WorldWideScience

Sample records for nano affinity templates

  1. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok, K.Y.; Ng, I.K.

    2011-01-01

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  2. Aluminum Templates of Different Sizes with Micro-, Nano- and Micro/Nano-Structures for Cell Culture

    Directory of Open Access Journals (Sweden)

    Ming-Liang Yen

    2017-10-01

    Full Text Available This study investigates the results of cell cultures on aluminum (Al templates with flat-structures, micro-structures, nano-structures and micro/nano-structures. An Al template with flat-structure was obtained by electrolytic polishing; an Al template with micro-structure was obtained by micro-powder blasting; an Al template with nano-structure was obtained by aluminum anodization; and an Al template with micro/nano-structure was obtained by micro-powder blasting and then anodization. Osteoblast-like cells were cultured on aluminum templates with various structures. The microculture tetrazolium test assay was utilized to assess the adhesion, elongation, and proliferation behaviors of cultured osteoblast-like cells on aluminum templates with flat-structures, micro-structures, nano-structures, and micro/nano-structures. The results showed that the surface characterization of micro/nano-structure of aluminum templates had superhydrophilic property, and these also revealed that an aluminum template with micro/nano-structure could provide the most suitable growth situation for cell culture.

  3. Template-assisted growth of nano structured functional materials

    International Nuclear Information System (INIS)

    Ying, K.K.; Nur Ubaidah Saidin; Khuan, N.I.; Suhaila Hani Ilias; Foo, C.T.

    2012-01-01

    Template-assisted growth is an important nano electrochemical deposition technique for synthesizing one-dimensional (1-D) nano structures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodization of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nano structures in the form of nano wires using PAA templates as scaffolds. Axial heterostructure and homogeneous nano wires formed by engineering materials configuration via composition and/ or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to alucidate the microstructures, morphologies and chemical compositions of the nano wires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nano structures have useful applications as critical components in nano sensor devices and various areas of nano technology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals. (Author)

  4. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    Science.gov (United States)

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  5. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    Science.gov (United States)

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  6. Numerical Control Device for Preparation Nano-Carbon Granule Coating Superhydrophobic Template and Its Application

    Science.gov (United States)

    Shang, G. R.; Li, Y.

    2017-12-01

    It is one of the ways for changing surface property by fabricating superhydrophibic coating with the help of template that is made of depositing nano-carbon particles of fuel flame on substrate such as pure copper or aluminium alloy. In the process of making template, it is difficult to keep the deposition layer uniformed. In this work, the problem was solved by manufacturing a set of numerical control equipment. It has been proved by application test that the deposition layer was uniformed by means of this facility. The contact angle is more than 150°. A new way has been developed for making superhydrohibic template.

  7. Microwave-Assisted Synthesis of Mesoporous Nano-Hydroxyapatite Using Surfactant Templates

    Science.gov (United States)

    Mesoporous nano-hydroxyapatite (n-HAP) was expeditiously synthesized using the pseudo sol-gel microwave-assisted protocol (30 min) in the presence of two novel templates, namely sodium lauryl ether sulfate (SLES) and linear alkylbenzenesulfonate (LABS). The cooperative self-assem...

  8. Synthesis of nano grade hollow silica sphere via a soft template method.

    Science.gov (United States)

    Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu

    2008-06-01

    The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.

  9. Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules.

    Science.gov (United States)

    Parakhonskiy, Bogdan V; Yashchenok, Alexey M; Konrad, Manfred; Skirtach, Andre G

    2014-05-01

    Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Synthesis of NaCl Single Crystals with Defined Morphologies as Templates for Fabricating Hollow Nano/micro-structures

    DEFF Research Database (Denmark)

    Wang, B.B.; Jin, P.; Yue, Yuanzheng

    2015-01-01

    . These naturally abundant NaCl single crystal templates are water-soluble, environmentally-friendly and uniform in both geometry and size, and hence are ideal for preparing high quality hollow nano/micro structures. The new approach may have the potential to replace the conventional hard or soft template...... approaches. Furthermore, this work has revealed the formation mechanism of nano/micron NaCl crystals with different sizes and geometries....

  11. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    Science.gov (United States)

    Phuong, Nguyenthi; Andisetiawan, Anugrah; van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-11-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.

  12. Fabrication of a Ni nano-imprint stamp for an anti-reflective layer using an anodic aluminum oxide template.

    Science.gov (United States)

    Park, Eun-Mi; Lim, Seung-Kyu; Ra, Senug-Hyun; Suh, Su-Jung

    2013-11-01

    Aluminum anodizing can alter pore diameter, density distribution, periodicity and layer thickness in a controlled way. Because of this property, porous type anodic aluminum oxide (AAO) was used as a template for nano-structure fabrication. The alumina layer generated at a constant voltage increased the pore size from 120 nm to 205 nm according to an increasing process time from 60 min to 150 min. The resulting fabricated AAO templates had pore diameters at or less than 200 nm. Ni was sputtered as a conductive layer onto this AAO template and electroplated using DC and pulse power. Comparing these Ni stamps, those generated from electroplating using on/reverse/off pulsing had an ordered pillar array and maintained the AAO template morphology. This stamp was used for nano-imprinting on UV curable resin coated glass wafer. Surface observations via electron microscopy showed that the nano-imprinted patterned had the same shape as the AAO template. A soft mold was subsequently fabricated and nano-imprinted to form a moth-eye structure on the glass wafer. An analysis of the substrate transmittance using UV-VIS/NIR spectroscopy showed that the transmittance of the substrate with the moth-eye structure was 5% greater that the non-patterned substrate.

  13. Preparation by the nano-casting process of novel porous carbons from large pore zeolite templates

    International Nuclear Information System (INIS)

    F Gaslain; J Parmentier; V Valtchev; J Patarin; C Vix Guterl

    2005-01-01

    The development of new growing industrial applications such as gas storage (e.g.: methane or hydrogen) or electric double-layer capacitors has focussed the attention of many research groups. For this kind of application, porous carbons with finely tailored micro-porosity (i.e.: pore size diameter ≤ 1 nm) appear as very promising materials due to their high surface area and their specific pore size distribution. In order to meet these requirements, attention has been paid towards the feasibility of preparing microporous carbons by the nano-casting process. Since the sizes and shapes of the pores and walls respectively become the walls and pores of the resultant carbons, using templates with different framework topologies leads to various carbon replicas. The works performed with commercially available zeolites employed as templates [1-4] showed that the most promising candidate is the FAU-type zeolite, which is a large zeolite with three-dimensional channel system. The promising results obtained on FAU-type matrices encouraged us to study the microporous carbon formation on large pore zeolites synthesized in our laboratory, such as EMC-1 (International Zeolite Association framework type FAU), zeolite β (BEA) or EMC-2 (EMT). The carbon replicas were prepared following largely the nano-casting method proposed for zeolite Y by the Kyotani research group [4]: either by liquid impregnation of furfuryl alcohol (FA) followed by carbonization or by vapour deposition (CVD) of propylene, or by an association of these two processes. Heat treatment of the mixed materials (zeolite / carbon) could also follow in order to improve the structural ordering of the carbon. After removal of the inorganic template by an acidic treatment, the carbon materials obtained were characterised by several analytical techniques (XRD, N 2 and CO 2 adsorption, electron microscopy, etc...). The unique characteristics of these carbons are discussed in details in this paper and compared to those

  14. Chondroitin sulfate template-mediated biomimetic synthesis of nano-flake hydroxyapatite

    Science.gov (United States)

    He, Dan; Xiao, Xiufeng; Liu, Fang; Liu, Rongfang

    2008-11-01

    By Ca(NO 3) 2·4H 2O and (NH 4) 3PO 4·3H 2O as reagents and chondroitin sulfate (ChS) as a template, nano-flake hydroxyapatite (HA) is synthesized using a biomimetic method according to the biomineralization theory. HA crystals obtained are characterized in crystalline phase, microstructure, chemical composition and morphology by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscopy (TEM) and elemental analysis respectively. UV-vis spectrum is adopted to investigate interactions between functional groups ChS and HA. The results show that HA crystal nucleation and growth take place in chemical interactions between HA crystals and ChS as a template. And elemental analysis indicates that obtained HA contains a small amount of ChS. Furthermore, ChS concentration significantly affects the morphology of HA crystals. Staple-fiber-like HA crystals can be obtained at a low concentration in ChS, and flake-like HA crystals synthesized at a high concentration (≥0.5 wt.%) of ChS as a template.

  15. Chondroitin sulfate template-mediated biomimetic synthesis of nano-flake hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    He Dan; Xiao Xiufeng; Liu Fang [College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007 (China); Liu Rongfang [College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007 (China)], E-mail: rfliu@vip.sina.com

    2008-11-15

    By Ca(NO{sub 3}){sub 2}.4H{sub 2}O and (NH{sub 4}){sub 3}PO{sub 4}.3H{sub 2}O as reagents and chondroitin sulfate (ChS) as a template, nano-flake hydroxyapatite (HA) is synthesized using a biomimetic method according to the biomineralization theory. HA crystals obtained are characterized in crystalline phase, microstructure, chemical composition and morphology by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscopy (TEM) and elemental analysis respectively. UV-vis spectrum is adopted to investigate interactions between functional groups ChS and HA. The results show that HA crystal nucleation and growth take place in chemical interactions between HA crystals and ChS as a template. And elemental analysis indicates that obtained HA contains a small amount of ChS. Furthermore, ChS concentration significantly affects the morphology of HA crystals. Staple-fiber-like HA crystals can be obtained at a low concentration in ChS, and flake-like HA crystals synthesized at a high concentration ({>=}0.5 wt.%) of ChS as a template.

  16. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    International Nuclear Information System (INIS)

    Wnęk, M; Stockley, P G; Górzny, M Ł; Evans, S D; Ward, M B; Brydson, R; Wälti, C; Davies, A G

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating. (paper)

  17. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  18. Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors.

    Science.gov (United States)

    Wang, Haoran; Yu, Shukai; Xu, Bin

    2016-09-20

    Hierarchical porous carbon materials with high surface areas and a localized graphitic structure were simply prepared from sucrose using nano-ZnO as a hard template, activation agent and graphitization catalyst simultaneously, which exhibit an outstanding high-rate performance and can endure an ultrafast scan rate of 20 V s -1 and ultrahigh current density of 1000 A g -1 .

  19. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    Science.gov (United States)

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Study of chemically synthesized ZnO nano particles under a bio template using radioactive ion beam

    CERN Multimedia

    This is a project proposal to study nano sized semiconductor ZnO system, useful in biology and medicinal purposes, using radioactive ion beam from ISOLDE. Doping of the nano particles with Cu, Cd and Ga ions (in their variable valancy states) are expected to impart changes in the electrical structure and properties in the said system under study. The morphological changes, chemical environment, micro structure, electrical and optical properties of the nano size particles of ZnO system (developed under a bio template of folic acid) after the interaction with radioactive ion beam will be studied. The provision of perturbed angular correlation (PAC) study with respect to the changes in chemical environment, where ever possible will be attempted.

  1. Nanoscale Affinity Chip Interface for Coupling Inhibition SPR Immunosensor Screening with Nano-LC TOF MS

    NARCIS (Netherlands)

    Marchesini, G.R.; Buijs, J.; Haasnoot, W.; Hooijerink, H.; Jansson, O.; Nielen, M.W.F.

    2008-01-01

    The on-line nanoscale coupling of a surface plasmon resonance (SPR)-based inhibition biosensor immunoassay (iBIA) for the screening of low molecular weight molecules with nano-liquid-chromatography electrospray ionization time-of-flight mass spectrometry (nano-LC ESI TOF MS) for identification is

  2. Luminescent Eosin Y–SiO{sub 2} hybrid nano and microrods prepared by sol–gel template method

    Energy Technology Data Exchange (ETDEWEB)

    Secu, M., E-mail: msecu@infim.ro [National Institute for Materials Physics, P.O. Box MG-7, Bucharest–Magurele, 077125 (Romania); Secu, C.E.; Sima, M.; Negrea, R.F.; Bartha, C. [National Institute for Materials Physics, P.O. Box MG-7, Bucharest–Magurele, 077125 (Romania); Dinescu, M.; Damian, V. [National Institute for Laser, Plasma and Radiation, P.O. Box MG-36, Bucharest–Magurele 077125 (Romania)

    2013-11-15

    Sol–gel chemistry within the pores of a polycarbonate template membrane was used for the preparation of Eosin Y–SiO{sub 2} hybrid nano- and microrods, using tetraethylorthosilicate [TEOS, Si(OC{sub 2}H{sub 5}){sub 4}] as the precursor in the presence of trifluoroacetic acid (TFA) catalyst. The ethanolic solution of Eosin-Y was added to the silica sol to trap dye molecules inside the SiO{sub 2} gel network during the gelation. Structural and morphological characterization using scanning electron microscopy (SEM) and luminescence microscopy have shown the formation of rods with 200 nm and 1.2 μm diameter and about 30 μm length, exhibiting luminescence properties. Spectroscopic characterization has shown that the luminescence is due to Eosin-Y molecule in the xerogel porous network, surrounded by a solvation shell given mainly by the water. -- Highlights: • Sol–gel template method was used to prepare Eosin Y–SiO{sub 2} hybrid rods-type structures. • Morphological characterization has shown nano- and microrods with luminescent properties. • Luminescence is due to Eosin-Y molecule surrounded by a solvation shell given by water.

  3. Luminescent Eosin Y–SiO2 hybrid nano and microrods prepared by sol–gel template method

    International Nuclear Information System (INIS)

    Secu, M.; Secu, C.E.; Sima, M.; Negrea, R.F.; Bartha, C.; Dinescu, M.; Damian, V.

    2013-01-01

    Sol–gel chemistry within the pores of a polycarbonate template membrane was used for the preparation of Eosin Y–SiO 2 hybrid nano- and microrods, using tetraethylorthosilicate [TEOS, Si(OC 2 H 5 ) 4 ] as the precursor in the presence of trifluoroacetic acid (TFA) catalyst. The ethanolic solution of Eosin-Y was added to the silica sol to trap dye molecules inside the SiO 2 gel network during the gelation. Structural and morphological characterization using scanning electron microscopy (SEM) and luminescence microscopy have shown the formation of rods with 200 nm and 1.2 μm diameter and about 30 μm length, exhibiting luminescence properties. Spectroscopic characterization has shown that the luminescence is due to Eosin-Y molecule in the xerogel porous network, surrounded by a solvation shell given mainly by the water. -- Highlights: • Sol–gel template method was used to prepare Eosin Y–SiO 2 hybrid rods-type structures. • Morphological characterization has shown nano- and microrods with luminescent properties. • Luminescence is due to Eosin-Y molecule surrounded by a solvation shell given by water

  4. Preparation of anodic aluminum oxide (AAO) nano-template on silicon and its application to one-dimensional copper nano-pillar array formation

    International Nuclear Information System (INIS)

    Shen, Lan; Ali, Mubarak; Gu, Zhengbin; Min, Bonggi; Kim, Dongwook; Park, Chinho

    2013-01-01

    Anodized aluminum oxide (AAO) nanotemplates were prepared using the Al/Si substrates with an aluminum layer thickness of about 300 nm. A two-step anodization process was used to prepare an ordered porous alumina nanotemplate, and the pores of various sizes and depths were constructed electrochemically through anodic oxidation. The optimum morphological structure for large area application was constructed by adjusting the applied potential, temperature, time, and electrolyte concentration. SEM investigations showed that hexagonal-close-packed alumina nano-pore arrays were nicely constructed on Si substrate, having smooth wall morphologies and well-defined diameters. It is also reported that one dimensional copper nanopillars can be fabricated using the tunable nanopore sized AAO/Si template, by controlling the copper deposition process

  5. Development of Highly Nano-Dispersed NiO/GDC Catalysts from Ion Exchange Resin Templates

    Directory of Open Access Journals (Sweden)

    Angel Caravaca

    2017-11-01

    Full Text Available Novel NiO/GDC (Gadolinium-doped Ceria cermet catalysts were developed by the Weak Acid Resin (WAR method using an ion exchange resin template. In addition, the specific surface area of these tunable materials was enhanced by NiO partial dissolution in aqueous acid solution. The whole procedure highly improved the micro-structural properties of these materials compared to previous studies. Catalysts with high metal loadings (≥10%, small Ni nanoparticles (<10 nm, and high specific surface areas (>70 m2/g were achieved. These properties are promising for catalytic applications such as methane steam reforming for H2 production.

  6. Study of defect generated visible photoluminescence in zinc oxide nano-particles prepared using PVA templates

    Energy Technology Data Exchange (ETDEWEB)

    Oudhia, A. [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Choudhary, A., E-mail: aarti.bhilai@gmail.com [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Sharma, S.; Aggrawal, S. [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Dhoble, S.J. [RTM University Nagpur, Maharashtra (India)

    2014-10-15

    Intrinsic defect generated photoluminescence (PL) in zinc oxide nanoparticles (NPs) obtained by a PVA template based wet-chemical process has been studied. A good controllability was achieved on the surface defects, structure and the morphology of ZnO NPs through the variation of solvents used in synthesis. The PL emission strongly depended on the defect structure and morphology. SEM, XRD, annealing and PL excitation studies were used to analyze the types of defects involved in the visible emission as well as the defect concentration. The mechanism for the blue, green and yellow emissions was proposed. The spectral content of the visible emission was controlled through generation/removal of defects through the shape transformation or annealing by focusing on defect origins and broad controls. - Highlights: • ZnO nanoparticles were synthesized using poly-vinyl alcohol template in various solvents. • The structure and morphology of ZnO nanoparticles were depended on dielectric constant and boiling point of solvents. • Photoluminescence properties of ZnO nanoparticles were studied. • Maximum optical absorbance and Photoluminescence intensity were found in ethanolic preparation. • ZnO nanoparticles were annealed at different temperatures for detection of defect emission.

  7. Novel Preparation of Nano-Composite CuO-Cr2O3 Using Ctab-Template Method and Efficient for Hydrogenation of Biomass-Derived Furfural

    Science.gov (United States)

    Yan, Kai; Wu, Xu; An, Xia; Xie, Xianmei

    2013-02-01

    A simple route to fabricate nano-composite oxides CuO-Cr2O3 using hexadecyltrimethylammonium bromide (CTAB)-templated Cu-Cr hydrotalcite as the precursor is presented. This novel method is based on CTAB-templating effect for mesostructure directing and using the cheap metal nitrate, followed by removal of CTAB. It was indicated that the nano-composite CuO-Cr2O3 was formed during the removal of CTAB. X-ray diffraction (XRD) and transitional electronic microscopy (TEM) revealed nice nano-composite oxides CuO-Cr2O3 were formed with high crystallinity. N2 adsorption and desorption indicated that a high surface area of 170.5 m2/g with a pore size of 2.7 nm of the nano-composite CuO-Cr2O3 was facilely resulted. The as-synthesized nano-composite oxides CuO-Cr2O3 display good catalytic activities for hydrogenation of furfural to furfuryl alcohol, whereas 86% selectivity was achieved at 75% conversion of furfural.

  8. Bubble dynamic templated deposition of three-dimensional palladium nanostructure catalysts: Approach to oxygen reduction using macro-, micro-, and nano-architectures on electrode surfaces

    International Nuclear Information System (INIS)

    Yang Guimei; Chen Xing; Li Jie; Guo Zheng; Liu Jinhuai; Huang Xingjiu

    2011-01-01

    Highlights: → We synthesize the Pd nanostructures by bubbles dynamic templated. → We obtain Pd nanobuds and Pd nanodendrites by changing the reaction precursor. → We obtain Pd macroelectrode voltammertric behavior using small amount of Pd materials. → We proved a ECE process. → The Pd nanostructures/GCE for O 2 reduction is a 2-step 4-electron process. - Abstract: Three-dimensional (3D) palladium (Pd) nanostructures (that is, nano-buds or nano-dendrites) are fabricated by bubble dynamic templated deposition of Pd onto a glassy carbon electrode (GCE). The morphology can be tailored by changing the precursor concentration and reaction time. Scanning electron microscopy images reveal that nano-buds or nano-dendrites consist of nanoparticles of 40-70 nm in diameter. The electrochemical reduction of oxygen is reported at such kinds of 3D nanostructure electrodes in aqueous solution. Data were collected using cyclic voltammetry. We demonstrate the Pd macroelectrode behavior of Pd nanostructure modified electrode by exploiting the diffusion model of macro-, micro-, and nano-architectures. In contrast to bare GCE, a significant positive shift and splitting of the oxygen reduction peak (vs Ag/AgCl/saturated KCl) at Pd nanostructure modified GCE was observed.

  9. Alternative nano-structured thin-film materials used as durable thermal nanoimprint lithography templates

    Science.gov (United States)

    Bossard, M.; Boussey, J.; Le Drogoff, B.; Chaker, M.

    2016-02-01

    Nanoimprint templates made of diamond-like carbon (DLC) and amorphous silicon carbide (SiC) thin films and fluorine-doped associated materials, i.e. F-DLC and F-SiC were investigated in the context of thermal nanoimprint lithography (NIL) with respect to their release properties. Their performances in terms of durability and stability were evaluated and compared to those of conventional silicon or silica molds coated with antisticking molecules applied as a self-assembled monolayer. Plasma-enhanced chemical vapor deposition parameters were firstly tuned to optimize mechanical and structural properties of the DLC and SiC thin films. The impact of the amount of fluorine dopant on the deposited thin films properties was then analyzed. A comparative analysis of DLC, F-DLC as well as SiC and F-SiC molds was then carried out over multiple imprints, performed into poly (methyl methacrylate) (PMMA) thermo-plastic resist. The release properties of un-patterned films were evaluated by the measurement of demolding energies and surface energies, associated with a systematic analysis of the mold surface contamination. These analyses showed that the developed materials behave as intrinsically easy-demolding and contamination-free molds over series of up to 40 imprints. To our knowledge, it is the first time that such a large number of imprints has been considered within an exhaustive comparative study of materials for NIL. Finally, the developed materials went through standard e-beam lithography and plasma etching processes to obtain nanoscale-patterned templates. The replicas of those patterned molds, imprinted into PMMA, were shown to be of high fidelity and good stability after several imprints.

  10. Synthesis and thermal characterization of CdS nano crystals in previously formed template of maleic anhydride-octene 1-vinyl butyl terpolymer

    International Nuclear Information System (INIS)

    Akbarov, O.H; Mammadova, R.E; Malikov, E.Y.

    2008-01-01

    Full text: Nano crystals have dimensions in the range 10100 nm. Crystals in this size range possess unique properties, which enable scientists to manufacture materials and devices capable of performing unimaginable tasks. For that reason synthesis of this semiconductor nano crystals is expedient. Many useful methods have been used for preparing sulphide semiconductor nano crystals, such as colloidal chemistry method, sol-gel method, inverse micelle method, in situ synthesis and assemble on polymer template. The most significant method is in situ synthesis and assemble of sulphide semiconductor nano crystals on polymer. Compared with other methods, the stability of nanoparticles is improved by the protection and confinement of the copolymer. Because of confinement and protection effects of template environmental risk is prevented in this method. On the base of this principles in situ synthesis of CdS nano crystals in maleic anhydride-octene 1-vinyl butyl terpolymer was realized in this scientific work. First of all in specific condition maleic anhydride, octene 1, and vinyl butyl ether were polymerized to form a terpolymer as the result of radical ter polymerization. In second step CdS nano crystals were synthesized in N,N-dimethylformamide solution of maleic anhydride-octene 1-vinyl butyl terpolymer through the reaction of thiourea with cadmium chloride. In this process CdCI 2 x 2.5H 2 O was dissolved in N,N-dimethylformamide solution of previously formed terpolymer and was heated in 90 0 C temperature for 4 hours with vigorous stirring. Then desired amount of thiourea in N,N-dimethylformamide was quickly injected into the reaction flask using a syringe. The reaction continued for another 1 hour, and a yellow clear solution was obtained, which indicated the formation of CdS nano crystals

  11. Acyclovir-Loaded Chitosan Nanospheres from Nano-Emulsion Templating for the Topical Treatment of Herpesviruses Infections

    Directory of Open Access Journals (Sweden)

    Manuela Donalisio

    2018-04-01

    Full Text Available Acyclovir is not a good candidate for passive permeation since its polarity and solubility limit is partitioning into the stratum corneum. This work aims to develop a new topical formulation for the acyclovir delivery. New chitosan nanospheres (NS were prepared by a modified nano-emulsion template method. Chitosan NS were characterized by Dynamic Light Scattering (DLS, Transmission Electron Microscopy (TEM, and an in vitro release study. The in vitro skin permeation experiment was carried out using Franz cells and was equipped with porcine skin. Biological studies were performed on the Vero cell line infected by HSV-1 and HSV-2 strains. The acyclovir loaded chitosan NS appeared with a spherical shape, a size of about 200 nm, and a negative zeta potential of about 40.0 mV. The loading capacity of the drug was about 8.5%. In vitro release demonstrated that the percentage of acyclovir delivered from the nanospheres was approximately 30% after six hours. The in vitro skin permeation studies confirmed an improved amount of permeated acyclovir. The acyclovir-NS complex displayed a higher antiviral activity than that of free acyclovir against both the HSV-1 and the HSV-2 strain. The acyclovir-loaded NS showed no anti-proliferative activity and no signs of cytotoxicity induced by NS was detected. Confocal laser scanning microscopy confirmed that the NS are taken up by the cells.

  12. Thermal dewetting with a chemically heterogeneous nano-template for self-assembled L1(0) FePt nanoparticle arrays.

    Science.gov (United States)

    Wang, Liang-Wei; Cheng, Chung-Fu; Liao, Jung-Wei; Wang, Chiu-Yen; Wang, Ding-Shuo; Huang, Kuo-Feng; Lin, Tzu-Ying; Ho, Rong-Ming; Chen, Lih-Juann; Lai, Chih-Huang

    2016-02-21

    A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 ± 2.09 nm and 39.85 ± 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.

  13. Rectifying Behavior of Aligned ZnO Nano rods on Mg0.3Zn0.7O Thin Film Template

    International Nuclear Information System (INIS)

    Salina Muhamad; Suriani Abu Bakar; Mohamad Hafiz Mamat; Rafidah Ahmad; Mohamad Rusop

    2011-01-01

    Rectifying behavior more than 3 orders of aligned zinc oxide (ZnO) nano rods grown on Mg 0.3 Zn 0.7 O thin film template using chemical bath deposition method was observed, giving a barrier height of 0.75 eV, and the ideality factor achieved was almost 6, which was analyzed using thermionic emission theory. Field emission scanning electron microscope (FESEM) images revealed that the grown ZnO was in hexagonal shape, uniformly distributed and in vertically aligned form. The crystallinity of the sample being studied using X-ray diffraction (XRD), where the highest peak was found at (002) phase, confirming that high crystallinity of ZnO was attained. The effect of metal/semiconductor junction between metal and aligned ZnO nano rods was discussed in further details. (author)

  14. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  15. Direct access to highly crystalline mesoporous nano TiO2 using sterically bulky organic acid templates

    Science.gov (United States)

    Bakre, Pratibha V.; Tilve, S. G.

    2018-05-01

    Sterically bulky monocarboxylic acid templates pivalic acid and phenoxyacetic acid are reported for the first time as organic templates in the sol-gel synthesis of TiO2. Mesoporous nanoparticulates of pure anatase phase and of well defined size were synthesized. The characterization of the materials prepared was done by various methods such as XRD, SEM, TEM, FTIR, UV-DRS, BET, etc. The prepared TiO2 samples were evaluated for the day light photodegradation of methylene blue by comparing with Degussa P25 and templates free synthesized TiO2 and were found to be more efficient.

  16. Photoelectron spectroscopic study on electronic structure of butterfly-templated ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Masao; Sugiyama, Harue; Takahashi, Kazutoshi; Guo, Qixin [Synchrotron Light Application Center, Saga University, Honjo 1, Saga 840-8502 (Japan); Gu, Jiajun; Zhang, Wang; Fan, Tongxiang; Zhang, Di [State Key Laboratory of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200030 (China)

    2010-06-15

    Biological systems have complicated hierarchical architecture involving nano-structures inside, and are expected as another candidate for new nano-templates. The present work reports the photoelectron spectroscopic study on electronic structure of the butterfly-templated ZnO that were successfully produced from butterfly wings. Ultraviolet Photoelectron Spectrum (UPS) of the butterfly-templated ZnO shows clearly the valence band and a Zn-3d peak, indicating that the butterfly-templated ZnO has the same electronic structure as bulk ZnO. However, the details show that the energy positions of the Zn-3d level and the valence-band structure are different between them. The present results indicate that the bonding interaction between Zn-4sp and O-2p orbitals is stronger in the butterfly-templated ZnO, probably due to the nano-structures inside. Important parameters such as band bending and electron affinity are also obtained. The larger band bending and the lower electron affinity are found in the butterfly-templated ZnO (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier.

    Science.gov (United States)

    Fornaguera, C; Dols-Perez, A; Calderó, G; García-Celma, M J; Camarasa, J; Solans, C

    2015-08-10

    Neurodegenerative diseases have an increased prevalence and incidence nowadays, mainly due to aging of the population. In addition, current treatments lack efficacy, mostly due to the presence of the blood-brain barrier (BBB) that limits the penetration of the drugs to the central nervous system. Therefore, novel drug delivery systems are required. Polymeric nanoparticles have been reported to be appropriate for this purpose. Specifically, the use of poly-(lactic-co-glycolic acid) (PLGA) seems to be advantageous due to its biocompatibility and biodegradability that ensure safe therapies. In this work, a novel approximation to develop loperamide-loaded nanoparticles is presented: their preparation by nano-emulsion templating using a low-energy method (the phase inversion composition, PIC, method). This nano-emulsification approach is a simple and very versatile technology, which allows a precise size control and it can be performed at mild process conditions. Drug-loaded PLGA nanoparticles were obtained using safe components by solvent evaporation of template nano-emulsions. Characterization of PLGA nanoparticles was performed, together with the study of the BBB crossing. The in vivo results of measuring the analgesic effect using the hot-plate test evidenced that the designed PLGA loperamide-loaded nanoparticles are able to efficiently cross the BBB, with high crossing efficiencies when their surface is functionalized with an active targeting moiety (a monoclonal antibody against the transferrin receptor). These results, together with the nanoparticle characterization performed here are expected to provide sufficient evidences to end up to clinical trials in the near future. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Surface study of nano-template anodic porous alumina pre-irradiated by ArF laser

    International Nuclear Information System (INIS)

    Jaleh, B.; Saramad, S.; Farshchi-Tabrizi, M.

    2009-01-01

    Nano-porous alumina membranes have widely used as matrix for the fabrication of nanomaterials for many applications including quantum-dot arrays, magnetic storage devices and composites for catalysis, due to their remarkable hardness, thermal and anti corrupted stability, uniform pore size and high pore density. In this experiment three sets of aluminum samples were chosen for fabrication nano-porous anodic alumina. One set has select for laser cleaning before chemical treatment and the two others with and without chemical treatment without laser irradiation. Anodic aluminum oxide (AAO) films were characterized with Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) micrograph and the SEM results were analyzed by Linear-Angular Fast Fourier Transform (LA-FFT) technique to investigate the arrangement and ordering of pores. According to these results the laser irradiated sample has much better regularity in comparison with the usual one.

  19. Nano

    DEFF Research Database (Denmark)

    Nørgaard, Bent; Engel, Lars Romann

    2007-01-01

    Gennem de sidste par år har et lille ord med et meget stort potentiale gentagende trængt sig på i den offentlige bevidsthed, det er ordet "nano". Nanovidenskab og nanoteknologi er lige nu to af de "hotteste" forskningsområder og betragtes af mange som porten til en helt ny verden af muligheder....... Muligheder, vi endnu ikke kender konsekvenserne af. Center for Kunst og Videnskabs forestilling NANO giver dig chancen for at blive bekendt med verdens mindste byggesten og idégrundlaget for nanoforskningen. Vi har skabt et rum, som på mange måder minder om et laboratorium. Rummet er forsynet med storskærme......, kolber, væsker og nanopartikler. Her vil du f.eks. opleve, hvordan forskere tilfører guld helt nye egenskaber. Forestillingen veksler mellem kemiske arbejdsdemonstrationer, stemningsskabende musik og livlig debat på storskærme mellem eksperter. NANO opfordrer publikum til at tage stilling til forskningen...

  20. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template - "Plastic Antibodies".

    Science.gov (United States)

    Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J; Piletska, Elena V; Turner, Anthony P F; Piletsky, Sergey A

    2013-06-13

    Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, K d = 6.3 × 10 -8 m), vancomycin (d = 250 nm, K d = 3.4 × 10 -9 m), a peptide (d = 350 nm, K d = 4.8 × 10 -8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.

  1. 自模板法制备介孔空心无机微/纳米结构%Synthesis of Mesoporous Hollow Inorganic Micro-/Nano-structures via Self-templating Methods

    Institute of Scientific and Technical Information of China (English)

    张百慧; 樊华; 卞僮; 吴骊珠; 佟振合; 张铁锐

    2013-01-01

    Mesoporous hollow inorganic micro-/nano-structures are very promising in various fields such as catalysis, energy and medicine because of their multiple and tunable functions, and their synthetic methodologies have attracted much attention. Compared with conventional hard-template or soft-template methods, the self-templating methods developed recently have many advantages, such as simpler procedures and without using extra costly templates. In this manuscript, the recent developments on the synthesis of mesoporous hollow inorganic mirco-/nano-strctures prepared by the self-templating methods were discussed in details according to the four kinds of different reaction mechanisms, including Ostwald ripening, surface-protected etching, Kirkendall effect and galvanic replacement, respectively. Finally, we concluded with a brief outlook for future research directions.%与传统的软、硬模板法相比,近期发展的自模板法具有反应步骤少和无需额外模板等众多优点,同时,介孔空心无机微/纳米结构在催化、能源和医药等领域的巨大应用前景也使其制备方法备受关注.本文根据不同的反应机理,从Ostwald熟化、表面保护刻蚀、柯肯达尔效应和电偶置换反应4个方面分别综述了自模板法的最新研究进展和应用现状,并展望了自模板法的研究与应用前景.

  2. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template – “Plastic Antibodies”

    Science.gov (United States)

    Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.

    2016-01-01

    Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870

  3. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Science.gov (United States)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

  4. Report Template

    DEFF Research Database (Denmark)

    Bjørn, Anders; Laurent, Alexis; Owsianiak, Mikołaj

    2018-01-01

    To ensure consistent reporting of life cycle assessment (LCA), we provide a report template. The report includes elements of an LCA study as recommended but the ILCD Handbook. Illustrative case study reported according to this template is presented in Chap. 39 ....

  5. Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair.

    Science.gov (United States)

    Qing, Taiping; He, Xiaoxiao; He, Dinggeng; Ye, Xiaosheng; Shangguan, Jingfang; Liu, Jinquan; Yuan, Baoyin; Wang, Kemin

    2017-08-15

    DNA repair processes are responsible for maintaining genome stability. Ligase and polynucleotide kinase (PNK) have important roles in ligase-mediated DNA repair. The development of analytical methods to monitor these enzymes involved in DNA repair pathways is of great interest in biochemistry and biotechnology. In this work, we reported a new strategy for label-free monitoring PNK and ligase activity by using dumbbell-shaped DNA templated copper nanoparticles (CuNPs). In the presence of PNK and ligase, the dumbbell-shaped DNA probe (DP) was locked and could resist the digestion of exonucleases and then served as an efficient template for synthesizing fluorescent CuNPs. However, in the absence of ligase or PNK, the nicked DP could be digested by exonucleases and failed to template fluorescent CuNPs. Therefore, the fluorescence changes of CuNPs could be used to evaluate these enzymes activity. Under the optimal conditions, highly sensitive detection of ligase activity of about 1U/mL and PNK activity down to 0.05U/mL is achieved. To challenge the practical application capability of this strategy, the detection of analyte in dilute cells extracts was also investigated and showed similar linear relationships. In addition to ligase and PNK, this sensing strategy was also extended to the detection of phosphatase, which illustrates the versatility of this strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Welding template

    International Nuclear Information System (INIS)

    Ben Venue, R.J. of.

    1976-01-01

    A welding template is described which is used to weld strip material into a cellular grid structure for the accommodation of fuel elements in a nuclear reactor. On a base plate the template carries a multitude of cylindrical pins whose upper half is narrower than the bottom half and only one of which is attached to the base plate. The others are arrested in a hexagonal array by oblong webs clamped together by chuck jaws which can be secured by means of screws. The parts are ground very accurately. The template according to the invention is very easy to make. (UWI) [de

  7. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    Science.gov (United States)

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-09

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Engineering of DNA templated tri-functional nano-chain of Fecore–Aushell and a preliminary study for cancer cell labeling and treatment

    Directory of Open Access Journals (Sweden)

    Madhuri Mandal

    2012-10-01

    Full Text Available Here DNA has been used as templating and self-assembling reagent to grow the chain like nanostructure. We have designed the composite in such a fashion that we obtained optical and magnetic properties together in a single biological material. Optical properties characterized by UV–visible absorption, Circular Dichroism (CD and their analysis show no denaturization of DNA. Transmission electron micrographs (TEM indicate formation of chain like structure of the nanoparticles. Particles were functionalized with folic acid for labeling and treatment of cancer cell.

  9. Selection of imprinted nanoparticles by affinity chromatography.

    Science.gov (United States)

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  10. Small scale affinity purification and high sensitivity reversed phase nanoLC-MS N-glycan characterization of mAbs and fusion proteins.

    Science.gov (United States)

    Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang

    2014-01-01

    N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented.

  11. Architecturing hierarchical function layers on self-assembled viral templates as 3D nano-array electrodes for integrated Li-ion microbatteries.

    Science.gov (United States)

    Liu, Yihang; Zhang, Wei; Zhu, Yujie; Luo, Yanting; Xu, Yunhua; Brown, Adam; Culver, James N; Lundgren, Cynthia A; Xu, Kang; Wang, Yuan; Wang, Chunsheng

    2013-01-09

    This work enables an elegant bottom-up solution to engineer 3D microbattery arrays as integral power sources for microelectronics. Thus, multilayers of functional materials were hierarchically architectured over tobacco mosaic virus (TMV) templates that were genetically modified to self-assemble in a vertical manner on current-collectors, so that optimum power and energy densities accompanied with excellent cycle-life could be achieved on a minimum footprint. The resultant microbattery based on self-aligned LiFePO(4) nanoforests of shell-core-shell structure, with precise arrangement of various auxiliary material layers including a central nanometric metal core as direct electronic pathway to current collector, delivers excellent energy density and stable cycling stability only rivaled by the best Li-ion batteries of conventional configurations, while providing rate performance per foot-print and on-site manufacturability unavailable from the latter. This approach could open a new avenue for microelectromechanical systems (MEMS) applications, which would significantly benefit from the concept that electrochemically active components be directly engineered and fabricated as an integral part of the integrated circuit (IC).

  12. Photoluminescence and charge-transport characteristics of nano-columnar titanium dioxide films prepared by rf-sputtering on alumina templates

    Science.gov (United States)

    Kheirandish, E.; Hosseini, T.; Yavarishad, N.; King, S.; Kouklin, N.

    2018-02-01

    The current study presents the synthesis and characterization of poly-crystalline TiO2 thin-film prepared by rf-sputtering on top of a highly regimented nanoporous Au-coated Al2O3 substrate. The film’s physical and electronic properties were characterized via SEM, EDS, x-ray diffraction and RAMAN spectroscopy as well as temperature dependent photoluminescence (PL) and I-V measurements. The films feature a 1D, columnar-like structure and exhibit a medium strength, spectrally-broad light emission in the UV-visible range. PL emission shows a weak T-dependence and is attributed to interband electronic transitions and defect-assisted radiative recombinations. The charge transport is confirmed to be polaronic in nature with both thermally-assisted hopping and quantum mechanical tunneling regulating a charge flow within the columns in the intermediate temperature regime of ˜200-320 K. These results open a door to utilizing nano-textured substrates/scaffolds to produce electronic-grade anatase TiO2 by sputtering for advanced opto-electronic device applications.

  13. The influence of polarity of additive molecules on micelle structures of polystyrene-block-poly(4-vinylpyridine) in the fabrication of nano-porous templates.

    Science.gov (United States)

    Chua, Kee Sze; Koh, Ai Peng; Lam, Yeng Ming

    2010-11-01

    Block copolymers are useful for in situ synthesis of nanoparticles as well as producing nanoporous templates. As such, the effects of precursors on the block copolymer micelle structure is important. In this study, we investigate the effects of polarity of molecules introduced into block copolymer micelle cores on the micelle structure. The molecular dipole moment of the additive molecules has been evaluated and their effects on the block copolymer micelles investigated using light scattering spectroscopy, small-angle X-ray scattering, transmission electron microscopy and atomic force microscopy. The molecule with the largest dipole moment resulted in spherical structures with a polydispersity of less than 0.06 in a fully translational diffusion system. Surprisingly, the less polar additive molecules produced elongated micelles and the aspect ratio increases with decreasing polarity. The change in structure from spherical to elongated structure was attributed to P4VP chain extension, where compounds with polarity most similar to P4VP induce the most chain extension. The second virial coefficients of the solutions with elongated micelles are lower than that for spherical micelle systems by up to one order in magnitude, indicating a strong tendency for micelles to coalesce. On rinsing the spin-cast films, pores were obtained from spherical micelles and ridges from elongated micelles, suggesting a viable alternative for morphology modification using mild conditions where external annealing treatments to the film are not preferred. The knowledge of polarity effects of additive molecules on micelle structure has wider implications for supramolecular block copolymer systems where, depending on the application requirements, changes to the shape of the micelle structure can be induced or avoided. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Metal films with imprinted nanostructures by template stripping

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Pors, Anders; Dreier, Jes

    We present a novel template stripping procedure for fabricating metal films with imprinted nanostructures. The basic idea is to deposit a gold film onto a nano-structured substrate and subsequently strip the film from the substrate surface thereby revealing imprinted nanostructures in the film...... result is a thin gold film with imprinted nano-cavities....

  15. Providing affinity

    DEFF Research Database (Denmark)

    Guglielmi, Michel; Johannesen, Hl

    2004-01-01

    , Essex, Hertfordshire, Norfolk and Suffolk. Research found that there was a lack of identity or sense of belonging and nothing anchoring people to the region as a whole. Common affinity is somehow forced to the people of East England and thereby we came to the conclusion that a single landmark...... and potential situations but also virtual events that calls for an undeterminated process of resolution. This process is activated by the user who co-produces the actualisation as an answer to a virtual reality that we defined at the first place. The potential situations or the possible it is a fantomatic real....... The possible is like the real. It is determinated and it only lakes existence. While the possible is already made, the virtual is like a problematic which needs to be resolved and actualized. Our installations are based on high tech interactivity where we use sensors and remote communication to offer a sense...

  16. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  17. Perl Template Toolkit

    CERN Document Server

    Chamberlain, Darren; Cross, David; Torkington, Nathan; Diaz, tatiana Apandi

    2004-01-01

    Among the many different approaches to "templating" with Perl--such as Embperl, Mason, HTML::Template, and hundreds of other lesser known systems--the Template Toolkit is widely recognized as one of the most versatile. Like other templating systems, the Template Toolkit allows programmers to embed Perl code and custom macros into HTML documents in order to create customized documents on the fly. But unlike the others, the Template Toolkit is as facile at producing HTML as it is at producing XML, PDF, or any other output format. And because it has its own simple templating language, templates

  18. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  19. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  20. Nucleic Acid Templated Reactions for Chemical Biology.

    Science.gov (United States)

    Di Pisa, Margherita; Seitz, Oliver

    2017-06-21

    Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Code Generation with Templates

    CERN Document Server

    Arnoldus, Jeroen; Serebrenik, A

    2012-01-01

    Templates are used to generate all kinds of text, including computer code. The last decade, the use of templates gained a lot of popularity due to the increase of dynamic web applications. Templates are a tool for programmers, and implementations of template engines are most times based on practical experience rather than based on a theoretical background. This book reveals the mathematical background of templates and shows interesting findings for improving the practical use of templates. First, a framework to determine the necessary computational power for the template metalanguage is presen

  2. Carbon nanotubes: from nano test tube to nano-reactor.

    Science.gov (United States)

    Khlobystov, Andrei N

    2011-12-27

    Confinement of molecules and atoms inside carbon nanotubes provides a powerful strategy for studying structures and chemical properties of individual molecules at the nanoscale. In this issue of ACS Nano, Allen et al. explore the nanotube as a template leading to the formation of unusual supramolecular and covalent structures. The potential of carbon nanotubes as reactors for synthesis on the nano- and macroscales is discussed in light of recent studies.

  3. Report: Affinity Chromatography.

    Science.gov (United States)

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  4. Programmable imprint lithography template

    Science.gov (United States)

    Cardinale, Gregory F [Oakland, CA; Talin, Albert A [Livermore, CA

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  5. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    Science.gov (United States)

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  6. Molecular electron affinities

    International Nuclear Information System (INIS)

    Fukuda, E.K.

    1983-01-01

    Molecular electron affinities have historically been difficult quantities to measure accurately. These difficulties arise from differences in structure between the ion and neutral as well as the existence of excited negative ion states. To circumvent these problems, relative electron affinities were determined in this dissertation by studying equilibrium electron transfer reactions using a pulsed ion cyclotron resonance (ICR) spectrometer. Direct measurement of ion and neutral concentrations for reactions of the general type, A - + B = B - + A, allow calculation of the equilibrium constant and, therefore, the free energy change. The free energy difference is related to the difference in electron affinities between A and B. A relative electron affinity scale covering a range of about 45 kcal/mol was constructed with various substituted p-benzoquinones, nitrobenzenes, anhydrides, and benzophenones. To assign absolute electron affinities, various species with accurately known electron affinities are tied to the scale via ion-cyclotron double resonance bracketing techniques. After the relative scale is anchored to these species with well-known electron affinities, the scale is then used as a check on other electron affinity values as well as generating new electron affinity values. Many discrepancies were found between the electron affinities measured using the ICR technique and previous literature determinations

  7. Templates, Numbers & Watercolors.

    Science.gov (United States)

    Clemesha, David J.

    1990-01-01

    Describes how a second-grade class used large templates to draw and paint five-digit numbers. The lesson integrated artistic knowledge and vocabulary with their mathematics lesson in place value. Students learned how draftspeople use templates, and they studied number paintings by Charles Demuth and Jasper Johns. (KM)

  8. Templating mesoporous zeolites

    DEFF Research Database (Denmark)

    Egeblad, Kresten; Christensen, Christina Hviid; Kustova, Marina

    2008-01-01

    The application of templating methods to produce zeolite materials with hierarchical bi- or trimodal pore size distributions is reviewed with emphasis on mesoporous materials. Hierarchical zeolite materials are categorized into three distinctly different types of materials: hierarchical zeolite...... crystals, nanosized zeolite crystals, and supported zeolite crystals. For the pure zeolite materials in the first two categories, the additional meso- or macroporosity can be classified as being either intracrystalline or intercrystalline, whereas for supported zeolite materials, the additional porosity...... originates almost exclusively from the support material. The methods for introducing mesopores into zeolite materials are discussed and categorized. In general, mesopores can be templated in zeolite materials by use of solid templating, supramolecular templating, or indirect templating...

  9. Synthesis of hydroxyapatite particles in catanionic mixed surfactants template

    International Nuclear Information System (INIS)

    Tari, Nesa Esmaeilian; Kashani Motlagh, Mohammad M.; Sohrabi, Beheshteh

    2011-01-01

    Highlights: ►The mixture of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) with different ratio were used as the template for synthesizing HAP particles. ► The overall morphology of the obtained powders at anionic-rich region (SDS:CTAB, 99:1) solution is rod like with high regularity. ► In the presence of cationic rich region (SDS:CTAB, 1:99) the resulted particles was sheet like. ► The resulted HAP nano particles in the presence of SDS were rod like but their morphology was less oriented than anionic-rich region. - Abstract: Different morphologies of nano hydroxyapatite particles, Ca 10 (PO 4 ) 6 (OH) 2 (HAP) are prepared by precipitation method using CaCl 2 and H 3 PO 4 (water phase) and the mixture of cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and anionic one sodium dodecyl sulfate (SDS) as template. The mixture of these surfactants in two regions of cationic-rich and anionic-rich form the various aggregations as template. The results show that by changing the ratio of cationic to anionic surfactant in the mixture the morphology of the nano HAP can be controlled. The nano structure of products is studied by the means of X-ray diffraction (XRD), Fourier transmission infrared spectrometer (FT-IR) and scanning electron microscopy (SEM). With this system we could synthesize nano particles of hydroxyapatite with high crystallinity and least agglomeration.

  10. Template synthesis of test tube nanoparticles using non-destructive replication.

    Science.gov (United States)

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-03-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive 'bionanoreactors' loaded with enzymes.

  11. Template synthesis of test tube nanoparticles using non-destructive replication

    International Nuclear Information System (INIS)

    Wagner, Jonathan; Rodgers, David; Yao Jingyuan; Hinds, Bruce

    2013-01-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive ‘bionanoreactors’ loaded with enzymes. (paper)

  12. Fabrication of mesoporous polymer monolith: a template-free approach.

    Science.gov (United States)

    Okada, Keisuke; Nandi, Mahasweta; Maruyama, Jun; Oka, Tatsuya; Tsujimoto, Takashi; Kondoh, Katsuyoshi; Uyama, Hiroshi

    2011-07-14

    Mesoporous polyacrylonitrile (PAN) monolith has been fabricated by a template-free approach using the unique affinity of PAN towards a water/dimethyl sulfoxide (DMSO) mixture. A newly developed Thermally Induced Phase Separation Technique (TIPS) has been used to obtain the polymer monoliths and their microstructures have been controlled by optimizing the concentration and cooling temperature.

  13. From scores to face templates: a model-based approach.

    Science.gov (United States)

    Mohanty, Pranab; Sarkar, Sudeep; Kasturi, Rangachar

    2007-12-01

    Regeneration of templates from match scores has security and privacy implications related to any biometric authentication system. We propose a novel paradigm to reconstruct face templates from match scores using a linear approach. It proceeds by first modeling the behavior of the given face recognition algorithm by an affine transformation. The goal of the modeling is to approximate the distances computed by a face recognition algorithm between two faces by distances between points, representing these faces, in an affine space. Given this space, templates from an independent image set (break-in) are matched only once with the enrolled template of the targeted subject and match scores are recorded. These scores are then used to embed the targeted subject in the approximating affine (non-orthogonal) space. Given the coordinates of the targeted subject in the affine space, the original template of the targeted subject is reconstructed using the inverse of the affine transformation. We demonstrate our ideas using three, fundamentally different, face recognition algorithms: Principal Component Analysis (PCA) with Mahalanobis cosine distance measure, Bayesian intra-extrapersonal classifier (BIC), and a feature-based commercial algorithm. To demonstrate the independence of the break-in set with the gallery set, we select face templates from two different databases: Face Recognition Grand Challenge (FRGC) and Facial Recognition Technology (FERET) Database (FERET). With an operational point set at 1 percent False Acceptance Rate (FAR) and 99 percent True Acceptance Rate (TAR) for 1,196 enrollments (FERET gallery), we show that at most 600 attempts (score computations) are required to achieve a 73 percent chance of breaking in as a randomly chosen target subject for the commercial face recognition system. With similar operational set up, we achieve a 72 percent and 100 percent chance of breaking in for the Bayesian and PCA based face recognition systems, respectively. With

  14. Continuous affine processes

    DEFF Research Database (Denmark)

    Buchardt, Kristian

    2016-01-01

    Affine processes possess the property that expectations of exponential affine transformations are given by a set of Riccati differential equations, which is the main feature of this popular class of processes. In this paper we generalise these results for expectations of more general transformati...

  15. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  16. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  17. images_template

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website template go here. It will not change their names or locations, but will hopefully help to organize them. Oh, but for a directory structure...

  18. Affinity in electrophoresis.

    Science.gov (United States)

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  19. Lectin affinity electrophoresis.

    Science.gov (United States)

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  20. Preparation of micro/nanostructure TiO2 spheres by controlling pollen as hard template and soft template.

    Science.gov (United States)

    Yang, Xiaohui; Xu, Bin; Zhang, Xuehong; Song, Xiuqin; Chen, Rufen

    2014-09-01

    In this paper, micro/nanostructure TiO2 spheres were synthesized by a sunflower pollen induced and self-assembly mineralization process, in which a titania precursor and pollen reacted in one-pot at normal pressure. In this paper, the bio-template advantage, as hard and soft template is fully demonstrated. The superiority of our synthesis is that we not only can control pollen as hard template, but also can control it as soft template only by changing reactions temperature. Under 80 degrees C of water bath, TiO2 microspheres which replicated the morphology of pollen were prepared by controlling pollen as hard template. Under 100 degrees C, hierarchical TiO2 spheres with complicated morphology, different from pollen template, were synthesized by using pollen as soft template. At the same time, judicious choice of the amount of pollen affords the synthesis of hierarchical structures spheres with adjustable morphology and crystal structure. The morphology can be tuned from microspheres constructed from TiO2 nanorods to nanospheres constructed from TiO2 nanoparticles, and the crystal structure can be tuned from rutile to anatase. More over this anatase phase can be keep better even at high temperature of 1000 degrees C. The as-prepared micro/nano structure photocatalysts not only have high photocatalytic activities, but also have good separability and reuse performance.

  1. A Generalized Affine Isoperimetric Inequality

    OpenAIRE

    Chen, Wenxiong; Howard, Ralph; Lutwak, Erwin; Yang, Deane; Zhang, Gaoyong

    2004-01-01

    A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.

  2. Electron affinities: theoretical

    International Nuclear Information System (INIS)

    Kaufman, J.J.

    1976-01-01

    A brief description is given of the conceptual background and formalism of the various ab-initio and semi-ab-initio quantum computational techniques for calculating atomic and molecular electron affinities: Hartree--Fock--Roothaan SCF, configuration interaction (CI), multiconfiguration SCF (MC-SCF), Bethe--Goldstone, superposition of configurations (SOC), ab-initio effective core model potentials, Xα-MS, plus other less common methods. Illustrative and comparative examples of electron affinities calculated by these various methods are presented

  3. Biometric Template Security

    Directory of Open Access Journals (Sweden)

    Abhishek Nagar

    2008-03-01

    Full Text Available Biometric recognition offers a reliable solution to the problem of user authentication in identity management systems. With the widespread deployment of biometric systems in various applications, there are increasing concerns about the security and privacy of biometric technology. Public acceptance of biometrics technology will depend on the ability of system designers to demonstrate that these systems are robust, have low error rates, and are tamper proof. We present a high-level categorization of the various vulnerabilities of a biometric system and discuss countermeasures that have been proposed to address these vulnerabilities. In particular, we focus on biometric template security which is an important issue because, unlike passwords and tokens, compromised biometric templates cannot be revoked and reissued. Protecting the template is a challenging task due to intrauser variability in the acquired biometric traits. We present an overview of various biometric template protection schemes and discuss their advantages and limitations in terms of security, revocability, and impact on matching accuracy. A template protection scheme with provable security and acceptable recognition performance has thus far remained elusive. Development of such a scheme is crucial as biometric systems are beginning to proliferate into the core physical and information infrastructure of our society.

  4. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview

    International Nuclear Information System (INIS)

    Zhang Donghua; Wang Yangyong

    2006-01-01

    This paper summarizes and reviews the various synthesizing approaches of one-dimensional nano-structured polyaniline (PANI) and several potential applications of the nanomaterial. The synthesizing approaches can be generally categorized into template synthesis and non-template synthesis according to whether template(s), hard (physical template) or soft (chemical template), is (are) used or not. However, though the various approaches established, preparation of one-dimensional nano-structured PANI with controllable morphologies and sizes, especially well oriented arrays on a large scale is still a major challenge. Furthermore, the formation mechanisms of the nanostructures are still unclear. On the other hand, one-dimensional nano-structured PANI exhibits high surface area, high conductivity, as well as controllable chemical/physical properties and good environmental stability, rendering the nanomaterial promising candidate for application ranging from sensors, energy storage and flash welding to digital nonvolatile memory

  5. Joomla! 3 template essentials

    CERN Document Server

    Frankowski, Pawel

    2013-01-01

    Using this hands-on, step-by step tutorial filled with practical examples, the readers will be able to create beautiful templates and themes for your websites that will make them stand out from others.This book is written for all of you who wish to create your own unique templates for Joomla! 3.x. This book can be used by Joomla! administrators or visual designers (with no programming experience) or those of you who are used to working with common web developer tools like HTML/CSS editors for coding purposes. You would need basic knowledge of Joomla! and some knowledge of CSS and HTML.

  6. [Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].

    Science.gov (United States)

    Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping

    2012-05-01

    Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.

  7. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han

    2014-07-22

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  8. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han; Yang, Yongliang; Wonka, Peter

    2014-01-01

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  9. gel template method

    Indian Academy of Sciences (India)

    TiO2 nanotubes have been synthesized by sol–gel template method using alumina membrane. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, UV absorption spectrum and X-ray diffraction techniques have been used to investigate the structure, morphology and optical ...

  10. Biometric template revocation

    Science.gov (United States)

    Arndt, Craig M.

    2004-08-01

    Biometric are a powerful technology for identifying humans both locally and at a distance. In order to perform identification or verification biometric systems capture an image of some biometric of a user or subject. The image is then converted mathematical to representation of the person call a template. Since we know that every human in the world is different each human will have different biometric images (different fingerprints, or faces, etc.). This is what makes biometrics useful for identification. However unlike a credit card number or a password to can be given to a person and later revoked if it is compromised and biometric is with the person for life. The problem then is to develop biometric templates witch can be easily revoked and reissued which are also unique to the user and can be easily used for identification and verification. In this paper we develop and present a method to generate a set of templates which are fully unique to the individual and also revocable. By using bases set compression algorithms in an n-dimensional orthogonal space we can represent a give biometric image in an infinite number of equally valued and unique ways. The verification and biometric matching system would be presented with a given template and revocation code. The code will then representing where in the sequence of n-dimensional vectors to start the recognition.

  11. Template Composite Dark Matter

    DEFF Research Database (Denmark)

    Drach, Vincent; Hietanen, Ari; Pica, Claudio

    2015-01-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. We discuss how the model can be used as a template for composite Dark Matter (DM). We estimate one particular interaction of the DM candidate with the Standard Model : the interaction through photon...

  12. Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templates

    NARCIS (Netherlands)

    Ras, Robin H. A.; Kemell, Marianna; de Wit, Joost; Ritala, Mikko; ten Brinke, Gerrit; Leskela, Markku; Ikkala, Olli; Leskelä, Markku

    2007-01-01

    The construction of inorganic nanostructures with hollow interiors is demonstrated by coating self-assembled polymeric nano-objects with a thin Al2O3 layer by atomic layer deposition (ALD), followed by removal of the polymer template upon heating. The morphology of the nano-object (i.e., spherical

  13. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold.

    Science.gov (United States)

    Chen, Qiushui; Chen, Dong; Wu, Jing; Lin, Jin-Ming

    2016-11-01

    Designing cell-compatible, bio-degradable, and stimuli-responsive hydrogels is very important for biomedical applications in cellular delivery and micro-scale tissue engineering. Here, we report achieving flexible control of cellular microencapsulation, permeability, and release by rationally designing a diblock copolymer, alginate-conjugated poly(N-isopropylacrylamide) (Alg-co-PNiPAM). We use the microfluidic technique to fabricate the bifunctional copolymers into thousands of mono-disperse droplet-templated hydrogel microparticles for controlled encapsulation and triggered release of mammalian cells. In particular, the grafting PNiPAM groups in the synthetic cell-laden microgels produce lots of nano-aggregates into hydrogel networks at elevated temperature, thereafter enhancing the permeability of microparticle scaffolds. Importantly, the hydrogel scaffolds are readily fabricated via on-chip quick gelation by triggered release of Ca 2+ from the Ca-EDTA complex; it is also quite exciting that very mild release of microencapsulated cells is achieved via controlled degradation of hydrogel scaffolds through a simple strategy of competitive affinity of Ca 2+ from the Ca-Alginate complex. This finding suggests that we are able to control cellular encapsulation and release through ion-induced gelation and degradation of the hydrogel scaffolds. Subsequently, we demonstrate a high viability of microencapsulated cells in the microgel scaffolds.

  14. Optical properties of template synthesized nanowalled ZnS microtubules

    Science.gov (United States)

    Kumar, Rajesh; Chakarvarti, S. K.

    2007-12-01

    Electrodeposition is a versatile technique combining low processing cost with ambient conditions that can be used to prepare metallic, polymeric and semiconducting nano/micro structures. In the present work, track-etch membranes (TEMs) of makrofol (KG) have been used as templates for synthesis of ZnS nanowalled microtubules using electrodeposition technique. The morphology of the microtubules was characterized by scanning electron microscopy. Size effects on the band gap of tubules have also been studied by UV-visible spectrophotometer.

  15. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    International Nuclear Information System (INIS)

    Liu Ling; Zhao Yaomin; Jia Nengqin; Zhou Qin; Zhao Chongjun; Yan Manming; Jiang Zhiyu

    2006-01-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers

  16. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Liu [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Yaomin, Zhao [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Nengqin, Jia [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Qin, Zhou [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Chongjun, Zhao [Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800 (China); Manming, Yan [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Zhiyu, Jiang [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2006-05-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers.

  17. Affine stochastic mortality

    NARCIS (Netherlands)

    Schrager, D.F.

    2006-01-01

    We propose a new model for stochastic mortality. The model is based on the literature on affine term structure models. It satisfies three important requirements for application in practice: analytical tractibility, clear interpretation of the factors and compatibility with financial option pricing

  18. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.

    2011-01-01

    Pairings on elliptic curves are being used in an increasing number of cryptographic applications on many different devices and platforms, but few performance numbers for cryptographic pairings have been reported on embedded and mobile devices. In this paper we give performance numbers for affine and

  19. Affine pairings on ARM

    NARCIS (Netherlands)

    Acar, T.; Lauter, K.; Naehrig, M.; Shumow, D.; Abdalla, M.; Lange, T.

    2013-01-01

    We report on relative performance numbers for affine and projective pairings on a dual-core Cortex A9 ARM processor. Using a fast inversion in the base field and doing inversion in extension fields by using the norm map to reduce to inversions in smaller fields, we find a very low ratio of

  20. Synthesis of hydroxyapatite particles in catanionic mixed surfactants template

    Energy Technology Data Exchange (ETDEWEB)

    Tari, Nesa Esmaeilian [Department of Chemistry, Iran University of Science and Technology, Resalat Square, Hengam Street, Tehran (Iran, Islamic Republic of); Kashani Motlagh, Mohammad M., E-mail: M.Kashani@iust.ac.ir [Department of Chemistry, Iran University of Science and Technology, Resalat Square, Hengam Street, Tehran (Iran, Islamic Republic of); Sohrabi, Beheshteh [Department of Chemistry, Iran University of Science and Technology, Resalat Square, Hengam Street, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The mixture of cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) with different ratio were used as the template for synthesizing HAP particles. Black-Right-Pointing-Pointer The overall morphology of the obtained powders at anionic-rich region (SDS:CTAB, 99:1) solution is rod like with high regularity. Black-Right-Pointing-Pointer In the presence of cationic rich region (SDS:CTAB, 1:99) the resulted particles was sheet like. Black-Right-Pointing-Pointer The resulted HAP nano particles in the presence of SDS were rod like but their morphology was less oriented than anionic-rich region. - Abstract: Different morphologies of nano hydroxyapatite particles, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} (HAP) are prepared by precipitation method using CaCl{sub 2} and H{sub 3}PO{sub 4} (water phase) and the mixture of cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and anionic one sodium dodecyl sulfate (SDS) as template. The mixture of these surfactants in two regions of cationic-rich and anionic-rich form the various aggregations as template. The results show that by changing the ratio of cationic to anionic surfactant in the mixture the morphology of the nano HAP can be controlled. The nano structure of products is studied by the means of X-ray diffraction (XRD), Fourier transmission infrared spectrometer (FT-IR) and scanning electron microscopy (SEM). With this system we could synthesize nano particles of hydroxyapatite with high crystallinity and least agglomeration.

  1. Affine field theories

    International Nuclear Information System (INIS)

    Cadavid, A.C.

    1989-01-01

    The author constructs a non-Abelian field theory by gauging a Kac-Moody algebra, obtaining an infinite tower of interacting vector fields and associated ghosts, that obey slightly modified Feynman rules. She discusses the spontaneous symmetry breaking of such theory via the Higgs mechanism. If the Higgs particle lies in the Cartan subalgebra of the Kac-Moody algebra, the previously massless vectors acquire a mass spectrum that is linear in the Kac-Moody index and has additional fine structure depending on the associated Lie algebra. She proceeds to show that there is no obstacle in implementing the affine extension of supersymmetric Yang-Mills theories. The result is valid in four, six and ten space-time dimensions. Then the affine extension of supergravity is investigated. She discusses only the loop algebra since the affine extension of the super-Poincare algebra appears inconsistent. The construction of the affine supergravity theory is carried out by the group manifold method and leads to an action describing infinite towers of spin 2 and spin 3/2 fields that interact subject to the symmetries of the loop algebra. The equations of motion satisfy the usual consistency check. Finally, she postulates a theory in which both the vector and scalar fields lie in the loop algebra of SO(3). This theory has an expanded soliton sector, and corresponding to the original 't Hooft-Polyakov solitonic solutions she now finds an infinite family of exact, special solutions of the new equations. She also proposes a perturbation method for obtaining an arbitrary solution of those equations for each level of the affine index

  2. Ferritin-Templated Quantum-Dots for Quantum Logic Gates

    Science.gov (United States)

    Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

    2005-01-01

    Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

  3. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  4. Nano-/micro metallic wire synthesis on Si substrate and their characterization

    International Nuclear Information System (INIS)

    Kaur, Jaskiran; Kaur, Harmanmeet; Singh, Surinder; Kanjilal, Dinakar; Chakarvarti, Shiv Kumar

    2014-01-01

    Nano-/micro wires of copper are grown on semiconducting Si substrate using the template method. It involves the irradiation of 8 um thick polymeric layer coated on Si with150 MeV Ni ion beam at a fluence of 2E8. Later, by using the simple technique of electrodeposition, copper nano-/micro wires were grown via template synthesis. Synthesized wires were morphologically characterized using SEM and electrical characterization was carried out by finding I-V plot

  5. Affine and quasi-affine frames for rational dilations

    DEFF Research Database (Denmark)

    Bownik, Marcin; Lemvig, Jakob

    2011-01-01

    In this paper we extend the investigation of quasi-affine systems, which were originally introduced by Ron and Shen [J. Funct. Anal. 148 (1997), 408-447] for integer, expansive dilations, to the class of rational, expansive dilations. We show that an affine system is a frame if, and only if......, the corresponding family of quasi-affine systems are frames with uniform frame bounds. We also prove a similar equivalence result between pairs of dual affine frames and dual quasi-affine frames. Finally, we uncover some fundamental differences between the integer and rational settings by exhibiting an example...

  6. Biocompatibility of Soft-Templated Mesoporous Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gencoglu, Maria F. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Spurri, Amanda [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Franko, Mitchell [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Chen, Jihua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Hensley, Dale K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Heldt, Caryn L. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Saha, Dipendu [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering

    2014-08-21

    We report that soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer–Emmett–Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with the highest surface area showed slight toxicity (~70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2–0.6 mg/m2 and 2–4 mg/m2 for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.

  7. Nano materials for Cancer Phototheranostics

    International Nuclear Information System (INIS)

    Huang, P.; Ling, D.; Song, J; Liu, G.; Xie, J.

    2016-01-01

    The rapid development of advanced nano technology promises the integration of multiple diagnostic/therapeutic modalities into one nano platform for cancer theranostics. This issue compiles 3 review articles and 7 high-quality original research articles related to the field of nano material-based cancer theranostics. Photo therapies, such as photothermal therapy (PTT), photodynamic therapy (PDT), or photo-triggered drug/gene delivery, have gained considerable attention because of specific spatiotemporal selectivity and minimal invasiveness. Considering the inherent biocompatibility and biodegradability of proteins and peptides, P. Huang and coworkers summarized recent advances in the development of protein/peptide-based photothermal cancer theranostics, using protein/peptide as delivery vehicles or synthesis bio templates of PTT agents. M. G. O∼Toole and coworkers developed a near-infrared (NIR) responsive oligonucleotide-coated (AS1411, hairpin, or both) gold nanoplate loaded with doxorubicin (DOX), which is demonstrated to be nontoxic to cells without triggered release, while being acutely toxic to cells after 5 minutes of laser exposure to trigger DOX release. K. Na and coworkers described an acidic tumor pH-responsive nanophotomedicine (pH-NanoPM), which was prepared by self-assembly of a pH-responsive polymeric photo sensitizer (pH-PPS) consisting of pH-cleavable methoxypolyethylene glycol (pH-C-mPEG), for targeted PDT

  8. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    Yeast surface display is an effective tool for antibody affinity maturation because yeast can be used as an all-in-one workhorse to assemble, display and screen diversified antibody libraries. By employing the natural ability of yeast Saccharomyces cerevisiae to efficiently recombine multiple DNA...... laboratory conditions. A particular emphasis was put on using molecular techniques in conjunction with microenvironmental measurements (O2, pH, irradiance), a combination that is rarely found but provides a much more detailed understanding of “cause and effect” in complex natural systems...

  9. The world of Nano

    International Nuclear Information System (INIS)

    Noh, Seung Jeong; Hyun, Jun Won; An, Yong Hyeon; Lee, Sung Uk; Jee, Hye Gu; Kim, Young Seon

    2006-07-01

    The contents of this book are the beginning of nano technology, definition of nano, commercialization of nano technology, prospect of nano technology, survive with nano t-, development strategy of n-t in the U.S, and Japan, Korea, and other countries, comparison of development strategy of n-t among each country, various measurement technology for practical n-t, scanning tunneling microscopy, nano device, carbon nano tube, nano belt and nano wire, application of sensor in daily life, energy, post-Genome period and using as medicine with nano bio technology.

  10. A Deformable Template Model, with Special Reference to Elliptical Templates

    DEFF Research Database (Denmark)

    Hobolth, Asger; Pedersen, Jan; Jensen, Eva Bjørn Vedel

    2002-01-01

    This paper suggests a high-level continuous image model for planar star-shaped objects. Under this model, a planar object is a stochastic deformation of a star-shaped template. The residual process, describing the difference between the radius-vector function of the template and the object...

  11. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    2004-01-01

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  12. Nano Fertilizers

    Directory of Open Access Journals (Sweden)

    Hatice DAĞHAN

    2017-06-01

    Full Text Available Agricultural land is decreasing day by day due to erosion, environmental pollution, unconscious irrigation and fertilization. On the other hand, it is necessary to increase agricultural production in order to meet the needs of the developing industry as well as the nutritional needs of the growing population. In the recent years, nano fertilizers have begun to be produced to obtain the highest amount and quality of production from the unit area. Previous research shows that nano fertilizers cause an increase in the use efficiency of plant nutrients, reduce soil toxicity, minimize the potential adverse effects of excessive chemical fertilizer use, and reduce fertilizer application frequency. Nano fertilizers are important in agriculture to increase crop yield and nutrient use efficiency, and to reduce excessive use ofchemical fertilizers. The most important properties of these fertilizers are that they contain one or more of macro and micronutrients, they can be applied frequently in small amounts and are environmentally friendly. However, when applied at high doses, they exhibit decreasing effects on plant growth and crop yields, similar to chemical fertilizers. In this review, the definition, importan ce, and classification of nano fertilizers, their application in plant production, advantages and disadvantages and the results obtained in this field were discussed.

  13. Latex particle template lift-up guided gold wire-networks via evaporation lithography

    KAUST Repository

    Lone, Saifullah; Vakarelski, Ivan Uriev; Chew, Basil; Wang, Zhihong; Thoroddsen, Sigurdur T

    2014-01-01

    We describe a hybrid methodology that combines a two dimensional (2D) monolayer of latex particles (with a pitch size down to 1 μm) prepared by horizontal dry deposition, lift-up of a 2D template onto flat surfaces and evaporation lithography to fabricate metal micro- and nano wire-networks. This journal is

  14. H2 uptake in the Li-dispersed silica nano-tubes

    International Nuclear Information System (INIS)

    Jin Bae Lee; Soon Chang Lee; Sang Moon Lee; Hae Jin Kim

    2006-01-01

    Highly ordered Li-dispersed silica nano-tubes were prepared by sol-gel template method for hydrogen storage. Isolated Li-dispersed silica nano-tubes can be easily obtained by removing the AAO template with 2M NaOH. From the XRD study, the Li-dispersed silica nano-tubes showed the amorphous phase with silica frameworks. The uniform length and diameter of Li-dispersed silica nano-tubes could be examined with the electron microscopy studies. The wall thickness and diameter of nano-tubes are about 50-60 nm and 200-400 nm, respectively. The obtained Li-dispersed silica nano-tubes have the hydrogen adsorption capacity 2.25 wt% at 77 K under 47 atm. (authors)

  15. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    Science.gov (United States)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  16. Template Generation and Selection Algorithms

    NARCIS (Netherlands)

    Guo, Y.; Smit, Gerardus Johannes Maria; Broersma, Haitze J.; Heysters, P.M.; Badaway, W.; Ismail, Y.

    The availability of high-level design entry tooling is crucial for the viability of any reconfigurable SoC architecture. This paper presents a template generation method to extract functional equivalent structures, i.e. templates, from a control data flow graph. By inspecting the graph the algorithm

  17. A light meson translatable template

    International Nuclear Information System (INIS)

    Allgower, C.E.; Peaslee, D.C.

    2002-01-01

    Recently surveyed (mass)2 values for I = 0, JPC = 2++ light mesons can be assembled into repeating patterns of 4 states, dubbed 'templates'. Within error, both internal and external template spacings approximate simple multiples of Δm2 ≅ 0.35 GeV2. Hopefully, this feature will be useful in predicting the positions of higher isoscalar 2++ states

  18. The solutions of affine and conformal affine Toda field theory

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Spence, B.

    1994-02-01

    We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs

  19. Reducing Individual Variation for fMRI Studies in Children by Minimizing Template Related Errors.

    Directory of Open Access Journals (Sweden)

    Jian Weng

    Full Text Available Spatial normalization is an essential process for group comparisons in functional MRI studies. In practice, there is a risk of normalization errors particularly in studies involving children, seniors or diseased populations and in regions with high individual variation. One way to minimize normalization errors is to create a study-specific template based on a large sample size. However, studies with a large sample size are not always feasible, particularly for children studies. The performance of templates with a small sample size has not been evaluated in fMRI studies in children. In the current study, this issue was encountered in a working memory task with 29 children in two groups. We compared the performance of different templates: a study-specific template created by the experimental population, a Chinese children template and the widely used adult MNI template. We observed distinct differences in the right orbitofrontal region among the three templates in between-group comparisons. The study-specific template and the Chinese children template were more sensitive for the detection of between-group differences in the orbitofrontal cortex than the MNI template. Proper templates could effectively reduce individual variation. Further analysis revealed a correlation between the BOLD contrast size and the norm index of the affine transformation matrix, i.e., the SFN, which characterizes the difference between a template and a native image and differs significantly across subjects. Thereby, we proposed and tested another method to reduce individual variation that included the SFN as a covariate in group-wise statistics. This correction exhibits outstanding performance in enhancing detection power in group-level tests. A training effect of abacus-based mental calculation was also demonstrated, with significantly elevated activation in the right orbitofrontal region that correlated with behavioral response time across subjects in the trained group.

  20. Fundamentals of affinity cell separations.

    Science.gov (United States)

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cloning nanocrystal morphology with soft templates

    Science.gov (United States)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  2. Selection of appropriate template for spatial normalization of brain images: tensor based morphometry

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul

    2004-01-01

    Although there have been remarkable advances in spatial normalization techniques, the differences in the shape of the hemispheres and the sulcal pattern of brains relative to age, gender, races, and diseases cannot be fully overcome by the nonlinear spatial normalization techniques. T1 SPGR MR images in 16 elderly male normal volunteers (>55 y. mean age: = 61.8 ± 3.5 y) were spatially normalized onto the age/gender specific Korean templates, and the Caucasian MNI template and the extent of the deformations were compared. These particular subjects were never included in the development of the templates. First , the images were matched into the templates using an affine transformation to eliminate the global difference between the templates and source images. Second the affine registration was followed by an estimation of nonlinear deformation. Determinants of the Jacobian matrices of the nonlinear deformation were then calculated for every voxel to estimate the regional volume change during the nonlinear transformation Jacobian determinant images highlighted the great magnitude of the relative local volume changes obtained when the elderly brains were spatially normalized onto the young/midlife male or female templates. They reflect the enlargement of CSF space in the lateral ventricles, sylvian fissures and cisterna magna, and the shrinkage of the cortex noted mainly in frontal, insular and lateral temporal cortexes, and the cerebellums in the aged brains. In the Jacobian determinant images, a regional shrinkage of the brain in the left middle prefrontal cortex was observed in addition to the regional expansion in the ventricles and sylvian fissures, which may be due to the age differences between the template and source images. The regional anatomical difference between template and source images could impose an extreme deformation of the source images during the spatial normalization and therefore. Individual brains should be placed into the appropriate template

  3. Selection of appropriate template for spatial normalization of brain images: tensor based morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Although there have been remarkable advances in spatial normalization techniques, the differences in the shape of the hemispheres and the sulcal pattern of brains relative to age, gender, races, and diseases cannot be fully overcome by the nonlinear spatial normalization techniques. T1 SPGR MR images in 16 elderly male normal volunteers (>55 y. mean age: = 61.8 {+-} 3.5 y) were spatially normalized onto the age/gender specific Korean templates, and the Caucasian MNI template and the extent of the deformations were compared. These particular subjects were never included in the development of the templates. First , the images were matched into the templates using an affine transformation to eliminate the global difference between the templates and source images. Second the affine registration was followed by an estimation of nonlinear deformation. Determinants of the Jacobian matrices of the nonlinear deformation were then calculated for every voxel to estimate the regional volume change during the nonlinear transformation Jacobian determinant images highlighted the great magnitude of the relative local volume changes obtained when the elderly brains were spatially normalized onto the young/midlife male or female templates. They reflect the enlargement of CSF space in the lateral ventricles, sylvian fissures and cisterna magna, and the shrinkage of the cortex noted mainly in frontal, insular and lateral temporal cortexes, and the cerebellums in the aged brains. In the Jacobian determinant images, a regional shrinkage of the brain in the left middle prefrontal cortex was observed in addition to the regional expansion in the ventricles and sylvian fissures, which may be due to the age differences between the template and source images. The regional anatomical difference between template and source images could impose an extreme deformation of the source images during the spatial normalization and therefore. Individual brains should be placed into the appropriate

  4. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  5. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    Science.gov (United States)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  6. [Affine transformation-based automatic registration for peripheral digital subtraction angiography (DSA)].

    Science.gov (United States)

    Kong, Gang; Dai, Dao-Qing; Zou, Lu-Min

    2008-07-01

    In order to remove the artifacts of peripheral digital subtraction angiography (DSA), an affine transformation-based automatic image registration algorithm is introduced here. The whole process is described as follows: First, rectangle feature templates are constructed with their centers of the extracted Harris corners in the mask, and motion vectors of the central feature points are estimated using template matching technology with the similarity measure of maximum histogram energy. And then the optimal parameters of the affine transformation are calculated with the matrix singular value decomposition (SVD) method. Finally, bilinear intensity interpolation is taken to the mask according to the specific affine transformation. More than 30 peripheral DSA registrations are performed with the presented algorithm, and as the result, moving artifacts of the images are removed with sub-pixel precision, and the time consumption is less enough to satisfy the clinical requirements. Experimental results show the efficiency and robustness of the algorithm.

  7. Nano lithography

    CERN Document Server

    Landis, Stefan

    2013-01-01

    Lithography is an extremely complex tool - based on the concept of "imprinting" an original template version onto mass output - originally using relatively simple optical exposure, masking, and etching techniques, and now extended to include exposure to X-rays, high energy UV light, and electron beams - in processes developed to manufacture everyday products including those in the realms of consumer electronics, telecommunications, entertainment, and transportation, to name but a few. In the last few years, researchers and engineers have pushed the envelope of fields including optics, physics,

  8. Hemoglobin affinity in Andean rodents

    Directory of Open Access Journals (Sweden)

    HRVOJ OSTOJIC

    2002-01-01

    Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.

  9. Mapping Affinities in Academic Organizations

    Directory of Open Access Journals (Sweden)

    Dario Rodighiero

    2018-02-01

    Full Text Available Scholarly affinities are one of the most fundamental hidden dynamics that drive scientific development. Some affinities are actual, and consequently can be measured through classical academic metrics such as co-authoring. Other affinities are potential, and therefore do not leave visible traces in information systems; for instance, some peers may share interests without actually knowing it. This article illustrates the development of a map of affinities for academic collectives, designed to be relevant to three audiences: the management, the scholars themselves, and the external public. Our case study involves the School of Architecture, Civil and Environmental Engineering of EPFL, hereinafter ENAC. The school consists of around 1,000 scholars, 70 laboratories, and 3 institutes. The actual affinities are modeled using the data available from the information systems reporting publications, teaching, and advising scholars, whereas the potential affinities are addressed through text mining of the publications. The major challenge for designing such a map is to represent the multi-dimensionality and multi-scale nature of the information. The affinities are not limited to the computation of heterogeneous sources of information; they also apply at different scales. The map, thus, shows local affinities inside a given laboratory, as well as global affinities among laboratories. This article presents a graphical grammar to represent affinities. Its effectiveness is illustrated by two actualizations of the design proposal: an interactive online system in which the map can be parameterized, and a large-scale carpet of 250 square meters. In both cases, we discuss how the materiality influences the representation of data, in particular the way key questions could be appropriately addressed considering the three target audiences: the insights gained by the management and their consequences in terms of governance, the understanding of the scholars’ own

  10. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  11. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors

    Science.gov (United States)

    Jiang, Zhen; Li, Zhengping; Qin, Zhenhua; Sun, Haiyan; Jiao, Xiuling; Chen, Dairong

    2013-11-01

    Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures.Layered double hydroxides (LDHs) are currently attracting intense research interest for their various applications. Three LDH hollow nano-polyhedra are synthesized with zeolitic imidazolate framework-67 (ZIF-67) nanocrystals as the templates. The nanocages well inherit the rhombic dodecahedral shape of the ZIF-67 templates, and the shell is composed of nanosheets assembled with an edge-to-face stacking. This is the first synthesis of the LDH non-spherical structures. And the mechanism of utilizing metal-organic framework (MOF) nanocrystals as templates is explored. Control of the simultaneous reactions, the precipitation of the shells and the template etching, is extremely crucial to the preparation of the perfect nanocages. And the Ni-Co LDH nanocages exhibit superior pseudocapacitance property due to their novel hierarchical and submicroscopic structures. Electronic supplementary information (ESI) available: Experimental details, XRD, TEM, SEM, and XPS images. See DOI: 10.1039/c3nr03829g

  12. Nano-technology and nano-toxicology

    OpenAIRE

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of ...

  13. Wettability transition of plasma-treated polystyrene micro/nano pillars-aligned patterns

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available This paper reports the wettability transition of plasma-treated polystyrene (PS micro/nano pillars-aligned patterns. The micro/nano pillars were prepared using hot embossing on silicon microporous template and alumina nanoporous template, which were fabricated by ultraviolet (UV lithography and inductive coupled plasma (ICP etching, and two-step anodic oxidation, respectively. The results indicate that the combination of micro/nano patterning and plasma irradiation can easily regulate wettabilities of PS surfaces, i.e. from hydrophilicity to hydrophobicity, or from hydrophobicity to superhydrophilicity. During the wettability transition from hydrophobicity to hydrophilicity there is only mild hydrophilicity loss. After plasma irradiation, moreover, the wettability of PS micro/nano pillars-aligned patterns is more stable than that of flat PS surfaces. The observed wettability transition and wettability stability of PS micro/nano pillars-aligned patterns are new phenomena, which may have potential in creating programmable functional polymer surfaces.

  14. Lp-dual affine surface area

    Science.gov (United States)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  15. 2017 Guralp Affinity Digitizer Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J.

    2018-03-01

    Sandia National Laboratories has tested and evaluated two Guralp Affinity digitizers. The Affinity digitizers are intended to record sensor output for seismic and infrasound monitoring applications. The purpose of this digitizer evaluation is to measure the performance characteristics in such areas as power consumption, input impedance, sensitivity, full scale, self- noise, dynamic range, system noise, response, passband, and timing. The Affinity digitizers are being evaluated for potential use in the International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban-Treaty Organization (CTBTO).

  16. The utility of affine variables and affine coherent states

    International Nuclear Information System (INIS)

    Klauder, John R

    2012-01-01

    Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  17. Controlled Synthesis of Manganese Dioxide Nano structures via a Facile Hydrothermal

    International Nuclear Information System (INIS)

    Pang, R.S.C.; Chin, S.F.; Ye, Ch. Ling

    2012-01-01

    Manganese dioxide nano structures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO 2 nano structures. MnO 2 nano structures comprise of spherical nano particulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO 2 nano structures of sea-urchin-like and nano rods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nano structures underwent notable phase transformation from d-MnO 2 to a-MnO 2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  18. Representations of affine Hecke algebras

    CERN Document Server

    Xi, Nanhua

    1994-01-01

    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  19. Nano-technology and nano-toxicology.

    Science.gov (United States)

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  20. Contractions of affine spherical varieties

    International Nuclear Information System (INIS)

    Arzhantsev, I V

    1999-01-01

    The language of filtrations and contractions is used to describe the class of G-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine G-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional SL 2 -varieties are considered

  1. Fabrication of nanostructure via self-assembly of nanowires within the AAO template

    Directory of Open Access Journals (Sweden)

    Brust Mathias

    2006-01-01

    Full Text Available AbstractThe novel nanostructures are fabricated by the spatial chemical modification of nanowires within the anodic aluminum oxide (AAO template. To make the nanowires better dispersion in the aqueous solution, the copper is first deposited to fill the dendrite structure at the bottom of template. During the process of self-assembly, the dithiol compound was used as the connector between the nanowires and nanoparticles by a self-assembly method. The nanostructures of the nano cigars and structure which is containing particles junction are characterized by transmission electron microscopy (TEM. These kinds of novel nanostructure will be the building blocks for nanoelectronic and nanophotonic devices.

  2. Making Deformable Template Models Operational

    DEFF Research Database (Denmark)

    Fisker, Rune

    2000-01-01

    for estimation of the model parameters, which applies a combination of a maximum likelihood and minimum distance criterion. Another contribution is a very fast search based initialization algorithm using a filter interpretation of the likelihood model. These two methods can be applied to most deformable template......Deformable template models are a very popular and powerful tool within the field of image processing and computer vision. This thesis treats this type of models extensively with special focus on handling their common difficulties, i.e. model parameter selection, initialization and optimization....... A proper handling of the common difficulties is essential for making the models operational by a non-expert user, which is a requirement for intensifying and commercializing the use of deformable template models. The thesis is organized as a collection of the most important articles, which has been...

  3. Role of cellulose functionality in bio-inspired synthesis of nano bioactive glass.

    Science.gov (United States)

    Gupta, Nidhi; Santhiya, Deenan

    2017-06-01

    In search of abundant cheaper natural polymer for bio-inspired bioactive glass nanoparticles synthesis, cellulose and its derivatives have been considered as a template. Different templates explored in the present studies are pure cellulose, methyl cellulose and amine grafted cellulose. To the best of our knowledge, for the first time of the considered templates, pure cellulose and amine grafted cellulose results in in situ nano particulate composite formation while interestingly methyl cellulose proves to be an excellent sacrificial template for the synthesis of uniform bioglass nanoparticles of diameter in the range of 55nm. Further, viscoelastic measurements were carried out using dynamic mechanical analyzer. Herein, an attempt has been made to establish structure-mechanical relationship based on the templates. Moreover, in vitro bioactivity is also observed to be affected by the nature of the template molecule used for the synthesis of bioactive glass. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. TEMPLATE-ASSISTED FABRICATION AND DIELECTROPHORETIC MANIPULATION OF PZT MICROTUBES

    Directory of Open Access Journals (Sweden)

    VLADIMÍR KOVAĽ

    2012-09-01

    Full Text Available Mesoscopic high aspect ratio ferroelectric tube structures of a diverse range of compositions with tailored physical properties can be used as key components in miniaturized flexible electronics, nano- and micro-electro-mechanical systems, nonvolatile FeRAM memories, and tunable photonic applications. They are usually produced through advanced “bottom-up” or “topdown” fabrication techniques. In this study, a template wetting approach is employed for fabrication of Pb(Zr0.52Ti0.48O3 (PZT microtubes. The method is based on repeated infiltration of precursor solution into macroporous silicon (Si templates at a sub-atmospheric pressure. Prior to crystallization at 750°C, free-standing tubes of a 2-μm outer diameter, extending to over 30 μm in length were released from the Si template using a selective isotropic-pulsed XeF2 reactive ion etching. To facilitate rapid electrical characterization and enable future integration process, directed positioning and aligning of the PZT tubes was performed by dielectrophoresis. The electric field-assisted technique involves an alternating electric voltage that is applied through pre-patterned microelectrodes to a colloidal suspension of PZT tubes dispersed in isopropyl alcohol. The most efficient biasing for the assembly of tubes across the electrode gap of 12 μm was a square wave signal of 5 Vrms and 10 Hz. By varying the applied frequency in between 1 and 10 Hz, an enhancement in tube alignment was obtained.

  5. Synthesis of naturally cross-linked polycrystalline ZrO2 hollow nanowires using butterfly as templates

    International Nuclear Information System (INIS)

    Chen Yu; Gu Jiajun; Zhu Shenmin; Su Huilan; Zhang Di; Feng Chuanliang; Zhuang Leyan

    2012-01-01

    Highlights: ► Naturally cross-linked ZrO 2 nanotubes with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. ► The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. ► The achieved hollow ZrO 2 nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than ∼50 nm, which greatly hinders their applications in designing much smaller functional parts down to real “nano scale”. This work indicates, however, that hollow ZrO 2 nanowires with ∼2.4 μm in length, ∼35 nm in diameter and ∼12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO 2 nanotubes suggests a new optional approach in fabricating assembled nano systems.

  6. Synthesis of naturally cross-linked polycrystalline ZrO{sub 2} hollow nanowires using butterfly as templates

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yu, E-mail: chenyu_8323@csu.edu.cn [School of Physics Science and Electronics Central South University, Changsha, Hunan 410083 (China); Gu Jiajun, E-mail: gujiajun@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhu Shenmin; Su Huilan [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Di, E-mail: zhangdi@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Feng Chuanliang [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhuang Leyan [Measurement Center of Anti-Counterfeiting Technical Products, Shanghai (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Naturally cross-linked ZrO{sub 2} nanotubes with {approx}2.4 {mu}m in length, {approx}35 nm in diameter and {approx}12 nm in wall thickness was synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Black-Right-Pointing-Pointer The contractions, which are main defects of the former hard-template method based on butterflies, are well controlled with the help of the surface tension effect. Black-Right-Pointing-Pointer The achieved hollow ZrO{sub 2} nanowires suggest a new optional approach that uses bio-templates in fabricating and designing nano systems. - Abstract: Butterfly wing skeleton is a widely used hard-template in recent years for fabricating photonic crystal structures. However, the smallest construction units for the most species of butterflies are commonly larger than {approx}50 nm, which greatly hinders their applications in designing much smaller functional parts down to real 'nano scale'. This work indicates, however, that hollow ZrO{sub 2} nanowires with {approx}2.4 {mu}m in length, {approx}35 nm in diameter and {approx}12 nm in wall thickness can be synthesized via the selection of suitable butterfly bio-templates followed by heat processing. Especially, the successful fabrication of these naturally cross-linked ZrO{sub 2} nanotubes suggests a new optional approach in fabricating assembled nano systems.

  7. Supply-Chain Optimization Template

    Science.gov (United States)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  8. Manipulation and functionalization of nano-tubes: application to boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Maguer, A.

    2007-01-01

    This PhD work is divided into two parts dealing with boron nitride (BNNT) and carbon nano-tubes. The first part is about synthesis, purification and chemical functionalization of BNNT. Single-walled BNNT are synthesized by LASER ablation of a hBN target. Improving the synthesis parameters first allowed us to limit the byproducts (hBN, boric acid). A specific purification process was then developed in order to enrich the samples in nano-tubes. Purified samples were then used to develop two new chemical functionalization methods. They both involve chemical molecules that present a high affinity towards the BN network. The use of long chain-substituted quinuclidines and borazines actually allowed the solubilization of BNNT in organic media. Purification and functionalization were developed for single-walled BNNT and were successfully applied to multi-walled BNNT. Sensibility of boron to thermic neutrons finally gave birth to a study about covalent functionalization possibilities of the network. The second part of the PhD work deals with separation of carbon nano-tubes depending on their properties. Microwave irradiation of carbon nano-tubes first allowed the enrichment of initially polydisperse samples in large diameter nano-tubes. A second strategy involving selective interaction between one type of tubes and fullerene micelles was finally envisaged to selectively solubilize carbon nano-tubes with specific electronic properties. (author) [fr

  9. The Structure of Affine Buildings

    CERN Document Server

    Weiss, Richard M

    2009-01-01

    In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the clas

  10. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    Science.gov (United States)

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  11. Preparation of pHEMA-CP composites with high interfacial adhesionvia template-driven mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R.

    2002-12-05

    We report a template-driven nucleation and mineral growth process for the high-affinity integration of calcium phosphate (CP) with a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel scaffold. A mineralization technique was developed that exposes carboxylate groups on the surface of crosslinked pHEMA, promoting high-affinity nucleation and growth of calcium phosphate on the surface along with extensive calcification of the hydrogel interior. External factors such as the heating rate, the agitation of the mineral stock solution and the duration of the process that affect the outcome of the mineralization were investigated. This template-driven mineralization technique provides an efficient approach toward bonelike composites with high mineral-hydrogel interfacial adhesion strength.

  12. Affinity biosensors: techniques and protocols

    National Research Council Canada - National Science Library

    Rogers, Kim R; Mulchandani, Ashok

    1998-01-01

    ..., and government to begin or expand their biosensors research. This volume, Methods in Biotechnology vol. 7: Affinity Biosensors: Techniques and Protocols, describes a variety of classical and emerging transduction technologies that have been interfaced to bioaffinity elements (e.g., antibodies and receptors). Some of the reas...

  13. Properties of ordered titanium templates covered with Au thin films for SERS applications

    Energy Technology Data Exchange (ETDEWEB)

    Grochowska, Katarzyna, E-mail: kgrochowska@imp.gda.pl [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland); Sokołowski, Michał; Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk (Poland); Szkoda, Mariusz [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland); Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk (Poland); Śliwiński, Gerard [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland)

    2016-12-01

    Graphical abstract: - Highlights: • Dimpled Ti substrates prepared via anodization followed by etching. • Highly ordered nano-patterned titanium templates covered with thin Au films. • Enhanced Raman signal indicates on promising sensing material. - Abstract: Currently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering substrates that show application potential in biochemistry, food safety or medical diagnostic. In this work the structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) of highly ordered nano-patterned titanium templates covered with thin (5–20 nm) gold films are reported. The templates are formed by preparation of a dense structure of TiO{sub 2} nanotubes on a flat Ti surface (2 × 2 cm{sup 2}) and their subsequent etching down to the substrate. SEM images reveal the formation of honeycomb nanostructures with the cavity diameter of 80 nm. Due to the strongly inhomogeneous distribution of the electromagnetic field in the vicinity of the Au film discontinuities the measured average enhancement factor (10{sup 7}–10{sup 8}) is markedly higher than observed for bare Ti templates. The enhancement factor and Raman signal intensity can be optimized by adjusting the process conditions and thickness of the deposited Au layer. Results confirm that the obtained structures can be used in surface enhanced sensing.

  14. Nano devices and sensors

    CERN Document Server

    Liaw, Shien-Kuei; Chung, Yung-Hui

    2016-01-01

    This volume on semiconductor devices focuses on such topics as nano-imprinting, lithography, nanowire charge-trapping, thermo-stability in nanowires, nano-electrodes, and voltage and materials used for fabricating and improving electrical characteristics of nano-materials.

  15. Design reflowable digital book template

    Science.gov (United States)

    Prasetya, Didik Dwi; Widiyaningtyas, Triyanna; Arifin, M. Zainal; Wahyu Sakti G., I.

    2017-09-01

    Electronic books (e-books or digital books) increasingly in demand and continue to grow in the form of future books. One of the standard format electronic books that potential is EPUB (electronic publication) published by the International Digital Publishing Forum (IDPF). This digital book has major advantages are able to provide interactive and reflowable content, which are not found in another book format, such as PDF. Reflowable content allows the book can be accessed through a variety of reader device, like desktop and mobile with a fit and comfort view. However, because the generating process of an EPUB digital book is not as easy a PDF, so this format is less popular. Therefore, in order to help overcome the existing problems, this paper develops digital reflowable text book templates to support electronic learning, especially in Indonesia. This template can be used by anyone to produce a standard digital book quickly and easily without requiring additional specialized knowledge.

  16. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon

    International Nuclear Information System (INIS)

    Reza San German, C.M.

    2005-01-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS 2 , enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS 2 + C nano tubes were synthesized by propylene pyrolysis inside MoS 2 nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS 2 layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS 2 inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS 2 layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS 2 layers. Our results open up the possibility of using MoS 2 nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  17. Titanium template for scaphoid reconstruction.

    Science.gov (United States)

    Haefeli, M; Schaefer, D J; Schumacher, R; Müller-Gerbl, M; Honigmann, P

    2015-06-01

    Reconstruction of a non-united scaphoid with a humpback deformity involves resection of the non-union followed by bone grafting and fixation of the fragments. Intraoperative control of the reconstruction is difficult owing to the complex three-dimensional shape of the scaphoid and the other carpal bones overlying the scaphoid on lateral radiographs. We developed a titanium template that fits exactly to the surfaces of the proximal and distal scaphoid poles to define their position relative to each other after resection of the non-union. The templates were designed on three-dimensional computed tomography reconstructions and manufactured using selective laser melting technology. Ten conserved human wrists were used to simulate the reconstruction. The achieved precision measured as the deviation of the surface of the reconstructed scaphoid from its virtual counterpart was good in five cases (maximal difference 1.5 mm), moderate in one case (maximal difference 3 mm) and inadequate in four cases (difference more than 3 mm). The main problems were attributed to the template design and can be avoided by improved pre-operative planning, as shown in a clinical case. © The Author(s) 2014.

  18. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery.

    Science.gov (United States)

    Jaegle, Mike; Wong, Ee Lin; Tauber, Carolin; Nawrotzky, Eric; Arkona, Christoph; Rademann, Jörg

    2017-06-19

    Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The affine quantum gravity programme

    CERN Document Server

    Klauder, J R

    2002-01-01

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix left brace g-hat sub a sub b (x)right brace composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that sti...

  20. Affine invariants of convex polygons.

    Science.gov (United States)

    Flusser, Jan

    2002-01-01

    In this correspondence, we prove that the affine invariants, for image registration and object recognition, proposed recently by Yang and Cohen (see ibid., vol.8, no.7, p.934-46, July 1999) are algebraically dependent. We show how to select an independent and complete set of the invariants. The use of this new set leads to a significant reduction of the computing complexity without decreasing the discrimination power.

  1. Functional Programming with C++ Template Metaprograms

    Science.gov (United States)

    Porkoláb, Zoltán

    Template metaprogramming is an emerging new direction of generative programming. With the clever definitions of templates we can force the C++ compiler to execute algorithms at compilation time. Among the application areas of template metaprograms are the expression templates, static interface checking, code optimization with adaption, language embedding and active libraries. However, as template metaprogramming was not an original design goal, the C++ language is not capable of elegant expression of metaprograms. The complicated syntax leads to the creation of code that is hard to write, understand and maintain. Although template metaprogramming has a strong relationship with functional programming, this is not reflected in the language syntax and existing libraries. In this paper we give a short and incomplete introduction to C++ templates and the basics of template metaprogramming. We will enlight the role of template metaprograms, and some important and widely used idioms. We give an overview of the possible application areas as well as debugging and profiling techniques. We suggest a pure functional style programming interface for C++ template metaprograms in the form of embedded Haskell code which is transformed to standard compliant C++ source.

  2. Rank Two Affine Manifolds in Genus 3

    OpenAIRE

    Aulicino, David; Nguyen, Duc-Manh

    2016-01-01

    We complete the classification of rank two affine manifolds in the moduli space of translation surfaces in genus three. Combined with a recent result of Mirzakhani and Wright, this completes the classification of higher rank affine manifolds in genus three.

  3. Alternative affinity tools: more attractive than antibodies?

    NARCIS (Netherlands)

    Ruigrok, V.J.B.; Levisson, M.; Eppink, M.H.M.; Smidt, H.; Oost, van der J.

    2011-01-01

    Antibodies are the most successful affinity tools used today, in both fundamental and applied research (diagnostics, purification and therapeutics). Nonetheless, antibodies do have their limitations, including high production costs and low stability. Alternative affinity tools based on nucleic acids

  4. Porous Nano-Si/Carbon Derived from Zeolitic Imidazolate Frameworks@Nano-Si as Anode Materials for Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Song, Yonghai; Zuo, Li; Chen, Shouhui; Wu, Jiafeng; Hou, Haoqing; Wang, Li

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •The porous cage-like carbon/Si nanocomposites were synthesized based on nano-Si@ZIF-8-templatedmethod. •The nano-Si was uniformly embedded in porous amorphous carbon matrices. •The porous dodecahedral carbon framework effectively accommodates the volume variation of Si during the discharge/charge process. •The Si/C nanocomposites exhibit superior reversible capacity of 1168 mA h g −1 after 100 cycles. -- Abstract: Novel porous cage-like carbon (C)/nano-Si nanocomposites as anode materials for lithium-ion batteries (LIBs) was prepared based on nano-Si@zeolitic imidazolate frameworks (ZIF-8)-templated method. In this strategy, p-aminobenzoic acid was initially grafted onto nano-Si to form benzoic acid-functionalized nano-Si, and then nano-Si@ZIF-8 was constructed by alternately growing Zn(NO 3 ) 2 ·6H 2 O and 2-methylimidazolate on benzoic acid-functionalized nano-Si under ultrasound. The novel porous cage-like nano-Si/C nanocomposites were fabricated by pyrolyzing the resulted nano-Si@ZIF-8 and washing with HCl to remove off ZnO. Scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Raman spectra and N 2 adsorption/desorption isotherms were employed to characterize the porous cage-like nano-Si/C nanocomposites. The resulted nano-Si/C nanocomposites as anode materials for LIBs showed a high reversible capacity of ∼1168 mA h g −1 at 100 mA g −1 after 100 cycles, which was higher than many previously reported Si/C nanocomposites. The porous nanostructure, high specific surface area and good electrical conductivity of the cage-like nano-Si/C nanocomposites contributed together to the good performance for LIBs. It might open up a new way for application of silicon materials

  5. Spectral affinity in protein networks.

    Science.gov (United States)

    Voevodski, Konstantin; Teng, Shang-Hua; Xia, Yu

    2009-11-29

    Protein-protein interaction (PPI) networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to quickly find nodes closest to a queried vertex in any protein

  6. Spectral affinity in protein networks

    Directory of Open Access Journals (Sweden)

    Teng Shang-Hua

    2009-11-01

    Full Text Available Abstract Background Protein-protein interaction (PPI networks enable us to better understand the functional organization of the proteome. We can learn a lot about a particular protein by querying its neighborhood in a PPI network to find proteins with similar function. A spectral approach that considers random walks between nodes of interest is particularly useful in evaluating closeness in PPI networks. Spectral measures of closeness are more robust to noise in the data and are more precise than simpler methods based on edge density and shortest path length. Results We develop a novel affinity measure for pairs of proteins in PPI networks, which uses personalized PageRank, a random walk based method used in context-sensitive search on the Web. Our measure of closeness, which we call PageRank Affinity, is proportional to the number of times the smaller-degree protein is visited in a random walk that restarts at the larger-degree protein. PageRank considers paths of all lengths in a network, therefore PageRank Affinity is a precise measure that is robust to noise in the data. PageRank Affinity is also provably related to cluster co-membership, making it a meaningful measure. In our experiments on protein networks we find that our measure is better at predicting co-complex membership and finding functionally related proteins than other commonly used measures of closeness. Moreover, our experiments indicate that PageRank Affinity is very resilient to noise in the network. In addition, based on our method we build a tool that quickly finds nodes closest to a queried protein in any protein network, and easily scales to much larger biological networks. Conclusion We define a meaningful way to assess the closeness of two proteins in a PPI network, and show that our closeness measure is more biologically significant than other commonly used methods. We also develop a tool, accessible at http://xialab.bu.edu/resources/pnns, that allows the user to

  7. I - Template Metaprogramming for Massively Parallel Scientific Computing - Expression Templates

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Large scale scientific computing raises questions on different levels ranging from the fomulation of the problems to the choice of the best algorithms and their implementation for a specific platform. There are similarities in these different topics that can be exploited by modern-style C++ template metaprogramming techniques to produce readable, maintainable and generic code. Traditional low-level code tend to be fast but platform-dependent, and it obfuscates the meaning of the algorithm. On the other hand, object-oriented approach is nice to read, but may come with an inherent performance penalty. These lectures aim to present he basics of the Expression Template (ET) idiom which allows us to keep the object-oriented approach without sacrificing performance. We will in particular show to to enhance ET to include SIMD vectorization. We will then introduce techniques for abstracting iteration, and introduce thread-level parallelism for use in heavy data-centric loads. We will show to to apply these methods i...

  8. Lp-mixed affine surface area

    Science.gov (United States)

    Wang, Weidong; Leng, Gangsong

    2007-11-01

    According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.

  9. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.

    Science.gov (United States)

    Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-01-01

    Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and

  10. Manifolds with integrable affine shape operator

    Directory of Open Access Journals (Sweden)

    Daniel A. Joaquín

    2005-05-01

    Full Text Available This work establishes the conditions for the existence of vector fields with the property that theirs covariant derivative, with respect to the affine normal connection, be the affine shape operatorS in hypersurfaces. Some results are obtained from this property and, in particular, for some kind of affine decomposable hypersurfaces we explicitely get the actual vector fields.

  11. Affinity Spaces and 21st Century Learning

    Science.gov (United States)

    Gee, James Paul

    2017-01-01

    This article discusses video games as "attractors" to "affinity spaces." It argues that affinity spaces are key sites today where people teach and learn 21st Century skills. While affinity spaces are proliferating on the Internet as interest-and-passion-driven sites devoted to a common set of endeavors, they are not new, just…

  12. Using Affinity Diagrams to Evaluate Interactive Prototypes

    DEFF Research Database (Denmark)

    Lucero, Andrés

    2015-01-01

    our particular use of affinity diagramming in prototype evaluations. We reflect on a decade’s experience using affinity diagramming across a number of projects, both in industry and academia. Our affinity diagramming process in interaction design has been tailored and consists of four stages: creating...

  13. Templated Control of Au nanospheres in Silica Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J W; Vanamu, G; Zaidi, S H

    2007-03-15

    The formation of regularly-spaced metal nanostructures in selectively-placed insulating nanowires is an important step toward realization of a wide range of nano-scale electronic and opto-electronic devices. Here we report templated synthesis of Au nanospheres embedded in silica nanowires, with nanospheres consistently spaced with a period equal to three times their diameter. Under appropriate conditions, nanowires form exclusively on Si nanostructures because of enhanced local oxidation and reduced melting temperatures relative to templates with larger dimensions. We explain the spacing of the nanospheres with a general model based on a vapor-liquid-solid mechanism, in which an Au/Si alloy dendrite remains liquid in the nanotube until a critical Si concentration is achieved locally by silicon oxide-generated nanowire growth. Additional Si oxidation then locally reduces the surface energy of the Au-rich alloy by creating a new surface with minimum area inside of the nanotube. The isolated liquid domain subsequently evolves to become an Au nanosphere, and the process is repeated.

  14. Hard template synthesis of metal nanowires

    Directory of Open Access Journals (Sweden)

    Go eKawamura

    2014-11-01

    Full Text Available Metal nanowires (NWs have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  15. Hard template synthesis of metal nanowires

    Science.gov (United States)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  16. Learning templates for artistic portrait lighting analysis.

    Science.gov (United States)

    Chen, Xiaowu; Jin, Xin; Wu, Hongyu; Zhao, Qinping

    2015-02-01

    Lighting is a key factor in creating impressive artistic portraits. In this paper, we propose to analyze portrait lighting by learning templates of lighting styles. Inspired by the experience of artists, we first define several novel features that describe the local contrasts in various face regions. The most informative features are then selected with a stepwise feature pursuit algorithm to derive the templates of various lighting styles. After that, the matching scores that measure the similarity between a testing portrait and those templates are calculated for lighting style classification. Furthermore, we train a regression model by the subjective scores and the feature responses of a template to predict the score of a portrait lighting quality. Based on the templates, a novel face illumination descriptor is defined to measure the difference between two portrait lightings. Experimental results show that the learned templates can well describe the lighting styles, whereas the proposed approach can assess the lighting quality of artistic portraits as human being does.

  17. Book Review: Nano physics & Nano technology

    Directory of Open Access Journals (Sweden)

    Abdolkhaled Zaree

    2012-12-01

    Full Text Available During last decades, there are a lot of emphases on studying material behavior in atomic scale. In most scientific and engineering fields, one can see the effect of nanotechnology. The aim of nanoscience is to design and fabrication of new and applicable materials. Nowadays, Nano is a popular science which chemists, physicist, doctors, engineers, financial managers and environment's fans for creating a good life via nanoscience have a great cooperation with each others. Materials in nano scale such as nanotubes and nanowires have extraordinary properties which by optimization of these properties in nano scale and then develop these properties to macro scale, they've been challenging issues. For instance, materials in nano scale improve mechanical properties of polymers and metallic materials via nano particles and on the other hand by producing a thin film on surfaces improve surface hardening. Besides, nanotechnology is in hi-tech industries such as magnetic devices, surface coating, and biomaterial, material having sensors, polymers, gels, ceramics and intelligent membrane. Nano-carbon tubes are considered intelligent due to the fact that they couple electrochemical and elastic properties simultaneously, hence have greater activation energy density in comparison with other intelligent materials. Studying nanoscience is important because it causes the life to be better. Future Materials and structures will have a lot of outstanding properties. Intelligent machines can repair, recycle and reconstruct themselves. All these features are only possible in nano zone. Nano in engineering science can provide the possibility of making light missiles for exploring space. The reduced weight can be achieved by replacing traditional materials with hybrid nanocomposites.

  18. Research Update: Facile synthesis of CoFe2O4 nano-hollow spheres for efficient bilirubin adsorption

    Science.gov (United States)

    Rakshit, Rupali; Pal, Monalisa; Chaudhuri, Arka; Mandal, Madhuri; Mandal, Kalyan

    2015-11-01

    Herein, we report an unprecedented bilirubin (BR) adsorption efficiency of CoFe2O4 (CFO) nanostructures in contrast to the commercially available activated carbon and resin which are generally used for haemoperfusion and haemodialysis. We have synthesized CFO nanoparticles of diameter 100 nm and a series of nano-hollow spheres of diameter 100, 160, 250, and 350 nm using a simple template free solvothermal technique through proper variation of reaction time and capping agent, oleylamine (OLA), respectively, and carried out SiO2 coating by employing Stöber method. The comparative BR adsorption study of CFO and SiO2 coated CFO nanostructures indicates that apart from porosity and hollow configuration of nanostructures, the electrostatic affinity between anionic carboxyl group of BR and cationic amine group of OLA plays a significant role in adsorbing BR. Finally, we demonstrate that the BR adsorption capacity of the nanostructures can be tailored by varying the morphology as well as size of the nanostructures. We believe that our developed magnetic nanostructures could be considered as a potential material towards therapeutic applications against hyperbilirubinemia.

  19. Liquid as template for next generation micro devices

    International Nuclear Information System (INIS)

    Charmet, Jerome; Haquette, Henri; Laux, Edith; Keppner, Herbert; Gorodyska, Ganna; Textor, Marcus; Durante, Guido Spinola; Portuondo-Campa, Erwin; Knapp, Helmut; Bitterli, Roland; Noell, Wilfried

    2009-01-01

    Liquids have fascinated generations of scientists and engineers. Since ancient Greece, the perfect natural shape of liquids has been used to create optical systems. Nowadays, the natural shape of liquid is used in the fabrication of microlens arrays that rely on the melting of glass or photoresist to generate high quality lenses. However shrinkage normally associated to the liquid to solid phase transition will affect the initial shape and quality of the liquid structure. In this contribution, a novel fabrication technique that enables the encapsulation and replication of liquid templates without affecting their natural shape is presented. The SOLID (SOlid on LIquid Deposition) process allows for a transparent solid film to be deposited and grown onto a liquid template (droplet, film, line) in a way that the liquid shapes the overgrowing solid layer. The resulting configuration of the SOLID devices is chemically and mechanically stable and is the base of a huge variety of new micro-nano systems in the field of microfluidics, biomedical devices and micro-optics among others. The SOLID process enables in a one step process the encapsulation of liquid microlenses, fluidics channels, drug reservoir or any naturally driven liquid structure. The phenomenon and solid-liquid interface resulting from the SOLID process is new and still unexploited. The solid layer used for the SOLID process chosen in this paper is poly-para-xylylene called Parylene, a transparent biocompatible polymer with excellent mechanical and chemical properties. Moreover, as the solid layer is growing over a liquid template, atomically smooth surfaces channels can be obtained. The polymerization of Parylene does not exert stress and does not change the shape of the liquid; this latter aspect is particularly interesting for manufacturing naturally driven liquid structures. In this paper the authors explore the limits of this new method by testing different designs of SOLID encapsulated structures and

  20. Hard template synthesis of metal nanowires

    OpenAIRE

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production o...

  1. Templated Dry Printing of Conductive Metal Nanoparticles

    Science.gov (United States)

    Rolfe, David Alexander

    Printed electronics can lower the cost and increase the ubiquity of electrical components such as batteries, sensors, and telemetry systems. Unfortunately, the advance of printed electronics has been held back by the limited minimum resolution, aspect ratio, and feature fidelity of present printing techniques such as gravure, screen printing and inkjet printing. Templated dry printing offers a solution to these problems by patterning nanoparticle inks into templates before drying. This dissertation shows advancements in two varieties of templated dry nanoprinting. The first, advective micromolding in vapor-permeable templates (AMPT) is a microfluidic approach that uses evaporation-driven mold filling to create submicron features with a 1:1 aspect ratio. We will discuss submicron surface acoustic wave (SAW) resonators made through this process, and the refinement process in the template manufacturing process necessary to make these devices. We also present modeling techniques that can be applied to future AMPT templates. We conclude with a modified templated dry printing that improves throughput and isolated feature patterning by transferring dry-templated features with laser ablation. This method utilizes surface energy-defined templates to pattern features via doctor blade coating. Patterned and dried features can be transferred to a polymer substrate with an Nd:YAG MOPA fiber laser, and printed features can be smaller than the laser beam width.

  2. Electrochemically deposited BiTe-based nano wires for thermoelectric applications

    International Nuclear Information System (INIS)

    Inn-Khuan, N.; Kuan-Ying, K.; Che Zuraini Che Abdul Rahman; Nur Ubaidah Saidin; Suhaila Hani Ilias; Thye-Foo, C.

    2013-01-01

    Full-text: Nano structured materials systems such as thin-films and nano wires (NWs) are promising for thermoelectric power generation and refrigeration compared to traditional counterparts in bulk, due to their enhanced thermoelectric figures-of-merit. BiTe and its derivative compounds, in particular, are well-known for their near-room temperature thermoelectric performance. In this work, both the binary and ternary BiTe-based nano wires namely, BiTe and BiSbTe, were synthesized using template-assisted electrodeposition. Diameters of the nano wires were controlled by the pore sizes of the anodised alumina (AAO) templates used. Systematic study on the compositional change as a function of applied potential was carried out via Linear Sweep Voltametry (LSV). Chemical compositions of the nano wires were studied using Energy Dispersive X-ray Spectrometry (EDXS) and their microstructures evaluated using diffraction and imaging techniques. Results from chemical analysis on the nano wires indicated that while the Sb content in BiSbTe nano wires increased with more negative deposition potentials, the formation of Te 0 and Bi 2 Te 3 were favorable at more positive potentials. (author)

  3. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  4. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    Science.gov (United States)

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-07

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

  5. Zeolite-templated carbon replica: a Grand Canonical Monte-Carlo simulation study

    International Nuclear Information System (INIS)

    Thomas Roussel; Roland J M Pellenq; Christophe Bichara; Roger Gadiou; Antoine Didion; Cathie Vix Guterl; Fabrice Gaslain; Julien Parmentier; Valentin Valtchev; Joel Patarin

    2005-01-01

    Microporous carbon materials are interesting for several applications such as hydrogen storage, catalysis or electrical double layer capacitors. The development of the negative templating method to obtain carbon replicas from ordered templates, has lead to the synthesis of several new materials which have interesting textural properties, attractive for energy storage. Among the possible templates, zeolites can be used to obtain highly microporous carbon materials. Nevertheless, the phenomena involved in the replica synthesis are not fully understood, and the relationships between the structure of the template, the carbon precursor and the resulting carbon material need to be investigated. Experimental results for carbon zeolite-templated nano-structures can be found in a series of papers; see for instance ref. [1] in which Wang et al describe a route to ultra-small Single Wall Carbon Nano-tubes (SWNTs) using the porosity of zeolite AlPO 4 -5. After matrix removal, the resulting structure is a free-standing bundle of 4 Angstroms large nano-tubes. However, it is highly desirable to obtain an ordered porous carbon structure that forms a real 3D network to be used for instance in gas storage applications. Carbon replica of faujasite and EMT zeolites can have these properties since these zeolites have a 3D porous network made of 10 Angstroms cages connected to each other through 7 Angstroms large windows. The first step of this study was to generate a theoretical carbon replica structure of various zeolites (faujasite, EMT, AlPO 4 -5, silicalite). For this purpose, we used the Grand Canonical Monte-Carlo (GCMC) technique in which the carbon-carbon interactions were described within the frame of a newly developed Tight Binding approach and the carbon-zeolite interactions assumed to be characteristic of physi-sorption. The intrinsic stability of the subsequent carbon nano-structures was then investigated after mimicking the removal of the inorganic phase by switching

  6. The affine quantum gravity programme

    International Nuclear Information System (INIS)

    Klauder, John R

    2002-01-01

    The central principle of affine quantum gravity is securing and maintaining the strict positivity of the matrix { g-hat ab (x)} composed of the spatial components of the local metric operator. On spectral grounds, canonical commutation relations are incompatible with this principle, and they must be replaced by noncanonical, affine commutation relations. Due to the partial second-class nature of the quantum gravitational constraints, it is advantageous to use the recently developed projection operator method, which treats all quantum constraints on an equal footing. Using this method, enforcement of regularized versions of the gravitational operator constraints is formulated quite naturally by means of a novel and relatively well-defined functional integral involving only the same set of variables that appears in the usual classical formulation. It is anticipated that skills and insight to study this formulation can be developed by studying special, reduced-variable models that still retain some basic characteristics of gravity, specifically a partial second-class constraint operator structure. Although perturbatively nonrenormalizable, gravity may possibly be understood nonperturbatively from a hard-core perspective that has proved valuable for specialized models. Finally, developing a procedure to pass to the genuine physical Hilbert space involves several interconnected steps that require careful coordination

  7. Affine-projective field laws

    International Nuclear Information System (INIS)

    Murphy, G.L.

    1975-01-01

    The general topic of geometric unified field theories is discussed in the first section. Some reasons are given for pursuing such theories, and some criticisms are considered. The second section develops the fundamental equations of a purely affine theory which is invariant under projective transformations of the affine connection. This theory is a generalization of that of Schrodinger. Possible identifications for the space-time metric are considered in Sec. III. Sections IV and V deal with the limits of pure gravitation and electrodynamics. In the symmetric limit, Einstein's vacuum equations with cosmological term are recovered. The theory also contains a generalized electrodynamic set of equations which is very similar to the Born-Infeld set. In the weak-field approximation, a finite mass must be attributed to the photon. The problem of motion for charges is discussed here, and it is argued that criticisms of unified field theories because of a supposed inability to produce the Lorentz force law are probably not justified. Three more speculative sections deal with possible explanations of nuclear forces, the spin-torsion relation, and particle structure

  8. Radiation Induced Polyvinylpyrrolidone/Polyacrylic Acid Nano-Gel Formation for Biomedical Applications

    International Nuclear Information System (INIS)

    AbdEl-Rehim, H.; Hegazy, E.A.; Eid, A.; Amr; Ali, A.

    2010-01-01

    Adopting polyvinylpyrrolidone as template macromolecules and acrylic acid (AA) as monomers, at a concentration ranged from .05 to 1.5%, pH sensitive nano-particle colloids were successfully prepared via template polymerization using gamma radiation in which polymerization of the monomer and self-assembly between the polymer and the template take place simultaneously. The self-assembly was driven by specific interactions between PVP and PAA produced in-situ, leading to PVP/PAAc nano-particles with insoluble inter-polymer complexes. Dynamic light scattering technique was used to indicate size shrinkage and surface charge increase of the PVP/PAAc nano-particles. Many factors affecting the PVP/PAAc nano-particle size such as irradiation dose rate, exposure dose, irradiation temperature and atmosphere, PVP MWt, and feed composition and concentration were investigated. It was found that the reactant feed composition and irradiation temperatures have a great influence on particle size of the prepared nanogel. The structure and morphology of the nano-particles were characterized by FT-IR, UV, viscometry and AFM methods. The structure stability of the nano-particles was studied at different pH solutions. The nano-particles exhibit excellent pH response. When pH changed from acid to base, the particles‘ volume expanded 100 times depending on the irradiation dose at which the nanogel was prepared. The prepared nanogel was loaded with flutamide anticancer drug in the presence of ethanol-water mixture solution and the amount of loaded flutamide was determined. The prepared nano scale polyvinylpyrrolidone/polyacrylic acid bio-polymeric system loaded with flutamide drug is being investigated as anticancer target drug. Also this system will be tested for the treatment of dry-eye-syndrome. (author)

  9. Radiation Induced Polyvinylpyrrolidone/Polyacrylic Acid Nano-Gel Formation for Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    AbdEl-Rehim, H.; Hegazy, E. A.; Eid, A.; Amr,; Ali, A., E-mail: ha_rehim@hotmail.com [National Centre for Radiation Research, Research Centre (NCRRT), Atomic Energy Authority NCRRT, P.O.Box 29, Nasr City, Cairo (Egypt)

    2010-07-01

    Adopting polyvinylpyrrolidone as template macromolecules and acrylic acid (AA) as monomers, at a concentration ranged from .05 to 1.5%, pH sensitive nano-particle colloids were successfully prepared via template polymerization using gamma radiation in which polymerization of the monomer and self-assembly between the polymer and the template take place simultaneously. The self-assembly was driven by specific interactions between PVP and PAA produced in-situ, leading to PVP/PAAc nano-particles with insoluble inter-polymer complexes. Dynamic light scattering technique was used to indicate size shrinkage and surface charge increase of the PVP/PAAc nano-particles. Many factors affecting the PVP/PAAc nano-particle size such as irradiation dose rate, exposure dose, irradiation temperature and atmosphere, PVP MWt, and feed composition and concentration were investigated. It was found that the reactant feed composition and irradiation temperatures have a great influence on particle size of the prepared nanogel. The structure and morphology of the nano-particles were characterized by FT-IR, UV, viscometry and AFM methods. The structure stability of the nano-particles was studied at different pH solutions. The nano-particles exhibit excellent pH response. When pH changed from acid to base, the particles‘ volume expanded 100 times depending on the irradiation dose at which the nanogel was prepared. The prepared nanogel was loaded with flutamide anticancer drug in the presence of ethanol-water mixture solution and the amount of loaded flutamide was determined. The prepared nano scale polyvinylpyrrolidone/polyacrylic acid bio-polymeric system loaded with flutamide drug is being investigated as anticancer target drug. Also this system will be tested for the treatment of dry-eye-syndrome. (author)

  10. High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting.

    Science.gov (United States)

    Wang, Ying Min; Lu, Liangxing; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Zhang, Yong Wei; Yang, Joel K W

    2015-04-10

    We introduce an approach to fabricate ordered arrays of 10-nm-scale silica-filled apertures in a metal film without etching or liftoff. Using low temperature (dewetting of metal films guided by nano-patterned templates, apertures with aspect ratios up to 5:1 are demonstrated. Apertures form spontaneously during the thermal process without need for further processing. Although the phenomenon of dewetting has been well studied, this is the first demonstration of its use in the fabrication of nanoapertures in a spatially controllable manner. In particular, the achievement of 10-nm length-scale patterning at high aspect ratio with thermal dewetting is unprecedented. By varying the nanotemplate design, we show its strong influence over the positions and sizes of the nanoapertures. In addition, we construct a three-dimensional phase field model of metal dewetting on nano-patterned substrates. The simulation data obtained closely corroborates our experimental results and reveals new insights to template dewetting at the nanoscale. Taken together, this fabrication method and simulation model form a complete toolbox for 10-nm-scale patterning using template-guided dewetting that could be extended to a wide range of material systems and geometries.

  11. Statistical inference for template aging

    Science.gov (United States)

    Schuckers, Michael E.

    2006-04-01

    A change in classification error rates for a biometric device is often referred to as template aging. Here we offer two methods for determining whether the effect of time is statistically significant. The first of these is the use of a generalized linear model to determine if these error rates change linearly over time. This approach generalizes previous work assessing the impact of covariates using generalized linear models. The second approach uses of likelihood ratio tests methodology. The focus here is on statistical methods for estimation not the underlying cause of the change in error rates over time. These methodologies are applied to data from the National Institutes of Standards and Technology Biometric Score Set Release 1. The results of these applications are discussed.

  12. A Template for Design Personas:

    DEFF Research Database (Denmark)

    Nielsen, Lene; Hansen, Kira Storgaard; Stage, Jan

    2015-01-01

    The persona method is gaining widespread use and support. Many researchers have reported from single cases and from novel domains on how they have used the method. However, the way companies and design groups describe personas has not been the focus of attention. This paper analyses 47 descriptions...... from 13 companies and compares these to an analysis of recommendations from 11 templates from literature. Furthermore, 28 interviews with Danish practitioners with experience in using personas are analyzed for content on persona descriptions. The study finds that a Danish persona style has developed...... that is different from the recommendations in the lack of marketing and business related information and the absence of goals as differentiator for personas. Furthermore, the inspiration and knowledge on personas originates from co-workers and seminars and not much from literature. This indicates that the community...

  13. Screening for templates that promote crystallization

    NARCIS (Netherlands)

    Urbanus, J.; Roelands, C.P.M.; Horst, J.H. ter; Verdoes, D.; Jansens, P.J.

    2008-01-01

    In Situ Product Recovery (ISPR) applied in fermentation processes leads to improved yield and productivity of these processes. In principle, ISPR can be achieved using Template Induced Crystallization (TIC), which is one possible ISPR technique. With TIC, templates are added to the solution as a

  14. 2D vector-cyclic deformable templates

    DEFF Research Database (Denmark)

    Schultz, Nette; Conradsen, Knut

    1998-01-01

    In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation...... and probabillity measurement. The case study concerns estimation of meat percent in pork carcasses. Given two cross-sectional images - one at the front and one near the ham of the carcass - the areas of lean and fat and a muscle in the lean area are measured automatically by the deformable templates....

  15. [The template principle: paradigm of modern genetics].

    Science.gov (United States)

    Inge-Vechtomov, S G

    2013-01-01

    The idea of continuity in living systems, which was initially developed in mid-19th century, reached its peak in 1928 thanks to N.K. Koltsov, who proposed the template principle in chromosome reproduction. The determination of genetic functions of nucleic acids and the advent of molecular genetics led to F. Crick's statement of the central dogma of molecular biology in 1958. This dogma became a contemporary version of the template principle (templates of the first order). The discovery of "protein inheritance" underlay the notion of steric or conformational templates (second order) for reproducing conformation in a number of proteins. The template principle supplemented by this notion claims to be the main paradigm of modern genetics.

  16. Template Assembly for Detailed Urban Reconstruction

    KAUST Repository

    Nan, Liangliang

    2015-05-04

    We propose a new framework to reconstruct building details by automatically assembling 3D templates on coarse textured building models. In a preprocessing step, we generate an initial coarse model to approximate a point cloud computed using Structure from Motion and Multi View Stereo, and we model a set of 3D templates of facade details. Next, we optimize the initial coarse model to enforce consistency between geometry and appearance (texture images). Then, building details are reconstructed by assembling templates on the textured faces of the coarse model. The 3D templates are automatically chosen and located by our optimization-based template assembly algorithm that balances image matching and structural regularity. In the results, we demonstrate how our framework can enrich the details of coarse models using various data sets.

  17. Optimizing preventive maintenance with maintenance templates

    International Nuclear Information System (INIS)

    Dozier, I.J.

    1996-01-01

    Rising operating costs has caused maintenance professionals to rethink their strategy for preventive maintenance (PM) programs. Maintenance Templates are pre-engineered PM task recommendations for a component type based on application of the component. Development of the maintenance template considers the dominant failure cause of the component and the type of preventive maintenance that can predict or prevent the failure from occurring. Maintenance template development also attempts to replace fixed frequency tasks with condition monitoring tasks such as vibration analysis or thermography. For those components that have fixed frequency PM intervals, consideration is given to the maintenance drivers such as criticality, environment and usage. This helps to maximize the PM frequency intervals and maximize the component availability. Maintenance Templates have been used at PECO Energy's Limerick Generating Station during the Reliability Centered Maintenance (RCM) Process to optimize their PM program. This paper describes the development and uses of the maintenance templates

  18. The Nano Solar Case

    DEFF Research Database (Denmark)

    Hollensen, Svend; Lindgren, Peter

    2011-01-01

    ISO PAINT Nordic A/S produces roof coatings, facade painting as well as specialised products for surface treatments. The company decided that they would develop a nano solar ICT based project having the capacity to change the whole cost structure of a building, for example by a nano roof coating...

  19. Track-etch membranes enabled nano-/microtechnology: A review

    International Nuclear Information System (INIS)

    Chakarvarti, S.K.

    2009-01-01

    tunneling phenomenon, optical, magnetic, and chemical and other important functional attributes etc are found to be enhanced when the size reduction comes into play. This review article addresses the art and science of specific technique-the 'Template Synthesis'(TS) used as a route in the development of nano-/micromaterials and structures involving metals, non-metals, semiconductors, magnetic multilayered nanowires, conducting polymers, glasses, nanotubules, wires and whiskers etc. The recent past has witnessed keen interest being generated on the use of innovative technologies like TS in the production of nanomaterials' fabrication reported from various authors and from our lab. The strategy for embedding matter of interest within the etched pores or channels in the template is the material's placement through some suitable mechanism at the desired places viz., pores.

  20. Track-etch membranes enabled nano-/microtechnology: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chakarvarti, S.K., E-mail: skchakarvarti@gmail.co [Department of Physics, National Institute of Technology, Institution of National Importance, Kurukshetra 136 119 (India)

    2009-10-15

    tunneling phenomenon, optical, magnetic, and chemical and other important functional attributes etc are found to be enhanced when the size reduction comes into play. This review article addresses the art and science of specific technique-the 'Template Synthesis'(TS) used as a route in the development of nano-/micromaterials and structures involving metals, non-metals, semiconductors, magnetic multilayered nanowires, conducting polymers, glasses, nanotubules, wires and whiskers etc. The recent past has witnessed keen interest being generated on the use of innovative technologies like TS in the production of nanomaterials' fabrication reported from various authors and from our lab. The strategy for embedding matter of interest within the etched pores or channels in the template is the material's placement through some suitable mechanism at the desired places viz., pores.

  1. Studies on the formation of hierarchical zeolite T aggregates with well-defined morphology in different template systems

    Science.gov (United States)

    Yin, Xiaoyan; Chu, Naibo; Lu, Xuewei; Li, Zhongfang; Guo, Hong

    2016-01-01

    In this paper, the disk-like and pumpkin-like hierarchical zeolite T aggregates consisted of primary nano-grains have been hydrothermally synthesized with and without the aid of the second template. The first template is used with tetramethylammonium hydroxide (TMAOH) and the second template is used with triethanolamine (TEA) or polyving akohol (PVA). A combination of characterization techniques, including XRD, SEM, TEM and N2 adsorption-desorption to examine the crystal crystallinity, morphology and surface properties of hierarchical zeolite T aggregates. In the single-template preparation process, the two-step varying-temperature treatment has been used to improve the meso-porosity of zeolite T aggregates. In the double-template preparation process, the amounts of PVA or TEA on the crystallinity, morphology and meso-porosity of zeolite T aggregates have been studied. It has been proved that the interstitial voids between the primary grains of aggregates are the origin of additional mesopores of samples. The micro- and meso-porosities of samples prepared with and without the second template have been contrasted in detail at last. In particular, the sample synthesized with the addition of PVA presents a hierarchical pore structure with the highest Sext value of 122 m2/g and Vmeso value of 0.255 cm3/g.

  2. Templates for integrated nanofiber growth

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de

    the growth direction and the nanofiber length and position can be controlled by placement of nano-structured lines on the substrate. These lines can be used to guide the surface diffusion and thereby steer the self-assembly process of the organic molecules leading to morphologically well-defined molecular...... the morphology of the resulting structures leading to notably different electrical properties. The transistor design influences its electrical characteristics, and the top-gate configuration shows to have the stronger gate effect. In addition, platforms for light-emitting devices were fabricated......Para-hexaphenylene (p6P) molecules have the ability to self-assemble into organic nanofibers. These nanofibers hold unique optoelectronic properties, which make them interesting candidates as elements in electronic and optoelectronic devices. Typically these nanofibers are grown on specific single...

  3. Antisymmetric tensor generalizations of affine vector fields.

    Science.gov (United States)

    Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-02-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.

  4. Affine LIBOR Models with Multiple Curves

    DEFF Research Database (Denmark)

    Grbac, Zorana; Papapantoleon, Antonis; Schoenmakers, John

    2015-01-01

    are specified following the methodology of the affine LIBOR models and are driven by the wide and flexible class of affine processes. The affine property is preserved under forward measures, which allows us to derive Fourier pricing formulas for caps, swaptions, and basis swaptions. A model specification...... with dependent LIBOR rates is developed that allows for an efficient and accurate calibration to a system of caplet prices....

  5. Object matching using a locally affine invariant and linear programming techniques.

    Science.gov (United States)

    Li, Hongsheng; Huang, Xiaolei; He, Lei

    2013-02-01

    In this paper, we introduce a new matching method based on a novel locally affine-invariant geometric constraint and linear programming techniques. To model and solve the matching problem in a linear programming formulation, all geometric constraints should be able to be exactly or approximately reformulated into a linear form. This is a major difficulty for this kind of matching algorithm. We propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot fewer auxiliary variables than other linear programming-based methods do. The key idea behind it is that each point in the template point set can be exactly represented by an affine combination of its neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each matched point using such weights are used to penalize the disagreement of geometric relationships between the template points and the matched points. The resulting overall objective function can be solved efficiently by linear programming techniques. Our experimental results on both rigid and nonrigid object matching show the effectiveness of the proposed algorithm.

  6. Connections between quantized affine algebras and superalgebras

    International Nuclear Information System (INIS)

    Zhang, R.B.

    1992-08-01

    Every affine superalgebra with a symmetrizable Cartan matrix is closely related to an ordinary affine algebra with the same Cartan matrix. It is shown that the quantum supergroup associated with the former is essentially isomorphic to the quantum group associated with the latter in an appropriate class of representations. At the classical level, each integrable irreducible highest weight representation of the affine superalgebra has a corresponding irreducible representation of the affine algebra, which has the same weight space decomposition. (author). 5 refs, 3 tabs

  7. A Novel Vertex Affinity for Community Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Andy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Henson, Van [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, Panayot [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-05

    We propose a novel vertex affinity measure in this paper. The new vertex affinity quantifies the proximity between two vertices in terms of their clustering strength and is ideal for such graph analytics applications as community detection. We also developed a framework that combines simple graph searches and resistance circuit formulas to compute the vertex affinity efficiently. We study the properties of the new affinity measure empirically in comparison to those of other popular vertex proximity metrics. Our results show that the existing metrics are ill-suited for community detection due to their lack of fundamental properties that are essential for correctly capturing inter- and intra-cluster vertex proximity.

  8. To remove or not to remove? The challenge of extracting the template to make the cavities available in Molecularly Imprinted Polymers (MIPs).

    Science.gov (United States)

    Lorenzo, Rosa A; Carro, Antonia M; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2011-01-01

    Template removal is a critical step in the preparation of most molecularly imprinted polymers (MIPs). The polymer network itself and the affinity of the imprinted cavities for the template make its removal hard. If there are remaining template molecules in the MIPs, less cavities will be available for rebinding, which decreases efficiency. Furthermore, if template bleeding occurs during analytical applications, errors will arise. Despite the relevance to the MIPs performance, template removal has received scarce attention and is currently the least cost-effective step of the MIP development. Attempts to reach complete template removal may involve the use of too drastic conditions in conventional extraction techniques, resulting in the damage or the collapse of the imprinted cavities. Advances in the extraction techniques in the last decade may provide optimized tools. The aim of this review is to analyze the available data on the efficiency of diverse extraction techniques for template removal, paying attention not only to the removal yield but also to MIPs performance. Such an analysis is expected to be useful for opening a way to rational approaches for template removal (minimizing the costs of solvents and time) instead of the current trial-and-error methods.

  9. Rate in template-directed polymer synthesis.

    Science.gov (United States)

    Saito, Takuya

    2014-06-01

    We discuss the temporal efficiency of template-directed polymer synthesis, such as DNA replication and transcription, under a given template string. To weigh the synthesis speed and accuracy on the same scale, we propose a template-directed synthesis (TDS) rate, which contains an expression analogous to that for the Shannon entropy. Increasing the synthesis speed accelerates the TDS rate, but the TDS rate is lowered if the produced sequences are diversified. We apply the TDS rate to some production system models and investigate how the balance between the speed and the accuracy is affected by changes in the system conditions.

  10. Nanowires and nanostructures fabrication using template methods

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Vlad, A.

    2009-01-01

    One of the great challenges of today is to find reliable techniques for the fabrication of nanomaterials and nanostructures. Methods based on template synthesis and on self organization are the most promising due to their easiness and low cost. This paper focuses on the electrochemical synthesis ...... of nanowires and nanostructures using nanoporous host materials such as supported anodic aluminum considering it as a key template for nanowires based devices. New ways are opened for applications by combining such template synthesis methods with nanolithographic techniques....

  11. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    International Nuclear Information System (INIS)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Wang Xiaohua

    2009-01-01

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  12. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Wang Xiaohua, E-mail: dxzhao2000@yahoo.com.c [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, 7089 WeiXing Road, ChangChun 130022 (China)

    2009-12-09

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  13. The eNanoMapper database for nanomaterial safety information

    Directory of Open Access Journals (Sweden)

    Nina Jeliazkova

    2015-07-01

    Full Text Available Background: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs. Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs.Results: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API, and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms.Conclusion: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the “representational state

  14. The eNanoMapper database for nanomaterial safety information.

    Science.gov (United States)

    Jeliazkova, Nina; Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon

    2015-01-01

    The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the "representational state transfer" (REST) API enables building user friendly

  15. On affine non-negative matrix factorization

    DEFF Research Database (Denmark)

    Laurberg, Hans; Hansen, Lars Kai

    2007-01-01

    We generalize the non-negative matrix factorization (NMF) generative model to incorporate an explicit offset. Multiplicative estimation algorithms are provided for the resulting sparse affine NMF model. We show that the affine model has improved uniqueness properties and leads to more accurate id...

  16. Global affine differential geometry of hypersurfaces

    CERN Document Server

    Li, An-Min; Zhao, Guosong; Hu, Zejun

    2015-01-01

    This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

  17. Hierarchically templated beads with tailored pore structure for phosphopeptide capture and phosphoproteomics

    DEFF Research Database (Denmark)

    Wierzbicka, Celina; Torsetnes, Silje B.; Jensen, Ole N.

    2017-01-01

    Two templating approaches to produce imprinted phosphotyrosine capture beads with a controllable pore structure are reported and compared with respect to their ability to enrich phosphopeptides from a tryptic peptide mixture. The beads were prepared by the polymerization of urea-based host monomers...... and crosslinkers inside the pores of macroporous silica beads with both free and immobilized template. In the final step the silica was removed by fluoride etching resulting in mesoporous polymer replicas with narrow pore size distributions, pore diameters ≈ 10 nm and surface area > 260 m2 g-1. The beads displayed...... pronounced phosphotyrosine affinity and selectivity in binding tests using model peptides in acetonitrile rich solutions with a performance surpassing solution polymerized bulk imprinted materials. Tests of the beads for the enrichment of phosphopeptides from tryptic digests of twelve proteins revealed both...

  18. Template for safety reports with descriptive example

    International Nuclear Information System (INIS)

    1995-12-01

    This report provides a template for future safety reports on long-term safety in support of important decisions and permit applications in connection with the construction of a deep repository system. The template aims at providing a uniform structure for describing long-term safety, after the repository has been closed and sealed. The availability of such a structure will simplify both preparation and review of the safety reports, and make it possible to follow how safety assessments are influenced by the progressively more detailed body of data that emerges. A separate section containing 'descriptive examples' has been appended to the template. This section illustrates what the different chapters of the template should contain. 279 refs

  19. Template Assembly for Detailed Urban Reconstruction

    KAUST Repository

    Nan, Liangliang; Wonka, Peter; Ghanem, Bernard; Jiang, Caigui

    2015-01-01

    Structure from Motion and Multi View Stereo, and we model a set of 3D templates of facade details. Next, we optimize the initial coarse model to enforce consistency between geometry and appearance (texture images). Then, building details are reconstructed

  20. Template for safety reports with descriptive example

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report provides a template for future safety reports on long-term safety in support of important decisions and permit applications in connection with the construction of a deep repository system. The template aims at providing a uniform structure for describing long-term safety, after the repository has been closed and sealed. The availability of such a structure will simplify both preparation and review of the safety reports, and make it possible to follow how safety assessments are influenced by the progressively more detailed body of data that emerges. A separate section containing `descriptive examples` has been appended to the template. This section illustrates what the different chapters of the template should contain. 279 refs.

  1. Social engineering attack examples, templates and scenarios

    CSIR Research Space (South Africa)

    Mouton, Francois

    2016-06-01

    Full Text Available that are representative of real-world examples, whilst still being general enough to encompass several different real-world examples. The proposed social engineering attack templates cover all three types of communication, namely bidirectional communication...

  2. Template analysis for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Uta [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    The MAGIC telescopes are two 17-m-diameter Imaging Air Cherenkov Telescopes located on the Canary island of La Palma. They record the Cherenkov light from air showers induced by very high energy photons. The current data analysis uses a parametrization of the two shower images (including Hillas parameters) to determine the characteristics of the primary particle. I am implementing an advanced analysis method that compares shower images on a pixel basis with template images based on Monte Carlo simulations. To reduce the simulation effort the templates contain only pure shower images that are convolved with the telescope response later in the analysis. The primary particle parameters are reconstructed by maximizing the likelihood of the template. By using all the information available in the shower images, the performance of MAGIC is expected to improve. In this presentation I will explain the general idea of a template-based analysis and show the first results of the implementation.

  3. Surgical Templates for Dental Implant Positioning; Current ...

    African Journals Online (AJOL)

    prosthodontics; however, designing an implant‑supported prosthesis with function .... template where a provisional fixed restoration bridges the implant site. Pesun and ... in single implant therapy or short‑span implant‑supported prostheses.

  4. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  5. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  6. NanoAODs

    CERN Document Server

    Husova, Lucia Anna

    2017-01-01

    The scientist on LHC experiment analyse a huge amount of data every day on the Grid. Thus new methods are requested, how to make the analysis more efficient. The NanoAOD is a derived dataset from AOD, where only information necessary for the analysis is stored. Thus the analysis can be more than two times faster, because of the smaller file size, which can be read faster on the Grid. The main goal of this summer student project was to help other users to start using NanoAODs by rewriting their user tasks. Two example users tasks were converted to NanoAODs and tested with the local train test. A speed up of 3.5 was reached. The results of the analysis tasks are identical independent if they use AODs or NanoAODs.

  7. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  8. Optiske nano-fibre

    DEFF Research Database (Denmark)

    Rubahn, Horst-Günter; Simonsen, Adam Cohen

    2003-01-01

    Forskere ved Syddansk Universitet har udviklet organiske nano-aggregater, som gør det muligt under meget kontrollerede forhold at studere optiske fænomener på skalaer mindre end lysets bølgelængde.......Forskere ved Syddansk Universitet har udviklet organiske nano-aggregater, som gør det muligt under meget kontrollerede forhold at studere optiske fænomener på skalaer mindre end lysets bølgelængde....

  9. Multi-template polymerase chain reaction.

    Science.gov (United States)

    Kalle, Elena; Kubista, Mikael; Rensing, Christopher

    2014-12-01

    PCR is a formidable and potent technology that serves as an indispensable tool in a wide range of biological disciplines. However, due to the ease of use and often lack of rigorous standards many PCR applications can lead to highly variable, inaccurate, and ultimately meaningless results. Thus, rigorous method validation must precede its broad adoption to any new application. Multi-template samples possess particular features, which make their PCR analysis prone to artifacts and biases: multiple homologous templates present in copy numbers that vary within several orders of magnitude. Such conditions are a breeding ground for chimeras and heteroduplexes. Differences in template amplification efficiencies and template competition for reaction compounds undermine correct preservation of the original template ratio. In addition, the presence of inhibitors aggravates all of the above-mentioned problems. Inhibitors might also have ambivalent effects on the different templates within the same sample. Yet, no standard approaches exist for monitoring inhibitory effects in multitemplate PCR, which is crucial for establishing compatibility between samples.

  10. Multi-template polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Elena Kalle

    2014-12-01

    Full Text Available PCR is a formidable and potent technology that serves as an indispensable tool in a wide range of biological disciplines. However, due to the ease of use and often lack of rigorous standards many PCR applications can lead to highly variable, inaccurate, and ultimately meaningless results. Thus, rigorous method validation must precede its broad adoption to any new application. Multi-template samples possess particular features, which make their PCR analysis prone to artifacts and biases: multiple homologous templates present in copy numbers that vary within several orders of magnitude. Such conditions are a breeding ground for chimeras and heteroduplexes. Differences in template amplification efficiencies and template competition for reaction compounds undermine correct preservation of the original template ratio. In addition, the presence of inhibitors aggravates all of the above-mentioned problems. Inhibitors might also have ambivalent effects on the different templates within the same sample. Yet, no standard approaches exist for monitoring inhibitory effects in multitemplate PCR, which is crucial for establishing compatibility between samples.

  11. Cancer Nano medicine

    International Nuclear Information System (INIS)

    Li, H.; Pike, M.M.; Luo, X.; Liu, L.H.

    2013-01-01

    Bioengineered nano materials have inspired revolutionary imaging and drug delivery methods whose clinical application in cancer research has resulted in powerful medical devices for early diagnosis, treatment, and prevention of cancer. Recent advances in super imaging agents have resulted in improved resolution and sensitivity. For instance, fluorescent quantum dots with wavelength-tunable emissions, plasmon-resonant gold nano structures with shape-controlled near-infrared absorptions, and MRI-active iron oxide nanoparticles are well-established molecular imaging probes for noninvasive cancer imaging. Nano materials are also considered to be the most effective vectors that can break through transport bio barriers and deliver a constant dose of multiple therapeutic agents to tumors and intracellular endocytic compartments for cancer gene therapy, immunotherapy, or chemotherapy. Furthermore, nano wire- or nano tube-based electronic devices demonstrate extraordinary sensitivity capable of detection at the single molecule or protein level. It is anticipated that developing nano technology-driven imaging, sensing, and therapeutic systems will dramatically advance cancer research and clinical treatments.

  12. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    KAUST Repository

    Ocakoǧlu, Kasim; Joya, Khurram Saleem; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-01-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C 18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. © 2014 the Partner Organisations.

  13. Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomin Cai

    2017-07-01

    Full Text Available The cooperative effects between the PANI (polyaniline/nano-NiO (nano nickel oxide composite electrode material and redox electrolytes (potassium iodide, KI for supercapacitor applications was firstly discussed in this article, providing a novel method to prepare nano-NiO by using β-cyelodextrin (β-CD as the template agent. The experimental results revealed that the composite electrode processed a high specific capacitance (2122.75 F·g−1 at 0.1 A·g−1 in 0.05 M KI electrolyte solution, superior energy density (64.05 Wh·kg−1 at 0.2 A·g−1 in the two-electrode system and excellent cycle performance (86% capacitance retention after 1000 cycles at 1.5 A·g−1. All those ultra-high electrical performances owe to the KI active material in the electrolyte and the PANI coated nano-NiO structure.

  14. The Cutting Edge of Affinity Electrophoresis Technology

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  15. The Cutting Edge of Affinity Electrophoresis Technology.

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-03-18

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.

  16. Novel Selective Detection Method of Tumor Angiogenesis Factors Using Living Nano-Robots.

    Science.gov (United States)

    Al-Fandi, Mohamed; Alshraiedeh, Nida; Owies, Rami; Alshdaifat, Hala; Al-Mahaseneh, Omamah; Al-Tall, Khadijah; Alawneh, Rawan

    2017-07-14

    This paper reports a novel self-detection method for tumor cells using living nano-robots. These living robots are a nonpathogenic strain of E. coli bacteria equipped with naturally synthesized bio-nano-sensory systems that have an affinity to VEGF, an angiogenic factor overly-expressed by cancer cells. The VEGF-affinity/chemotaxis was assessed using several assays including the capillary chemotaxis assay, chemotaxis assay on soft agar, and chemotaxis assay on solid agar. In addition, a microfluidic device was developed to possibly discover tumor cells through the overexpressed vascular endothelial growth factor (VEGF). Various experiments to study the sensing characteristic of the nano-robots presented a strong response toward the VEGF. Thus, a new paradigm of selective targeting therapies for cancer can be advanced using swimming E. coli as self-navigator miniaturized robots as well as drug-delivery vehicles.

  17. Mobile Technology Affinity in Renal Transplant Recipients.

    Science.gov (United States)

    Reber, S; Scheel, J; Stoessel, L; Schieber, K; Jank, S; Lüker, C; Vitinius, F; Grundmann, F; Eckardt, K-U; Prokosch, H-U; Erim, Y

    Medication nonadherence is a common problem in renal transplant recipients (RTRs). Mobile health approaches to improve medication adherence are a current trend, and several medication adherence apps are available. However, it is unknown whether RTRs use these technologies and to what extent. In the present study, the mobile technology affinity of RTRs was analyzed. We hypothesized significant age differences in mobile technology affinity and that mobile technology affinity is associated with better cognitive functioning as well as higher educational level. A total of 109 RTRs (63% male) participated in the cross-sectional study, with an overall mean age of 51.8 ± 14.2 years. The study included the Technology Experience Questionnaire (TEQ) for the assessment of mobile technology affinity, a cognitive test battery, and sociodemographic data. Overall, 57.4% of the patients used a smartphone or tablet and almost 45% used apps. The TEQ sum score was 20.9 in a possible range from 6 (no affinity to technology) to 30 (very high affinity). Younger patients had significantly higher scores in mobile technology affinity. The only significant gender difference was found in having fun with using electronic devices: Men enjoyed technology more than women did. Mobile technology affinity was positively associated with cognitive functioning and educational level. Young adult patients might profit most from mobile health approaches. Furthermore, high educational level and normal cognitive functioning promote mobile technology affinity. This should be kept in mind when designing mobile technology health (mHealth) interventions for RTRs. For beneficial mHealth interventions, further research on potential barriers and desired technologic features is necessary to adapt apps to patients' needs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Affinity Strings: Enterprise Data for Resource Recommendations

    Directory of Open Access Journals (Sweden)

    Shane Nackerud

    2008-12-01

    Full Text Available The University of Minnesota Libraries have created a MyLibrary portal, with databases and e-journals targeted to users, based on their affiliations. The University's enterprise authentication system provides an "affinity string", now used to personalize the MyLibrary portal. This affinity string automates discovery of a user's relationship to the University--describing a user's academic department and degree program or position at the University. Affinity strings also provide the Libraries with an anonymized view of resource usage, allowing data collection that respects users' privacy and lays the groundwork for automated recommendation of relevant resources based on the practices and habits of their peers.

  19. Synthesis and characterization of Ag@Cu nano/microstructure ordered arrays as SERS-active substrates

    Science.gov (United States)

    Zhang, Pinhua; Cui, Guangliang; Xiao, Chuanhai; Zhang, Mingzhe; Chen, Li; Shi, Changmin

    2016-06-01

    We fabricated an Ag decorated Cu (Ag@Cu) nano/microstructure ordered array by facile template-free 2D electrodeposition combined with a galvanic reduction method for SERS applications. The Cu nano/microstructure ordered arrays were first synthesized by a 2D electrodeposition method, then Ag nanocubes were decorated on the arrays by galvanic reduction without any capping agent. The pollution-free surface and edge-to-face heterostructure of Ag nanocubes and Cu nano/microstructure arrays provide the powerful field-enhancements for SERS performance. The results verified that the Ag@Cu nano/microstructure ordered arrays have excellent activity for 4-Mercaptopyridine, and the sensitivity limit is as low as 10-8 M. Therefore, this facile route provides a useful platform for the fabrication of a SERS substrate based on nano/microstructure ordered arrays.

  20. The effect of crystalline and shape anisotropy on the magnetic properties of Co and Ni nano wires

    International Nuclear Information System (INIS)

    Golipour, R.; Khayyatian, A.; Ramazani, A.; Almasi Kashi, M.

    2007-01-01

    Co and Ni magnetic nano wires with different diameter and deposition time were fabricated into the alumina template using ac electrodeposition, For Ni nano wires with 30 nm diameter the coercivity initially increased then dropped with deposition time, while it only increased with deposition time for all the other diameters. In general, the results showed that the coercivity reduced with diameter. The maximum coercivity was obtained for the Co nano wire made with 30 nm diameter and 30 s deposition time and further electrodeposition time causes a reduction of the coercivity. The effect of crystal and shape anisotropy on the magnetic properties were investigated and the results revealed that the crystal anisotropy has dominant role on the coercive field of Co nano wires, while there is a competitive effect between both the anisotropies for the Ni nano wires changing the coercivity

  1. Transparent, flexible supercapacitors from nano-engineered carbon films

    Science.gov (United States)

    Jung, Hyun Young; Karimi, Majid B.; Hahm, Myung Gwan; Ajayan, Pulickel M.; Jung, Yung Joon

    2012-10-01

    Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications.

  2. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  3. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Science.gov (United States)

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002

  4. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.

    Science.gov (United States)

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-02-25

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  5. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  6. ON NANO Λg-CLOSED SETS

    OpenAIRE

    Rajasekaran, Ilangovan; Nethaji, Ochanan

    2017-01-01

    Abstaract−In this paper, we introduce nano ∧g-closed sets in nano topological spaces. Some properties of nano ∧g-closed sets and nano ∧g-open sets are weaker forms of nano closed sets and nano open sets

  7. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Affinity purification of recombinant human plasminogen activator from ... Screening antibody was performed using rhPA milk in an ELISA-elution assay. ... useful for purifying other tPA mutants or other novel recombinant milkderived proteins.

  8. PRINCIPLES OF AFFINITY-BASED BIOSENSORS

    Science.gov (United States)

    Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applic...

  9. Quantum deformation of the affine transformation algebra

    International Nuclear Information System (INIS)

    Aizawa, N.; Sato, Haru-Tada

    1994-01-01

    We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)

  10. Dynamics of Open Systems with Affine Maps

    International Nuclear Information System (INIS)

    Zhang Da-Jian; Liu Chong-Long; Tong Dian-Min

    2015-01-01

    Many quantum systems of interest are initially correlated with their environments and the reduced dynamics of open systems are an interesting while challenging topic. Affine maps, as an extension of completely positive maps, are a useful tool to describe the reduced dynamics of open systems with initial correlations. However, it is unclear what kind of initial state shares an affine map. In this study, we give a sufficient condition of initial states, in which the reduced dynamics can always be described by an affine map. Our result shows that if the initial states of the combined system constitute a convex set, and if the correspondence between the initial states of the open system and those of the combined system, defined by taking the partial trace, is a bijection, then the reduced dynamics of the open system can be described by an affine map. (paper)

  11. On the Lp affine isoperimetric inequalities

    Indian Academy of Sciences (India)

    surface area measure on convex bodies. We also establish the reverse version of -Petty projection inequality and an affine isoperimetric inequality of − p K . Author Affiliations. Wuyang Yu1 Gangsong Leng2. Institute of Management Decision ...

  12. Hollow ZIF-8 Nanoworms from Block Copolymer Templates

    Science.gov (United States)

    Yu, Haizhou; Qiu, Xiaoyan; Neelakanda, Pradeep; Deng, Lin; Khashab, Niveen M.; Nunes, Suzana P.; Peinemann, Klaus-Viktor

    2015-10-01

    Recently two quite different types of “nano-containers” have been recognized as attractive potential drug carriers; these are wormlike filamenteous micelles (“filomicelles”) on the one hand and metal organic frameworks on the other hand. In this work we combine these two concepts. We report for the first time the manufacturing of metal organic framework nanotubes with a hollow core. These worm-like tubes are about 200 nm thick and several μm long. The preparation is simple: we first produce long and flexible filament-shaped micelles by block copolymer self-assembly. These filomicelles serve as templates to grow a very thin layer of interconnected ZIF-8 crystals on their surface. Finally the block copolymer is removed by solvent extraction and the hollow ZIF-8 nanotubes remain. These ZIF-NTs are surprisingly stable and withstand purification by centrifugation. The synthesis method is straightforward and can easily be applied for other metal organic framework materials. The ZIF-8 NTs exhibit high loading capacity for the model anti cancer drug doxorubicin (DOX) with a pH-triggered release. Hence, a prolonged circulation in the blood stream and a targeted drug release behavior can be expected.

  13. A Ground Systems Template for Remote Sensing Systems

    Science.gov (United States)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-10-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS.

  14. A ground systems template for remote sensing systems

    International Nuclear Information System (INIS)

    McClanahan, Timothy P.; Trombka, Jacob I.; Floyd, Samuel R.; Truskowski, Walter; Starr, Richard D.; Clark, Pamela E.; Evans, Larry G.

    2002-01-01

    Spaceborne remote sensing using gamma and X-ray spectrometers requires particular attention to the design and development of reliable systems. These systems must ensure the scientific requirements of the mission within the challenging technical constraints of operating instrumentation in space. The Near Earth Asteroid Rendezvous (NEAR) spacecraft included X-ray and gamma-ray spectrometers (XGRS), whose mission was to map the elemental chemistry of the 433 Eros asteroid. A remote sensing system template, similar to a blackboard systems approach used in artificial intelligence, was identified in which the spacecraft, instrument, and ground system was designed and developed to monitor and adapt to evolving mission requirements in a complicated operational setting. Systems were developed for ground tracking of instrument calibration, instrument health, data quality, orbital geometry, solar flux as well as models of the asteroid's surface characteristics, requiring an intensive human effort. In the future, missions such as the Autonomous Nano-Technology Swarm (ANTS) program will have to rely heavily on automation to collectively encounter and sample asteroids in the outer asteroid belt. Using similar instrumentation, ANTS will require information similar to data collected by the NEAR X-ray/Gamma-Ray Spectrometer (XGRS) ground system for science and operations management. The NEAR XGRS systems will be studied to identify the equivalent subsystems that may be automated for ANTS. The effort will also investigate the possibility of applying blackboard style approaches to automated decision making required for ANTS

  15. Defect reduction of patterned media templates and disks

    Science.gov (United States)

    Luo, Kang; Ha, Steven; Fretwell, John; Ramos, Rick; Ye, Zhengmao; Schmid, Gerard; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2010-05-01

    Imprint lithography has been shown to be an effective technique for the replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require a demonstration of defect levels commensurate with cost-effective device production. This work summarizes the results of defect inspections of hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical based automated inspection tools. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity and scattered light. Defects that have been identified in this manner are further characterized according to the morphology. The imprint process was tested after optimizing both the disk cleaning and adhesion layers processes that precede imprinting. An extended imprint run was performed and both the defect types and trends are reported.

  16. Hollow ZIF-8 Nanoworms from Block Copolymer Templates

    KAUST Repository

    Yu, Haizhou; Qiu, Xiaoyan; Neelakanda, Pradeep; Deng, Lin; Khashab, Niveen M.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2015-01-01

    Recently two quite different types of “nano-containers” have been recognized as attractive potential drug carriers; these are wormlike filamenteous micelles (“filomicelles”) on the one hand and metal organic frameworks on the other hand. In this work we combine these two concepts. We report for the first time the manufacturing of metal organic framework nanotubes with a hollow core. These worm-like tubes are about 200 nm thick and several μm long. The preparation is simple: we first produce long and flexible filament-shaped micelles by block copolymer self-assembly. These filomicelles serve as templates to grow a very thin layer of interconnected ZIF-8 crystals on their surface. Finally the block copolymer is removed by solvent extraction and the hollow ZIF-8 nanotubes remain. These ZIF-NTs are surprisingly stable and withstand purification by centrifugation. The synthesis method is straightforward and can easily be applied for other metal organic framework materials. The ZIF-8 NTs exhibit high loading capacity for the model anti cancer drug doxorubicin (DOX) with a pH-triggered release. Hence, a prolonged circulation in the blood stream and a targeted drug release behavior can be expected.

  17. Hollow ZIF-8 Nanoworms from Block Copolymer Templates

    KAUST Repository

    Yu, Haizhou

    2015-10-16

    Recently two quite different types of “nano-containers” have been recognized as attractive potential drug carriers; these are wormlike filamenteous micelles (“filomicelles”) on the one hand and metal organic frameworks on the other hand. In this work we combine these two concepts. We report for the first time the manufacturing of metal organic framework nanotubes with a hollow core. These worm-like tubes are about 200 nm thick and several μm long. The preparation is simple: we first produce long and flexible filament-shaped micelles by block copolymer self-assembly. These filomicelles serve as templates to grow a very thin layer of interconnected ZIF-8 crystals on their surface. Finally the block copolymer is removed by solvent extraction and the hollow ZIF-8 nanotubes remain. These ZIF-NTs are surprisingly stable and withstand purification by centrifugation. The synthesis method is straightforward and can easily be applied for other metal organic framework materials. The ZIF-8 NTs exhibit high loading capacity for the model anti cancer drug doxorubicin (DOX) with a pH-triggered release. Hence, a prolonged circulation in the blood stream and a targeted drug release behavior can be expected.

  18. Carbon nanotube-templated assembly of regioregular poly(3-alkylthiophene) in solution

    Science.gov (United States)

    Zhu, Jiahua; Stevens, Eric; He, Youjun; Hong, Kunlun; Ivanov, Ilia

    2016-09-01

    Control of structural heterogeneity by rationally encoding of the molecular assemblies is a key enabling design of hierarchical, multifunctional materials of the future. Here we report the strategies to gain such control using solution- based assembly to construct a hybrid nano-assembly and a network hybrid structure of regioregular poly(3- alkylthiophene) - carbon nanotube (P3AT-CNT). The opto-electronic performance of conjugated polymer (P3AT) is defined by the structure of the aggregate in solution and in the solid film. Control of P3AT aggregation would allow formation of broad range of morphologies with very distinct electro-optical. We utilize interactive templating to confine the assembly behavior of conjugated polymers, replacing poorly controlled solution processing approach. Perfect crystalline surface of the single-walled and multi-walled carbon nanotube (SWCNT/MWCNT) acts as a template, seeding P3AT aggregation of the surface of the nanotube. The seed continues directional growth through pi-pi stacking leading to the formation of to well-defined P3AT-CNT morphologies, including comb-like nano-assemblies, super- structures and gel networks. Interconnected, highly-branched network structure of P3AT-CNT hybrids is of particular interest to enable efficient, long-range, balanced charge carrier transport. The structure and opto-electionic function of the intermediate assemblies and networks of P3AT/CNT hybrids are characterized by transmission election microscopy and UV-vis absorption.

  19. Novel plasmon nano-lasers

    NARCIS (Netherlands)

    Hill, M.T.; Marell, M.J.H.

    2010-01-01

    We will discuss some of the latest developments in metallic and plasmonic nano-lasers. Furthermore we will present our latest results on further miniaturization of electrically pumped plasmonic nano-lasers and also DFB Plasmon mode devices.

  20. Nano lasers in photonic VLSI

    NARCIS (Netherlands)

    Hill, M.T.; Oei, Y.S.; Smit, M.K.

    2007-01-01

    We examine the use of micro and nano lasers to form digital photonic VLSI building blocks. Problems such as isolation and cascading of building blocks are addressed, and the potential of future nano lasers explored.

  1. Applications of Nano-optics.

    Science.gov (United States)

    Zhou, Changhe; Fainman, Yeshaiahu; Sheng, Yunlong

    2011-11-01

    As nanoscale fabrication techniques advance, nano-optics continues to offer enabling solutions to numerous practical applications for information optics. This Applied Optics feature issue focuses on the Application of Nano-optics. © 2011 Optical Society of America

  2. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  3. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  4. A Hybrid Approach to Protect Palmprint Templates

    Directory of Open Access Journals (Sweden)

    Hailun Liu

    2014-01-01

    Full Text Available Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach.

  5. Fabrication of 3D nano-structures using reverse imprint lithography

    Science.gov (United States)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  6. Fabrication of 3D nano-structures using reverse imprint lithography

    International Nuclear Information System (INIS)

    Han, Kang-Soo; Cho, Joong-Yeon; Lee, Heon; Hong, Sung-Hoon; Kim, Kang-In; Choi, Kyung-woo

    2013-01-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED. (paper)

  7. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  8. The metric-affine gravitational theory as the gauge theory of the affine group

    International Nuclear Information System (INIS)

    Lord, E.A.

    1978-01-01

    The metric-affine gravitational theory is shown to be the gauge theory of the affine group, or equivalently, the gauge theory of the group GL(4,R) of tetrad deformations in a space-time with a locally Minkowskian metric. The identities of the metric-affine theory, and the relationship between them and those of general relativity and Sciama-Kibble theory, are derived. (Auth.)

  9. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  10. Nano-electromembrane extraction

    DEFF Research Database (Denmark)

    Payán, María D Ramos; Li, Bin; Petersen, Nickolaj J.

    2013-01-01

    as extraction selectivity. Compared with conventional EME, the acceptor phase volume in nano-EME was down-scaled by a factor of more than 1000. This resulted in a very high enrichment capacity. With loperamide as an example, an enrichment factor exceeding 500 was obtained in only 5 min of extraction...... electrophoresis (CE). In that way the sample preparation performed by nano-EME was coupled directly with a CE separation. Separation performance of 42,000-193,000 theoretical plates could easily be obtained by this direct sample preparation and injection technique that both provided enrichment as well...

  11. Templated Biomineralization on Self-Assembled Protein Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Subburaman,K.; Pernodet, N.; Kwak, S.; DiMasi, E.; Ge, S.; Zaitsev, V.; Ba, X.; Yang, N.; Rafailovich, M.

    2006-01-01

    Biological mineralization of tissues in living organisms relies on proteins that preferentially nucleate minerals and control their growth. This process is often referred to as 'templating', but this term has become generic, denoting various proposed mineral-organic interactions including both chemical and structural affinities. Here, we present an approach using self-assembled networks of elastin and fibronectin fibers, similar to the extracellular matrix. When induced onto negatively charged sulfonated polystyrene surfaces, these proteins form fiber networks of {approx}10-{mu}m spacing, leaving open regions of disorganized protein between them. We introduce an atomic force microscopy-based technique to measure the elastic modulus of both structured and disorganized protein before and during calcium carbonate mineralization. Mineral-induced thickening and stiffening of the protein fibers during early stages of mineralization is clearly demonstrated, well before discrete mineral crystals are large enough to image by atomic force microscopy. Calcium carbonate stiffens the protein fibers selectively without affecting the regions between them, emphasizing interactions between the mineral and the organized protein fibers. Late-stage observations by optical microscopy and secondary ion mass spectroscopy reveal that Ca is concentrated along the protein fibers and that crystals form preferentially on the fiber crossings. We demonstrate that organized versus unstructured proteins can be assembled mere nanometers apart and probed in identical environments, where mineralization is proved to require the structural organization imposed by fibrillogenesis of the extracellular matrix.

  12. Fabricating hydroxyapatite nanorods using a biomacromolecule template

    International Nuclear Information System (INIS)

    Zhu Aiping; Lu Yan; Si Yunfeng; Dai Sheng

    2011-01-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO 4 3- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  13. Frabicating hydroxyapatite nanorods using a biomacromolecule template

    Science.gov (United States)

    Zhu, Aiping; Lu, Yan; Si, Yunfeng; Dai, Sheng

    2011-02-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO43- to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  14. Hirota's solitons in the affine and the conformal affine Toda models

    International Nuclear Information System (INIS)

    Aratyn, H.; Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1993-01-01

    We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis. (orig.)

  15. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon; Sintesis y caracterizacion estructural de nanotubos coaxiales intercalados de disulfuro de molibdeno con carbono

    Energy Technology Data Exchange (ETDEWEB)

    Reza San German, C M

    2005-07-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS{sub 2}, enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS{sub 2} + C nano tubes were synthesized by propylene pyrolysis inside MoS{sub 2} nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS{sub 2} layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS{sub 2} inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS{sub 2} layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS{sub 2} layers. Our results open up the possibility of using MoS{sub 2} nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  16. Synthesis and structural characterization of coaxial nano tubes intercalated of molybdenum disulfide with carbon; Sintesis y caracterizacion estructural de nanotubos coaxiales intercalados de disulfuro de molibdeno con carbono

    Energy Technology Data Exchange (ETDEWEB)

    Reza San German, C.M

    2005-07-01

    In this work the study of some fundamental aspects in the growth of unidimensional systems of coaxial nano tubes from the mold method is approached. This method is an inclusion technique of a precursor reagent into oxide nano porous alumina film (mold), and later applying some processes of synthesis it is gotten to obtain the wished material. The synthesized structures are identified later because they take place by means of the initial formation of nano tubes of MoS{sub 2}, enclosing to carbon nano tubes by the same method, with propylene flow which generates a graphitization process that 'copy' the mold through as it flows. Binary phase MoS{sub 2} + C nano tubes were synthesized by propylene pyrolysis inside MoS{sub 2} nano tubes prepared by template assisted technique. The large coaxial nano tubes constituted of graphite sheets inserted between the MoS{sub 2} layers forming the outer part, and coaxial multi wall carbon nano tubes (MWCNT) intercalated with MoS{sub 2} inside. High resolution electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), high angle annular dark field (HAADF), gatan image filter (GIF), nano beam electron diffraction patterns (NBEDP), along with molecular dynamics simulation and quantum mechanical calculations were used to characterize the samples. The one-dimensional structures exhibit diverse morphologies such as long straight and twisted nano tubes with several structural irregularities. The inter-planar spacing between MoS{sub 2} layers was found to increase from 6.3 to 7.4 A due to intercalation with carbon. Simulated HREM images revealed the presence of these twisted nano structures, with mechanical stretch into intercalate carbon between MoS{sub 2} layers. Our results open up the possibility of using MoS{sub 2} nano tubes as templates for the synthesis of new one- dimensional binary phase systems. (Author)

  17. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Sun, Yuhua [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Chen, Xiaofang [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhu, Peizhi, E-mail: pzzhu@umich.edu [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2013-07-01

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering. - Highlights: • Heparin was used as a template to synthesize needle-shaped nano-apatite. • Changing the pH value and concentration led to different properties of apatite. • Apatite prepared by heparin was more favorable to the osteogenic differentiation. • Possible synthesis mechanism of apatite templated by heparin was described.

  18. Properties of ordered titanium templates covered with Au thin films for SERS applications

    Science.gov (United States)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Sokołowski, Michał; Karczewski, Jakub; Szkoda, Mariusz; Śliwiński, Gerard

    2016-12-01

    Currently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering substrates that show application potential in biochemistry, food safety or medical diagnostic. In this work the structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) of highly ordered nano-patterned titanium templates covered with thin (5-20 nm) gold films are reported. The templates are formed by preparation of a dense structure of TiO2 nanotubes on a flat Ti surface (2 × 2 cm2) and their subsequent etching down to the substrate. SEM images reveal the formation of honeycomb nanostructures with the cavity diameter of 80 nm. Due to the strongly inhomogeneous distribution of the electromagnetic field in the vicinity of the Au film discontinuities the measured average enhancement factor (107-108) is markedly higher than observed for bare Ti templates. The enhancement factor and Raman signal intensity can be optimized by adjusting the process conditions and thickness of the deposited Au layer. Results confirm that the obtained structures can be used in surface enhanced sensing.

  19. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method

    Science.gov (United States)

    Gopi, D.; Indira, J.; Kavitha, L.; Sekar, M.; Mudali, U. Kamachi

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology.

  20. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.

    Science.gov (United States)

    Gopi, D; Indira, J; Kavitha, L; Sekar, M; Mudali, U Kamachi

    2012-07-01

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Nm-scale diamond-like-carbon (DLC) templates for use in soft lithography

    International Nuclear Information System (INIS)

    Watson, G.S.; Myhra, S.; Brown, C.L.; Watson, J.A.

    2005-01-01

    An emerging set of methods known collectively as soft lithography is now being utilised for a large variety of applications including micromolding, microfluidic networks and microcontact printing. In particular stamps and elastomeric elements can be formed by exposure of a polymer to a template. Established lithographic techniques used in the microelectronic industry, such as photolithography, are generally used to fabricate such master templates at the micron scale. In this study we demonstrate the use of diamond-like-carbon (DLC) as a template for producing polymer micro/nano stamps and 3D polymer structures. Intricate surface relief patterns can be formed on the DLC surface from lithographic techniques by atomic force microscopy (AFM) operated in the electrical conductivity mode. A number of polymers can be used to transfer patterns. One of the most widely used polymers for pattern transfer has been polydimethylsiloxane (PDMS). The elastomer is chemically resistant, has a low surface energy and readily conforms to different surface topographies. Obtaining a master is the limiting factor in the production of PDMS replicas. (author). 2 refs., 4 figs

  2. Synthesis of CdS nanorods in soft template under gamma-irradiation.

    Science.gov (United States)

    Zhao, Bing; Wang, Yanli; Zhang, Haijiao; Jiao, Zheng; Wang, Haobo; Ding, Guoji; Wu, Minghong

    2009-02-01

    CdS nano material which has a band gap of 2.42 eV at room temperature is a typical II-VII semiconductor having many commercial or potential applications, e.g., light-emitting diodes, solar cell and optoelectronic devices. In this paper, we use a new strategy to synthesize CdS nanorods. CdS nanorods were prepared in soft template under gamma-irradiation though the reaction of cadmium sulphide and thiacetamide (TAA). The formation process and characters of CdS nanorods was investigated in detail by transmission electron microscopy (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), ultraviolet spectrophotometer (UV) and photoluminescence spectrophotometer (PL). In the experiment we proposed that the irradiation of gamma-ray accelerated the formation of S(2-) under acidic condition (pH = 3) and vinyl acetate (VAc) monomer formed pre-organized nano polymer tubules which were used as both templates and nanoreacters for the growth of CdS nanorods. In this process, we have obtained the CdS polycrystal nanorods with PVAc nano tubules and CdS single-crystal nanorods. The result of X-ray powder diffraction confirms that the crystal type of CdS nanorods is cubic F-43 m (216). The results from transmission electron microscopy and electron diffraction show that the concentrations of reactants and the dose rate of gamma-ray are key to produce appropriate CdS nanorods. Relatively low concentrations (Cd2+: 0.008-0.02 mol/L, Cd2+ : S(2-) = 1 : 2) of reactants and long time (1-2 d) of irradiation in low dose rate (6-14 Gy/min) are propitious to form CdS single-crystal nanorods with small diameter (less than 100 nm) and well length (2-5 microm). UV and PL characterizations show the sample have well optical properties.

  3. NanoLaunch

    Science.gov (United States)

    Jones, Jonathan; Harris, Lawanna

    2015-01-01

    NASA's NanoLaunch effort will provide the framework to mature both Earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low-Earth orbit for CubeSat-class payloads. The project will also serve as an early career personnel training opportunity with mentors to gain hands-on project experience.

  4. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  5. Photon signature analysis using template matching

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A., E-mail: d.a.bradley@surrey.ac.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saripan, M.I. [Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Wells, K. [Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH (United Kingdom); Dunn, W.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, Manhattan, KS 66506 (United States)

    2011-10-01

    We describe an approach to detect improvised explosive devices (IEDs) by using a template matching procedure. This approach relies on the signature due to backstreaming {gamma} photons from various targets. In this work we have simulated cylindrical targets of aluminum, iron, copper, water and ammonium nitrate (nitrogen-rich fertilizer). We simulate 3.5 MeV source photons distributed on a plane inside a shielded area using Monte Carlo N-Particle (MCNP{sup TM}) code version 5 (V5). The 3.5 MeV source gamma rays yield 511 keV peaks due to pair production and scattered gamma rays. In this work, we simulate capture of those photons that backstream, after impinging on the target element, toward a NaI detector. The captured backstreamed photons are expected to produce a unique spectrum that will become part of a simple signal processing recognition system based on the template matching method. Different elements were simulated using different sets of random numbers in the Monte Carlo simulation. To date, the sum of absolute differences (SAD) method has been used to match the template. In the examples investigated, template matching was found to detect all elements correctly.

  6. Organic or organometallic template mediated clay synthesis

    Science.gov (United States)

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  7. Binary palmprint representation for feature template protection

    NARCIS (Netherlands)

    Mu, Meiru; Ruan, Qiuqi; Shao, X.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2012-01-01

    The major challenge of biometric template protection comes from the intraclass variations of biometric data. The helper data scheme aims to solve this problem by employing the Error Correction Codes (ECC). However, many reported biometric binary features from the same user reach bit error rate (BER)

  8. A lightweight approach for biometric template protection

    Science.gov (United States)

    Al-Assam, Hisham; Sellahewa, Harin; Jassim, Sabah

    2009-05-01

    Privacy and security are vital concerns for practical biometric systems. The concept of cancelable or revocable biometrics has been proposed as a solution for biometric template security. Revocable biometric means that biometric templates are no longer fixed over time and could be revoked in the same way as lost or stolen credit cards are. In this paper, we describe a novel and an efficient approach to biometric template protection that meets the revocability property. This scheme can be incorporated into any biometric verification scheme while maintaining, if not improving, the accuracy of the original biometric system. However, we shall demonstrate the result of applying such transforms on face biometric templates and compare the efficiency of our approach with that of the well-known random projection techniques. We shall also present the results of experimental work on recognition accuracy before and after applying the proposed transform on feature vectors that are generated by wavelet transforms. These results are based on experiments conducted on a number of well-known face image databases, e.g. Yale and ORL databases.

  9. Iris Template Protection Based on Local Ranking

    Directory of Open Access Journals (Sweden)

    Dongdong Zhao

    2018-01-01

    Full Text Available Biometrics have been widely studied in recent years, and they are increasingly employed in real-world applications. Meanwhile, a number of potential threats to the privacy of biometric data arise. Iris template protection demands that the privacy of iris data should be protected when performing iris recognition. According to the international standard ISO/IEC 24745, iris template protection should satisfy the irreversibility, revocability, and unlinkability. However, existing works about iris template protection demonstrate that it is difficult to satisfy the three privacy requirements simultaneously while supporting effective iris recognition. In this paper, we propose an iris template protection method based on local ranking. Specifically, the iris data are first XORed (Exclusive OR operation with an application-specific string; next, we divide the results into blocks and then partition the blocks into groups. The blocks in each group are ranked according to their decimal values, and original blocks are transformed to their rank values for storage. We also extend the basic method to support the shifting strategy and masking strategy, which are two important strategies for iris recognition. We demonstrate that the proposed method satisfies the irreversibility, revocability, and unlinkability. Experimental results on typical iris datasets (i.e., CASIA-IrisV3-Interval, CASIA-IrisV4-Lamp, UBIRIS-V1-S1, and MMU-V1 show that the proposed method could maintain the recognition performance while protecting the privacy of iris data.

  10. High Aspect Ratio Sub-15 nm Silicon Trenches From Block Copolymer Templates

    Science.gov (United States)

    Gu, Xiaodan; Liu, Zuwei; Gunkel, Ilja; Olynick, Deirdre; Russell, Thomas; University of Massachusetts Amherst Collaboration; Oxford Instrument Collaboration; Lawrence Berkeley National Lab Collaboration

    2013-03-01

    High-aspect-ratio sub-15 nm silicon trenches are fabricated directly from plasma etching of a block copolymer (BCP) mask. Polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) 40k-b-18k was spin coated and solvent annealed to form cylindrical structures parallel to the silicon substrate. The BCP thin film was reconstructed by immersion in ethanol and then subjected to an oxygen and argon reactive ion etching to fabricate the polymer mask. A low temperature ion coupled plasma with sulfur hexafluoride and oxygen was used to pattern transfer block copolymer structure to silicon with high selectivity (8:1) and fidelity. The silicon pattern was characterized by scanning electron microscopy and grazing incidence x-ray scattering. We also demonstrated fabrication of silicon nano-holes using polystyrene-b-polyethylene oxide (PS-b-PEO) using same methodology described above for PS-b-P2VP. Finally, we show such silicon nano-strucutre serves as excellent nano-imprint master template to pattern various functional materials like poly 3-hexylthiophene (P3HT).

  11. On Affine Fusion and the Phase Model

    Directory of Open Access Journals (Sweden)

    Mark A. Walton

    2012-11-01

    Full Text Available A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n Wess-Zumino-Novikov-Witten (WZNW conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion.

  12. Affine coherent states and Toeplitz operators

    Science.gov (United States)

    Hutníková, Mária; Hutník, Ondrej

    2012-06-01

    We study a parameterized family of Toeplitz operators in the context of affine coherent states based on the Calderón reproducing formula (= resolution of unity on L_2( {R})) and the specific admissible wavelets (= affine coherent states in L_2( {R})) related to Laguerre functions. Symbols of such Calderón-Toeplitz operators as individual coordinates of the affine group (= upper half-plane with the hyperbolic geometry) are considered. In this case, a certain class of pseudo-differential operators, their properties and their operator algebras are investigated. As a result of this study, the Fredholm symbol algebras of the Calderón-Toeplitz operator algebras for these particular cases of symbols are described. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  13. Generation of nano roughness on fibrous materials by atmospheric plasma

    International Nuclear Information System (INIS)

    Kulyk, I; Scapinello, M; Stefan, M

    2012-01-01

    Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.

  14. Review of Research on Template Methods in Preparation of Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yadian Xie

    2016-01-01

    Full Text Available The nanomaterials have been widely used in various fields, such as photonics, catalysis, and adsorption, because of their unique physical and chemical properties. Therefore, their production methods are of utmost importance. Compared with traditional synthetic methods, the template method can effectively control the morphology, particle size, and structure during the preparation of nanomaterials, which is an effective method for their synthesis. The key for the template method is to choose different templates, which are divided into hard template and soft template according to their different structures. In this paper, the effects of different types of templates on the morphology of nanomaterials during their preparation are investigated from two aspects: hard template and soft template, combined with the mechanism of action.

  15. Emergency department documentation templates: variability in template selection and association with physical examination and test ordering in dizziness presentations

    Directory of Open Access Journals (Sweden)

    Meurer William J

    2011-03-01

    Full Text Available Abstract Background Clinical documentation systems, such as templates, have been associated with process utilization. The T-System emergency department (ED templates are widely used but lacking are analyses of the templates association with processes. This system is also unique because of the many different template options available, and thus the selection of the template may also be important. We aimed to describe the selection of templates in ED dizziness presentations and to investigate the association between items on templates and process utilization. Methods Dizziness visits were captured from a population-based study of EDs that use documentation templates. Two relevant process outcomes were assessed: head computerized tomography (CT scan and nystagmus examination. Multivariable logistic regression was used to estimate the probability of each outcome for patients who did or did not receive a relevant-item template. Propensity scores were also used to adjust for selection effects. Results The final cohort was 1,485 visits. Thirty-one different templates were used. Use of a template with a head CT item was associated with an increase in the adjusted probability of head CT utilization from 12.2% (95% CI, 8.9%-16.6% to 29.3% (95% CI, 26.0%-32.9%. The adjusted probability of documentation of a nystagmus assessment increased from 12.0% (95%CI, 8.8%-16.2% when a nystagmus-item template was not used to 95.0% (95% CI, 92.8%-96.6% when a nystagmus-item template was used. The associations remained significant after propensity score adjustments. Conclusions Providers use many different templates in dizziness presentations. Important differences exist in the various templates and the template that is used likely impacts process utilization, even though selection may be arbitrary. The optimal design and selection of templates may offer a feasible and effective opportunity to improve care delivery.

  16. The dynamics of metric-affine gravity

    International Nuclear Information System (INIS)

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-01-01

    Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy

  17. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  18. Synthesis of Metal Polymer Nano composites Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Mostafa, R.S.S.

    2012-01-01

    we prepared a series of CdS/PVA and Ag/PVA nano composites via facile and novel synthetic steps. Our synthetic route is simpler; it does not need expensive oxidizing agents, surfactants, templates and complicated apparatus. The present work contains five chapters in addition to the list of figures, tables, abbreviations and references. The first two chapters are concerned with the introduction and reviews of previous studies. Chapter 3 describes the preparation methodology, experimental setup and techniques used in the CdS/PVA and Ag/PVA nano composites processing and analysis. CdS and Ag nanoparticles with different particle sizes were prepared via chemical method and gamma irradiation method. Several techniques were used to detect the structural changes of the nano composites due to interaction between CdS or Ag ions and PVA. These are: UV-Visible spectrophotometer, Transmission Electron microscope (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectrophotometer, and thermogravimetric analysis. Chapter 4 includes the obtained results and their discussions: Ultraviolet/Visible spectroscopy (UV/VIS) investigated that the as-prepared nano composites have improved optical properties. Such incremented optical properties were attributed to the nano scale dispersion (nm). The improvement in the optical properties is considered to be dependent on, Cd 2+ :S 2- molar ratio, Ag concentration, Pva content and irradiation dose. The calculated band gap energies for CdS/PVA nano composites are higher than that of bulk of CdS indicating the strong quantum confinement. The increases in band gap energy have been attributed to the crystalline size dependent properties. Transmission electron microscope images illustrated that the nano structured CdS/PVA films were found to be dispersed spherical nanoparticles with good structural homogeneity and polydispersity at either lower concentration of CdCl 2 and/or irradiation dose. Nano rod structure of CdS accompanied

  19. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.

    Science.gov (United States)

    Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I

    2014-10-01

    For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch. Copyright

  20. Phosphopeptide enrichment by immobilized metal affinity chromatography

    DEFF Research Database (Denmark)

    Thingholm, Tine E.; Larsen, Martin R.

    2016-01-01

    Immobilized metal affinity chromatography (IMAC) has been the method of choice for phosphopeptide enrichment prior to mass spectrometric analysis for many years and it is still used extensively in many laboratories. Using the affinity of negatively charged phosphate groups towards positively...... charged metal ions such as Fe3+, Ga3+, Al3+, Zr4+, and Ti4+ has made it possible to enrich phosphorylated peptides from peptide samples. However, the selectivity of most of the metal ions is limited, when working with highly complex samples, e.g., whole-cell extracts, resulting in contamination from...

  1. Control and estimation of piecewise affine systems

    CERN Document Server

    Xu, Jun

    2014-01-01

    As a powerful tool to study nonlinear systems and hybrid systems, piecewise affine (PWA) systems have been widely applied to mechanical systems. Control and Estimation of Piecewise Affine Systems presents several research findings relating to the control and estimation of PWA systems in one unified view. Chapters in this title discuss stability results of PWA systems, using piecewise quadratic Lyapunov functions and piecewise homogeneous polynomial Lyapunov functions. Explicit necessary and sufficient conditions for the controllability and reachability of a class of PWA systems are

  2. New unitary affine-Virasoro constructions

    International Nuclear Information System (INIS)

    Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M.; Yamron, J.P.

    1990-01-01

    This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g

  3. Applications of Affine and Weyl geometry

    CERN Document Server

    García-Río, Eduardo; Nikcevic, Stana

    2013-01-01

    Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannia

  4. Zeolite-templated carbon replica: a grand canonical Monte-Carlo simulation study

    International Nuclear Information System (INIS)

    Roussel, Th.; Pellenq, R.J.M.; Bichara, Ch.; Gadiou, R.; Didion, A.; Vix-Guterl, C.; Gaslain, F.; Parmentier, J.; Valtchev, V.; Patarin, J.

    2005-01-01

    Microporous carbon materials are interesting for several applications such as hydrogen storage, catalysis or electrical double layer capacitors. The development of the negative templating method to obtain carbon replicas from ordered templates, has lead to the synthesis of several new materials which have interesting textural properties, attractive for energy storage. Among the possible templates, zeolites can be used to obtain highly microporous carbon materials. Nevertheless, the phenomena involved in the replica synthesis are not fully understood, and the relationships between the structure of the template, the carbon precursor and the resulting carbon material need to be investigated. Experimental results for carbon zeolite-templated nano-structures can be found in a series of papers; see for instance ref. [1] in which Wang et al describe a route to ultra-small Single Wall Carbon Nano-tubes (SWNTs) using the porosity of zeolite AlPO 4 -5. After matrix removal, the resulting structure is a free-standing bundle of 4 Angstroms large nano-tubes. However, it is highly desirable to obtain an ordered porous carbon structure that forms a real 3D network to be used for instance in gas storage applications. Carbon replica of faujasite and EMT zeolites can have these properties since these zeolites have a 3D porous network made of 10 Angstroms cages connected to each other through 7 Angstroms large windows. The first step of this study was to generate a theoretical carbon replica structure of various zeolites (faujasite, EMT, AlPO 4 -5, silicalite). For this purpose, we used the Grand Canonical Monte-Carlo (GCMC) technique in which the carbon-carbon interactions were described within the frame of a newly developed Tight Binding approach and the carbon-zeolite interactions assumed to be characteristic of physisorption. The intrinsic stability of the subsequent carbon nano-structures was then investigated after mimicking the removal of the inorganic phase by switching

  5. Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes

    NARCIS (Netherlands)

    Maijenburg, A.W.

    2014-01-01

    This thesis is entitled “Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes”. Templated electrodeposition is the synthesis technique that was used throughout this thesis, and it comprises the use of a template with specific shape and dimensions for the

  6. Business Process Variability : A Tool for Declarative Template Design

    NARCIS (Netherlands)

    Bulanov, P.; Groefsema, H.; Aiello, M.

    2012-01-01

    To lower both implementation time and cost, many Business Process Management tools use process templates to implement highly recurring processes. However, in order for such templates to be used, a process has to adhere substantially to the template. Therefore, current practice for processes which

  7. Synthesis of Hybrid Conducting Nanowire Using AAO Template

    Science.gov (United States)

    2006-09-28

    oxide and alujminum oxide in anodized aluminum oxide ( AAO ) template with various aspect ratio and...than 3 nm. 2. Experimentals Anodized aluminum oxide ( AAO ) template was prepared from 99.999% purity aluminum foil by performing the following...to prepare uniform dimension of nanomaterials is to use anodized alumina membrane as template. The work emphasized self-organized arrangement of

  8. Crossing Chris: Some Markerian Affinities

    Directory of Open Access Journals (Sweden)

    Adrian Martin

    2010-01-01

    -pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Abstract (E: This essay creatively explores a group of artists, writers, and other special individuals whose work or life story can be described as having an intriguing affinity with the protean career of Chris Marker. Avoiding the ‘usual suspects’ (such as Godard or Sebald, it discusses gossip columnist Milt Machlin, record collector Harry Smith, painter Gianfranco Baruchello, writer-filmmaker Edgardo Cozarinsky, and several others. From this constellation, a particular view of Markerian poetics emerges, touching upon the meanings of anonymity, storytelling, history and archiving.

     

    Abstract (F: Cet essai brosse de manière créative le portrait d’un groupe d'artistes, d'écrivains et d'autres personnes particulières dont le travail ou la biographie peuvent être décrits comme montrant une étrange mais certaine connivence avec la carrière protéiforme de Chris Marker. Evitant les lieux communs (comme Godard ou Sebald, cet article trace des références moins attendues :

  9. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  10. Affinity Programs and the Real Estate Brokerage Industry

    OpenAIRE

    G Stacy Sirmans; David A. Macpherson

    2001-01-01

    This study surveys active real estate brokers obtaining information on involvement in affinity programs and referral/relocation networks. Some results regarding affinity involvement are: (a) 13% of respondents reported affinity affilliations, 75% reported no affiliations, and 12% indicated plans to become involved within the next year; (b) about half having affinity affiliations were involved with 2-4 groups; (c) affinity relationships were most often with membership organizations, corporatio...

  11. Polynomials associated with equilibria of affine Toda-Sutherland systems

    International Nuclear Information System (INIS)

    Odake, S; Sasaki, R

    2004-01-01

    An affine Toda-Sutherland system is a quasi-exactly solvable multi-particle dynamics based on an affine simple root system. It is a 'cross' between two well-known integrable multi-particle dynamics, an affine Toda molecule (exponential potential, periodic nearest-neighbour interaction) and a Sutherland system (inverse sine-square interaction). Polynomials describing the equilibrium positions of affine Toda-Sutherland systems are determined for all affine simple root systems

  12. Soft-template hydrothermal systhesis of nanostructured Copper(II) Tungstate cubes for Electrochemical Charge Storage Application

    International Nuclear Information System (INIS)

    Wei, Chao; Huang, Ying; Zhang, Xin; Chen, Xuefang; Yan, Jing

    2016-01-01

    Highlights: • Soft-template hydrothermal method is firstly respoted for CuWO4 samples. • Nano-size distribution of CuWO4 is mainly ascribed to the soft-template of P123. • Excellent performance is due to Low surface energy, blunt edges and active sites. - Abstract: In this work, the soft-template hydrothermal method is firstly applied to synthesize nanocrystal CuWO 4 cubes for the electrode materials in in electrochemical charge storage application. The structures and morphologies of as-obtained materials are characterized via X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The effects of the soft-template (P123) and surfactant (Hexamethylenetetramine) also are verified by the electrochemistry test including CV, GCD, EIS. As a result, the CuWO 4 -PH (synthesis with the assistance of P123 and Hexamethylenetetramine) shows a excellent specific capacitance (C sp ) of 302.40 mAh g −1 at the current density of 1 A g −1 and a good rate capability (60.7% retension rate of original Csp even at 10 A g −1 ), as well as cycle life (82.1% retention rate of original C sp after 2000 cycles). These results reveal that our obtained CuWO 4 -PH could be a promissing electrode material.

  13. Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles.

    Science.gov (United States)

    Dhanalakshmi, A; Palanimurugan, A; Natarajan, B

    2018-09-01

    Mono, di and polysaccharides of glucose (C 6 H 12 O 6 ), sucrose (C 12 H 24 O 12 ) and starch (C 6 H 12 O 6 ) n bio-template ZnO nanoparticles (NPs) has prepared by chemical precipitation method. Saccharides bio-template ZnO (SBts-ZnO) NPs were efficiently prepared for their structural and optical properties were examined by using XRD, FE-SEM, AFM, FTIR, UV and PL techniques. All the samples are polycrystalline nature with a preferential orientation depending on the (1 0 1) plane. The reduction of crystalline size by utilizing glucose, sucrose and starch bio-template of ZnO NPs. FE-SEM images revealed that the spherical and nano-rods like morphologies for ZnO and SBts-ZnO NPs respectively. AFM recorded images shows spherical features that confirmed and also the morphological changes were noticed with the addition of polymers. Interaction of bio-templated saccharides (glucose G 1 , sucrose S 2 & starch S n ) molecules was proved by FTIR study. Optical absorbance and emission behaviours were investigated using UV-Vis and photoluminescence techniques. The antibacterial study revealed that SBts-ZnO have excellent antibacterial effect than ZnO. The S n -ZnO sample has potent antibacterial activity against the Proteus vulgaris followed by Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Graphene-Templated Synthesis of Magnetic Metal Organic Framework Nanocomposites for Selective Enrichment of Biomolecules.

    Science.gov (United States)

    Cheng, Gong; Wang, Zhi-Gang; Denagamage, Sachira; Zheng, Si-Yang

    2016-04-27

    Successful control of homogeneous and complete coating of graphene or graphene-based composites with well-defined metal organic framework (MOF) layers is a great challenge. Herein, novel magnetic graphene MOF composites were constructed via a simple strategy for self-assembly of well-distributed, dense, and highly porous MOFs on both sides of graphene nanosheets. Graphene functionalized with magnetic nanoparticles and carboxylic groups on both sides was explored as the backbone and template to direct the controllable self-assembly of MOFs. The prepared composite materials have a relatively high specific surface area (345.4 m(2) g(-1)), and their average pore size is measured to be 3.2 nm. Their relatively high saturation magnetization (23.8 emu g(-1)) indicates their strong magnetism at room temperature. Moreover, the multifunctional composite was demonstrated to be a highly effective affinity material in selective extraction and separation of low-concentration biomolecules from biological samples, in virtue of the size-selection property of the unique porous structure and the excellent affinity of the composite materials. Besides providing a solution for the construction of well-defined functional graphene-based MOFs, this work could also contribute to selective extraction of biomolecules, in virtue of the universal affinity between immobilized metal ions and biomolecules.

  15. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  16. Nano semiconducting materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    The main focus of the present book is the characterization of a number of nano-semiconducting materials, using such techniques as powder X-ray diffraction, UV-visible spectrophotometry, Raman spectrometry, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry. The materials studied include ZnS, TiO2, NiO, Ga doped ZnO, Mn doped SnO2, Mn doped CeO2 and Mn doped ZrO2.

  17. Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications

    Science.gov (United States)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.

  18. Compound immobilization and drug-affinity chromatography.

    Science.gov (United States)

    Rix, Uwe; Gridling, Manuela; Superti-Furga, Giulio

    2012-01-01

    Bioactive small molecules act through modulating a yet unpredictable number of targets. It is therefore of critical importance to define the cellular target proteins of a compound as an entry point to understanding its mechanism of action. Often, this can be achieved in a direct fashion by chemical proteomics. As with any affinity chromatography, immobilization of the bait to a solid support is one of the earliest and most crucial steps in the process. Interfering with structural features that are important for identification of a target protein will be detrimental to binding affinity. Also, many molecules are sensitive to heat or to certain chemicals, such as acid or base, and might be destroyed during the process of immobilization, which therefore needs to be not only efficient, but also mild. The subsequent affinity chromatography step needs to preserve molecular and conformational integrity of both bait compound and proteins in order to result in the desired specific enrichment while ensuring a high level of compatibility with downstream analysis by mass spectrometry. Thus, the right choice of detergent, buffer, and protease inhibitors is also essential. This chapter describes a widely applicable procedure for the immobilization of small molecule drugs and for drug-affinity chromatography with subsequent protein identification by mass spectrometry.

  19. Fan Affinity Laws from a Collision Model

    Science.gov (United States)

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  20. It's the peptide-MHC affinity, stupid.

    Science.gov (United States)

    Kammertoens, Thomas; Blankenstein, Thomas

    2013-04-15

    Adoptively transferred T cells can reject large established tumors, but recurrence due to escape variants frequently occurs. In this issue of Cancer Cell, Engels et al. demonstrate that the affinity of the target peptide to the MHC molecule determines whether large tumors will relapse following adoptive T cell therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. General super Virasoro construction on affine G

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-10-01

    We consider a bosonic current algebra and a theory of free fermions and construct a general N = 1 super Virasoro current algebra. We obtain a master-set of equations which comprises the bosonic master equation for general Virasoro construction on affine G. As an illustration we study the case of the group SU(2). (author). 13 refs

  2. Controllable preparation of copper phthalocyanine single crystal nano column and its chlorine gas sensing properties

    Directory of Open Access Journals (Sweden)

    Jianhong Zhao

    2016-09-01

    Full Text Available The unsubstituted copper phthalocyanine (CuPc single crystal nano columns were fabricated for the first time as chlorine (Cl2 gas sensors in this paper. The nano columns of CuPc have been prepared on different substrates via template-free physical vapor deposition (PVD approach. The growth mechanism of CuPc nano column on quartz was explored and the same condition used on other substrates including glass, sapphire (C-plane, M-plane, R-plane, Si and SiO2/Si came to a same conclusion, which confirmed that the aligned growth of CuPc nano column is not substrate-dependent. And then the CuPc nano column with special morphology was integrated as in-situ sensor device which exhibits high sensitivity and selectivity towards Cl2 at room temperature with a minimum detection limit as low as 0.08 ppm. The response of sensor was found to increase linearly (26∼659% with the increase for Cl2 within concentration range (0.08∼4.0ppm. These results clearly demonstrate the great potential of the nano column growth and device integration approach for sensor device.

  3. Concurrent infections of pseudorabies virus and porcine bocavirus in China detected by duplex nanoPCR.

    Science.gov (United States)

    Luo, Yakun; Liang, Lin; Zhou, Ling; Zhao, Kai; Cui, Shangjin

    2015-07-01

    Nanoparticle-assisted polymerase chain reaction (nanoPCR) is a novel method for the simple, rapid, and specific amplification of DNA and has been used to detect viruses. A duplex nanoPCR molecular detection system was developed to detect pseudorabies virus (PRV) and porcine bocavirus (PBoV). Primers were selected to target conserved regions within the PRV gE gene and the PBoV NS1 gene. Under optimized nanoPCR reaction conditions, two specific fragments of 316 bp (PRV) and 996 bp (PBoV) were amplified by the duplex nanoPCR with a detection limit of 6 copies for PRV and 95 copies for PBoV; no fragments were amplified when other porcine viruses were used as template. When used to test 550 clinical samples, the duplex nanoPRC assay and a conventional duplex PCR assay provided very similar results (98.1% consistency); single PRV infections, single PBoV infections, and concurrent PRV and PBoV infections were detected in 37%, 15%, and 9% of the samples, respectively. The results indicate that the novel duplex nanoPCR assay is useful for the rapid detection of PRV and PBoV in pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Combinatorial Nano-Bio Interfaces.

    Science.gov (United States)

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  5. Fabricating hydroxyapatite nanorods using a biomacromolecule template

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Aiping, E-mail: apzhu@yzu.edu.cn [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Lu Yan; Si Yunfeng [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Dai Sheng [School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia)

    2011-02-01

    Rod-like hydroxyapatite (HAp) nanoparticles with various aspect ratios are synthesized by means of low-temperature hydrothermal method in the presence of a N-[(2-hydroxy-3-trimethylammonium) propyl]chitosan chloride (HTCC) template. The synthesized HAps were examined by X-ray diffraction (XRD), Fourier transform infrared spectrophotometer (FTIR) and transmission electron microscopy (TEM) techniques. The results reveal that HAps are rod-like monocrystals, where the size and morphology can be tailored by varying synthesis conditions, such as pH, hydrothermal synthesis temperature and the ratio of PO{sub 4}{sup 3-} to the quaternary ammonium in HTCC. The mechanism of HTCC template on HAp nanorod preparation is analyzed.

  6. A template for integrated community sustainability planning.

    Science.gov (United States)

    Ling, Christopher; Hanna, Kevin; Dale, Ann

    2009-08-01

    This article describes a template for implementing an integrated community sustainability plan. The template emphasizes community engagement and outlines the components of a basic framework for integrating ecological, social and economic dynamics into a community plan. The framework is a series of steps that support a sustainable community development process. While it reflects the Canadian experience, the tools and techniques have applied value for a range of environmental planning contexts around the world. The research is case study based and draws from a diverse range of communities representing many types of infrastructure, demographics and ecological and geographical contexts. A critical path for moving local governments to sustainable community development is the creation and implementation of integrated planning approaches. To be effective and to be implemented, a requisite shift to sustainability requires active community engagement processes, political will, and a commitment to political and administrative accountability, and measurement.

  7. The effect of growth temperature variation on partially bismuth filled carbon nanotubes synthesis using a soft semi-metallic template.

    Science.gov (United States)

    Sahoo, R K; Jacob, C

    2014-06-01

    The dewetting of a low melting point metal thin film deposited on silicon substrates was studied. The experimental results suggest that the change in the growth temperature affects the nanostructures that form. Based on the experimental results, the temperature which yielded the smallest features for the growth of nanotubes is determined. The mechanism by which these nano-templates become an efficient seeds for the growth of the carbon nanotubes is discussed. The partial bismuth filling inside the CNTs was optimized. Based on the results, a schematic growth model for better understanding of the process parameters has also been proposed.

  8. Control the Morphologies and the Pore Architectures of Meso porous Silicas through a Dual-Templating Approach

    International Nuclear Information System (INIS)

    Wang, H.; Chen, H.; Xu, Z.; Wang, S.; Li, B.; Li, Y.

    2012-01-01

    Meso porous silica nanospheres were prepared using a chiral cationic low-molecular-weight amphiphile and organic solvents such as toluene, cyclohexane, and tetrachlorocarbon through a dual-templating approach. X-ray diffraction, nitrogen sorption, field emission scanning electron microscopy, and transmission electron microscopy techniques have been used to characterize the meso porous silicas. The volume ratio of toluene to water plays an important role in controlling the morphologies and the pore architectures of the meso porous silicas. It was also found that meso porous silica nano flakes can be prepared by adding tetrahydrofuran to the reaction mixtures.

  9. Synthesis of Copper nanoparticles through vesicle template using gamma irradiation

    International Nuclear Information System (INIS)

    Noor Ezzah Rahimah Ahmad Samsuri

    2012-01-01

    Nano technology has gained attention for its application in life. This study was conducted to produce copper (Cu) nanoparticles using gamma ray irradiation through template vesicles. Cu nanoparticle has a variety of applications such as capacitor materials, catalyst, conductive coating, high thermal conductivity materials as well as lubricant additives. this study used gamma radiation compared to other methods because the use of gamma rays in producing nanoparticle is safer and environmental friendly. The purpose of this study was to see the effects of radiation on the formation of Cu nanoparticles. The radiation dose used was 80 kGy and 100 kGy. The vesicles were formed by mixing water, sodium n-lauroyl sarcosinat hydrated, 1-decanol and polyethylene glycol with certain ratio (85 %: 5 %: 7 %: 3 %). Analysis from the transmission electron microscopy (TEM) showed the production of multilammelar vesicles in size between 30 nm-80 nm. The formation of nanoparticles was analyzed using UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Analysis of UV-Vis absorption spectroscopy showed no resonance peak around 600 nm. XRD analysis confirmed the presence of Cu, Cu 2 O and CuO. Analysis and characterisation using transmission electron microscopy (TEM) also confirmed that nanoparticles were produced with different sizes according to the radiation dose. At the radiation dose of 80 kGy, nanoparticles size is found vary between 30 nm to 90 nm. While at the radiation dose of 100 kGy, nanoparticles size is found vary between 3 nm to 7 nm. From this study it can be concluded that higher radiation dse will produce smaller nanoparticles. (author)

  10. CPU and GPU (Cuda Template Matching Comparison

    Directory of Open Access Journals (Sweden)

    Evaldas Borcovas

    2014-05-01

    Full Text Available Image processing, computer vision or other complicated opticalinformation processing algorithms require large resources. It isoften desired to execute algorithms in real time. It is hard tofulfill such requirements with single CPU processor. NVidiaproposed CUDA technology enables programmer to use theGPU resources in the computer. Current research was madewith Intel Pentium Dual-Core T4500 2.3 GHz processor with4 GB RAM DDR3 (CPU I, NVidia GeForce GT320M CUDAcompliable graphics card (GPU I and Intel Core I5-2500K3.3 GHz processor with 4 GB RAM DDR3 (CPU II, NVidiaGeForce GTX 560 CUDA compatible graphic card (GPU II.Additional libraries as OpenCV 2.1 and OpenCV 2.4.0 CUDAcompliable were used for the testing. Main test were made withstandard function MatchTemplate from the OpenCV libraries.The algorithm uses a main image and a template. An influenceof these factors was tested. Main image and template have beenresized and the algorithm computing time and performancein Gtpix/s have been measured. According to the informationobtained from the research GPU computing using the hardwarementioned earlier is till 24 times faster when it is processing abig amount of information. When the images are small the performanceof CPU and GPU are not significantly different. Thechoice of the template size makes influence on calculating withCPU. Difference in the computing time between the GPUs canbe explained by the number of cores which they have.

  11. A flexible, bolaamphiphilic template for mesoporous silicas.

    Science.gov (United States)

    Yuen, Alexander K L; Heinroth, Falk; Ward, Antony J; Masters, Anthony F; Maschmeyer, Thomas

    2013-08-28

    A novel symmetrical bolaamphiphile, containing two N-methylimidazolium head-groups bridged by a 32-methylene linker, was synthesized and characterized. A variety of mesoporous silicas was prepared using the bolaamphiphile as a "soft template". The effects of absolute surfactant concentration and synthesis conditions upon the morphologies of these silicas were investigated. For a given surfactant concentration, particle morphology; pore size; and pore ordering were modified through control of the template to silica-precursor ratio and synthesis conditions. Observed morphologies included: lenticular core-shell nanoparticles and decorticated globules, truncated hexagonal plates, and sheets. In all cases the mesopores are aligned along the shortest axis of the nanomaterial. Decorticated materials displayed surface areas of up to 1200 m(2) g(-1) and pore diameters (D(BJH)) of 24-28 Å. Small-angle X-ray diffraction and transmission electron microscopy measurements revealed that the majority of the materials has elliptical pores arranged in rectangular lattices (c2mm). Adoption of this symmetry group is a result of the template aggregate deformation from a regular hexagonal phase of cylindrical rods to a ribbon phase under the synthetic conditions.

  12. New organically templated photoluminescence iodocuprates(I)

    International Nuclear Information System (INIS)

    Hou Qin; Zhao Jinjing; Zhao Tianqi; Jin Juan; Yu Jiehui; Xu Jiqing

    2011-01-01

    Two types of organic cyclic aliphatic diamine molecules piperazine (pip) and 1,3-bis(4-piperidyl)propane (bpp) were used, respectively, to react with an inorganic mixture of CuI and KI in the acidic CH 3 OH solutions under the solvothermal conditions, generating finally three new organically templated iodocuprates as 2-D layered [(Hpip)Cu 3 I 4 ] 1, 1-D chained [tmpip][Cu 2 I 4 ] 2 (tmpip=N,N,N',N'-tetramethylpiperazinium) and dinuclear [H 2 bpp] 2 [Cu 2 I 5 ] I.2H 2 O 3. Note that the templating agent tmpip 2+ in compound 2 originated from the in situ N-alkylation reaction between the pip molecule and the methanol solvent. The photoluminescence analysis indicates that the title compounds emit the different lights: yellow for 1, blue for 2 and yellow-green for 3, respectively. - Graphical abstract: The solvothermal self-assemblies of CuI, KI and pip/bpp in acidic CH 3 OH solutions created three iodocuprates 2-D layered [(Hpip)Cu 3 I 4 ] 1, 1-D chained [tmpip][Cu 2 I 4 ] 2 and dinuclear [H 2 bpp] 2 [Cu 2 I 5 ] I.2H 2 O 3. Highlights: → A new layered iodocuprate(I) with 20-membered rings was hydrothermally prepared. → A simple approach to prepare the new organic templating agent was reported. → Photoluminescence analysis indicates the emission for iodocuprate(I) is associated with the Cu...Cu interactions.

  13. Sacrificial template method of fabricating a nanotube

    Science.gov (United States)

    Yang, Peidong [Berkeley, CA; He, Rongrui [Berkeley, CA; Goldberger, Joshua [Berkeley, CA; Fan, Rong [El Cerrito, CA; Wu, Yi-Ying [Albany, CA; Li, Deyu [Albany, CA; Majumdar, Arun [Orinda, CA

    2007-05-01

    Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar "epitaxial-casting" approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors. Furthermore, the fabrication of multi-sheath nanotubes are described as well as nanotubes having multiple longitudinal segments.

  14. Nano materials for Energy and Environmental Applications

    International Nuclear Information System (INIS)

    Srinivasan, S.; Kannan, A.M.; Kothurkar, N.; Khalil, Y.; Kuravi, S.

    2015-01-01

    Nano materials enabled technologies have been seamlessly integrated into applications such as aviation and space, chemical industry, optics, solar hydrogen, fuel cell, batteries, sensors, power generation, aeronautic industry, building/construction industry, automotive engineering, consumer electronics, thermoelectric devices, pharmaceuticals, and cosmetic industry. Clean energy and environmental applications often demand the development of novel nano materials that can provide shortest reaction pathways for the enhancement of reaction kinetics. Understanding the physicochemical, structural, microstructural, surface, and interface properties of nano materials is vital for achieving the required efficiency, cycle life, and sustain ability in various technological applications. Nano materials with specific size and shape such as nano tubes, nano fibers/nano wires, nano cones, nano composites, nano rods, nano islands, nanoparticles, nanospheres, and nano shells to provide unique properties can be synthesized by tuning the process conditions.

  15. The fabrication of high sensitivity gold nanorod H2S gas sensors utilizing the highly uniform anodic aluminum oxide template

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2016-12-01

    Full Text Available Gold nanorod were fabricated using anodic alumina oxide template for H2S gas detection. The nanorod gas sensor exhibits high surface density and contact area, which can increase detection sensitivity. The anodic alumina oxide template contains an array of pores, with a width of 70 nm and a length of 27μm. Au nanorod were obtained through electro-deposition under a pulse bias of −1 V. The resistance of the Au nanorod was recorded upon exposure to various concentrations of H2S. The resistance could be attributed to the high electron affinity between sulfide and Au nanorod. Au–sulfide bonds provide strong bonding, which could alter the conductivity of the sensor. The gas sensor exhibits high sensitivity and short response time for H2S detection at room temperature.

  16. A novel approach to nano topology via neutrosophic sets

    OpenAIRE

    M. Lellis Thivagar; Saeid Jafari; V. Sutha Devi; V. Antonysamy

    2018-01-01

    The main objective of this study is to introduce a new hybrid intelligent structure called Neutrosophic nano topology. Fuzzy nano topology and intuitionistic nano topology can also be deduced from the neutrosophic nano topology. Based on the neutrosophic nano approximations we have classified neutrosophic nano topology. Some properties like neutrosophic nano interior and neutrosophic nano closure are derived.

  17. Nano-imprint gold grating as refractive index sensor

    International Nuclear Information System (INIS)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2016-01-01

    Large scale of fabrication of plasmonic nanostructures has been a challenging task due to time consuming process and requirement of expensive nanofabrication tools such as electron beam lithography system, focused ion beam system, and extreme UV photolithography system. Here, we present a cost-effective fabrication technique so called soft nanoimprinting to fabricate nanostructures on the larger sample area. In our fabrication process, a commercially available optical DVD disc was used as a template which was imprinted on a polymer glass substrate to prepare 1D polymer nano-grating. A homemade nanoimprinting setup was used in this fabrication process. Further, a label-free refractive index sensor was developed by utilizing the properties of surface plasmon resonance (SPR) of a gold coated 1D polymer nano-grating. Refractive index sensing was tested by exposing different solutions of glycerol-water mixture on the surface of gold nano-grating. The calculated bulk refractive index sensitivity was found to be 751nm/RIU. We believed that our proposed SPR sensor could be a promising candidate for developing low-cost refractive index sensor with high sensitivity on a large scale.

  18. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    OpenAIRE

    Phuong, NguyenThi; Andisetiawan, Anugrah; Van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-01-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has be...

  19. Development of Total Knee Replacement Digital Templating Software

    Science.gov (United States)

    Yusof, Siti Fairuz; Sulaiman, Riza; Thian Seng, Lee; Mohd. Kassim, Abdul Yazid; Abdullah, Suhail; Yusof, Shahril; Omar, Masbah; Abdul Hamid, Hamzaini

    In this study, by taking full advantage of digital X-ray and computer technology, we have developed a semi-automated procedure to template knee implants, by making use of digital templating method. Using this approach, a software system called OrthoKneeTMhas been designed and developed. The system is to be utilities as a study in the Department of Orthopaedic and Traumatology in medical faculty, UKM (FPUKM). OrthoKneeTMtemplating process employs uses a technique similar to those used by many surgeons, using acetate templates over X-ray films. Using template technique makes it easy to template various implant from every Implant manufacturers who have with a comprehensive database of templates. The templating functionality includes, template (knee) and manufactures templates (Smith & Nephew; and Zimmer). From an image of patient x-ray OrthoKneeTMtemplates help in quickly and easily reads to the approximate template size needed. The visual templating features then allow us quickly review multiple template sizes against the X-ray and thus obtain the nearly precise view of the implant size required. The system can assist by templating on one patient image and will generate reports that can accompany patient notes. The software system was implemented in Visual basic 6.0 Pro using the object-oriented techniques to manage the graphics and objects. The approaches for image scaling will be discussed. Several of measurement in orthopedic diagnosis process have been studied and added in this software as measurement tools features using mathematic theorem and equations. The study compared the results of the semi-automated (using digital templating) method to the conventional method to demonstrate the accuracy of the system.

  20. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great ...

  1. To be nano or not to be nano?

    Science.gov (United States)

    Joachim, Christian

    2005-02-01

    Nanomaterials, nanostructures, nanostructured materials, nanoimprint, nanobiotechnology, nanophysics, nanochemistry, radical nanotechnology, nanosciences, nanooptics, nanoelectronics, nanorobotics, nanosoldiers, nanomedecine, nanoeconomy, nanobusiness, nanolawyer, nanoethics to name a few of the nanos. We need a clear definition of all these burgeoning fields for the sake of the grant attribution, for the sake of research program definition, and to avoid everyone being lost in so many nanos.

  2. 1D Nano materials 2012

    International Nuclear Information System (INIS)

    Yanqiu Zhu, Y.; Ma, R.; Whitby, R.; Acquah, S.

    2013-01-01

    We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers

  3. PREFACE: Nano- and microfluidics Nano- and microfluidics

    Science.gov (United States)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  4. Microscopic Pillars and Tubes Fabricated by Using Fish Dentine as a Molding Template

    Directory of Open Access Journals (Sweden)

    Weiqun Li

    2014-08-01

    Full Text Available Biomaterials in nature exhibit delicate structures that are greatly beyond the capability of the current manufacturing techniques. Duplicating these structures and applying them in engineering may help enhance the performance of traditional functional materials and structures. Inspired by gecko’s hierarchical micro- and nano-fibrillar structures for adhesion, in this work we fabricated micro-pillars and tubes by adopting the tubular dentine of black carp fish teeth as molding template. The adhesion performances of the fabricated micro-pillars and tubes were characterized and compared. It was found that the pull-off force of a single pillar was about twice of that of the tube with comparable size. Such unexpected discrepancy in adhesion was analyzed based on the contact mechanics theories.

  5. Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fake; Li, Hang [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China); Jiang, Hongmin [26th Research Institute, Chinese Electronics Scientific and Technical Group Company, Chongqing 400060 (China); Zhang, Kejun; Chang, Kai; Jia, Shuangrong; Jiang, Wenbin; Shang, Ya; Lu, Weiping [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China); Deng, Shaoli, E-mail: dengsl072@yahoo.com.cn [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China); Chen, Ming, E-mail: chenming1971@yahoo.com [Department of Clinical Laboratory Medcine, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042 (China)

    2013-09-01

    Nano-scaled polypyrrole (PPy) particles have been successfully synthesized with the help of Triton X-100 micelles via soft template approach. The polypyrrole nanoparticles have been spin-coated on surface acoustic wave (SAW) transducers to demonstrate their sensing capability toward acetone gas exposure. Field Emission Scanning Electron Microscopes (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy have been utilized to characterize these PPy nanoparticles. The PPy nanoparticles have an average diameter of 95 nm. The responses of the sensors are linearly associated with the acetone concentrations in the range from 5.5 ppm to 80 ppm. In response to 5.5 ppm acetone exposure, the response and recovery time are 9 s and 8.3 s, respectively. SAW sensors coated with PPy nanoparticles were potentially useful to detect acetone.

  6. New template for metal decoration and hydrogen adsorption on graphene-like C3N4

    International Nuclear Information System (INIS)

    Zhang Yi; Sun Hong; Chen Changfeng

    2009-01-01

    From density functional theory calculations we identify a graphene-like C 3 N 4 (g-C 3 N 4 ) as an excellent template for stable and well dispersed decoration of alkali (Li) and 3d transition metal (TM) atoms. The porous sites of g-C 3 N 4 accommodate excessive N lone-pair electrons and promote hybridization between the orbitals of N and the metal atoms. The most stable TM decorations (Ti and Sc) on g-C 3 N 4 exhibit high capacities of hydrogen adsorption with binding energies suitable for mobile applications. These metal decorated g-C 3 N 4 may also prove useful in catalytic and sensing applications for their unique nanoscale structural features unavailable in conventional nano-clusters.

  7. Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property

    International Nuclear Information System (INIS)

    Li, Fake; Li, Hang; Jiang, Hongmin; Zhang, Kejun; Chang, Kai; Jia, Shuangrong; Jiang, Wenbin; Shang, Ya; Lu, Weiping; Deng, Shaoli; Chen, Ming

    2013-01-01

    Nano-scaled polypyrrole (PPy) particles have been successfully synthesized with the help of Triton X-100 micelles via soft template approach. The polypyrrole nanoparticles have been spin-coated on surface acoustic wave (SAW) transducers to demonstrate their sensing capability toward acetone gas exposure. Field Emission Scanning Electron Microscopes (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy have been utilized to characterize these PPy nanoparticles. The PPy nanoparticles have an average diameter of 95 nm. The responses of the sensors are linearly associated with the acetone concentrations in the range from 5.5 ppm to 80 ppm. In response to 5.5 ppm acetone exposure, the response and recovery time are 9 s and 8.3 s, respectively. SAW sensors coated with PPy nanoparticles were potentially useful to detect acetone.

  8. Staircase Models from Affine Toda Field Theory

    CERN Document Server

    Dorey, P; Dorey, Patrick; Ravanini, Francesco

    1993-01-01

    We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.

  9. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...

  10. Calculation of protein-ligand binding affinities.

    Science.gov (United States)

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  11. 2D Affine and Projective Shape Analysis.

    Science.gov (United States)

    Bryner, Darshan; Klassen, Eric; Huiling Le; Srivastava, Anuj

    2014-05-01

    Current techniques for shape analysis tend to seek invariance to similarity transformations (rotation, translation, and scale), but certain imaging situations require invariance to larger groups, such as affine or projective groups. Here we present a general Riemannian framework for shape analysis of planar objects where metrics and related quantities are invariant to affine and projective groups. Highlighting two possibilities for representing object boundaries-ordered points (or landmarks) and parameterized curves-we study different combinations of these representations (points and curves) and transformations (affine and projective). Specifically, we provide solutions to three out of four situations and develop algorithms for computing geodesics and intrinsic sample statistics, leading up to Gaussian-type statistical models, and classifying test shapes using such models learned from training data. In the case of parameterized curves, we also achieve the desired goal of invariance to re-parameterizations. The geodesics are constructed by particularizing the path-straightening algorithm to geometries of current manifolds and are used, in turn, to compute shape statistics and Gaussian-type shape models. We demonstrate these ideas using a number of examples from shape and activity recognition.

  12. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  13. Affinity functions for modeling glass dissolution rates

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)

  14. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product ...

  15. Biometric templates selection and update using quality measures

    Science.gov (United States)

    Abboud, Ali J.; Jassim, Sabah A.

    2012-06-01

    To deal with severe variation in recording conditions, most biometric systems acquire multiple biometric samples, at the enrolment stage, for the same person and then extract their individual biometric feature vectors and store them in the gallery in the form of biometric template(s), labelled with the person's identity. The number of samples/templates and the choice of the most appropriate templates influence the performance of the system. The desired biometric template(s) selection technique must aim to control the run time and storage requirements while improving the recognition accuracy of the biometric system. This paper is devoted to elaborating on and discussing a new two stages approach for biometric templates selection and update. This approach uses a quality-based clustering, followed by a special criterion for the selection of an ultimate set of biometric templates from the various clusters. This approach is developed to select adaptively a specific number of templates for each individual. The number of biometric templates depends mainly on the performance of each individual (i.e. gallery size should be optimised to meet the needs of each target individual). These experiments have been conducted on two face image databases and their results will demonstrate the effectiveness of proposed quality-guided approach.

  16. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  17. Modulating uranium binding affinity in engineered Calmodulin EF-hand peptides: effect of phosphorylation

    International Nuclear Information System (INIS)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Guilloreau, Luc; Berthomieu, Catherine; Delangle, Pascale; Adriano, Jean-Marc

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T 9 TKE 12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K d =25±6 nM to K d =5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the sub-nanomolar range (K d = 0.25±0.06 nM). FTIR analyses showed that the phospho-threonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν as (P-O) and ν s (P-O) IR modes of phospho-threonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν as (UO 2 ) 2+ vibration (from 923 cm -1 to 908 cm -1 ) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. (authors)

  18. Growth Mechanism of γ-MnS Nanorod-Arrays by Hydrothermal Method on Anodic Aluminum Oxide Template

    International Nuclear Information System (INIS)

    Huang, Jianming; Liu, Weifeng; Lv, Yong; Yao, Lianzeng

    2010-01-01

    Hydrothermal method is a general, low-cost and convenience method which was utilized for synthesis of nanomaterials. Our research group has reported that oriented MnS nanorods on anodic aluminum oxide template were synthesized under a hydrothermal condition and demonstrated the effect of precursor content on the morphology evolution of as-samples. In order to research the growth mechanism of the arrays, herein we synthesized MnS nanorod arrays by combination of anodic aluminum oxide template and hydrothermal method on different substrates. Through-hole anodic aluminum oxide templates were prepared using Al foil (99.999%) via a two-step anodization process as described in literature. To investigate the effect of different substrates on the morphology of the-products, different substrates including anodic aluminum oxide template (sample A), one-step anodization Al foil (sample B, which was prepared by first anodizing Al foil for 10h and then removing the alumina layer with the mixed acid (0.6 M H 3 PO 4 and 0.15 M H 2 CrO 4 ), where the foil still kept the close-packed concave nano-pits consistently with the nanopole of anodic aluminum oxide template), Al foil (sample C, dipped in HNO 3 solution and covered by a compact alumina layer), Si wafer (sample D) respectively were put into Teflon-lined stainless steel autoclaves of 20 mL capacity filled with 16 mL mixed solution consisting of 2 mol/L MnCl 4 and 2 mol/L thiourea. We kept the reaction at 150 .deg. C for 20 h. When reactions completed the products were washed three times with distilled water and absolute ethanol, respectively. Then the products were dried in an oven at 60 .deg. C

  19. Growth Mechanism of γ-MnS Nanorod-Arrays by Hydrothermal Method on Anodic Aluminum Oxide Template

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianming; Liu, Weifeng; Lv, Yong; Yao, Lianzeng [Chinese Academy of Science, Hefei, Anhui (China)

    2010-09-15

    Hydrothermal method is a general, low-cost and convenience method which was utilized for synthesis of nanomaterials. Our research group has reported that oriented MnS nanorods on anodic aluminum oxide template were synthesized under a hydrothermal condition and demonstrated the effect of precursor content on the morphology evolution of as-samples. In order to research the growth mechanism of the arrays, herein we synthesized MnS nanorod arrays by combination of anodic aluminum oxide template and hydrothermal method on different substrates. Through-hole anodic aluminum oxide templates were prepared using Al foil (99.999%) via a two-step anodization process as described in literature. To investigate the effect of different substrates on the morphology of the-products, different substrates including anodic aluminum oxide template (sample A), one-step anodization Al foil (sample B, which was prepared by first anodizing Al foil for 10h and then removing the alumina layer with the mixed acid (0.6 M H{sub 3}PO{sub 4} and 0.15 M H{sub 2}CrO{sub 4}), where the foil still kept the close-packed concave nano-pits consistently with the nanopole of anodic aluminum oxide template), Al foil (sample C, dipped in HNO{sub 3} solution and covered by a compact alumina layer), Si wafer (sample D) respectively were put into Teflon-lined stainless steel autoclaves of 20 mL capacity filled with 16 mL mixed solution consisting of 2 mol/L MnCl{sub 4} and 2 mol/L thiourea. We kept the reaction at 150 .deg. C for 20 h. When reactions completed the products were washed three times with distilled water and absolute ethanol, respectively. Then the products were dried in an oven at 60 .deg. C.

  20. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin.

    Directory of Open Access Journals (Sweden)

    Johan Nilvebrant

    Full Text Available The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein.

  1. Isolation and characterization of high affinity aptamers against DNA polymerase iota.

    Science.gov (United States)

    Lakhin, Andrei V; Kazakov, Andrei A; Makarova, Alena V; Pavlov, Yuri I; Efremova, Anna S; Shram, Stanislav I; Tarantul, Viacheslav Z; Gening, Leonid V

    2012-02-01

    Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.

  2. The Contextualization of Archetypes: Clinical Template Governance.

    Science.gov (United States)

    Pedersen, Rune; Ulriksen, Gro-Hilde; Ellingsen, Gunnar

    2015-01-01

    This paper is a status report from a large-scale openEHR-based EPR project from the North Norway Regional Health Authority. It concerns the standardization of a regional ICT portfolio and the ongoing development of a new process oriented EPR systems encouraged by the unfolding of a national repository for openEHR archetypes. Subject of interest; the contextualization of clinical templates is governed over multiple national boundaries which is complex due to the dependency of clinical resources. From the outset of this, we are interested in how local, regional, and national organizers maneuver to standardize while applying OpenEHR technology.

  3. Automatic target detection using binary template matching

    Science.gov (United States)

    Jun, Dong-San; Sun, Sun-Gu; Park, HyunWook

    2005-03-01

    This paper presents a new automatic target detection (ATD) algorithm to detect targets such as battle tanks and armored personal carriers in ground-to-ground scenarios. Whereas most ATD algorithms were developed for forward-looking infrared (FLIR) images, we have developed an ATD algorithm for charge-coupled device (CCD) images, which have superior quality to FLIR images in daylight. The proposed algorithm uses fast binary template matching with an adaptive binarization, which is robust to various light conditions in CCD images and saves computation time. Experimental results show that the proposed method has good detection performance.

  4. Porous sheet-like and sphere-like nano-architectures of SnO2 nanoparticles via a solvent-thermal approach and their gas-sensing performances

    International Nuclear Information System (INIS)

    Jie Liu; Tang, Xin-Cun; Xiao, Yuan-Hua; Hai Jia,; Gong, Mei-Li; Huang, Fu-Qin

    2013-01-01

    Highlights: • Porous sheet-like and sphere-like nano-architectures of SnO 2 nanoparticles have been prepared. • A solvent-thermal approach without surfactant or polymer templates simply by changing the volume ratio of DMF to water. • The formation mechanism of nano-architectures is proposed in this article. • Porous sphere-like SnO 2 nano-architectures exhibit good sensitivity to the reduce vapors tested. • Sheet-like materials show better selectivity to ethanol. -- Abstract: Porous sheet-like and sphere-like nano-architectures of SnO 2 nanoparticles have been prepared via a solvent-thermal approach in the absence of any surfactant or polymer templates by simply changing the volume ratio of DMF to water. The nano-materials have been characterized by FESEM, XRD, IR, TEM and BET. A mechanism for the formation of nano-architectures is also proposed based on the assembly behaviors of DMF in water. The gas sensors constructed with porous sphere-like SnO 2 nano-architectures exhibit much higher sensitivity to the reduce vapors tested, compared to those from porous sheet-like SnO 2 materials, while the sheet-like materials show better selectivity to ethanol. The nano-architectures fabricated with the facile method are promising candidates for building chemical sensors with tunable performances

  5. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    Science.gov (United States)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  6. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.

    Science.gov (United States)

    Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio

    2013-07-01

    Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.

  7. Affine fractal functions as bases of continuous funtions | Navascues ...

    African Journals Online (AJOL)

    The objective of the present paper is the study of affine transformations of the plane, which provide self-affine curves as attractors. The properties of these curves depend decisively of the coefficients of the system of affinities involved. The corresponding functions are continuous on a compact interval. If the scale factors are ...

  8. Single-step affinity purification for fungal proteomics.

    Science.gov (United States)

    Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A

    2010-05-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  9. Single-Step Affinity Purification for Fungal Proteomics ▿ †

    OpenAIRE

    Liu, Hui-Lin; Osmani, Aysha H.; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B.; De Souza, Colin P.; Osmani, Stephen A.

    2010-01-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  10. Template-free sonochemical synthesis of flower-like ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Huawa [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); School of Science, Xi' an Polytechnic University, Xi' an 710048 (China); Fan, Huiqing, E-mail: hqfan3@163.com [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Xin [Shaanxi Province Thin Film Technology and Optical Test Open Key Laboratory, School of Photoelectrical Engineering, Xi' an Technological University, Xi' an 710032 (China); Wang, Jing [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an 710072 (China); Cheng, Pengfei; Zhang, Xiaojun [School of Science, Xi' an Polytechnic University, Xi' an 710048 (China)

    2014-10-03

    Flower-like ZnO nanostructures have been successfully synthesized via a facile and template-free sonochemical method, using zinc acetate and potassium hydroxide as reactants only. The as-synthesized flower-like ZnO nanostructures were composed of nanorods with the width of ∼300–400 nm and the length of ∼2–3 μm. The structures, morphologies and optical properties of the as-prepared products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV-Vis spectrophotometry and Raman-scattering spectroscopy. A plausible formation mechanism of flower-like ZnO nanostructures was studied by SEM which monitors an intermediate morphology transformation of the product at the different ultrasonic time (t=80,90,95,105, and 120 min). - Highlights: • A facile and template-free sonochemical method to fabricate flower-like ZnO nanostructures was proposed. • The flower-like ZnO nanostructures follow the ingrowth of ZnO from the matrix of Zn(OH){sub 2} crystals. • The flower-like ZnO nanostructures are also expected to explore their application in the field of nano-electronic devices.

  11. Template-free sonochemical synthesis of flower-like ZnO nanostructures

    International Nuclear Information System (INIS)

    Yu, Huawa; Fan, Huiqing; Wang, Xin; Wang, Jing; Cheng, Pengfei; Zhang, Xiaojun

    2014-01-01

    Flower-like ZnO nanostructures have been successfully synthesized via a facile and template-free sonochemical method, using zinc acetate and potassium hydroxide as reactants only. The as-synthesized flower-like ZnO nanostructures were composed of nanorods with the width of ∼300–400 nm and the length of ∼2–3 μm. The structures, morphologies and optical properties of the as-prepared products were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscopy, UV-Vis spectrophotometry and Raman-scattering spectroscopy. A plausible formation mechanism of flower-like ZnO nanostructures was studied by SEM which monitors an intermediate morphology transformation of the product at the different ultrasonic time (t=80,90,95,105, and 120 min). - Highlights: • A facile and template-free sonochemical method to fabricate flower-like ZnO nanostructures was proposed. • The flower-like ZnO nanostructures follow the ingrowth of ZnO from the matrix of Zn(OH) 2 crystals. • The flower-like ZnO nanostructures are also expected to explore their application in the field of nano-electronic devices

  12. Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    DUSAN LOSIC

    2008-10-01

    Full Text Available The fabrication of microstructured surfaces using biological templates was investigated with the aim of exploring of a facile and low cost approach for the fabrication of structured surfaces with superhydrophobic properties. Two soft lithographic techniques, i.e., replica moulding and nano-imprinting, were used to replicate the surfaces of a biological substrate. Leaves of the Agave plant (Agave attenuate, a cost-free biological template, were used as a model of a biosurface with superhydrophobic properties. The replication process was performed using two polymers: an elastomeric polymer, poly(dimethylsiloxane (PDMS, and a polyurethane (PU based, UV-curable polymer (NOA 60. In the first replication step, negative polymer replicas of the surface of leaves were fabricated, which were used as masters to fabricate positive polymer replicas by moulding and soft imprinting. The pattern with micro and nanostructures of the surface of the leaf possesses superhydrophobic properties, which was successfully replicated into both polymers. Finally, the positive replicas were coated with a thin gold film and modified with self-assembled monolayers (SAMs to verify the importance of the surface chemistry on the hydrophobic properties of the fabricated structures. Wetting (contact angle and structural (light microscopy and scanning electron microscopy characterisation was performed to confirm the hydrophobic properties of the fabricated surfaces (> 150°, as well as the precision and reproducibility of the replication process.

  13. iTemplate: A template-based eye movement data analysis approach.

    Science.gov (United States)

    Xiao, Naiqi G; Lee, Kang

    2018-02-08

    Current eye movement data analysis methods rely on defining areas of interest (AOIs). Due to the fact that AOIs are created and modified manually, variances in their size, shape, and location are unavoidable. These variances affect not only the consistency of the AOI definitions, but also the validity of the eye movement analyses based on the AOIs. To reduce the variances in AOI creation and modification and achieve a procedure to process eye movement data with high precision and efficiency, we propose a template-based eye movement data analysis method. Using a linear transformation algorithm, this method registers the eye movement data from each individual stimulus to a template. Thus, users only need to create one set of AOIs for the template in order to analyze eye movement data, rather than creating a unique set of AOIs for all individual stimuli. This change greatly reduces the error caused by the variance from manually created AOIs and boosts the efficiency of the data analysis. Furthermore, this method can help researchers prepare eye movement data for some advanced analysis approaches, such as iMap. We have developed software (iTemplate) with a graphic user interface to make this analysis method available to researchers.

  14. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    Science.gov (United States)

    Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-07-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The

  15. Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes

    OpenAIRE

    Maijenburg, A.W.

    2014-01-01

    This thesis is entitled “Templated electrodeposition of functional nanostructures: nanowires, nanotubes and nanocubes”. Templated electrodeposition is the synthesis technique that was used throughout this thesis, and it comprises the use of a template with specific shape and dimensions for the formation of different types of nanostructures. Throughout this thesis, three different nanostructures were made: nanowires (Chapters 2 to 6), nanotubes (Chapters 2 and 5) and nanocubes (Chapters 7 and ...

  16. Improving your target-template alignment with MODalign

    OpenAIRE

    Barbato, Alessandro; Benkert, Pascal; Schwede, Torsten; Tramontano, Anna; Kosinski, Jan

    2012-01-01

    Summary: MODalign is an interactive web-based tool aimed at helping protein structure modelers to inspect and manually modify the alignment between the sequences of a target protein and of its template(s). It interactively computes, displays and, upon modification of the target-template alignment, updates the multiple sequence alignments of the two protein families, their conservation score, secondary structure and solvent accessibility values, and local quality scores of the implied three-di...

  17. Template synthesis of indium nanowires using anodic aluminum oxide membranes.

    Science.gov (United States)

    Chen, Feng; Kitai, Adrian H

    2008-09-01

    Indium nanowires with diameters approximately 300 nm have been synthesized by a hydraulic pressure technique using anodic aluminum oxide (AAO) templates. The indium melt is injected into the AAO template and solidified to form nanostructures. The nanowires are dense, continuous and uniformly run through the entire approximately 60 microm thickness of the AAO template. X-ray diffraction (XRD) reveals that the nanowires are polycrystalline with a preferred orientation. SEM is performed to characterize the morphology of the nanowires.

  18. Fast Template-based Shape Analysis using Diffeomorphic Iterative Centroid

    OpenAIRE

    Cury , Claire; Glaunès , Joan Alexis; Chupin , Marie; Colliot , Olivier

    2014-01-01

    International audience; A common approach for the analysis of anatomical variability relies on the estimation of a representative template of the population, followed by the study of this population based on the parameters of the deformations going from the template to the population. The Large Deformation Diffeomorphic Metric Mapping framework is widely used for shape analysis of anatomical structures, but computing a template with such framework is computationally expensive. In this paper w...

  19. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  20. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links.

    Science.gov (United States)

    Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul

    2014-01-01

    A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn(2+) were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn(2+), and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks.

  1. Gamma Radiation-Induced Template Polymerization Technique

    International Nuclear Information System (INIS)

    Siyam, T.

    2005-01-01

    Gamma radiation induced copolymerization of acrylamide sodiumacrylate (AM-AANa) in the presence and absence of the polymer additive was studied at low monomer concentration(1.4M/l). The results showed that the exponents of the dose rate for the polymerization rate was found to be 1.3 and 1.4 in the absence and in the presence of the polymer additive respectively. The molecular weight of the formed polymer increased by addition of the polymer to the system. In the presence of the polymer the comonomers polymerize on the added polymer. In the absence of the added polymer the comonomers polymerize according to the copolymerization process at the initial stage of the copolymerization. While at high conversion the residual comonomers polymerize on the formed macromolecular chains of the produced polymer. These studies showed that the copolymerization in the presence of added polymer is completely template copolymerization while in the absence of the polymer the copolymerization process is only template process with a high conversion

  2. Random template placement and prior information

    International Nuclear Information System (INIS)

    Roever, Christian

    2010-01-01

    In signal detection problems, one is usually faced with the task of searching a parameter space for peaks in the likelihood function which indicate the presence of a signal. Random searches have proven to be very efficient as well as easy to implement, compared e.g. to searches along regular grids in parameter space. Knowledge of the parameterised shape of the signal searched for adds structure to the parameter space, i.e., there are usually regions requiring to be densely searched while in other regions a coarser search is sufficient. On the other hand, prior information identifies the regions in which a search will actually be promising or may likely be in vain. Defining specific figures of merit allows one to combine both template metric and prior distribution and devise optimal sampling schemes over the parameter space. We show an example related to the gravitational wave signal from a binary inspiral event. Here the template metric and prior information are particularly contradictory, since signals from low-mass systems tolerate the least mismatch in parameter space while high-mass systems are far more likely, as they imply a greater signal-to-noise ratio (SNR) and hence are detectable to greater distances. The derived sampling strategy is implemented in a Markov chain Monte Carlo (MCMC) algorithm where it improves convergence.

  3. Fluid discrimination based on rock physics templates

    International Nuclear Information System (INIS)

    Liu, Qian; Yin, Xingyao; Li, Chao

    2015-01-01

    Reservoir fluid discrimination is an indispensable part of seismic exploration. Reliable fluid discrimination helps to decrease the risk of exploration and to increase the success ratio of drilling. There are many kinds of fluid indicators that are used in fluid discriminations, most of which are single indicators. But single indicators do not always work well under complicated reservoir conditions. Therefore, combined fluid indicators are needed to increase accuracies of discriminations. In this paper, we have proposed an alternative strategy for the combination of fluid indicators. An alternative fluid indicator, the rock physics template-based indicator (RPTI) has been derived to combine the advantages of two single indicators. The RPTI is more sensitive to the contents of fluid than traditional indicators. The combination is implemented based on the characteristic of the fluid trend in the rock physics template, which means few subjective factors are involved. We also propose an inversion method to assure the accuracy of the RPTI input data. The RPTI profile is an intuitionistic interpretation of fluid content. Real data tests demonstrate the applicability and validity. (paper)

  4. Sonographic templates of newborn perforator stroke.

    Science.gov (United States)

    Abels, Lyanne; Lequin, Maarten; Govaert, Paul

    2006-07-01

    Many paediatric strokes occur in the perinatal period. Improvement in neuroimaging has increased detection in newborns with neurological symptoms. To define sonographic templates of neonatal stroke in the territory of perforators of the anterior choroidal artery (AChA) and the anterior (ACA), middle (MCA) and posterior (PCA) cerebral arteries. In 24 neonates with perforator stroke, we retrospectively studied antenatal and perinatal events. Brain sonography was performed with an 8.5-MHz probe. Only hyperechoic lesions in the thalamus and/or striatum and/or centrum semiovale were included. MRI was obtained using a 1.5-T machine. We detected 28 perforator strokes in 24 infants (6 preterm): 5 MCA medial striate, 8 MCA lateral striate, 3 MCA centrum semiovale, 4 ACA Heubner's, 5 PCA thalamic arteries, 1 AChA, and 2 hypothalamic perforators. We attributed clinical seizures to stroke in two infants only. Catheter-related embolism (certain in three, possible in six others) and birth trauma (two) were probable causes. Specific conditions were found in six others. Only one infant (in nine evaluated) had an increased prothrombotic risk (fII mutation). In describing the lesions, we focused on the templates of infarction as seen in a parasagittal US sweep. Infarcts were confirmed by MRI in 21 patients. Our study showed that infarct topography can be evaluated reliably with brain sonography. This is important given the asymptomatic character of most lesions.

  5. Microporous silica prepared by organic templating: relationship between the molecular template and pore structure

    International Nuclear Information System (INIS)

    Brinker, C. Jeffrey; Cao, Guozhong; Kale, Rahul P.; Lopez, Gabriel P.; Lu, Yunfeng; Prabakar, S.

    1999-01-01

    Microporous silica materials with a controlled pore size and a narrow pore size distribution have been prepared by sol-gel processing using an organic-templating approach. Microporous networks were formed by pyrolytic removal of organic ligands (methacryloxypropyl groups) from organic/inorganic hybrid materials synthesized by copolymerization of 3-methacryloxypropylsilane (MPS) and tetraethoxysilane (TEOS). Molecular simulations and experimental measurements were conducted to examine the relationship between the microstructural characteristics of the porous silica (e.g., pore size, total pore volume, and pore connectivity) and the size and amount of organic template ligands added. Adsorption measurements suggest that the final porosity of the microporous silica is due to both primary pores (those present in the hybrid materials prior to pyrolysis) and secondary pores (those created by pyrolytic removal of organic templates). Primary pores were inaccessible to N(sub 2) at 77 K but accessible to CO(sub 2) at 195 K; secondary pores were accessible to both N(sub 2) (at 77 K) and CO(sub 2) (at 195 K) in adsorption measurements. Primary porosity decreases with the amount of organic ligands added because of the enhanced densification of MPS/TEOS hybrid materials as the mole fraction of trifunctional MPS moieties increases. pore volumes measured by nitrogen adsorption experiments at 77 K suggest that the secondary (template-derived) porosity exhibits a percolation behavior as the template concentration is increased. Gas permeation experiments indicate that the secondary pores are approximately 5(angstrom) in diameter, consistent with predictions based on molecular simulations

  6. Complex nano-patterning of structural, optical, electrical and electron emission properties of amorphous silicon thin films by scanning probe

    Czech Academy of Sciences Publication Activity Database

    Fait, Jan; Čermák, Jan; Stuchlík, Jiří; Rezek, Bohuslav

    2018-01-01

    Roč. 428, Jan (2018), s. 1159-1165 ISSN 0169-4332 R&D Projects: GA ČR GA15-01809S Institutional support: RVO:68378271 Keywords : amorphous silicon * nano-templates * nanostructures * electrical conductivity * electron emission * atomic force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.387, year: 2016

  7. Zinc oxide hollow micro spheres and nano rods: Synthesis and applications in gas sensor

    International Nuclear Information System (INIS)

    Jamil, Saba; Janjua, Muhammad Ramzan Saeed Ashraf; Ahmad, Tauqeer; Mehmood, Tahir; Li, Songnan; Jing, Xiaoyan

    2014-01-01

    Zinc oxide nano rods and micro hollow spheres are successfully fabricated by adopting a simple solvo-thermal approach without employing any surfactant/template by keeping heating time as variable. The prepared products are characterized by using different instruments such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). In order to investigate the morphological dependence on the reaction time, analogous experiments with various reaction times are carried out. Depending upon heating time, different morphological forms have been identified such as hollow microsphere (4 μm to 5 μm) and nano rods with an average diameter of approximately 100 nm. The fabricated materials are also tested for ethanol gas sensor applications and zinc oxide hollow microsphere proven to be an efficient gas sensing materials. Nitrogen adsorption–desorption measurement was performed to understand better performance of zinc oxide micro hollow spheres as effective ethanol gas sensing material. - Graphical abstract: Graphical abstract is represented by zinc oxide sphere (prepared by simple solvothermal approach), its XRD pattern(characterization) and finally its application in gas sensing. - Highlights: • Zinc oxide spheres were prepared by using solvothermal method. • Detailed description of the morphology of microspheres assembled by nano rods. • Formation mechanism of zinc oxide spheres assembled by nano rods. • Zinc oxide spheres and nano rods displayed very good gas sensing ability

  8. Fabrication of high quality ordered porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Liu Kai; Du Kai; Chen Jing; Zhou Lan; Zhang Lin; Fang Yu

    2010-01-01

    The preparation of porous anodic aluminum oxide (AAO) templates has been studied with oxalic acid as electrolyte. The morphology of the as-prepared templates has been characterized by field-emission scanning electron microscope (FE-SEM). The pores distributed orderly and uniformly with the diameter ranging from 40 nm to 70 nm. The experimental results indicate that electrolyte concentration, oxidation voltage, oxidation temperature and oxidation time affect the structure of AAO templates. Ordered porous AAO templates can be derived without annealing and finishing. X-ray diffraction (XRD) analysis indicates that the aluminum oxide film is mainly composed of amorphous Al 2 O 3 . (authors)

  9. Template for Conceptual Model Construction: Model Review and Corps Applications

    National Research Council Canada - National Science Library

    Henderson, Jim E; O'Neil, L. J

    2007-01-01

    .... The template will expedite conceptual model construction by providing users with model parameters and potential model components, building on a study team's knowledge and experience, and promoting...

  10. Light Weight Biomorphous Cellular Ceramics from Cellulose Templates

    Science.gov (United States)

    Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)

    2003-01-01

    Bimorphous ceramics are a new class of materials that can be fabricated from the cellulose templates derived from natural biopolymers. These biopolymers are abundantly available in nature and are produced by the photosynthesis process. The wood cellulose derived carbon templates have three- dimensional interconnectivity. A wide variety of non-oxide and oxide based ceramics have been fabricated by template conversion using infiltration and reaction-based processes. The cellular anatomy of the cellulose templates plays a key role in determining the processing parameters (pyrolysis, infiltration conditions, etc.) and resulting ceramic materials. The processing approach, microstructure, and mechanical properties of the biomorphous cellular ceramics (silicon carbide and oxide based) have been discussed.

  11. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  12. On the structure of self-affine convex bodies

    Energy Technology Data Exchange (ETDEWEB)

    Voynov, A S [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2013-08-31

    We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.

  13. Frontiers in nano-therapeutics

    CERN Document Server

    Tasnim, Nishat; Sai Krishna, Katla; Kalagara, Sudhakar; Narayan, Mahesh; Noveron, Juan C; Joddar, Binata

    2017-01-01

    This brief highlights recent research advances in the area of nano-therapeutics. Nanotechnology holds immense potential for application in a wide range of biological and engineering applications such as molecular sensors for disease diagnosis, therapeutic agents for the treatment of diseases, a vehicle for delivering therapeutics and imaging agents for theranostic applications, both in-vitro and in-vivo. The brief is grouped into the following sections namely, A) Discrete Nanosystems ; B) Anisotropic Nanoparticles; C) Nano-films/coated/layered and D) Nano-composites.

  14. HNF - Helmholtz Nano Facility

    Directory of Open Access Journals (Sweden)

    Wolfgang Albrecht

    2017-05-01

    Full Text Available The Helmholtz Nano Facility (HNF is a state-of-the-art cleanroom facility. The cleanroom has ~1100 m2 with cleanroom classes of DIN ISO 1-3. HNF operates according to VDI DIN 2083, Good Manufacturing Practice (GMP and aquivalent to Semiconductor Industry Association (SIA standards. HNF is a user facility of Forschungszentrum Jülich and comprises a network of facilities, processes and systems for research, production and characterization of micro- and nanostructures. HNF meets the basic supply of micro- and nanostructures for nanoelectronics, fluidics. micromechanics, biology, neutron and energy science, etc.. The task of HNF is rapid progress in nanostructures and their technology, offering efficient access to infrastructure and equipment. HNF gives access to expertise and provides resources in production, synthesis, characterization and integration of structures, devices and circuits. HNF covers the range from basic research to application oriented research facilitating a broad variety of different materials and different sample sizes.

  15. Nano-optomechanical transducer

    Science.gov (United States)

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  16. A comparison of the magnetic properties of Ni and Co nanowires deposited in different templates and on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yalçın, O., E-mail: o.yalcin@nigde.edu.tr [Department of Physics, Niğde University, 51240 Niğde (Turkey); Kartopu, G. [Centre for Solar Energy Research (CSER), Glyndŵr University, OpTIC, St. Asaph Business Park, St. Asaph, LL17 0JD (United Kingdom); Çetin, H. [Department of Physics, Bozok University, 6600 Yozgat (Turkey); Demiray, A.S.; Kazan, S. [Department of Physics, Gebze Institute of Technology, 41400 Gebze, Kocaeli (Turkey)

    2015-01-01

    Nickel (Ni) and cobalt (Co) nanowire arrays (NWs) grown by electrodeposition in porous nano-templates are studied by the ferromagnetic resonance (FMR) technique at room temperature (RT) by comparing the effects of template type (alumina and polycarbonate) and the deposition substrate (i.e., metallic back contact). The line-width and resonance field of the FMR spectra strongly depends on the orientation of the applied field direction. A model is developed to analyze the spectra in order to extract the magnetic parameters such as g-values, spin–spin relaxation times (T{sub 2}) and uniaxial anisotropy parameters. The experimental FMR spectra and their resonance field values were fitted using the imaginary part of magnetic susceptibility and a dispersion relation of magnetization, including the Bloch–Bloembergen type damping term. The easy axes of magnetization for all Ni and Co NWs were found to be perpendicular to the wire-axis. Surface spin modes have been observed only when pure Au was used as substrate. A discussion will be provided to explain the observed differences in terms of the anisotropic behavior and magnetic parameters of the NWs for different substrates and growth templates.

  17. GaN epilayers on nanopatterned GaN/Si(1 1 1) templates: Structural and optical characterization

    International Nuclear Information System (INIS)

    Wang, L.S.; Tripathy, S.; Wang, B.Z.; Chua, S.J.

    2006-01-01

    Template-based nanoscale epitaxy has been explored to realize high-quality GaN on Si(1 1 1) substrates. We have employed polystyrene-based nanosphere lithography to form the nano-hole array patterns on GaN/Si(1 1 1) template and then, subsequent regrowth of GaN is carried out by metalorganic chemical vapor deposition (MOCVD). During the initial growth stage of GaN on such nanopatterned substrates, we have observed formation of nanoislands with hexagonal pyramid shape due to selective area epitaxy. With further epitaxial regrowth, these nanoislands coalesce and form continuous GaN film. The overgrown GaN on patterned and non-patterned regions is characterized by high-resolution X-ray diffraction (HRXRD) and high-spatial resolution optical spectroscopic methods. Micro-photoluminescence (PL), micro-Raman scattering and scanning electron microscopy (SEM) have been used to assess the microstructural and optical properties of GaN. Combined PL and Raman data analyses show improved optical quality when compared to GaN simultaneously grown on non-patterned bulk Si(1 1 1). Such thicker GaN templates would be useful to achieve III-nitride-based opto- and electronic devices integrated on Si substrates

  18. High affinity hemoglobin and Parkinson's disease.

    Science.gov (United States)

    Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna

    2014-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Aspects of affine Toda field theory

    International Nuclear Information System (INIS)

    Braden, H.W.; Corrigan, E.; Dorey, P.E.; Sasaki, R.

    1990-05-01

    The report is devoted to properties of the affine Toda field theory, the intention being to highlight a selection of curious properties that should be explicable in terms of the underlying group theory but for which in most cases there are no explanation. The motivation for exploring the ideas contained in this report came principally from the recent work of Zamolodchikov concerning the two dimensional Ising model at critical temperature perturbed by a magnetic field. Hollowood and Mansfield pointed out that since Toda field theory is conformal the perturbation considered by Zamolodchikov might well be best regarded as a perturbation of a Toda field theory. This work made it seem plausible that the theory sought by Zamolodchikov was actually affine E 8 Toda field theory. However, this connection required an imaginary value of the coupling constant. Investigations here concerning exact S-matrices use a perturbative approach based on real coupling and the results differ in various ways from those thought to correspond to perturbed conformal field theory. A further motivation is to explore the connection between conformal and perturbed conformal field theories in other contexts using similar ideas. (N.K.)

  20. From affine Hecke algebras to boundary symmetries

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2005-01-01

    Motivated by earlier works we employ appropriate realizations of the affine Hecke algebra and we recover previously known non-diagonal solutions of the reflection equation for the U q (gl n -bar ) case. The corresponding N site spin chain with open boundary conditions is then constructed and boundary non-local charges associated to the non-diagonal solutions of the reflection equation are derived, as coproduct realizations of the reflection algebra. With the help of linear intertwining relations involving the aforementioned solutions of the reflection equation, the symmetry of the open spin chain with the corresponding boundary conditions is exhibited, being essentially a remnant of the U q (gl n -bar ) algebra. More specifically, we show that representations of certain boundary non-local charges commute with the generators of the affine Hecke algebra and with the local Hamiltonian of the open spin chain for a particular choice of boundary conditions. Furthermore, we are able to show that the transfer matrix of the open spin chain commutes with a certain number of boundary non-local charges, depending on the choice of boundary conditions

  1. Gravitational Goldstone fields from affine gauge theory

    Science.gov (United States)

    Tresguerres, Romualdo; Mielke, Eckehard W.

    2000-08-01

    In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.

  2. Surface engineering: molecularly imprinted affinity membranes by photograft polymerization

    Science.gov (United States)

    Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe

    2001-02-01

    Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes

  3. Learning a peptide-protein binding affinity predictor with kernel ridge regression

    Science.gov (United States)

    2013-01-01

    Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting

  4. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  5. Nanoporous alumina as templates for multifunctional applications

    Science.gov (United States)

    Sousa, C. T.; Leitao, D. C.; Proenca, M. P.; Ventura, J.; Pereira, A. M.; Araujo, J. P.

    2014-09-01

    Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

  6. Business planning: a template for success.

    Science.gov (United States)

    Dye, Judy

    2002-01-01

    Because managing a laboratory, or any health-care entity, is as much a business as a service, it is important for you to have a good grasp on how you can take opportunities from idea conception to implementation to assessment/revision. Regardless of the size of your proposed project, you need to consider a number of factors, among them: your history and what opportunities you can seize from your strengths and weaknesses; the overall business climate; anticipated costs; staff involvement; how you will market your project; and what measures to use to determine your success. Above all else, you need to set goals, both ultimate and intermediate, to instill focus, incentive, and a sense of achievement. The next time someone on your staff says, "Why don't we try that?," refer to this Template Topic. It can serve as a tool to help you determine whether you should try "that" and be the compass that helps guide your efforts.

  7. Radiation Templates of Spent Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Vanier, Peter

    2018-05-07

    BNL and INL propose to perform a scoping study, using heavily collimated gamma and fast neutron detectors, to obtain passive radiation templates of dry storage casks containing spent fuel. The goal is to demonstrate sufficient spatial resolution and sensitivity to detect a missing fuel assembly. Such measurements, combined with detailed modeling and decay corrections should provide confidence that the cask contents have not been altered, despite loss of continuity of knowledge (CoK). The concept relies on the leakage of high energy gammas and neutrons through the shielding of the casks. Tests will emphasize organic scintillators with pulse shape discrimination, but baseline comparisons will be made to high purity germanium (HPGe) and collimated moderated 3He detectors deployed in the same locations. Commercial off-the-shelf (COTS) detectors and data acquisition electronics will be used with custom-built collimators and shielding.

  8. Using archetypes for defining CDA templates.

    Science.gov (United States)

    Moner, David; Moreno, Alberto; Maldonado, José A; Robles, Montserrat; Parra, Carlos

    2012-01-01

    While HL7 CDA is a widely adopted standard for the documentation of clinical information, the archetype approach proposed by CEN/ISO 13606 and openEHR is gaining recognition as a means of describing domain models and medical knowledge. This paper describes our efforts in combining both standards. Using archetypes as an alternative for defining CDA templates permit new possibilities all based on the formal nature of archetypes and their ability to merge into the same artifact medical knowledge and technical requirements for semantic interoperability of electronic health records. We describe the process followed for the normalization of existing legacy data in a hospital environment, from the importation of the HL7 CDA model into an archetype editor, the definition of CDA archetypes and the application of those archetypes to obtain normalized CDA data instances.

  9. Colloid-templated multisectional porous polymeric fibers.

    Science.gov (United States)

    Song, Jung Hun; Kretzschmar, Ilona

    2008-10-07

    A fabrication method for porous polymeric fibers (PPFs) is reported. We show that a multisectional colloidal crystal can be assembled within a microcapillary by alternating dipping into colloidal solutions of varying size. Subsequent infiltration with curable polymer and washing with suitable solvents results in porous fibers with a cylindrical cross section. Along the length of the fiber, alternating sections of controlled length, pore size, and pore size distribution exist. These fibers present interesting materials for neural scaffolding, catalysis, and possibly photonics if produced with a high degree of crystallinity. The surface pores and bulk porosity of the fibers are characterized by variable-pressure scanning electron microscopy (vp-SEM). Careful analysis shows that the surface pores vary with the colloidal template diameter and polymer infiltration time.

  10. Time Series Analysis Using Geometric Template Matching.

    Science.gov (United States)

    Frank, Jordan; Mannor, Shie; Pineau, Joelle; Precup, Doina

    2013-03-01

    We present a novel framework for analyzing univariate time series data. At the heart of the approach is a versatile algorithm for measuring the similarity of two segments of time series called geometric template matching (GeTeM). First, we use GeTeM to compute a similarity measure for clustering and nearest-neighbor classification. Next, we present a semi-supervised learning algorithm that uses the similarity measure with hierarchical clustering in order to improve classification performance when unlabeled training data are available. Finally, we present a boosting framework called TDEBOOST, which uses an ensemble of GeTeM classifiers. TDEBOOST augments the traditional boosting approach with an additional step in which the features used as inputs to the classifier are adapted at each step to improve the training error. We empirically evaluate the proposed approaches on several datasets, such as accelerometer data collected from wearable sensors and ECG data.

  11. Substitution reactions of carbon nanotube template

    Science.gov (United States)

    Li, Chi Pui; Chen, Ying; Gerald, John Fitz

    2006-05-01

    Substitution reactions between carbon nanotube (CNT) template and SiO with the formation of carbon rich silicon oxide nanowires (SiO-C-NWs) have been investigated using transmission electron microscopy and x-ray energy dispersive spectroscopy. The reaction was carried out by thermal annealing at 1200°C for 1h of a mixture of silicon monoxide (SiO) and iron (II) phthalocyanine, FeC32N8H16 (FePc) powders. Multiwalled CNTs were produced first via pyrolysis of FePc at a lower temperature (1000°C ). SiO vapors reacted with the CNTs at higher temperatures to produce amorphous SiO-C-NWs with a uniform diameter and a length in tens of micrometers. The special bamboolike structure of the CNTs allows the reaction to start from the external surface of the tubes and transform each CNT into a solid nanowire section by section.

  12. Consensus on Exercise Reporting Template (CERT)

    DEFF Research Database (Denmark)

    Slade, Susan C; Dionne, Clermont E; Underwood, Martin

    2016-01-01

    the reporting of exercise programs in all evaluative study designs and contains 7 categories: materials, provider, delivery, location, dosage, tailoring, and compliance. The CERT will encourage transparency, improve trial interpretation and replication, and facilitate implementation of effective exercise......BACKGROUND: Exercise interventions are often incompletely described in reports of clinical trials, hampering evaluation of results and replication and implementation into practice. OBJECTIVE: The aim of this study was to develop a standardized method for reporting exercise programs in clinical...... trials: the Consensus on Exercise Reporting Template (CERT). DESIGN AND METHODS: Using the EQUATOR Network's methodological framework, 137 exercise experts were invited to participate in a Delphi consensus study. A list of 41 items was identified from a meta-epidemiologic study of 73 systematic reviews...

  13. Nano Engineered Energetic Materials (NEEM)

    Science.gov (United States)

    2011-01-12

    Dryer, FL; Aksay, IA, Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion, ACS NANO 3, 13, 3945-3954, 2009. 16. Weismiller...loading) which was not observed in other heterogeneous mixtures. Additional details on nano fuels (including graphene ) with liquid oxidizers can be...to the high reflectance of some samples black high temperature spray paint was used on ends of the samples to decrease ignition delay times and

  14. Tailoring the porosity of hierarchical zeolites by carbon-templating

    DEFF Research Database (Denmark)

    Zhu, Kake; Egeblad, Kresten; Christensen, Claus H.

    2008-01-01

    We report the synthesis and characterization of a series of hierarchical porous zeolite single crystal materials with a range of porosities made available by carbon-templating using differently-sized carbon particles as templates for the additional non-micropore porosity. The materials were...

  15. Proline-catalysed asymmetric ketol cyclizations: The template ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A modified template mechanism based on modelling studies of energy minimised complexes is presented for the asymmetric proline-catalysed cyclization of triketones 1, 2 and 3 to the 2S,3S-ketols. 1a, 2a and 3a respectively. The template model involves a three-point contact as favoured in enzyme– substrate ...

  16. A non-parametric 2D deformable template classifier

    DEFF Research Database (Denmark)

    Schultz, Nette; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2005-01-01

    feature space the ship-master will be able to interactively define a segmentation map, which is refined and optimized by the deformable template algorithms. The deformable templates are defined as two-dimensional vector-cycles. Local random transformations are applied to the vector-cycles, and stochastic...

  17. Graphene Emerges as a Versatile Template for Materials Preparation.

    Science.gov (United States)

    Li, Zhengjie; Wu, Sida; Lv, Wei; Shao, Jiao-Jing; Kang, Feiyu; Yang, Quan-Hong

    2016-05-01

    Graphene and its derivatives are emerging as a class of novel but versatile templates for the controlled preparation and functionalization of materials. In this paper a conceptual review on graphene-based templates is given, highlighting their versatile roles in materials preparation. Graphene is capable of acting as a low-dimensional hard template, where its two-dimensional morphology directs the formation of novel nanostructures. Graphene oxide and other functionalized graphenes are amphiphilic and may be seen as soft templates for formatting the growth or inducing the controlled assembly of nanostructures. In addition, nanospaces in restacked graphene can be used for confining the growth of sheet-like nanostructures, and assemblies of interlinked graphenes can behave either as skeletons for the formation of composite materials or as sacrificial templates for novel materials with a controlled network structure. In summary, flexible graphene and its derivatives together with an increasing number of assembled structures show great potentials as templates for materials production. Many challenges remain, for example precise structural control of such novel templates and the removal of the non-functional remaining templates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Computer-Aided Template for Model Reuse, Development and Maintenance

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2014-01-01

    A template-based approach for model development is presented in this work. Based on a model decomposition technique, the computer-aided template concept has been developed. This concept is implemented as a software tool , which provides a user-friendly interface for following the workflow steps...

  19. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  20. BPFlexTemplate: A Business Process template generation tool based on similarity and flexibility

    Directory of Open Access Journals (Sweden)

    Latifa Ilahi

    2017-01-01

    Full Text Available In large organizations with multiple organizational units, process variants emerge due to many aspects, including local management policies, resources or socio-technical limitations. Organizations then struggle to improve a business process which has no longer a single process model to redesign, implement and adjust. In this paper, we propose an approach to tackle these two challenges: decrease the proliferation of process variants in these organizations, and foresee, at the same time, the need of having flexible business processes that allow for a certain degree of adjustment. To validate our approach, we first conducted case studies where we collected six real-world business process variants from two organizational units of the same healthcare organization. We then proposed an algorithm to derive a template process model from all the variants, which includes common and flexible process elements. We implemented our approach in a software tool called BPFlexTemplate, and tested it with the elicited variants.

  1. Fabrication of novel micro-nano carbonous composites based on self-made hollow activated carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kong Yuxia; Qiu Tingting [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Qiu Jun, E-mail: qiujun@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials of Education of Ministry, Shanghai 201804 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Hollow pipe and porous HACF with solid carbon net framework structure were successfully prepared by template method. Black-Right-Pointing-Pointer CNTs were grown successfully on the self-made HACF substrate by CVD techniques. Black-Right-Pointing-Pointer A novel tree-like micro-nano carbonous structure CNTs/HACF was fabricated. Black-Right-Pointing-Pointer The formation mechanism of micro phase HACF and nano phase CNTs were respectively discussed. - Abstract: The hollow activated carbon fibers (HACF) were prepared by using commercial polypropylene hollow fiber (PPHF) as the template, and phenol-formaldehyde resin (PF) as carbon precursors. Final HACF was formed through the thermal decomposition and carbonization of PF at 700 Degree-Sign C under the nitrogen atmosphere, and activation at 800 Degree-Sign C with carbon dioxide as the activating agent, consecutively. Then, carbon nanotubes (CNTs) were grown by chemical vapor deposition (CVD) techniques using the as-grown porous HACF as substrate. The growth process was achieved by pyrolyzing ethanol steam at 700 Degree-Sign C using nickel as catalyst. Finally, CNTs was grown successfully on the substrate, and a novel tree-like micro-nano carbonous structure CNTs/HACF was fabricated. The as-grown HACF and micro-nano CNTs/HACF were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG), respectively. Moreover, the formation mechanisms were also discussed.

  2. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  3. Development of a Quartz Crystal Microbalance Sensor Modified by Nano-Structured Polyaniline for Detecting the Plasticizer in Gaseous State

    Directory of Open Access Journals (Sweden)

    Hui XU

    2014-01-01

    Full Text Available A quartz crystal microbalance (QCM modified by a film of nano-structured polyaniline (nano-PANI is developed as a gas sensor for detecting the presence of the plasticizer, such as dibutyl phthalate (DBP in the ambient. Nano-PANI is prepared using a non-template method and the films are deposited using physical coating method. Scanning electron microscopy is used to characterize the nano-PANI film. The sensor response towards DBP is tested in a sealed gas chamber. The QCM resonant frequency shift is measured due to the absorption of DBP with different concentration ranging from 0.04 to 1.2 ppm. The experiment results show that the variation of the frequency is a linear function of DBP concentration and the sensitivity up to 54 Hz/ppm could be achieved by using the researched nano-PANI on QCM. To investigate the selectivity, the potential interfering analytes such as acetone, ethanol, acetaldehyde and formaldehyde are tested. And the mechanism hypothesis of the nano-PANI sensitive to the plasticizer is analyzed.

  4. Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine.

    Directory of Open Access Journals (Sweden)

    Utut Widyastuti Suharsono

    2008-11-01

    Full Text Available Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine. M. affine can grow well in acid soil with high level of soluble aluminum. One of the important proteins in the detoxifying xenobiotic stress including acid and Al stresses is a multidrug resistance associated protein (MRP encoded by mrp gene. The objective of this research is to isolate and clone the cDNA fragment of MaMrp encoding MRP from M. affine. By reverse transcription, total cDNA had been synthesized from the total RNA as template. The fragment of cDNA MaMrp had been successfully isolated by PCR by using total cDNA as template and mrp primer designed from A. thaliana, yeast, and human. This fragment was successfully inserted into pGEM-T Easy and the recombinant plasmid was successfully introduced into E. coli DH5α. Nucleotide sequence analysis showed that the lenght of MaMrp fragment is 633 bp encoding 208 amino acids. Local alignment analysis based on nucleotide of mRNA showed that MaMrp fragment is 69% identical to AtMrp1 and 63% to AtMrp from A. thaliana. Based on deduced amino acid sequence, MaMRP is 84% identical to part of AtMRP13, 77% to AtMRP12, and 73% to AtMRP1 from A. thaliana respectively. Alignment analysis with AtMRP1 showed that MaMRP fragment is located in TM1 and NBF1 domains and has a specific amino acid sequence QCKAQLQNMEEE.

  5. Accuracy of templating the acetabular cup size in Total Hip Replacement using conventional acetate templates on digital radiographs.

    Science.gov (United States)

    Krishnamoorthy, Vignesh P; Perumal, Rajamani; Daniel, Alfred J; Poonnoose, Pradeep M

    2015-12-01

    Templating of the acetabular cup size in Total Hip Replacement (THR) is normally done using conventional radiographs. As these are being replaced by digital radiographs, it has become essential to create a technique of templating using digital films. We describe a technique that involves templating the digital films using the universally available acetate templates for THR without the use of special software. Preoperative digital radiographs of the pelvis were taken with a 30 mm diameter spherical metal ball strapped over the greater trochanter. Using standard acetate templates provided by the implant company on magnified digital radiographs, the size of the metal ball (X mm) and acetabular cup (Y mm) were determined. The size of the acetabular cup to be implanted was estimated using the formula 30*Y/X. The estimated size was compared with the actual size of the cup used at surgery. Using this technique, it was possible to accurately predict the acetabular cup size in 28/40 (70%) of the hips. When the accuracy to within one size was considered, templating was correct in 90% (36/40). When assessed by two independent observers, there was good intra-observer and inter-observer reliability with intra-class correlation coefficient values greater than 0.8. It was possible to accurately and reliably predict the size of the acetabular cup, using acetate templates on digital films, without any digital templates.

  6. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang; Furtlehner, Cyril; Germain-Renaud, Cecile; Sebag, Michele

    2014-01-01

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  7. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang

    2014-07-09

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  8. Self-affinity and nonextensivity of sunspots

    International Nuclear Information System (INIS)

    Moret, M.A.

    2014-01-01

    In this paper we study the time series of sunspots by using two different approaches, analyzing its self-affine behavior and studying its distribution. The long-range correlation exponent α has been calculated via Detrended Fluctuation Analysis and the power law vanishes to values greater than 11 years. On the other hand, the distribution of the sunspots obeys a q-exponential decay that suggests a non-extensive behavior. This observed characteristic seems to take an alternative interpretation of the sunspots dynamics. The present findings suggest us to propose a dynamic model of sunspots formation based on a nonlinear Fokker–Planck equation. Therefore its dynamic process follows the generalized thermostatistical formalism.

  9. The Nano-filters as the tools for the management of the water imbalance in the human society

    Science.gov (United States)

    Singh, R. P.; Kontar, V.

    2011-12-01

    The imbalance of water in the human society there is some situation where the water demand is not equivalent to the water supply. We are talking now about the shortage of some clear water which suitable for human use, animals, plants, technologies etc. There are existing some various imbalances of water in the human society, but about this will be other publications. The humanity has have the millennial experience of the water imbalance management. The novelty of the matter is the new nano-materials which offer a lot of the new principles more effective management of the water imbalance in the human society. The nano-materials have typical pore size 0.001 micron (1 nano-meter). There are some metal-containing nano-particles, CNTs, fullerene, graphene, zeolites and dendrimers etc, The nano-materials have unique physicochemical properties due to their large surface areas, size and shape-dependent optical, electronic, and catalytic properties that make them very useful for separation components some various stuff and water also. They have ability to functionalize with various chemical groups to increase their affinity toward a desired compound. The silver nano-wires have established a variety of applications, including transparent conductive electrodes for solar cells and optoelectronic. The salt of silver i.e. bulk silver shows photo-catalytic properties. The gold decorated silver nano-wires film may clean the organic molecule while irradiated with either commercial bulb or sun light. The mat (membrane) papers of nano-wires may clean up spilled oil at sea and organic pollutants in water. Arsenic-poisoned drinking water is a global problem, affecting people in Asia, Africa, North America, South America and Europe. Tiny bits of iron oxide that are smaller than living cells known as nanorust, which naturally binds with arsenic, could be used as a low-cost means of removing arsenic from water. Nano-tea bag purifies water on a small scale. The sachets are made up from the

  10. Template polymerization of N-vinylimidazole along poly(methacrylic acid) in water

    NARCIS (Netherlands)

    Grampel, Hendrik Theodorus van de

    1990-01-01

    Template polymerisaties zijn polymerisaties waarbij radicalen gedurende het grootste gedeelte van hun bestaan langs het template polymeer groeien. In het algemeen kan de template invloed hebben op de polymerisatiesnelheid, als ook op het molecuulgewicht en de tacticiteit van het bijgevormde

  11. Nano-tubular cellulose for bioprocess technology development.

    Science.gov (United States)

    Koutinas, Athanasios A; Sypsas, Vasilios; Kandylis, Panagiotis; Michelis, Andreas; Bekatorou, Argyro; Kourkoutas, Yiannis; Kordulis, Christos; Lycourghiotis, Alexis; Banat, Ibrahim M; Nigam, Poonam; Marchant, Roger; Giannouli, Myrsini; Yianoulis, Panagiotis

    2012-01-01

    Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC) justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation). The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator). Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  12. Nano-tubular cellulose for bioprocess technology development.

    Directory of Open Access Journals (Sweden)

    Athanasios A Koutinas

    Full Text Available Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation. The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator. Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  13. Animated pose templates for modeling and detecting human actions.

    Science.gov (United States)

    Yao, Benjamin Z; Nie, Bruce X; Liu, Zicheng; Zhu, Song-Chun

    2014-03-01

    This paper presents animated pose templates (APTs) for detecting short-term, long-term, and contextual actions from cluttered scenes in videos. Each pose template consists of two components: 1) a shape template with deformable parts represented in an And-node whose appearances are represented by the Histogram of Oriented Gradient (HOG) features, and 2) a motion template specifying the motion of the parts by the Histogram of Optical-Flows (HOF) features. A shape template may have more than one motion template represented by an Or-node. Therefore, each action is defined as a mixture (Or-node) of pose templates in an And-Or tree structure. While this pose template is suitable for detecting short-term action snippets in two to five frames, we extend it in two ways: 1) For long-term actions, we animate the pose templates by adding temporal constraints in a Hidden Markov Model (HMM), and 2) for contextual actions, we treat contextual objects as additional parts of the pose templates and add constraints that encode spatial correlations between parts. To train the model, we manually annotate part locations on several keyframes of each video and cluster them into pose templates using EM. This leaves the unknown parameters for our learning algorithm in two groups: 1) latent variables for the unannotated frames including pose-IDs and part locations, 2) model parameters shared by all training samples such as weights for HOG and HOF features, canonical part locations of each pose, coefficients penalizing pose-transition and part-deformation. To learn these parameters, we introduce a semi-supervised structural SVM algorithm that iterates between two steps: 1) learning (updating) model parameters using labeled data by solving a structural SVM optimization, and 2) imputing missing variables (i.e., detecting actions on unlabeled frames) with parameters learned from the previous step and progressively accepting high-score frames as newly labeled examples. This algorithm belongs to a

  14. Multiprocessor Real-Time Scheduling with Hierarchical Processor Affinities

    OpenAIRE

    Bonifaci , Vincenzo; Brandenburg , Björn; D'Angelo , Gianlorenzo; Marchetti-Spaccamela , Alberto

    2016-01-01

    International audience; Many multiprocessor real-time operating systems offer the possibility to restrict the migrations of any task to a specified subset of processors by setting affinity masks. A notion of " strong arbitrary processor affinity scheduling " (strong APA scheduling) has been proposed; this notion avoids schedulability losses due to overly simple implementations of processor affinities. Due to potential overheads, strong APA has not been implemented so far in a real-time operat...

  15. Optimization of Nano-Carbon Materials for Hydrogen Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Yakobson, Boris I [Rice University

    2013-08-02

    Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures of high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.

  16. Preparation and Characterization of Lecithin-Nano Ni/Fe for Effective Removal of PCB77

    OpenAIRE

    Shu Ding; Lin Zhao; Yun Qi; Qian-qian Lv

    2014-01-01

    A kind of combined material (named lecithin-nano Ni/Fe) that is composed of lecithin and nanoscale Ni/Fe bimetal was synthesized via microemulsion method. The efficacy of such an original material was tested using 3,3′,4,4′-tetrachlorobiphenyl (PCB77) as target pollutant. A microemulsion system was optimized as template to prepare Ni/Fe nanoparticles, which was followed by an insite loading process with the deposition of lecithin carrier. It was proved by the characterization that subtle Ni/F...

  17. Carbon nanotube based 3-D matrix for enabling three-dimensional nano-magneto-electronics [corrected].

    Directory of Open Access Journals (Sweden)

    Jeongmin Hong

    Full Text Available This letter describes the use of vertically aligned carbon nanotubes (CNT-based arrays with estimated 2-nm thick cobalt (Co nanoparticles deposited inside individual tubes to unravel the possibility of using the unique templates for ultra-high-density low-energy 3-D nano-magneto-electronic devices. The presence of oriented 2-nm thick Co layers within individual nanotubes in the CNT-based 3-D matrix is confirmed through VSM measurements as well as an energy-dispersive X-ray spectroscopy (EDS.

  18. Self-Assembly of Large-Scale Shape-Controlled DNA Nano-Structures

    Science.gov (United States)

    2014-12-16

    for single-molecule imaging. Nano Lett. 11, 657-660 (2011). 46. Dang, X. N. et at. Virus -templated self-assembled single-walled carbon nanotubes for...email: alik(a)rics.bwh.harvard edu). NATURE C0,M.MUN! CAT !0N5 14:2275 I DOI: 10.1038/ncomm53275 | wwwnature.com/naturecommunications 1 @ 2013 Macmillan...prevent non-specific binding between hydrogel and microtube, the inside surface of microtube was treated with a corona treater (BD-20AC from Electro

  19. Semiconductor nanowires and templates for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Xiang

    2009-07-15

    This thesis starts by developing a platform for the organized growth of nanowires directly on a planar substrate. For this, a method to fabricate horizontal porous alumina membranes is studied. The second part of the thesis focuses on the study of nanowires. It starts by the understanding of the growth mechanisms of germanium nanowires and follows by the structural and electrical properties at the single nanowire level. Horizontally aligned porous anodic alumina (PAA) was used as a template for the nanowire synthesis. Three PAA arrangements were studied: - high density membranes - micron-sized fingers - multi-contacts Membranes formed by a high density of nanopores were obtained by anodizing aluminum thin films. Metallic and semiconducting nanowires were synthesized into the PAA structures via DC deposition, pulsed electro-depostion and CVD growth. The presence of gold, copper, indium, nickel, tellurium, and silicon nanowires inside PAA templates was verified by SEM and EDX analysis. Further, room-temperature transport measurements showed that the pores are completely filled till the bottom of the pores. In this dissertation, single crystalline and core-shell germanium nanowires are synthesized using indium and bismuth as catalyst in a chemical vapor deposition procedure with germane (GeH{sub 4}) as growth precursor. A systematic growth study has been performed to obtain high aspect-ratio germanium nanowires. The influence of the growth conditions on the final morphology and the crystalline structure has been determined via scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). In the case of indium catalyzed germanium nanowires, two different structures were identified: single crystalline and crystalline core-amorphous shell. The preferential growth axis of both kinds of nanowires is along the [110] direction. The occurrence of the two morphologies was found to only depend on the nanowire dimension. In the case of bismuth

  20. Functional Nano fibers: Production and Applications

    International Nuclear Information System (INIS)

    Khatri, Z.; Kim, I.S.; Kim, S.H.

    2016-01-01

    Nano fibers are lighter material with higher surface area in comparison to polymeric film. The ease of producing functional nano fiber is another advantage over many nano materials. Functional nano fiber in particular has attained a greater interest in recent years. The applications of functional nano fibers are increasing in various technical fields such as water filter membranes, tissue engineering, biosensors, drug delivery systems, wound dressings, catalysis, antibacterial. This special issue is comprised of well-selective articles that discuss production of functional nano fibers their applications in different emerging fields. M. Zhang et al. have presented exciting work on drug delivery using nano fibers. They used collagen that was extracted from abandoned Rana chensinensis skin in northeastern China via an acid enzymatic extraction method. They demonstrated two different nano fiber-vancomycin (VCM) systems, that is, VCM blended nano fibers and core-shell nano fibers with VCM in the core, and both systems sustained control release for a period of 80 hours. Another work was presented by R. Takai et al. on blood purification using composite nano fibers. About 10% of the population worldwide is affected by chronic kidney disease (CKD). The authors developed nano fiber meshes zeolite-polymer composite nano fibers for efficient adsorption of creatinine, which is a simpler and more accessible method for hemodialysis (HD) patients.

  1. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons

    International Nuclear Information System (INIS)

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Quaresima, Claudio; Cricenti, Antonio; Olivieri, Bruno; Dávila, Maria E; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-01

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  2. MOCVD epitaxy of InAlN on different templates

    International Nuclear Information System (INIS)

    Yun Lijun; Wei Tongbo; Yan Jianchang; Liu Zhe; Wang Junxi; Li Jinmin

    2011-01-01

    InAlN epilayers were grown on high quality GaN and AlN templates with the same growth parameters. Measurement results showed that two samples had the same In content of ∼ 16%, while the crystal quality and surface topography of the InAlN epilayer grown on the AlN template, with 282.3 (002) full width at half maximum (FWHM) of rocking curve, 313.5 (102) FWHM, surface roughness of 0.39 nm and V-pit density of 2.8 x 10 8 cm -2 , were better than that of the InAlN epilayer grown on the GaN template, 309.3, 339.1, 0.593 nm and 4.2 x 10 8 cm -2 . A primary conclusion was proposed that both the crystal quality and the surface topography of the InAlN epilayer grown on the AlN template were better than that of the InAlN epilayer grown on the GaN template. Therefore, the AlN template was a better choice than the GaN template for getting high quality InAlN epilayers. (semiconductor materials)

  3. Multimodal biometric approach for cancelable face template generation

    Science.gov (United States)

    Paul, Padma Polash; Gavrilova, Marina

    2012-06-01

    Due to the rapid growth of biometric technology, template protection becomes crucial to secure integrity of the biometric security system and prevent unauthorized access. Cancelable biometrics is emerging as one of the best solutions to secure the biometric identification and verification system. We present a novel technique for robust cancelable template generation algorithm that takes advantage of the multimodal biometric using feature level fusion. Feature level fusion of different facial features is applied to generate the cancelable template. A proposed algorithm based on the multi-fold random projection and fuzzy communication scheme is used for this purpose. In cancelable template generation, one of the main difficulties is keeping interclass variance of the feature. We have found that interclass variations of the features that are lost during multi fold random projection can be recovered using fusion of different feature subsets and projecting in a new feature domain. Applying the multimodal technique in feature level, we enhance the interclass variability hence improving the performance of the system. We have tested the system for classifier fusion for different feature subset and different cancelable template fusion. Experiments have shown that cancelable template improves the performance of the biometric system compared with the original template.

  4. Nano dots and nano crystals detectors applications and questions

    International Nuclear Information System (INIS)

    Paltiel, Y.; Shusterman, S.; Naaman, R.; Aqua, T.; Banin, U.; Aharoni, A.

    2006-01-01

    Full Text: Nano technology is in the center of attention in the last decade. In our work we are using nano dots, nano crystals and quantum wells to study and fabricate infrared devices. In this study we aim to develop an accurate narrow band infrared sensor that will use quantum mechanics at room temperature. The sensor is based on a FET like structure, in which the current is very sensitive to potential changes on its surface. We have shown that this configuration provides flexibility and variability in operation bandgap and response. However, the relations between the quantum and the macroscopic world are not trivial and the coupling between worlds influences the transport, noise, and optical measurements. In this talk we will show some of the infrared devices we are studying, and try to present the rich physics and relations that combine between the two worlds

  5. Durable diamond-like carbon templates for UV nanoimprint lithography

    International Nuclear Information System (INIS)

    Tao, L; Ramachandran, S; Nelson, C T; Overzet, L J; Goeckner, M; Lee, G; Hu, W; Lin, M; Willson, C G; Wu, W

    2008-01-01

    The interaction between resist and template during the separation process after nanoimprint lithography (NIL) can cause the formation of defects and damage to the templates and resist patterns. To alleviate these problems, fluorinated self-assembled monolayers (F-SAMs, i.e. tridecafluoro-1,1,2,2,tetrahydrooctyl trichlorosilane or FDTS) have been employed as template release coatings. However, we find that the FDTS coating undergoes irreversible degradation after only 10 cycles of UV nanoimprint processes with SU-8 resist. The degradation includes a 28% reduction in surface F atoms and significant increases in the surface roughness. In this paper, diamond-like carbon (DLC) films were investigated as an alternative material not only for coating but also for direct fabrication of nanoimprint templates. DLC films deposited on quartz templates in a plasma enhanced chemical vapor deposition system are shown to have better chemical and physical stability than FDTS. After the same 10 cycles of UV nanoimprints, the surface composition as well as the roughness of DLC films were found to be unchanged. The adhesion energy between the DLC surface and SU-8 is found to be smaller than that of FDTS despite the slightly higher total surface energy of DLC. DLC templates with 40 nm features were fabricated using e-beam lithography followed by Cr lift-off and reactive ion etching. UV nanoimprinting using the directly patterned DLC templates in SU-8 resist demonstrates good pattern transfer fidelity and easy template-resist separation. These results indicate that DLC is a promising material for fabricating durable templates for UV nanoimprint lithography

  6. Metrology at the nano scale

    International Nuclear Information System (INIS)

    Sheridan, B.; Cumpson, P.; Bailey, M.

    2006-01-01

    Progress in nano technology relies on ever more accurate measurements of quantities such as distance, force and current industry has long depended on accurate measurement. In the 19th century, for example, the performance of steam engines was seriously limited by inaccurately made components, a situation that was transformed by Henry Maudsley's screw micrometer calliper. And early in the 20th century, the development of telegraphy relied on improved standards of electrical resistance. Before this, each country had its own standards and cross border communication was difficult. The same is true today of nano technology if it is to be fully exploited by industry. Principles of measurement that work well at the macroscopic level often become completely unworkable at the nano metre scale - about 100 nm and below. Imaging, for example, is not possible on this scale using optical microscopes, and it is virtually impossible to weigh a nano metre-scale object with any accuracy. In addition to needing more accurate measurements, nano technology also often requires a greater variety of measurements than conventional technology. For example, standard techniques used to make microchips generally need accurate length measurements, but the manufacture of electronics at the molecular scale requires magnetic, electrical, mechanical and chemical measurements as well. (U.K.)

  7. Templates for Cross-Cultural and Culturally Specific Usability Testing

    DEFF Research Database (Denmark)

    Clemmensen, Torkil

    2011-01-01

    The cultural diversity of users of technology challenges our methods for usability testing. This article suggests templates for cross-culturally and culturally specific usability testing, based on studies of usability testing in companies in Mumbai, Beijing, and Copenhagen. Study 1 was a cross...... tests. The result was the construction of templates for usability testing. The culturally specific templates were in Mumbai “user-centered evaluation,” Copenhagen “client-centered evaluation,” and Beijing “evaluator-centered evaluation.” The findings are compared with related research...

  8. Improved dielectric functions in metallic films obtained via template stripping

    Science.gov (United States)

    Hyuk Park, Jong; Nagpal, Prashant; Oh, Sang-Hyun; Norris, David J.

    2012-02-01

    We compare the dielectric functions of silver interfaces obtained via thermal evaporation with those obtained with template stripping. Ellipsometry measurements show that the smoother template-stripped surfaces exhibit effective dielectric functions with a more negative real component and a smaller imaginary component, implying higher conductivity and less energy loss, respectively. These results agree with the relation between dielectric function and surface roughness derived from combining the effective-medium model and the Drude-Lorentz model. The improvement in the effective dielectric properties shows that metallic films prepared via template stripping can be favorable for applications in electronics, nanophotonics, and plasmonics.

  9. POROUS MEMBRANE TEMPLATED SYNTHESIS OF POLYMER PILLARED LAYER

    Institute of Scientific and Technical Information of China (English)

    Zhong-wei Niu; Dan Li; Zhen-zhong Yang

    2003-01-01

    The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates to synthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and the layer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm the methodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.

  10. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  11. Synthetic opal as a template for nanostructured materials

    Science.gov (United States)

    White, Paul A.; Heales, Lindsey; Barber, Richard L.; Turney, Terence W.

    2001-04-01

    Synthetic opal has been used as a template for making 3D inverse opals of silica, titania and silicone rubber. The materials are mesoporous with connected pores and channels and have better opalescence than the opal templates they replace. Thin films of synthetic opal have been grown onto glass substrates by spin coating and these have also been used as templates for making thin films of inverse opal and as masks for depositing metal nanodots. This method produced hexagonally patterned 50 nm gold dots on a flat graphite substrate.

  12. Conformal Symmetry as a Template for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2004-08-04

    Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.

  13. Template-assisted fabrication of protein nanocapsules

    International Nuclear Information System (INIS)

    Dougherty, Shelley A.; Liang Jianyu; Kowalik, Timothy F.

    2009-01-01

    Bionanomaterials have recently begun to spark a great amount of interest and could potentially revolutionize biomedical research. Nanoparticles, nanocapsules, and nanotubular structures are becoming attractive options in drug and gene delivery. The size of the delivery vehicles greatly impacts cellular uptake and makes it highly desirable to precisely control the diameter and length of nanocarriers to make uniform nanoparticles at low cost. Carbon nanotubes have shown great potential within the field of drug and gene delivery. However, their insolubility and cytotoxicity could severely delay FDA approval. A desirable alternative would be to fabricate nanostructures from biomaterials such as proteins, peptides, or liposomes, which are already FDA approved. In this article we demonstrate the preparation of protein nanocapsules with both ends sealed using a template-assisted alternate immersion method combined with controlled cleaving. Glucose oxidase nanocapsules with controllable diameter, wall thickness, and length were fabricated and characterized with SEM and TEM. The biochemical activity of glucose oxidase in the form of nanocapsules after processing was confirmed using UV spectrometry. Our future work will explore proteins suitable for drug encapsulation and cellular uptake and will focus on optimizing the cleaving process to gain precise control over the length of the nanocapsules.

  14. Template-assisted fabrication of protein nanocapsules

    Science.gov (United States)

    Dougherty, Shelley A.; Liang, Jianyu; Kowalik, Timothy F.

    2009-02-01

    Bionanomaterials have recently begun to spark a great amount of interest and could potentially revolutionize biomedical research. Nanoparticles, nanocapsules, and nanotubular structures are becoming attractive options in drug and gene delivery. The size of the delivery vehicles greatly impacts cellular uptake and makes it highly desirable to precisely control the diameter and length of nanocarriers to make uniform nanoparticles at low cost. Carbon nanotubes have shown great potential within the field of drug and gene delivery. However, their insolubility and cytotoxicity could severely delay FDA approval. A desirable alternative would be to fabricate nanostructures from biomaterials such as proteins, peptides, or liposomes, which are already FDA approved. In this article we demonstrate the preparation of protein nanocapsules with both ends sealed using a template-assisted alternate immersion method combined with controlled cleaving. Glucose oxidase nanocapsules with controllable diameter, wall thickness, and length were fabricated and characterized with SEM and TEM. The biochemical activity of glucose oxidase in the form of nanocapsules after processing was confirmed using UV spectrometry. Our future work will explore proteins suitable for drug encapsulation and cellular uptake and will focus on optimizing the cleaving process to gain precise control over the length of the nanocapsules.

  15. Cancelable remote quantum fingerprint templates protection scheme

    International Nuclear Information System (INIS)

    Liao Qin; Guo Ying; Huang Duan

    2017-01-01

    With the increasing popularity of fingerprint identification technology, its security and privacy have been paid much attention. Only the security and privacy of biological information are insured, the biological technology can be better accepted and used by the public. In this paper, we propose a novel quantum bit (qbit)-based scheme to solve the security and privacy problem existing in the traditional fingerprint identification system. By exploiting the properties of quantm mechanics, our proposed scheme, cancelable remote quantum fingerprint templates protection scheme, can achieve the unconditional security guaranteed in an information-theoretical sense. Moreover, this novel quantum scheme can invalidate most of the attacks aimed at the fingerprint identification system. In addition, the proposed scheme is applicable to the requirement of remote communication with no need to worry about its security and privacy during the transmission. This is an absolute advantage when comparing with other traditional methods. Security analysis shows that the proposed scheme can effectively ensure the communication security and the privacy of users’ information for the fingerprint identification. (paper)

  16. Conformal Symmetry as a Template for QCD

    International Nuclear Information System (INIS)

    Brodsky, S

    2004-01-01

    Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero β function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as τ decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized

  17. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.

    Science.gov (United States)

    Yañez, Fernando; Chianella, Iva; Piletsky, Sergey A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2010-02-05

    This work has focused on the rational development of polymers capable of acting as traps of bile salts. Computational modeling was combined with molecular imprinting technology to obtain networks with high affinity for cholate salts in aqueous medium. The screening of a virtual library of 18 monomers, which are commonly used for imprinted networks, identified N-(3-aminopropyl)-methacrylate hydrochloride (APMA.HCl), N,N-diethylamino ethyl methacrylate (DEAEM) and ethyleneglycol methacrylate phosphate (EGMP) as suitable functional monomers with medium-to-high affinity for cholic acid. The polymers were prepared with a fix cholic acid:functional monomer mole ratio of 1:4, but with various cross-linking densities. Compared to polymers prepared without functional monomer, both imprinted and non-imprinted microparticles showed a high capability to remove sodium cholate from aqueous medium. High affinity APMA-based particles even resembled the performance of commercially available cholesterol-lowering granules. The imprinting effect was evident in most of the networks prepared, showing that computational modeling and molecular imprinting can act synergistically to improve the performance of certain polymers. Nevertheless, both the imprinted and non-imprinted networks prepared with the best monomer (APMA.HCl) identified by the modeling demonstrated such high affinity for the template that the imprinting effect was less important. The fitting of adsorption isotherms to the Freundlich model indicated that, in general, imprinting increases the population of high affinity binding sites, except when the affinity of the functional monomer for the target molecule is already very high. The cross-linking density was confirmed as a key parameter that determines the accessibility of the binding points to sodium cholate. Materials prepared with 9% mol APMA and 91% mol cross-linker showed enough affinity to achieve binding levels of up to 0.4 mmol g(-1) (i.e., 170 mg g(-1)) under flow

  18. Nano structures for Medical Diagnostics Md

    International Nuclear Information System (INIS)

    Bellah, M.; Iqbal, S.M.; Bellah, M.; Iqbal, S.M.; Christensen, S.M.; Iqbal, S.M.; Iqbal, S.M.

    2012-01-01

    Nano technology is the art of manipulating materials on atomic or molecular scales especially to build nano scale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, structures, devices, and systems by controlling shape and size at nanometer scale. In the last few years, much work has been focused on the use of nano structures toward problems of biology and medicine. In this paper, we focus on the application of various nano structures and nano devices in clinical diagnostics and detection of important biological molecules. The discussion starts by introducing some basic techniques of micro-/nano scale fabrication that have enabled reproducible production of nano structures. The prospects, benefits, and limitations of using these novel techniques in the fields of bio detection and medical diagnostics are then discussed. Finally, the challenges of mass production and acceptance of nano technology by the medical community are considered.

  19. Green chemistry by nano-catalysis

    KAUST Repository

    Polshettiwar, Vivek; Varma, Rajender S.

    2010-01-01

    the homogeneous catalysts. This review focuses on the use of nano-catalysis for green chemistry development including the strategy of using microwave heating with nano-catalysis in benign aqueous reaction media which offers an extraordinary synergistic effect

  20. Novel Nano-Composite Catalysts for Renewable Energy Storage Applications

    Science.gov (United States)

    Devaguptapu, Surya Vamsi

    Spinel NiCo2O4 catalysts are considered the promising precious metal-free catalyst for oxygen reactions. Significant efforts are mainly explore optimal chemical doping and substituent to tune its electronic structures for enhanced performance. Here, we focuses on morphology control and determine the morphology-dependent activity for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In particular, three types of spinel NiCo2O4 were prepared using temple-free, SiO 2 hard template, and Pluronic-123 soft template hydrothermal methods, showing significantly different morphologies, respectively. In particular, template-free method yield dense structures. Sold-template method assists the formation of porous and hollow structures. Importantly, the soft template is effective to prepare a unique nanoflower morphology containing abundant rose petal (needle) like structures. The effect of the utilization of templates, both soft and hard as well as a template free synthesis on the morphology as well as the activity and stability of the final catalyst is investigated. Compared to others, the nanoflower-like NiCo2O4 exhibited the highest bifunctional catalytic activity simultaneously for ORR and OER, likely due to the facile absorption of oxygen molecules on increased surface areas with efficient mass transfer. The nanoflower NiCo2O 4 also exhibited an onset and half-wave potentials of 0.94 and 0.82 V for the ORR in alkaline media. Although it is still inferior to state of the art Pt, the new type of spinel NiCo2O4 catalyst represents the best activity compared to reported carbon-free oxides. Meanwhile, OER activity and stability were achieved with an onset potential of 1.48 V generating a current density of 14 mA/cm2 at 1.6 V. The OER activity does not declined after 10,000 potential cycles demonstrating excellent stability, which is superior to the benchmark of Ir for the OER. This work provides an effective solution to enhance catalytic activity

  1. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Y., E-mail: maekawa.yasunari@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Quantum Beam Science Directorate, High Performance Polymer Group, 1233 Watanuki-Machi, Takasaki, Gunma-ken 370-1292 (Japan)

    2010-07-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  2. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    International Nuclear Information System (INIS)

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  3. Dimensional micro and nano metrology

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; da Costa Carneiro, Kim; Haitjema, Han

    2006-01-01

    The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer these chal......The need for dimensional micro and nano metrology is evident, and as critical dimensions are scaled down and geometrical complexity of objects is increased, the available technologies appear not sufficient. Major research and development efforts have to be undertaken in order to answer...... these challenges. The developments have to include new measuring principles and instrumentation, tolerancing rules and procedures as well as traceability and calibration. The current paper describes issues and challenges in dimensional micro and nano metrology by reviewing typical measurement tasks and available...

  4. Nano market and analysis of technology

    International Nuclear Information System (INIS)

    2001-10-01

    This book gives descriptions of summary of nano technology with meaning, character and field, trend of technical development in domestic, current condition of nano basic research in domestic, trend of technical development in foreign country such as summary, trend of technology by industrial field, machine and metronics, material and process, standard of nano mechanism, scale of market and trend, competitiveness of nano technology of major country and research development system in Japan, Korean company and major countries.

  5. Cambrian trilobites with Siberian affinities, southwestern Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.R.; Egbert, R.M.; Sullivan, R.; Knoth, J.S.

    1985-02-01

    Cambrian trilobites occur in two levels (about 7 m apart) in the core of a large, complex anticlinal structure in the area between the Taylor Mountains and the Hoholitna River in southwestern Alaska. The lower collection contains Erbia, Macannaia (a species close to Soviet forms described as Pagetia ferox Lermontova), two species of Kootenia (including one perhaps cospecific with forms from the central Brooks range), and several species of ptychoparioid trilobites. It is clear that biogeographic affinities are with the transitional facies of the eastern Siberian platform and the south Siberian foldbelt. In Soviet terms, the age of the collection falls in a disputed interval called latest Early Cambrian (Tojonian) by some authors, and earliest Middle Cambrian (Amgan) by others. In North American terms, Macannaia is known only from early Middle Cambrian beds. The younger collection contains abundant agnostids, a variety of conocoryphids, Paradoxides, and several species of ptychoparioid trilobites. This is an assemblage of undoubted late Middle Cambrian age, comparable to faunas described from the Maya State of the Siberian platform and the Paradoxides paradoxissimus Stage of the Baltic region. Both faunas are from ocean-facing or outer shelf environments. None of the key non-agnostid or non-pagetiid elements have been seen previously in deposits of Cambrian North America.

  6. Set-Membership Proportionate Affine Projection Algorithms

    Directory of Open Access Journals (Sweden)

    Stefan Werner

    2007-01-01

    Full Text Available Proportionate adaptive filters can improve the convergence speed for the identification of sparse systems as compared to their conventional counterparts. In this paper, the idea of proportionate adaptation is combined with the framework of set-membership filtering (SMF in an attempt to derive novel computationally efficient algorithms. The resulting algorithms attain an attractive faster converge for both situations of sparse and dispersive channels while decreasing the average computational complexity due to the data discerning feature of the SMF approach. In addition, we propose a rule that allows us to automatically adjust the number of past data pairs employed in the update. This leads to a set-membership proportionate affine projection algorithm (SM-PAPA having a variable data-reuse factor allowing a significant reduction in the overall complexity when compared with a fixed data-reuse factor. Reduced-complexity implementations of the proposed algorithms are also considered that reduce the dimensions of the matrix inversions involved in the update. Simulations show good results in terms of reduced number of updates, speed of convergence, and final mean-squared error.

  7. [Separation of osteoclasts by lectin affinity chromatography].

    Science.gov (United States)

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  8. Affine connection form of Regge calculus

    Science.gov (United States)

    Khatsymovsky, V. M.

    2016-12-01

    Regge action is represented analogously to how the Palatini action for general relativity (GR) as some functional of the metric and a general connection as independent variables represents the Einstein-Hilbert action. The piecewise flat (or simplicial) spacetime of Regge calculus is equipped with some world coordinates and some piecewise affine metric which is completely defined by the set of edge lengths and the world coordinates of the vertices. The conjugate variables are the general nondegenerate matrices on the three-simplices which play the role of a general discrete connection. Our previous result on some representation of the Regge calculus action in terms of the local Euclidean (Minkowsky) frame vectors and orthogonal connection matrices as independent variables is somewhat modified for the considered case of the general linear group GL(4, R) of the connection matrices. As a result, we have some action invariant w.r.t. arbitrary change of coordinates of the vertices (and related GL(4, R) transformations in the four-simplices). Excluding GL(4, R) connection from this action via the equations of motion we have exactly the Regge action for the considered spacetime.

  9. Affinity of serum apolipoproteins for lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.

    1987-01-01

    The effects of lipid composition and packing as well as the structure of the protein on the affinities of apolipoproteins for lipid monolayers have been investigated. The adsorption of 14 C-reductively methylated human apolipoproteins A-I and A-II at saturating subphase concentrations to monolayers prepared with synthetic lipids or lipoprotein surface lipids spread at various initial surface pressures has been studied. The adsorption of apolipoproteins is monitored by following the surface radioactivity using a gas flow counter and Wilhelmy plate, respectively. The physical states of the lipid monolayers are evaluated by measurement of the surface pressure-molecular area isotherms using a Langmuir-Adam surface balance. The probable helical regions in various apolipoproteins have been predicted using a secondary structure analysis computer program. The mean residue hydrophobicity and mean residue hydrophobic moment for the predicted helical segments have been calculated. The surface properties of synthetic peptides which are amphipathic helix analogs have been investigated at the air-water and lipid-water interfaces

  10. Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links

    Directory of Open Access Journals (Sweden)

    Abolmaali SS

    2014-06-01

    Full Text Available Samira Sadat Abolmaali,1 Ali Tamaddon,1,2 Gholamhossein Yousefi,1,2 Katayoun Javidnia,3 Rasoul Dinarvand41Department of Pharmaceutics, Shiraz School of Pharmacy, 2Center for Nanotechnology in Drug Delivery, 3Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 4Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG and Zn2+ were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn2+, and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX, approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 µM. The

  11. Fundamental Issues of Nano-fluid Behavior

    International Nuclear Information System (INIS)

    Williams, Wesley C.

    2006-01-01

    This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)

  12. Single Molecule Nano-Metronome

    OpenAIRE

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2006-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule ...

  13. Single Molecule Nano-Metronome

    Science.gov (United States)

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2008-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule sensor of minute sequence differences of a target DNA. PMID:16522050

  14. Preparation of nano-biomaterials with Leptolyngbia foveolarum and heavy metal biosorption by free and immobilized algal cells

    International Nuclear Information System (INIS)

    Toncheva-Panova, T.; Pouneva, I.; Sholeva, M.; Chernev, G.

    2010-01-01

    Using the sol-gel procedure nano-biomaterials with incorporation of Leptolyngbia foveolarum in the silica matrix were manufactured. The immobilization of algal cells was confirmed with Scanning Electron Microscopy (SEM) investigations and photos. Observation of nano-biomaterials with Atomic Force Microscopy (AFM) shows nanostructure with well-defined nanounits and their aggregates. The potential of the Antarctic isolate L. foveolarum for sorption of Cu 2+ and Cd 2+ was studied by incubation of free algal cells and those immobilized in nano-biomaterials in the salts solutions of the two heavy metals. The rest of the heavy metal was determined with inductively coupled plasma atomic emission spectrometer (ICP-AES). It was established that the heavy metal biosorption capacity demonstrated by the free Leptolyngbia cells was retained after their incorporation in the nano-matrices. Free cells as well as embedded in silica nano-matrix sequestered the two heavy metals with greater affinity for copper. The highest binding capacity, 76% of the initial Cu 2+ concentration possessed nano-biomaterials with incorporated vegetative L. foveolarum cells, compared to 68% of free cells. For cadmium the degree of biosorption was lower - 35% by free cells and 30.2% by those incorporated in the biocer. (authors)

  15. Theoretical determination of proton affinity differences in zeolites

    NARCIS (Netherlands)

    Kramer, G.J.; Santen, van R.A.

    1993-01-01

    An important factor in zeolite catalysis is the proton affinity, i.e., the energy required to remove a proton from the zeolite lattice. Differences in proton affinity are expected to influence the catalytic activity of acid sites, making the catalytically active sites inhomogeneous (within one

  16. Capillary electrophoresis-based assessment of nanobody affinity and purity

    NARCIS (Netherlands)

    Haselberg, Rob; Oliveira, Sabrina; van der Meel, Roy; Somsen, Govert W; de Jong, Gerhardus J

    2014-01-01

    Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced "nanobody" EGa1, the binding fragment of a

  17. Generalized Warburg impedance on realistic self-affine fractals ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals.

  18. Polynomial Primal-Dual Cone Affine Scaling for Semidefinite Programming

    NARCIS (Netherlands)

    A.B. Berkelaar (Arjan); J.F. Sturm; S. Zhang (Shuzhong)

    1996-01-01

    textabstractIn this paper we generalize the primal--dual cone affine scaling algorithm of Sturm and Zhang to semidefinite programming. We show in this paper that the underlying ideas of the cone affine scaling algorithm can be naturely applied to semidefinite programming, resulting in a new

  19. Affine group formulation of the Standard Model coupled to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China); Ita, Eyo, E-mail: ita@usna.edu [Department of Physics, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  20. Fermionic construction of vertex operators for twisted affine algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Sorba, P.; Sciarrino, A.

    1988-03-01

    We construct vertex operator representations of the twisted affine algebras in terms of fermionic (or parafermionic in some cases) elementary fields. The folding method applied to the extended Dynkin diagrams of the affine algebras allows us to determine explicitly these fermionic fields as vertex operators

  1. Generalized Warburg impedance on realistic self-affine fractals

    Indian Academy of Sciences (India)

    We analyse the problem of impedance for a diffusion controlled charge transfer process across an irregular interface. These interfacial irregularities are characterized as two class of random fractals: (i) a statistically isotropic self-affine fractals and (ii) a statistically corrugated self-affine fractals. The information about the ...

  2. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    African Journals Online (AJOL)

    Pseudo-affinity chromatography of rumen microbial cellulase on Sepharose- Cibacron Blue F3GA. ... African Journal of Biotechnology ... Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of ...

  3. Self-affine roughness influence on redox reaction charge admittance

    NARCIS (Netherlands)

    Palasantzas, G

    2005-01-01

    In this work we investigate the influence of self-affine electrode roughness on the admittance of redox reactions during facile charge transfer kinetics. The self-affine roughness is characterized by the rms roughness amplitude w, the correlation length xi and the roughness exponent H (0

  4. Affine Toda equations and solutions in the homogeneous grading

    Czech Academy of Sciences Publication Activity Database

    Zuevsky, Alexander

    2018-01-01

    Roč. 542, April 1 (2018), s. 149-161 ISSN 0024-3795 Institutional support: RVO:67985840 Keywords : affine Lie gebras * affine Toda modes * solitons Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.973, year: 2016 https://www.sciencedirect.com/science/article/pii/S0024379517302100

  5. Online identification of continuous bimodal and trimodal piecewise affine systems

    NARCIS (Netherlands)

    Le, Q.T.; van den Boom, A.J.J.; Baldi, S.; Rantzer, Anders; Bagterp Jørgensen, John; Stoustrup, Jakob

    2016-01-01

    This paper investigates the identification of continuous piecewise affine systems in state space form with jointly unknown partition and subsystem matrices. The partition of the system is generated by the so-called centers. By representing continuous piecewise affine systems in the max-form and

  6. Finger multibiometric cryptosystems: fusion strategy and template security

    Science.gov (United States)

    Peng, Jialiang; Li, Qiong; Abd El-Latif, Ahmed A.; Niu, Xiamu

    2014-03-01

    We address two critical issues in the design of a finger multibiometric system, i.e., fusion strategy and template security. First, three fusion strategies (feature-level, score-level, and decision-level fusions) with the corresponding template protection technique are proposed as the finger multibiometric cryptosystems to protect multiple finger biometric templates of fingerprint, finger vein, finger knuckle print, and finger shape modalities. Second, we theoretically analyze different fusion strategies for finger multibiometric cryptosystems with respect to their impact on security and recognition accuracy. Finally, the performance of finger multibiometric cryptosystems at different fusion levels is investigated on a merged finger multimodal biometric database. The comparative results suggest that the proposed finger multibiometric cryptosystem at feature-level fusion outperforms other approaches in terms of verification performance and template security.

  7. View-Invariant Gait Recognition Through Genetic Template Segmentation

    Science.gov (United States)

    Isaac, Ebenezer R. H. P.; Elias, Susan; Rajagopalan, Srinivasan; Easwarakumar, K. S.

    2017-08-01

    Template-based model-free approach provides by far the most successful solution to the gait recognition problem in literature. Recent work discusses how isolating the head and leg portion of the template increase the performance of a gait recognition system making it robust against covariates like clothing and carrying conditions. However, most involve a manual definition of the boundaries. The method we propose, the genetic template segmentation (GTS), employs the genetic algorithm to automate the boundary selection process. This method was tested on the GEI, GEnI and AEI templates. GEI seems to exhibit the best result when segmented with our approach. Experimental results depict that our approach significantly outperforms the existing implementations of view-invariant gait recognition.

  8. Creation of structured documentation templates using Natural Language Processing techniques.

    Science.gov (United States)

    Kashyap, Vipul; Turchin, Alexander; Morin, Laura; Chang, Frank; Li, Qi; Hongsermeier, Tonya

    2006-01-01

    Structured Clinical Documentation is a fundamental component of the healthcare enterprise, linking both clinical (e.g., electronic health record, clinical decision support) and administrative functions (e.g., evaluation and management coding, billing). One of the challenges in creating good quality documentation templates has been the inability to address specialized clinical disciplines and adapt to local clinical practices. A one-size-fits-all approach leads to poor adoption and inefficiencies in the documentation process. On the other hand, the cost associated with manual generation of documentation templates is significant. Consequently there is a need for at least partial automation of the template generation process. We propose an approach and methodology for the creation of structured documentation templates for diabetes using Natural Language Processing (NLP).

  9. Generating XML schemas for DICOM structured reporting templates.

    Science.gov (United States)

    Zhao, Luyin; Lee, Kwok Pun; Hu, Jingkun

    2005-01-01

    In this paper, the authors describe a methodology to transform programmatically structured reporting (SR) templates defined by the Digital Imaging and Communications for Medicine (DICOM) standard into an XML schema representation. Such schemas can be used in the creation and validation of XML-encoded SR documents that use templates. Templates are a means to put additional constraints on an SR document to promote common formats for specific reporting applications or domains. As the use of templates becomes more widespread in the production of SR documents, it is important to ensure validity of such documents. The work described in this paper is an extension of the authors' previous work on XML schema representation for DICOM SR. Therefore, this paper inherits and partially modifies the structure defined in the earlier work.

  10. Template matching techniques in computer vision theory and practice

    CERN Document Server

    Brunelli, Roberto

    2009-01-01

    The detection and recognition of objects in images is a key research topic in the computer vision community.  Within this area, face recognition and interpretation has attracted increasing attention owing to the possibility of unveiling human perception mechanisms, and for the development of practical biometric systems. This book and the accompanying website, focus on template matching, a subset of object recognition techniques of wide applicability, which has proved to be particularly effective for face recognition applications. Using examples from face processing tasks throughout the book to illustrate more general object recognition approaches, Roberto Brunelli: examines the basics of digital image formation, highlighting points critical to the task of template matching;presents basic and  advanced template matching techniques, targeting grey-level images, shapes and point sets;discusses recent pattern classification paradigms from a template matching perspective;illustrates the development of a real fac...

  11. Three-dimensional metallic opals fabricated by double templating

    International Nuclear Information System (INIS)

    Yan Qingfeng; Nukala, Pavan; Chiang, Yet-Ming; Wong, C.C.

    2009-01-01

    We report a simple and cost-effective double templating method for fabricating large-area three-dimensional metallic photonic crystals of controlled thickness. A self-assembled polystyrene opal was used as the first template to fabricate a silica inverse opal on a gold-coated glass substrate via sol-gel processing. Gold was subsequently infiltrated to the pores of the silica inverse opal using electrochemical deposition. A high-quality three-dimensional gold photonic crystal was obtained after removal of the secondary template (silica inverse opal). The effects of template sphere size and deposition current density on the gold growth rate, and the resulting morphology and growth mechanism of the gold opal, were investigated.

  12. GPP Webinar: Solar Procurement Templates and Tools for Higher Education

    Science.gov (United States)

    Green Power Partnership webinar on solar procurement for Higher Education which features various tools and templates that schools can use to shape and manage the solar procurement process to a successful outcome.

  13. Surfactant-assisted sacrificial template-mediated synthesis

    Indian Academy of Sciences (India)

    ... spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopyand photoluminescence studies. Influence of surfactant and solvents on morphology and luminescence of the final product in sacrificial template-assisted method has been investigated in detail.

  14. Excel Template For Processing Examination Results For Higher

    African Journals Online (AJOL)

    Department of Mathematical Sciences, Faculty of Science, Kaduna State University, Kaduna, Nigeria. ... examination result processing template for all the Postgraduate ... Though the last two parameters of the IF function are optional,.

  15. Fumigant Management Plan Templates - Phase 2 Files Listed by Chemical

    Science.gov (United States)

    FMP templates are in PDF and Word formats for each type of soil fumigant pesticide, with samples of filled out plans. Types are by active ingredient chemical: Chloropicrin, dazomet, dimethyl disulfide, metam sodium/potassium, and methyl bromide.

  16. A Survey On Various Web Template Detection And Extraction Methods

    Directory of Open Access Journals (Sweden)

    Neethu Mary Varghese

    2015-03-01

    Full Text Available Abstract In todays digital world reliance on the World Wide Web as a source of information is extensive. Users increasingly rely on web based search engines to provide accurate search results on a wide range of topics that interest them. The search engines in turn parse the vast repository of web pages searching for relevant information. However majority of web portals are designed using web templates which are designed to provide consistent look and feel to end users. The presence of these templates however can influence search results leading to inaccurate results being delivered to the users. Therefore to improve the accuracy and reliability of search results identification and removal of web templates from the actual content is essential. A wide range of approaches are commonly employed to achieve this and this paper focuses on the study of the various approaches of template detection and extraction that can be applied across homogenous as well as heterogeneous web pages.

  17. Laparotomy operative note template constructed through a modified Delphi method.

    Science.gov (United States)

    Moore, Lolonya; Churley-Strom, Ruth; Singal, Bonita; O'Leary, Sharon

    2009-05-01

    An operative note is indispensable to physician documentation and decision-making; however, there are no accepted standards for operative note content. Our aim was to use a modified Delphi consensus-building method to construct a uniform operative note template for laparotomy. Using Joint Commission on Accreditation of Healthcare Organizations requirements, literature review, and feedback from 15 medical malpractice defense attorneys, we compiled a draft operative note template of 31 elements. We surveyed 37 Association of Professor of Gynecology and Obstetrics/Solvay scholars asking for their input on inclusion of each item as essential content of the operative note. Two iterations of the survey were required to reach a predetermined 75% level of consensus. Nine elements were eliminated from the template: 6 original and 3 expert-suggested elements. We provide an operative note template that was compiled through a Delphi process.

  18. Synthesis of Porous Carbon Monoliths Using Hard Templates.

    Science.gov (United States)

    Klepel, Olaf; Danneberg, Nina; Dräger, Matti; Erlitz, Marcel; Taubert, Michael

    2016-03-21

    The preparation of porous carbon monoliths with a defined shape via template-assisted routes is reported. Monoliths made from porous concrete and zeolite were each used as the template. The porous concrete-derived carbon monoliths exhibited high gravimetric specific surface areas up to 2000 m²·g -1 . The pore system comprised macro-, meso-, and micropores. These pores were hierarchically arranged. The pore system was created by the complex interplay of the actions of both the template and the activating agent as well. On the other hand, zeolite-made template shapes allowed for the preparation of microporous carbon monoliths with a high volumetric specific surface area. This feature could be beneficial if carbon monoliths must be integrated into technical systems under space-limited conditions.

  19. Classical and Nonclassical Estrogen Receptor Action on Chromatin Templates

    National Research Council Canada - National Science Library

    Nordeen, Steven

    2000-01-01

    .... Using newly-developed approaches, I investigated mechanisms of estrogen/estrogen receptor action on chromatin templates in vitro in order to better understand the role of chromatin in steroid-regulated gene expression...

  20. Improving your target-template alignment with MODalign.

    KAUST Repository

    Barbato, Alessandro

    2012-02-04

    SUMMARY: MODalign is an interactive web-based tool aimed at helping protein structure modelers to inspect and manually modify the alignment between the sequences of a target protein and of its template(s). It interactively computes, displays and, upon modification of the target-template alignment, updates the multiple sequence alignments of the two protein families, their conservation score, secondary structure and solvent accessibility values, and local quality scores of the implied three-dimensional model(s). Although it has been designed to simplify the target-template alignment step in modeling, it is suitable for all cases where a sequence alignment needs to be inspected in the context of other biological information. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://modorama.biocomputing.it/modalign. Website implemented in HTML and JavaScript with all major browsers supported. CONTACT: jan.kosinski@uniroma1.it.