toyama, Toyama 930-1305 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Ter 18/c (Hungary); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2010-02-15

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C{sub 60} ion beam production.

  1. Flexible nano-GFO/PVDF piezoelectric-polymer nano-composite films for mechanical energy harvesting

    Science.gov (United States)

    Mishra, Monali; Roy, Amritendu; Dash, Sukalyan; Mukherjee, Somdutta

    2018-03-01

    Owing to the persistent quest of renewable energy technology, piezoe