WorldWideScience

Sample records for nakagami-m fading channel

  1. On the capacity of nakagami-m fading Channels with full channel state information at low SNR

    KAUST Repository

    Rezki, Zouheir

    2012-06-01

    The capacity of flat Rayleigh fading channels with full channel state information (CSI) at the transmitter and at the receiver at asymptotically low SNR has been recently shown to scale essentially as SNR log(1/SNR)}. In this paper, we investigate the Nakagami-m fading channel capacity with full CSI, and show that the capacity of this channel scales essentially as m/ Omega SNR log(1/SNR), where m is the Nakagami-m fading parameter and where Ω is the channel mean-square. We also show that one-bit CSI at the transmitter is enough to achieve this asymptotic capacity using an On-Off power control scheme. Our framework may be seen as a generalization of previous works as it captures the Rayleigh fading channel as a special case by taking m=1. © 2012 IEEE.

  2. Asymptotic analysis for Nakagami-m fading channels with relay selection

    KAUST Repository

    Zhong, Caijun; Wong, Kaikit; Jin, Shi; Alouini, Mohamed-Slim; Ratnarajah, Tharm

    2011-01-01

    In this paper, we analyze the asymptotic outage probability performance of both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems using partial relay selection and the "best" relay selection schemes for Nakagami-m fading channels

  3. Efficient Cooperative Protocols for Full-Duplex Relaying over Nakagami-m Fading Channels

    KAUST Repository

    Khafagy, Mohammad Galal

    2015-02-24

    In this work, efficient protocols are studied for full-duplex relaying (FDR) with loopback interference over Nakagami-m block fading channels. Recently, a selective decodeand- forward (DF) protocol was proposed for FDR, and was shown to outperform existing protocols in terms of outage over Rayleigh-fading channels. In this work, we propose an incremental selective DF protocol that offers additional power savings, yet yields the same outage performance. We evaluate their outage performance over independent non-identically distributed Nakagami-m fading links, and study their relative performance in terms of the signal-to-noise ratio cumulative distribution function via closed-form expressions. The offered diversity gain is also derived. In addition, we study their performance relative to their half-duplex counterparts, as well as known non-selective FDR protocols. We corroborate our theoretical results with simulation, and confirm that selective cooperation protocols outperform the known non-selective protocols in terms of outage. Finally, we show that depending on the loopback interference level, the proposed protocols can outperform their half-duplex counterparts when high spectral efficiencies are targeted.

  4. Efficient Cooperative Protocols for Full-Duplex Relaying over Nakagami-m Fading Channels

    KAUST Repository

    Khafagy, Mohammad Galal; Tammam, Amr; Alouini, Mohamed-Slim; Aissa, Sonia

    2015-01-01

    In this work, efficient protocols are studied for full-duplex relaying (FDR) with loopback interference over Nakagami-m block fading channels. Recently, a selective decodeand- forward (DF) protocol was proposed for FDR, and was shown to outperform existing protocols in terms of outage over Rayleigh-fading channels. In this work, we propose an incremental selective DF protocol that offers additional power savings, yet yields the same outage performance. We evaluate their outage performance over independent non-identically distributed Nakagami-m fading links, and study their relative performance in terms of the signal-to-noise ratio cumulative distribution function via closed-form expressions. The offered diversity gain is also derived. In addition, we study their performance relative to their half-duplex counterparts, as well as known non-selective FDR protocols. We corroborate our theoretical results with simulation, and confirm that selective cooperation protocols outperform the known non-selective protocols in terms of outage. Finally, we show that depending on the loopback interference level, the proposed protocols can outperform their half-duplex counterparts when high spectral efficiencies are targeted.

  5. Exact Performance Analysis of Dual-Hop Semi-Blind AF Relaying over Arbitrary Nakagami-m Fading Channels

    KAUST Repository

    Xia, Minghua

    2011-10-01

    Relay transmission is promising for future wireless systems due to its significant cooperative diversity gain. The performance of dual-hop semi-blind amplify-and-forward (AF) relaying systems was extensively investigated, for transmissions over Rayleigh fading channels or Nakagami- fading channels with integer fading parameter. For the general Nakagami- fading with arbitrary values, the exact closed-form system performance analysis is more challenging. In this paper, we explicitly derive the moment generation function (MGF), probability density function (PDF) and moments of the end-to-end signal-to-noise ratio (SNR) over arbitrary Nakagami- fading channels with semi-blind AF relay. With these results, the system performance evaluation in terms of outage probability, average symbol error probability, ergodic capacity and diversity order, is conducted. The analysis developed in this paper applies to any semi-blind AF relaying systems with fixed relay gain, and two major strategies for computing the relay gain are compared in terms of system performance. All analytical results are corroborated by simulation results and they are shown to be efficient tools to evaluate system performance.

  6. Exact Performance Analysis of Dual-Hop Semi-Blind AF Relaying over Arbitrary Nakagami-m Fading Channels

    KAUST Repository

    Xia, Minghua; Xing, Chengwen; Wu, Yik-Chung; Aissa, Sonia

    2011-01-01

    Relay transmission is promising for future wireless systems due to its significant cooperative diversity gain. The performance of dual-hop semi-blind amplify-and-forward (AF) relaying systems was extensively investigated, for transmissions over Rayleigh fading channels or Nakagami-𝑚 fading channels with integer fading parameter. For the general Nakagami-𝑚 fading with arbitrary 𝑚 values, the exact closed-form system performance analysis is more challenging. In this paper, we explicitly derive the moment generation function (MGF), probability density function (PDF) and moments of the end-to-end signal-to-noise ratio (SNR) over arbitrary Nakagami-𝑚 fading channels with semi-blind AF relay. With these results, the system performance evaluation in terms of outage probability, average symbol error probability, ergodic capacity and diversity order, is conducted. The analysis developed in this paper applies to any semi-blind AF relaying systems with fixed relay gain, and two major strategies for computing the relay gain are compared in terms of system performance. All analytical results are corroborated by simulation results and they are shown to be efficient tools to evaluate system performance.

  7. Product of the powers of generalized Nakagami-m variates and performance of cascaded fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2009-11-01

    In this paper, we analyze the fading statistics of a generic fading distribution, termed the N-product Generalized Nakagami-m (GNM) distribution (N*GNM distribution), constructed as the product of the power of N statistically independent and non-identically distributed GNM random variables, for the purpose of modeling the cascaded fading channels. In particular, using the Fox\\'s H function, we derive the probability density function, the cumulative distribution function, the moment generating function and the moments of such channels in closed-form. These derived results are a convenient tool to statistically model the cascaded GNM fading channels and to analyze the performance of digital communication systems over these kinds of channels. As such, generic closed-form expressions for the amount of fading, the outage probability, the capacity, the outage capacity and the average bit error probabilities of digital communications systems over cascaded GNM fading channels are presented. Numerical and simulation results, performed to verify the correctness of the proposed formulation, are in perfect agreement.

  8. Symbol Error Probability of DF Relay Selection over Arbitrary Nakagami-m Fading Channels

    Directory of Open Access Journals (Sweden)

    George C. Alexandropoulos

    2013-01-01

    Full Text Available We present a new analytical expression for the moment generating function (MGF of the end-to-end signal-to-noise ratio of dual-hop decode-and-forward (DF relaying systems with relay selection when operating over Nakagami-m fading channels. The derived MGF expression, which is valid for arbitrary values of the fading parameters of both hops, is subsequently utilized to evaluate the average symbol error probability (ASEP of M-ary phase shift keying modulation for the considered DF relaying scheme under various asymmetric fading conditions. It is shown that the MGF-based ASEP performance evaluation results are in excellent agreement with equivalent ones obtained by means of computer simulations, thus validating the correctness of the presented MGF expression.

  9. Exact Outage Probability of Dual-Hop CSI-Assisted AF Relaying Over Nakagami-m Fading Channels

    KAUST Repository

    Xia, Minghua

    2012-10-01

    In this correspondence, considering dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying over Nakagami- m fading channels, the cumulative distribution function (CDF) of the end-to-end signal-to-noise ratio (SNR) is derived. In particular, when the fading shape factors m1 and m2 at consecutive hops take non-integer values, the bivariate H-function and G -function are exploited to obtain an exact analytical expression for the CDF. The obtained CDF is then applied to evaluate the outage performance of the system under study. The analytical results of outage probability coincide exactly with Monte-Carlo simulation results and outperform the previously reported upper bounds in the low and medium SNR regions.

  10. New Exact and Asymptotic Results of Dual-Branch MRC over Correlated Nakagami-m Fading Channels

    KAUST Repository

    Al-Quwaiee, Hessa

    2015-05-01

    We present in this paper a new performance analysis results of dual-branch maximal-ratio combining over correlated Nakagami-m fading channels with arbitrary fading parameter. In particular, we derive exact closed-form expressions of the outage probability, the average bit error rate, and the ergodic capacity in terms of the extended generalized bivariate Meijer G- function. Moreover, we also provide simple closed- form asymptotic expressions in the high signal-to- noise ratio regime of these three fundamental performance measures. © 2015 IEEE.

  11. New Exact and Asymptotic Results of Dual-Branch MRC over Correlated Nakagami-m Fading Channels

    KAUST Repository

    Al-Quwaiee, Hessa; Alouini, Mohamed-Slim

    2015-01-01

    We present in this paper a new performance analysis results of dual-branch maximal-ratio combining over correlated Nakagami-m fading channels with arbitrary fading parameter. In particular, we derive exact closed-form expressions of the outage probability, the average bit error rate, and the ergodic capacity in terms of the extended generalized bivariate Meijer G- function. Moreover, we also provide simple closed- form asymptotic expressions in the high signal-to- noise ratio regime of these three fundamental performance measures. © 2015 IEEE.

  12. Analytical evaluation of adaptive-modulation-based opportunistic cognitive radio in nakagami-m fading channels

    KAUST Repository

    Chen, Yunfei; Alouini, Mohamed-Slim; Tang, Liang; Khan, Fahdahmed

    2012-01-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing, primary user (PU) traffic, and time delay for Nakagami- m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical examples are presented to quantify the effects of spectrum sensing, PU traffic, and time delay for different system parameters. © 1967-2012 IEEE.

  13. Analytical evaluation of adaptive-modulation-based opportunistic cognitive radio in nakagami-m fading channels

    KAUST Repository

    Chen, Yunfei

    2012-09-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing, primary user (PU) traffic, and time delay for Nakagami- m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical examples are presented to quantify the effects of spectrum sensing, PU traffic, and time delay for different system parameters. © 1967-2012 IEEE.

  14. Outage performance of Decode-and-Forward partial selection in Nakagami-m fading channels

    KAUST Repository

    Benjillali, Mustapha

    2010-01-01

    In this paper, we investigate the outage performance of Decode-and-Forward with partial selection relaying in dualhop cooperative Nakagami-m fading links. The source, based on the unique knowledge of local first hop channel state information, selects the best relay to increase the chances of successful decoding and hence the possibility of cooperation when the direct link is also available. After deriving the exact distribution of the sum of two gamma variates with the same shape parameter, the outage probability of the system-with and without the direct link-is obtained in closed-form. We also derive the ε-outage capacity in different particular cases, and the obtained results- when the channel model is reduced to a Rayleigh fading-are either new or correspond to those previously obtained in other works. Simulation results confirm the accuracy of our analysis for a large selection of system and fading parameters. © 2009 IEEE.

  15. Consumption Factor Optimization for Multihop Relaying over Nakagami-m Fading channels

    KAUST Repository

    Randrianantenaina, Itsikiantsoa

    2015-10-06

    In this paper, the energy efficiency of multihop relaying over Nakagami-m fading channels is investigated. The “consumption factor”, adopted as a metric to evaluate the energy efficiency, is derived for both amplify-and-forward and decodeand- forward relaying strategies. Then, based on the obtained expressions, we propose a power allocation strategy maximizing the consumption factor. In addition, a sub-optimal, low complexity, power allocation algorithm is proposed and analyzed, and the obtained power allocation scheme is compared in terms of energy efficiency to other power allocation schemes from the literature. Analytical and simulation results confirm the accuracy of our derivations, and assess the performance gains of the proposed approach.

  16. Consumption Factor Optimization for Multihop Relaying over Nakagami-m Fading channels

    KAUST Repository

    Randrianantenaina, Itsikiantsoa; Benjillali, Mustapha; Alouini, Mohamed-Slim

    2015-01-01

    In this paper, the energy efficiency of multihop relaying over Nakagami-m fading channels is investigated. The “consumption factor”, adopted as a metric to evaluate the energy efficiency, is derived for both amplify-and-forward and decodeand- forward relaying strategies. Then, based on the obtained expressions, we propose a power allocation strategy maximizing the consumption factor. In addition, a sub-optimal, low complexity, power allocation algorithm is proposed and analyzed, and the obtained power allocation scheme is compared in terms of energy efficiency to other power allocation schemes from the literature. Analytical and simulation results confirm the accuracy of our derivations, and assess the performance gains of the proposed approach.

  17. Asymptotic analysis for Nakagami-m fading channels with relay selection

    KAUST Repository

    Zhong, Caijun

    2011-06-01

    In this paper, we analyze the asymptotic outage probability performance of both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems using partial relay selection and the "best" relay selection schemes for Nakagami-m fading channels. We derive their respective outage probability expressions in the asymptotic high signal-to-noise ratio (SNR) regime, from which the diversity order and coding gain are analyzed. In addition, we investigate the impact of power allocation between the source and relay terminals and derive the diversity-multiplexing tradeoff (DMT) for these relay selection systems. The theoretical findings suggest that partial relay selection can improve the diversity of the system and can achieve the same DMT as the "best" relay selection scheme under certain conditions. © 2011 IEEE.

  18. Full-Duplex Relaying with Improper Gaussian Signaling over Nakagami-m Fading Channels

    KAUST Repository

    Gaafar, Mohamed; Khafagy, Mohammad Galal; Amin, Osama; Schaefer, Rafael F.; Alouini, Mohamed-Slim

    2017-01-01

    We study the potential employment of improper Gaussian signaling (IGS) in full-duplex relaying (FDR) with non-negligible residual self-interference (RSI) under Nakagami- m fading. IGS is recently shown to outperform traditional proper Gaussian

  19. Cooperative Spectrum Sensing over Non-Identical Nakagami Fading Channels

    KAUST Repository

    Rao, Anlei

    2012-09-08

    Previous works in cooperative spectrum sensing assumed that the channels for sensing and reporting are independent identical distributed (i.i.d). A more practical and appropriate assumption, however, should be that the sensing channels and reporting channels are independent but not necessarily identically distributed (i.n.i.d). In this paper, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with energy fusion over i.n.i.d Nakagami fading channels. Selected numerical results show that cooperative spectrum sensing still gives considerably better performance results even over i.n.i.d fading channels.

  20. Adaptive Modulation with Best User Selection over Non-Identical Nakagami Fading Channels

    KAUST Repository

    Rao, Anlei

    2012-09-08

    In this paper, we analyze the performance of adaptive modulation with single-cell multiuser scheduling over independent but not identical distributed (i.n.i.d.) Nakagami fading channels. Closed-form expressions are derived for the average channel capacity, spectral efficiency, and bit-error-rate (BER) for both constant-power variable-rate and variable-power variable-rate uncoded M-ary quadrature amplitude modulation (M-QAM) schemes. We also study the impact of time delay on the average BER of adaptive M-QAM. Selected numerical results show that the multiuser diversity brings a considerably better performance even over i.n.i.d. fading environments.

  1. Distributed detection in UWB sensor networks under non-orthogonal Nakagami-m fading

    KAUST Repository

    Mehbodniya, Abolfazl; Bielefeld, Daniel; Aissa, Sonia; Mathar, Rudolf; Adachi, Fumiyuki

    2011-01-01

    . In this paper, we present an opportunistic power assignment strategy for distributed detection in parallel fusion WSNs, considering a Nakagami-m fading model for the communication channel and time-hopping (TH) UWB for the transmitter circuit of the sensor nodes

  2. Performance analysis of cognitive multihop relaying with m-QAM detect-and-forward in Nakagami-m fading channels

    KAUST Repository

    Benjillali, Mustapha; Hyadi, Amal; Da Costa, Daniel Benevides Da; Alouini, Mohamed-Slim

    2013-01-01

    In this work, we investigate the performance of cognitive multihop regenerative relaying systems in the "underlay" spectrum sharing scenario. The multiple relays perform "detect-and-forward" relaying strategy to convey a message with an order m quadrature amplitude modulation (m-QAM) from the source to the destination over independent but not necessarily identical Nakagami-m fading channels. We adopt a closed-form analysis framework based on univariate and bivariate Meijer G-functions to derive the end-to-end error performance (in terms of bit and symbol error rates), the outage probability, and the ergodic capacity. Various numerical examples are presented to illustrate the results with a large combination of system and fading parameters, and simulation results confirm the accuracy of our closed-form analysis. © 2013 IEEE.

  3. Performance analysis of cognitive multihop relaying with m-QAM detect-and-forward in Nakagami-m fading channels

    KAUST Repository

    Benjillali, Mustapha

    2013-09-01

    In this work, we investigate the performance of cognitive multihop regenerative relaying systems in the "underlay" spectrum sharing scenario. The multiple relays perform "detect-and-forward" relaying strategy to convey a message with an order m quadrature amplitude modulation (m-QAM) from the source to the destination over independent but not necessarily identical Nakagami-m fading channels. We adopt a closed-form analysis framework based on univariate and bivariate Meijer G-functions to derive the end-to-end error performance (in terms of bit and symbol error rates), the outage probability, and the ergodic capacity. Various numerical examples are presented to illustrate the results with a large combination of system and fading parameters, and simulation results confirm the accuracy of our closed-form analysis. © 2013 IEEE.

  4. A Unified Approach to the Analysis of Multicarrier DS-CDMA over Nakagami-$M$ Fading Channels

    OpenAIRE

    Yang, L-L.; Hanzo, L.

    2001-01-01

    A class of unified multicarrier DS-CDMA (MC DS-CDMA) schemes is defined and its performance is considered over multipath Nakagami-$M$ fading channels. The spacing between two adjacent subcarriers of the unified MC DS-CDMA scheme is a variable, allowing us to gain insight into the effects of the spacing on the bit error rate (BER) performance of MC DS-CDMA systems. This unified MC DS-CDMA scheme includes the subclasses of multitone DS-CDMA and orthogonal MC DS-CDMA as special cases. The optimu...

  5. BER EVALUATION OF LDPC CODES WITH GMSK IN NAKAGAMI FADING CHANNEL

    Directory of Open Access Journals (Sweden)

    Surbhi Sharma

    2010-06-01

    Full Text Available LDPC codes (Low Density Parity Check Codes have already proved its efficacy while showing its performance near to the Shannon limit. Channel coding schemes are spectrally inefficient as using an unfiltered binary data stream to modulate an RF carrier that will produce an RF spectrum of considerable bandwidth. Techniques have been developed to improve this bandwidth inefficiency or spectral efficiency, and ease detection. GMSK or Gaussian-filtered Minimum Shift Keying uses a Gaussian Filter of an appropriate bandwidth so as to make system spectrally efficient. A Nakagami model provides a better explanation to less and more severe conditions than the Rayleigh and Rician model and provide a better fit to the mobile communication channel data. In this paper we have demonstrated the performance of Low Density Parity Check codes with GMSK modulation (BT product=0.25 technique in Nakagami fading channel. In results it is shown that average bit error rate decreases as the ‘m’ parameter increases (Less fading.

  6. Analysis of D2D Communications over Gamma/Nakagami Fading Channels

    Directory of Open Access Journals (Sweden)

    Z. Hussain

    2018-04-01

    Full Text Available In this paper, we investigate the outage probability, channel capacity and symbol error rate (SER performance of device-to-device (D2D communication systems. The D2D communication system is affected by several co-channel interferers. Gamma fading channel is considered for the D2D communication system. The channel for the co-channel interference is assumed to be Nakagami faded. An expression for the probability density function (PDF of the signal-to-interference ratio (SIR is presented. The PDF is a function of distances between various devices in the D2D system, path-loss, channel fading conditions and signal powers. Based on the PDF expression, we present the expressions for the outage, channel capacity and SER. With the help of numerical results the performance of D2D communication system is discussed under various conditions of interference, path-loss and channel fading.

  7. Relay Selections for Security and Reliability in Mobile Communication Networks over Nakagami-m Fading Channels

    Directory of Open Access Journals (Sweden)

    Hongji Huang

    2017-01-01

    Full Text Available This paper studies the relay selection schemes in mobile communication system over Nakagami-m channel. To make efficient use of licensed spectrum, both single relay selection (SRS scheme and multirelays selection (MRS scheme over the Nakagami-m channel are proposed. Also, the intercept probability (IP and outage probability (OP of the proposed SRS and MRS for the communication links depending on realistic spectrum sensing are derived. Furthermore, this paper assesses the manifestation of conventional direct transmission scheme to compare with the proposed SRS and MRS ones based on the Nakagami-m channel, and the security-reliability trade-off (SRT performance of the proposed schemes and the conventional schemes is well investigated. Additionally, the SRT of the proposed SRS and MRS schemes is demonstrated better than that of direct transmission scheme over the Nakagami-m channel, which can protect the communication transmissions against eavesdropping attacks. Additionally, simulation results show that our proposed relay selection schemes achieve better SRT performance than that of conventional direct transmission over the Nakagami-m channel.

  8. Transmit power optimization for green multihop relaying over Nakagami-m fading channels

    KAUST Repository

    Randrianantenaina, Itsikiantsoa

    2014-03-01

    In this paper, we investigate the optimal transmit power strategy to maximize the energy efficiency of a multihop relaying network. Considering the communication between a source and a destination through multiple Amplify-and-Forward relays, we first give the expression of the total instantaneous system energy consumption. Then, we define the energy efficiency in our context and obtain its expression in closed-form when the communication is over Nakagami-m fading channels. The analysis yields to the derivation of a global transmit power strategy where each individual node is contributing to the end-to-end overall energy efficiency. Numercial results are presented to illustrate the analysis. Comparison with Monte Carlo simulation results confirms the accuracy of our derivations, and assesses the gains of the proposed power optimization strategy. © 2014 IEEE.

  9. Transmit power optimization for green multihop relaying over Nakagami-m fading channels

    KAUST Repository

    Randrianantenaina, Itsikiantsoa; Benjillali, Mustapha; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, we investigate the optimal transmit power strategy to maximize the energy efficiency of a multihop relaying network. Considering the communication between a source and a destination through multiple Amplify-and-Forward relays, we first give the expression of the total instantaneous system energy consumption. Then, we define the energy efficiency in our context and obtain its expression in closed-form when the communication is over Nakagami-m fading channels. The analysis yields to the derivation of a global transmit power strategy where each individual node is contributing to the end-to-end overall energy efficiency. Numercial results are presented to illustrate the analysis. Comparison with Monte Carlo simulation results confirms the accuracy of our derivations, and assesses the gains of the proposed power optimization strategy. © 2014 IEEE.

  10. Ergodic Capacity for the SIMO Nakagami- Channel

    Directory of Open Access Journals (Sweden)

    Vagenas EfstathiosD

    2009-01-01

    Full Text Available This paper presents closed-form expressions for the ergodic channel capacity of SIMO (single-input and multiple output wireless systems operating in a Nakagami- fading channel. As the performance of SIMO channel is closely related to the diversity combining techniques, we present closed-form expressions for the capacity of maximal ratio combining (MRC, equal gain combining (EGC, selection combining (SC, and switch and stay (SSC diversity systems operating in Nakagami- fading channels. Also, the ergodic capacity of a SIMO system in a Nakagami- fading channel without any diversity technique is derived. The latter scenario is further investigated for a large amount of receive antennas. Finally, numerical results are presented for illustration.

  11. On Secrecy Outage of Relay Selection in Underlay Cognitive Radio Networks over Nakagami-m Fading Channels

    KAUST Repository

    Lei, Hongjiang; Zhang, Huan; Ansari, Imran Shafique; Ren, Zhi; Pan, Gaofeng; Qaraqe, Khalid A.; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, the secrecy outage performance of an underlay cognitive decode-and-forward relay network over independent but not necessarily identical distributed (i.n.i.d) Nakagami-m fading channels is investigated, in which the secondary user transmitter communicates with the secondary destination via relays, and an eavesdropper attempts to overhear the information. Based on whether the channel state information (CSI) of the wiretap links is available or not, we analyze the secrecy outage performance with optimal relay selection (ORS) and suboptimal relay selection (SRS) schemes, and multiple relays combining scheme (MRC) scheme is considered for comparison purpose. The exact and asymptotic closed-form expressions for the secrecy outage probability with three different relay selection schemes are derived and verified by Monte-Carlo simulations. The numerical results illustrate that ORS scheme always outperforms SRS and MRC schemes, and SRS scheme is better than MRC scheme in the lower fading parameters scenario. Furthermore, through asymptotic analysis, we find that these three different schemes achieve the same secrecy diversity order, which is determined by the number of the relays, and the fading parameters of the links among the relays and the destination.

  12. On Secrecy Outage of Relay Selection in Underlay Cognitive Radio Networks over Nakagami-m Fading Channels

    KAUST Repository

    Lei, Hongjiang

    2017-10-02

    In this paper, the secrecy outage performance of an underlay cognitive decode-and-forward relay network over independent but not necessarily identical distributed (i.n.i.d) Nakagami-m fading channels is investigated, in which the secondary user transmitter communicates with the secondary destination via relays, and an eavesdropper attempts to overhear the information. Based on whether the channel state information (CSI) of the wiretap links is available or not, we analyze the secrecy outage performance with optimal relay selection (ORS) and suboptimal relay selection (SRS) schemes, and multiple relays combining scheme (MRC) scheme is considered for comparison purpose. The exact and asymptotic closed-form expressions for the secrecy outage probability with three different relay selection schemes are derived and verified by Monte-Carlo simulations. The numerical results illustrate that ORS scheme always outperforms SRS and MRC schemes, and SRS scheme is better than MRC scheme in the lower fading parameters scenario. Furthermore, through asymptotic analysis, we find that these three different schemes achieve the same secrecy diversity order, which is determined by the number of the relays, and the fading parameters of the links among the relays and the destination.

  13. Performance of DS-UWB in MB-OFDM and multi-user interference over Nakagami-m fading channels

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-01-18

    The mutual interference between the two ultra wideband (UWB) technologies, which use the same frequency spectrum, will be a matter of concern in the near future. In this context, we present a performance analysis of direct-sequence (DS) UWB communication in the presence of multiband orthogonal frequency division multiplexing (MB-OFDM) UWB interfering transmissions. The channel fading is modeled according to Nakagami-m distribution, and multi-user interference is taken into account. The DS-UWB system performance is evaluated in terms of bit error rate (BER). Specifically, using the characteristic function approach, an analytical expression for the average BER is derived conditioned on the channel impulse response. Numerical and simulation results are provided and compared for different coexistence scenarios. © 2011 John Wiley & Sons, Ltd.

  14. Cooperative AF Relaying in Spectrum-Sharing Systems: Performance Analysis under Average Interference Power Constraints and Nakagami-m Fading

    KAUST Repository

    Xia, Minghua; Aissa, Sonia

    2012-01-01

    the optimal end-to-end performance, the transmit powers of the secondary source and the relays are optimized with respect to average interference power constraints at primary users and Nakagami-$m$ fading parameters of interference channels (for mathematical

  15. On the Sum of Gamma Random Variates With Application to the Performance of Maximal Ratio Combining over Nakagami-m Fading Channels

    KAUST Repository

    Ansari, Imran Shafique

    2012-09-08

    The probability distribution function (PDF) and cumulative density function of the sum of L independent but not necessarily identically distributed gamma variates, applicable to maximal ratio combining receiver outputs or in other words applicable to the performance analysis of diversity combining receivers operating over Nakagami-m fading channels, is presented in closed form in terms of Meijer G-function and Fox H-bar-function for integer valued fading parameters and non-integer valued fading parameters, respectively. Further analysis, particularly on bit error rate via PDF-based approach, too is represented in closed form in terms of Meijer G-function and Fox H-bar-function for integer-order fading parameters, and extended Fox H-bar-function (H-hat) for non-integer-order fading parameters. The proposed results complement previous results that are either evolved in closed-form, or expressed in terms of infinite sums or higher order derivatives of the fading parameter m.

  16. On the Sum of Gamma Random Variates With Application to the Performance of Maximal Ratio Combining over Nakagami-m Fading Channels

    KAUST Repository

    Ansari, Imran Shafique; Yilmaz, Ferkan; Alouini, Mohamed-Slim; Kucur, Oguz

    2012-01-01

    The probability distribution function (PDF) and cumulative density function of the sum of L independent but not necessarily identically distributed gamma variates, applicable to maximal ratio combining receiver outputs or in other words applicable to the performance analysis of diversity combining receivers operating over Nakagami-m fading channels, is presented in closed form in terms of Meijer G-function and Fox H-bar-function for integer valued fading parameters and non-integer valued fading parameters, respectively. Further analysis, particularly on bit error rate via PDF-based approach, too is represented in closed form in terms of Meijer G-function and Fox H-bar-function for integer-order fading parameters, and extended Fox H-bar-function (H-hat) for non-integer-order fading parameters. The proposed results complement previous results that are either evolved in closed-form, or expressed in terms of infinite sums or higher order derivatives of the fading parameter m.

  17. Cooperative Cognitive Radio Systems over Nakagami-m Fading Channels

    KAUST Repository

    Hyadi, Amal

    2013-05-08

    This thesis aims to investigate the incorporation of cooperative techniques in cognitive radio networks over Nakagami-m fading channels. These last years, spectrum sharing mechanisms has gained a lot of interest in the wireless communication domain. Using cooperation in a cognitive set up make the use of spectrum much more efficient. Moreover, it helps to extend the coverage area of the cognitive network and also to reduce the transmitting power and, thus, the generated interference. In this work, we consider two particular scenarios for cooperative cognitive radio systems. The first scenario consider multihop regenerative relaying in an underlay cognitive set up. The cooperation is performed in the secondary system, in the presence of multiple primary users. Both interference power and peak power constraints are taking into account. Closed-form expressions for the statistical characteristics and multiple end- to-end performance metrics are derived. Different scenarios are presented to illustrate the obtained results and Monte Carlo simulations confirm the accuracy of our analytical derivations. In the second part of this work, we consider an overlay cognitive network with the spectrally efficient two-phase two-way relaying protocol. Two relay selection techniques, optimizing both the primary and the secondary communication, are presented. The overall outage performance is investigated and an optimal power allocation scheme, that ameliorate the outage performance of the system, is proposed. Numerical simulations are presented to illustrate and compare the obtained results.

  18. Distributed detection in UWB sensor networks under non-orthogonal Nakagami-m fading

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-09-01

    Several attractive features of ultra wideband (UWB) communications make it a good candidate for physical-layer of wireless sensor networks (WSN). These features include low power consumption, low complexity and low cost of implementation. In this paper, we present an opportunistic power assignment strategy for distributed detection in parallel fusion WSNs, considering a Nakagami-m fading model for the communication channel and time-hopping (TH) UWB for the transmitter circuit of the sensor nodes. In a parallel fusion WSN, local decisions are made by local sensors and transmitted through wireless channels to a fusion center. The fusion center processes the information and makes the final decision. Simulation results are provided for the global probability of detection error and relative performance gain to evaluate the efficiency of the proposed power assignment strategy in different fading environments. © 2011 IEEE.

  19. An Alternative Method to Compute the Bit Error Probability of Modulation Schemes Subject to Nakagami- Fading

    Directory of Open Access Journals (Sweden)

    Madeiro Francisco

    2010-01-01

    Full Text Available Abstract This paper presents an alternative method for determining exact expressions for the bit error probability (BEP of modulation schemes subject to Nakagami- fading. In this method, the Nakagami- fading channel is seen as an additive noise channel whose noise is modeled as the ratio between Gaussian and Nakagami- random variables. The method consists of using the cumulative density function of the resulting noise to obtain closed-form expressions for the BEP of modulation schemes subject to Nakagami- fading. In particular, the proposed method is used to obtain closed-form expressions for the BEP of -ary quadrature amplitude modulation ( -QAM, -ary pulse amplitude modulation ( -PAM, and rectangular quadrature amplitude modulation ( -QAM under Nakagami- fading. The main contribution of this paper is to show that this alternative method can be used to reduce the computational complexity for detecting signals in the presence of fading.

  20. Effective capacity of Nakagami-m fading channels with full channel state information in the low power regime

    KAUST Repository

    Benkhelifa, Fatma

    2013-09-01

    The effective capacity have been introduced by Wu and Neji as a link-layer model supporting statistical delay QoS requirements. In this paper, we propose to study the effective capacity of a Nakagami-m fading channel with full channel state information (CSI) at both the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime. We show that the effective capacity for any arbitrary but finite statistically delay Quality of Service (QoS) exponent θ, scales essentially as S NRlog(1/SNR) exactly as the ergodic capacity, independently of any QoS constraint. We also characterize the minimum energy required for reliable communication, and the wideband slope to show that our results are in agreement with results established recently by Gursoy et al. We also propose an on-off power control scheme that achieves the capacity asymptotically using only one bit CSI feedback at the transmitter. Finally, some numerical results are presented to show the accuracy of our asymptotic results. © 2013 IEEE.

  1. Multiuser Diversity with Adaptive Modulation in Non-Identically Distributed Nakagami Fading Environments

    KAUST Repository

    Rao, Anlei

    2012-09-08

    In this paper, we analyze the performance of adaptive modulation with single-cell multiuser scheduling over independent but not identical distributed (i.n.i.d.) Nakagami fading channels. Closed-form expressions are derived for the average channel capacity, spectral efficiency, and bit-error-rate (BER) for both constant-power variable-rate and variable-power variable-rate uncoded/coded M-ary quadrature amplitude modulation (M-QAM) schemes. We also study the impact of time delay on the average BER of adaptive M-QAM. Selected numerical results show that the multiuser diversity brings a considerably better performance even over i.n.i.d. fading environments.

  2. Outage performance of reactive cooperation in Nakagami-m fading channels

    KAUST Repository

    Benjillali, Mustapha

    2010-06-01

    In this paper, we investigate the outage performance of Decode-and-Forward with reactive relaying in dual-hop cooperetive Nakagaml-m fading links. The destination, based on the umque knowledge of local second hop channel state information, selects the best relay to increase the chances of cooperation when the direct link is also available. After deriving the exact distribution of the variables of interest, the outage probability of the system - with and without the direct link - is obtained in closed-form, and the ε-outage capacity is derived in the particular c.se wh.ere the channel model is reduced to a Rayleigh fading. Simulation results confirm the accuracy of our analysis for a large selection of system and fading parameters.

  3. Full-Duplex Relaying with Improper Gaussian Signaling over Nakagami-m Fading Channels

    KAUST Repository

    Gaafar, Mohamed

    2017-10-04

    We study the potential employment of improper Gaussian signaling (IGS) in full-duplex relaying (FDR) with non-negligible residual self-interference (RSI) under Nakagami- m fading. IGS is recently shown to outperform traditional proper Gaussian signaling (PGS) in several interference-limited settings. In this work, IGS is employed as an attempt to alleviate RSI. We use two performance metrics, namely, the outage probability and the ergodic rate. First, we provide upper and lower bounds for the system performance in terms of the relay transmit power and circularity coefficient, a measure of the signal impropriety. Then, we numerically optimize the relay signal parameters based only on the channel statistics to improve the system performance. Based on the analysis, IGS allows FDR to operate even with high RSI. The results show that IGS can leverage higher power budgets to enhance the performance, meanwhile it relieves RSI impact via tuning the signal impropriety. Interestingly, one-dimensional optimization of the circularity coefficient, with maximum relay power, offers a similar performance as the joint optimization, which reduces the optimization complexity. From a throughput standpoint, it is shown that IGS-FDR can outperform not only PGS-FDR, but also half-duplex relaying with/without maximum ratio combining over certain regions of the target source rate.

  4. Bit Error Rate Analysis for MC-CDMA Systems in Nakagami- Fading Channels

    Directory of Open Access Journals (Sweden)

    Li Zexian

    2004-01-01

    Full Text Available Multicarrier code division multiple access (MC-CDMA is a promising technique that combines orthogonal frequency division multiplexing (OFDM with CDMA. In this paper, based on an alternative expression for the -function, characteristic function and Gaussian approximation, we present a new practical technique for determining the bit error rate (BER of multiuser MC-CDMA systems in frequency-selective Nakagami- fading channels. The results are applicable to systems employing coherent demodulation with maximal ratio combining (MRC or equal gain combining (EGC. The analysis assumes that different subcarriers experience independent fading channels, which are not necessarily identically distributed. The final average BER is expressed in the form of a single finite range integral and an integrand composed of tabulated functions which can be easily computed numerically. The accuracy of the proposed approach is demonstrated with computer simulations.

  5. Error Probability of Binary and -ary Signals with Spatial Diversity in Nakagami- (Hoyt Fading Channels

    Directory of Open Access Journals (Sweden)

    Duong Trung Q

    2007-01-01

    Full Text Available We analyze the exact average symbol error probability (SEP of binary and -ary signals with spatial diversity in Nakagami- (Hoyt fading channels. The maximal-ratio combining and orthogonal space-time block coding are considered as diversity techniques for single-input multiple-output and multiple-input multiple-output systems, respectively. We obtain the average SEP in terms of the Lauricella multivariate hypergeometric function . The analysis is verified by comparing with Monte Carlo simulations and we further show that our general SEP expressions particularize to the previously known results for Rayleigh ( = 1 and single-input single-output (SISO Nakagami- cases.

  6. Energy Efficient and Performance Analysis of Multihop Wireless Communication Over Nakagami-m Fading Channel

    KAUST Repository

    Randrianantenaina, Itsikiantsoa

    2015-01-01

    In this work, the performance of multihop communication over Nakagami-m fading is investigated for both cases without and with diversity combining. Closed form expressions of the average ergodic capacity are derived for each of these cases. Then, an expression of the outage probability is obtained using the inverse of Laplace transform and the average bit error rate is bounded using the Moment-Generating-Function approach. The energy efficiency is analyzed using the "consumption factor" as a metric, and it is derived in closed-form. And based on the obtained expressions, we propose a power allocation strategy maximizing this consumption factor.

  7. Outage performance of reactive cooperation in Nakagami-m fading channels

    KAUST Repository

    Benjillali, Mustapha; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we investigate the outage performance of Decode-and-Forward with reactive relaying in dual-hop cooperetive Nakagaml-m fading links. The destination, based on the umque knowledge of local second hop channel state information, selects

  8. Multiuser Diversity with Adaptive Modulation in Non-Identically Distributed Nakagami Fading Environments

    KAUST Repository

    Rao, Anlei; Alouini, Mohamed-Slim

    2012-01-01

    In this paper, we analyze the performance of adaptive modulation with single-cell multiuser scheduling over independent but not identical distributed (i.n.i.d.) Nakagami fading channels. Closed-form expressions are derived for the average channel

  9. Cooperative AF Relaying in Spectrum-Sharing Systems: Performance Analysis under Average Interference Power Constraints and Nakagami-m Fading

    KAUST Repository

    Xia, Minghua

    2012-06-01

    Since the electromagnetic spectrum resource becomes more and more scarce, improving spectral efficiency is extremely important for the sustainable development of wireless communication systems and services. Integrating cooperative relaying techniques into spectrum-sharing cognitive radio systems sheds new light on higher spectral efficiency. In this paper, we analyze the end-to-end performance of cooperative amplify-and-forward (AF) relaying in spectrum-sharing systems. In order to achieve the optimal end-to-end performance, the transmit powers of the secondary source and the relays are optimized with respect to average interference power constraints at primary users and Nakagami-$m$ fading parameters of interference channels (for mathematical tractability, the desired channels from secondary source to relay and from relay to secondary destination are assumed to be subject to Rayleigh fading). Also, both partial and opportunistic relay-selection strategies are exploited to further enhance system performance. Based on the exact distribution functions of the end-to-end signal-to-noise ratio (SNR) obtained herein, the outage probability, average symbol error probability, diversity order, and ergodic capacity of the system under study are analytically investigated. Our results show that system performance is dominated by the resource constraints and it improves slowly with increasing average SNR. Furthermore, larger Nakagami-m fading parameter on interference channels deteriorates system performance slightly. On the other hand, when interference power constraints are stringent, opportunistic relay selection can be exploited to improve system performance significantly. All analytical results are corroborated by simulation results and they are shown to be efficient tools for exact evaluation of system performance.

  10. Capacity of spectrum sharing Cognitive Radio systems over Nakagami fading channels at low SNR

    KAUST Repository

    Sboui, Lokman

    2013-06-01

    In this paper, we study the ergodic capacity of Cognitive Radio (CR) spectrum sharing systems at low power regime. We focus on Nakagami fading channels. We formally define the low power regime and present closed form expressions of the capacity in the low power regime under various types of interference and/or power constraints, depending on the available channel state information (CSI) of the cross link (CL) between the secondary user transmitter and the primary user receiver. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link ergodic capacity. Interestingly, we show that the low power regime analysis provides a specific insight on the capacity behavior of CR that has not been reported by previous studies. © 2013 IEEE.

  11. Analysis of Probability of Non-zero Secrecy Capacity for Multi-hop Networks in Presence of Hardware Impairments over Nakagami-m Fading Channels

    Directory of Open Access Journals (Sweden)

    T.-T. Phu

    2016-12-01

    Full Text Available In this paper, we evaluate probability of non-zero secrecy capacity of multi-hop relay networks over Nakagami-m fading channels in presence of hardware impairments. In the considered protocol, a source attempts to transmit its data to a destination by using multi-hop randomize-and-forward (RF strategy. The data transmitted by the source and relays are overheard by an eavesdropper. For performance evaluation, we derive exact expressions of probability of non-zero secrecy capacity (PoNSC, which are expressed by sums of infinite series of exponential functions and exponential integral functions. We then perform Monte Carlo simulations to verify the theoretical analysis.

  12. Energy Efficient and Performance Analysis of Multihop Wireless Communication Over Nakagami-m Fading Channel

    KAUST Repository

    Randrianantenaina, Itsikiantsoa

    2015-06-01

    The concept of multihop communications (where the source communicates with the destination via many intermediate nodes) has been revisited and adapted to mitigate wireless channel impairments and ensure broader coverage. It has been shown in the literature that, in addition to extending coverage, overcoming shadowing and reducing the transmit power, multihop communications can increase the capacity of the network at a low additional cost. On the other hand, the problem of energy efficiency is one of the current biggest challenges towards green radio communications. Morevover, electromagnetic radiation is at its limit in many contexts, while for battery-powered devices, transmit and circuit energy consumption has to be minimized for better battery lifetime and performance. In this work, the performance of multihop communication over Nakagami-m fading is investigated for both cases without and with diversity combining. Closed form expressions of the average ergodic capacity are derived for each of these cases. Then, an expression of the outage probability is obtained using the inverse of Laplace transform and the average bit error rate is bounded using the Moment-Generating-Function approach. The energy efficiency is analyzed using the "consumption factor" as a metric, and it is derived in closed-form. And based on the obtained expressions, we propose a power allocation strategy maximizing this consumption factor.

  13. Performance Analysis of Iterative Decoding Algorithms for PEG LDPC Codes in Nakagami Fading Channels

    Directory of Open Access Journals (Sweden)

    O. Al Rasheed

    2013-11-01

    Full Text Available In this paper we give a comparative analysis of decoding algorithms of Low Density Parity Check (LDPC codes in a channel with the Nakagami distribution of the fading envelope. We consider the Progressive Edge-Growth (PEG method and Improved PEG method for the parity check matrix construction, which can be used to avoid short girths, small trapping sets and a high level of error floor. A comparative analysis of several classes of LDPC codes in various propagation conditions and decoded using different decoding algorithms is also presented.

  14. Cross-layer designed adaptive modulation algorithm with packet combining and truncated ARQ over MIMO Nakagami fading channels

    KAUST Repository

    Aniba, Ghassane

    2011-04-01

    This paper presents an optimal adaptive modulation (AM) algorithm designed using a cross-layer approach which combines truncated automatic repeat request (ARQ) protocol and packet combining. Transmissions are performed over multiple-input multiple-output (MIMO) Nakagami fading channels, and retransmitted packets are not necessarily modulated using the same modulation format as in the initial transmission. Compared to traditional approach, cross-layer design based on the coupling across the physical and link layers, has proven to yield better performance in wireless communications. However, there is a lack for the performance analysis and evaluation of such design when the ARQ protocol is used in conjunction with packet combining. Indeed, previous works addressed the link layer performance of AM with truncated ARQ but without packet combining. In addition, previously proposed AM algorithms are not optimal and can provide poor performance when packet combining is implemented. Herein, we first show that the packet loss rate (PLR) resulting from the combining of packets modulated with different constellations can be well approximated by an exponential function. This model is then used in the design of an optimal AM algorithm for systems employing packet combining, truncated ARQ and MIMO antenna configurations, considering transmission over Nakagami fading channels. Numerical results are provided for operation with or without packet combining, and show the enhanced performance and efficiency of the proposed algorithm in comparison with existing ones. © 2011 IEEE.

  15. Bit Error Rate Performance Analysis of a Threshold-Based Generalized Selection Combining Scheme in Nakagami Fading Channels

    Directory of Open Access Journals (Sweden)

    Kousa Maan

    2005-01-01

    Full Text Available The severity of fading on mobile communication channels calls for the combining of multiple diversity sources to achieve acceptable error rate performance. Traditional approaches perform the combining of the different diversity sources using either the conventional selective diversity combining (CSC, equal-gain combining (EGC, or maximal-ratio combining (MRC schemes. CSC and MRC are the two extremes of compromise between performance quality and complexity. Some researches have proposed a generalized selection combining scheme (GSC that combines the best branches out of the available diversity resources ( . In this paper, we analyze a generalized selection combining scheme based on a threshold criterion rather than a fixed-size subset of the best channels. In this scheme, only those diversity branches whose energy levels are above a specified threshold are combined. Closed-form analytical solutions for the BER performances of this scheme over Nakagami fading channels are derived. We also discuss the merits of this scheme over GSC.

  16. Exact Symbol Error Probability of Square M-QAM Signaling over Generalized Fading Channels subject to Additive Generalized Gaussian Noise

    KAUST Repository

    Soury, Hamza

    2013-07-01

    This paper considers the average symbol error probability of square Quadrature Amplitude Modulation (QAM) coherent signaling over flat fading channels subject to additive generalized Gaussian noise. More specifically, a generic closedform expression in terms of the Fox H function and the bivariate Fox H function is offered for the extended generalized-K fading case. Simplifications for some special fading distributions such as generalized-K fading, Nakagami-m fading, and Rayleigh fading and special additive noise distributions such as Gaussian and Laplacian noise are then presented. Finally, the mathematical formalism is illustrated by some numerical examples verified by computer based simulations for a variety of fading and additive noise parameters.

  17. Performance Analysis of the IEEE 802.11A WLAN Standard Optimum and Sub-Optimum Receiver in Frequency-Selective, Slowly Fading Nakagami Channels with AWGN and Pulsed Noise Jamming

    National Research Council Canada - National Science Library

    Kalogrias, Christos

    2004-01-01

    ... 802.11a wireless local area network (WLAN) standard receiver when the signal is transmitted over a frequency selective, slow fading Nakagami channel in a worst case, pulse-noise jamming environment...

  18. Modeling cellular networks in fading environments with dominant specular components

    KAUST Repository

    Alammouri, Ahmad; Elsawy, Hesham; Salem, Ahmed Sultan; Di Renzo, Marco; Alouini, Mohamed-Slim

    2016-01-01

    to the Nakagami-m fading in some special cases. However, neither the Rayleigh nor the Nakagami-m accounts for dominant specular components (DSCs) which may appear in realistic fading channels. In this paper, we present a tractable model for cellular networks

  19. New Closed-Form Results on Ordered Statistics of Partial Sums of Gamma Random Variables and its Application to Performance Evaluation in the Presence of Nakagami Fading

    KAUST Repository

    Nam, Sung Sik

    2017-06-19

    Complex wireless transmission systems require multi-dimensional joint statistical techniques for performance evaluation. Here, we first present the exact closed-form results on order statistics of any arbitrary partial sums of Gamma random variables with the closedform results of core functions specialized for independent and identically distributed Nakagami-m fading channels based on a moment generating function-based unified analytical framework. These both exact closed-form results have never been published in the literature. In addition, as a feasible application example in which our new offered derived closed-form results can be applied is presented. In particular, we analyze the outage performance of the finger replacement schemes over Nakagami fading channels as an application of our method. Note that these analysis results are directly applicable to several applications, such as millimeter-wave communication systems in which an antenna diversity scheme operates using an finger replacement schemes-like combining scheme, and other fading scenarios. Note also that the statistical results can provide potential solutions for ordered statistics in any other research topics based on Gamma distributions or other advanced wireless communications research topics in the presence of Nakagami fading.

  20. Exact Symbol Error Probability of Cross-QAM in AWGN and Fading Channels

    Directory of Open Access Journals (Sweden)

    Zhang Xi-chun

    2010-01-01

    Full Text Available The exact symbol error probability (SEP performance of -ary cross quadrature amplitude modulation (QAM in additive white Gaussian noise (AWGN channel and fading channels, including Rayleigh, Nakagami-m, Rice, and Nakagami-q (Hoyt channels, is analyzed. The obtained closed-form SEP expressions contain a finite (in proportion to sum of single integrals with finite limits and an integrand composed of elementary (exponential, trigonometric, and/or power functions, thus readily enabling numerical evaluation. Particularly, Gaussian -function is a special case of these integrals and is included in the SEP expressions. Simple and very precise approximations, which contain only Gaussian -function for AWGN channel and contain three terms of the single integrals mentioned above for fading channels, respectively, are also given. The analytical expressions show excellent agreement with the simulation results, and numerical evaluation with the proposed expressions reveals that cross QAM can obtain at least 1.1 dB gain compared to rectangular QAM when SEP < 0.3 in all the considered channels.

  1. An MGF-based capacity analysis of equal gain combining over fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2010-01-01

    Exact average capacity results for L-branch coherent equal-gain combining (EGC) in correlated and uncorrelated fading channels are not known. This paper develops a novel framework (approach) for capacity analysis of L-branch EGC in generalized fading channels. In addition, Gamma shadowed generalized Nakagami-m fading model is proposed in order to statistically model the fading environments in high frequencies such as 60 GHz and above. Some simulations are carried out and then the obtained results are accentuated by means of numerical analysis based on the proposed framework. Numerical and simulation results, performed to verify the correctness of the proposed framework, are in perfect agreement. ©2010 IEEE.

  2. An MGF-based capacity analysis of equal gain combining over fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    Exact average capacity results for L-branch coherent equal-gain combining (EGC) in correlated and uncorrelated fading channels are not known. This paper develops a novel framework (approach) for capacity analysis of L-branch EGC in generalized fading channels. In addition, Gamma shadowed generalized Nakagami-m fading model is proposed in order to statistically model the fading environments in high frequencies such as 60 GHz and above. Some simulations are carried out and then the obtained results are accentuated by means of numerical analysis based on the proposed framework. Numerical and simulation results, performed to verify the correctness of the proposed framework, are in perfect agreement. ©2010 IEEE.

  3. Outage Analysis of Train-to-Train Communication Model over Nakagami-m Channel in High-Speed Railway

    Directory of Open Access Journals (Sweden)

    Pengyu Liu

    2013-01-01

    Full Text Available This paper analyzes the end-to-end outage performance of high-speed-railway train-to-train communication model in high-speed railway over independent identical and nonidentical Nakagami-m channels. The train-to-train communication is inter-train communication without an aid of infrastructure (for base station. Source train uses trains on other rail tracks as relays to transmit signals to destination train on the same track. The mechanism of such communication among trains can be divided into three cases based on occurrence of possible-occurrence relay trains. We first present a new closed form for the sum of squared independent Nakagami-m variates and then derive an expression for the outage probability of the identical and non-identical Nakagami-m channels in three cases. In particular, the problem is improved by the proposed formulation that statistic for sum of squared Nakagami-m variates with identical m tends to be infinite. Numerical analysis indicates that the derived analytic results are reasonable and the outage performance is better over Nakagami-m channel in high-speed railway scenarios.

  4. Adaptive Space-Time-Spreading-Assisted Wideband CDMA Systems Communicating over Dispersive Nakagami- Fading Channels

    Directory of Open Access Journals (Sweden)

    Yang Lie-Liang

    2005-01-01

    Full Text Available In this contribution, the performance of wideband code-division multiple-access (W-CDMA systems using space-time-spreading- (STS- based transmit diversity is investigated, when frequency-selective Nakagami- fading channels, multiuser interference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is the product of the frequency-selective diversity order and the transmit diversity order. Furthermore, both the transmit diversity and the frequency-selective diversity have the same order of importance. Since W-CDMA signals are subjected to frequency-selective fading, the number of resolvable paths at the receiver may vary over a wide range depending on the transmission environment encountered. It can be shown that, for wireless channels where the frequency selectivity is sufficiently high, transmit diversity may be not necessitated. Under this case, multiple transmission antennas can be leveraged into an increased bitrate. Therefore, an adaptive STS-based transmission scheme is then proposed for improving the throughput of W-CDMA systems. Our numerical results demonstrate that this adaptive STS-based transmission scheme is capable of significantly improving the effective throughput of W-CDMA systems. Specifically, the studied W-CDMA system's bitrate can be increased by a factor of three at the modest cost of requiring an extra 0.4 dB or 1.2 dB transmitted power in the context of the investigated urban or suburban areas, respectively.

  5. Combined diversity and improved energy detection in cooperative spectrum sensing with faded reporting channels

    Directory of Open Access Journals (Sweden)

    Srinivas Nallagonda

    2016-04-01

    Full Text Available In this paper we evaluate the performance of cooperative spectrum sensing (CSS where each cognitive radio (CR employs an improved energy detector (IED with multiple antennas and uses selection combining (SC for detecting the primary user (PU in noisy and faded sensing (S channels. We derive an expression for the probability of false alarm and expressions for probability of missed detection in non-faded (AWGN and Rayleigh faded sensing environments in terms of cumulative distribution function (CDF. Each CR transmits its decision about PU via noisy and faded reporting (R channel to fusion center (FC. In this paper we assume that S-channels are noisy and Rayleigh faded while several cases of fading are considered for R-channels such as: (i Hoyt (or Nakagami-q, (ii Rayleigh, (iii Rician (or Nakagami-n, and (iv Weibull. A Binary Symmetric channel (BSC with a fixed error probability (r in the R-channel is also considered. The impact of fading in R-channel, S-channel and several network parameters such as IED parameter, normalized detection threshold, number of CRs, and number of antennas on missed detection and total error probability is assessed. The effects of Hoyt, Rician, and Weibull fading parameters on overall performance of IED-CSS are also highlighted.

  6. Enhancing the efficiency of constrained dual-hop variable-gain AF relaying under nakagami-m fading

    KAUST Repository

    Zafar, Ammar

    2014-07-01

    This paper studies power allocation for performance constrained dual-hop variable-gain amplify-and-forward (AF) relay networks in Nakagami- $m$ fading. In this context, the performance constraint is formulated as a constraint on the end-to-end signal-to-noise-ratio (SNR) and the overall power consumed is minimized while maintaining this constraint. This problem is considered under two different assumptions of the available channel state information (CSI) at the relays, namely full CSI at the relays and partial CSI at the relays. In addition to the power minimization problem, we also consider the end-to-end SNR maximization problem under a total power constraint for the partial CSI case. We provide closed-form solutions for all the problems which are easy to implement except in two cases, namely selective relaying with partial CSI for power minimization and SNR maximization, where we give the solution in the form of a one-variable equation which can be solved efficiently. Numerical results are then provided to characterize the performance of the proposed power allocation algorithms considering the effects of channel parameters and CSI availability. © 2014 IEEE.

  7. Modeling cellular networks in fading environments with dominant specular components

    KAUST Repository

    AlAmmouri, Ahmad

    2016-07-26

    Stochastic geometry (SG) has been widely accepted as a fundamental tool for modeling and analyzing cellular networks. However, the fading models used with SG analysis are mainly confined to the simplistic Rayleigh fading, which is extended to the Nakagami-m fading in some special cases. However, neither the Rayleigh nor the Nakagami-m accounts for dominant specular components (DSCs) which may appear in realistic fading channels. In this paper, we present a tractable model for cellular networks with generalized two-ray (GTR) fading channel. The GTR fading explicitly accounts for two DSCs in addition to the diffuse components and offers high flexibility to capture diverse fading channels that appear in realistic outdoor/indoor wireless communication scenarios. It also encompasses the famous Rayleigh and Rician fading as special cases. To this end, the prominent effect of DSCs is highlighted in terms of average spectral efficiency. © 2016 IEEE.

  8. Exact capacity analysis of multihop transmission over amplify-and-forward relay fading channels

    KAUST Repository

    Yilmaz, Ferkan; Kucur, Oǧuz; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we propose an analytical framework on the exact computation of the average capacity of multihop transmission over amplify-and-forward relay fading channels. Our approach relies on the algebraic combination of Mellin and Laplace transforms to obtain exact single integral expressions which can be easily computed by Gauss-Chebyshev Quadrature (GCQ) rule. As such, the derived results are a convenient tool to analyze the average capacity of multihop transmission over amplify-and-forward relay fading channels. As an application of the analytical framework on the exact computation of the average capacity of multihop transmission, some examples are accentuated for generalized Nakagami-m fading channels. Numerical and simulation results, performed to verify the correctness of the proposed formulation, are in perfect agreement. ©2010 IEEE.

  9. Exact capacity analysis of multihop transmission over amplify-and-forward relay fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    In this paper, we propose an analytical framework on the exact computation of the average capacity of multihop transmission over amplify-and-forward relay fading channels. Our approach relies on the algebraic combination of Mellin and Laplace transforms to obtain exact single integral expressions which can be easily computed by Gauss-Chebyshev Quadrature (GCQ) rule. As such, the derived results are a convenient tool to analyze the average capacity of multihop transmission over amplify-and-forward relay fading channels. As an application of the analytical framework on the exact computation of the average capacity of multihop transmission, some examples are accentuated for generalized Nakagami-m fading channels. Numerical and simulation results, performed to verify the correctness of the proposed formulation, are in perfect agreement. ©2010 IEEE.

  10. Delay performance of a broadcast spectrum sharing network in Nakagami-m fading

    KAUST Repository

    Khan, Fahd Ahmed

    2014-03-01

    In this paper, we analyze the delay performance of a point-to-multipoint secondary network (P2M-SN), which is concurrently sharing the spectrum with a point-to-multipoint primary network (P2M-PN). The channel is assumed to be independent but not identically distributed (i.n.i.d.) and has Nakagami-m fading. A constraint on the peak transmit power of the secondary-user transmitter (SU-Tx) is considered, in addition to the peak interference power constraint. The SU-Tx is assumed to be equipped with a buffer and is modeled using the M/G/1 queueing model. The performance of this system is analyzed for two scenarios: 1) P2M-SN does not experience interference from the primary network (denoted by P2M-SN-NI), and 2) P2M-SN does experience interference from the primary network (denoted by P2M-SN-WI). The performance of both P2M-SN-NI and P2M-SN-WI is analyzed in terms of the packet transmission time, and the closed-form cumulative density function (cdf) of the packet transmission time is derived for both scenarios. Furthermore, by utilizing the concept of timeout, an exact closed-form expression for the outage probability of the P2M-SN-NI is obtained. In addition, an accurate approximation for the outage probability of the P2M-SN-WI is also derived. Furthermore, for the P2M-SN-NI, the analytic expressions for the total average waiting time (TAW-time) of packets and the average number of packets waiting in the buffer of the SU-Tx are also derived. Numerical simulations are also performed to validate the derived analytical results. © 1967-2012 IEEE.

  11. A unified MGF-based capacity analysis of diversity combiners over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-03-01

    Unified exact ergodic capacity results for L-branch coherent diversity combiners including equal-gain combining (EGC) and maximal-ratio combining (MRC) are not known. This paper develops a novel generic framework for the capacity analysis of L-branch EGC/MRC over generalized fading channels. The framework is used to derive new results for the gamma-shadowed generalized Nakagami-m fading model which can be a suitable model for the fading environments encountered by high frequency (60 GHz and above) communications. The mathematical formalism is illustrated with some selected numerical and simulation results confirming the correctness of our newly proposed framework. © 2012 IEEE.

  12. Error Rates of M-PAM and M-QAM in Generalized Fading and Generalized Gaussian Noise Environments

    KAUST Repository

    Soury, Hamza

    2013-07-01

    This letter investigates the average symbol error probability (ASEP) of pulse amplitude modulation and quadrature amplitude modulation coherent signaling over flat fading channels subject to additive white generalized Gaussian noise. The new ASEP results are derived in a generic closed-form in terms of the Fox H function and the bivariate Fox H function for the extended generalized-K fading case. The utility of this new general closed-form is that it includes some special fading distributions, like the Generalized-K, Nakagami-m, and Rayleigh fading and special noise distributions such as Gaussian and Laplacian. Some of these special cases are also treated and are shown to yield simplified results.

  13. Average bit error probability of binary coherent signaling over generalized fading channels subject to additive generalized gaussian noise

    KAUST Repository

    Soury, Hamza

    2012-06-01

    This letter considers the average bit error probability of binary coherent signaling over flat fading channels subject to additive generalized Gaussian noise. More specifically, a generic closed form expression in terms of the Fox\\'s H function is offered for the extended generalized-K fading case. Simplifications for some special fading distributions such as generalized-K fading and Nakagami-m fading and special additive noise distributions such as Gaussian and Laplacian noise are then presented. Finally, the mathematical formalism is illustrated by some numerical examples verified by computer based simulations for a variety of fading and additive noise parameters. © 2012 IEEE.

  14. Analysis of Coded FHSS Systems with Multiple Access Interference over Generalized Fading Channels

    Directory of Open Access Journals (Sweden)

    Salam A. Zummo

    2009-02-01

    Full Text Available We study the effect of interference on the performance of coded FHSS systems. This is achieved by modeling the physical channel in these systems as a block fading channel. In the derivation of the bit error probability over Nakagami fading channels, we use the exact statistics of the multiple access interference (MAI in FHSS systems. Due to the mathematically intractable expression of the Rician distribution, we use the Gaussian approximation to derive the error probability of coded FHSS over Rician fading channel. The effect of pilot-aided channel estimation is studied for Rician fading channels using the Gaussian approximation. From this, the optimal hopping rate in coded FHSS is approximated. Results show that the performance loss due to interference increases as the hopping rate decreases.

  15. Product of the powers of generalized Nakagami-m variates and performance of cascaded fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2009-01-01

    -identically distributed GNM random variables, for the purpose of modeling the cascaded fading channels. In particular, using the Fox's H function, we derive the probability density function, the cumulative distribution function, the moment generating function

  16. New Closed-Form Results on Ordered Statistics of Partial Sums of Gamma Random Variables and its Application to Performance Evaluation in the Presence of Nakagami Fading

    KAUST Repository

    Nam, Sung Sik; Ko, Young-Chai; Alouini, Mohamed-Slim

    2017-01-01

    in the literature. In addition, as a feasible application example in which our new offered derived closed-form results can be applied is presented. In particular, we analyze the outage performance of the finger replacement schemes over Nakagami fading channels

  17. Performance Analysis of Ad Hoc Dispersed Spectrum Cognitive Radio Networks over Fading Channels

    Directory of Open Access Journals (Sweden)

    Mohammad Muneer

    2011-01-01

    Full Text Available Cognitive radio systems can utilize dispersed spectrum, and thus such approach is known as dispersed spectrum cognitive radio systems. In this paper, we first provide the performance analysis of such systems over fading channels. We derive the average symbol error probability of dispersed spectrum cognitive radio systems for two cases, where the channel for each frequency diversity band experiences independent and dependent Nakagami- fading. In addition, the derivation is extended to include the effects of modulation type and order by considering M-ary phase-shift keying ( -PSK and M-ary quadrature amplitude modulation -QAM schemes. We then consider the deployment of such cognitive radio systems in an ad hoc fashion. We consider an ad hoc dispersed spectrum cognitive radio network, where the nodes are assumed to be distributed in three dimension (3D. We derive the effective transport capacity considering a cubic grid distribution. Numerical results are presented to verify the theoretical analysis and show the performance of such networks.

  18. Capacity of Fading Channels in the Low Power Regime

    KAUST Repository

    Benkhelifa, Fatma

    2013-01-01

    The low power regime has attracted various researchers in the information theory and communication communities to understand the performance limits of wireless systems. Indeed, the energy consumption is becoming one of the major limiting factors in wireless systems. As such, energy-efficient wireless systems are of major importance to the next generation wireless systems designers. The capacity is a metric that measures the performance limit of a wireless system. The study of the ergodic capacity of some fading channels in the low power regime is the main subject of this thesis. In our study, we consider that the receiver has always a full knowledge of the channel state information. However, we assume that the transmitter has possibly imperfect knowledge of the channel state information, i.e. he knows either perfectly the channel or only an estimated version of the channel. Both radio frequency and free space optical communication channel models are considered. The main contribution of this work is the explicit characterization of how the capacity scales as function of the signal-to-noise ratio in the low power regime. This allows us to characterize the gain due to the perfect knowledge compared to no knowledge of the channel state information at the transmitter. In particular, we show that the gain increases logarithmically for radio frequency communication. However, the gain increases as log2(Pavg) or log4(Pavg) for free-space optical communication, where Pavg is the average power constraint imposed to the input. Furthermore, we characterize the capacity of cascaded fading channels and we applied the result to Rayleigh-product fading channel and to a free-space optical link over gamma-gamma atmospheric turbulence in the presence of pointing errors. Finally, we study the capacity of Nakagami-m fading channel under quality of service constraints, namely the effective capacity. We have shown that the effective capacity converges to Shannon capacity in the very low

  19. Performance analysis of best relay selection scheme for amplify-and-forward cooperative networks in identical Nakagami-m channels

    KAUST Repository

    Hussain, Syed Imtiaz; Alouini, Mohamed-Slim; Hasna, Mazen Omar

    2010-01-01

    for a cooperative network with multiple relays operating in amplify-and-forward (AF) mode over identical Nakagami-m channels using exact source-relay-destination signal to noise ratio (SNR) expression. We derive accurate closed form expressions

  20. A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    Science.gov (United States)

    Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  1. Performance analysis of selective cooperation with fixed gain relays in Nakagami-m channels

    KAUST Repository

    Hussain, Syed Imtiaz; Hasna, Mazen Omar; Alouini, Mohamed-Slim

    2012-01-01

    Selecting the best relay using the maximum signal to noise ratio (SNR) among all the relays ready to cooperate saves system resources and utilizes the available bandwidth more efficiently compared to the regular all-relay cooperation. In this paper, we analyze the performance of the best relay selection scheme with fixed gain relays operating in Nakagami-. m channels. We first derive the probability density function (PDF) of upper bounded end-to-end SNR of the relay link. Using this PDF, we derive some key performance parameters for the system including average bit error probability and average channel capacity. The analytical results are verified through Monte Carlo simulations. © 2012 Elsevier B.V.

  2. Performance analysis of selective cooperation with fixed gain relays in Nakagami-m channels

    KAUST Repository

    Hussain, Syed Imtiaz

    2012-09-01

    Selecting the best relay using the maximum signal to noise ratio (SNR) among all the relays ready to cooperate saves system resources and utilizes the available bandwidth more efficiently compared to the regular all-relay cooperation. In this paper, we analyze the performance of the best relay selection scheme with fixed gain relays operating in Nakagami-. m channels. We first derive the probability density function (PDF) of upper bounded end-to-end SNR of the relay link. Using this PDF, we derive some key performance parameters for the system including average bit error probability and average channel capacity. The analytical results are verified through Monte Carlo simulations. © 2012 Elsevier B.V.

  3. Error Probability of Binary and -ary Signals with Spatial Diversity in Nakagami- (Hoyt) Fading Channels

    OpenAIRE

    Duong Trung Q; Shin Hyundong; Hong Een-Kee

    2007-01-01

    We analyze the exact average symbol error probability (SEP) of binary and -ary signals with spatial diversity in Nakagami- (Hoyt) fading channels. The maximal-ratio combining and orthogonal space-time block coding are considered as diversity techniques for single-input multiple-output and multiple-input multiple-output systems, respectively. We obtain the average SEP in terms of the Lauricella multivariate hypergeometric function . The analysis is verified by comparing with Monte Carlo simu...

  4. Performance Analysis of Mixed Nakagami- m and Gamma–Gamma Dual-Hop FSO Transmission Systems

    KAUST Repository

    Zedini, Emna

    2015-02-01

    In this paper, we carry out a unified performance analysis of a dual-hop relay system over the asymmetric links composed of both radio-frequency (RF) and unified free-space optical (FSO) links under the effect of pointing errors. Both fixed and variable gain relay systems are studied. The RF link is modeled by the Nakagami-m fading channel and the FSO link by the Gamma-Gamma fading channel subject to both types of detection techniques (i.e., heterodyne detection and intensity modulation with direct detection). In particular, we derive new unified closed-form expressions for the cumulative distribution function, the probability density function, the moment generating function (MGF), and the moments of the end-to-end signal-to-noise ratio (SNR) of these systems in terms of the Meijer\\'s G function. Based on these formulas, we offer exact closed-form expressions for the outage probability (OP), the higher order amount of fading, and the average bit error rate (BER) of a variety of binary modulations in terms of the Meijer\\'s G function. Furthermore, an exact closed-form expression of the end-to-end ergodic capacity is derived in terms of the bivariate G function. Additionally, by using the asymptotic expansion of the Meijer\\'s G function at the high-SNR regime, we derive new asymptotic results for the OP, the MGF, and the average BER in terms of simple elementary functions.

  5. Performance analysis of selective cooperation in amplify-and-forward relay networks over identical Nakagami-m channels

    KAUST Repository

    Hussain, Syed Imtiaz; Alouini, Mohamed-Slim; Hasna, Mazen Omar

    2011-01-01

    In cooperative communications, multiple relays between a source and a destination can increase the diversity gain. Because all the nodes must use orthogonal channels, multiple-relay cooperation becomes spectrally inefficient. Therefore, a bestrelay selection scheme was recently proposed. In this paper, we analyzed the performance of this scheme for a system with the relays operating in amplify-and-forward mode over identical Nakagami-m channels using an exact source-relay-destination signal-to-noise ratio (SNR).We derived accurate closed-form expressions for various system parameters including the probability density function of end-to-end SNR, the average output SNR, the bit error probability, and the channel capacity. The analytical results were verified through Monte Carlo simulations. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Performance analysis of selective cooperation in amplify-and-forward relay networks over identical Nakagami-m channels

    KAUST Repository

    Hussain, Syed Imtiaz

    2011-05-02

    In cooperative communications, multiple relays between a source and a destination can increase the diversity gain. Because all the nodes must use orthogonal channels, multiple-relay cooperation becomes spectrally inefficient. Therefore, a bestrelay selection scheme was recently proposed. In this paper, we analyzed the performance of this scheme for a system with the relays operating in amplify-and-forward mode over identical Nakagami-m channels using an exact source-relay-destination signal-to-noise ratio (SNR).We derived accurate closed-form expressions for various system parameters including the probability density function of end-to-end SNR, the average output SNR, the bit error probability, and the channel capacity. The analytical results were verified through Monte Carlo simulations. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Performance of Generalized Multicarrier DS-CDMA over Nakagami-$m$ Fading Channels

    OpenAIRE

    Yang, L-L.; Hanzo, L.

    2002-01-01

    A class of generalized multicarrier direct sequence code-division multiple-access (MC DS-CDMA) schemes is defined and its performance is considered over multipath Nakagamifading channels. The spacing between two adjacent subcarriers of the generalized MC DS-CDMA is a variable, allowing us to gain insight into the effects of the spacing on the bit error rate (BER) performance of MC DS-CDMA systems. This generalized MC DS-CDMA scheme includes the subclasses of multitone DS-CDMA and orthogonal M...

  8. Achievable rate of spectrum sharing cognitive radio systems over fading channels at low-power regime

    KAUST Repository

    Sboui, Lokman

    2014-11-01

    We study the achievable rate of cognitive radio (CR) spectrum sharing systems at the low-power regime for general fading channels and then for Nakagami fading. We formally define the low-power regime and present the corresponding closed-form expressions of the achievable rate lower bound under various types of interference and/or power constraints, depending on the available channel state information of the cross link (CL) between the secondary-user transmitter and the primary-user receiver. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link (SL) ergodic achievable rate. We also study more realistic scenarios when there is either 1-bit quantized channel feedback from the CL alone or 2-bit feedback from both the CL and the SL and propose simple power control schemes and show that these schemes achieve the previously achieved rate at the low-power regime. Interestingly, we show that the low-power regime analysis provides a specific insight into the maximum achievable rate behavior of CR that has not been reported by previous studies.

  9. Performance of Cooperative Spectrum Sensing over Non-Identical Fading Environments

    KAUST Repository

    Rao, Anlei; Alouini, Mohamed-Slim

    2012-01-01

    Different from previous works in cooperative spec- trum sensing that assumed the sensing channels independent identically distributed (i.i.d.), we investigate in this paper the independent but not identically distributed (i.n.i.d.) situations. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Rayleigh, Nakagami, and Rician fading channels. From the selected numerical results, we can see that cooperative spectrum sensing still gives considerably better performance even over i.n.i.d. fading environments.

  10. Performance of Cooperative Spectrum Sensing over Non-Identical Fading Environments

    KAUST Repository

    Rao, Anlei

    2012-09-08

    Different from previous works in cooperative spec- trum sensing that assumed the sensing channels independent identically distributed (i.i.d.), we investigate in this paper the independent but not identically distributed (i.n.i.d.) situations. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Rayleigh, Nakagami, and Rician fading channels. From the selected numerical results, we can see that cooperative spectrum sensing still gives considerably better performance even over i.n.i.d. fading environments.

  11. Error rates of a full-duplex system over EGK fading channels subject to laplacian interference

    KAUST Repository

    Soury, Hamza

    2017-07-31

    This paper develops a mathematical paradigm to study downlink error rates and throughput for half-duplex (HD) terminals served by a full-duplex (FD) base station (BS). Particularly, we study the dominant intra-cell interferer problem that appears between HD users scheduled on the same FD-channel. The distribution of the dominant interference is first characterized via its distribution function, which is derived in closed-form. Assuming Nakagami-m fading, the probability of error for different modulation schemes is studied and a unified closed-form expression for the average symbol error rate is derived. To this end, we show the effective downlink throughput gain, harvested by employing FD communication at a BS that serves HD users, as a function of the signal-to-interference-ratio when compared to an idealized HD interference and noise free BS operation.

  12. Performance analysis of best relay selection scheme for amplify-and-forward cooperative networks in identical Nakagami-m channels

    KAUST Repository

    Hussain, Syed Imtiaz

    2010-06-01

    In cooperative communication networks, the use of multiple relays between the source and the destination was proposed to increase the diversity gain. Since the source and all the relays must transmit on orthogonal channels, multiple relay cooperation is considered inefficient in terms of channel resources and bandwidth utilization. To overcome this problem, the concept of best relay selection was recently proposed. In this paper, we analyze the performance of the best relay selection scheme for a cooperative network with multiple relays operating in amplify-and-forward (AF) mode over identical Nakagami-m channels using exact source-relay-destination signal to noise ratio (SNR) expression. We derive accurate closed form expressions for various system parameters including probability density function (pdf) of end-to-end SNR, average output SNR, average probability of bit error and average channel capacity. T he analytical results are verified through extensive simulations. It is shown that the best relay selection scheme performs better than the regular all relay cooperation.

  13. On the performance of dual-hop mixed RF/FSO wireless communication system in urban area over aggregated exponentiated Weibull fading channels with pointing errors

    Science.gov (United States)

    Wang, Yue; Wang, Ping; Liu, Xiaoxia; Cao, Tian

    2018-03-01

    The performance of decode-and-forward dual-hop mixed radio frequency / free-space optical system in urban area is studied. The RF link is modeled by the Nakagami-m distribution and the FSO link is described by the composite exponentiated Weibull (EW) fading channels with nonzero boresight pointing errors (NBPE). For comparison, the ABER results without pointing errors (PE) and those with zero boresight pointing errors (ZBPE) are also provided. The closed-form expression for the average bit error rate (ABER) in RF link is derived with the help of hypergeometric function, and that in FSO link is obtained by Meijer's G and generalized Gauss-Laguerre quadrature functions. Then, the end-to-end ABERs with binary phase shift keying modulation are achieved on the basis of the computed ABER results of RF and FSO links. The end-to-end ABER performance is further analyzed with different Nakagami-m parameters, turbulence strengths, receiver aperture sizes and boresight displacements. The result shows that with ZBPE and NBPE considered, FSO link suffers a severe ABER degradation and becomes the dominant limitation of the mixed RF/FSO system in urban area. However, aperture averaging can bring significant ABER improvement of this system. Monte Carlo simulation is provided to confirm the validity of the analytical ABER expressions.

  14. Asymptotic SER performance comparison of MPSK and MDPSK in wireless fading channels

    KAUST Repository

    Song, Xuegui; Yang, Fan; Cheng, Julian; Alouini, Mohamed-Slim

    2015-01-01

    We propose a general framework to investigate asymptotic relative performance between M-ary phase-shift keying (MPSK) and M-ary differential phase-shift keying (MDPSK) in wireless fading channels. Using this framework, we provide an alternative derivation for the closed-form expression of the asymptotic performance loss of MDPSK w.r.t. MPSK in an additive white Gaussian noise channel. The same performance loss is also shown to be true for the lognormal fading channels.

  15. Asymptotic SER performance comparison of MPSK and MDPSK in wireless fading channels

    KAUST Repository

    Song, Xuegui

    2015-02-01

    We propose a general framework to investigate asymptotic relative performance between M-ary phase-shift keying (MPSK) and M-ary differential phase-shift keying (MDPSK) in wireless fading channels. Using this framework, we provide an alternative derivation for the closed-form expression of the asymptotic performance loss of MDPSK w.r.t. MPSK in an additive white Gaussian noise channel. The same performance loss is also shown to be true for the lognormal fading channels.

  16. Moments Based Framework for Performance Analysis of One-Way/Two-Way CSI-Assisted AF Relaying

    KAUST Repository

    Xia, Minghua; Aissa, Sonia

    2012-01-01

    tractability, channels considered in such studies are generally assumed to be subject to Rayleigh fading or to be Nakagami-$m$ channels with integer fading parameters, which is impractical in typical urban environments. In this paper, we propose a unified

  17. A new simple model for composite fading channels: Second order statistics and channel capacity

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which

  18. On Capacity of the Writing onto Fast Fading Dirt Channel

    OpenAIRE

    Rini, Stefano; Shamai, Shlomo

    2016-01-01

    The "Writing onto Fast Fading Dirt" (WFFD) channel is investigated to study the effects of partial channel knowledge on the capacity of the "writing on dirty paper" channel. The WFFD channel is the Gel'fand-Pinsker channel in which the output is obtained as the sum of the input, white Gaussian noise and a fading-times-state term. The fading-times-state term is equal to the element-wise product of the channel state sequence, known only at the transmitter, and a fast fading process, known only ...

  19. A new simple model for composite fading channels: Second order statistics and channel capacity

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which we term extended generalized-K (EGK) composite fading distribution. We obtain the second-order statistics of the received signal envelope characterized by the EGK composite fading distribution. Expressions for probability density function, cumulative distribution function, level crossing rate and average fade duration, moments, amount of fading and average capacity are derived. Numerical and computer simulation examples validate the accuracy of the presented mathematical analysis. © 2010 IEEE.

  20. Computer models for fading channels with applications to digital transmission

    Science.gov (United States)

    Loo, Chun; Secord, Norman

    1991-11-01

    The authors describe computer models for Rayleigh, Rician, log-normal, and land-mobile-satellite fading channels. All computer models for the fading channels are based on the manipulation of a white Gaussian random process. This process is approximated by a sum of sinusoids with random phase angle. These models compare very well with analytical models in terms of their probability distribution of envelope and phase of the fading signal. For the land mobile satellite fading channel, results of level crossing rate and average fade duration are given. These results show that the computer models can provide a good coarse estimate of the time statistic of the faded signal. Also, for the land-mobile-satellite fading channel, the results show that a 3-pole Butterworth shaping filter should be used with the model. An example of the application of the land-mobile-satellite fading-channel model to predict the performance of a differential phase-shift keying signal is described.

  1. Secret Sharing over Fast-Fading MIMO Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Bloch Matthieu

    2009-01-01

    Full Text Available Secret sharing over the fast-fading MIMO wiretap channel is considered. A source and a destination try to share secret information over a fast-fading MIMO channel in the presence of an eavesdropper who also makes channel observations that are different from but correlated to those made by the destination. An interactive, authenticated public channel with unlimited capacity is available to the source and destination for the secret sharing process. This situation is a special case of the "channel model with wiretapper" considered by Ahlswede and Csiszár. An extension of their result to continuous channel alphabets is employed to evaluate the key capacity of the fast-fading MIMO wiretap channel. The effects of spatial dimensionality provided by the use of multiple antennas at the source, destination, and eavesdropper are then investigated.

  2. Optimal Performance Monitoring of Hybrid Mid-Infrared Wavelength MIMO Free Space Optical and RF Wireless Networks in Fading Channels

    Science.gov (United States)

    Schmidt, Barnet Michael

    An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the

  3. An overview of turbo decoding on fading channels

    OpenAIRE

    ATILGAN, Doğan

    2009-01-01

    A review of turbo coding and decoding has been presented in the literature [1]. In that paper, turbo coding and decoding on AWGN (Additive White Gaussian Noise) channels has been elaborated. In wireless communications, a phenomennon called multipath fading is frequently encountered. Therefore, investigation of efficient techniques to tackle with the destructive effects of fading is essential. Turbo coding has been proven as an efficient channel coding technique for AWGN channels. Some of the ...

  4. Performance of fading multi-user diversity for underlay cognitive networksy

    KAUST Repository

    Khan, Fahd Ahmed

    2013-05-01

    Having multiple secondary users (SUs) can be exploited to achieve multiuser diversity and improve the throughput of the underlay secondary network. In the cognitive setting, satisfying the interference constraint is essential, and thus, a scheduling scheme is considered where some SUs are preselected based on the low interference power. From this subset, the SU that yields the highest throughput is selected for transmission. This scheduling scheme helps to lower the interference power while giving good throughput. For an independent but not identically distributed Nakagami-m fading channel, we obtain exact closed-form expressions of the capacity of this scheduling scheme. Furthermore, the scheduling time of SUs is characterized and closed-form expressions for the mean time after which a SU is selected for transmission are obtained. Numerical simulations are performed to corroborate the derived analytical results. Our results show that at low interference threshold, increasing transmit power of the SUs is not beneficial and results in reduced capacity. Furthermore, the channel idle time (i.e. time that no user is utilizing the channel) reduces with increasing the number of SUs. © 2013 IEEE.

  5. On Outage Performance of Spectrum-Sharing Communication over M-Block Fading

    KAUST Repository

    Alabbasi, AbdulRahman; Rezki, Zouheir; Shihada, Basem

    2015-01-01

    In this paper, we consider a cognitive radio system in which a block-fading channel is assumed. Each transmission frame consists of M blocks and each block undergoes a different channel gain. Instantaneous channel state information about

  6. Modeling and Simulation of MIMO Mobile-to-Mobile Wireless Fading Channels

    Directory of Open Access Journals (Sweden)

    Gholamreza Bakhshi

    2012-01-01

    Full Text Available Analysis and design of multielement antenna systems in mobile fading channels require a model for the space-time cross-correlation among the links of the underlying multipleinput multiple-output (MIMO Mobile-to-Mobile (M-to-M communication channels. In this paper, we propose the modified geometrical two-ring model, a MIMO channel reference model for M-to-M communication systems. This model is based on the extension of single-bounce two-ring scattering model for flat fading channel under the assumption that the transmitter and the receiver are moving. Assuming single-bounce scattering model in both isotropic and nonisotropic environment, a closed-form expression for the space-time cross-correlation function (CCF between any two subchannels is derived. The proposed model provides an important framework in M-to-M system design, where includes many existing correlation models as special cases. Also, two realizable statistical simulation models are proposed for simulating both isotropic and nonisotropic reference model. The realizable simulation models are based on Sum-of-Sinusoids (SoS simulation model. Finally, the correctness of the proposed simulation models is shown via different simulation scenarios.

  7. On the Impact of User Distribution on Cooperative Spectrum Sensing and Data Transmission with Multiuser Diversity

    KAUST Repository

    Rao, Anlei

    2011-07-01

    In this thesis, we investigate the independent but not identically distributed (i.n.i.d.) situations for spectrum sensing and data transmission. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Nakagami fading channels. Then, the performance of adaptive modulation with single-cell multiuser scheduling over i.n.i.d. Nakagami fading channels is analyzed. Closed-form expressions are derived for the average channel capacity, spectral efficiency, and bit-error-rate (BER) for both constant-power variable-rate and variable-power variable-rate uncoded M- ary quadrature amplitude modulation (M-QAM) schemes. In addition, we study the impact of time delay on the average BER of adaptive M-QAM. From the selected numerical results, we can see that cooperative spectrum sensing and multiuser diversity brings considerably better performance even over i.n.i.d. fading environments.

  8. On Channel Estimation for OFDM/TDM Using MMSE-FDE in a Fast Fading Channel

    Directory of Open Access Journals (Sweden)

    Gacanin Haris

    2009-01-01

    Full Text Available Abstract MMSE-FDE can improve the transmission performance of OFDM combined with time division multiplexing (OFDM/TDM, but knowledge of the channel state information and the noise variance is required to compute the MMSE weight. In this paper, a performance evaluation of OFDM/TDM using MMSE-FDE with pilot-assisted channel estimation over a fast fading channel is presented. To improve the tracking ability against fast fading a robust pilot-assisted channel estimation is presented that uses time-domain filtering on a slot-by-slot basis and frequency-domain interpolation. We derive the mean square error (MSE of the channel estimator and then discuss a tradeoff between improving the tracking ability against fading and the noise reduction. The achievable bit error rate (BER performance is evaluated by computer simulation and compared with conventional OFDM. It is shown that the OFDM/TDM using MMSE-FDE achieves a lower BER and a better tracking ability against fast fading in comparison with conventional OFDM.

  9. Delay performance of a broadcast spectrum sharing network in Nakagami-m fading

    KAUST Repository

    Khan, Fahd Ahmed; Tourki, Kamel; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2014-01-01

    In this paper, we analyze the delay performance of a point-to-multipoint secondary network (P2M-SN), which is concurrently sharing the spectrum with a point-to-multipoint primary network (P2M-PN). The channel is assumed to be independent

  10. On limits of Wireless Communications in a Fading Environment: a General Parameterization Quantifying Performance in Fading Channel

    Directory of Open Access Journals (Sweden)

    Amit Grover

    2014-08-01

    Full Text Available The reliable services along with high throughput can be achieved by using wireless communication systems. These systems also provides a wide coverage because of their features, no doubt MIMO Communication System [1] is one among them. Features provided by these systems ensure the improved system coverage and increased data transmission rate by considering multiple numbers of transmitter and receiver antennas. In this article, the concept of equalization has been considered and finally the performance of the MIMO Systems in Rician flat fading [5] channel is compared with the Rayleigh flat fading channel. It has also been observed that the performance of these Systems in Rician Flat Fading Channel is the best as compare to the Rayleigh Flat Fading Channel [10]. It has been concluded that the successive interference methods provide better performance as compare to others, but their complexity is high. Simulation results shows that ML provides the better performance in comparison to other equalizers but Sphere decoder provides the best performance.

  11. Fading Evaluation in the 60 GHz Band in Line-of-Sight Conditions

    Directory of Open Access Journals (Sweden)

    J. Reig

    2014-01-01

    Full Text Available An exhaustive analysis of the small-scale fading amplitude in the 60 GHz band is addressed for line-of-sight conditions (LOS. From a measurement campaign carried out in a laboratory, we have estimated the distribution of the small-scale fading amplitude over a bandwidth of 9 GHz. From the measured data, we have estimated the parameters of the Rayleigh, Rice, Nakagami-m, Weibull, and α-μ distributions for the small-scale amplitudes. The test of Kolmogorov-Smirnov (K-S for each frequency bin is used to evaluate the performance of such statistical distributions. Moreover, the distributions of the main estimated parameters for such distributions are calculated and approximated for lognormal statistics in some cases. The matching of the above distributions to the experimental distribution has also been analyzed for the lower tail of the cumulative distribution function (CDF. These parameters offer information about the narrowband channel behavior that is useful for a better knowledge of the propagation characteristics at 60 GHz.

  12. Capacity limits of spectrum-sharing systems over hyper-fading channels

    KAUST Repository

    Ekin, Sabit

    2011-01-20

    Cognitive radio (CR) with spectrum-sharing feature is a promising technique to address the spectrum under-utilization problem in dynamically changing environments. In this paper, the achievable capacity gain of spectrum-sharing systems over dynamic fading environments is studied. To perform a general analysis, a theoretical fading model called hyper-fading model that is suitable to the dynamic nature of CR channel is proposed. Closed-form expressions of probability density function (PDF) and cumulative density function (CDF) of the signal-to-noise ratio (SNR) for secondary users (SUs) in spectrum-sharing systems are derived. In addition, the capacity gains achievable with spectrum-sharing systems in high and low power regions are obtained. The effects of different fading figures, average fading powers, interference temperatures, peak powers of secondary transmitters, and numbers of SUs on the achievable capacity are investigated. The analytical and simulation results show that the fading figure of the channel between SUs and primary base-station (PBS), which describes the diversity of the channel, does not contribute significantly to the system performance gain. © 2011 John Wiley & Sons, Ltd.

  13. Capacity limits of spectrum-sharing systems over hyper-fading channels

    KAUST Repository

    Ekin, Sabit; Yilmaz, Ferkan; Ç elebi, Hasari Burak; Qaraqe, Khalid A.; Alouini, Mohamed-Slim; Serpedin, Erchin

    2011-01-01

    Cognitive radio (CR) with spectrum-sharing feature is a promising technique to address the spectrum under-utilization problem in dynamically changing environments. In this paper, the achievable capacity gain of spectrum-sharing systems over dynamic fading environments is studied. To perform a general analysis, a theoretical fading model called hyper-fading model that is suitable to the dynamic nature of CR channel is proposed. Closed-form expressions of probability density function (PDF) and cumulative density function (CDF) of the signal-to-noise ratio (SNR) for secondary users (SUs) in spectrum-sharing systems are derived. In addition, the capacity gains achievable with spectrum-sharing systems in high and low power regions are obtained. The effects of different fading figures, average fading powers, interference temperatures, peak powers of secondary transmitters, and numbers of SUs on the achievable capacity are investigated. The analytical and simulation results show that the fading figure of the channel between SUs and primary base-station (PBS), which describes the diversity of the channel, does not contribute significantly to the system performance gain. © 2011 John Wiley & Sons, Ltd.

  14. Cooperative Cognitive Radio Systems over Nakagami-m Fading Channels

    KAUST Repository

    Hyadi, Amal

    2013-01-01

    . Using cooperation in a cognitive set up make the use of spectrum much more efficient. Moreover, it helps to extend the coverage area of the cognitive network and also to reduce the transmitting power and, thus, the generated interference. In this work

  15. Robust Automatic Modulation Classification Technique for Fading Channels via Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Jung Hwan Lee

    2017-08-01

    Full Text Available In this paper, we propose a deep neural network (DNN-based automatic modulation classification (AMC for digital communications. While conventional AMC techniques perform well for additive white Gaussian noise (AWGN channels, classification accuracy degrades for fading channels where the amplitude and phase of channel gain change in time. The key contributions of this paper are in two phases. First, we analyze the effectiveness of a variety of statistical features for AMC task in fading channels. We reveal that the features that are shown to be effective for fading channels are different from those known to be good for AWGN channels. Second, we introduce a new enhanced AMC technique based on DNN method. We use the extensive and diverse set of statistical features found in our study for the DNN-based classifier. The fully connected feedforward network with four hidden layers are trained to classify the modulation class for several fading scenarios. Numerical evaluation shows that the proposed technique offers significant performance gain over the existing AMC methods in fading channels.

  16. Wireless Energy Harvesting Using Signals from Multiple Fading Channels

    KAUST Repository

    Chen, Yunfei

    2017-08-01

    In this paper, we study the average, the probability density function and the cumulative distribution function of the harvested power. In the study, the signals are transmitted from multiple sources. The channels are assumed to be either Rician fading or Gamma-shadowed Rician fading. The received signals are then harvested by using either a single harvester for simultaneous transmissions or multiple harvesters for transmissions at different frequencies, antennas or time slots. Both linear and nonlinear models for the energy harvester at the receiver are examined. Numerical results are presented to show that, when a large amount of harvested power is required, a single harvester or the linear range of a practical nonlinear harvester are more efficient, to avoid power outage. Further, the power transfer strategy can be optimized for fixed total power. Specifically, for Rayleigh fading, the optimal strategy is to put the total power at the source with the best channel condition and switch off all other sources, while for general Rician fading, the optimum magnitudes and phases of the transmitting waveforms depend on the channel parameters.

  17. Secrecy Capacity Analysis over α−μ Fading Channels

    KAUST Repository

    Lei, Hongjiang

    2017-02-15

    In this work, we study the secrecy capacity of the classic Wyner’s model over the α − μ fading channels, where α and μ specify the nonlinearity and clustering of fading channels, respectively. The average secrecy capacity (ASC) is derived in closed-form by using the extended generalized bivariate Fox’s Hfunction (EGBFHF). Moreover, the asymptotic analysis of ASC in high signal-to-noise ratio (SNR) regime is conducted. The asymptotic results unveil that the ASC follows the scaling law of Θ(ln p), where p stands for the ratio between the average powers of main channels and eavesdropping channels. Moreover, the ASC can be enhanced by increasing the transmit SNR, while there exists a ceiling of ASC as the SNRs at both sides are improved simultaneously. The accuracy of the analytical results is validated by Monte-Carlo simulations. The numerical results show that rigorous fading channels are beneficial to the secrecy performance, that is, serious nonlinearity (small α) and sparse clustering (small μ) will lead to the improvement of ASC.

  18. Secrecy Capacity Analysis over α−μ Fading Channels

    KAUST Repository

    Lei, Hongjiang; Ansari, Imran Shafique; Pan, Gaofeng; Alomair, Basel; Alouini, Mohamed-Slim

    2017-01-01

    In this work, we study the secrecy capacity of the classic Wyner’s model over the α − μ fading channels, where α and μ specify the nonlinearity and clustering of fading channels, respectively. The average secrecy capacity (ASC) is derived in closed-form by using the extended generalized bivariate Fox’s Hfunction (EGBFHF). Moreover, the asymptotic analysis of ASC in high signal-to-noise ratio (SNR) regime is conducted. The asymptotic results unveil that the ASC follows the scaling law of Θ(ln p), where p stands for the ratio between the average powers of main channels and eavesdropping channels. Moreover, the ASC can be enhanced by increasing the transmit SNR, while there exists a ceiling of ASC as the SNRs at both sides are improved simultaneously. The accuracy of the analytical results is validated by Monte-Carlo simulations. The numerical results show that rigorous fading channels are beneficial to the secrecy performance, that is, serious nonlinearity (small α) and sparse clustering (small μ) will lead to the improvement of ASC.

  19. A Novel Simulation Model for Nonstationary Rice Fading Channels

    Directory of Open Access Journals (Sweden)

    Kaili Jiang

    2018-01-01

    Full Text Available In this paper, we propose a new simulator for nonstationary Rice fading channels under nonisotropic scattering scenarios, as well as the improved computation method of simulation parameters. The new simulator can also be applied on generating Rayleigh fading channels by adjusting parameters. The proposed simulator takes into account the smooth transition of fading phases between the adjacent channel states. The time-variant statistical properties of the proposed simulator, that is, the probability density functions (PDFs of envelope and phase, autocorrelation function (ACF, and Doppler power spectrum density (DPSD, are also analyzed and derived. Simulation results have demonstrated that our proposed simulator provides good approximation on the statistical properties with the corresponding theoretical ones, which indicates its usefulness for the performance evaluation and validation of the wireless communication systems under nonstationary and nonisotropic scenarios.

  20. General Switch-and-Stay Combing for Space Diversity over Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Yawgeng A. Chau

    2012-01-01

    Full Text Available Three multibranch switch-and-stay combining (MSSC schemes are analyzed for Rayleigh fading channels, where different decision statistics for antenna switching (i.e., switch statistic are used. Let a and r denote the fading factor and the received baseband signal of a diversity branch, respectively. In contrast to the traditional MSSC that uses the faded signal-to-noise ratio (SNR of diversity branches as the corresponding switch statistic, to enhance the receiver performance, |r|, |ar|, and a new linear combination of a and |r| are used as switch statistics of the three MSSC schemes, respectively. For performance evaluation, the bit error rate (BER of BPSK is derived for the three MSSC schemes over both independent-and-identical distributed (i.i.d. and independent-and-nonidentical distributed (i.n.d. Rayleigh fading channels. To pursue optimal performance, the locally optimal switch threshold (ST of each MSSC scheme is obtained for general i.n.d. fading channels. In addition, the locally optimal ST becomes the globally optimal ST for i.i.d. channels. Numerical results based on the analysis and simulations are presented. In contrast to the MSSC over i.i.d. fading channels, we will show that the performance of MSSC schemes can be improved by increasing the number of branches, if i.n.d. channels are considered.

  1. Performance analysis of adaptive modulation for cognitive radios with opportunistic access

    KAUST Repository

    Chen, Yunfei; Alouini, Mohamed-Slim; Tang, Liang

    2011-01-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing and primary user traffic for Nakagami-m fading channels. Both the adaptive continuous rate scheme

  2. Wireless Transmission of Big Data: A Transmission Time Analysis over Fading Channel

    KAUST Repository

    Wang, Wen-Jing; Yang, Hong-Chuan; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we investigate the transmission time of a large amount of data over fading wireless channel with adaptive modulation and coding (AMC). Unlike traditional transmission systems, where the transmission time of a fixed amount of data is typically regarded as a constant, the transmission time with AMC becomes a random variable, as the transmission rate varies with the fading channel condition. To facilitate the design and optimization of wireless transmission schemes for big data applications, we present an analytical framework to determine statistical characterizations for the transmission time of big data with AMC. In particular, we derive the exact statistics of transmission time over block fading channels. The probability mass function (PMF) and cumulative distribution function (CDF) of transmission time are obtained for both slow and fast fading scenarios. We further extend our analysis to Markov channel, where transmission time becomes the sum of a sequence of exponentially distributed time slots. Analytical expression for the probability density function (PDF) of transmission time is derived for both fast fading and slow fading scenarios. These analytical results are essential to the optimal design and performance analysis of future wireless transmission systems for big data applications.

  3. Wireless Transmission of Big Data: A Transmission Time Analysis over Fading Channel

    KAUST Repository

    Wang, Wen-Jing

    2018-04-10

    In this paper, we investigate the transmission time of a large amount of data over fading wireless channel with adaptive modulation and coding (AMC). Unlike traditional transmission systems, where the transmission time of a fixed amount of data is typically regarded as a constant, the transmission time with AMC becomes a random variable, as the transmission rate varies with the fading channel condition. To facilitate the design and optimization of wireless transmission schemes for big data applications, we present an analytical framework to determine statistical characterizations for the transmission time of big data with AMC. In particular, we derive the exact statistics of transmission time over block fading channels. The probability mass function (PMF) and cumulative distribution function (CDF) of transmission time are obtained for both slow and fast fading scenarios. We further extend our analysis to Markov channel, where transmission time becomes the sum of a sequence of exponentially distributed time slots. Analytical expression for the probability density function (PDF) of transmission time is derived for both fast fading and slow fading scenarios. These analytical results are essential to the optimal design and performance analysis of future wireless transmission systems for big data applications.

  4. On the capacity of multiple access and broadcast fading channels with full channel state information at low SNR

    KAUST Repository

    Rezki, Zouheir

    2014-01-01

    We study the throughput capacity region of the Gaussian multi-access (MAC) fading channel with perfect channel state information (CSI) at the receiver and at the transmitters, at low power regime. We show that it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points.More specifically, we show that at low power regime, the boundary surface of the capacity region shrinks to a single point corresponding to the sum rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Inspired from this result, we propose an on-off scheme, compute its achievable rate, and show that this scheme achieves single user capacity bounds of the MAC channel for a wide class of fading channels at asymptotically low power regime. We argue that this class of fading encompasses all known wireless channels for which the capacity region of the MAC channel has even a simpler expression in terms of users\\' average power constraints only. Using the duality of Gaussian MAC and broadcast channels (BC), we deduce a simple characterization of the BC capacity region at low power regime and show that for a class of fading channels (including Rayleigh fading), time-sharing is asymptotically optimal. © 2014 IEEE.

  5. Compensating for Channel Fading in DS-CDMA Communication Systems Employing ICA Neural Network Detectors

    Directory of Open Access Journals (Sweden)

    David Overbye

    2005-06-01

    Full Text Available In this paper we examine the impact of channel fading on the bit error rate of a DS-CDMA communication system. The system employs detectors that incorporate neural networks effecting methods of independent component analysis (ICA, subspace estimation of channel noise, and Hopfield type neural networks. The Rayleigh fading channel model is used. When employed in a Rayleigh fading environment, the ICA neural network detectors that give superior performance in a flat fading channel did not retain this superior performance. We then present a new method of compensating for channel fading based on the incorporation of priors in the ICA neural network learning algorithms. When the ICA neural network detectors were compensated using the incorporation of priors, they give significantly better performance than the traditional detectors and the uncompensated ICA detectors. Keywords: CDMA, Multi-user Detection, Rayleigh Fading, Multipath Detection, Independent Component Analysis, Prior Probability Hebbian Learning, Natural Gradient

  6. On the capacity of Rician fading channels with full channel state information at low SNR

    KAUST Repository

    Rezki, Zouheir

    2012-06-01

    The capacity of flat Rayleigh fading channels with full channel state information (CSI) at the transmitter and at the receiver at asymptotically low SNR has been recently shown to scale essentially as SNR log (1/SNR). In this paper, we investigate the Rician fading channel capacity with full CSI, and show that the capacity of this channel scales essentially as 1/1+K SNR log (1 /SNR), where K is the Rician factor. This characterization includes perfect CSI at both the transmitter and the receiver or noisy CSI at the transmitter and perfect CSI at the receiver. We also show that one-bit CSI at the transmitter is enough to achieve this asymptotic capacity using an On-Off power control scheme. Our framework may be seen as a generalization of previous works as it captures the Rayleigh fading channel as a special case by letting K goes to zero. © 2012 IEEE.

  7. Channel and delay estimation for base-station–based cooperative communications in frequency-selective fading channels

    Directory of Open Access Journals (Sweden)

    Hongjun Xu

    2011-07-01

    Full Text Available A channel and delay estimation algorithm for both positive and negative delay, based on the distributed Alamouti scheme, has been recently discussed for base-station–based asynchronous cooperative systems in frequency-flat fading channels. This paper extends the algorithm, the maximum likelihood estimator, to work in frequency-selective fading channels. The minimum mean square error (MMSE performance of channel estimation for both packet schemes and normal schemes is discussed in this paper. The symbol error rate (SER performance of equalisation and detection for both time-reversal space-time block code (STBC and single-carrier STBC is also discussed in this paper. The MMSE simulation results demonstrated the superior performance of the packet scheme over the normal scheme with an improvement in performance of up to 6 dB when feedback was used in the frequency-selective channel at a MSE of 3 x 10–2. The SER simulation results showed that, although both the normal and packet schemes achieved similar diversity orders, the packet scheme demonstrated a 1 dB coding gain over the normal scheme at a SER of 10–5. Finally, the SER simulations showed that the frequency-selective fading system outperformed the frequency-flat fading system.

  8. A Novel Criterion for Optimum MultilevelCoding Systems in Mobile Fading Channels

    Institute of Scientific and Technical Information of China (English)

    YUAN Dongfeng; WANG Chengxiang; YAO Qi; CAO Zhigang

    2001-01-01

    A novel criterion that is "capac-ity rule" and "mapping rule" for the design of op-timum MLC scheme over mobile fading channels isproposed.According to this theory,the performanceof multilevel coding with multistage decoding schemes(MLC/MSD) in mobile fading channels is investi-gated,in which BCH codes are chosen as componentcodes,and three mapping strategies with 8ASK mod-ulation are used.Numerical results indicate that whencode rates of component codes in MLC scheme are de-signed based on "capacity rule",the performance ofthe system with block partitioning (BP) is optimumfor Rayleigh fading channels,while the performance ofthe system with Ungerboeck partioning (UP) is bestfor AWGN channels.

  9. EFFECTS OF RICIAN FADING ON THE OPERATION OF AERONAUTICAL SATELLITE OFDM CHANNEL

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2016-06-01

    Full Text Available The aim of this study is to investigate the influence of Rician fading on messages transmission via the aeronautical satellite OFDM channel with adaptive modulation and the development of a method for estimating the parameters of such a channel. Methods: To study the effect of Rician fading on messages transmission via aeronautical satellite OFDM channel with adaptive modulation the original model of the communication channel “Aircraft-Satellite-Ground Station” was built using software package MATLAB Sіmulіnk. The model includes “Aircraft Transmitter”, “Uplink/Downlink Path”, “Satellite Transponder”, and “Ground Station Receiver”. Each modulator block in the modulation bank performs convolutional coding and puncturing using code rates of ½, ²/3, and ¾, data interleaving, BPSK, QPSK, 16-QAM, and 64-QAM modulation. Results: Dependences of Estimated channel SNR on the ratio between the power of the LOS component and the diffuse component, on the downlink gain and delay in the diffuse component for different Doppler spectrum types and Doppler frequency offsets were obtained. A method for estimating the parameters of the satellite channels with fading was proposed. Discussion: The realistic model of aeronautical satellite OFDM link with Rician fading is developed for the first time on a basis of IEEE 802.11a standard and used for channel parameters evaluation. Proposed in this article approach can be considered as a method for estimating parameters of the channel with fading.

  10. Space-Time Water-Filling for Composite MIMO Fading Channels

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We analyze the ergodic capacity and channel outage probability for a composite MIMO channel model, which includes both fast fading and shadowing effects. The ergodic capacity and exact channel outage probability with space-time water-filling can be evaluated through numerical integrations, which can be further simplified by using approximated empirical eigenvalue and maximal eigenvalue distribution of MIMO fading channels. We also compare the performance of space-time water-filling with spatial water-filling. For MIMO channels with small shadowing effects, spatial water-filling performs very close to space-time water-filling in terms of ergodic capacity. For MIMO channels with large shadowing effects, however, space-time water-filling achieves significantly higher capacity per antenna than spatial water-filling at low to moderate SNR regimes, but with a much higher channel outage probability. We show that the analytical capacity and outage probability results agree very well with those obtained from Monte Carlo simulations.

  11. Continuous-variable quantum key distribution in uniform fast-fading channels

    Science.gov (United States)

    Papanastasiou, Panagiotis; Weedbrook, Christian; Pirandola, Stefano

    2018-03-01

    We investigate the performance of several continuous-variable quantum key distribution protocols in the presence of uniform fading channels. These are lossy channels whose transmissivity changes according to a uniform probability distribution. We assume the worst-case scenario where an eavesdropper induces a fast-fading process, where she chooses the instantaneous transmissivity while the remote parties may only detect the mean statistical effect. We analyze coherent-state protocols in various configurations, including the one-way switching protocol in reverse reconciliation, the measurement-device-independent protocol in the symmetric configuration, and its extension to a three-party network. We show that, regardless of the advantage given to the eavesdropper (control of the fading), these protocols can still achieve high rates under realistic attacks, within reasonable values for the variance of the probability distribution associated with the fading process.

  12. On Outage Performance of Spectrum-Sharing Communication over M-Block Fading

    KAUST Repository

    Alabbasi, AbdulRahman

    2015-12-06

    In this paper, we consider a cognitive radio system in which a block-fading channel is assumed. Each transmission frame consists of M blocks and each block undergoes a different channel gain. Instantaneous channel state information about the interference links remains unknown to the primary and secondary users. We minimize the secondary user\\'s targeted outage probability over the block-fading channels. To protect the primary user, a statistical constraint on its targeted outage probability is enforced. The secondary user\\'s targeted outage region and the corresponding optimal power are derived. We also propose two sub-optimal power strategies and derive compact expressions for the corresponding outage probabilities. These probabilities are shown to be asymptotic lower and upper bounds on the outage probability. Utilizing these bounds, we derive the exact diversity order of the secondary user outage probability. Selected numerical results are presented to characterize the system\\'s behavior.

  13. On the Performance Analysis of Dual-Hop Mixed FSO/RF Systems

    KAUST Repository

    Zedini, Emna; Soury, Hamza; Alouini, Mohamed-Slim

    2016-01-01

    heterodyne detection and intensity modulation with direct detection (IM/DD), and the RF link experiences the Generalized Nakagami-m fading. Using amplify-and-forward fixed-gain relaying as well as channel-state-information(CSI)- assisted relaying, we derive

  14. A tone-aided dual vestigial sideband system for digital communications on fading channels

    Science.gov (United States)

    Hladik, Stephen M.; Saulnier, Gary J.; Rafferty, William

    1989-01-01

    A spectrally efficient tone-aided dual vestigial sideband (TA/DVSB) system for digital data communications on fading channels is presented and described analytically. This PSK (phase-shift-keying) system incorporates a feed-forward, tone-aided demodulation technique to compensate for Doppler frequency shift and channel- induced, multipath fading. In contrast to other tone-in-band-type systems, receiver synchronization is derived from the complete data VSBs. Simulation results for the Rician fading channel are presented. These results demonstrate the receiver's ability to mitigate performance degradation due to fading and to obtain proper data carrier synchronization, suggesting that the proposed TA/DVSB system has promise for this application. Simulated BER (bit-error rate) data indicate that the TA/DVSB system effectively alleviates the channel distortions of the land mobile satellite application.

  15. Fading Characteristics of Wireless Channel on High-Speed Railway in Hilly Terrain Scenario

    Directory of Open Access Journals (Sweden)

    Fengyu Luan

    2013-01-01

    Full Text Available This paper focuses on the fading characteristics of wireless channel on High-Speed Railway (HSR in hilly terrain scenario. Due to the rapid speed, the fading characteristics of HSR channel are highly correlated with time or Transmit-Receive distance and have their own special property. To investigate the fading characteristics, the measurement is conducted on the Guangzhou-Shenzhen passenger-dedicated line in China with the speed of 295 km/h in the data-collection area at 2.4 GHz. From the measured data, the amplitude of each path is estimated by using the Subspace-Alternating Generalized Expectation-Maximization (SAGE algorithm along with other parameters of channel impulse responses. Then the fading parameters, including path loss, shadow fading, and K-factor, are analysed. With the numerical results in the measurement and analysis, the fading characteristics have been revealed and modelled. It is supposed that this work has a promotion for HSR communication system design and improvement.

  16. On the low SNR capacity of MIMO fading channels with imperfect channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2014-06-01

    The capacity of multiple-input multiple-output (MIMO) Rayleigh fading channels with full knowledge of channel state information (CSI) at both the transmitter and the receiver (CSI-TR) has been shown recently to scale at low signal-to-noise ratio (SNR) essentially as SNR log(1/SNR), independently of the number of transmit and receive antennas. In this paper, we investigate the ergodic capacity of MIMO Rayleigh fading channel with estimated channel state information at the transmitter (CSI-T) and possibly imperfect channel state information at the receiver (CSI-R). Our framework can be seen as a generalization of previous works as it can capture the perfect CSI-TR as a special case when the estimation error variance goes to zero. In this paper, we mainly focus on the low SNR regime, and we show that the capacity scales as (1-α) SNR log(1/SNR), where α is the estimation error variance. This characterization shows the loss of performance due to error estimation over the perfect channel state information at both the transmitter and the receiver. As a by-product of our new analysis, we show that our framework can be also extended to characterize the capacity of MIMO Rician fading channels at low SNR with possibly imperfect CSI-T and CSI-R. © 1972-2012 IEEE.

  17. On the low SNR capacity of MIMO fading channels with imperfect channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2014-05-01

    The capacity of Multiple Input Multiple Output (MIMO) Rayleigh fading channels with full knowledge of channel state information (CSI) at both the transmitter and the receiver (CSI-TR) has been shown recently to scale at low Signal-to-Noise Ratio (SNR) essentially as SNR log(1=SNR), independently of the number of transmit and receive antennas. In this paper, we investigate the ergodic capacity of MIMO Rayleigh fading channel with estimated channel state information at the transmitter (CSI-T) and possibly imperfect channel state information at the receiver (CSI-R). Our framework can be seen as a generalization of previous works as it can capture the perfect CSI-TR as a special case when the estimation error variance goes to zero. In our work, we mainly focus on the low SNR regime and we show that the capacity scales as (1-α) SNR log(1=SNR), where α is the estimation error variance. This characterization shows the loss of performance due to error estimation over the perfect channel state information at both the transmitter and the receiver. As a by-product of our new analysis, we show that our framework can also be extended to characterize the capacity of MIMO Rician fading channels at low SNR with possibly imperfect CSI-T and CSI-R. © 2014 IFIP.

  18. Multiple-Symbol Decision-Feedback Space-Time Differential Decoding in Fading Channels

    Directory of Open Access Journals (Sweden)

    Wang Xiaodong

    2002-01-01

    Full Text Available Space-time differential coding (STDC is an effective technique for exploiting transmitter diversity while it does not require the channel state information at the receiver. However, like conventional differential modulation schemes, it exhibits an error floor in fading channels. In this paper, we develop an STDC decoding technique based on multiple-symbol detection and decision-feedback, which makes use of the second-order statistic of the fading processes and has a very low computational complexity. This decoding method can significantly lower the error floor of the conventional STDC decoding algorithm, especially in fast fading channels. The application of the proposed multiple-symbol decision-feedback STDC decoding technique in orthogonal frequency-division multiplexing (OFDM system is also discussed.

  19. On the capacity of multiaccess fading channels with full channel state information at low power regime

    KAUST Repository

    Rezki, Zouheir

    2013-06-01

    We study the throughput capacity region of the Gaussian multiaccess (MAC) fading channel with perfect channel state information (CSI) at the receiver (CSI-R) and at the transmitters (CSI-T), at low power regime. We show that it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power regime, the boundary surface of the capacity region shrinks to a single point corresponding to the sum rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Inspired from this result, we propose an on-off scheme, compute its achievable rate, and provide a necessary condition on the fading channels under which this scheme achieves single user capacity bounds of the MAC channel at asymptotically low power regime. We argue that this necessary condition characterizes a class of fading that encompasses all known wireless channels, where the capacity region of the MAC channel has a simple expression in terms of users\\' average power constraints only. © 2013 IEEE.

  20. Maximizing the spectral and energy efficiency of ARQ with a fixed outage probability

    KAUST Repository

    Hadjtaieb, Amir; Chelli, Ali; Alouini, Mohamed-Slim

    2015-01-01

    This paper studies the spectral and energy efficiency of automatic repeat request (ARQ) in Nakagami-m block-fading channels. The source encodes each packet into L similar sequences and transmits them to the destination in the L subsequent time slots

  1. Optimum Combining for Rapidly Fading Channels in Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Sonia Furman

    2003-10-01

    Full Text Available Research and technology in wireless communication systems such as radar and cellular networks have successfully implemented alternative design approaches that utilize antenna array techniques such as optimum combining, to mitigate the degradation effects of multipath in rapid fading channels. In ad hoc networks, these methods have not yet been exploited primarily due to the complexity inherent in the network's architecture. With the high demand for improved signal link quality, devices configured with omnidirectional antennas can no longer meet the growing need for link quality and spectrum efficiency. This study takes an empirical approach to determine an optimum combining antenna array based on 3 variants of interelement spacing. For rapid fading channels, the simulation results show that the performance in the network of devices retrofitted with our antenna arrays consistently exceeded those with an omnidirectional antenna. Further, with the optimum combiner, the performance increased by over 60% compared to that of an omnidirectional antenna in a rapid fading channel.

  2. Statistics for Ratios of Rayleigh, Rician, Nakagami-m, and Weibull Distributed Random Variables

    Directory of Open Access Journals (Sweden)

    Dragana Č. Pavlović

    2013-01-01

    Full Text Available The distributions of ratios of random variables are of interest in many areas of the sciences. In this brief paper, we present the joint probability density function (PDF and PDF of maximum of ratios μ1=R1/r1 and μ2=R2/r2 for the cases where R1, R2, r1, and r2 are Rayleigh, Rician, Nakagami-m, and Weibull distributed random variables. Random variables R1 and R2, as well as random variables r1 and r2, are correlated. Ascertaining on the suitability of the Weibull distribution to describe fading in both indoor and outdoor environments, special attention is dedicated to the case of Weibull random variables. For this case, analytical expressions for the joint PDF, PDF of maximum, PDF of minimum, and product moments of arbitrary number of ratios μi=Ri/ri, i=1,…,L are obtained. Random variables in numerator, Ri, as well as random variables in denominator, ri, are exponentially correlated. To the best of the authors' knowledge, analytical expressions for the PDF of minimum and product moments of {μi}i=1L are novel in the open technical literature. The proposed mathematical analysis is complemented by various numerical results. An application of presented theoretical results is illustrated with respect to performance assessment of wireless systems.

  3. Entanglement of Gaussian states and the applicability to quantum key distribution over fading channels

    International Nuclear Information System (INIS)

    Usenko, Vladyslav C; Filip, Radim; Heim, Bettina; Peuntinger, Christian; Wittmann, Christoffer; Marquardt, Christoph; Leuchs, Gerd

    2012-01-01

    Entanglement properties of Gaussian states of light as well as the security of continuous variable quantum key distribution with Gaussian states in free-space fading channels are studied. These qualities are shown to be sensitive to the statistical properties of the transmittance distribution in the cases when entanglement is strong or when channel excess noise is present. Fading, i.e. transmission fluctuations, caused by beam wandering due to atmospheric turbulence, is a frequent challenge in free-space communication. We introduce a method of fading discrimination and subsequent post-selection of the corresponding sub-states and show that it can improve the entanglement resource and restore the security of the key distribution over a realistic fading link. Furthermore, the optimal post-selection strategy in combination with an optimized entangled resource is shown to drastically increase the protocol's robustness to excess noise, which is confirmed for experimentally measured fading channel characteristics. The stability of the result against finite data ensemble size and imperfect channel estimation is also addressed. (paper)

  4. Novel asymptotic results on the high-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-06-01

    The exact analysis of the higher-order statistics of the channel capacity (i.e., higher-order ergodic capacity) often leads to complicated expressions involving advanced special functions. In this paper, we provide a generic framework for the computation of the higher-order statistics of the channel capacity over generalized fading channels. As such, this novel framework for the higher-order statistics results in simple, closed-form expressions which are shown to be asymptotically tight bounds in the high signal-to-noise ratio (SNR) regime of a variety of fading environment. In addition, it reveals the existence of differences (i.e., constant capacity gaps in log-domain) among different fading environments. By asymptotically tight bound we mean that the high SNR limit of the difference between the actual higher-order statistics of the channel capacity and its asymptotic bound (i.e., lower bound) tends to zero. The mathematical formalism is illustrated with some selected numerical examples that validate the correctness of our newly derived results. © 2012 IEEE.

  5. Secure Path Selection under Random Fading

    Directory of Open Access Journals (Sweden)

    Furqan Jameel

    2017-05-01

    Full Text Available Application-oriented Wireless Sensor Networks (WSNs promises to be one of the most useful technologies of this century. However, secure communication between nodes in WSNs is still an unresolved issue. In this context, we propose two protocols (i.e. Optimal Secure Path (OSP and Sub-optimal Secure Path (SSP to minimize the outage probability of secrecy capacity in the presence of multiple eavesdroppers. We consider dissimilar fading at the main and wiretap link and provide detailed evaluation of the impact of Nakagami-m and Rician-K factors on the secrecy performance of WSNs. Extensive simulations are performed to validate our findings. Although the optimal scheme ensures more security, yet the sub-optimal scheme proves to be a more practical approach to secure wireless links.

  6. On the low SNR capacity of maximum ratio combining over rician fading channels with full channel state information

    KAUST Repository

    Benkhelifa, Fatma; Rezki, Zouheir; Alouini, Mohamed-Slim

    2013-01-01

    In this letter, we study the ergodic capacity of a maximum ratio combining (MRC) Rician fading channel with full channel state information (CSI) at the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime and we show that the capacity scales as L ΩK+L SNRx log(1SNR), where Ω is the expected channel gain per branch, K is the Rician fading factor, and L is the number of diversity branches. We show that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-off power control scheme. Our framework can be seen as a generalization of recently established results regarding the fading-channels capacity characterization in the low-SNR regime. © 2012 IEEE.

  7. On the low SNR capacity of maximum ratio combining over rician fading channels with full channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2013-04-01

    In this letter, we study the ergodic capacity of a maximum ratio combining (MRC) Rician fading channel with full channel state information (CSI) at the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime and we show that the capacity scales as L ΩK+L SNRx log(1SNR), where Ω is the expected channel gain per branch, K is the Rician fading factor, and L is the number of diversity branches. We show that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-off power control scheme. Our framework can be seen as a generalization of recently established results regarding the fading-channels capacity characterization in the low-SNR regime. © 2012 IEEE.

  8. Ear-to-Ear On-Body Channel Fading in the ISM-band for Tangentially-Polarized Antennas

    DEFF Research Database (Denmark)

    Kvist, Søren Helstrup; Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2011-01-01

    The ear-to-ear on-body channel fading has been studied in the ISM-band. The ear-to-ear path gain was measured on six persons in an indoor environment for a duration of 200 s. The channel fading has been characterized in terms of empirical cumulative distribution functions (CDF), average fade...

  9. Space-Time Trellis Coded 8PSK Schemes for Rapid Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Salam A. Zummo

    2002-05-01

    Full Text Available This paper presents the design of 8PSK space-time (ST trellis codes suitable for rapid fading channels. The proposed codes utilize the design criteria of ST codes over rapid fading channels. Two different approaches have been used. The first approach maximizes the symbol-wise Hamming distance (HD between signals leaving from or entering to the same encoder′s state. In the second approach, set partitioning based on maximizing the sum of squared Euclidean distances (SSED between the ST signals is performed; then, the branch-wise HD is maximized. The proposed codes were simulated over independent and correlated Rayleigh fading channels. Coding gains up to 4 dB have been observed over other ST trellis codes of the same complexity.

  10. On the capacity of cognitive radio under limited channel state information over fading channels

    KAUST Repository

    Rezki, Zouheir

    2011-06-01

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel state information (CSI) of the secondary link, but knows only the statistics and an estimated version of the secondary transmitter-primary receiver (ST-PR) link, is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels (with continuous probability density function) under average and peak transmit-power constraints and with respect to two different interference constraints: an interference outage constraint and a signal-to-interference (SI) outage constraint. When applied to Rayleigh fading channels, our results show, for instance, that the interference constraint is harmful at high-power regime, whereas at low-power regime, it has a marginal impact and no-interference performance may be achieved. © 2011 IEEE.

  11. Outage probability analysis of a secondary user in an underlay dual hop cognitive amplify and forward relay network

    Directory of Open Access Journals (Sweden)

    Kiran Chandra

    2016-09-01

    Full Text Available This paper presents the performance evaluation of a secondary user (SU in an underlay cognitive dual-hop relaying system considering instantaneous as well as average channel information of the interfering links (from the secondary source and relay to the primary receiver and the data link from the secondary source to relay, to calculate transmit power and amplifying gain of secondary system. Comparison of above mentioned cases is done for two different scenarios – with direct path and without direct path. We evaluate the performance considering two different diversity techniques namely as selection combining (SC and maximum ratio combining (MRC. The effect of different fading channels (Rayleigh and Nakagami on the outage performance of the SU for the two diversity techniques is also shown. The outage probability of the SU is reduced when the diversity techniques are used (with direct path as compared to the outage probability of SU without direct path. We find that the outage performance is better for instantaneous channel information as compared to average channel information for the links. We observe that MRC provides better performance than SC. Furthermore, this work shows that the outage performance of the SU has been improved when the Nakagami fading channel (m = 2 is considered instead of Rayleigh fading channel.

  12. Optimal power allocation of a sensor node under different rate constraints

    KAUST Repository

    Ayala Solares, Jose Roberto

    2012-06-01

    The optimal transmit power of a sensor node while satisfying different rate constraints is derived. First, an optimization problem with an instantaneous transmission rate constraint is addressed. Next, the optimal power is analyzed, but now with an average transmission rate constraint. The optimal solution for a class of fading channels, in terms of system parameters, is presented and a suboptimal solution is also proposed for an easier, yet efficient, implementation. Insightful asymptotical analysis for both schemes, considering a Rayleigh fading channel, are shown. Finally, the optimal power allocation for a sensor node in a cognitive radio environment is analyzed where an optimum solution for a class of fading channels is again derived. In all cases, numerical results are provided for either Rayleigh or Nakagami-m fading channels. © 2012 IEEE.

  13. An Adaptive Channel Estimation Algorithm Using Time-Frequency Polynomial Model for OFDM with Fading Multipath Channels

    Directory of Open Access Journals (Sweden)

    Liu KJ Ray

    2002-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM is an effective technique for the future 3G communications because of its great immunity to impulse noise and intersymbol interference. The channel estimation is a crucial aspect in the design of OFDM systems. In this work, we propose a channel estimation algorithm based on a time-frequency polynomial model of the fading multipath channels. The algorithm exploits the correlation of the channel responses in both time and frequency domains and hence reduce more noise than the methods using only time or frequency polynomial model. The estimator is also more robust compared to the existing methods based on Fourier transform. The simulation shows that it has more than improvement in terms of mean-squared estimation error under some practical channel conditions. The algorithm needs little prior knowledge about the delay and fading properties of the channel. The algorithm can be implemented recursively and can adjust itself to follow the variation of the channel statistics.

  14. Modeling of Non-WSSUS Double-Rayleigh Fading Channels for Vehicular Communications

    Directory of Open Access Journals (Sweden)

    Carlos A. Gutiérrez

    2017-01-01

    Full Text Available This paper deals with the modeling of nonstationary time-frequency (TF dispersive multipath fading channels for vehicle-to-vehicle (V2V communication systems. As a main contribution, the paper presents a novel geometry-based statistical channel model that facilitates the analysis of the nonstationarities of V2V fading channels arising at a small-scale level due to the time-varying nature of the propagation delays. This new geometrical channel model has been formulated following the principles of plane wave propagation (PWP and assuming that the transmitted signal reaches the receiver antenna through double interactions with multiple interfering objects (IOs randomly located in the propagation area. As a consequence of such interactions, the first-order statistics of the channel model’s envelope are shown to follow a worse-than-Rayleigh distribution; specifically, they follow a double-Rayleigh distribution. General expressions are derived for the envelope and phase distributions, four-dimensional (4D TF correlation function (TF-CF, and TF-dependent delay and Doppler profiles of the proposed channel model. Such expressions are valid regardless of the underlying geometry of the propagation area. Furthermore, a closed-form solution of the 4D TF-CF is presented for the particular case of the geometrical two-ring scattering model. The obtained results provide new theoretical insights into the correlation and spectral properties of small-scale nonstationary V2V double-Rayleigh fading channels.

  15. Transmit selection algorithms for imperfect threshold-based receive MRC in the presence of co-channel interference

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-01-01

    The performance of transmit antenna selection for threshold-based maximal ratio combining (MRC) diversity receivers in the presence of multiple co-channel interfering signals is studied. The impact of imperfect channel estimation of desired user signals is considered, and the effect of phase and time misalignments between desired and undesired signals is incorporated in the analysis. Precise formulation for Nakagami-m faded interfering signals is presented. The analysis is applicable for arbitrary transmit antenna selection, which is based on the receiver combined signal-to-noise ratios (SNRs) or combined signal-to-interference-plus-noise ratios (SINRs) for different transmit channels. New expressions for the distribution of combined SINR and outage probability performance are derived considering SNR-based as well as SINR-based selection algorithms. The results can be used to study the performance of different system architectures under various channel conditions when the implementation complexity is of interest. ©2010 IEEE.

  16. Efficient incremental relaying for packet transmission over fading channels

    KAUST Repository

    Fareed, Muhammad Mehboob; Alouini, Mohamed-Slim; Yang, Hongchuan

    2014-01-01

    In this paper, we propose a novel relaying scheme for packet transmission over fading channels, which improves the spectral efficiency of cooperative diversity systems by utilizing limited feedback from the destination. Our scheme capitalizes

  17. Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-03-01

    In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present simple and efficient closed-form expression to the higher order moments of the channel capacity of dual hop transmission system with Rayleigh fading channels. In order to analyze the behavior of the higher order capacity statistics and investigate the usefulness of the mathematical analysis, some selected numerical and simulation results are presented. Our results are found to be in perfect agreement. © 2012 IEEE.

  18. On the computation of the higher-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-12-01

    The higher-order statistics (HOS) of the channel capacity μn=E[logn (1+γ end)], where n ∈ N denotes the order of the statistics, has received relatively little attention in the literature, due in part to the intractability of its analysis. In this letter, we propose a novel and unified analysis, which is based on the moment generating function (MGF) technique, to exactly compute the HOS of the channel capacity. More precisely, our mathematical formalism can be readily applied to maximal-ratio-combining (MRC) receivers operating in generalized fading environments. The mathematical formalism is illustrated by some numerical examples focusing on the correlated generalized fading environments. © 2012 IEEE.

  19. On the computation of the higher-order statistics of the channel capacity over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2012-01-01

    The higher-order statistics (HOS) of the channel capacity μn=E[logn (1+γ end)], where n ∈ N denotes the order of the statistics, has received relatively little attention in the literature, due in part to the intractability of its analysis. In this letter, we propose a novel and unified analysis, which is based on the moment generating function (MGF) technique, to exactly compute the HOS of the channel capacity. More precisely, our mathematical formalism can be readily applied to maximal-ratio-combining (MRC) receivers operating in generalized fading environments. The mathematical formalism is illustrated by some numerical examples focusing on the correlated generalized fading environments. © 2012 IEEE.

  20. Progressive transmission of images over fading channels using rate-compatible LDPC codes.

    Science.gov (United States)

    Pan, Xiang; Banihashemi, Amir H; Cuhadar, Aysegul

    2006-12-01

    In this paper, we propose a combined source/channel coding scheme for transmission of images over fading channels. The proposed scheme employs rate-compatible low-density parity-check codes along with embedded image coders such as JPEG2000 and set partitioning in hierarchical trees (SPIHT). The assignment of channel coding rates to source packets is performed by a fast trellis-based algorithm. We examine the performance of the proposed scheme over correlated and uncorrelated Rayleigh flat-fading channels with and without side information. Simulation results for the expected peak signal-to-noise ratio of reconstructed images, which are within 1 dB of the capacity upper bound over a wide range of channel signal-to-noise ratios, show considerable improvement compared to existing results under similar conditions. We also study the sensitivity of the proposed scheme in the presence of channel estimation error at the transmitter and demonstrate that under most conditions our scheme is more robust compared to existing schemes.

  1. Achievable capacity of a spectrum sharing system over hyper fading channels

    KAUST Repository

    Ekin, Sabit

    2009-11-01

    Cognitive radio with spectrum sharing feature is a promising technique to address the spectrum under-utilization problem in dynamically changing environments. In this paper, achievable capacity gain of spectrum sharing systems over dynamic fading environments is studied. For the analysis, a theoretical fading model called hyper fading model that is suitable to the dynamic nature of cognitive radio channel is proposed. Closed-form expression of probability density function (PDF) and cumulative density function (CDF) of the signal-to-noise ratio (SNR) for secondary users in spectrum sharing systems are derived. In addition, the capacity gains achievable with spectrum sharing systems in high and low power regions are obtained. Numerical simulations are performed to study the effects of different fading figures, average powers, interference temperature, and number of secondary users on the achievable capacity.

  2. Partial relay selection based on shadowing side information over generalized composite fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2011-11-01

    In this paper, in contrast to the relay selection protocols available in the literature, we propose a partial relay selection protocol utilizing only the shadowing side information of the relays instead of their full channel side information in order to select a relay in a dual-hop relaying system through the available limited feedback channels and power budget. We then presented an exact unified performance expression combining the average bit error probability, ergodic capacity, and moments-generating function of the proposed partial relay selection over generalized fading channels. Referring to the unified performance expression introduced in [1], we explicitly offer a generic unified performance expression that can be easily calculated and that is applicable to a wide variety of fading scenarios. Finally, as an illustration of the mathematical formalism, some numerical and simulation results are generated for an extended generalized-K fading environment, and these numerical and simulation results are shown to be in perfect agreement. © 2011 IEEE.

  3. Performance analysis of power-efficient adaptive interference cancelation in fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2010-01-01

    This paper analyzes the performance of a -steering scheme for highly correlated receive antennas in the presence of statistically unordered co-channel interferers over multipath fading channels. An adaptive activation of receive antennas according to the interfering signals fading conditions is considered in the analysis. Analytical expressions for various system performance measures, including the outage probability, average error probability of different signaling schemes, and raw moments of the combined signal-to-interference-plus-noise ratio (SINR) are obtained in exact forms. Numerical and simulation results for the performance-complexity tradeoff of this scheme is presented and then compared with that of full-size arbitrary interference cancelation and no cancelation scenarios. ©2010 IEEE.

  4. Performance analysis of power-efficient adaptive interference cancelation in fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-12-01

    This paper analyzes the performance of a -steering scheme for highly correlated receive antennas in the presence of statistically unordered co-channel interferers over multipath fading channels. An adaptive activation of receive antennas according to the interfering signals fading conditions is considered in the analysis. Analytical expressions for various system performance measures, including the outage probability, average error probability of different signaling schemes, and raw moments of the combined signal-to-interference-plus-noise ratio (SINR) are obtained in exact forms. Numerical and simulation results for the performance-complexity tradeoff of this scheme is presented and then compared with that of full-size arbitrary interference cancelation and no cancelation scenarios. ©2010 IEEE.

  5. On the Performance Analysis of Dual-Hop Mixed FSO/RF Systems

    KAUST Repository

    Zedini, Emna

    2016-02-03

    This paper presents novel results for the performance analysis of dual-hop free-space optical/radio frequency (FSO/RF) transmission systems where the FSO link is modeled by the Gamma-Gamma distribution with pointing error impairments and under both heterodyne detection and intensity modulation with direct detection (IM/DD), and the RF link experiences the Generalized Nakagami-m fading. Using amplify-and-forward fixed-gain relaying as well as channel-state-information(CSI)- assisted relaying, we derive closed-form expressions for the outage probability, the average bit-error rate (BER), and the ergodic capacity in terms of the bivariate H-Fox function. For a special case, we obtain simplified results for Nakagami-m fading channels in the RF link. Further, new asymptotic results for the outage probability and the average BER at high signal-to-noise ratio (SNR) regime are presented in terms of simple functions. Numerical and Monte-Carlo simulation results are provided to verify the accuracy of the newly proposed results, and a perfect agreement is observed.

  6. On the outage capacity of the block fading channel at low-power regime

    KAUST Repository

    Rezki, Zouheir

    2014-06-01

    Outage performance of the M-block fading with additive white Gaussian noise (BF-AWGN) is investigated at low-power regime. We consider delay-constrained constant-rate communications with perfect channel state information (CSI) at both the transmitter and the receiver (CSI-TR), under a short-term power constraint. We show that selection diversity that allocates all the power to the strongest block is asymptotically optimal. Then, we provide a simple characterization of the outage probability in the regime of interest. We quantify the reward due to CSI-TR over the constant-rate constant-power scheme and show that this reward increases with the delay constraint. For instance, for Rayleigh fading, we find that a power gain up to 4.3 dB is achievable. © 2014 IEEE.

  7. OPRA capacity bounds for selection diversity over generalized fading channels

    KAUST Repository

    Hanif, Muhammad Fainan; Yang, Hongchuan; Alouini, Mohamed-Slim

    2014-01-01

    , lower and upper bounds on OPRA capacity for selection diversity scheme are presented. These bounds hold for variety of fading channels including log-normal and generalized Gamma distributed models and have very simple analytic expressions for easy

  8. An information-guided channel-hopping scheme for block-fading channels with estimation errors

    KAUST Repository

    Yang, Yuli

    2010-12-01

    Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.

  9. Channel allocation and rate adaptation for relayed transmission over correlated fading channels

    KAUST Repository

    Hwang, Kyusung

    2009-09-01

    We consider, in this paper, channel allocation and rate adaptation scheme for relayed transmission over correlated fading channels via cross-layer design. Specifically, jointly considering the data link layer buffer occupancy and channel quality at both the source and relay nodes, we develop an optimal channel allocation and rate adaptation policy for a dual-hop relayed transmission. As such the overall transmit power for the relayed system is minimized while a target packet dropping rate (PDR) due to buffer over flows is guaranteed. In order to find such an optimal policy, the channel allocation and rate adaptation transmission framework is formulated as a constraint Markov decision process (CMDP). The PDR performance of the optimal policy is compared with that of two conventional suboptimal schemes, namely the channel quality based and the buffer occupancy based channel allocation schemes. Numerical results show that for a given power budget, the optimal scheme requires significantly less power than the conventional schemes in order to maintain a target PDR. ©2009 IEEE.

  10. Unified Performance Analysis of Mixed Line of Sight RF-FSO Fixed Gain Dual-Hop Transmission Systems

    KAUST Repository

    Zedini, Emna

    2014-04-03

    In the work, we carry out a unified performance analysis of a dual-hop fixed gain relay system over asymmetric links composed of both radio-frequency (RF) and unified free- space optics (FSO) under the effect of pointing errors. The RF link is modeled by the Nakagami-m fading channel and the FSO link by the Gamma-Gamma fading channel subject to both types of detection techniques (i.e. heterodyne detection and intensity modulation with direct detection (IM/DD)). In particular, we derive new unified closed-form expressions for the cumulative distribution function, the probability density function, the moment generation function, and the moments of the end-to-end signal-to-noise ratio of these systems in terms of the Meijer’s G function. Based on these formulas, we offer exact closed-form expressions for the outage probability, the higher-order amount of fading, and the average bit-error rate of a variety of binary modulations in terms of the Meijer’s G function. Further, an exact closed-form expression for the end-to-end ergodic capacity for the Nakagami-m-unified FSO relay links is derived in terms of the bivariate G function. All the given results are verified via Computer-based Monte-Carlo simulations.

  11. High SNR BER comparison of coherent and differentially coherent modulation schemes in lognormal fading channels

    KAUST Repository

    Song, Xuegui; Cheng, Julian; Alouini, Mohamed-Slim

    2014-01-01

    Using an auxiliary random variable technique, we prove that binary differential phase-shift keying and binary phase-shift keying have the same asymptotic bit-error rate performance in lognormal fading channels. We also show that differential quaternary phase-shift keying is exactly 2.32 dB worse than quaternary phase-shift keying over the lognormal fading channels in high signal-to-noise ratio regimes.

  12. High SNR BER comparison of coherent and differentially coherent modulation schemes in lognormal fading channels

    KAUST Repository

    Song, Xuegui

    2014-09-01

    Using an auxiliary random variable technique, we prove that binary differential phase-shift keying and binary phase-shift keying have the same asymptotic bit-error rate performance in lognormal fading channels. We also show that differential quaternary phase-shift keying is exactly 2.32 dB worse than quaternary phase-shift keying over the lognormal fading channels in high signal-to-noise ratio regimes.

  13. Transmit selection for imperfect threshold-based receive MRC in Rayleigh fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-01-01

    The performance of multiple-antenna diversity systems in which the receiver combines signal replicas per thresholdbased maximal ratio combining (MRC) and the transmitter uses only a single antenna according to receive combined signal strength is studied. The impact of imperfect channel estimation is considered when the received signal replicas undergo independent and flat multipath fading. The analysis is applicable for arbitrary transmit antenna selection when the multiple-antenna channels experience identically distributed and non-identically distributed Rayleigh fading conditions. New closed-form expressions for the combined SNR statistics and some performance measures are presented. The system models adopted herein and the presented analytical results can be used to study the performance of different system architectures under various channel conditions when the implementation complexity is of interest. © 2009 IEEE.

  14. Composite and Cascaded Generalized-K Fading Channel Modeling and Their Diversity and Performance Analysis

    KAUST Repository

    Ansari, Imran Shafique

    2010-12-01

    The introduction of new schemes that are based on the communication among nodes has motivated the use of composite fading models due to the fact that the nodes experience different multipath fading and shadowing statistics, which subsequently determines the required statistics for the performance analysis of different transceivers. The end-to-end signal-to-noise-ratio (SNR) statistics plays an essential role in the determination of the performance of cascaded digital communication systems. In this thesis, a closed-form expression for the probability density function (PDF) of the end-end SNR for independent but not necessarily identically distributed (i.n.i.d.) cascaded generalized-K (GK) composite fading channels is derived. The developed PDF expression in terms of the Meijer-G function allows the derivation of subsequent performance metrics, applicable to different modulation schemes, including outage probability, bit error rate for coherent as well as non-coherent systems, and average channel capacity that provides insights into the performance of a digital communication system operating in N cascaded GK composite fading environment. Another line of research that was motivated by the introduction of composite fading channels is the error performance. Error performance is one of the main performance measures and derivation of its closed-form expression has proved to be quite involved for certain systems. Hence, in this thesis, a unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing i.n.i.d. GK fading is derived in terms of the extended generalized bivariate Meijer G-function.

  15. Higher order capacity statistics of multi-hop transmission systems over Rayleigh fading channels

    KAUST Repository

    Yilmaz, Ferkan; Tabassum, Hina; Alouini, Mohamed-Slim

    2012-01-01

    In this paper, we present an exact analytical expression to evaluate the higher order statistics of the channel capacity for amplify and forward (AF) multihop transmission systems operating over Rayleigh fading channels. Furthermore, we present

  16. Maximizing Expected Achievable Rates for Block-Fading Buffer-Aided Relay Channels

    KAUST Repository

    Shaqfeh, Mohammad

    2016-05-25

    In this paper, the long-term average achievable rate over block-fading buffer-aided relay channels is maximized using a hybrid scheme that combines three essential transmission strategies, which are decode-and-forward, compress-and-forward, and direct transmission. The proposed hybrid scheme is dynamically adapted based on the channel state information. The integration and optimization of these three strategies provide a more generic and fundamental solution and give better achievable rates than the known schemes in the literature. Despite the large number of optimization variables, the proposed hybrid scheme can be optimized using simple closed-form formulas that are easy to apply in practical relay systems. This includes adjusting the transmission rate and compression when compress-and-forward is the selected strategy based on the channel conditions. Furthermore, in this paper, the hybrid scheme is applied to three different models of the Gaussian block-fading buffer-aided relay channels, depending on whether the relay is half or full duplex and whether the source and the relay have orthogonal or non-orthogonal channel access. Several numerical examples are provided to demonstrate the achievable rate results and compare them to the upper bounds of the ergodic capacity for each one of the three channel models under consideration.

  17. Maximizing Expected Achievable Rates for Block-Fading Buffer-Aided Relay Channels

    KAUST Repository

    Shaqfeh, Mohammad; Zafar, Ammar; Alnuweiri, Hussein; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, the long-term average achievable rate over block-fading buffer-aided relay channels is maximized using a hybrid scheme that combines three essential transmission strategies, which are decode-and-forward, compress-and-forward, and direct transmission. The proposed hybrid scheme is dynamically adapted based on the channel state information. The integration and optimization of these three strategies provide a more generic and fundamental solution and give better achievable rates than the known schemes in the literature. Despite the large number of optimization variables, the proposed hybrid scheme can be optimized using simple closed-form formulas that are easy to apply in practical relay systems. This includes adjusting the transmission rate and compression when compress-and-forward is the selected strategy based on the channel conditions. Furthermore, in this paper, the hybrid scheme is applied to three different models of the Gaussian block-fading buffer-aided relay channels, depending on whether the relay is half or full duplex and whether the source and the relay have orthogonal or non-orthogonal channel access. Several numerical examples are provided to demonstrate the achievable rate results and compare them to the upper bounds of the ergodic capacity for each one of the three channel models under consideration.

  18. On Amplify-and-Forward Relaying Over Hyper-Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    S. H. Alvi

    2014-12-01

    Full Text Available Relayed transmission holds promise for the next generation of wireless communication systems due to the performance gains it can provide over non-cooperative systems. Recently hyper-Rayleigh fading, which represents fading conditions more severe than Rayleigh fading, has received attention in the context of many practical communication scenarios. Though power allocation for Amplify-and-Forward (AF relaying networks has been studied in the literature, a theoretical analysis of the power allocation problem for hyper-Rayleigh fading channels is a novel contribution of this work. We develop an optimal power allocation (OPA strategy for a dual-hop AF relaying network in which the relay-destination link experiences hyper-Rayleigh fading. A new closed-form expression for the average signal-to-noise ratio (SNR at destination is derived and it is shown to provide a new upper-bound on the average SNR at destination, which outperforms a previously proposed upper-bound based on the well-known harmonic-geometric mean inequality. An OPA across the source and relay nodes, subject to a sum-power constraint, is proposed and it is shown to provide measurable performance gains in average SNR and SNR outage at the destination relative to the case of equal power allocation.

  19. Radio resource allocation over fading channels under statistical delay constraints

    CERN Document Server

    Le-Ngoc, Tho

    2017-01-01

    This SpringerBrief presents radio resource allocation schemes for buffer-aided communications systems over fading channels under statistical delay constraints in terms of upper-bounded average delay or delay-outage probability. This Brief starts by considering a source-destination communications link with data arriving at the source transmission buffer. The first scenario, the joint optimal data admission control and power allocation problem for throughput maximization is considered, where the source is assumed to have a maximum power and an average delay constraints. The second scenario, optimal power allocation problems for energy harvesting (EH) communications systems under average delay or delay-outage constraints are explored, where the EH source harvests random amounts of energy from renewable energy sources, and stores the harvested energy in a battery during data transmission. Online resource allocation algorithms are developed when the statistical knowledge of the random channel fading, data arrivals...

  20. Opportunistic relaying in multipath and slow fading channel: Relay selection and optimal relay selection period

    KAUST Repository

    Sungjoon Park,

    2011-11-01

    In this paper we present opportunistic relay communication strategies of decode and forward relaying. The channel that we are considering includes pathloss, shadowing, and fast fading effects. We find a simple outage probability formula for opportunistic relaying in the channel, and validate the results by comparing it with the exact outage probability. Also, we suggest a new relay selection algorithm that incorporates shadowing. We consider a protocol of broadcasting the channel gain of the previously selected relay. This saves resources in slow fading channel by reducing collisions in relay selection. We further investigate the optimal relay selection period to maximize the throughput while avoiding selection overhead. © 2011 IEEE.

  1. Capacity bounds for kth best path selection over generalized fading channels

    KAUST Repository

    Hanif, Muhammad Fainan; Yang, Hongchuan; Alouini, Mohamed-Slim

    2014-01-01

    Exact ergodic capacity calculation for fading wireless channels typically involves time-consuming numerical evaluation of infinite integrals. In this paper, lower and upper bounds on ergodic capacity for kth best path are presented. These bounds

  2. Relay selection in cooperative communication systems over continuous time-varying fading channel

    Directory of Open Access Journals (Sweden)

    Ke Geng

    2017-02-01

    Full Text Available In this paper, we study relay selection under outdated channel state information (CSI in a decode-and-forward (DF cooperative system. Unlike previous researches on cooperative communication under outdated CSI, we consider that the channel varies continuously over time, i.e., the channel not only changes between relay selection and data transmission but also changes during data transmission. Thus the level of accuracy of the CSI used in relay selection degrades with data transmission. We first evaluate the packet error rate (PER of the cooperative system under continuous time-varying fading channel, and find that the PER performance deteriorates more seriously under continuous time-varying fading channel than when the channel is assumed to be constant during data transmission. Then, we propose a repeated relay selection (RRS strategy to improve the PER performance, in which the forwarded data is divided into multiple segments and relay is reselected before the transmission of each segment based on the updated CSI. Finally, we propose a combined relay selection (CRS strategy which takes advantage of three different relay selection strategies to further mitigate the impact of outdated CSI.

  3. Turbo coding, turbo equalisation and space-time coding for transmission over fading channels

    CERN Document Server

    Hanzo, L; Yeap, B

    2002-01-01

    Against the backdrop of the emerging 3G wireless personal communications standards and broadband access network standard proposals, this volume covers a range of coding and transmission aspects for transmission over fading wireless channels. It presents the most important classic channel coding issues and also the exciting advances of the last decade, such as turbo coding, turbo equalisation and space-time coding. It endeavours to be the first book with explicit emphasis on channel coding for transmission over wireless channels. Divided into 4 parts: Part 1 - explains the necessary background for novices. It aims to be both an easy reading text book and a deep research monograph. Part 2 - provides detailed coverage of turbo conventional and turbo block coding considering the known decoding algorithms and their performance over Gaussian as well as narrowband and wideband fading channels. Part 3 - comprehensively discusses both space-time block and space-time trellis coding for the first time in literature. Par...

  4. The capacity of the cascaded fading channel in the low power regime

    KAUST Repository

    Benkhelifa, Fatma

    2014-04-01

    In this paper, we present a simple way to compute the ergodic capacity of cascaded channels with perfect channel state information at both the transmitter and the receiver. We apply our generic results to the Rayleigh-double fading channel, and to the free-space optical channel in the presence of pointing errors and we express their low signal-to-noise ratio capacities. We mainly focus on the low signal-to-noise ratio range.

  5. Two-way CSI-assisted AF relaying with HPA nonlinearity

    KAUST Repository

    Qi, Jian

    2015-09-11

    In this paper, we investigate half-duplex two-way dual-hop channel state information (CSI)-assisted amplify-andforward (AF) relaying in the presence of high-power amplifier (HPA) nonlinearity at relays. The expression for the end-toend signal-to-noise ratio (SNR) is derived as per the modified system model by taking into account the interference caused by relaying scheme and HPA nonlinearity. The system performance of the considered relaying network is evaluated in terms of average symbol error probability (SEP) in Nakagami-m fading channels, by making use of the moment-generating function (MGF) approach. Numerical results are provided and show the effects of several parameters, such as quadrature amplitude modulation (QAM) order, number of relays, HPA parameters, and Nakagami parameter, on performance. © 2015 IEEE.

  6. Secure Multiple-Antenna Block-Fading Wiretap Channels with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal

    2017-07-18

    In this paper, we investigate the ergodic secrecy capacity of a block-fading wiretap channel with limited channel knowledge at the transmitter. We consider that the legitimate receiver, the eavesdropper and the transmitter are equipped with multiple antennas and that the receiving nodes are aware of their respective channel matrices. The transmitter, on the other hand, is only provided by a B-bit feedback of the main channel state information. The feedback bits are sent by the legitimate receiver, at the beginning of each fading block, over an error-free public link with limited capacity. The statistics of the main and the eavesdropper channel state information are known at all nodes. Assuming an average transmit power constraint, we establish upper and lower bounds on the ergodic secrecy capacity. Then, we present a framework to design the optimal codebooks for feedback and transmission. In addition, we show that the proposed lower and upper bounds coincide asymptotically as the capacity of the feedback link becomes large, i.e. $B \\ ightarrow \\\\infty$ ; hence, fully characterizing the ergodic secrecy capacity in this case. Besides, we analyze the asymptotic behavior of the presented secrecy rates, at high Signal-to-Noise Ratio (SNR), and evaluate the gap between the bounds.

  7. Secure Multiple-Antenna Block-Fading Wiretap Channels with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we investigate the ergodic secrecy capacity of a block-fading wiretap channel with limited channel knowledge at the transmitter. We consider that the legitimate receiver, the eavesdropper and the transmitter are equipped with multiple antennas and that the receiving nodes are aware of their respective channel matrices. The transmitter, on the other hand, is only provided by a B-bit feedback of the main channel state information. The feedback bits are sent by the legitimate receiver, at the beginning of each fading block, over an error-free public link with limited capacity. The statistics of the main and the eavesdropper channel state information are known at all nodes. Assuming an average transmit power constraint, we establish upper and lower bounds on the ergodic secrecy capacity. Then, we present a framework to design the optimal codebooks for feedback and transmission. In addition, we show that the proposed lower and upper bounds coincide asymptotically as the capacity of the feedback link becomes large, i.e. $B \\rightarrow \\infty$ ; hence, fully characterizing the ergodic secrecy capacity in this case. Besides, we analyze the asymptotic behavior of the presented secrecy rates, at high Signal-to-Noise Ratio (SNR), and evaluate the gap between the bounds.

  8. Outage capacity of multicarrier systems

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2010-01-01

    The probability density function and the cumulative distribution function of the product of shifted Gamma variates are obtained in terms of the generalized Fox's H function. Using these new results, the exact outage capacity of multi carrier transmission through a slow Nakagami-m fading channel is presented. Moreover, it is shown that analytical and simulation results are in perfect agreement. © 2009 IEEE.

  9. Closed-form Capacity Expressions for the α-μ Fading Channel with SC Diversity under Different Adaptive Transmission Strategies

    Science.gov (United States)

    Mohamed, Refaat; Ismail, Mahmoud H.; Newagy, Fatma; Mourad, Heba M.

    2013-03-01

    Stemming from the fact that the α-μ fading distribution is one of the very general fading models used in the literature to describe the small scale fading phenomenon, in this paper, closed-form expressions for the Shannon capacity of the α-μ fading channel operating under four main adaptive transmission strategies are derived assuming integer values for μ. These expressions are derived for the case of no diversity as well as for selection combining diversity with independent and identically distributed branches. The obtained expressions reduce to those previously derived in the literature for the Weibull as well as the Rayleigh fading cases, which are both special cases of the α-μ channel. Numerical results are presented for the capacity under the four adaptive transmission strategies and the effect of the fading parameter as well as the number of diversity branches is studied.

  10. Design and Performance Analysis of MISO-ORM-DCSK System over Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2016-01-01

    Full Text Available A novel chaotic communication system, named Orthogonality-based Reference Modulated-Differential Chaos Shift Keying (ORM-DCSK, is proposed to enhance the performance of RM-DCSK. By designing an orthogonal chaotic generator (OCG, the intrasignal interference components in RM-DCSK are eliminated. Also, the signal frame format is expanded so the average bit energy is reduced. As a result, the proposed system has less interference in decision variables. Furthermore, to investigate the bit error rate (BER performance over Rayleigh fading channels, the MISO-ORM-DCSK is studied. The BER expressions of the new system are derived and analyzed over AWGN channel and multipath Rayleigh fading channel. All simulation results not only show that the proposed system can obtain significant improvement but also verify the analysis in theory.

  11. On the Symbol Error Rate of M-ary MPSK over Generalized Fading Channels with Additive Laplacian Noise

    KAUST Repository

    Soury, Hamza

    2015-01-07

    This work considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox’s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations [1].

  12. On the Symbol Error Rate of M-ary MPSK over Generalized Fading Channels with Additive Laplacian Noise

    KAUST Repository

    Soury, Hamza; Alouini, Mohamed-Slim

    2015-01-01

    This work considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox’s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations [1].

  13. Energy-harvesting in cooperative AF relaying networks over log-normal fading channels

    KAUST Repository

    Rabie, Khaled M.; Salem, Abdelhamid; Alsusa, Emad; Alouini, Mohamed-Slim

    2016-01-01

    Energy-harvesting (EH) and wireless power transfer are increasingly becoming a promising source of power in future wireless networks and have recently attracted a considerable amount of research, particularly on cooperative two-hop relay networks in Rayleigh fading channels. In contrast, this paper investigates the performance of wireless power transfer based two-hop cooperative relaying systems in indoor channels characterized by log-normal fading. Specifically, two EH protocols are considered here, namely, time switching relaying (TSR) and power splitting relaying (PSR). Our findings include accurate analytical expressions for the ergodic capacity and ergodic outage probability for the two aforementioned protocols. Monte Carlo simulations are used throughout to confirm the accuracy of our analysis. The results show that increasing the channel variance will always provide better ergodic capacity performance. It is also shown that a good selection of the EH time in the TSR protocol, and the power splitting factor in the PTS protocol, is the key to achieve the best system performance. © 2016 IEEE.

  14. Energy-harvesting in cooperative AF relaying networks over log-normal fading channels

    KAUST Repository

    Rabie, Khaled M.

    2016-07-26

    Energy-harvesting (EH) and wireless power transfer are increasingly becoming a promising source of power in future wireless networks and have recently attracted a considerable amount of research, particularly on cooperative two-hop relay networks in Rayleigh fading channels. In contrast, this paper investigates the performance of wireless power transfer based two-hop cooperative relaying systems in indoor channels characterized by log-normal fading. Specifically, two EH protocols are considered here, namely, time switching relaying (TSR) and power splitting relaying (PSR). Our findings include accurate analytical expressions for the ergodic capacity and ergodic outage probability for the two aforementioned protocols. Monte Carlo simulations are used throughout to confirm the accuracy of our analysis. The results show that increasing the channel variance will always provide better ergodic capacity performance. It is also shown that a good selection of the EH time in the TSR protocol, and the power splitting factor in the PTS protocol, is the key to achieve the best system performance. © 2016 IEEE.

  15. Moments Based Framework for Performance Analysis of One-Way/Two-Way CSI-Assisted AF Relaying

    KAUST Repository

    Xia, Minghua

    2012-09-01

    When analyzing system performance of conventional one-way relaying or advanced two-way relaying, these two techniques are always dealt with separately and, thus, their performance cannot be compared efficiently. Moreover, for ease of mathematical tractability, channels considered in such studies are generally assumed to be subject to Rayleigh fading or to be Nakagami-$m$ channels with integer fading parameters, which is impractical in typical urban environments. In this paper, we propose a unified moments-based framework for general performance analysis of channel-state-information (CSI) assisted amplify-and-forward (AF) relaying systems. The framework is applicable to both one-way and two-way relaying over arbitrary Nakagami-$m$ fading channels, and it includes previously reported results as special cases. Specifically, the mathematical framework is firstly developed under the umbrella of the weighted harmonic mean of two Gamma-distributed variables in conjunction with the theory of Pad\\\\\\'e approximants. Then, general expressions for the received signal-to-noise ratios of the users in one-way/two-way relaying systems and the corresponding moments, moment generation function, and cumulative density function are established. Subsequently, the mathematical framework is applied to analyze, compare, and gain insights into system performance of one-way and two-way relaying techniques, in terms of outage probability, average symbol error probability, and achievable data rate. All analytical results are corroborated by simulation results as well as previously reported results whenever available, and they are shown to be efficient tools to evaluate and compare system performance of one-way and two-way relaying.

  16. On the symbol error rate of M-ary MPSK over generalized fading channels with additive Laplacian noise

    KAUST Repository

    Soury, Hamza

    2014-06-01

    This paper considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox\\'s H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations. © 2014 IEEE.

  17. On the symbol error rate of M-ary MPSK over generalized fading channels with additive Laplacian noise

    KAUST Repository

    Soury, Hamza; Alouini, Mohamed-Slim

    2014-01-01

    This paper considers the symbol error rate of M-ary phase shift keying (MPSK) constellations over extended Generalized-K fading with Laplacian noise and using a minimum distance detector. A generic closed form expression of the conditional and the average probability of error is obtained and simplified in terms of the Fox's H function. More simplifications to well known functions for some special cases of fading are also presented. Finally, the mathematical formalism is validated with some numerical results examples done by computer based simulations. © 2014 IEEE.

  18. Noise-based frequency offset modulation in wideband frequency-selective fading channels

    NARCIS (Netherlands)

    Meijerink, Arjan; Cotton, S.L.; Bentum, Marinus Jan; Scanlon, W.G.

    2009-01-01

    A frequency offset modulation scheme using wideband noise carriers is considered. The main advantage of such a scheme is that it enables fast receiver synchronization without channel adaptation, while providing robustness to multipath fading and in-band interference. This is important for low-power

  19. Outage capacity of multicarrier systems

    KAUST Repository

    Yilmaz, Ferkan

    2010-01-01

    The probability density function and the cumulative distribution function of the product of shifted Gamma variates are obtained in terms of the generalized Fox\\'s H function. Using these new results, the exact outage capacity of multi carrier transmission through a slow Nakagami-m fading channel is presented. Moreover, it is shown that analytical and simulation results are in perfect agreement. © 2009 IEEE.

  20. Large-Scale Fading and Time Dispersion Parameters of UWB Channel in Underground Mines

    Directory of Open Access Journals (Sweden)

    Abdellah Chehri

    2008-01-01

    Full Text Available RF channel measurements in underground mines have important applications in the field of mobile communications for improving operational efficiency and worker safety. This paper presents an experimental study of the ultra wideband (UWB radio channel, based on extensive sounding campaigns covering the underground mine environment. Measurements were carried out in the frequency band of 2–5 GHz. Various communication links were considered including both line-of-sight (LOS and non-LOS (NLOS scenarios. In this paper, we are interested in more details of the variations of the RMS delay spread and mean excess delay with Tx/Rx separation, and the variation of RMS with mean excess. The distance dependency of path loss and shadowing fading statistics is also investigated. To give an idea about the behaviour of UWB channel in underground mines, a comparison of our approach with other published works is given including path loss exponent, shadow fading variance, mean excess delay, and RMS delay spread.

  1. Delay-limited capacity of fading multiple access and broadcast channels in the low power regime

    KAUST Repository

    Rezki, Zouheir

    2015-09-11

    We study delay-limited (also called zero-outage) capacity region of the fading multi-access channel (MAC) with Gaussian noise and perfect channel state information (CSI) at the receiver and at the transmitters (CSI-TR), in the low-power regime. We show that for fading channels where the MAC capacity region is strictly positive, it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power, the boundary surface of the capacity region shrinks to a single point corresponding to the sum-rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Using the duality of the Gaussian MAC and broadcast channels (BC), we show that time-sharing (or time division multiple access (TDMA)) is asymptotically optimal. © 2015 IEEE.

  2. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel

    Science.gov (United States)

    Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua

    2018-06-01

    The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.

  3. OPRA capacity bounds for selection diversity over generalized fading channels

    KAUST Repository

    Hanif, Muhammad Fainan

    2014-05-01

    Channel side information at the transmitter can increase the average capacity by enabling optimal power and rate adaptation. The resulting optimal power and rate adaptation (OPRA) capacity rarely has a closed-form analytic expression. In this paper, lower and upper bounds on OPRA capacity for selection diversity scheme are presented. These bounds hold for variety of fading channels including log-normal and generalized Gamma distributed models and have very simple analytic expressions for easy evaluation even for kth best path selection. Some selected numerical results show that the newly proposed bounds closely approximate the actual OPRA capacity. © 2014 IEEE.

  4. Outage and BER analysis for ultrawideband-based WPAN in Nakagami-m fading channels

    KAUST Repository

    Mehbodniya, Abolfazl; Aissa, Sonia

    2011-01-01

    layer. Approximate expressions for the outage probability and average bit error rate (BER) are derived in closed form for the MB-OFDM target receiver, taking into account multi-user interference (MUI), as well as external interference in the form of time

  5. Outage and BER analysis for ultrawideband-based WPAN in Nakagami-m fading channels

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-09-01

    This paper presents a performance analysis of multiband orthogonal frequency-division multiplexing (MB-OFDM) in ultra wideband (UWB)-based personal area networks (UPANs). A UPAN consists of devices with different UWB technologies at the physical layer. Approximate expressions for the outage probability and average bit error rate (BER) are derived in closed form for the MB-OFDM target receiver, taking into account multi-user interference (MUI), as well as external interference in the form of time-hopping (TH) and direct-sequence (DS) UWB signals. © 2010 IEEE.

  6. Outage performance of Decode-and-Forward partial selection in Nakagami-m fading channels

    KAUST Repository

    Benjillali, Mustapha; Alouini, Mohamed-Slim

    2010-01-01

    , selects the best relay to increase the chances of successful decoding and hence the possibility of cooperation when the direct link is also available. After deriving the exact distribution of the sum of two gamma variates with the same shape parameter

  7. Efficient incremental relaying for packet transmission over fading channels

    KAUST Repository

    Fareed, Muhammad Mehboob

    2014-07-01

    In this paper, we propose a novel relaying scheme for packet transmission over fading channels, which improves the spectral efficiency of cooperative diversity systems by utilizing limited feedback from the destination. Our scheme capitalizes on the fact that relaying is only required when direct transmission suffers deep fading. We calculate the packet error rate for the proposed efficient incremental relaying (EIR) scheme with both amplify and forward and decode and forward relaying. We compare the performance of the EIR scheme with the threshold-based incremental relaying (TIR) scheme. It is shown that the efficiency of the TIR scheme is better for lower values of the threshold. However, the efficiency of the TIR scheme for higher values of threshold is outperformed by the EIR. In addition, three new threshold-based adaptive EIR are devised to further improve the efficiency of the EIR scheme. We calculate the packet error rate and the efficiency of these new schemes to provide the analytical insight. © 2014 IEEE.

  8. A Unified Simulation Approach for the Fast Outage Capacity Evaluation over Generalized Fading Channels

    KAUST Repository

    Rached, Nadhir B.

    2016-01-06

    The outage capacity (OC) is among the most important performance metrics of communication systems over fading channels. The evaluation of the OC, when equal gain combining (EGC) or maximum ratio combining (MRC) diversity techniques are employed, boils down to computing the cumulative distribution function (CDF) of the sum of channel envelopes (equivalently amplitudes) for EGC or channel gains (equivalently squared enveloped/ amplitudes) for MRC. Closed-form expressions of the CDF of the sum of many generalized fading variates are generally unknown and constitute open problems. We develop a unified hazard rate twisting Importance Sampling (IS) based approach to efficiently estimate the CDF of the sum of independent arbitrary variates. The proposed IS estimator is shown to achieve an asymptotic optimality criterion, which clearly guarantees its efficiency. Some selected simulation results are also shown to illustrate the substantial computational gain achieved by the proposed IS scheme over crude Monte Carlo simulations.

  9. Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks.

    Science.gov (United States)

    Qian, Xiaomin; Hao, Li; Ni, Dadong; Tran, Quang Thanh

    2018-02-06

    An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios.

  10. A Novel Simulator of Nonstationary Random MIMO Channels in Rayleigh Fading Scenarios

    Directory of Open Access Journals (Sweden)

    Qiuming Zhu

    2016-01-01

    Full Text Available For simulations of nonstationary multiple-input multiple-output (MIMO Rayleigh fading channels in time-variant scattering environments, a novel channel simulator is proposed based on the superposition of chirp signals. This new method has the advantages of low complexity and implementation simplicity as the sum of sinusoids (SOS method. In order to reproduce realistic time varying statistics for dynamic channels, an efficient parameter computation method is also proposed for updating the frequency parameters of employed chirp signals. Simulation results indicate that the proposed simulator is effective in generating nonstationary MIMO channels with close approximation of the time-variant statistical characteristics in accordance with the expected theoretical counterparts.

  11. Log-Likelihood Ratio Calculation for Iterative Decoding on Rayleigh Fading Channels Using Padé Approximation

    Directory of Open Access Journals (Sweden)

    Gou Hosoya

    2013-01-01

    Full Text Available Approximate calculation of channel log-likelihood ratio (LLR for wireless channels using Padé approximation is presented. LLR is used as an input of iterative decoding for powerful error-correcting codes such as low-density parity-check (LDPC codes or turbo codes. Due to the lack of knowledge of the channel state information of a wireless fading channel, such as uncorrelated fiat Rayleigh fading channels, calculations of exact LLR for these channels are quite complicated for a practical implementation. The previous work, an LLR calculation using the Taylor approximation, quickly becomes inaccurate as the channel output leaves some derivative point. This becomes a big problem when higher order modulation scheme is employed. To overcome this problem, a new LLR approximation using Padé approximation, which expresses the original function by a rational form of two polynomials with the same total number of coefficients of the Taylor series and can accelerate the Taylor approximation, is devised. By applying the proposed approximation to the iterative decoding and the LDPC codes with some modulation schemes, we show the effectiveness of the proposed methods by simulation results and analysis based on the density evolution.

  12. A unified simulation approach for the fast outage capacity evaluation over generalized fading channels

    KAUST Repository

    Rached, Nadhir B.

    2015-06-14

    The outage capacity (OC) is among the most important performance metrics of communication systems over fading channels. The evaluation of the OC, when Equal Gain Combining (EGC) or Maximum Ratio Combining (MRC) diversity techniques are employed, boils down to computing the Cumulative Distribution Function (CDF) of the sum of channel envelopes (equivalently amplitudes) for EGC or channel gain (equivalently squared enveloped/amplitudes) for MRC. Closed-form expressions of the CDF of the sum of many generalized fading variates are generally unknown and constitute open problems. In this paper, we develop a unified hazard rate twisting Importance Sampling (IS) based approach to efficiently estimate the CDF of the sum of independent arbitrary variates. The proposed IS estimator is shown to achieve an asymptotic optimality criterion, which clearly guarantees its efficiency. Some selected simulation results are also shown to illustrate the substantial computational gain achieved by the proposed IS scheme over crude Monte-Carlo simulations.

  13. Adaptive Modulation with Best User Selection over Non-Identical Nakagami Fading Channels

    KAUST Repository

    Rao, Anlei; Alouini, Mohamed-Slim

    2012-01-01

    capacity, spectral efficiency, and bit-error-rate (BER) for both constant-power variable-rate and variable-power variable-rate uncoded M-ary quadrature amplitude modulation (M-QAM) schemes. We also study the impact of time delay on the average BER

  14. On the Delay-Energy Tradeoff in Multiuser Fading Channels

    Directory of Open Access Journals (Sweden)

    Ralf R. Müller

    2009-01-01

    Full Text Available We consider the delay-energy tradeoff on a fading channel with multiuser diversity. For fixed arbitrary rates of the users, the total transmitted energy is minimized subject to a delay constraint. To achieve this goal we propose a scheme which schedules a subset of all users simultaneously. The scheduled users are allocated power to guarantee successful separation at the detector by successive decoding. In this way, we can benefit from both multiuser diversity and the near-far situation via scheduling and simultaneous transmission, respectively. We analytically show that when the number of users goes to infinity the energy required to guarantee the required user rates can be made as small as required at the cost of a higher delay “delay-energy tradeoff”. We explicitly compute the delay under the proposed scheduling policy and discuss how delay differentiation can be achieved. We extend the results to multiband multiaccess channel. Finally, all the results can be generalized in a straightforward fashion to broadcast channel due to the Gaussian multiaccess-broadcast channel duality.

  15. Optimal Training for Time-Selective Wireless Fading Channels Using Cutoff Rate

    Directory of Open Access Journals (Sweden)

    Tong Lang

    2006-01-01

    Full Text Available We consider the optimal allocation of resources—power and bandwidth—between training and data transmissions for single-user time-selective Rayleigh flat-fading channels under the cutoff rate criterion. The transmitter exploits statistical channel state information (CSI in the form of the channel Doppler spectrum to embed pilot symbols into the transmission stream. At the receiver, instantaneous, though imperfect, CSI is acquired through minimum mean-square estimation of the channel based on some set of pilot observations. We compute the ergodic cutoff rate for this scenario. Assuming estimator-based interleaving and -PSK inputs, we study two special cases in-depth. First, we derive the optimal resource allocation for the Gauss-Markov correlation model. Next, we validate and refine these insights by studying resource allocation for the Jakes model.

  16. Delay-distribution-dependent H∞ state estimation for delayed neural networks with (x,v)-dependent noises and fading channels.

    Science.gov (United States)

    Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E

    2016-12-01

    This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A Unified Simulation Approach for the Fast Outage Capacity Evaluation over Generalized Fading Channels

    KAUST Repository

    Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2016-01-01

    The outage capacity (OC) is among the most important performance metrics of communication systems over fading channels. The evaluation of the OC, when equal gain combining (EGC) or maximum ratio combining (MRC) diversity techniques are employed

  18. An exact power series formula of the outage probability with noise and interference over generalized fading channels

    KAUST Repository

    Rached, Nadhir B.

    2016-12-24

    In this paper, we develop a generalized momentbased approach for the evaluation of the outage probability (OP) in the presence of co-channel interference and additive white Gaussian noise. The proposed method allows the evaluation of the OP of the signal-to-interference-plus-noise ratio by a power series expansion in the threshold value. Its main advantage is that it does not require a particular distribution for the interference channels. The only necessary ingredients are a power series expansion for the cumulative distribution function of the desired user power and the cross-moments of the interferers\\' powers. These requirements are easily met in many practical fading models, for which the OP might not be obtained in closed-form expression. For a sake of illustration, we consider the application of our method to the Rician fading environment. Under this setting, we carry out a convergence study of the proposed power series and corroborate the validity of our method for different values of fading parameters and various numbers of co-channel interferers.

  19. Physical Layer Security for Cooperative Relaying Over Generalized-K Fading Channels

    KAUST Repository

    Wu, Ling; Yang, Liang; Chen, Jianchao; Alouini, Mohamed-Slim

    2018-01-01

    In this letter, we analyze the secrecy performance for a cooperative diversity system with amplify-and-forward (AF) over generalized-K fading channels. More specifically, some lower bounds on the secrecy performance, such as secure outage probability (SOP), average secrecy capacity (ASC), and strictly positive secrecy capacity (SPSC), are derived in closed-form. Finally, we provide simulation results to verify the accuracy of our analytical results.

  20. Physical Layer Security for Cooperative Relaying Over Generalized-K Fading Channels

    KAUST Repository

    Wu, Ling

    2018-02-02

    In this letter, we analyze the secrecy performance for a cooperative diversity system with amplify-and-forward (AF) over generalized-K fading channels. More specifically, some lower bounds on the secrecy performance, such as secure outage probability (SOP), average secrecy capacity (ASC), and strictly positive secrecy capacity (SPSC), are derived in closed-form. Finally, we provide simulation results to verify the accuracy of our analytical results.

  1. Outage Performance of Decode-and-Forward in Two-Way Relaying with Outdated CSI

    KAUST Repository

    Hyadi, Amal

    2015-01-07

    In this paper, we analyze the outage behavior of decode-and-forward relaying in the context of selective two-way cooperative systems. First, a new relay selection metric is proposed to take into consideration both transmission rates and instantaneous link conditions between cooperating nodes. Afterwards, the outage probability of the proposed system is derived for Nakagami-m fading channels in the case when perfect channel state information is available and then extended to the more realistic scenario where the available channel state information (CSI) is outdated due to fast fading. New expressions for the outage probability are obtained, and the impact of imperfect CSI on the performance is evaluated. Illustrative numerical results, Monte Carlo simulations, and comparisons with similar approaches are presented to assess the accuracy of our analytical derivations and confirm the performance gain of the proposed scheme.

  2. Performance of an opportunistic multi-user cognitive network with multiple primary users

    KAUST Repository

    Khan, Fahd Ahmed

    2014-04-01

    Consider a multi-user underlay cognitive network where multiple cognitive users, having limited peak transmit power, concurrently share the spectrum with a primary network with multiple users. The channel between the secondary network is assumed to have independent but not identical Nakagami-m fading. The interference channel between the secondary users and the primary users is assumed to have Rayleigh fading. The uplink scenario is considered where a single secondary user is selected for transmission. This opportunistic selection depends on the transmission channel power gain and the interference channel power gain as well as the power allocation policy adopted at the users. Exact closed form expressions for the momentgenerating function, outage performance and the symbol-error-rate performance are derived. The outage performance is also studied in the asymptotic regimes and the generalized diversity gain of this scheduling scheme is derived. Numerical results corroborate the derived analytical results.

  3. On the Ergodic Capacity of Dual-Branch Correlated Log-Normal Fading Channels with Applications

    KAUST Repository

    Al-Quwaiee, Hessa; Alouini, Mohamed-Slim

    2015-01-01

    Closed-form expressions of the ergodic capacity of independent or correlated diversity branches over Log-Normal fading channels are not available in the literature. Thus, it is become of an interest to investigate the behavior of such metric at high

  4. Capacity bounds for kth best path selection over generalized fading channels

    KAUST Repository

    Hanif, Muhammad Fainan

    2014-02-01

    Exact ergodic capacity calculation for fading wireless channels typically involves time-consuming numerical evaluation of infinite integrals. In this paper, lower and upper bounds on ergodic capacity for kth best path are presented. These bounds have simple analytic expressions which allow their fast evaluation. Numerical results show that the newly proposed bounds closely approximate the exact ergodic capacity for a large variety of system configurations. © 1997-2012 IEEE.

  5. Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study

    Science.gov (United States)

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng; Liao, Yin-Yin

    2008-11-01

    Ultrasound is an important clinical tool in noninvasive diagnoses of breast cancer. The Nakagami statistical parameter estimated from the ultrasonic backscattered envelope has been demonstrated to be useful in complementing conventional B-mode scans when classifying breast masses. However, the shadowing effect caused by certain high-attenuation tumors in the B-mode image makes the tumor contour unclear, and thus it is more difficult to choose an appropriate region of interest from which to collect tumor data for estimating the Nakagami parameter. This study explored the feasibility of using the Nakagami parametric image to overcome the shadowing effect for visualizing the properties of breast masses. Experiments were performed on a breast-mimicking phantom and on some typical clinical cases for cysts, fat and tumors (fibroadenoma) (n = 18) in order to explore the performance of the Nakagami image under ideal and practical conditions. The experimental results showed that the Nakagami image pixels (i.e. the local Nakagami parameter) in the cyst, tumor and fat are 0.21 ± 0.01, 0.65 ± 0.05 and 0.98 ± 0.07, respectively, for six independent phantom measurements, and 0.14 ± 0.03, 0.67 ± 0.11 and 0.89 ± 0.08, respectively, for clinical experiments. This suggests that the Nakagami image is able to classify various breast masses (p < 0.005) although the clinical results from tumors of different cases have a larger variance that may be caused by the complexity of real breast tissues. In particular, unlike the B-mode image, the Nakagami image is not subject to significant shadowing effects, making it useful to complement the B-mode image to describe the tumor contour for identifying the tumor-related region when the shadowing effect is stronger or a low system gain is used.

  6. Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, P-H; Chang, C-C [Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan (China); Yeh, C-K; Liao, Y-Y [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)], E-mail: mechang@gate.sinica.edu.tw, E-mail: ckyeh@mx.nthu.edu.tw

    2008-11-07

    Ultrasound is an important clinical tool in noninvasive diagnoses of breast cancer. The Nakagami statistical parameter estimated from the ultrasonic backscattered envelope has been demonstrated to be useful in complementing conventional B-mode scans when classifying breast masses. However, the shadowing effect caused by certain high-attenuation tumors in the B-mode image makes the tumor contour unclear, and thus it is more difficult to choose an appropriate region of interest from which to collect tumor data for estimating the Nakagami parameter. This study explored the feasibility of using the Nakagami parametric image to overcome the shadowing effect for visualizing the properties of breast masses. Experiments were performed on a breast-mimicking phantom and on some typical clinical cases for cysts, fat and tumors (fibroadenoma) (n = 18) in order to explore the performance of the Nakagami image under ideal and practical conditions. The experimental results showed that the Nakagami image pixels (i.e. the local Nakagami parameter) in the cyst, tumor and fat are 0.21 {+-} 0.01, 0.65 {+-} 0.05 and 0.98 {+-} 0.07, respectively, for six independent phantom measurements, and 0.14 {+-} 0.03, 0.67 {+-} 0.11 and 0.89 {+-} 0.08, respectively, for clinical experiments. This suggests that the Nakagami image is able to classify various breast masses (p < 0.005) although the clinical results from tumors of different cases have a larger variance that may be caused by the complexity of real breast tissues. In particular, unlike the B-mode image, the Nakagami image is not subject to significant shadowing effects, making it useful to complement the B-mode image to describe the tumor contour for identifying the tumor-related region when the shadowing effect is stronger or a low system gain is used.

  7. Opportunistic relaying in multipath and slow fading channel: Relay selection and optimal relay selection period

    KAUST Repository

    Sungjoon Park,; Stark, Wayne E.

    2011-01-01

    In this paper we present opportunistic relay communication strategies of decode and forward relaying. The channel that we are considering includes pathloss, shadowing, and fast fading effects. We find a simple outage probability formula

  8. Outage Analysis of Spectrum-Sharing over M-Block Fading with Sensing Information

    KAUST Repository

    Alabbasi, Abdulrahman

    2016-07-13

    Future wireless technologies, such as, 5G, are expected to support real-time applications with high data throughput, e.g., holographic meetings. From a bandwidth perspective, cognitive radio is a promising technology to enhance the system’s throughput via sharing the licensed spectrum. From a delay perspective, it is well known that increasing the number of decoding blocks will improve the system robustness against errors, while increasing the delay. Therefore, optimally allocating the resources to determine the tradeoff of tuning the length of decoding blocks while sharing the spectrum is a critical challenge for future wireless systems. In this work, we minimize the targeted outage probability over the block-fading channels while utilizing the spectrum-sharing concept. The secondary user’s outage region and the corresponding optimal power are derived, over twoblocks and M-blocks fading channels. We propose two suboptimal power strategies and derive the associated asymptotic lower and upper bounds on the outage probability with tractable expressions. These bounds allow us to derive the exact diversity order of the secondary user’s outage probability. To further enhance the system’s performance, we also investigate the impact of including the sensing information on the outage problem. The outage problem is then solved via proposing an alternating optimization algorithm, which utilizes the verified strict quasiconvex structure of the problem. Selected numerical results are presented to characterize the system’s behavior and show the improvements of several sharing concepts.

  9. Partner cooperation with decode-and-forward: Closed-form outage analysis and comparison

    KAUST Repository

    Benjillali, Mustapha

    2013-01-01

    In this paper, we investigate the outage performance of "partner cooperation" based on opportunistic Decodeand- Forward with constrained partial selection and reactive relaying strategies in dual-hop cooperative Nakagami-m fading links. The source/destination, which is based on the unique knowledge of local channel state information, selects the best relay to increase the chances of cooperation in both uplink and downlink communications when the direct link is also available. After deriving new expressions for the cumulative distribution functions of the variables of interest, the outage probability of the system is obtained in closed-form. We also derive the ε-outage capacity in different particular cases, and the obtained results - when the channel model is reduced to a Rayleigh fading - either are new or correspond to those previously obtained in other works. Simulation results confirm the accuracy of our analysis for a large selection of system and fading parameters and provide a new insight into the design and optimization of cooperative configurations. © 2012 IEEE.

  10. Asymptotic Performance Analysis of the k-th Best Link Selection over Wireless Fading Channels: An Extreme Value Theory Approach

    KAUST Repository

    Al-Badarneh, Yazan Hussein

    2018-01-25

    We consider a general selection-diversity (SD) scheme in which the k-th best link is selected from a number of links. We use extreme value theory (EVT) to derive simple closed-form asymptotic expressions for the average throughput, effective throughput and average bit error probability (BEP) for the k-th best link over various channel models that are widely used to characterize fading in wireless communication systems. As an application example, we consider the Weibull fading channel model and verify the accuracy of the derived asymptotic expressions through Monte Carlo simulations.

  11. Asymptotic Performance Analysis of the k-th Best Link Selection over Wireless Fading Channels: An Extreme Value Theory Approach

    KAUST Repository

    Al-Badarneh, Yazan Hussein; Georghiades, Costas; Alouini, Mohamed-Slim

    2018-01-01

    We consider a general selection-diversity (SD) scheme in which the k-th best link is selected from a number of links. We use extreme value theory (EVT) to derive simple closed-form asymptotic expressions for the average throughput, effective throughput and average bit error probability (BEP) for the k-th best link over various channel models that are widely used to characterize fading in wireless communication systems. As an application example, we consider the Weibull fading channel model and verify the accuracy of the derived asymptotic expressions through Monte Carlo simulations.

  12. Joint Scheduling for Dual-Hop Block-Fading Broadcast Channels

    KAUST Repository

    Zafar, Ammar

    2012-09-16

    In this paper, we propose joint user-and-hop scheduling over dual-hop block-fading broadcast channels in order to exploit multi-user diversity gains and multi-hop diversity gains all together. To achieve this objective, the first and second hops are scheduled opportunistically based on the channel state information and as a prerequisite we assume that the relay, which is half-duplex and operates using decode-and-forward, is capable of storing the received packets from the source until the channel condition of the destined user becomes good to be scheduled. We formulate the joint scheduling problem as maximizing the weighted sum of the long term achievable rates by the users under a stability constraint, which means that on the long term the rate received by the relay should equal the rate transmitted by it, in addition to constant or variable power constraints. We show that this problem is equivalent to a single-hop broadcast channel by treating the source as a virtual user with an optimal priority weight that maintains the stability constraint. We show how to obtain the source weight either off-line based on channel statistics or on real-time based on channel measurements. Furthermore, we consider special cases including the maximum sum rate scheduler and the proportional fair scheduler. We demonstrate via numerical results that our proposed joint scheduling scheme enlarges the rate region as compared with a scheme that employs multi-user scheduling alone.

  13. Unified Importance Sampling Schemes for Efficient Simulation of Outage Capacity over Generalized Fading Channels

    KAUST Repository

    Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2015-01-01

    The outage capacity (OC) is among the most important performance metrics of communication systems operating over fading channels. Of interest in the present paper is the evaluation of the OC at the output of the Equal Gain Combining (EGC) and the Maximum Ratio Combining (MRC) receivers. In this case, it can be seen that this problem turns out to be that of computing the Cumulative Distribution Function (CDF) for the sum of independent random variables. Since finding a closedform expression for the CDF of the sum distribution is out of reach for a wide class of commonly used distributions, methods based on Monte Carlo (MC) simulations take pride of price. In order to allow for the estimation of the operating range of small outage probabilities, it is of paramount importance to develop fast and efficient estimation methods as naive Monte Carlo (MC) simulations would require high computational complexity. In this line, we propose in this work two unified, yet efficient, hazard rate twisting Importance Sampling (IS) based approaches that efficiently estimate the OC of MRC or EGC diversity techniques over generalized independent fading channels. The first estimator is shown to possess the asymptotic optimality criterion and applies for arbitrary fading models, whereas the second one achieves the well-desired bounded relative error property for the majority of the well-known fading variates. Moreover, the second estimator is shown to achieve the asymptotic optimality property under the particular Log-normal environment. Some selected simulation results are finally provided in order to illustrate the substantial computational gain achieved by the proposed IS schemes over naive MC simulations.

  14. Unified Importance Sampling Schemes for Efficient Simulation of Outage Capacity over Generalized Fading Channels

    KAUST Repository

    Rached, Nadhir B.

    2015-11-13

    The outage capacity (OC) is among the most important performance metrics of communication systems operating over fading channels. Of interest in the present paper is the evaluation of the OC at the output of the Equal Gain Combining (EGC) and the Maximum Ratio Combining (MRC) receivers. In this case, it can be seen that this problem turns out to be that of computing the Cumulative Distribution Function (CDF) for the sum of independent random variables. Since finding a closedform expression for the CDF of the sum distribution is out of reach for a wide class of commonly used distributions, methods based on Monte Carlo (MC) simulations take pride of price. In order to allow for the estimation of the operating range of small outage probabilities, it is of paramount importance to develop fast and efficient estimation methods as naive Monte Carlo (MC) simulations would require high computational complexity. In this line, we propose in this work two unified, yet efficient, hazard rate twisting Importance Sampling (IS) based approaches that efficiently estimate the OC of MRC or EGC diversity techniques over generalized independent fading channels. The first estimator is shown to possess the asymptotic optimality criterion and applies for arbitrary fading models, whereas the second one achieves the well-desired bounded relative error property for the majority of the well-known fading variates. Moreover, the second estimator is shown to achieve the asymptotic optimality property under the particular Log-normal environment. Some selected simulation results are finally provided in order to illustrate the substantial computational gain achieved by the proposed IS schemes over naive MC simulations.

  15. Delay-limited capacity of fading multiple access and broadcast channels in the low power regime

    KAUST Repository

    Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    show that for fading channels where the MAC capacity region is strictly positive, it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power, the boundary

  16. Quantitative Ultrasonic Nakagami Imaging of Neck Fibrosis After Head and Neck Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Yoshida, Emi [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California (United States); Cassidy, Richard J.; Beitler, Jonathan J.; Yu, David S.; Curran, Walter J. [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Liu, Tian, E-mail: tliu34@emory.edu [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2015-06-01

    Purpose: To investigate the feasibility of ultrasound Nakagami imaging to quantitatively assess radiation-induced neck fibrosis, a common sequela of radiation therapy (RT) to the head and neck. Methods and Materials: In a pilot study, 40 study participants were enrolled and classified into 3 subgroups: (1) a control group of 12 healthy volunteers; (2) an asymptomatic group of 11 patients who had received intensity modulated RT for head and neck cancer and had experienced no neck fibrosis; and (3) a symptomatic group of 17 post-RT patients with neck fibrosis. Each study participant underwent 1 ultrasound study in which scans were performed in the longitudinal orientation of the bilateral neck. Three Nakagami parameters were calculated to quantify radiation-induced tissue injury: Nakagami probability distribution function, shape, and scaling parameters. Physician-based assessments of the neck fibrosis were performed according to the Radiation Therapy Oncology Group late morbidity scoring scheme, and patient-based fibrosis assessments were rated based on symptoms such as pain and stiffness. Results: Major discrepancies existed between physician-based and patient-based assessments of radiation-induced fibrosis. Significant differences in all Nakagami parameters were observed between the control group and 2 post-RT groups. Moreover, significant differences in Nakagami shape and scaling parameters were observed among asymptomatic and symptomatic groups. Compared with the control group, the average Nakagami shape parameter value increased by 32.1% (P<.001), and the average Nakagami scaling parameter increased by 55.7% (P<.001) for the asymptomatic group, whereas the Nakagami shape parameter increased by 74.1% (P<.001) and the Nakagami scaling parameter increased by 83.5% (P<.001) for the symptomatic group. Conclusions: Ultrasonic Nakagami imaging is a potential quantitative tool to characterize radiation-induced asymptomatic and symptomatic neck fibrosis.

  17. Quantitative Ultrasonic Nakagami Imaging of Neck Fibrosis After Head and Neck Radiation Therapy

    International Nuclear Information System (INIS)

    Yang, Xiaofeng; Yoshida, Emi; Cassidy, Richard J.; Beitler, Jonathan J.; Yu, David S.; Curran, Walter J.; Liu, Tian

    2015-01-01

    Purpose: To investigate the feasibility of ultrasound Nakagami imaging to quantitatively assess radiation-induced neck fibrosis, a common sequela of radiation therapy (RT) to the head and neck. Methods and Materials: In a pilot study, 40 study participants were enrolled and classified into 3 subgroups: (1) a control group of 12 healthy volunteers; (2) an asymptomatic group of 11 patients who had received intensity modulated RT for head and neck cancer and had experienced no neck fibrosis; and (3) a symptomatic group of 17 post-RT patients with neck fibrosis. Each study participant underwent 1 ultrasound study in which scans were performed in the longitudinal orientation of the bilateral neck. Three Nakagami parameters were calculated to quantify radiation-induced tissue injury: Nakagami probability distribution function, shape, and scaling parameters. Physician-based assessments of the neck fibrosis were performed according to the Radiation Therapy Oncology Group late morbidity scoring scheme, and patient-based fibrosis assessments were rated based on symptoms such as pain and stiffness. Results: Major discrepancies existed between physician-based and patient-based assessments of radiation-induced fibrosis. Significant differences in all Nakagami parameters were observed between the control group and 2 post-RT groups. Moreover, significant differences in Nakagami shape and scaling parameters were observed among asymptomatic and symptomatic groups. Compared with the control group, the average Nakagami shape parameter value increased by 32.1% (P<.001), and the average Nakagami scaling parameter increased by 55.7% (P<.001) for the asymptomatic group, whereas the Nakagami shape parameter increased by 74.1% (P<.001) and the Nakagami scaling parameter increased by 83.5% (P<.001) for the symptomatic group. Conclusions: Ultrasonic Nakagami imaging is a potential quantitative tool to characterize radiation-induced asymptomatic and symptomatic neck fibrosis

  18. Performance Analysis of M-QAM With Viterbi Soft-Decision Decoding

    National Research Council Canada - National Science Library

    Manso, Rogerio

    2003-01-01

    ...) in Additive White Gaussian Noise (AWGN) and Nakagami-m channels. Performance analyses for 16-QAM, 64-QAM, QPSK and BPSK associated with up to three convolutional codes, including the one used by the IEEE...

  19. Effective capacity of Nakagami-m fading channels with full channel state information in the low power regime

    KAUST Repository

    Benkhelifa, Fatma; Rezki, Zouheir; Alouini, Mohamed-Slim

    2013-01-01

    information (CSI) at both the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime. We show that the effective capacity for any arbitrary but finite statistically delay Quality of Service (QoS) exponent θ, scales essentially

  20. A novel unified expression for the capacity and bit error probability of wireless communication systems over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-07-01

    Analysis of the average binary error probabilities (ABEP) and average capacity (AC) of wireless communications systems over generalized fading channels have been considered separately in past years. This paper introduces a novel moment generating function (MGF)-based unified expression for the ABEP and AC of single and multiple link communications with maximal ratio combining. In addition, this paper proposes the hyper-Fox\\'s H fading model as a unified fading distribution of a majority of the well-known generalized fading environments. As such, the authors offer a generic unified performance expression that can be easily calculated, and that is applicable to a wide variety of fading scenarios. The mathematical formulism is illustrated with some selected numerical examples that validate the correctness of the authors\\' newly derived results. © 1972-2012 IEEE.

  1. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  2. Enhancing the efficiency of constrained dual-hop variable-gain AF relaying under nakagami-m fading

    KAUST Repository

    Zafar, Ammar; Radaydeh, Redha Mahmoud; Chen, Yunfei; Alouini, Mohamed-Slim

    2014-01-01

    -to-end signal-to-noise-ratio (SNR) and the overall power consumed is minimized while maintaining this constraint. This problem is considered under two different assumptions of the available channel state information (CSI) at the relays, namely full CSI

  3. On the capacity of multiple access and broadcast fading Channels with full channel state information at low power regime

    KAUST Repository

    Rezki, Zouheir

    2013-07-01

    We study the throughput capacity region of the Gaussian multi-access (MAC) fading channel with perfect channel state information (CSI) at the receiver and at the transmitters (CSI-TR), at low power regime. We show that it has a multidimensional rectangle structure and thus is simply characterized by single user capacity points. More specifically, we show that at low power regime, the boundary surface of the capacity region shrinks to a single point corresponding to the sum-rate maximizer and that the coordinates of this point coincide with single user capacity bounds. Using the duality of Gaussian MAC and broadcast channels (BC), we provide a simple characterization of the BC capacity region at low power regime. © 2013 IEEE.

  4. Throughput and Delay Analysis of HARQ with Code Combining over Double Rayleigh Fading Channels

    KAUST Repository

    Chelli, Ali

    2018-01-15

    This paper proposes the use of hybrid automatic repeat request (HARQ) with code combining (HARQ-CC) to offer reliable communications over double Rayleigh channels. The double Rayleigh fading channel is of particular interest to vehicle-to-vehicle communication systems as well as amplify-and-forward relaying and keyhole channels. This work studies the performance of HARQ-CC over double Rayleigh channels from an information theoretic perspective. Analytical approximations are derived for the $\\\\epsilon$-outage capacity, the average number of transmissions, and the throughput of HARQ-CC. Moreover, we evaluate the delay experienced by Poisson arriving packets for HARQ-CC. We provide analytical expressions for the average waiting time, the packets sojourn time, the average consumed power, and the energy efficiency. In our investigation, we take into account the impact of imperfect feedback on different performance metrics. Additionally, we explore the tradeoff between energy efficiency and the throughput. The proposed scheme is shown to maintain the outage probability below a specified threshold $\\\\epsilon$ which ensures the link reliability. Meanwhile, HARQ-CC adapts implicitly the transmission rate to the channel conditions such that the throughput is maximized. Our results demonstrate that HARQ-CC allows improving the achievable communication rate compared to fixed time diversity schemes. To maximize the throughput of HARQ-CC, the rate per HARQ round should be less than the rate required to meet the outage constraint. Our investigation of the performance of HARQ-CC over Rayleigh and double Rayleigh channels shows that double Rayleigh channels have a higher severity of fading and result in a larger degradation of the throughput. Our analysis reveals that HARQ with incremental redundancy (HARQ-IR) achieves a larger throughput compared to HARQ-CC, while HARQ-CC is simpler to implement, has a lower decoding

  5. Partial PIC-MRC Receiver Design for Single Carrier Block Transmission System over Multipath Fading Channels

    Directory of Open Access Journals (Sweden)

    Juinn-Horng Deng

    2012-01-01

    Full Text Available Single carrier block transmission (SCBT system has become one of the most popular modulation systems due to its low peak-to-average power ratio (PAPR, and it is gradually considered to be used for uplink wireless communication systems. In this paper, a low complexity partial parallel interference cancellation (PIC with maximum ratio combining (MRC technology is proposed to use for receiver to combat the intersymbol interference (ISI problem over multipath fading channel. With the aid of MRC scheme, the proposed partial PIC technique can effectively perform the interference cancellation and acquire the benefit of time diversity gain. Finally, the proposed system can be extended to use for multiple antenna systems to provide excellent performance. Simulation results reveal that the proposed low complexity partial PIC-MRC SIMO system can provide robust performance and outperform the conventional PIC and the iterative frequency domain decision feedback equalizer (FD-DFE systems over multipath fading channel environment.

  6. Asymptotic analysis of downlink MISO systems over Rician fading channels

    KAUST Repository

    Falconet, Hugo

    2016-06-24

    In this work, we focus on the ergodic sum rate in the downlink of a single-cell large-scale multi-user MIMO system in which the base station employs N antennas to communicate with K single-antenna user equipments. A regularized zero-forcing (RZF) scheme is used for precoding under the assumption that each link forms a spatially correlated MIMO Rician fading channel. The analysis is conducted assuming N and K grow large with a non trivial ratio and perfect channel state information is available at the base station. Recent results from random matrix theory and large system analysis are used to compute an asymptotic expression of the signal-to-interference-plus-noise ratio as a function of the system parameters, the spatial correlation matrix and the Rician factor. Numerical results are used to evaluate the performance gap in the finite system regime under different operating conditions. © 2016 IEEE.

  7. Asymptotic analysis of multicell massive MIMO over Rician fading channels

    KAUST Repository

    Sanguinetti, Luca; Kammoun, Abla; Debbah, Merouane

    2017-01-01

    This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.

  8. Asymptotic analysis of multicell massive MIMO over Rician fading channels

    KAUST Repository

    Sanguinetti, Luca

    2017-06-20

    This work considers the downlink of a multicell massive MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments randomly positioned in the coverage area. Within this setting, we are interested in evaluating the sum rate of the system when MRT and RZF are employed under the assumption that each intracell link forms a MIMO Rician uncorrelated fading channel. The analysis is conducted assuming that N and K grow large with a non-trivial ratio N/K under the assumption that the data transmission in each cell is affected by channel estimation errors, pilot contamination, and an arbitrary large scale attenuation. Numerical results are used to validate the asymptotic analysis in the finite system regime and to evaluate the network performance under different settings. The asymptotic results are also instrumental to get insights into the interplay among system parameters.

  9. Asymptotic analysis of downlink MISO systems over Rician fading channels

    KAUST Repository

    Falconet, Hugo; Sanguinetti, Luca; Kammoun, Abla; Debbah, Merouane

    2016-01-01

    In this work, we focus on the ergodic sum rate in the downlink of a single-cell large-scale multi-user MIMO system in which the base station employs N antennas to communicate with K single-antenna user equipments. A regularized zero-forcing (RZF) scheme is used for precoding under the assumption that each link forms a spatially correlated MIMO Rician fading channel. The analysis is conducted assuming N and K grow large with a non trivial ratio and perfect channel state information is available at the base station. Recent results from random matrix theory and large system analysis are used to compute an asymptotic expression of the signal-to-interference-plus-noise ratio as a function of the system parameters, the spatial correlation matrix and the Rician factor. Numerical results are used to evaluate the performance gap in the finite system regime under different operating conditions. © 2016 IEEE.

  10. Performance of equal gain combining with quantized phases in rayleigh fading channels

    KAUST Repository

    Rizvi, Umar H.

    2011-01-01

    In this paper, we analyze the error probability of equal gain combining with quantized channel phase compensation for binary phase shift keying signalling over Rayleigh fading channels. The probability density and characteristic functions of the combined signal amplitude are derived and used to compute the analytic expressions for the bit error probability in dependance of the number of quantization levels L, the number of diversity branches N-R and the average received signal-to-noise ratio. The analysis is utilized to outline the trade-off between N-R and L and to compare the performance with non-coherent binary frequency shift keying and differential binary phase shift keying schemes under diversity reception. © 2011 IEEE.

  11. A novel framework on exact average symbol error probabilities of multihop transmission over amplify-and-forward relay fading channels

    KAUST Repository

    Yilmaz, Ferkan; Kucur, Oǧuz; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we propose an analytical framework on the exact computation of the average symbol error probabilities (ASEP) of multihop transmission over generalized fading channels when an arbitrary number of amplify-and-forward relays is used. Our approach relies on moment generating function (MGF) framework to obtain exact single integral expressions which can be easily computed by Gauss-Chebyshev Quadrature (GCQ) rule. As such, the derived results are a convenient tool to analyze the ASEP performance of multihop transmission over amplify-and-forward relay fading channels. Numerical and simulation results, performed to verify the correctness of the proposed formulation, are in perfect agreement. © 2010 IEEE.

  12. A novel framework on exact average symbol error probabilities of multihop transmission over amplify-and-forward relay fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    In this paper, we propose an analytical framework on the exact computation of the average symbol error probabilities (ASEP) of multihop transmission over generalized fading channels when an arbitrary number of amplify-and-forward relays is used. Our approach relies on moment generating function (MGF) framework to obtain exact single integral expressions which can be easily computed by Gauss-Chebyshev Quadrature (GCQ) rule. As such, the derived results are a convenient tool to analyze the ASEP performance of multihop transmission over amplify-and-forward relay fading channels. Numerical and simulation results, performed to verify the correctness of the proposed formulation, are in perfect agreement. © 2010 IEEE.

  13. Fade statistics of M-turbulent optical links

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Maria Garrido-Balsells, Jose; Castillo-Vazquez, Miguel

    2017-01-01

    A new and generalized statistical model, called Malaga or simply M distribution, has been derived recently to characterize the irradiance fluctuations of an unbounded optical wavefront propagating through a turbulent medium under all irradiance fluctuation conditions. The aforementioned model...... extends and unifies in a simple analytical closed-form expression most of the proposed statistical models for free-space optical (FSO) communications widely employed until now in the scientific literature. Based on that M model, we have studied some important features associated to its fade statistics...

  14. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues.

    Directory of Open Access Journals (Sweden)

    Po-Hsiang Tsui

    Full Text Available The analysis of the backscattered statistics using the Nakagami parameter is an emerging ultrasound technique for assessing hepatic steatosis and fibrosis. Previous studies indicated that the echo amplitude distribution of a normal liver follows the Rayleigh distribution (the Nakagami parameter m is close to 1. However, using different frequencies may change the backscattered statistics of normal livers. This study explored the frequency dependence of the backscattered statistics in human livers and then discussed the sources of ultrasound scattering in the liver. A total of 30 healthy participants were enrolled to undergo a standard care ultrasound examination on the liver, which is a natural model containing diffuse and coherent scatterers. The liver of each volunteer was scanned from the right intercostal view to obtain image raw data at different central frequencies ranging from 2 to 3.5 MHz. Phantoms with diffuse scatterers only were also made to perform ultrasound scanning using the same protocol for comparisons with clinical data. The Nakagami parameter-frequency correlation was evaluated using Pearson correlation analysis. The median and interquartile range of the Nakagami parameter obtained from livers was 1.00 (0.98-1.05 for 2 MHz, 0.93 (0.89-0.98 for 2.3 MHz, 0.87 (0.84-0.92 for 2.5 MHz, 0.82 (0.77-0.88 for 3.3 MHz, and 0.81 (0.76-0.88 for 3.5 MHz. The Nakagami parameter decreased with the increasing central frequency (r = -0.67, p < 0.0001. However, the effect of ultrasound frequency on the statistical distribution of the backscattered envelopes was not found in the phantom results (r = -0.147, p = 0.0727. The current results demonstrated that the backscattered statistics of normal livers is frequency-dependent. Moreover, the coherent scatterers may be the primary factor to dominate the frequency dependence of the backscattered statistics in a liver.

  15. Performance analysis of AF cooperative systems with HPA nonlinearity in semi-blind relays

    KAUST Repository

    Qi, Jian

    2012-12-01

    In this paper, dual-hop amplify-and-forward (AF) cooperative systems in the presence of high-power amplifier (HPA) nonlinearity at semi-blind relays, are investigated. Based on the modified AF cooperative system model taking into account the HPA nonlinearity, the expression for the output signal-to-noise ratio (SNR) at the destination node is derived, where the interference due to both the AF relaying mechanism and the HPA nonlinearity is characterized. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability (SEP), which is derived using the moment-generating function (MGF) approach, considering transmissions over Nakagami-m fading channels. Numerical results are provided and show the effects of some system parameters, such as the HPA parameters, numbers of relays, quadrature amplitude modulation (QAM) order, Nakagami parameters, on performance. © 2012 IEEE.

  16. Performance analysis of AF cooperative systems with HPA nonlinearity in semi-blind relays

    KAUST Repository

    Qi, Jian; Aï ssa, Sonia; Alouini, Mohamed-Slim

    2012-01-01

    In this paper, dual-hop amplify-and-forward (AF) cooperative systems in the presence of high-power amplifier (HPA) nonlinearity at semi-blind relays, are investigated. Based on the modified AF cooperative system model taking into account the HPA nonlinearity, the expression for the output signal-to-noise ratio (SNR) at the destination node is derived, where the interference due to both the AF relaying mechanism and the HPA nonlinearity is characterized. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability (SEP), which is derived using the moment-generating function (MGF) approach, considering transmissions over Nakagami-m fading channels. Numerical results are provided and show the effects of some system parameters, such as the HPA parameters, numbers of relays, quadrature amplitude modulation (QAM) order, Nakagami parameters, on performance. © 2012 IEEE.

  17. Performance analysis of adaptive modulation for cognitive radios with opportunistic access

    KAUST Repository

    Chen, Yunfei

    2011-06-01

    The performance of adaptive modulation for cognitive radio with opportunistic access is analyzed by considering the effects of spectrum sensing and primary user traffic for Nakagami-m fading channels. Both the adaptive continuous rate scheme and the adaptive discrete rate scheme are considered. Numerical results show that spectrum sensing and primary user traffic cause considerable degradation to the bit error rate performance of adaptive modulation in a cognitive radio system with opportunistic access to the licensed channel. They also show that primary user traffic does not affect the link spectral efficiency performance of adaptive modulation, while the spectrum sensing degrades the link spectral efficiency performance. © 2011 IEEE.

  18. A novel ergodic capacity analysis of diversity combining and multihop transmission systems over generalized composite fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-06-01

    Ergodic capacity is an important performance measure associated with reliable communication at the highest rate at which information can be sent over the channel with a negligible probability of error. In the shadow of this definition, diversity receivers (such as selection combining, equal-gain combining and maximal-ratio combining) and transmission techniques (such as cascaded fading channels, amplify-and-forward multihop transmission) are deployed in mitigating various performance impairing effects such as fading and shadowing in digital radio communication links. However, the exact analysis of ergodic capacity is in general not always possible for all of these forms of diversity receivers and transmission techniques over generalized composite fading environments due to it\\'s mathematical intractability. In the literature, published papers concerning the exact analysis of ergodic capacity have been therefore scarce (i.e., only [1] and [2]) when compared to those concerning the exact analysis of average symbol error probability. In addition, they are essentially targeting to the ergodic capacity of the maximal ratio combining diversity receivers and are not readily applicable to the capacity analysis of the other diversity combiners / transmission techniques. In this paper, we propose a novel moment generating function-based approach for the exact ergodic capacity analysis of both diversity receivers and transmission techniques over generalized composite fading environments. As such, we demonstrate how to simultaneously treat the ergodic capacity analysis of all forms of both diversity receivers and multihop transmission techniques. © 2012 IEEE.

  19. Fading and shadowing in wireless systems

    CERN Document Server

    Shankar, P Mohana

    2017-01-01

    This book offers a comprehensive overview of fading and shadowing in wireless channels. A number of statistical models including simple, hybrid, compound and cascaded ones are presented along with a detailed discussion of diversity techniques employed to mitigate the effects of fading and shadowing. The effects of co-channel interference before and after the implementation of diversity are also analyzed. To facilitate easy understanding of the models and the analysis, the background on probability and random variables is presented with relevant derivations of densities of the sums, products, ratios as well as order statistics of random variables. The book also provides material on digital modems of interest in wireless systems. The updated edition expands the background materials on probability by offering sections on Laplace and Mellin transforms, parameter estimation, statistical testing and receiver operating characteristics. Newer models for fading, shadowing and shadowed fading are included along with th...

  20. Exact Outage Probability of Dual-Hop CSI-Assisted AF Relaying Over Nakagami-m Fading Channels

    KAUST Repository

    Xia, Minghua; Aissa, Sonia; Wu, Yik-Chung

    2012-01-01

    to evaluate the outage performance of the system under study. The analytical results of outage probability coincide exactly with Monte-Carlo simulation results and outperform the previously reported upper bounds in the low and medium SNR regions.

  1. The Distribution of Minimum of Ratios of Two Random Variables and Its Application in Analysis of Multi-hop Systems

    Directory of Open Access Journals (Sweden)

    A. Stankovic

    2012-12-01

    Full Text Available The distributions of random variables are of interest in many areas of science. In this paper, ascertaining on the importance of multi-hop transmission in contemporary wireless communications systems operating over fading channels in the presence of cochannel interference, the probability density functions (PDFs of minimum of arbitrary number of ratios of Rayleigh, Rician, Nakagami-m, Weibull and α-µ random variables are derived. These expressions can be used to study the outage probability as an important multi-hop system performance measure. Various numerical results complement the proposed mathematical analysis.

  2. Outage and ser performance of an opportunistic multi-user underlay cognitive network

    KAUST Repository

    Khan, Fahd Ahmed

    2012-10-01

    Consider a multi-user underlay cognitive network where multiple cognitive users concurrently share the spectrum with a primary network and a single secondary user is selected for transmission. The channel is assumed to have independent but not identical Nakagami-m fading. Closed form expressions for the outage performance and the symbol-error-rate performance of the opportunistic multi-user secondary network are derived when a peak interference power constraint is imposed on the secondary network in addition to the limited peak transmit power of each secondary user. © 2012 IEEE.

  3. On the performance of future full-duplex relay selection networks

    KAUST Repository

    Khafagy, Mohammad Galal

    2015-09-01

    In this work, we evaluate the performance of relay selection over Nakagami-m fading channels in the presence of a cluster of full-duplex decode-and-forward relays with self-interference. Specifically, we derive the exact cumulative distribution function of the end-to-end signal-to-interference-plus-noise ratio in the presence of a direct source-destination link. When a direct link exists, all dual-hop paths become mutually correlated due to the common direct-link interference. The presented exact results enable the evaluation of the outage performance and system throughput for fixed-rate transmission systems. The theoretical findings are verified by numerical simulations, where the severity of fading effect in the residual self-interference link is also discussed.

  4. On the performance of future full-duplex relay selection networks

    KAUST Repository

    Khafagy, Mohammad Galal; Alouini, Mohamed-Slim; Aissa, Sonia

    2015-01-01

    In this work, we evaluate the performance of relay selection over Nakagami-m fading channels in the presence of a cluster of full-duplex decode-and-forward relays with self-interference. Specifically, we derive the exact cumulative distribution function of the end-to-end signal-to-interference-plus-noise ratio in the presence of a direct source-destination link. When a direct link exists, all dual-hop paths become mutually correlated due to the common direct-link interference. The presented exact results enable the evaluation of the outage performance and system throughput for fixed-rate transmission systems. The theoretical findings are verified by numerical simulations, where the severity of fading effect in the residual self-interference link is also discussed.

  5. Wireless Energy Harvesting Using Signals from Multiple Fading Channels

    KAUST Repository

    Chen, Yunfei; Zhao, Nan; Alouini, Mohamed-Slim

    2017-01-01

    fading or Gamma-shadowed Rician fading. The received signals are then harvested by using either a single harvester for simultaneous transmissions or multiple harvesters for transmissions at different frequencies, antennas or time slots. Both linear

  6. Optimal Power Allocation of a Wireless Sensor Node under Different Rate Constraints

    KAUST Repository

    Solares, Jose

    2011-07-01

    Wireless sensor networks consist of the placement of sensors over a broad area in order to acquire data. Depending on the application, different design criteria should be considered in the construction of the sensors but among all of them, the battery life-cycle is of crucial interest. Power minimization is a problem that has been addressed from different approaches which include an analysis from an architectural perspective and with bit error rate and/or discrete instantaneous transmission rate constraints, among others. In this work, the optimal transmit power of a sensor node while satisfying different rate constraints is derived. First, an optimization problem with an instantaneous transmission rate constraint is addressed. Next, the optimal power is analyzed, but now with an average transmission rate constraint. The optimal solution for a class of fading channels, in terms of system parameters, is presented and a suboptimal solution is also proposed for an easier, yet efficient, implementation. Insightful asymptotical analysis for both schemes, considering a Rayleigh fading channel, are shown. Furthermore, the optimal power allocation for a sensor node in a cognitive radio environment is analyzed where an optimum solution for a class of fading channels is again derived. In all cases, numerical results are provided for either Rayleigh or Nakagami-m fading channels. The results obtained are extended to scenarios where we have either one transmitter-multiple receivers or multiple transmitters-one receiver.

  7. Analysis of multipath channel fading techniques in wireless communication systems

    Science.gov (United States)

    Mahender, Kommabatla; Kumar, Tipparti Anil; Ramesh, K. S.

    2018-04-01

    Multipath fading occurs in any environment where there is multipath propagation and there is some movement of elements within the radio communications system. This may include the radio transmitter or receiver position, or in the elements that give rise to the reflections. The multipath fading can often be relatively deep, i.e. the signals fade completely away, whereas at other times the fading may not cause the signal to fall below a useable strength. Multipath fading may also cause distortion to the radio signal. As the various paths that can be taken by the signals vary in length, the signal transmitted at a particular instance will arrive at the receiver over a spread of times. This can cause problems with phase distortion and inter symbol interference when data transmissions are made. As a result, it may be necessary to incorporate features within the radio communications system that enables the effects of these problems to be minimized. This paper analyses the effects of various types of multipath fading in wireless transmission system.

  8. Energy-Efficient Optimization for HARQ Schemes over Time-Correlated Fading Channels

    KAUST Repository

    Shi, Zheng

    2018-03-19

    Energy efficiency of three common hybrid automatic repeat request (HARQ) schemes including Type I HARQ, HARQ with chase combining (HARQ-CC) and HARQ with incremental redundancy (HARQ-IR), is analyzed and joint power allocation and rate selection to maximize the energy efficiency is investigated in this paper. Unlike prior literature, time-correlated fading channels is considered and two widely concerned quality of service (QoS) constraints, i.e., outage and goodput constraints, are also considered in the optimization, which further differentiates this work from prior ones. Using a unified expression of asymptotic outage probabilities, optimal transmission powers and optimal rate are derived in closed-forms to maximize the energy efficiency while satisfying the QoS constraints. These closed-form solutions then enable a thorough analysis of the maximal energy efficiencies of various HARQ schemes. It is revealed that with low outage constraint, the maximal energy efficiency achieved by Type I HARQ is $\\\\frac{1}{4\\\\ln2}$ bits/J, while HARQ-CC and HARQ-IR can achieve the same maximal energy efficiency as $\\\\frac{\\\\kappa_\\\\infty}{4\\\\ln2}$ bits/J where $\\\\kappa_\\\\infty = 1.6617$. Moreover, time correlation in the fading channels has a negative impact on the energy efficiency, while large maximal allowable number of transmissions is favorable for the improvement of energy efficiency. The effectiveness of the energy-efficient optimization is verified by extensive simulations and the results also show that HARQ-CC can achieve the best tradeoff between energy efficiency and spectral efficiency among the three HARQ schemes.

  9. Novel MGF-based expressions for the average bit error probability of binary signalling over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2014-04-01

    The main idea in the moment generating function (MGF) approach is to alternatively express the conditional bit error probability (BEP) in a desired exponential form so that possibly multi-fold performance averaging is readily converted into a computationally efficient single-fold averaging - sometimes into a closed-form - by means of using the MGF of the signal-to-noise ratio. However, as presented in [1] and specifically indicated in [2] and also to the best of our knowledge, there does not exist an MGF-based approach in the literature to represent Wojnar\\'s generic BEP expression in a desired exponential form. This paper presents novel MGF-based expressions for calculating the average BEP of binary signalling over generalized fading channels, specifically by expressing Wojnar\\'s generic BEP expression in a desirable exponential form. We also propose MGF-based expressions to explore the amount of dispersion in the BEP for binary signalling over generalized fading channels.

  10. Performance analysis of an opportunistic multi-user cognitive network with multiple primary users

    KAUST Repository

    Khan, Fahd Ahmed

    2014-03-01

    Consider a multi-user underlay cognitive network where multiple cognitive users concurrently share the spectrum with a primary network with multiple users. The channel between the secondary network is assumed to have independent but not identical Nakagami-m fading. The interference channel between the secondary users (SUs) and the primary users is assumed to have Rayleigh fading. A power allocation based on the instantaneous channel state information is derived when a peak interference power constraint is imposed on the secondary network in addition to the limited peak transmit power of each SU. The uplink scenario is considered where a single SU is selected for transmission. This opportunistic selection depends on the transmission channel power gain and the interference channel power gain as well as the power allocation policy adopted at the users. Exact closed form expressions for the moment-generating function, outage performance, symbol error rate performance, and the ergodic capacity are derived. Numerical results corroborate the derived analytical results. The performance is also studied in the asymptotic regimes, and the generalized diversity gain of this scheduling scheme is derived. It is shown that when the interference channel is deeply faded and the peak transmit power constraint is relaxed, the scheduling scheme achieves full diversity and that increasing the number of primary users does not impact the diversity order. © 2014 John Wiley & Sons, Ltd.

  11. Ultrasonic Nakagami-parameter characterization of parotid-gland injury following head-and-neck radiotherapy: A feasibility study of late toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng; Wu, Ning; Wang, Yuefeng [Radiation Oncology, Emory University, Atlanta, Georgia 30322 (United States); Tridandapani, Srini [Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 (United States); Beitler, Jonathan J.; Yu, David S.; Curran, Walter J.; Liu, Tian, E-mail: tliu34@emory.edu [Radiation Oncology, Emory University, Atlanta, Georgia 30322 and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 (United States); Bruner, Deborah W. [Radiation Oncology, Emory University, Atlanta, Georgia 30322 (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 (United States); School of Nursing, Emory University, Atlanta, Georgia 30322 (United States)

    2014-02-15

    Purpose: The study aims to investigate whether Nakagami parameters—estimated from the statistical distribution of the backscattered ultrasound radio-frequency (RF) signals—could provide a means for quantitative characterization of parotid-gland injury resulting from head-and-neck radiotherapy. Methods: A preliminary clinical study was conducted with 12 postradiotherapy patients and 12 healthy volunteers. Each participant underwent one ultrasound study in which ultrasound scans were performed in the longitudinal, i.e., vertical orientation on the bilateral parotids. For the 12 patients, the mean radiation dose to the parotid glands was 37.7 ± 9.5 Gy, and the mean follow-up time was 16.3 ± 4.8 months. All enrolled patients experienced grade 1 or 2 late salivary-gland toxicity (RTOG/EORTC morbidity scale). The normal parotid glands served as the control group. The Nakagami-scaling and Nakagami-shape parameters were computed from the RF data to quantify radiation-induced parotid-gland changes. Results: Significant differences in Nakagami parameters were observed between the normal and postradiotherapy parotid glands. Compared with the control group, the Nakagami-scaling parameter of the postradiotherapy group decreased by 25.8% (p < 0.001), and the Nakagami-shape parameter decreased by 31.3% (p < 0.001). The area under the receiver operating characteristic curve was 0.85 for the Nakagami-scaling parameter and was 0.95 for the Nakagami-shape parameter, which further demonstrated the diagnostic efficiency of the Nakagami parameters. Conclusions: Nakagami parameters could be used to quantitatively measure parotid-gland injury following head-and-neck radiotherapy. Moreover, the clinical feasibility was demonstrated and this study provides meaningful preliminary data for future clinical investigation.

  12. Secret-key agreement over spatially correlated fast-fading multiple-antenna channels with public discussion

    KAUST Repository

    Zorgui, Marwen

    2015-06-14

    We consider secret-key agreement with public discussion over multiple-input multiple-output (MIMO) Rayleigh fast-fading channels under correlated environment. We assume that transmit, legitimate receiver and eavesdropper antennas are correlated. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. First, we derive the expression of the secret-key capacity under the considered setup. Then, we prove that the optimal transmit strategy achieving the secret-key capacity consists in transmitting independent Gaussian signals along the eingenvectors of the transmit correlation matrix. The powers allocated to each channel mode are determined as the solution to a numerical optimization problem that we derive. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Finally, we analyze the impact of correlation matrices on the system performance and provide closed-form expressions of the gain/loss due to correlation in the high power regime.

  13. Multivariate η-μ fading distribution with arbitrary correlation model

    Science.gov (United States)

    Ghareeb, Ibrahim; Atiani, Amani

    2018-03-01

    An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.

  14. Multi-hop amplify-and-forward relaying cooperation in the presence of I/Q imbalance

    KAUST Repository

    Qi, Jian; Aï ssa, Sonia; Alouini, Mohamed-Slim

    2013-01-01

    In this paper, multi-hop cooperative networks implementing channel state information (CSI)-assisted amplify-and-forward (AF) relaying in the presence of in-phase and quadrature-phase (I/Q) imbalance are investigated. We propose a compensation algorithm for the I/Q imbalance. The performance of the multi-hop CSI-assisted AF cooperative networks with and without compensation for I/Q imbalance in Nakagami-m fading environment is evaluated in terms of average symbol error probability. Numerical results are provided and show that the proposed compensation method can effectively mitigate the impact of I/Q imbalance. © 2013 IEEE.

  15. Multi-hop amplify-and-forward relaying cooperation in the presence of I/Q imbalance

    KAUST Repository

    Qi, Jian

    2013-06-01

    In this paper, multi-hop cooperative networks implementing channel state information (CSI)-assisted amplify-and-forward (AF) relaying in the presence of in-phase and quadrature-phase (I/Q) imbalance are investigated. We propose a compensation algorithm for the I/Q imbalance. The performance of the multi-hop CSI-assisted AF cooperative networks with and without compensation for I/Q imbalance in Nakagami-m fading environment is evaluated in terms of average symbol error probability. Numerical results are provided and show that the proposed compensation method can effectively mitigate the impact of I/Q imbalance. © 2013 IEEE.

  16. BER analysis of DS-UWB system employing a laplace distribution model

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-01-01

    This letter takes a new approach to extract a closed-form expression for the bit error rate (BER) of direct-sequence ultra wideband (DS-UWB) system. In the analysis, the main signal is impaired by multi-user interference (MUI) and an external source of interference originated by simultanously transmitting multiband orthogonal frequency division multiplexing (MB-OFDM) systems which are located in the vicinity of the DS-UWB receiver. All the transmission channels are affected by Nakagami-m fading. A Laplacian distribution is considered for MUI to comply more with real statistical behaviors of this kind of interference. © IEICE 2011.

  17. Discrete Multiwavelet Critical-Sampling Transform-Based OFDM System over Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Sameer A. Dawood

    2015-01-01

    Full Text Available Discrete multiwavelet critical-sampling transform (DMWCST has been proposed instead of fast Fourier transform (FFT in the realization of the orthogonal frequency division multiplexing (OFDM system. The proposed structure further reduces the level of interference and improves the bandwidth efficiency through the elimination of the cyclic prefix due to the good orthogonality and time-frequency localization properties of the multiwavelet transform. The proposed system was simulated using MATLAB to allow various parameters of the system to be varied and tested. The performance of DMWCST-based OFDM (DMWCST-OFDM was compared with that of the discrete wavelet transform-based OFDM (DWT-OFDM and the traditional FFT-based OFDM (FFT-OFDM over flat fading and frequency-selective fading channels. Results obtained indicate that the performance of the proposed DMWCST-OFDM system achieves significant improvement compared to those of DWT-OFDM and FFT-OFDM systems. DMWCST improves the performance of the OFDM system by a factor of 1.5–2.5 dB and 13–15.5 dB compared with the DWT and FFT, respectively. Therefore the proposed system offers higher data rate in wireless mobile communications.

  18. Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission.

    Science.gov (United States)

    Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun

    2017-06-09

    Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami- m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs.

  19. System Performance of Concatenated STBC and Block Turbo Codes in Dispersive Fading Channels

    Directory of Open Access Journals (Sweden)

    Kam Tai Chan

    2005-05-01

    Full Text Available A new scheme of concatenating the block turbo code (BTC with the space-time block code (STBC for an OFDM system in dispersive fading channels is investigated in this paper. The good error correcting capability of BTC and the large diversity gain characteristics of STBC can be achieved simultaneously. The resulting receiver outperforms the iterative convolutional Turbo receiver with maximum- a-posteriori-probability expectation maximization (MAP-EM algorithm. Because of its ability to perform the encoding and decoding processes in parallel, the proposed system is easy to implement in real time.

  20. Fading and Shadowing in Wireless Systems

    CERN Document Server

    Shankar, P Mohana

    2012-01-01

    In recent decades, growth in the field of wireless communications has led to an exponential rise in the number of journals catering to the research community. Still unmet, however, is the need to fully and comprehensively understand the effects of channel degradation brought on by the statistical fluctuations in the channel. These fluctuations mainly manifest as variations in signal power observed in the channel generally modeled using a variety of probability distributions, both in straight forms as well as in compound forms. While the former might explain some of the effects, it is the latter, namely, the compound models, which incorporate both short term and long term power fluctuations in the channel, explain the much more complex nature of the signals in these channels. Fading and Shadowing in Wireless Systems offers a pedagogical approach to the topic, with insight into the modeling and analysis of fading and shadowing. Beginning with statistical background and digital communications, the book is formul...

  1. Joint nonbinary low-density parity-check codes and modulation diversity over fading channels

    Science.gov (United States)

    Shi, Zhiping; Li, Tiffany Jing; Zhang, Zhongpei

    2010-09-01

    A joint exploitation of coding and diversity techniques to achieve efficient, reliable wireless transmission is considered. The system comprises a powerful non-binary low-density parity-check (LDPC) code that will be soft-decoded to supply strong error protection, a quadratic amplitude modulator (QAM) that directly takes in the non-binary LDPC symbols and a modulation diversity operator that will provide power- and bandwidth-efficient diversity gain. By relaxing the rate of the modulation diversity rotation matrices to below 1, we show that a better rate allocation can be arranged between the LDPC codes and the modulation diversity, which brings significant performance gain over previous systems. To facilitate the design and evaluation of the relaxed modulation diversity rotation matrices, based on a set of criteria, three practical design methods are given and their point pairwise error rate are analyzed. With EXIT chart, we investigate the convergence between demodulator and decoder.A rate match method is presented based on EXIT analysis. Through analysis and simulations, we show that our strategies are very effective in combating random fading and strong noise on fading channels.

  2. Performance of DS-UWB in MB-OFDM and multi-user interference over Nakagami-m fading channels

    KAUST Repository

    Mehbodniya, Abolfazl; Aissa, Sonia

    2011-01-01

    The mutual interference between the two ultra wideband (UWB) technologies, which use the same frequency spectrum, will be a matter of concern in the near future. In this context, we present a performance analysis of direct-sequence (DS) UWB

  3. Performance of Multilevel Coding Schemes with Different Decoding Methods and Mapping Strategies in Mobile Fading Channels

    Institute of Scientific and Technical Information of China (English)

    YUAN Dongfeng; WANG Chengxiang; YAO Qi; CAO Zhigang

    2001-01-01

    Based on "capacity rule", the perfor-mance of multilevel coding (MLC) schemes with dif-ferent set partitioning strategies and decoding meth-ods in AWGN and Rayleigh fading channels is investi-gated, in which BCH codes are chosen as componentcodes and 8ASK modulation is used. Numerical re-sults indicate that MLC scheme with UP strategy canobtain optimal performance in AWGN channels andBP is the best mapping strategy for Rayleigh fadingchannels. BP strategy is of good robustness in bothkinds of channels to realize an optimum MLC system.Multistage decoding (MSD) is a sub-optimal decodingmethod of MLC for both channels. For Ungerboeckpartitioning (UP) and mixed partitioning (MP) strat-egy, MSD is strongly recommended to use for MLCsystem, while for BP strategy, PDL is suggested to useas a simple decoding method compared with MSD.

  4. Performance Analysis of Beamforming in MU-MIMO Systems for Rayleigh Fading Channels

    KAUST Repository

    Hassan, Ahmad K.; Moinuddin, Muhammad; Al-Saggaf, Ubaid M.; Al-Naffouri, Tareq Y.

    2017-01-01

    This paper characterizes the performance metrics of MU-MIMO systems under Rayleigh fading channels in the presence of both cochannel interference and additive noise with unknown channel state information and known correlation matrices. In the first task, we derive analytical expressions for the cumulative distribution function of the instantaneous signal-to-interference-plus-noise ratio (SINR) for any deterministic beamvectors. As a second task, exact closed-form expressions are derived for the instantaneous capacity, the upper bound on ergodic capacity, and the Gram-Schmidt orthogonalization-based ergodic capacity for similar intra-cell correlation coefficients. Finally, we present the utility of several structured-diagonalization techniques, which can achieve the tractability for the approximate solution of ergodic capacity for both similar as well as different intra-cell correlation matrices. The novelty of this paper is to formulate the received SINR in terms of indefinite quadratic forms, which allows us to use complex residue theory to characterize the system behavior. The analytical expressions obtained closely match simulation results.

  5. Performance Analysis of Beamforming in MU-MIMO Systems for Rayleigh Fading Channels

    KAUST Repository

    Hassan, Ahmad K.

    2017-03-25

    This paper characterizes the performance metrics of MU-MIMO systems under Rayleigh fading channels in the presence of both cochannel interference and additive noise with unknown channel state information and known correlation matrices. In the first task, we derive analytical expressions for the cumulative distribution function of the instantaneous signal-to-interference-plus-noise ratio (SINR) for any deterministic beamvectors. As a second task, exact closed-form expressions are derived for the instantaneous capacity, the upper bound on ergodic capacity, and the Gram-Schmidt orthogonalization-based ergodic capacity for similar intra-cell correlation coefficients. Finally, we present the utility of several structured-diagonalization techniques, which can achieve the tractability for the approximate solution of ergodic capacity for both similar as well as different intra-cell correlation matrices. The novelty of this paper is to formulate the received SINR in terms of indefinite quadratic forms, which allows us to use complex residue theory to characterize the system behavior. The analytical expressions obtained closely match simulation results.

  6. Physical Layer Design in Wireless Sensor Networks for Fading Mitigation

    Directory of Open Access Journals (Sweden)

    Nuo Chen

    2013-09-01

    Full Text Available This paper presents the theoretical analysis, simulation results and suggests design in digital technology of a physical layer for wireless sensor networks. The proposed design is able to mitigate fading inside communication channel. To mitigate fading the chip interleaving technique is proposed. For the proposed theoretical model of physical layer, a rigorous mathematical analysis is conducted, where all signals are presented and processed in discrete time domain form which is suitable for further direct processing necessary for devices design in digital technology. Three different channels are used to investigate characteristics of the physical layer: additive white Gaussian noise channel (AWGN, AWG noise and flat fading channel and AWG noise and flat fading channel with interleaver and deinterleaver blocks in the receiver and transmitter respectively. Firstly, the mathematical model of communication system representing physical layer is developed based on the discrete time domain signal representation and processing. In the existing theory, these signals and their processing are represented in continuous time form, which is not suitable for direct implementation in digital technology. Secondly, the expressions for the probability of chip, symbol and bit error are derived. Thirdly, the communication system simulators are developed in MATLAB. The simulation results confirmed theoretical findings.

  7. Confidence Intervals Verification for Simulated Error Rate Performance of Wireless Communication System

    KAUST Repository

    Smadi, Mahmoud A.

    2012-12-06

    In this paper, we derived an efficient simulation method to evaluate the error rate of wireless communication system. Coherent binary phase-shift keying system is considered with imperfect channel phase recovery. The results presented demonstrate the system performance under very realistic Nakagami-m fading and additive white Gaussian noise channel. On the other hand, the accuracy of the obtained results is verified through running the simulation under a good confidence interval reliability of 95 %. We see that as the number of simulation runs N increases, the simulated error rate becomes closer to the actual one and the confidence interval difference reduces. Hence our results are expected to be of significant practical use for such scenarios. © 2012 Springer Science+Business Media New York.

  8. Delay analysis of a point-to-multipoint spectrum sharing network with CSI based power allocation

    KAUST Repository

    Khan, Fahd Ahmed; Tourki, Kamel; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2012-01-01

    and has Nakagami-m fading. A constraint on the peak transmit power of the secondary user transmitter (SU-Tx) is also considered in addition to the peak interference power constraint. Based on the constraints, a power allocation scheme which requires

  9. On the MIMO Capacity for Distributed System under Composite Rayleigh/Rician Fading and Shadowing

    Directory of Open Access Journals (Sweden)

    Santiago González-Aurioles

    2015-01-01

    Full Text Available Wireless channels are commonly affected by short-term fading and long-term fading (shadowing. The shadowing effects must be taken into account also when mobility is present in the wireless scenario. Using a composite fading model, the total channel capacity can be studied for a scenario with short-term Rayleigh fading along with shadowing. This work provides quantitative results for these kinds of scenarios with Rayleigh fading and shadowing, considering also multiple-input and multiple-output systems, which have not been previously reported. In addition, the channel capacity has been studied in depth in its relation with the shadowing level, signal to noise ratio, and the number of elements in the multiple-input and multiple-output system. Moreover, the channel performance with shadowing has been compared to the one without it. Furthermore, Rician model with shadowing is studied and its results are reported. In addition, correlated and experimental results are provided. It is identified that the distributed MIMO systems can benefit from shadowing in Rician channels. This advantage has not been reported previously. This type of fading is proposed for massive MIMO by others and our results open the door to emulate massive MIMO on a reverberation chamber.

  10. Joint Transmit Antenna Selection and Power Allocation for ISDF Relaying Mobile-to-Mobile Sensor Networks.

    Science.gov (United States)

    Xu, Lingwei; Zhang, Hao; Gulliver, T Aaron

    2016-02-19

    The outage probability (OP) performance of multiple-relay incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) sensor networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. Exact closed-form OP expressions for both optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated to determine the optimal division of transmit power between the broadcast and relay phases. The OP performance under different conditions is evaluated via numerical simulation to verify the analysis. These results show that the optimal TAS scheme has better OP performance than the suboptimal scheme. Further, the power allocation parameter has a significant influence on the OP performance.

  11. Exact capture probability analysis of GSC receivers over i.n.d. Rayleigh fading channels

    KAUST Repository

    Nam, Sungsik

    2013-07-01

    A closed-form expression of the capture probability of generalized selection combining (GSC) RAKE receivers was introduced in [1]. The idea behind this new performance metric is to quantify how the remaining set of uncombined paths affects the overall performance both in terms of loss in power and increase in interference levels. In this previous work, the assumption was made that the fading is both independent and identically distributed from path to path. However, the average strength of each path is different in reality. In order to derive a closed-form expression of the capture probability over independent and non-identically distributed (i.n.d.) fading channels, we need to derive the joint statistics of ordered non-identical exponential variates. With this motivation in mind, we first provide in this paper some new order statistics results in terms of both moment generating function (MGF) and probability density function (PDF) expressions under an i.n.d. assumption and then derive a new exact closed-form expression for the capture probability GSC RAKE receivers in this more realistic scenario. © 2013 IEEE.

  12. Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Directory of Open Access Journals (Sweden)

    M. Z. H. Bhuiyan J. Zhang

    2012-12-01

    Full Text Available Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this

  13. Nonregenerative Dual-Hop Cooperative Links with Selection Diversity

    Directory of Open Access Journals (Sweden)

    Karagiannidis George K

    2006-01-01

    Full Text Available The end-to-end performance of dual-hop cooperative diversity systems equipped with nonregenerative relays and a selection combining receiver at the destination terminal over independent and nonidentical Nakagami- fading channels is studied. Closed-form expressions for the cumulative distribution function and the probability density function of the end-to-end signal-to-noise ratio ( are presented, while analytical formulae are derived for the moments and the moment generating function. Using these statistical results, closed-form expressions for the outage probability are presented for both channel state information and fixed gain relays. Furthermore, for the case of fixed gain relay, the average end-to-end , the amount of fading, and the average bit error rate can be numerically evaluated. The proposed mathematical analysis is complemented by numerical examples, including the effects on the overall performance of the s unbalancing as well as the fading severity.

  14. Detecting changes in ultrasound backscattered statistics by using Nakagami parameters: Comparisons of moment-based and maximum likelihood estimators.

    Science.gov (United States)

    Lin, Jen-Jen; Cheng, Jung-Yu; Huang, Li-Fei; Lin, Ying-Hsiu; Wan, Yung-Liang; Tsui, Po-Hsiang

    2017-05-01

    The Nakagami distribution is an approximation useful to the statistics of ultrasound backscattered signals for tissue characterization. Various estimators may affect the Nakagami parameter in the detection of changes in backscattered statistics. In particular, the moment-based estimator (MBE) and maximum likelihood estimator (MLE) are two primary methods used to estimate the Nakagami parameters of ultrasound signals. This study explored the effects of the MBE and different MLE approximations on Nakagami parameter estimations. Ultrasound backscattered signals of different scatterer number densities were generated using a simulation model, and phantom experiments and measurements of human liver tissues were also conducted to acquire real backscattered echoes. Envelope signals were employed to estimate the Nakagami parameters by using the MBE, first- and second-order approximations of MLE (MLE 1 and MLE 2 , respectively), and Greenwood approximation (MLE gw ) for comparisons. The simulation results demonstrated that, compared with the MBE and MLE 1 , the MLE 2 and MLE gw enabled more stable parameter estimations with small sample sizes. Notably, the required data length of the envelope signal was 3.6 times the pulse length. The phantom and tissue measurement results also showed that the Nakagami parameters estimated using the MLE 2 and MLE gw could simultaneously differentiate various scatterer concentrations with lower standard deviations and reliably reflect physical meanings associated with the backscattered statistics. Therefore, the MLE 2 and MLE gw are suggested as estimators for the development of Nakagami-based methodologies for ultrasound tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. BER Performance Simulation of Generalized MC DS-CDMA System with Time-Limited Blackman Chip Waveform

    Directory of Open Access Journals (Sweden)

    I. Develi

    2010-09-01

    Full Text Available Multiple access interference encountered in multicarrier direct sequence-code division multiple access (MC DS-CDMA is the most important difficulty that depends mainly on the correlation properties of the spreading sequences as well as the shape of the chip waveforms employed. In this paper, bit error rate (BER performance of the generalized MC DS-CDMA system that employs time-limited Blackman chip waveform is presented for Nakagami-m fading channels. Simulation results show that the use of Blackman chip waveform can improve the BER performance of the generalized MC DS-CDMA system, as compared to the performances achieved by using timelimited chip waveforms in the literature.

  16. Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel

    Science.gov (United States)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2017-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR, over the Raleigh fading channel. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  17. On the performance of free-space optical wireless communication systems over double generalized gamma fading channels

    KAUST Repository

    Al-Quwaiee, Hessa

    2014-03-01

    Starting with the double generalized Gamma (GG) model that was proposed in [1] to describe turbulence-induced fading in free-space optical (FSO) systems, we propose a new unified model which accounts for the impact of pointing errors and type of receiver detector. Based on this new unified model, we study the performance of FSO links operating over these kind of channels. All our analytical results are verified using computer based Monte-Carlo simulations. © 2014 IEEE.

  18. On the performance of free-space optical wireless communication systems over double generalized gamma fading channels

    KAUST Repository

    Al-Quwaiee, Hessa; Ansari, Imran Shafique; Alouini, Mohamed-Slim

    2014-01-01

    Starting with the double generalized Gamma (GG) model that was proposed in [1] to describe turbulence-induced fading in free-space optical (FSO) systems, we propose a new unified model which accounts for the impact of pointing errors and type of receiver detector. Based on this new unified model, we study the performance of FSO links operating over these kind of channels. All our analytical results are verified using computer based Monte-Carlo simulations. © 2014 IEEE.

  19. Multicarrier chaotic communications in multipath fading channels without channel estimation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shilian, E-mail: wangsl@nudt.edu.cn; Zhang, Zhili [College of Electrical Science and Engineering, National University of Defense Technology, Changsha, 410073, P R China (China)

    2015-01-15

    A multi-carrier chaotic shift keying(MC-CSK) communication scheme with low probability of interception(LPI) is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM) subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK) in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.

  20. Multicarrier chaotic communications in multipath fading channels without channel estimation

    Directory of Open Access Journals (Sweden)

    Shilian Wang

    2015-01-01

    Full Text Available A multi-carrier chaotic shift keying(MC-CSK communication scheme with low probability of interception(LPI is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.

  1. Performance Analysis of OFDM in Frequency Selective, Slowly Fading Nakagami Channels

    National Research Council Canada - National Science Library

    Count, Patrick

    2001-01-01

    ...) as the modulation technique of choice. Given the incredible growth in the industry as manifest by the seemingly infinite demand for wireless products and services and the accompanying need for superior performance of these systems...

  2. Performance Analysis of OFDM in Frequency Selective, Slowly Fading Nakagami Channels

    National Research Council Canada - National Science Library

    Count, Patrick

    2001-01-01

    In an effort to offer faster, more reliable wireless communications services to the public, many wireless standardization committees have, in recent years, adopted Orthogonal Frequency Division Multiplexing (OFDM...

  3. MGF Approach to the Analysis of Generalized Two-Ray Fading Models

    KAUST Repository

    Rao, Milind; Lopez-Martinez, F. Javier; Alouini, Mohamed-Slim; Goldsmith, Andrea

    2015-01-01

    We analyze a class of Generalized Two-Ray (GTR) fading channels that consist of two line of sight (LOS) components with random phase plus a diffuse component. We derive a closedform expression for the moment generating function (MGF) of the signal-to-noise ratio (SNR) for this model, which greatly simplifies its analysis. This expression arises from the observation that the GTR fading model can be expressed in terms of a conditional underlying Rician distribution. We illustrate the approach to derive simple expressions for statistics and performance metrics of interest such as the amount of fading, the level crossing rate, the symbol error rate, and the ergodic capacity in GTR fading channels. We also show that the effect of considering a more general distribution for the phase difference between the LOS components has an impact on the average SNR.

  4. Event-Triggered Asynchronous Guaranteed Cost Control for Markov Jump Discrete-Time Neural Networks With Distributed Delay and Channel Fading.

    Science.gov (United States)

    Yan, Huaicheng; Zhang, Hao; Yang, Fuwen; Zhan, Xisheng; Peng, Chen

    2017-08-18

    This paper is concerned with the guaranteed cost control problem for a class of Markov jump discrete-time neural networks (NNs) with event-triggered mechanism, asynchronous jumping, and fading channels. The Markov jump NNs are introduced to be close to reality, where the modes of the NNs and guaranteed cost controller are determined by two mutually independent Markov chains. The asynchronous phenomenon is considered, which increases the difficulty of designing required mode-dependent controller. The event-triggered mechanism is designed by comparing the relative measurement error with the last triggered state at the process of data transmission, which is used to eliminate dispensable transmission and reduce the networked energy consumption. In addition, the signal fading is considered for the effect of signal reflection and shadow in wireless networks, which is modeled by the novel Rice fading models. Some novel sufficient conditions are obtained to guarantee that the closed-loop system reaches a specified cost value under the designed jumping state feedback control law in terms of linear matrix inequalities. Finally, some simulation results are provided to illustrate the effectiveness of the proposed method.

  5. Outage probability analysis of wireless sensor networks in the presence of channel fading and spatial correlation

    KAUST Repository

    Al-Murad, Tamim M.

    2011-07-01

    Evaluating the reliability of wireless sensor networks is becoming more important as theses networks are being used in crucial applications. The outage probability defined as the probability that the error in the system exceeds a maximum acceptable threshold has recently been used as a measure of the reliability of such systems. In this work we find the outage probability of wireless sensor network in different scenarios of distributed sensing where sensors\\' readings are affected by spatial correlation and in the presence of channel fading. © 2011 IEEE.

  6. Combined Rate and Power Allocation with Link Scheduling in Wireless Data Packet Relay Networks with Fading Channels

    OpenAIRE

    Subhrakanti Dey; Minyi Huang

    2007-01-01

    We consider a joint rate and power control problem in a wireless data traffic relay network with fading channels. The optimization problem is formulated in terms of power and rate selection, and link transmission scheduling. The objective is to seek high aggregate utility of the relay node when taking into account buffer load management and power constraints. The optimal solution for a single transmitting source is computed by a two-layer dynamic programming algorithm which leads to optimal ...

  7. Earth-Space Links and Fade-Duration Statistics

    Science.gov (United States)

    Davarian, Faramaz

    1996-01-01

    In recent years, fade-duration statistics have been the subject of several experimental investigations. A good knowledge of the fade-duration distribution is important for the assessment of a satellite communication system's channel dynamics: What is a typical link outage duration? How often do link outages exceeding a given duration occur? Unfortunately there is yet no model that can universally answer the above questions. The available field measurements mainly come from temperate climatic zones and only from a few sites. Furthermore, the available statistics are also limited in the choice of frequency and path elevation angle. Yet, much can be learned from the available information. For example, we now know that the fade-duration distribution is approximately lognormal. Under certain conditions, we can even determine the median and other percentiles of the distribution. This paper reviews the available data obtained by several experimenters in different parts of the world. Areas of emphasis are mobile and fixed satellite links. Fades in mobile links are due to roadside-tree shadowing, whereas fades in fixed links are due to rain attenuation.

  8. Fading and interference mitigation in wireless communications

    CERN Document Server

    Panic, Stefan; Anastasov, Jelena; Spalevic, Petar

    2013-01-01

    The rapid advancement of various wireless communication system services has created the need to analyze the possibility of their performance improvement. Introducing the basic principles of digital communications performance analysis and its mathematical formalization, Fading and Interference Mitigation in Wireless Communications will help you stay up to date with recent developments in the performance analysis of space diversity reception over fading channels in the presence of cochannel interference.The book presents a unified method for computing the performance of digital communication sys

  9. On the sum of squared η-μ random variates with application to the performance of wireless communication systems

    KAUST Repository

    Ansari, Imran Shafique

    2013-06-01

    The probability density function (PDF) and cumulative distribution function of the sum of L independent but not necessarily identically distributed squared η-μ variates, applicable to the output statistics of maximal ratio combining (MRC) receiver operating over η-μ fading channels that includes the Hoyt and the Nakagami-m models as special cases, is presented in closed-form in terms of the Fox\\'s H function. Further analysis, particularly on the bit error rate via PDF-based approach, is also represented in closed form in terms of the extended Fox\\'s H function (H). The proposed new analytical results complement previous results and are illustrated by extensive numerical and Monte Carlo simulation results. © 2013 IEEE.

  10. Power Minimization of a Wireless Sensor Node under Different Rate Constraints

    KAUST Repository

    Solares, Jose

    2016-03-31

    Future wireless networks are expected to handle a huge number of devices, including sensors, within a low energy consumption. In this scope, we present, in this paper, performance of wireless sensor networks (WSN). Specifically, we aim at finding the optimal transmit power of a node communicating with multiple receivers in a cognitive radio (CR) spectrum sharing framework, i.e., existence of an active primary user. We first present the optimal power with single secondary receiver, under instantaneous or average transmission rate constraints. Then, we propose a suboptimal solution for an easier, yet efficient, implementation and perform insightful asymptotical analysis for both schemes with Rayleigh fading. Afterwards, we extend our results to a multiple secondary receives CR scenario and present the corresponding optimal and suboptimal transmit power while satisfying independent peak/average and sum of peak/average transmission rate constraints. The corresponding numerical results are provided for Rayleigh and Nakagami-m fading channels. We characterize some transmission outage events depending on system parameters.

  11. Power Minimization of a Wireless Sensor Node under Different Rate Constraints

    KAUST Repository

    Solares, Jose; Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    Future wireless networks are expected to handle a huge number of devices, including sensors, within a low energy consumption. In this scope, we present, in this paper, performance of wireless sensor networks (WSN). Specifically, we aim at finding the optimal transmit power of a node communicating with multiple receivers in a cognitive radio (CR) spectrum sharing framework, i.e., existence of an active primary user. We first present the optimal power with single secondary receiver, under instantaneous or average transmission rate constraints. Then, we propose a suboptimal solution for an easier, yet efficient, implementation and perform insightful asymptotical analysis for both schemes with Rayleigh fading. Afterwards, we extend our results to a multiple secondary receives CR scenario and present the corresponding optimal and suboptimal transmit power while satisfying independent peak/average and sum of peak/average transmission rate constraints. The corresponding numerical results are provided for Rayleigh and Nakagami-m fading channels. We characterize some transmission outage events depending on system parameters.

  12. On the Ergodic Capacity of Dual-Branch Correlated Log-Normal Fading Channels with Applications

    KAUST Repository

    Al-Quwaiee, Hessa

    2015-05-01

    Closed-form expressions of the ergodic capacity of independent or correlated diversity branches over Log-Normal fading channels are not available in the literature. Thus, it is become of an interest to investigate the behavior of such metric at high signal-to-noise (SNR). In this work, we propose simple closed-form asymptotic expressions of the ergodic capacity of dual-branch correlated Log- Normal corresponding to selection combining, and switch-and-stay combining. Furthermore, we capitalize on these new results to find new asymptotic ergodic capacity of correlated dual- branch free-space optical communication system under the impact of pointing error with both heterodyne and intensity modulation/direct detection. © 2015 IEEE.

  13. Upper Bounds on the BER Performance of MTCM-STBC Schemes over Shadowed Rician Fading Channels

    Directory of Open Access Journals (Sweden)

    M. Uysal

    2004-08-01

    Full Text Available Space-time block coding (STBC provides substantial diversity advantages with a low decoding complexity. However, these codes are not designed to achieve coding gains. Outer codes should be concatenated with STBC to provide additional coding gain. In this paper, we analyze the performance of concatenated trellis-coded STBC schemes over shadowed Rician frequency-flat fading channels. We derive an exact pairwise error probability (PEP expression that reveals the dominant factors affecting performance. Based on the derived PEP, in conjunction with the transfer function technique, we also present upper bounds on the bit error rate (BER, which are further shown to be tight through a Monte-Carlo simulation study.

  14. A novel reduced-complexity group detection structure in MIMO frequency selective fading channels

    KAUST Repository

    Qaraqe, Khalid A.; Ahimian, Nariman R.; Alouini, Mohamed-Slim

    2010-01-01

    In this paper a novel reduced complexity detection method named modified symbol flipping method is introduced and its advantages on reducing the burden of the calculations at the receiver compared to the optimum maximum likelihood detection method on multiple input- multiple output frequency selective fading channels are explained. The initial concept of the symbol flipping method is derived from a preliminary detection scheme named bit flipping which was introduced in [1]. The detection structure employed in this paper is ing, detection, and cancellation. On the detection stage, the proposed method is employed and the results are compared to the group maximum likelihood detection scheme proposed in [2]. Simulation results show that a 6 dB performance gain can be achieved at the expense of a slight increase in complexity in comparison with the conventional symbol flipping scheme. © 2010 Crown.

  15. A novel reduced-complexity group detection structure in MIMO frequency selective fading channels

    KAUST Repository

    Qaraqe, Khalid A.

    2010-09-01

    In this paper a novel reduced complexity detection method named modified symbol flipping method is introduced and its advantages on reducing the burden of the calculations at the receiver compared to the optimum maximum likelihood detection method on multiple input- multiple output frequency selective fading channels are explained. The initial concept of the symbol flipping method is derived from a preliminary detection scheme named bit flipping which was introduced in [1]. The detection structure employed in this paper is ing, detection, and cancellation. On the detection stage, the proposed method is employed and the results are compared to the group maximum likelihood detection scheme proposed in [2]. Simulation results show that a 6 dB performance gain can be achieved at the expense of a slight increase in complexity in comparison with the conventional symbol flipping scheme. © 2010 Crown.

  16. On SIP Session setup delay for VoIP services over correlated fading channels

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam S.; Prasad, Ramjee

    2006-01-01

    In this paper, the session setup delay of the session initiation protocol (SIP) is studied. The transmissions on both the forward and reverse channel are assumed to experience Markovian errors. The session setup delay is evaluated for different transport protocols, and with the use of the radio...... link protocol (RLP). An adaptive retransmission timer is used to optimize SIP performances. Using numerical results, we find that SIP over user datagram protocol (UDP) instead of transport control protocol (TCP) can make the session setup up to 30% shorter. Also, RLP drastically reduces the session...... setup delay down to 4 to 5 s, even in environments with high frame error rates (10%) and significant correlation in the fading process (fDT=0.02). SIP is compared with its competitor H.323. SIP session setup delay with compressed messages outperforms H.323 session setup delay....

  17. Cross-Layer Framework for Multiuser Real Time H.264/AVC Video Encoding and Transmission over Block Fading MIMO Channels Using Outage Probability

    Directory of Open Access Journals (Sweden)

    Slavche Pejoski

    2014-01-01

    Full Text Available We present a framework for cross-layer optimized real time multiuser encoding of video using a single layer H.264/AVC and transmission over MIMO wireless channels. In the proposed cross-layer adaptation, the channel of every user is characterized by the probability density function of its channel mutual information and the performance of the H.264/AVC encoder is modeled by a rate distortion model that takes into account the channel errors. These models are used during the resource allocation of the available slots in a TDMA MIMO communication system with capacity achieving channel codes. This framework allows for adaptation to the statistics of the wireless channel and to the available resources in the system and utilization of the multiuser diversity of the transmitted video sequences. We show the effectiveness of the proposed framework for video transmission over Rayleigh MIMO block fading channels, when channel distribution information is available at the transmitter.

  18. Statistical analysis on finger replacement schemes for RAKE receivers in the soft handover region with multiple BSs over i.n.d. fading channels

    KAUST Repository

    Nam, Sung Sik

    2017-06-12

    A new finger replacement technique which is applicable for RAKE receivers in the soft handover region has been proposed and studied under the ideal assumption that the fading is both independent and identically distributed from path to path. To supplement our previous work, we present a general comprehensive framework for the performance assessment of the proposed finger replacement schemes operating over independent but non-identically distributed (i.n.d.) faded paths. To accomplish this object, we derive new closed-form expressions for the target key statistics which are composed of i.n.d. exponential random variables. With these new expressions, the performance analysis of various wireless communication systems over more practical channel environments can be possible.

  19. Composite and Cascaded Generalized-K Fading Channel Modeling and Their Diversity and Performance Analysis

    KAUST Repository

    Ansari, Imran Shafique

    2010-01-01

    The introduction of new schemes that are based on the communication among nodes has motivated the use of composite fading models due to the fact that the nodes experience different multipath fading and shadowing statistics, which subsequently

  20. Outage and Capacity Performance Evaluation of Distributed MIMO Systems over a Composite Fading Channel

    Directory of Open Access Journals (Sweden)

    Wenjie Peng

    2014-01-01

    Full Text Available The exact closed-form expressions regarding the outage probability and capacity of distributed MIMO (DMIMO systems over a composite fading channel are derived. This is achieved firstly by using a lognormal approximation to a gamma-lognormal distribution when a mobile station (MS in the cell is in a fixed position, and the so-called maximum ratio transmission/selected combining (MRT-SC and selected transmission/maximum ratio combining (ST-MRC schemes are adopted in uplink and downlink, respectively. Then, based on a newly proposed nonuniform MS cell distribution model, which is more consistent with the MS cell hotspot distribution in an actual communication environment, the average outage probability and capacity formulas are further derived. Finally, the accuracy of the approximation method and the rationality of the corresponding theoretical analysis regarding the system performance are proven and illustrated by computer simulations.

  1. On the Performance of In-Band Full-Duplex Cooperative Communications

    KAUST Repository

    Khafagy, Mohammad Galal

    2016-06-01

    In-band full-duplex, by which radios may simultaneously transmit and receive over the same channel, has been always considered practically-unfeasible due to the prohibitively strong self-interference. Indeed, a freshly-generated transmit signal power is typically ten orders of magnitude higher than that of a naturally-attenuated received signal. While unable to manage such an overwhelming interference, wireless communications resorted to half-duplex operation, transmitting and receiving over orthogonal channel resources. Recent research has demonstrated the practical feasibility of full-duplexing via successive sophisticated stages of signal suppression/cancellation, bringing this long-held assumption down and reviving the promising full-duplex potentials. Full-duplex relaying (FDR), where intermediate nodes may now support source-destination communication via simultaneous listening/forwarding, represents one of two full-duplex settings currently recommended for deployment in future fifth-generation (5G) systems. Theoretically, it has been widely accepted that FDR potentially doubles the channel capacity when compared to its half-duplex counterpart. Although FDR doubles the multiplexing gain, the effective signal-to-noise ratio (SNR) can be significantly degraded due to the residual self-interference (RSI) if not properly handled. In this work, efficient protocols are devised for different FDR settings. Selective cooperation is proposed for the canonical three-terminal FDR channel with RSI, which exploits the cooperative diversity offered by the independently fading source/relay message replicas arriving at the destination. Closed-form expressions are derived for the end-to-end SNR cumulative distribution function (CDF) under Rayleigh and Nakagami-m fading. Further, the offered diversity gain is presented as a function of the RSI scaling trend with the relay power. We show that the existing diversity problem in simple FDR protocols can be considerably fixed via

  2. Performance Analysis of Rayleigh Fading and Cochannel Interference in Wireless Communication

    National Research Council Canada - National Science Library

    Gao, Chunjun

    2000-01-01

    ...) performance of adaptive arrays for wireless communications over fading channels in the presence of cochannel interference, particularly the case when the number of interference sources exceeds...

  3. How Equalization Techniques Affect the TCP Performance of MC-CDMA Systems in Correlated Fading Channels

    Directory of Open Access Journals (Sweden)

    Giacomo Leonardi

    2007-12-01

    Full Text Available This paper investigates the impact of several equalization techniques for multicarrier code division multiple access systems on the performance at both lower and upper layers (i.e., physical and TCP layers. Classical techniques such as maximal ratio combining, equal gain combining, orthogonality restoring combining, minimum mean square error, as well as a partial equalization (PE are investigated in time- and frequency-correlated fading channels with various numbers of interferers. Their impact on the performance at upper level is then studied. The results are obtained through an integrated simulation platform carefully reproducing all main aspects affecting the quality of service perceived by the final user, allowing an investigation of the real gain produced by signal processing techniques at TCP level.

  4. Analytical bounds on the area spectral efficiency of uplink heterogeneous networks over generalized fading channels

    KAUST Repository

    Shakir, Muhammad

    2014-06-01

    Heterogeneous networks (HetNets) are envisioned to enable next-generation cellular networks by providing higher spectral and energy efficiency. A HetNet is typically composed of multiple radio access technologies where several low-power low-cost operators or user-deployed small-cell base stations (SBSs) complement the macrocell network. In this paper, we consider a two-tier HetNet where the SBSs are arranged around the edge of the reference macrocell such that the resultant configuration is referred to as cell-on-edge (COE). Each mobile user in a small cell is considered capable of adapting its uplink transmit power according to a location-based slow power control mechanism. The COE configuration is observed to increase the uplink area spectral efficiency (ASE) and energy efficiency while reducing the cochannel interference power. A moment-generating-function (MGF)-based approach has been exploited to derive the analytical bounds on the uplink ASE of the COE configuration. The derived expressions are generalized for any composite fading distribution, and closed-form expressions are presented for the generalized- K fading channels. Simulation results are included to support the analysis and to show the efficacy of the COE configuration. A comparative performance analysis is also provided to demonstrate the improvements in the performance of cell-edge users of the COE configuration compared with that of macro-only networks (MoNets) and other unplanned deployment strategies. © 2013 IEEE.

  5. Channel Characteristics and Performance of MIMO E-SDM Systems in an Indoor Time-Varying Fading Environment

    Directory of Open Access Journals (Sweden)

    Huu Phu Bui

    2010-01-01

    Full Text Available Multiple-input multiple-output (MIMO systems employ advanced signal processing techniques. However, the performance is affected by propagation environments and antenna characteristics. The main contributions of the paper are to investigate Doppler spectrum based on measured data in a typical meeting room and to evaluate the performance of MIMO systems based on an eigenbeam-space division multiplexing (E-SDM technique in an indoor time-varying fading environment, which has various distributions of scatterers, line-of-sight wave existence, and mutual coupling effect among antennas. We confirm that due to the mutual coupling among antennas, patterns of antenna elements are changed and different from an omnidirectional one of a single antenna. Results based on the measured channel data in our measurement campaigns show that received power, channel autocorrelation, and Doppler spectrum are dependent not only on the direction of terminal motion but also on the antenna configuration. Even in the obstructed-line-of-sight environment, observed Doppler spectrum is quite different from the theoretical U-shaped Jakes one. In addition, it has been also shown that a channel change during the time interval between the transmit weight matrix determination and the actual data transmission can degrade the performance of MIMO E-SDM systems.

  6. On the Performance Analysis of Digital Communications over Weibull-Gamma Channels

    KAUST Repository

    Ansari, Imran Shafique; Alouini, Mohamed-Slim

    2015-01-01

    In this work, the performance analysis of digital communications over a composite Weibull-Gamma (WG) multipath-fading and shadowing channel is presented wherein WG distribution is appropriate for modeling fading environments when multipath is superimposed on shadowing. More specifically, in this work, exact closed-form expressions are derived for the probability density function, the cumulative distribution function, the moment generating function, and the moments of a composite WG channel. Capitalizing on these results, new exact closed-form expressions are offered for the outage probability, the higher- order amount of fading, the average error rate for binary and M-ary modulation schemes, and the ergodic capacity under various types of transmission policies, mostly in terms of Meijer's G functions. These new analytical results were also verified via computer-based Monte-Carlo simulation results. © 2015 IEEE.

  7. Achievable capacity of a spectrum sharing system over hyper fading channels

    KAUST Repository

    Ekin, Sabit; Yilmaz, Ferkan; Ç elebi, Hasari Burak; Qaraqe, Khalid A.; Alouini, Mohamed-Slim; Serpedin, Erchin

    2009-01-01

    Cognitive radio with spectrum sharing feature is a promising technique to address the spectrum under-utilization problem in dynamically changing environments. In this paper, achievable capacity gain of spectrum sharing systems over dynamic fading

  8. Channel estimation for physical layer network coding systems

    CERN Document Server

    Gao, Feifei; Wang, Gongpu

    2014-01-01

    This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa

  9. Polarimetry and photometry of M87: is the jet fading

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; King, D J; Scarrott, S M [Durham Univ. (UK). Dept. of Physics

    1984-09-15

    Optical linear polarization mapping and photometry of M87 is presented in B and R wavebands. The results indicate significant polarization in the galactic nucleus. Polarization in the jet in B is consistent with other recent maps obtained for this area in blue light and no significant variation with wavelength between B and R wavebands is found. The spectral index of the jet radiation is measured to be S=-1.65+-0.2 over the wavelength range observed. Comparison of the integrated B magnitude of the jet with previous independent measurements over the period 1934-80 suggests that the jet is variable and has been fading more or less uniformly by about 0.8 mag per decade between 1964 and 1980.

  10. On the Performance Analysis of Digital Communications over Weibull-Gamma Channels

    KAUST Repository

    Ansari, Imran Shafique

    2015-05-01

    In this work, the performance analysis of digital communications over a composite Weibull-Gamma (WG) multipath-fading and shadowing channel is presented wherein WG distribution is appropriate for modeling fading environments when multipath is superimposed on shadowing. More specifically, in this work, exact closed-form expressions are derived for the probability density function, the cumulative distribution function, the moment generating function, and the moments of a composite WG channel. Capitalizing on these results, new exact closed-form expressions are offered for the outage probability, the higher- order amount of fading, the average error rate for binary and M-ary modulation schemes, and the ergodic capacity under various types of transmission policies, mostly in terms of Meijer\\'s G functions. These new analytical results were also verified via computer-based Monte-Carlo simulation results. © 2015 IEEE.

  11. Performance and delay analysis of hybrid ARQ with incremental redundancy over double rayleigh fading channels

    KAUST Repository

    Chelli, Ali

    2014-11-01

    In this paper, we study the performance of hybrid automatic repeat request (HARQ) with incremental redundancy over double Rayleigh channels, a common model for the fading amplitude of vehicle-to-vehicle communication systems. We investigate the performance of HARQ from an information theoretic perspective. Analytical expressions are derived for the \\\\epsilon-outage capacity, the average number of transmissions, and the average transmission rate of HARQ with incremental redundancy assuming a maximum number of HARQ rounds. Moreover, we evaluate the delay experienced by Poisson arriving packets for HARQ with incremental redundancy. We provide analytical expressions for the expected waiting time, the packet\\'s sojourn time in the queue, the average consumed power, and the energy efficiency. In our study, the communication rate per HARQ round is adjusted to the average signal-to-noise ratio (SNR) such that a target outage probability is not exceeded. This setting conforms with communication systems in which a quality of service is expected regardless of the channel conditions. Our analysis underscores the importance of HARQ in improving the spectral efficiency and reliability of communication systems. We demonstrate as well that the explored HARQ scheme achieves full diversity. Additionally, we investigate the tradeoff between energy efficiency and spectral efficiency.

  12. Performance Evaluation of Proportional Fair Scheduling Algorithm with Measured Channels

    DEFF Research Database (Denmark)

    Sørensen, Troels Bundgaard; Pons, Manuel Rubio

    2005-01-01

    subjected to measured channel traces. Specifically, we applied measured signal fading recorded from GSM cell phone users making calls on an indoor wireless office system. Different from reference channel models, these measured channels have much more irregular fading between users, which as we show...

  13. Combined Rate and Power Allocation with Link Scheduling in Wireless Data Packet Relay Networks with Fading Channels

    Directory of Open Access Journals (Sweden)

    Subhrakanti Dey

    2007-08-01

    Full Text Available We consider a joint rate and power control problem in a wireless data traffic relay network with fading channels. The optimization problem is formulated in terms of power and rate selection, and link transmission scheduling. The objective is to seek high aggregate utility of the relay node when taking into account buffer load management and power constraints. The optimal solution for a single transmitting source is computed by a two-layer dynamic programming algorithm which leads to optimal power, rate, and transmission time allocation at the wireless links. We further consider an optimal power allocation problem for multiple transmitting sources in the same framework. Performances of the resource allocation algorithms including the effect of buffer load control are illustrated via extensive simulation studies.

  14. On the secrecy capacity of the wiretap channel with imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-10-01

    We study the secrecy capacity of fast fading channels under imperfect main channel (between the transmitter and the legitimate receiver) estimation at the transmitter. Lower and upper bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate follows from a standard wiretap code in which a simple on-off power control is employed along with a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and eavesdropper channels and is the best known upper bound so far. The upper and lower bounds coincide with recently derived ones in case of perfect main CSI. Furthermore, the upper bound is tight in case of no main CSI, where the secrecy capacity is equal to zero. Asymptotic analysis at high and low signal-to-noise ratio (SNR) is also given. At high SNR, we show that the capacity is bounded by providing upper and lower bounds that depend on the channel estimation error. At low SNR, however, we prove that the secrecy capacity is asymptotically equal to the capacity of the main channel as if there were no secrecy constraint. Numerical results are provided for i.i.d. Rayleigh fading channels.

  15. Low complexity iterative MLSE equalization of M-QAM signals in extremely long rayleigh fading channels

    CSIR Research Space (South Africa)

    Myburgh, HC

    2009-05-01

    Full Text Available long channels. Its computational complexity is linear in the data block length and approximately independent of the channel memory length, whereas conventional equalization algorithms have computational complexity linear in the data block length...

  16. On the ergodic secrecy capacity of the wiretap channel under imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir

    2011-11-01

    The ergodic secrecy capacity of the wiretap channel is known when the main channel (between the transmitter and the legitimate receiver) state information (CSI) is perfect at the transmitter and the coherence period is sufficiently large to enable random coding arguments in each block. In a fast fading scenario, when the codeword length spans many coherence periods, the secrecy capacity is still not known. In this paper, we present a framework that characterizes this secrecy capacity under imperfect main channel estimation at the transmitter. Inner and outer bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate is a simple on-off scheme using a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and the eavesdropper channels. The upper and the lower bounds coincide with recently derived ones in the perfect main CSI extreme. Furthermore, the lower bound matches the upper bound in no main CSI extreme, where the secrecy capacity is equal to zero. Numerical results are provided for independent identically distributed (i.i.d.) Rayleigh fading channels. © 2011 IEEE.

  17. Transmit selection for imperfect threshold-based receive MRC in Rayleigh fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2010-01-01

    experience identically distributed and non-identically distributed Rayleigh fading conditions. New closed-form expressions for the combined SNR statistics and some performance measures are presented. The system models adopted herein and the presented

  18. Improving 3D-Turbo Code's BER Performance with a BICM System over Rayleigh Fading Channel

    Directory of Open Access Journals (Sweden)

    R. Yao

    2016-12-01

    Full Text Available Classical Turbo code suffers from high error floor due to its small Minimum Hamming Distance (MHD. Newly-proposed 3D-Turbo code can effectively increase the MHD and achieve a lower error floor by adding a rate-1 post encoder. In 3D-Turbo codes, part of the parity bits from the classical Turbo encoder are further encoded through the post encoder. In this paper, a novel Bit-Interleaved Coded Modulation (BICM system is proposed by combining rotated mapping Quadrature Amplitude Modulation (QAM and 3D-Turbo code to improve the Bit Error Rate (BER performance of 3D-Turbo code over Raleigh fading channel. A key-bit protection scheme and a Two-Dimension (2D iterative soft demodulating-decoding algorithm are developed for the proposed BICM system. Simulation results show that the proposed system can obtain about 0.8-1.0 dB gain at BER of 10^{-6}, compared with the existing BICM system with Gray mapping QAM.

  19. On the sum of Gamma-Gamma variates with application to the fast outage probability evaluation over fading channels

    KAUST Repository

    Ben Issaid, Chaouki

    2017-04-01

    The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverbation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of independent and identically distributed Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of L-branch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative error criterion. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

  20. On the sum of Gamma-Gamma variates with application to the fast outage probability evaluation over fading channels

    KAUST Repository

    Ben Issaid, Chaouki; Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2017-01-01

    The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverbation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of independent and identically distributed Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of L-branch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative error criterion. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

  1. ASEP of MIMO System with MMSE-OSIC Detection over Weibull-Gamma Fading Channel Subject to AWGGN

    Directory of Open Access Journals (Sweden)

    Keerti Tiwari

    2016-01-01

    Full Text Available Ordered successive interference cancellation (OSIC is adopted with minimum mean square error (MMSE detection to enhance the multiple-input multiple-output (MIMO system performance. The optimum detection technique improves the error rate performance but increases system complexity. Therefore, MMSE-OSIC detection is used which reduces error rate compared to traditional MMSE with low complexity. The system performance is analyzed in composite fading environment that includes multipath and shadowing effects known as Weibull-Gamma (WG fading. Along with the composite fading, a generalized noise that is additive white generalized Gaussian noise (AWGGN is considered to show the impact of wireless scenario. This noise model includes various forms of noise as special cases such as impulsive, Gamma, Laplacian, Gaussian, and uniform. Consequently, generalized Q-function is used to model noise. The average symbol error probability (ASEP of MIMO system is computed for 16-quadrature amplitude modulation (16-QAM using MMSE-OSIC detection in WG fading perturbed by AWGGN. Analytical expressions are given in terms of Fox-H function (FHF. These expressions demonstrate the best fit to simulation results.

  2. Asymptotic Performance Analysis of Two-Way Relaying FSO Networks with Nonzero Boresight Pointing Errors Over Double-Generalized Gamma Fading Channels

    KAUST Repository

    Yang, Liang; Alouini, Mohamed-Slim; Ansari, Imran Shafique

    2018-01-01

    In this correspondence, an asymptotic performance analysis for two-way relaying free-space optical (FSO) communication systems with nonzero boresight pointing errors over double-generalized gamma fading channels is presented. Assuming amplify-and-forward (AF) relaying, two nodes having the FSO ability can communicate with each other through the optical links. With this setup, an approximate cumulative distribution function (CDF) expression for the overall signal-to-noise ratio (SNR) is presented. With this statistic distribution, we derive the asymptotic analytical results for the outage probability and average bit error rate. Furthermore, we provide the asymptotic average capacity analysis for high SNR by using the momentsbased method.

  3. Asymptotic Performance Analysis of Two-Way Relaying FSO Networks with Nonzero Boresight Pointing Errors Over Double-Generalized Gamma Fading Channels

    KAUST Repository

    Yang, Liang

    2018-05-07

    In this correspondence, an asymptotic performance analysis for two-way relaying free-space optical (FSO) communication systems with nonzero boresight pointing errors over double-generalized gamma fading channels is presented. Assuming amplify-and-forward (AF) relaying, two nodes having the FSO ability can communicate with each other through the optical links. With this setup, an approximate cumulative distribution function (CDF) expression for the overall signal-to-noise ratio (SNR) is presented. With this statistic distribution, we derive the asymptotic analytical results for the outage probability and average bit error rate. Furthermore, we provide the asymptotic average capacity analysis for high SNR by using the momentsbased method.

  4. Performance Analysis of Wavelet Channel Coding in COST207-based Channel Models on Simulated Radio-over-Fiber Systems at the W-Band

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Silveira, Luiz F. Q.; Rommel, Simon

    2016-01-01

    Millimeter wave communications based on photonic technologies have gained increased attention to provide optic fiber-like capacity in wireless environments. However, the new hybrid fiber-wireless channel represents new challenges in terms of signal transmission performance analysis. Traditionally......, such systems use diversity schemes in combination with digital signal processing (DSP) techniques to overcome effects such as fading and inter-symbol interference (ISI). Wavelet Channel Coding (WCC) has emerged as a technique to minimize the fading effects of wireless channels, which is a mayor challenge...... in systems operating in the millimeter wave regime. This work takes the WCC one step beyond by performance evaluation in terms of bit error probability, over time-varying, frequency-selective multipath Rayleigh fading channels. The adopted propagation model follows the COST207 norm, the main international...

  5. Delay analysis of a point-to-multipoint spectrum sharing network with CSI based power allocation

    KAUST Repository

    Khan, Fahd Ahmed

    2012-10-01

    In this paper, we analyse the delay performance of a point-to-multipoint cognitive radio network which is sharing the spectrum with a point-to-multipoint primary network. The channel is assumed to be independent but not identically distributed and has Nakagami-m fading. A constraint on the peak transmit power of the secondary user transmitter (SU-Tx) is also considered in addition to the peak interference power constraint. Based on the constraints, a power allocation scheme which requires knowledge of the instantaneous channel state information (CSI) of the interference links is derived. The SU-Tx is assumed to be equipped with a buffer and is modelled using the M/G/1 queueing model. Closed form expressions for the probability distribution function (PDF) and cumulative distribution function (CDF) of the packet transmission time is derived. Using the PDF, the expressions for the moments of transmission time are obtained. In addition, using the moments, the expressions for the performance measures such as the total average waiting time of packets and the average number of packets waiting in the buffer of the SU-Tx are also obtained. Numerical simulations corroborate the theoretical results. © 2012 IEEE.

  6. Analysis of a Combined Antenna Arrays and Reverse-Link Synchronous DS-CDMA System over Multipath Rician Fading Channels

    Directory of Open Access Journals (Sweden)

    Kim Yong-Seok

    2005-01-01

    Full Text Available We present the BER analysis of antenna array (AA receiver in reverse-link asynchronous multipath Rician channels and analyze the performance of an improved AA system which applies a reverse-link synchronous transmission technique (RLSTT in order to effectively make a better estimation of covariance matrices at a beamformer-RAKE receiver. In this work, we provide a comprehensive analysis of user capacity which reflects several important factors such as the ratio of the specular component power to the Rayleigh fading power, the shape of multipath intensity profile, and the number of antennas. Theoretical analysis demonstrates that for the case of a strong specular path's power or for a high decay factor, the employment of RLSTT along with AA has the potential of improving the achievable capacity by an order of magnitude.

  7. Maximizing the spectral and energy efficiency of ARQ with a fixed outage probability

    KAUST Repository

    Hadjtaieb, Amir

    2015-10-05

    This paper studies the spectral and energy efficiency of automatic repeat request (ARQ) in Nakagami-m block-fading channels. The source encodes each packet into L similar sequences and transmits them to the destination in the L subsequent time slots. The destination combines the L sequences using maximal ratio combining and tries to decode the information. In case of decoding failure, the destination feeds back a negative acknowledgment and then the source sends the same L sequences to the destination. This process continues until successful decoding occurs at the destination with no limit on the number of retransmissions. We consider two optimization problems. In the first problem, we maximize the spectral efficiency of the system with respect to the rate for a fixed power. In the second problem, we maximize the energy efficiency with respect to the transmitted power for a fixed rate. © 2015 IEEE.

  8. Exact capture probability analysis of GSC receivers over Rayleigh fading channel

    KAUST Repository

    Nam, Sungsik

    2010-01-01

    For third generation systems and ultrawideband systems, RAKE receivers have been introduced due to the advantage of RAKE receivers which is their ability to combine different replicas of the transmitted signal arriving at different delays in a rich multipath environment. In principle, RAKE receivers combine all resolvable paths which gives the best performance in a rich diversity environment. However, this is usually costly in terms of hardware required as the number of RAKE fingers increases. Therefore, generalized selection combining (GSC) RAKE reception was proposed and has been studied by many researcher as an alternative to the classical two fundamental diversity schemes: maximal ratio combining and selection combining. Previous work on performance analyses of GSC RAKE receivers based on the signal to noise ratio focused on the development of methodologies to derive exact closedform expressions for various performance measures. However, the remaining set of uncombined paths affect the overall performance both in terms of loss in power. Therefore, to have a full understanding of the performance of GSC RAKE receivers, we introduce in this paper the notion of capture probability, which is defined as the ratio of the captured power (essentially combined paths power) to that of the total available power. The major difficulty in these problems is to derive some joint statistics of ordered exponential variates. With this motivation in mind, we capitalize in this paper on some new order statistics results to derive exact closed-form expressions for the capture probability over independent and identically distributed Rayleigh fading channels. © 2010 IEEE.

  9. SSC Diversity Receiver over Correlated Fading Channels in the Presence of Cochannel Interference

    Directory of Open Access Journals (Sweden)

    Panić StefanR

    2010-01-01

    Full Text Available This paper studies the performances of a dual-branch switched-and-stay combining (SSC diversity receiver, operating over correlated fading in the presence of cochannel interference (CCI. Very useful, novel, infinite series expressions are obtained for the output signal to interference ratio's (SIR's probability density function (PDF and cumulative distribution function (CDF. The performance analysis is based on an outage probability (OP and an average bit error probability (ASEP criteria. ASEP is efficiently evaluated for modulation schemes such as noncoherent frequency-shift keying (NCFSK and binary differentially phase-shift keying (BDPSK. The effects of various parameters, such as input SIR unbalance, the level of correlation between received desired signals and interferences, nonlinearity of the environment, and fading severity on systems performances are graphically presented and analyzed.

  10. On the Secrecy Capacity Region of the Block-Fading BCC with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal

    2017-02-07

    In this work, we examine the secrecy capacity region of the block-fading broadcast channel with confidential messages (BCC) when the transmitter has limited knowledge of the channel. In particular, we consider a two-user communication system where the transmitter has one common message to be transmitted to both users and one confidential message intended to only one of them. The confidential message has to be kept secret from the other user to whom the information is not intended. The transmitter is not aware of the channel state information (CSI) of neither channel and is only provided by limited CSI feedback sent at the beginning of each fading block. Assuming an error-free feedback link, we characterize the secrecy capacity region of this channel and show that even with a 1-bit CSI feedback, a positive secrecy rate can still be achieved. Then, we look at the case where the feedback link is not error- free and is rather a binary erasure channel (BEC). In the latter case, we provide an achievable secrecy rate region and show that as long as the erasure event is not a probability 1 event, the transmitter can still transmit the confidential information with a positive secrecy rate.

  11. Performance Analysis of a Six-Port Receiver in a WCDMA Communication System including a Multipath Fading Channel

    Directory of Open Access Journals (Sweden)

    A. O. Olopade

    2014-01-01

    Full Text Available Third generation communication systems require receivers with wide bandwidth of operation to support high transmission rates and are also reconfigurable to support various communication standards with different frequency bands. An ideal software defined radio (SDR will be the absolute answer to this requirement but it is not achievable with the current level of technology. This paper proposes the use of a six-port receiver (SPR front-end (FE in a WCDMA communication system. A WCDMA end-to-end physical layer MATLAB demo which includes a multipath channel distortion block is used to determine the viability of the six-port based receiver. The WCDMA signal after passing through a multipath channel is received using a constructed SPR FE. The baseband signal is then calibrated and corrected in MATLAB. The six-port receiver performance is measured in terms of bit error rate (BER. The signal-to-noise ratio (SNR of the transmitted IQ data is varied and the BER profile of the communication system is plotted. The effect of the multipath fading on the receiver performance and the accuracy of the calibration algorithm are obtained by comparing two different measured BER curves for different calibration techniques to the simulated BER curve of an ideal receiver.

  12. On the secrecy capacity of the broadcast wiretap channel with imperfect channel state information

    KAUST Repository

    Hyadi, Amal

    2014-12-01

    In this paper, we consider secure broadcasting over fast fading channels. Assuming imperfect main channel state information (CSI) at the transmitter, we first provide an upper and a lower bounds on the ergodic secrecy capacity when a common message is broadcasted to multiple legitimate receivers in the presence of one eavesdropper. For this case, we show that the secrecy rate is limited by the legitimate receiver having, on average, the worst main channel link. Then, we present an expression for the achievable secrecy sum-rate when each legitimate receiver is interested in an independent message. The special cases of high SNR, perfect and no-main CSI are also analyzed. Numerical results are presented to illustrate the obtained results for the case of independent but not necessarily identically distributed Rayleigh fading channels.

  13. LDPC concatenated space-time block coded system in multipath fading environment: Analysis and evaluation

    Directory of Open Access Journals (Sweden)

    Surbhi Sharma

    2011-06-01

    Full Text Available Irregular low-density parity-check (LDPC codes have been found to show exceptionally good performance for single antenna systems over a wide class of channels. In this paper, the performance of LDPC codes with multiple antenna systems is investigated in flat Rayleigh and Rician fading channels for different modulation schemes. The focus of attention is mainly on the concatenation of irregular LDPC codes with complex orthogonal space-time codes. Iterative decoding is carried out with a density evolution method that sets a threshold above which the code performs well. For the proposed concatenated system, the simulation results show that the QAM technique achieves a higher coding gain of 8.8 dB and 3.2 dB over the QPSK technique in Rician (LOS and Rayleigh (NLOS faded environments respectively.

  14. Performance Analysis of DPSK Signals with Selection Combining and Convolutional Coding in Fading Channel

    National Research Council Canada - National Science Library

    Ong, Choon

    1998-01-01

    The performance analysis of a differential phase shift keyed (DPSK) communications system, operating in a Rayleigh fading environment, employing convolutional coding and diversity processing is presented...

  15. Channel Modelling for Multiprobe Over-the-Air MIMO Testing

    Directory of Open Access Journals (Sweden)

    Pekka Kyösti

    2012-01-01

    a fading emulator, an anechoic chamber, and multiple probes. Creation of a propagation environment inside an anechoic chamber requires unconventional radio channel modelling, namely, a specific mapping of the original models onto the probe antennas. We introduce two novel methods to generate fading emulator channel coefficients; the prefaded signals synthesis and the plane wave synthesis. To verify both methods we present a set of simulation results. We also show that the geometric description is a prerequisite for the original channel model.

  16. MGF approach to the capacity analysis of Generalized Two-Ray fading models

    KAUST Repository

    Rao, Milind

    2015-09-11

    We propose a class of Generalized Two-Ray (GTR) fading channels that consists of two line of sight (LOS) components with random phase and a diffuse component. Observing that the GTR fading model can be expressed in terms of the underlying Rician distribution, we derive a closed-form expression for the moment generating function (MGF) of the signal-to-noise ratio (SNR) of this model. We then employ this approach to compute the ergodic capacity with receiver side information. The impact of the underlying phase difference between the LOS components on the average SNR of the signal received is also illustrated. © 2015 IEEE.

  17. MGF approach to the capacity analysis of Generalized Two-Ray fading models

    KAUST Repository

    Rao, Milind; Lopez-Martinez, F. Javier; Alouini, Mohamed-Slim; Goldsmith, Andrea

    2015-01-01

    We propose a class of Generalized Two-Ray (GTR) fading channels that consists of two line of sight (LOS) components with random phase and a diffuse component. Observing that the GTR fading model can be expressed in terms of the underlying Rician distribution, we derive a closed-form expression for the moment generating function (MGF) of the signal-to-noise ratio (SNR) of this model. We then employ this approach to compute the ergodic capacity with receiver side information. The impact of the underlying phase difference between the LOS components on the average SNR of the signal received is also illustrated. © 2015 IEEE.

  18. Iterative MMSE Detection for MIMO/BLAST DS-CDMA Systems in Frequency Selective Fading Channels - Achieving High Performance in Fully Loaded Systems

    Science.gov (United States)

    Silva, João Carlos; Souto, Nuno; Cercas, Francisco; Dinis, Rui

    A MMSE (Minimum Mean Square Error) DS-CDMA (Direct Sequence-Code Division Multiple Access) receiver coupled with a low-complexity iterative interference suppression algorithm was devised for a MIMO/BLAST (Multiple Input, Multiple Output / Bell Laboratories Layered Space Time) system in order to improve system performance, considering frequency selective fading channels. The scheme is compared against the simple MMSE receiver, for both QPSK and 16QAM modulations, under SISO (Single Input, Single Output) and MIMO systems, the latter with 2Tx by 2Rx and 4Tx by 4Rx (MIMO order 2 and 4 respectively) antennas. To assess its performance in an existing system, the uncoded UMTS HSDPA (High Speed Downlink Packet Access) standard was considered.

  19. On the ergodic secrecy capacity of the wiretap channel under imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir; Khisti, Ashish J.; Alouini, Mohamed-Slim

    2011-01-01

    imperfect main channel estimation at the transmitter. Inner and outer bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate is a simple on-off scheme using a

  20. MC-DS-CDMA System based on DWT and STBC in ITU Multipath Fading Channels Model

    Directory of Open Access Journals (Sweden)

    Nader Abdullah Khadam

    2018-03-01

    Full Text Available In this paper, the performance of multicarrier direct sequence code division multiple access (MC-DS-CDMA in fixed MC-DS-CDMA and Mobile MC-DS-CDMA applications have been improved by using the compensations of space time block coding and Discrete Fast Fourier transforms (FFT or Discrete Wavelets transform DWT. These MC-DS-CDMA systems had been simulated using MATLAB 2015a. Through simulation of the proposed system, various parameters can be changed and tested. The Bit Error Rate (BERs of these systems are obtained over wide range of signal to noise ratio. All simulation results had been compared with each other using different subcarrier size of FFT or DWT with STBC for 1,2,3 and 4 antennas in transmitter and under different ITU multipath fading channels and different Doppler frequencies (fd. The proposed structures of STBC-MC-DS-CDMA system based on (DWT batter than based on (FFT in varies Doppler frequencies and subcarrier size. Also, proposed system with STBC based on 4 transmitters better than other systems based on 1 or 2 or 3 transmitters in all Doppler frequencies and subcarrier size in all simulation results.

  1. A study of optimization problem for amplify-and-forward relaying over weibull fading channels

    KAUST Repository

    Ikki, Salama Said; Aissa, Sonia

    2010-01-01

    This paper addresses the power allocation and relay positioning problems in amplify-and-forward cooperative networks operating in Weibull fading environments. We study adaptive power allocation (PA) with fixed relay location, optimal relay location

  2. On Secrecy Performance of Mixed RF-FSO Systems

    KAUST Repository

    Lei, Hongjiang; Dai, Zhijun; Ansari, Imran Shafique; Park, Kihong; pan, Gaofeng; Alouini, Mohamed-Slim

    2017-01-01

    In this work, we study the secrecy performance of a mixed radio frequency-free space optical (RF-FSO) transmission systems. All RF links experience Nakagami-m fading and the FSO link experiences the Gamma-Gamma fading. The effect of pointing error and two types of detection techniques (i.e., heterodyne detection and intensity modulation with direct detection) are considered. We derive closed-form expressions for lower bound of the secrecy outage probability (SOP) and exact average secrecy capacity (ASC). Furthermore, by utilizing the expansion of Meijer's G-function, asymptotic results for SOP and ASC are derived when the electrical signal-to-noise ratio of the FSO link tends to infinity. Numerical and Monte-Carlo simulation results are provided to verify the accuracy of our proposed results.

  3. On Secrecy Performance of Mixed RF-FSO Systems

    KAUST Repository

    Lei, Hongjiang

    2017-07-05

    In this work, we study the secrecy performance of a mixed radio frequency-free space optical (RF-FSO) transmission systems. All RF links experience Nakagami-m fading and the FSO link experiences the Gamma-Gamma fading. The effect of pointing error and two types of detection techniques (i.e., heterodyne detection and intensity modulation with direct detection) are considered. We derive closed-form expressions for lower bound of the secrecy outage probability (SOP) and exact average secrecy capacity (ASC). Furthermore, by utilizing the expansion of Meijer\\'s G-function, asymptotic results for SOP and ASC are derived when the electrical signal-to-noise ratio of the FSO link tends to infinity. Numerical and Monte-Carlo simulation results are provided to verify the accuracy of our proposed results.

  4. Performance analysis of underlay cognitive multihop regenerative relaying systems with multiple primary receivers

    KAUST Repository

    Hyadi, Amal

    2013-12-01

    Multihop relaying is an efficient strategy to improve the connectivity and extend the coverage area of secondary networks in underlay cognitive systems. In this work, we provide a comprehensive performance study of cognitive multihop regenerative relaying systems in an underlay spectrum sharing scenario with the presence of multiple primary receivers. Both interference power and peak power constraints are taken into account. In our analysis, all the links are subject to independent, non-identically distributed Nakagami-m fading. We derive closed-form expressions for the outage probability, high-order amount of fading, bit error rate, symbol error rate, and ergodic capacity. Different scenarios are presented to illustrate the obtained results and Monte Carlo simulations confirm the accuracy of our analytical derivations. © 2013 IEEE.

  5. A novel unified expression for the capacity and bit error probability of wireless communication systems over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2012-01-01

    function (MGF)-based unified expression for the ABEP and AC of single and multiple link communications with maximal ratio combining. In addition, this paper proposes the hyper-Fox's H fading model as a unified fading distribution of a majority of the well

  6. Observations of anomalous fading in maiolica

    International Nuclear Information System (INIS)

    Bowman, S.G.E.

    1988-01-01

    In the course of an authenticity study on Italian maiolica (tin-glazed earthenware of the Renaissance period), storage at elevated temperature was used to accelerate anomalous fading. Substantial levels of fading were observed in about half of the samples, and in these cases the variation of fading with glow curve temperature accounted for the lack of an equivalent dose plateau. Some evidence was found for a difference in the fading between alpha and beta induced thermoluminescence (TL). More importantly, some samples with unstable natural TL were found: the implications of this for dating and the circumvention of fading are discussed. (author)

  7. Wireless Power Transfer in Cooperative DF Relaying Networks with Log-Normal Fading

    KAUST Repository

    Rabie, Khaled M.; Adebisi, Bamidele; Alouini, Mohamed-Slim

    2017-01-01

    Energy-harvesting (EH) and wireless power transfer in cooperative relaying networks have recently attracted a considerable amount of research attention. Most of the existing work on this topic however focuses on Rayleigh fading channels which represents outdoor environments. Unlike these studies, in this paper we analyze the performance of wireless power transfer in two-hop decode-and- forward (DF) cooperative relaying systems in indoor channels characterized by log-normal fading. Three well-known EH protocols are considered in our evaluations: a) time switching relaying (TSR), b) power splitting relaying (PSR) and c) ideal relaying receiver (IRR). The performance is evaluated in terms of the ergodic outage probability for which we derive accurate analytical expressions for the three systems under consideration. Results reveal that careful selection of the EH time and power splitting factors in the TSR- and PSR-based system are important to optimize performance. It is also presented that the optimized PSR system has near- ideal performance and that increasing the source transmit power and/or the energy harvester efficiency can further improve performance.

  8. Wireless Power Transfer in Cooperative DF Relaying Networks with Log-Normal Fading

    KAUST Repository

    Rabie, Khaled M.

    2017-02-07

    Energy-harvesting (EH) and wireless power transfer in cooperative relaying networks have recently attracted a considerable amount of research attention. Most of the existing work on this topic however focuses on Rayleigh fading channels which represents outdoor environments. Unlike these studies, in this paper we analyze the performance of wireless power transfer in two-hop decode-and- forward (DF) cooperative relaying systems in indoor channels characterized by log-normal fading. Three well-known EH protocols are considered in our evaluations: a) time switching relaying (TSR), b) power splitting relaying (PSR) and c) ideal relaying receiver (IRR). The performance is evaluated in terms of the ergodic outage probability for which we derive accurate analytical expressions for the three systems under consideration. Results reveal that careful selection of the EH time and power splitting factors in the TSR- and PSR-based system are important to optimize performance. It is also presented that the optimized PSR system has near- ideal performance and that increasing the source transmit power and/or the energy harvester efficiency can further improve performance.

  9. Exact closed form expressions for outage probability of GSC receivers over Rayleigh fading channel subject to self-interference

    KAUST Repository

    Nam, Sungsik

    2010-11-01

    Previous work on performance analyses of generalized selection combining (GSC) RAKE receivers based on the signal to noise ratio focused on the development of methodologies to derive exact closed-form expressions for various performance measures. However, some open problems related to the performance evaluation of GSC RAKE receivers still remain to be solved such that an assessment of the impact of self-interference on the performance of GSC RAKE receivers. To have a full and exact understanding of the performance of GSC RAKE receivers, the outage probability of GSC RAKE receivers needs to be analyzed as closed-form expressions. The major difficulty in this problem is to derive some joint statistics of ordered exponential variates. With this motivation in mind, we capitalize in this paper on some new order statistics results to derive exact closed-form expressions for outage probability of GSC RAKE receivers subject to self-interference over independent and identically distributed Rayleigh fading channels. © 2010 IEEE.

  10. Precise outage analysis of mixed RF/unified-FSO DF relaying with HD and 2 IM-DD channel models

    KAUST Repository

    Al-Ebraheemy, Omer Mahmoud S.

    2017-07-20

    This paper derives and analyzes the outage probability of mixed radio frequency (RF)/unified free space optical (FSO) dual-hop decode-and-forward (DF) relaying scheme, where heterodyne detection (HD) and intensity modulation-direct detection (IM-DD) are considered for FSO detection. In doing that, we correctly utilize, for the first time to the best of our knowledge, a precise channel capacity result for the IM-DD channel. Moreover, this is the first time that not only the (IM-DD input-independent) but also the (IM-DD cost-dependent) AWGN channel is considered in such system analysis. This work assumes that the first hop (RF link) follows Naka-gami-m fading, while the second hop (FSO link) follows Málaga (M) turbulence with pointing error. These fading and turbulence models include other ones (such as Rayleigh fading and Gamma-Gamma turbulence) as special cases, so our analysis can be considered as a generalized one from both RF and FSO fading models point of view. Additionally, the system outage probability is investigated asymptotically in high signal-to-noise ratio (SNR) regime, where a new non-reported diversity order and coding gain analysis are shown. Interestingly, we find that in the FSO hop, based on SNR, the HD or IM-DD cost-dependent results in a same diversity order which is twice the one of IM-DD input-independent. However, based on transmitted power all these FSO detectors result in a same diversity order. Furthermore, we offer simulation results which confirm the derived exact and asymptotic expressions.

  11. Precise outage analysis of mixed RF/unified-FSO DF relaying with HD and 2 IM-DD channel models

    KAUST Repository

    Al-Ebraheemy, Omer Mahmoud S.; Salhab, Anas M.; Chaaban, Anas; Zummo, Salam A.; Alouini, Mohamed-Slim

    2017-01-01

    This paper derives and analyzes the outage probability of mixed radio frequency (RF)/unified free space optical (FSO) dual-hop decode-and-forward (DF) relaying scheme, where heterodyne detection (HD) and intensity modulation-direct detection (IM-DD) are considered for FSO detection. In doing that, we correctly utilize, for the first time to the best of our knowledge, a precise channel capacity result for the IM-DD channel. Moreover, this is the first time that not only the (IM-DD input-independent) but also the (IM-DD cost-dependent) AWGN channel is considered in such system analysis. This work assumes that the first hop (RF link) follows Naka-gami-m fading, while the second hop (FSO link) follows Málaga (M) turbulence with pointing error. These fading and turbulence models include other ones (such as Rayleigh fading and Gamma-Gamma turbulence) as special cases, so our analysis can be considered as a generalized one from both RF and FSO fading models point of view. Additionally, the system outage probability is investigated asymptotically in high signal-to-noise ratio (SNR) regime, where a new non-reported diversity order and coding gain analysis are shown. Interestingly, we find that in the FSO hop, based on SNR, the HD or IM-DD cost-dependent results in a same diversity order which is twice the one of IM-DD input-independent. However, based on transmitted power all these FSO detectors result in a same diversity order. Furthermore, we offer simulation results which confirm the derived exact and asymptotic expressions.

  12. Adaptive Jamming Suppression in Coherent FFH System Using Weighted Equal Gain Combining Receiver over Fading Channels with Imperfect CSI

    Directory of Open Access Journals (Sweden)

    Yishan He

    2015-01-01

    Full Text Available Fast frequency hopping (FFH is commonly used as an antijamming communication method. In this paper, we propose efficient adaptive jamming suppression schemes for binary phase shift keying (BPSK based coherent FFH system, namely, weighted equal gain combining (W-EGC with the optimum and suboptimum weighting coefficient. We analyze the bit error ratio (BER of EGC and W-EGC receivers with partial band noise jamming (PBNJ, frequency selective Rayleigh fading, and channel estimation errors. Particularly, closed-form BER expressions are presented with diversity order two. Our analysis is verified by simulations. It is shown that W-EGC receivers significantly outperform EGC. As compared to the maximum likelihood (ML receiver in conventional noncoherent frequency shift keying (FSK based FFH, coherent FFH/BPSK W-EGC receivers also show significant advantages in terms of BER. Moreover, W-EGC receivers greatly reduce the hostile jammers’ jamming efficiency.

  13. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    Science.gov (United States)

    Li, Husheng; Betz, Sharon M.; Poor, H. Vincent

    2007-05-01

    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.

  14. A short-time fading study of Al2O3:C

    International Nuclear Information System (INIS)

    Nascimento, L.F.; Vanhavere, F.; Silva, E.H.; Deene, Y. De

    2015-01-01

    This paper studies the short-time fading from Al 2 O 3 :C by measuring optically stimulated luminescence (OSL) signals (Total OSL: T OSL , and Peak OSL: P OSL ) from droplets and Luxel™ pellets. The influence of various bleaching regimes (blue, green and white) and light power is compared. The fading effect is the decay of the OSL signal in the dark at room temperature. Al 2 O 3 :C detectors were submitted to various bleaching regimes, irradiated with a reference dose and read out after different time spans. Investigations were carried out using 2 mm size droplet detectors, made of thin Al 2 O 3 :C powder mixed with a photocured polymer. Tests were compared to Luxel™-type detectors (Landauer Inc.). Short-time post-irradiation fading is present in OSL results (T OSL and P OSL ) droplets for time spans up to 200 s. The effect of short-time fading can be lowered/removed when treating the detectors with high-power and/or long time bleaching regimes; this result was observed in both T OSL and P OSL from droplets and Luxel™. - Highlights: • Droplet composed of thin powder of Al 2 O 3 :C was prepared using a photo-curable polymer. • Powder grain sizes ranged from 5 μm to 35 μm. • Short-time fading was measured for irradiated samples. • Various bleaching regimes and light power was tested. • Droplets were compared to a commercially dosimeter, Luxel™

  15. Design of an anti-Rician-fading modem for mobile satellite communication systems

    Science.gov (United States)

    Kojima, Toshiharu; Ishizu, Fumio; Miyake, Makoto; Murakami, Keishi; Fujino, Tadashi

    1995-01-01

    To design a demodulator applicable to mobile satellite communication systems using differential phase shift keying modulation, we have developed key technologies including an anti-Rician-fading demodulation scheme, an initial acquisition scheme, automatic gain control (AGC), automatic frequency control (AFC), and bit timing recovery (BTR). Using these technologies, we have developed one-chip digital signal processor (DSP) modem for mobile terminal, which is compact, of light weight, and of low power consumption. Results of performance test show that the developed DSP modem achieves good performance in terms of bit error ratio in mobile satellite communication environment, i.e., Rician fading channel. It is also shown that the initial acquisition scheme acquires received signal rapidly even if the carrier-to-noise power ratio (CNR) of the received signal is considerably low.

  16. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    Directory of Open Access Journals (Sweden)

    Francisco J. Cañete

    2016-02-01

    Full Text Available Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression.

  17. On the performance of hybrid line of sight RF and RF-FSO fixed gain dual-hop transmission systems

    KAUST Repository

    Zedini, Emna

    2014-12-01

    In this work, we carry out a unified performance analysis of a dual-branch transmission system composed of a direct radio-frequency (RF) link and a dual-hop fixed gain relay over the asymmetric links composed of both RF and unified free-space optics (FSO) under the effect of pointing errors. RF links are modeled by the Nakagami-m fading channel and the FSO link by the Gamma-Gamma fading channel subject to both types of detection techniques (i.e. heterodyne detection and intensity modulation with direct detection (IM/DD)). Selection combining (SC) and maximum ratio combining (MRC) diversity schemes are investigated. More specifically, for the SC method, we derive new unified closed-form expressions for the cumulative distribution function (CDF), the probability density function (PDF), the moment generating function (MGF), the moments, the outage probability (OP), the average bit-error rate (BER) of a variety of binary modulations, and the ergodic capacity for end-to-end signal-to-noise ratio (SNR). Additionally, using the MGF-based approach, the evaluation of the OP, the average BER, and the ergodic capacity for the MRC diversity technique can be performed based entirely on the knowledge of the MGF of the output SNR without ever having to compute its statistics (i.e. PDF and CDF). By implementing SC or MRC diversity techniques, we demonstrate a better performance of our system relative to the traditional RF path only. Also, our analysis illustrates MRC as the optimum combing method. All the analytical results are verified via computer-based Monte-Carlo simulations.

  18. A performance study of two hop transmission in mixed underlay RF and FSO fading channels

    KAUST Repository

    Ansari, Imran Shafique

    2014-04-01

    In this work, we present the performance analysis of a dual-hop transmission system composed of asymmetric radio frequency (RF) and free-space optical (FSO) links in underlay cognitive networks. For the RF link, we consider an underlay cognitive network where the secondary users share the spectrum with licensed primary users, where indoor femtocells act as a practical example for such networks. More specifically, we assume that the RF link is subject to an interference constraint. The FSO link accounts for pointing errors and both types of detection techniques (i.e. intensity modulation/direct detection (IM/DD) as well as heterodyne detection). On the other hand, RF link is modeled by the Rayleigh fading distribution that applies power control to maintain the interference at the primary network below a specific threshold whereas the FSO link is modeled by a unified Gamma-Gamma fading distribution. With this model, we derive new exact closed-form expressions for the cumulative distribution function, the probability density function, the moment generating function, and the moments of the end-to-end signal-to-interference plus noise ratio of these systems in terms of the Meijer\\'s G functions. We then capitalize on these results to offer new exact closed-form expressions for the outage probability, the higher-order amount of fading, and the average error rate for binary and Mary modulation schemes, all in terms of Meijer\\'s G functions. All our new analytical results are verified via computer-based Monte-Carlo simulations and are illustrated by some selected numerical results.

  19. Effects of fading and spatial correlation on node selection for estimation in Wireless Sensor Networks

    KAUST Repository

    Al-Murad, Tamim M.

    2010-06-01

    In densely deployed sensor networks, correlation among measurements may be high. Spatial sampling through node selection is usually used to minimize this correlation and to save energy consumption. However because of the fading nature of the wireless channels, extra care should be taken when performing this sampling. In this paper, we develop expressions for the distortion which include the channel effects. The asymptotic behavior of the distortion as the number of sensors or total transmit power increase without bound is also investigated. Further, based on the channel and position information we propose and test several node selection schemes.

  20. The M2 Channel

    DEFF Research Database (Denmark)

    Santner, Paul

    Drug resistance of Influenza A against antivirals is an increasing problem. No effective Influenza A drugs targeting the crucial viral protein, the proton transporter M2 are available anymore due to widespread resistance. Thanks to research efforts elucidating M2 protein structure, function and i...... resistance escape routes from drug inhibition. We thereby were hopefully able to provide a platform for the large-scale evaluation of M2 channel activity, inhibitors and resistance....

  1. Minimum Probability of Error-Based Equalization Algorithms for Fading Channels

    Directory of Open Access Journals (Sweden)

    Janos Levendovszky

    2007-06-01

    Full Text Available Novel channel equalizer algorithms are introduced for wireless communication systems to combat channel distortions resulting from multipath propagation. The novel algorithms are based on newly derived bounds on the probability of error (PE and guarantee better performance than the traditional zero forcing (ZF or minimum mean square error (MMSE algorithms. The new equalization methods require channel state information which is obtained by a fast adaptive channel identification algorithm. As a result, the combined convergence time needed for channel identification and PE minimization still remains smaller than the convergence time of traditional adaptive algorithms, yielding real-time equalization. The performance of the new algorithms is tested by extensive simulations on standard mobile channels.

  2. When does fading enhance perceptual category learning?

    Science.gov (United States)

    Pashler, Harold; Mozer, Michael C

    2013-07-01

    Training that uses exaggerated versions of a stimulus discrimination (fading) has sometimes been found to enhance category learning, mostly in studies involving animals and impaired populations. However, little is known about whether and when fading facilitates learning for typical individuals. This issue was explored in 7 experiments. In Experiments 1 and 2, observers discriminated stimuli based on a single sensory continuum (time duration and line length, respectively). Adaptive fading dramatically improved performance in training (unsurprisingly) but did not enhance learning as assessed in a final test. The same was true for nonadaptive linear fading (Experiment 3). However, when variation in length (predicting category membership) was embedded among other (category-irrelevant) variation, fading dramatically enhanced not only performance in training but also learning as assessed in a final test (Experiments 4 and 5). Fading also helped learners to acquire a color saturation discrimination amid category-irrelevant variation in hue and brightness, although this learning proved transitory after feedback was withdrawn (Experiment 7). Theoretical implications are discussed, and we argue that fading should have practical utility in naturalistic category learning tasks, which involve extremely high dimensional stimuli and many irrelevant dimensions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Nakagami Kenji’s ‘Writing Back to the Centre’ through the Subaltern Narrative: Reading the Hidden Outcast Voice in ‘Misaki’ and Karekinada

    Directory of Open Access Journals (Sweden)

    Machiko Ishikawa

    2011-12-01

    Full Text Available The aim of this thesis is to give a post-colonial reading of selected narratives by Nakagami Kenji (1946-1992. Nakagami was the first Akutagawa Prize winning novelist from Japan’s outcaste Burakumin group. Through the production of narrative about this subaltern community, Nakagami confronted the exclusionary systems of hegemonic Japanese thought and the structures created by these systems which deny the principle and lived experience of ‘difference’. Borrowing the post-colonial concept of ‘writing back’ to the hegemonic centre from the work of Bill Ashcroft, Gareth Griffiths and Helen Tiffin’s The Empire Writes Back, this article will analyse Nakagami’s ‘Misaki’ (1976, The Cape, and its sequel, Karekinada (1977, The Sea of Withered Trees. The principal focus will be on Nakagami’s representation of the hidden voice of those on the margins of Japanese society. This approach will position the Burakumin as ‘subalterns’ to the mainstream Japanese society on the basis of Antonio Gramsci’s view of the group. The analysis of ‘Misaki’ and Karekinada will begin with an investigation of Kishū Kumano as a site on the margins of mainstream Japanese society. In analysing these two novels as subaltern narratives, close attention will be given to Nakagami’s use of intertextuality particularly with oral kishu ryūritan folklore.

  4. Fade Mitigation Techniques at Ka-Band

    Science.gov (United States)

    Dissanayake, Asoka (Editor)

    1996-01-01

    Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.

  5. Joint Scheduling for Dual-Hop Block-Fading Broadcast Channels

    KAUST Repository

    Zafar, Ammar; AlNuweiri, Hussein; Alouini, Mohamed-Slim; Shaqfeh, Mohammad

    2012-01-01

    weight that maintains the stability constraint. We show how to obtain the source weight either off-line based on channel statistics or on real-time based on channel measurements. Furthermore, we consider special cases including the maximum sum rate

  6. On the Efficient Simulation of the Distribution of the Sum of Gamma-Gamma Variates with Application to the Outage Probability Evaluation Over Fading Channels

    KAUST Repository

    Ben Issaid, Chaouki

    2017-01-26

    The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverberation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is related to the difficult question of analyzing the statistics of a sum of Gamma- Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of Gamma-Gamma variates. More specifically, we propose robust importance sampling schemes that efficiently evaluates the outage probability of diversity receivers over Gamma-Gamma fading channels. The proposed estimators satisfy the well-known bounded relative error criterion for both maximum ratio combining and equal gain combining cases. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

  7. Outage Probability Analysis in Power-Beacon Assisted Energy Harvesting Cognitive Relay Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ngoc Phuc Le

    2017-01-01

    Full Text Available We study the performance of the secondary relay system in a power-beacon (PB assisted energy harvesting cognitive relay wireless network. In our system model, a secondary source node and a relay node first harvest energy from distributed PBs. Then, the source node transmits its data to the destination node with the help of the relay node. Also, fading coefficients of the links from the PBs to the source node and relay node are assumed independent but not necessarily identically distributed (i.n.i.d Nakagami-m random variables. We derive exact expressions for the power outage probability and the channel outage probability. Based on that, we analyze the total outage probability of the secondary relay system. Asymptotic analysis is also performed, which provides insights into the system behavior. Moreover, we evaluate impacts of the primary network on the performance of the secondary network with respect to the tolerant interference threshold at the primary receiver as well as the interference introduced by the primary transmitter at the secondary source and relay nodes. Simulation results are provided to validate the analysis.

  8. Secrecy Outage of Max-Min TAS Scheme in MIMO-NOMA Systems

    KAUST Repository

    Lei, Hongjiang

    2018-04-09

    This paper considers a secure non-orthogonal multiple access system, where confidential messages are transmitted from a base station to multiple legitimate destinations and wiretapped by multiple illegitimate receivers. It is assumed that all the channels experience Nakagami-m fading model and all the nodes are equipped with multiple antennas, respectively. Both non-colluding and colluding eavesdroppers are respectively considered. Max-min (MM) transmit antenna selection (TAS) strategy is adopted to improve the secrecy performance of the target system, in which both users in user paring are considered simultaneously. In particular, closed-form expressions for the cumulative distribution function of the signal-to-interference-noise ratio at the legitimate user are derived firstly. Then we obtain the exact and asymptotic analytical results in a closed form for the secrecy outage probability of MM TAS scheme. Monte-Carlo simulation results are presented to corroborate the correctness of the analysis. The results show that the secrecy diversity order is zero and non-zero for fixed and dynamic power allocations, respectively.

  9. Secrecy Outage of Max-Min TAS Scheme in MIMO-NOMA Systems

    KAUST Repository

    Lei, Hongjiang; Zhang, Jianming; Park, Kihong; Xu, Peng; Zhang, Zufan; Pan, Gaofeng; Alouini, Mohamed-Slim

    2018-01-01

    This paper considers a secure non-orthogonal multiple access system, where confidential messages are transmitted from a base station to multiple legitimate destinations and wiretapped by multiple illegitimate receivers. It is assumed that all the channels experience Nakagami-m fading model and all the nodes are equipped with multiple antennas, respectively. Both non-colluding and colluding eavesdroppers are respectively considered. Max-min (MM) transmit antenna selection (TAS) strategy is adopted to improve the secrecy performance of the target system, in which both users in user paring are considered simultaneously. In particular, closed-form expressions for the cumulative distribution function of the signal-to-interference-noise ratio at the legitimate user are derived firstly. Then we obtain the exact and asymptotic analytical results in a closed form for the secrecy outage probability of MM TAS scheme. Monte-Carlo simulation results are presented to corroborate the correctness of the analysis. The results show that the secrecy diversity order is zero and non-zero for fixed and dynamic power allocations, respectively.

  10. On the Fast and Precise Evaluation of the Outage Probability of Diversity Receivers Over α−μ, κ−μ, and η−μ Fading Channels

    KAUST Repository

    Ben Issaid, Chaouki; Alouini, Mohamed-Slim; Tempone, Raul

    2017-01-01

    In this paper, we are interested in determining the cumulative distribution function of the sum of α−μ, κ−μ, and η−μ random variables in the setting of rare event simulations. To this end, we present a simple and efficient importance sampling approach. The main result of this work is the bounded relative error property of the proposed estimators. Capitalizing on this result, we accurately estimate the outage probability of multibranch maximum ratio combining and equal gain diversity receivers over α−μ, κ−μ, and η−μ fading channels. Selected numerical simulations are discussed to show the robustness of our estimators compared to naive Monte Carlo estimators.

  11. On the Fast and Precise Evaluation of the Outage Probability of Diversity Receivers Over α−μ, κ−μ, and η−μ Fading Channels

    KAUST Repository

    Ben Issaid, Chaouki

    2017-12-04

    In this paper, we are interested in determining the cumulative distribution function of the sum of α−μ, κ−μ, and η−μ random variables in the setting of rare event simulations. To this end, we present a simple and efficient importance sampling approach. The main result of this work is the bounded relative error property of the proposed estimators. Capitalizing on this result, we accurately estimate the outage probability of multibranch maximum ratio combining and equal gain diversity receivers over α−μ, κ−μ, and η−μ fading channels. Selected numerical simulations are discussed to show the robustness of our estimators compared to naive Monte Carlo estimators.

  12. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels.

    Science.gov (United States)

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-02-26

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.

  13. Channel characterization for high-speed W-band wireless communication links

    DEFF Research Database (Denmark)

    Rommel, Simon; Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José

    2015-01-01

    We present and discuss results from an experimental characterization of the W-band indoor wireless channel, including both large and small scale fading phenomena as well as corresponding channel parameters and their impact on system performance....

  14. Secure Broadcasting with Uncertain Channel State Information

    KAUST Repository

    Hyadi, Amal; Rezki, Zouheir; Khisti, Ashish; Alouini, Mohamed-Slim

    2017-01-01

    -main CSI are also analyzed. Analytical derivations and numerical results are presented to illustrate the obtained expressions for the case of independent and identically distributed Rayleigh fading channels.

  15. Secure Broadcasting with Uncertain Channel State Information

    KAUST Repository

    Hyadi, Amal; Rezki, Zouheir; Khisti, Ashish; Alouini, Mohamed-Slim

    2016-01-01

    -main CSI are also analyzed. Analytical derivations and numerical results are presented to illustrate the obtained expressions for the case of independent and identically distributed Rayleigh fading channels.

  16. RLS Channel Estimation with Adaptive Forgetting Factor for DS-CDMA Frequency-Domain Equalization

    Science.gov (United States)

    Kojima, Yohei; Tomeba, Hiromichi; Takeda, Kazuaki; Adachi, Fumiyuki

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can increase the downlink bit error rate (BER) performance of DS-CDMA beyond that possible with conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. Recently, we proposed a pilot-assisted channel estimation (CE) based on the MMSE criterion. Using MMSE-CE, the channel estimation accuracy is almost insensitive to the pilot chip sequence, and a good BER performance is achieved. In this paper, we propose a channel estimation scheme using one-tap recursive least square (RLS) algorithm, where the forgetting factor is adapted to the changing channel condition by the least mean square (LMS)algorithm, for DS-CDMA with FDE. We evaluate the BER performance using RLS-CE with adaptive forgetting factor in a frequency-selective fast Rayleigh fading channel by computer simulation.

  17. Security-Reliability Trade-Off Analysis for Multiuser SIMO Mixed RF/FSO Relay Networks With Opportunistic User Scheduling

    KAUST Repository

    El-Malek, Ahmed H. Abd

    2016-05-24

    In this paper, we study the performance of multiuser single-input multiple-output mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic user scheduling. The considered system includes multiple users, one amplify-and-forward relay, one destination, and a multiple-antenna eavesdropper. The users are connected with the relay node through RF links and the relay is connected with the destination through an FSO link. Both maximum ratio combining and selection combining schemes are used at the multiple-antenna relay to combine the signal received from the best user on different antennas. The RF/FSO channels models are assumed to follow Nakagami-m/gamma-gamma fading models with pointing errors. Closed-form expressions are derived for the outage probability, average symbol error probability, and ergodic channel capacity. Then, the power of the selected best user is determined to minimize the system asymptotic outage probability under the dominant RF or FSO link. Then, the considered system secrecy performance is investigated, where the closed-form expressions for the intercept probability are derived. Finally, we propose a new cooperative jamming model in which the worst user is selected by the authorized system to jam the existing eavesdropper. Monte-Carlo simulations are provided to validate the achieved exact and asymptotic results.

  18. On the Capacity of the Dirty Paper Channel with Fast Fading and Discrete Channel States

    OpenAIRE

    Rini, Stefano; Shitz, Shlomo Shamai

    2016-01-01

    The "writing dirty paper" capacity result crucially dependents on the perfect channel knowledge at the transmitter as the presence of even a small uncertainty in the channel realization gravely hampers the ability of the transmitter to pre-code its transmission against the channel state. This is particularly disappointing as it implies that interference pre-coding in practical systems is effective only when the channel estimates at the users have very high precision, a condition which is gene...

  19. A practical approach towards minimisation of latent image fading in personnel monitoring films

    International Nuclear Information System (INIS)

    Dhond, R.V.; Patel, P.H.; Shenoy, K.S.; Adtani, M.M.

    1980-01-01

    A serious drawback of the film badges used in personnel monitoring is the latent image fading often as high as 95% when they are subjected to extreme climatic conditions such as high humidities and temperatures. Current data on latent image fading in personnel monitoring films of various brands of manufacturers (Kodak, Agfa-Gevaert, Du Pont) are summarized. If individual film packs are hermitically sealed in polythene envelopes, fading is reduced to 20%. Studies were, therefore, conducted on Kodak type 2 films to observe the radiation response of films subjected alternatively to humid (20deg C and 90% r.h.) conditions for 8 hours and dry (20deg C and 30 to 40% r.h.) conditions for 16 hours with a view to find out a practicable and simple method to minimise the error due to fading. The films were then exposed to 600, 1200, 2400 and 4800 mR of radium-226 gammas after one week of storage and replaced in their experimental conditions. The films were processed after zero, one and two weeks of their storage in their respective conditions. Dose versus density curves of films were plotted. A fading less than 10% is shown for a storage period of two weeks. It is also suggested that films be kept in a desiccator having dry silica gel crystals during the periods when they are not being worn by the radiation workers. (M.G.B.)

  20. Dynamic Propagation Channel Characterization and Modeling for Human Body Communication

    Science.gov (United States)

    Nie, Zedong; Ma, Jingjing; Li, Zhicheng; Chen, Hong; Wang, Lei

    2012-01-01

    This paper presents the first characterization and modeling of dynamic propagation channels for human body communication (HBC). In-situ experiments were performed using customized transceivers in an anechoic chamber. Three HBC propagation channels, i.e., from right leg to left leg, from right hand to left hand and from right hand to left leg, were investigated under thirty-three motion scenarios. Snapshots of data (2,800,000) were acquired from five volunteers. Various path gains caused by different locations and movements were quantified and the statistical distributions were estimated. In general, for a given reference threshold è = −10 dB, the maximum average level crossing rate of the HBC was approximately 1.99 Hz, the maximum average fade time was 59.4 ms, and the percentage of bad channel duration time was less than 4.16%. The HBC exhibited a fade depth of −4 dB at 90% complementary cumulative probability. The statistical parameters were observed to be centered for each propagation channel. Subsequently a Fritchman model was implemented to estimate the burst characteristics of the on-body fading. It was concluded that the HBC is motion-insensitive, which is sufficient for reliable communication link during motions, and therefore it has great potential for body sensor/area networks. PMID:23250278

  1. On the Efficient Simulation of the Distribution of the Sum of Gamma-Gamma Variates with Application to the Outage Probability Evaluation Over Fading Channels

    KAUST Repository

    Ben Issaid, Chaouki

    2016-06-01

    The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverbation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of L-branch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative error criterion, a well-desired property characterizing the robustness of importance sampling schemes, for both identically and non-identically independent distributed cases. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

  2. On the Efficient Simulation of the Distribution of the Sum of Gamma-Gamma Variates with Application to the Outage Probability Evaluation Over Fading Channels

    KAUST Repository

    Ben Issaid, Chaouki; Ben Rached, Nadhir; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2016-01-01

    The Gamma-Gamma distribution has recently emerged in a number of applications ranging from modeling scattering and reverbation in sonar and radar systems to modeling atmospheric turbulence in wireless optical channels. In this respect, assessing the outage probability achieved by some diversity techniques over this kind of channels is of major practical importance. In many circumstances, this is intimately related to the difficult question of analyzing the statistics of a sum of Gamma-Gamma random variables. Answering this question is not a simple matter. This is essentially because outage probabilities encountered in practice are often very small, and hence the use of classical Monte Carlo methods is not a reasonable choice. This lies behind the main motivation of the present work. In particular, this paper proposes a new approach to estimate the left tail of the sum of Gamma-Gamma variates. More specifically, we propose a mean-shift importance sampling scheme that efficiently evaluates the outage probability of L-branch maximum ratio combining diversity receivers over Gamma-Gamma fading channels. The proposed estimator satisfies the well-known bounded relative error criterion, a well-desired property characterizing the robustness of importance sampling schemes, for both identically and non-identically independent distributed cases. We show the accuracy and the efficiency of our approach compared to naive Monte Carlo via some selected numerical simulations.

  3. Performance Analysis of Free-Space Optical Communication Systems With Multiuser Diversity Over Atmospheric Turbulence Channels

    KAUST Repository

    Yang, Liang

    2014-04-01

    Free-space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short-range applications. To address this, we propose a multiuser diversity (MD) FSO scheme in which the Nth best user is selected and the channel fluctuations can be effectively exploited to produce a selection diversity gain. More specifically, we first present the statistics analysis for the considered system over both weak and strong atmospheric turbulence channels. Based on these statistics, the outage probability, bit-error rate performance, average capacity, diversity order, and coverage are analyzed. Results show that the diversity order for the gamma-gamma fading is N min{α, β}/2, where N is the number of users, and α and β are the channel fading parameters related to the effective atmospheric conditions of the link.

  4. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.; Zedini, Emna; Elafandy, Rami T.; Kammoun, Abla; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels

  5. Adaptive Combined Source and Channel Decoding with Modulation ...

    African Journals Online (AJOL)

    In this paper, an adaptive system employing combined source and channel decoding with modulation is proposed for slow Rayleigh fading channels. Huffman code is used as the source code and Convolutional code is used for error control. The adaptive scheme employs a family of Convolutional codes of different rates ...

  6. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels

    Science.gov (United States)

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-01-01

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source’s radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119

  7. A Novel OFDM Channel Estimation Algorithm with ICI Mitigation over Fast Fading Channels

    Directory of Open Access Journals (Sweden)

    C. Tao

    2010-06-01

    Full Text Available Orthogonal frequency-division multiplexing (OFDM is well-known as a high-bit-rate transmission technique, but the Doppler frequency offset due to the high speed movement destroys the orthogonality of the subcarriers resulting in the intercarrier interference (ICI, and degrades the performance of the system at the same time. In this paper a novel OFDM channel estimation algorithm with ICI mitigation based on the ICI self-cancellation scheme is proposed. With this method, a more accurate channel estimation is obtained by comb-type double pilots and then ICI coefficients can be obtained to mitigate the ICI on each subcarrier under the assumption that the channel impulse response (CIR varies in a linear fashion. The theoretical analysis and simulation results show that the bit error rate (BER and spectral efficiency performances are improved significantly under high-speed mobility conditions (350 km/h – 500 km/h in comparison to ZHAO’s ICI self-cancellation scheme.

  8. Channel Estimation in DCT-Based OFDM

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  9. Joint statistics of partial sums of ordered exponential variates and performance of GSC RAKE receivers over rayleigh fading channel

    KAUST Repository

    Nam, Sungsik

    2011-08-01

    Spread spectrum receivers with generalized selection combining (GSC) RAKE reception were proposed and have been studied as alternatives to the classical two fundamental schemes: maximal ratio combining and selection combining because the number of diversity paths increases with the transmission bandwidth. Previous work on performance analyses of GSC RAKE receivers based on the signal to noise ratio focused on the development of methodologies to derive exact closed-form expressions for various performance measures. However, some open problems related to the performance evaluation of GSC RAKE receivers still remain to be solved such as the exact performance analysis of the capture probability and an exact assessment of the impact of self-interference on GSC RAKE receivers. The major difficulty in these problems is to derive some joint statistics of ordered exponential variates. With this motivation in mind, we capitalize in this paper on some new order statistics results to derive exact closed-form expressions for the capture probability and outage probability of GSC RAKE receivers subject to self-interference over independent and identically distributed Rayleigh fading channels, and compare it to that of partial RAKE receivers. © 2011 IEEE.

  10. Performance of Reverse-Link Synchronous DS-CDMA System on a Frequency-Selective Multipath Fading Channel with Imperfect Power Control

    Directory of Open Access Journals (Sweden)

    Duk Kyung Kim

    2002-08-01

    Full Text Available We analyze the performance for reverse-link synchronous DS-CDMA system in a frequency-selective Rayleigh fading channel with an imperfect power control scheme. The performance degradation due to power control error (PCE, which is approximated by a log-normally distributed random variable, is estimated as a function of the standard deviation of the PCE. In addition, we investigate the impacts of the multipath intensity profile (MIP shape and the number of resolvable paths on the performance. Finally, the coded bit error performance is evaluated in order to estimate the system capacity. Comparing with the conventional CDMA system, we show an achievable gain of from 59% to 23% for reverse-link synchronous transmission technique (RLSTT in the presence of imperfect power control over asynchronous transmission for BER=10−6. As well, the effect of tradeoff between orthogonality and diversity can be seen according to the number of multipaths, and the tendency is kept even in the presence of PCE. We conclude that the capacity can be further improved via the RLSTT, because the DS-CDMA system is very sensitive to power control imperfections.

  11. On the capacity of cognitive radio under limited channel state information

    KAUST Repository

    Rezki, Zouheir

    2010-09-01

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel state information (CSI) of the secondary link, but knows only the statistics of the secondary transmitter-primary receiver link, is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels (with continuous probability density function) under average and peak transmit-power constraints and with respect to two different interference constraints: an interference outage constraint and a signal-to-interference (SI) outage constraint. When applied to Rayleigh fading channels, our results show that the interference constraint is harmful at high-power regime, whereas at lowpower regime, it has a marginal impact and no-interference performance may be achieved. © 2010 IEEE.

  12. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.

    2017-12-13

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels. The model shows an excellent agreement with the measured data under all channel conditions.

  13. Cross-layer designed adaptive modulation algorithm with packet combining and truncated ARQ over MIMO Nakagami fading channels

    KAUST Repository

    Aniba, Ghassane; Aissa, Sonia

    2011-01-01

    works addressed the link layer performance of AM with truncated ARQ but without packet combining. In addition, previously proposed AM algorithms are not optimal and can provide poor performance when packet combining is implemented. Herein, we first show

  14. Pilot-Assisted Channel Estimation for Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    Science.gov (United States)

    Shima, Tomoyuki; Tomeba, Hiromichi; Adachi, Fumiyuki

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.

  15. Symbol Error Rate of MPSK over EGK Channels Perturbed by a Dominant Additive Laplacian Noise

    KAUST Repository

    Souri, Hamza; Alouini, Mohamed-Slim

    2015-01-01

    The Laplacian noise has received much attention during the recent years since it affects many communication systems. We consider in this paper the probability of error of an M-ary phase shift keying (PSK) constellation operating over a generalized fading channel in presence of a dominant additive Laplacian noise. In this context, the decision regions of the receiver are determined using the maximum likelihood and the minimum distance detectors. Once the decision regions are extracted, the resulting symbol error rate expressions are computed and averaged over an Extended Generalized-K fading distribution. Generic closed form expressions of the conditional and the average probability of error are obtained in terms of the Fox’s H function. Simplifications for some special cases of fading are presented and the resulting formulas end up being often expressed in terms of well known elementary functions. Finally, the mathematical formalism is validated using some selected analytical-based numerical results as well as Monte- Carlo simulation-based results.

  16. Symbol Error Rate of MPSK over EGK Channels Perturbed by a Dominant Additive Laplacian Noise

    KAUST Repository

    Souri, Hamza

    2015-06-01

    The Laplacian noise has received much attention during the recent years since it affects many communication systems. We consider in this paper the probability of error of an M-ary phase shift keying (PSK) constellation operating over a generalized fading channel in presence of a dominant additive Laplacian noise. In this context, the decision regions of the receiver are determined using the maximum likelihood and the minimum distance detectors. Once the decision regions are extracted, the resulting symbol error rate expressions are computed and averaged over an Extended Generalized-K fading distribution. Generic closed form expressions of the conditional and the average probability of error are obtained in terms of the Fox’s H function. Simplifications for some special cases of fading are presented and the resulting formulas end up being often expressed in terms of well known elementary functions. Finally, the mathematical formalism is validated using some selected analytical-based numerical results as well as Monte- Carlo simulation-based results.

  17. Power Allocation Strategies for Fixed-Gain Half-Duplex Amplify-and-Forward Relaying in Nakagami-m Fading

    KAUST Repository

    Zafar, Ammar

    2013-09-01

    In this paper, we study power allocation strategies for a fixed-gain amplify-and-forward relay network employing multiple relays. We consider two optimization problems for the relay network: 1) maximizing the end-to-end signalto- noise ratio (SNR) and 2) minimizing the total power consumption while maintaining the end-to-end SNR over a threshold value. We investigate these two problems for two relaying protocols of all-participate (AP) relaying and selective relaying and two cases of feedback to the relays, full and limited. We show that the SNR maximization problem is concave and the power minimization problem is convex for all protocols and feedback cases considered. We obtain closed-form expressions for the two problems in the case of full feedback and solve the problems through convex programming for limited feedback. Numerical results show the benefit of having full feedback at the relays for both optimization problems. However, they also show that feedback overhead can be reduced by having only limited feedback to the relays with only a small degradation in performance.

  18. Observation of auroral fading before breakup

    International Nuclear Information System (INIS)

    Pellinen, R.J.; Heikkila, W.J.

    1978-02-01

    We have obtained detailed observations of the onset of auroral breakup using a variety of instruments with time resolution of some tens of seconds. Rapid sequences of all-sky photographs, and fast meridian scans by photometers, show that breakup is usually preceded by moderate brightening, followed by fading of the auroral brightness lasting one or two minutes, before the actual breakup itself. At the time of the fading there is a brief darkening of the poleward sky. Often the breakup is preceded by one or more rapid intensifications, each one preceded by local fading. Pseudo-breakups may also occur without the development of a major event. A bonafide breakup may begin on the fading arc, on an adjacent arc, or in an entirely new region nearby. This optical activity is closely correlated with the development of auroral radar echoes, suggesting that variations in the ionospheric and magnetospheric electric and magnetic fields are responsible for the observed auroral variations. Data from the IMS magnetometer network provide some indication of a correlated response by the local auroral and ionospheric current, although this could be partly due to changes in conductivity. Riometer recordings show a slow decrease in ionsperic radio wave absorption over a period of about ten minutes prior to breakup, with the largest decrease essentially to quiet-time values in the region of auroral fading and subsequent breakup. The implications of these observations regarding the trigger mechanism for the expansion phase of a magnetospheric substorm are discussed. (author)

  19. Theoretical analysis and simulation of a code division multiple access system (cdma for secure signal transmission in wideband channels

    Directory of Open Access Journals (Sweden)

    Stevan M. Berber

    2014-06-01

    Full Text Available Chaotic spreading sequences can increase secrecy and resistance to interception in signal transmission. Chaos-based CDMA systems have been well investigated in the case of flat fading and noise presence in the channel. However, these systems operating in wideband channels, characterized by the frequency selective fading and white Gaussian noise, have not been investigated to the level of understanding their practical applications. This paper presents a detailed mathematical model of a CDMA system based on chaotic spreading sequences. In a theoretical analysis, all signals are represented in the discrete time domain. Using the theory of discrete time stochastic processes, the probability of error expressions are derived in a closed form for a multi-user chaos based CDMA system. For the sake of comparison, the expressions for the probability of error are derived separately for narrowband and wideband channels. The application of the system interleaving technique is investigated in particular, which showed that this technique can substantially improve probability of error in the system.  The system is simulated and the findings of the simulation confirmed theoretically expected results. Possible improvements in the probability of bit error due to multipath channel nature, with and without interleavers, are quantified depending on the random delay and the number of users in the system. In the analyzed system, a simplified version of the wideband channel model, proposed for modern wideband wireless networks, is used. Introduction Over the past years, the demand for wireless communications has increased substantially due to advancements in mobile communication systems and networks. Following these increasing demands, modern communication systems require the ability to handle a large number of users to process and transmit wideband signals through complex frequency selective channels. One of the techniques for transmission of multi-user signals is the

  20. Modeling and Analysis of Cellular CDMA Forward Channel

    National Research Council Canada - National Science Library

    Tighe, Jan

    2001-01-01

    In this thesis, we develop the forward channel model for a DS-CDMA cellular system operating in a slow-flat Rayleigh fading and log normal shadowing environment, which incorporates the extended Hata...

  1. Training sequence design for MIMO channels : An application-oriented approach

    NARCIS (Netherlands)

    Katselis, D.; Rojas, C.R.; Bengtsson, M.; Bjornson, E.; Bombois, X.; Shariati, N.; Jansson, M.; Hjalmarsson, H.

    2013-01-01

    In this paper, the problem of training optimization for estimating a multiple-input multiple-output (MIMO) flat fading channel in the presence of spatially and temporally correlated Gaussian noise is studied in an application-oriented setup. So far, the problem of MIMO channel estimation has mostly

  2. Channel allocation and rate adaptation for relayed transmission over correlated fading channels

    KAUST Repository

    Hwang, Kyusung; Hossain, Md Jahangir; Ko, Youngchai; Alouini, Mohamed-Slim

    2009-01-01

    at both the source and relay nodes, we develop an optimal channel allocation and rate adaptation policy for a dual-hop relayed transmission. As such the overall transmit power for the relayed system is minimized while a target packet dropping rate (PDR

  3. Temporal and Spatial Characterization of GPS Fading From Ionospheric Irregularities Under Low latitude

    Science.gov (United States)

    De Paula, E. R.; Moraes, A. D. O.; Vani, B. C.; Sobral, J. H. A.; Abdu, M. A.; Galera Monico, J. F.

    2017-12-01

    The ionosphere over the peak of the anomaly represents a treat for navigation systems based on GNSS. Brazilian territory is mostly under this harsh layer for satellite communication in general and in particular for navigation, like GPS users, where their receivers tracking performance are damaged under scintillation conditions. Ionospheric scintillation is responsible for significant degradation in the accuracy of navigation and positioning. Phase shifts accompanied by amplitude fades significantly degrades the signal-to-noise ratio of the received signal disrupting the channel and loosing navigation performance. The stronger the scintillations are, more difficulty will be for the GNSS receiver tracking loops to recover the phase and code replicas. These phenomena under specific geophysical conditions may severely affect the system availability and positioning. In this work the temporal characteristics of amplitude scintillation will be analyzed at the three available GPS frequencies, L1, L2C and L5. Aspect like fading duration and depth will be evaluated and compared among the three available frequencies for the current solar cycle. This work will use GPS scintillation data recorded during six months of data during 2014 to 2015 at three stations under Brazilian territory located near the southern crest of the equatorial ionization anomaly. The analysis will be performed focusing on the fading profile of the three frequencies comparing how the fading of those signals behave statistically between them. Aspects like loss of lock, spatial orientation between the signal across the ionospheric irregularity will also be discussed showing how much more susceptible the new frequencies might be in comparison to the widely used and studied L1 frequency.

  4. Transmission of Voice Signal: BER Performance Analysis of Different FEC Schemes Based OFDM System over Various Channels

    OpenAIRE

    Rashed, Md. Golam; Kabir, M. Hasnat; Reza, Md. Selim; Islam, Md. Matiqul; Shams, Rifat Ara; Masum, Saleh; Ullah, Sheikh Enayet

    2012-01-01

    In this paper, we investigate the impact of Forward Error Correction (FEC) codes namely Cyclic Redundancy Code and Convolution Code on the performance of OFDM wireless communication system for speech signal transmission over both AWGN and fading (Rayleigh and Rician) channels in term of Bit Error Probability. The simulation has been done in conjunction with QPSK digital modulation and compared with uncoded resultstal modulation. In the fading channels, it is found via computer simulation that...

  5. Exact closed form expressions for outage probability of GSC receivers over Rayleigh fading channel subject to self-interference

    KAUST Repository

    Nam, Sungsik; Hasna, Mazen Omar; Alouini, Mohamed-Slim

    2010-01-01

    in mind, we capitalize in this paper on some new order statistics results to derive exact closed-form expressions for outage probability of GSC RAKE receivers subject to self-interference over independent and identically distributed Rayleigh fading

  6. Ergodic secret message capacity of the wiretap channel with finite-rate feedback

    KAUST Repository

    Rezki, Zouheir

    2014-06-01

    We study the secret message capacity of an ergodic block fading wiretap channel with partial channel state information at the transmitter and perfect channel state information at the receivers, under both a short term power constraint (STPC) and a long term power constraint (LTPC). We consider that in addition to the statistics of the main and the eavesdropper channel state information (CSI), the sender is provided by the legitimate receiver with a q-bit feedback, at the beginning of each coherence block, through an error-free public channel, with capacity q bits. We establish upper and lower bounds on the secrecy capacity. We show that the lower and the upper bounds coincide asymptotically as q → ∞. When applied to Rayleigh fading channels, we show that, a 4-bit feedback achieves about 90% of the secrecy capacity when perfect main CSI is available at the transmitter. Finally, asymptotic analysis at high and low Signal-to-Noise Ratio (SNR) is presented. It is found that the capacity is bounded at high-SNR, whereas at asymptotically low-SNR, the lower bounds and the upper bound scale linearly with SNR under STPC. Furthermore, subject to LTPC, the capacity at low-SNR is equal to the capacity of the main channel without secrecy constraint and with perfect CSI at both the transmitter and the receiver, under a mild condition on the fading statistics. We also show that a positive secrecy rate is achievable even when the feedback is at the end of each coherence block and q=1. © 2002-2012 IEEE.

  7. Ergodic secret message capacity of the wiretap channel with finite-rate feedback

    KAUST Repository

    Rezki, Zouheir; Khisti, Ashish J.; Alouini, Mohamed-Slim

    2014-01-01

    We study the secret message capacity of an ergodic block fading wiretap channel with partial channel state information at the transmitter and perfect channel state information at the receivers, under both a short term power constraint (STPC) and a long term power constraint (LTPC). We consider that in addition to the statistics of the main and the eavesdropper channel state information (CSI), the sender is provided by the legitimate receiver with a q-bit feedback, at the beginning of each coherence block, through an error-free public channel, with capacity q bits. We establish upper and lower bounds on the secrecy capacity. We show that the lower and the upper bounds coincide asymptotically as q → ∞. When applied to Rayleigh fading channels, we show that, a 4-bit feedback achieves about 90% of the secrecy capacity when perfect main CSI is available at the transmitter. Finally, asymptotic analysis at high and low Signal-to-Noise Ratio (SNR) is presented. It is found that the capacity is bounded at high-SNR, whereas at asymptotically low-SNR, the lower bounds and the upper bound scale linearly with SNR under STPC. Furthermore, subject to LTPC, the capacity at low-SNR is equal to the capacity of the main channel without secrecy constraint and with perfect CSI at both the transmitter and the receiver, under a mild condition on the fading statistics. We also show that a positive secrecy rate is achievable even when the feedback is at the end of each coherence block and q=1. © 2002-2012 IEEE.

  8. Fading Skies

    Science.gov (United States)

    Sio, Betsy Menson

    2009-01-01

    A sky fading from blue to white to red at the horizon, and water darkening from light to midnight blue. Strong diagonals slashing through the image, drawing a viewer's eyes deeper into the picture, and delicate trees poised to convey a sense of beauty. These are the fascinating strengths of the ukiyo-e woodblock prints of Japanese artist Ando…

  9. Fade detector for the FODA-TDMA access scheme

    Science.gov (United States)

    Celandroni, Nedo; Ferro, Erina; Marzoli, Antonio

    1989-05-01

    The First in first out Ordered Demand Assignment-Time Division Multiple Access (FODA-TDMA) satellite access scheme designed for simultaneous transmissions of real time data, like packetized voice and slow-scan images (stream traffic) and data coming from standard EDP applications, such as bulk data tansfer, interactive computer access, mailing, data base enquiry and updating (datagram traffic) is described. When deep fades are experienced due to rain attenuation, the system is able to counter the fade. Techniques to detect the fade are presented.

  10. Half-Duplex and Full-Duplex AF and DF Relaying with Energy-Harvesting in Log-Normal Fading

    KAUST Repository

    Rabie, Khaled M.

    2017-08-15

    Energy-harvesting (EH) and wireless power transfer in cooperative relaying networks have recently attracted a considerable amount of research attention. Most of the existing work on this topic however focuses on Rayleigh fading channels, which represent outdoor environments. In contrast, this paper is dedicated to analyze the performance of dual-hop relaying systems with EH over indoor channels characterized by log-normal fading. Both half-duplex (HD) and full-duplex (FD) relaying mechanisms are studied in this work with decode-and-forward (DF) and amplify-and-forward (AF) relaying protocols. In addition, three EH schemes are investigated, namely, time switching relaying, power splitting relaying and ideal relaying receiver which serves as a lower bound. The system performance is evaluated in terms of the ergodic outage probability for which we derive accurate analytical expressions. Monte Carlo simulations are provided throughout to validate the accuracy of our analysis. Results reveal that, in both HD and FD scenarios, AF relaying performs only slightly worse than DF relaying which can make the former a more efficient solution when the processing energy cost at the DF relay is taken into account. It is also shown that FD relaying systems can generally outperform HD relaying schemes as long as the loop-back interference in FD is relatively small. Furthermore, increasing the variance of the log-normal channel has shown to deteriorate the performance in all the relaying and EH protocols considered.

  11. DFT-based channel estimation and noise variance estimation techniques for single-carrier FDMA

    OpenAIRE

    Huang, G; Nix, AR; Armour, SMD

    2010-01-01

    Practical frequency domain equalization (FDE) systems generally require knowledge of the channel and the noise variance to equalize the received signal in a frequency-selective fading channel. Accurate channel estimate and noise variance estimate are thus desirable to improve receiver performance. In this paper we investigate the performance of the denoise channel estimator and the approximate linear minimum mean square error (A-LMMSE) channel estimator with channel power delay profile (PDP) ...

  12. K Coverage Probability of 5G Wireless Cognitive Radio Network under Shadow Fading Effects

    Directory of Open Access Journals (Sweden)

    Ankur S. Kang

    2016-09-01

    Full Text Available Land mobile communication is burdened with typical propagation constraints due to the channel characteristics in radio systems.Also,the propagation characteristics vary form place to place and also as the mobile unit moves,from time to time.Hence,the tramsmission path between transmitter and receiver varies from simple direct LOS to the one which is severely obstructed by buildings,foliage and terrain.Multipath propagation and shadow fading effects affect the signal strength of an arbitrary Transmitter-Receiver due to the rapid fluctuations in the phase and amplitude of signal which also determines the average power over an area of tens or hundreds of meters.Shadowing introduces additional fluctuations,so the received local mean power varies around the area –mean.The present section deals with the performance analysis of fifth generation wireless cognitive radio network on the basis of signal and interference level based k coverage probability under the shadow fading effects.

  13. On the Capacity of a Cellular CDMA System Reverse Channel

    National Research Council Canada - National Science Library

    Klitorakis, Petros

    2002-01-01

    .... The performance of the system is examined under several values of the standard deviation of lognormal shadowing and the power control error for various numbers of users and values of the Nakagami-m variable by using simulations. Finally, a barrage noise jammer will be introduced and its effect seen in the performance of the cellular communication system for a specific value of E(sub b)/N(sub o).

  14. Capacity of cognitive radio under imperfect secondary and cross link channel state information

    KAUST Repository

    Sboui, Lokman

    2011-09-01

    In this paper, we study the ergodic capacity of secondary user channel in a spectrum sharing scenario in which the secondary transmitter is instantaneously aware of estimated versions of the cross link (between the secondary transmitter and the primary receiver) and the secondary link Channel State Information (CSI). The secondary link optimal power profile along with the ergodic capacity are derived for a class of fading channels, under an average power constraint and an instantaneous interference outage constraint. We also show that our framework is rather general as it encompasses several previously studied spectrum sharing settings as special cases. In order to gain some insights on the capacity behavior, numerical results are shown for independent Rayleigh fading channels where it is found for instance, that at low SNR regime, only the secondary channel estimation matters and that the cross link CSI has no effect on the ergodic capacity; whereas at high SNR regime, the capacity is rather driven by the cross link CSI. © 2011 IEEE.

  15. Underwater wireless optical communications: From system-level demonstrations to channel modelling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-09

    In this paper, we discuss about recent experimental advances in underwater wireless optical communications (UWOC) over various underwater channel water types using different modulation schemes as well as modelling and describing the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.

  16. Fading of LiF and CaF2:Dy

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; German, U.; Weiser, G.

    1983-03-01

    The fading of LiF and CaF 2 :Dy was investigated and the results were compared to the literature. The effect of thermal annealing was studied in order to reduce the fading in both phosphors and to minimize the effects of the environment on CaF 2 :Dy. Minimizing the fading and knowing its time dependence make possible the exact personal and environmental dosimetry. (Author)

  17. Rain Fade Compensation for Ka-Band Communications Satellites

    Science.gov (United States)

    Mitchell, W. Carl; Nguyen, Lan; Dissanayake, Asoka; Markey, Brian; Le, Anh

    1997-01-01

    This report provides a review and evaluation of rain fade measurement and compensation techniques for Ka-band satellite systems. This report includes a description of and cost estimates for performing three rain fade measurement and compensation experiments. The first experiment deals with rain fade measurement techniques while the second one covers the rain fade compensation techniques. The third experiment addresses a feedback flow control technique for the ABR service (for ATM-based traffic). The following conclusions were observed in this report; a sufficient system signal margin should be allocated for all carriers in a network, that is a fixed clear-sky margin should be typically in the range of 4-5 dB and should be more like 15 dB in the up link for moderate and heavy rain zones; to obtain a higher system margin it is desirable to combine the uplink power control technique with the technique that implements the source information rate and FEC code rate changes resulting in a 4-5 dB increase in the dynamic part of the system margin. The experiments would assess the feasibility of the fade measurements and compensation techniques, and ABR feedback control technique.

  18. 2-Step Maximum Likelihood Channel Estimation for Multicode DS-CDMA with Frequency-Domain Equalization

    Science.gov (United States)

    Kojima, Yohei; Takeda, Kazuaki; Adachi, Fumiyuki

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.

  19. Advanced Channel Estimation and Multiuser Detection in GSM

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Blauendahl, Jesper

    A single-antenna interference cancellation-capable data detector employing the SAGE-algorithm for GSM downlink transmission with co-channel interference has been designed and tested. Two scenarios were considered: First, a frequency-flat Rayleigh fading scenario with synchronously received users...

  20. Secured Communication over Frequency-Selective Fading Channels: A Practical Vandermonde Precoding

    Directory of Open Access Journals (Sweden)

    Debbah Mérouane

    2009-01-01

    Full Text Available We study the frequency-selective broadcast channel with confidential messages (BCC where the transmitter sends a confidential message to receiver 1 and a common message to receivers 1 and 2. In the case of a block transmission of symbols followed by a guard interval of symbols, the frequency-selective channel can be modeled as a Toeplitz matrix. For this special type of multiple-input multiple-output channels, we propose a practical Vandermonde precoding that projects the confidential messages in the null space of the channel seen by receiver 2 while superposing the common message. For this scheme, we provide the achievable rate region and characterize the optimal covariance for some special cases of interest. Interestingly, the proposed scheme can be applied to other multiuser scenarios such as the -user frequency-selective BCC with confidential messages and the two-user frequency-selective BCC with two confidential messages. For each scenario, we provide the secrecy degree of freedom (s.d.o.f. region of the corresponding channel and prove the optimality of the Vandermonde precoding. One of the appealing features of the proposed scheme is that it does not require any specific secrecy encoding technique but can be applied on top of any existing powerful encoding schemes.

  1. A Bayesian matching pursuit based scheduling algorithm for feedback reduction in MIMO broadcast channels

    KAUST Repository

    Shibli, Hussain J.; Eltayeb, Mohammed E.; Al-Naffouri, Tareq Y.

    2013-01-01

    challenges are faced during uplink transmission. First of all, the statistics of the noisy and fading feedback channels are unknown at the base station (BS) and channel training is usually required from all users. Secondly, the amount of network resources

  2. Tunable M-channel filter based on Thue-Morse heterostructures containing meta materials

    Directory of Open Access Journals (Sweden)

    H Pashaei Adl

    2015-01-01

    Full Text Available In this paper the tunable M-channel filters based on Thue-Morse heterostructures consisting of single -negative materials has been studied. The results showed that the number of resonance modes inside the zero- gap increases as the number of heterogenous interface, M, increases. The number of resonance modes inside the zero- gap is equal to that of heterogenous interface M, and it can be used as M channels filter. This result provides a feasible method to adjust the channel number of multiple-channel filters. When losses are involved, the results showed that the electric fields of the resonance modes decay largely with the increase of the number of heterogenous interface and damping factors. Besides, the relationship between the quality factor of multiple-channel filters and the number of heterogenous interface M is linear, and the quality factor of multiple-channel filters decreases with the increase of the damping factor. These results provide feasible methods to adjust the quality factor of multiple-channel filters

  3. Performance Analysis of the Effect of Pulsed-Noise Interference on WLAN Signals Transmitted Over a Nakagami Fading Channel

    National Research Council Canada - National Science Library

    Tsoumanis, Andreas

    2004-01-01

    ...) coding with soft decision decoding (SDD) and maximum- likelihood detection improves performance as compared to uncoded signals, In addition, the combination of maximum-likelihood detection and error connection coding renders pulsed-noise...

  4. Secured Communication over Frequency-Selective Fading Channels: A Practical Vandermonde Precoding

    Directory of Open Access Journals (Sweden)

    Mari Kobayashi

    2009-01-01

    Full Text Available We study the frequency-selective broadcast channel with confidential messages (BCC where the transmitter sends a confidential message to receiver 1 and a common message to receivers 1 and 2. In the case of a block transmission of N symbols followed by a guard interval of L symbols, the frequency-selective channel can be modeled as a N×(N+L Toeplitz matrix. For this special type of multiple-input multiple-output channels, we propose a practical Vandermonde precoding that projects the confidential messages in the null space of the channel seen by receiver 2 while superposing the common message. For this scheme, we provide the achievable rate region and characterize the optimal covariance for some special cases of interest. Interestingly, the proposed scheme can be applied to other multiuser scenarios such as the K+1-user frequency-selective BCC with K confidential messages and the two-user frequency-selective BCC with two confidential messages. For each scenario, we provide the secrecy degree of freedom (s.d.o.f. region of the corresponding channel and prove the optimality of the Vandermonde precoding. One of the appealing features of the proposed scheme is that it does not require any specific secrecy encoding technique but can be applied on top of any existing powerful encoding schemes.

  5. Maximal Ratio Combining Using Channel Estimation in Chaos Based Pilot-Added DS-CDMA System with Antenna Diversity

    Directory of Open Access Journals (Sweden)

    Meher Krishna Patel

    2017-01-01

    Full Text Available This paper presents an adaptive multiuser transceiver scheme for DS-CDMA systems in which pilot symbols are added to users’ data to estimate complex channel fading coefficients. The performance of receiver antenna diversity with maximal ratio combining (MRC technique is analyzed for imperfect channel estimation in flat fading environments. The complex fading coefficients are estimated using least mean square (LMS algorithm and these coefficients are utilized by the maximal ratio combiner for generating the decision variable. Probability of error in closed form is derived. Further, the effect of pilot signal power on bit error rate (BER and BER performance of multiplexed pilot and data signal transmission scenario are investigated. We have compared the performance of added and multiplexed pilot-data systems and concluded the advantages of both systems. The proposed CDMA technique uses the chaotic sequence as spreading sequence. Assuming proper synchronization, the computer simulation results demonstrate the better bit error rate performance in the presence of channel estimator in the chaotic based CDMA system and the receiver antenna diversity technique further improves the performance of the proposed system. Also, no channel estimator is required if there is no phase distortion to the transmitted signal.

  6. On the performance of multiuser scheduling with post-examining under non-identical fading

    KAUST Repository

    Gaaloul, Fakhreddine

    2012-06-11

    We investigate the performance of a multiuser downlink access scheme based on a post-selection switch and examine algorithm. The studied scheme sequentially switches over the users that experience independent and non-identically distributed fading conditions, and selects a single user with an acceptable channel quality as compared to a pre-selected signal-to-noise ratio (SNR) threshold. If no one of the users can satisfy the target channel quality, the base station (BS) takes the advantage of the knowledge of all users channels and serves the user with the best channel quality among all users. This scheme reduces considerably the feedback load but offers a lower average spectral efficiency (ASE) as compared to that of the full feedback system with instantaneous best user selection. On the other hand, it improves the system performances, such as outage probability and average bit error rate (BER), as compared to a system that is based on a standard switching scheme without post-selection. Numerical results for the ASE average BER, and average feed back load, are presented for the cases of outdated and non-outdated rate-adaptive modulation scheme operating over independent and non-identically distributed users.

  7. On the performance of multiuser scheduling with post-examining under non-identical fading

    KAUST Repository

    Gaaloul, Fakhreddine; Alouini, Mohamed-Slim; Radaydeh, Redha M.; Yang, Hong-Chuan

    2012-01-01

    We investigate the performance of a multiuser downlink access scheme based on a post-selection switch and examine algorithm. The studied scheme sequentially switches over the users that experience independent and non-identically distributed fading conditions, and selects a single user with an acceptable channel quality as compared to a pre-selected signal-to-noise ratio (SNR) threshold. If no one of the users can satisfy the target channel quality, the base station (BS) takes the advantage of the knowledge of all users channels and serves the user with the best channel quality among all users. This scheme reduces considerably the feedback load but offers a lower average spectral efficiency (ASE) as compared to that of the full feedback system with instantaneous best user selection. On the other hand, it improves the system performances, such as outage probability and average bit error rate (BER), as compared to a system that is based on a standard switching scheme without post-selection. Numerical results for the ASE average BER, and average feed back load, are presented for the cases of outdated and non-outdated rate-adaptive modulation scheme operating over independent and non-identically distributed users.

  8. Effects of presynaptic muscarinic cholinoreceptor blockade on neuromuscular transmission as assessed by the train-of-four and the tetanic fade response to rocuronium.

    Science.gov (United States)

    Kim, Yong Beom; Lee, Sangseok; Lee, Kyeong Chun; Kim, Ha Jung; Ro, Young Jin; Yang, Hong-Seuk

    2017-07-01

    This study investigated the effect of muscarinic M 1 and M 2 receptor antagonists on the rocuronium-induced train of four (TOF) fade and tetanic fade, respectively. Ex-vivo phrenic nerves and diaphragms were obtained from adult Sprague-Dawley rats and stabilized in Krebs buffer; the nerve-stimulated muscle TOF fade was observed at 20 s intervals. For the TOF study, phrenic nerves and diaphragms were incubated with pirenzepine (an M 1 blocker) at concentrations of 0 nmol L -1 (control), 10 nmol L -1 (PZP10), or 100 nmol L -1 (PZP100). Rocuronium was then administered incrementally until the first twitch tension had depressed by >95% during TOF stimulation. The mean TOF ratios were compared when the first twitch tensions were depressed by 40%-50%. For the tetanic fade study, 50 Hz/5 s tetani was applied initially, 30 min after the administration of a loading dose of rocuronium and methoctramine (an M 2 receptor blocker, loaded at 0 μmol L -1 [control], 1 μmol L -1 [MET1], or 10 μmol L -1 [MET10]). The EC 95 of rocuronium was significantly lower in the PZP10 group than in the control group. In the PZP10 group, the TOF ratios at 50% and first twitch tension depression were significantly lower than those in the control group (P=.02). During tetanic stimulation, the tetanic fade was significantly enhanced in the MET10 group compared to the other groups. This study shows that antagonists of muscarinic M 1 and M 2 receptors affect the rocuronium-induced neuromuscular block as demonstrated by the reduced EC 95 and TOF ratios (M 1 antagonist, pirenzepine) or the enhanced 50-Hz tetanic fade (M 2 antagonist, methoctramine). © 2017 The Authors. Clinical and Experimental Pharmacology and Physiology Published by John Wiley & Sons Australia, Ltd.

  9. Autonomous detection of ISO fade point with color laser printers

    Science.gov (United States)

    Yan, Ni; Maggard, Eric; Fothergill, Roberta; Jessome, Renee J.; Allebach, Jan P.

    2015-01-01

    Image quality assessment is a very important field in image processing. Human observation is slow and subjective, it also requires strict environment setup for the psychological test 1. Thus developing algorithms to match desired human experiments is always in need. Many studies have focused on detecting the fading phenomenon after the materials are printed, that is to monitor the persistence of the color ink 2-4. However, fading is also a common artifact produced by printing systems when the cartridges run low. We want to develop an automatic system to monitor cartridge life and report fading defects when they appear. In this paper, we first describe a psychological experiment that studies the human perspective on printed fading pages. Then we propose an algorithm based on Color Space Projection and K-means clustering to predict the visibility of fading defects. At last, we integrate the psychological experiment result with our algorithm to give a machine learning tool that monitors cartridge life.

  10. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    Science.gov (United States)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  11. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis

    Directory of Open Access Journals (Sweden)

    Jinxing Deng

    2017-04-01

    Full Text Available To understand the electrochemical capacity fading of the polyaniline (PANI electrodes in supercapacitors, for the first time, their chemical structure change during electrochemical cycles was traced with XPS analysis after the HCl doped PANI electrodes were subjected to the cyclic voltammetry test in 1.0 M H2SO4 electrolyte for different cycle numbers. The results showed that the chlorine disappeared in the electrode surface, while the surface element contents of sulfur and oxygen increased with the electrochemical cycles increased. It demonstrated that the hydrolytic degradation of the PANI chains and exchange of dopant occurred during the electrochemical cycling, causing the fading in the mechanical and electrochemical performance of the PANI electrodes. This understanding should lead to better design of the conductive polymer-based energy storage devices.

  12. Outage probability of distributed beamforming with co-channel interference

    KAUST Repository

    Yang, Liang

    2012-03-01

    In this letter, we consider a distributed beamforming scheme (DBF) in the presence of equal-power co-channel interferers for both amplify-and-forward and decode-and-forward relaying protocols over Rayleigh fading channels. We first derive outage probability expressions for the DBF systems. We then present a performance analysis for a scheme relying on source selection. Numerical results are finally presented to verify our analysis. © 2011 IEEE.

  13. Channel correlation of free space optical communication systems with receiver diversity in non-Kolmogorov atmospheric turbulence

    Science.gov (United States)

    Ma, Jing; Fu, Yulong; Tan, Liying; Yu, Siyuan; Xie, Xiaolong

    2018-05-01

    Spatial diversity as an effective technique to mitigate the turbulence fading has been widely utilized in free space optical (FSO) communication systems. The received signals, however, will suffer from channel correlation due to insufficient spacing between component antennas. In this paper, the new expressions of the channel correlation coefficient and specifically its components (the large- and small-scale channel correlation coefficients) for a plane wave with aperture effects are derived for horizontal link in moderate-to-strong turbulence, using a non-Kolmogorov spectrum that has a generalized power law in the range of 3-4 instead of the fixed classical Kolmogorov power law of 11/3. And then the influence of power law variations on the channel correlation coefficient and its components are analysed. The numerical results indicated that various value of the power law lead to varying effects on the channel correlation coefficient and its components. This work will help with the further investigation on the fading correlation in spatial diversity systems.

  14. Code-Aided Estimation and Detection on Time-Varying Correlated Mimo Channels: A Factor Graph Approach

    Directory of Open Access Journals (Sweden)

    Simoens Frederik

    2006-01-01

    Full Text Available This paper concerns channel tracking in a multiantenna context for correlated flat-fading channels obeying a Gauss-Markov model. It is known that data-aided tracking of fast-fading channels requires a lot of pilot symbols in order to achieve sufficient accuracy, and hence decreases the spectral efficiency. To overcome this problem, we design a code-aided estimation scheme which exploits information from both the pilot symbols and the unknown coded data symbols. The algorithm is derived based on a factor graph representation of the system and application of the sum-product algorithm. The sum-product algorithm reveals how soft information from the decoder should be exploited for the purpose of estimation and how the information bits can be detected. Simulation results illustrate the effectiveness of our approach.

  15. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Science.gov (United States)

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  16. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Directory of Open Access Journals (Sweden)

    Gayle M. Passmore

    2012-05-01

    Full Text Available M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 µM XE991 sensitised Adelta- but not C-fibres to noxious heat stimulation and induced spontaneous, ongoing activity at 32ºC in many Adelta-fibres. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Adelta-fibre peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Adelta-fibre responses and provide a rationale for the nocifensive behaviours that arise following intraplantar injection of the M-channel blocker XE991.

  17. On the Capacity of Underlay Cognitive Radio Systems

    KAUST Repository

    Sboui, Lokman

    2013-05-05

    Due to the scarcity of frequency spectrum in view of the evolution of wireless communication technologies, the cognitive radio (CR) concept has been introduced to efficiently exploit the available spectrum. This concept consists in introducing unlicensed/secondary users (SU’s) in existing networks to share the spectrum of licensed/primary users (PU’s) without harming primary communications hence the name of “spectrum sharing” technique. We study in this dissertation, the capacity and the achievable rate of the secondary user within various communication settings. We, firstly, investigate the capacity of the (SU’s) at low power regime for Nakagami fading channels and present closed form of the capacity under various types of interference and/or power constraints. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link ergodic capacity. Interestingly, we show that the low power regime analysis provides a specific insight on the capacity behavior of CR that has not been reported by previous studies. Next, we determine the spectral efficiency gain of an uplink CR Multi-Input Multi- Output (MIMO) system in which the SU is allowed to share the spectrum with the PU using a specific precoding scheme to communicate with a common receiver. Applied to Rayleigh fading channels, we show, through numerical results, that our proposed scheme enhances considerably the cognitive achievable rate. For instance, in case of a perfect detection of the PU signal, after applying Successive Interference Cancellation (SIC), the CR rate remains non-zero for high Signal to Noise Ratio (SNR) which is usually impossible when we only use space alignment technique. In addition, we show that the rate gain is proportional to the allowed interference threshold by providing a fixed rate even in the high SNR range

  18. Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats

    Directory of Open Access Journals (Sweden)

    J.M. Cruciol-Souza

    1999-10-01

    Full Text Available Although it has been demonstrated that nitric oxide (NO released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg or ODQ (15 µg/kg. ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.

  19. Iterative Pilot-Layer Aided Channel Estimation with Emphasis on Interleave-Division Multiple Access Systems

    OpenAIRE

    Schoeneich Hendrik; Hoeher Peter Adam

    2006-01-01

    Channel estimation schemes suitable for interleave-division multiple access (IDMA) systems are presented. Training and data are superimposed. Training-based and semiblind linear channel estimators are derived and their performance is discussed and compared. Monte Carlo simulation results are presented showing that the derived channel estimators in conjunction with a superimposed pilot sequence and chip-by-chip processing are able to track fast-fading frequency-selective channels. As opposed ...

  20. Chip-Level Channel Equalization in WCDMA Downlink

    Directory of Open Access Journals (Sweden)

    Kari Hooli

    2002-08-01

    Full Text Available The most important third generation (3G cellular communications standard is based on wideband CDMA (WCDMA. Receivers based on TDMA style channel equalization at the chip level have been proposed for a WCDMA downlink employing long spreading sequences to ensure adequate performance even with a high number of active users. These receivers equalize the channel prior to despreading, thus restoring the orthogonality of users and resulting in multiple-access interference (MAI suppression. In this paper, an overview of chip-level channel equalizers is delivered with special attention to adaptation methods suitable for the WCDMA downlink. Numerical examples on the equalizers′ performance are given in Rayleigh fading frequency-selective channels.

  1. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2014-01-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter's estimate of the main channel. On the other hand, the eavesdropper's receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter's estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  2. Performance of hybrid-ARQ with incremental redundancy over relay channels

    KAUST Repository

    Chelli, Ali

    2012-12-01

    In this paper, we consider a relay network consisting of a source, a relay, and a destination. The source transmits a message to the destination using hybrid automatic repeat request (HARQ) with incremental redundancy (IR). The relay overhears the transmitted messages over the different HARQ rounds and tries to decode the data packet. In case of successful decoding at the relay, both the relay and the source cooperate to transmit the message to the destination. A maximum number M of HARQ rounds is considered. The channel realizations are independent for different HARQ rounds. We assume Rayleigh fading channels for the links source-relay, source-destination, and relay-destination. We investigate the performance of HARQ-IR over relay channel from an information theoretic perspective. Analytical expressions are derived for the information outage probability, the average number of transmissions, and the average transmission rate. We illustrate through our investigation the benefit of relaying. We also show the impact of the target outage probability and the maximum number M of HARQ rounds on the outage probability, the average number of transmissions, and the average transmission rate. © 2012 IEEE.

  3. An Adaptive Channel Model for VBLAST in Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Ghassan M. T. Abdalla

    2009-01-01

    Full Text Available The wireless transmission environment in vehicular ad hoc systems varies from line of sight with few surroundings to rich Rayleigh fading. An efficient communication system must adapt itself to these diverse conditions. Multiple antenna systems are known to provide superior performance compared to single antenna systems in terms of capacity and reliability. The correlation between the antennas has a great effect on the performance of MIMO systems. In this paper we introduce a novel adaptive channel model for MIMO-VBLAST systems in vehicular ad hoc networks. Using the proposed model, the correlation between the antennas was investigated. Although the line of sight is ideal for single antenna systems, it severely degrades the performance of VBLAST systems since it increases the correlation between the antennas. A channel update algorithm using single tap Kalman filters for VBLAST in flat fading channels has also been derived and evaluated. At 12 dB Es/N0, the new algorithm showed 50% reduction in the mean square error (MSE between the actual channel and the corresponding updated estimate compared to the MSE without update. The computational requirement of the proposed algorithm for a p×q VBLAST is 6p×q real multiplications and 4p×q real additions.

  4. Ergodic Capacity of Cognitive Radio Under Imperfect Channel-State Information

    KAUST Repository

    Rezki, Zouheir; Alouini, Mohamed-Slim

    2012-01-01

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel-state information (CSI) of the secondary link but knows only the statistics and an estimated version of the secondary transmitter-primary receiver link is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels [with a continuous probability density function (pdf)] under the average and peak transmit power constraints and with respect to the following two different interference constraints: 1) an interference outage constraint and 2) a signal-to-interference outage constraint. When applied to Rayleigh fading channels, our results show, for example, that the interference constraint is harmful at the high-power regime, because the capacity does not increase with the power, whereas at the low-power regime, it has a marginal impact and no-interference performance, which corresponds to the ergodic capacity under average or peak transmit power constraint in the absence of the primary user, may be achieved. © 2012 IEEE.

  5. Ergodic Capacity of Cognitive Radio Under Imperfect Channel-State Information

    KAUST Repository

    Rezki, Zouheir

    2012-09-08

    A spectrum-sharing communication system where the secondary user is aware of the instantaneous channel-state information (CSI) of the secondary link but knows only the statistics and an estimated version of the secondary transmitter-primary receiver link is investigated. The optimum power profile and the ergodic capacity of the secondary link are derived for general fading channels [with a continuous probability density function (pdf)] under the average and peak transmit power constraints and with respect to the following two different interference constraints: 1) an interference outage constraint and 2) a signal-to-interference outage constraint. When applied to Rayleigh fading channels, our results show, for example, that the interference constraint is harmful at the high-power regime, because the capacity does not increase with the power, whereas at the low-power regime, it has a marginal impact and no-interference performance, which corresponds to the ergodic capacity under average or peak transmit power constraint in the absence of the primary user, may be achieved. © 2012 IEEE.

  6. Hybrid digital-analog coding with bandwidth expansion for correlated Gaussian sources under Rayleigh fading

    Science.gov (United States)

    Yahampath, Pradeepa

    2017-12-01

    Consider communicating a correlated Gaussian source over a Rayleigh fading channel with no knowledge of the channel signal-to-noise ratio (CSNR) at the transmitter. In this case, a digital system cannot be optimal for a range of CSNRs. Analog transmission however is optimal at all CSNRs, if the source and channel are memoryless and bandwidth matched. This paper presents new hybrid digital-analog (HDA) systems for sources with memory and channels with bandwidth expansion, which outperform both digital-only and analog-only systems over a wide range of CSNRs. The digital part is either a predictive quantizer or a transform code, used to achieve a coding gain. Analog part uses linear encoding to transmit the quantization error which improves the performance under CSNR variations. The hybrid encoder is optimized to achieve the minimum AMMSE (average minimum mean square error) over the CSNR distribution. To this end, analytical expressions are derived for the AMMSE of asymptotically optimal systems. It is shown that the outage CSNR of the channel code and the analog-digital power allocation must be jointly optimized to achieve the minimum AMMSE. In the case of HDA predictive quantization, a simple algorithm is presented to solve the optimization problem. Experimental results are presented for both Gauss-Markov sources and speech signals.

  7. Low SNR capacity for MIMO Rician and Rayleigh-product fading channels with single co-channel interferer and noise

    KAUST Repository

    Zhong, Caijun

    2010-09-01

    This paper studies the ergodic capacity of multiple-input multiple-output (MIMO) systems with a single co-channel interferer in the low signal-to-noise-ratio (SNR) regime. Two MIMO models namely Rician and Rayleigh-product channels are investigated. Exact analytical expressions for the minimum energy per information bit, {Eb/N0min, and wideband slope, S0, are derived for both channels. Our results show that the minimum energy per information bit is the same for both channels while their wideband slopes differ significantly. Further, the impact of the numbers of transmit and receive antennas, the Rician K factor, the channel mean matrix and the interference-to-noise-ratio (INR) on the capacity, is addressed. Results indicate that interference degrades the capacity by increasing the required minimum energy per information bit and reducing the wideband slope. Simulation results validate our analytical results. © 2010 IEEE.

  8. Code Tracking Algorithms for Mitigating Multipath Effects in Fading Channels for Satellite-Based Positioning

    Directory of Open Access Journals (Sweden)

    Markku Renfors

    2007-12-01

    Full Text Available The ever-increasing public interest in location and positioning services has originated a demand for higher performance global navigation satellite systems (GNSSs. In order to achieve this incremental performance, the estimation of line-of-sight (LOS delay with high accuracy is a prerequisite for all GNSSs. The delay lock loops (DLLs and their enhanced variants (i.e., feedback code tracking loops are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. In addition, the new satellite positioning system proposals specify the use of a new modulation, the binary offset carrier (BOC modulation, which triggers a new challenge in the code tracking stage. Therefore, in order to meet this emerging challenge and to improve the accuracy of the delay estimation in severe multipath scenarios, this paper analyzes feedback as well as feedforward code tracking algorithms and proposes the peak tracking (PT methods, which are combinations of both feedback and feedforward structures and utilize the inherent advantages of both structures. We propose and analyze here two variants of PT algorithm: PT with second-order differentiation (Diff2, and PT with Teager Kaiser (TK operator, which will be denoted herein as PT(Diff2 and PT(TK, respectively. In addition to the proposal of the PT methods, the authors propose also an improved early-late-slope (IELS multipath elimination technique which is shown to provide very good mean-time-to-lose-lock (MTLL performance. An implementation of a noncoherent multipath estimating delay locked loop (MEDLL structure is also presented. We also incorporate here an extensive review of the existing feedback and feedforward delay estimation algorithms for direct sequence code division multiple access (DS-CDMA signals in satellite fading channels, by taking into account the impact of binary phase shift keying (BPSK as well as the newly proposed BOC modulation

  9. Flash-induced fading: Dependence on colour and shape similarity

    NARCIS (Netherlands)

    Vergeer, M.L.T.; Lier, R.J. van

    2005-01-01

    We investigated the effects of perceptual grouping by colour and shape similarity on flash-induced perceptual fading. This flash-induced fading effect (Kanai et al, 2003 Journal of Cognitive Neuroscience 15 664 - 672) is considered as a time-locked variant of the Troxler effect. In the original

  10. A Bayesian matching pursuit based scheduling algorithm for feedback reduction in MIMO broadcast channels

    KAUST Repository

    Shibli, Hussain J.

    2013-06-01

    Opportunistic schedulers rely on the feedback of all users in order to schedule a set of users with favorable channel conditions. While the downlink channels can be easily estimated at all user terminals via a single broadcast, several key challenges are faced during uplink transmission. First of all, the statistics of the noisy and fading feedback channels are unknown at the base station (BS) and channel training is usually required from all users. Secondly, the amount of network resources (air-time) required for feedback transmission grows linearly with the number of users. In this paper, we tackle the above challenges and propose a Bayesian based scheduling algorithm that 1) reduces the air-time required to identify the strong users, and 2) is agnostic to the statistics of the feedback channels and utilizes the a priori statistics of the additive noise to identify the strong users. Numerical results show that the proposed algorithm reduces the feedback air-time while improving detection in the presence of fading and noisy channels when compared to recent compressed sensing based algorithms. Furthermore, the proposed algorithm achieves a sum-rate throughput close to that obtained by noiseless dedicated feedback systems. © 2013 IEEE.

  11. Frequency domain based LS channel estimation in OFDM based Power line communications

    OpenAIRE

    Bogdanović, Mario

    2015-01-01

    This paper is focused on low voltage power line communication (PLC) realization with an emphasis on channel estimation techniques. The Orthogonal Frequency Division Multiplexing (OFDM) scheme is preferred technology in PLC systems because of its effective combat with frequency selective fading properties of PLC channel. As the channel estimation is one of the crucial problems in OFDM based PLC system because of a problematic area of PLC signal attenuation and interference, the improved LS est...

  12. A Framework for Uplink Intercell Interference Modeling with Channel-Based Scheduling

    KAUST Repository

    Tabassum, Hina; Yilmaz, Ferkan; Dawy, Zaher; Alouini, Mohamed-Slim

    2012-01-01

    This paper presents a novel framework for modeling the uplink intercell interference(ICI) in a multiuser cellular network. The proposed framework assists in quantifying the impact of various fading channel models and state-of-the-art scheduling

  13. Secure Broadcasting with Uncertain Channel State Information

    KAUST Repository

    Hyadi, Amal

    2017-03-13

    We investigate the problem of secure broadcasting over fast fading channels with imperfect main channel state information (CSI) at the transmitter. In particular, we analyze the effect of the noisy estimation of the main CSI on the throughput of a broadcast channel where the transmission is intended for multiple legitimate receivers in the presence of an eavesdropper. Besides, we consider the realistic case where the transmitter is only aware of the statistics of the eavesdropper\\'s CSI and not of its channel\\'s realizations. First, we discuss the common message transmission case where the source broadcasts the same information to all the receivers, and we provide an upper and a lower bounds on the ergodic secrecy capacity. For this case, we show that the secrecy rate is limited by the legitimate receiver having, on average, the worst main channel link and we prove that a non-zero secrecy rate can still be achieved even when the CSI at the transmitter is noisy. Then, we look at the independent messages case where the transmitter broadcasts multiple messages to the receivers, and each intended user is interested in an independent message. For this case, we present an expression for the achievable secrecy sum-rate and an upper bound on the secrecy sum-capacity and we show that, in the limit of large number of legitimate receivers K, our achievable secrecy sum-rate follows the scaling law log((1-a ) log(K)), where is the estimation error variance of the main CSI. The special cases of high SNR, perfect and no-main CSI are also analyzed. Analytical derivations and numerical results are presented to illustrate the obtained expressions for the case of independent and identically distributed Rayleigh fading channels.

  14. On the performance of dual-hop FSO/RF systems

    KAUST Repository

    Zedini, Emna

    2016-04-21

    Exact closed-form performance metrics for mixed free-space optical/radio frequency (FSO/RF) communication systems are not available in the literature. This paper presents novel results for the performance analysis of a dual-hop FSO/RF transmission system where the FSO link is modeled by the Gamma-Gamma distribution with pointing error impairments and under heterodyne detection, and the RF link experiences the Nakagami-m fading. Using amplify-and-forward fixed gain relaying, new closed form expressions for the outage probability, the moments, the average bit-error-rate, and the ergodic capacity are obtained in terms of the extended generalized bivariate Meijer\\'s G function. Monte Carlo simulations are provided to confirm the accuracy of the newly proposed results.

  15. Channel Deviation-Based Power Control in Body Area Networks.

    Science.gov (United States)

    Van, Son Dinh; Cotton, Simon L; Smith, David B

    2018-05-01

    Internet enabled body area networks (BANs) will form a core part of future remote health monitoring and ambient assisted living technology. In BAN applications, due to the dynamic nature of human activity, the off-body BAN channel can be prone to deep fading caused by body shadowing and multipath fading. Using this knowledge, we present some novel practical adaptive power control protocols based on the channel deviation to simultaneously prolong the lifetime of wearable devices and reduce outage probability. The proposed schemes are both flexible and relatively simple to implement on hardware platforms with constrained resources making them inherently suitable for BAN applications. We present the key algorithm parameters used to dynamically respond to the channel variation. This allows the algorithms to achieve a better energy efficiency and signal reliability in everyday usage scenarios such as those in which a person undertakes many different activities (e.g., sitting, walking, standing, etc.). We also profile their performance against traditional, optimal, and other existing schemes for which it is demonstrated that not only does the outage probability reduce significantly, but the proposed algorithms also save up to average transmit power compared to the competing schemes.

  16. On the Secrecy Capacity of the Multiple-Antenna Wiretap Channel with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal; Rezki, Zouheir; Alouini, Mohamed-Slim

    2015-01-01

    We study the ergodic secrecy capacity of a block fading wiretap channel when there are multiple antennas at the transmitter, the legitimate receiver and the eavesdropper. We consider that the receivers are aware of their respective channel matrices while the transmitter is only provided by a B-bits feedback of the main channel state information. The feedback bits are sent by the legitimate receiver, at the beginning of each fading block, over an error free public link with limited capacity. Assuming an average transmit power constraint, we provide an upper and a lower bounds on the ergodic secrecy capacity. Then, we present a framework to design the optimal codebooks for feedback and transmission. In addition, we show that the proposed lower and upper bounds coincide asymptotically as the capacity of the feedback link becomes large; hence, fully characterizing the secrecy capacity in this case.

  17. On the Secrecy Capacity of the Multiple-Antenna Wiretap Channel with Limited CSI Feedback

    KAUST Repository

    Hyadi, Amal

    2015-12-01

    We study the ergodic secrecy capacity of a block fading wiretap channel when there are multiple antennas at the transmitter, the legitimate receiver and the eavesdropper. We consider that the receivers are aware of their respective channel matrices while the transmitter is only provided by a B-bits feedback of the main channel state information. The feedback bits are sent by the legitimate receiver, at the beginning of each fading block, over an error free public link with limited capacity. Assuming an average transmit power constraint, we provide an upper and a lower bounds on the ergodic secrecy capacity. Then, we present a framework to design the optimal codebooks for feedback and transmission. In addition, we show that the proposed lower and upper bounds coincide asymptotically as the capacity of the feedback link becomes large; hence, fully characterizing the secrecy capacity in this case.

  18. Achievable Rates of Secure Transmission in Gaussian MISO Channel with Imperfect Main Channel Estimation

    KAUST Repository

    Zhou, Xinyu; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2016-01-01

    A Gaussian multiple-input single-output (MISO) fading channel is considered. We assume that the transmitter, in addition to the statistics of all channel gains, is aware instantaneously of a noisy version of the channel to the legitimate receiver. On the other hand, the legitimate receiver is aware instantaneously of its channel to the transmitter, whereas the eavesdropper instantaneously knows all channel gains. We evaluate an achievable rate using a Gaussian input without indexing an auxiliary random variable. A sufficient condition for beamforming to be optimal is provided. When the number of transmit antennas is large, beamforming also turns out to be optimal. In this case, the maximum achievable rate can be expressed in a simple closed form and scales with the logarithm of the number of transmit antennas. Furthermore, in the case when a noisy estimate of the eavesdropper’s channel is also available at the transmitter, we introduce the SNR difference and the SNR ratio criterions and derive the related optimal transmission strategies and the corresponding achievable rates.

  19. Achievable Rates of Secure Transmission in Gaussian MISO Channel with Imperfect Main Channel Estimation

    KAUST Repository

    Zhou, Xinyu

    2016-03-15

    A Gaussian multiple-input single-output (MISO) fading channel is considered. We assume that the transmitter, in addition to the statistics of all channel gains, is aware instantaneously of a noisy version of the channel to the legitimate receiver. On the other hand, the legitimate receiver is aware instantaneously of its channel to the transmitter, whereas the eavesdropper instantaneously knows all channel gains. We evaluate an achievable rate using a Gaussian input without indexing an auxiliary random variable. A sufficient condition for beamforming to be optimal is provided. When the number of transmit antennas is large, beamforming also turns out to be optimal. In this case, the maximum achievable rate can be expressed in a simple closed form and scales with the logarithm of the number of transmit antennas. Furthermore, in the case when a noisy estimate of the eavesdropper’s channel is also available at the transmitter, we introduce the SNR difference and the SNR ratio criterions and derive the related optimal transmission strategies and the corresponding achievable rates.

  20. Effect of RF Interference on the Security-Reliability Trade-off Analysis of Multiuser Mixed RF/FSO Relay Networks with Power Allocation

    KAUST Repository

    Abd El-Malek, Ahmed

    2017-03-27

    In this paper, the impact of radio frequency (RF) cochannel interference (CCI) on the performance of multiuser mixed RF/free-space optical (FSO) relay network with opportunistic user scheduling under eavesdropping attack is studied. The considered system includes multiple users, one decode-and-forward relay, one destination, and an eavesdropper. In the analysis, the RF/FSO channels follow Nakagami-m/Gamma-Gamma fading models, respectively, with pointing errors on the FSO link. Exact closed-form expression for the system outage probability is derived. Then, an asymptotic expression for the outage probability is obtained at the high signal-to-interference-plus-noise ratio regime to get more insights on the system performance. Moreover, the obtained results are used to find the optimal transmission power in different turbulence conditions. The secrecy performance is studied in the presence of CCI at both the authorized relay and eavesdropper, where closed-form expressions are derived for the intercept probability. The physical layer security performance is enhanced using cooperative jamming models, where new closed-form expressions are derived for the intercept probability. Another power allocation optimization problem is formulated to find the optimal transmission and jamming powers. The derived analytical formulas are supported by numerical results to clarify the main contributions of this paper.

  1. Enhancing Physical Layer Security of Multiuser SIMO Mixed RF/FSO Relay Networks with Multi-Eavesdroppers

    KAUST Repository

    El-Malek, Ahmed H. Abd

    2017-02-09

    In this paper, we investigate the secrecy performance of multiuser (MU) single-input multiple-output (SIMO) mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic user scheduling and multiple eavesdropping attacks. The considered system includes multiple users, one amplify-and-froward (AF) relay, one destination and multiple eavesdroppers. The users are connected with a multi-antenna relay through RF links and the relay is connected with the destination through an FSO link. Maximal ratio combining (MRC) scheme is used at the relay node to combine the received signals at its different antennas. The RF/FSO channels are assumed to follow Nakagami-m/Gamma-Gamma fading models with considering the effect of pointing errors. In particular, we derive closed- form expressions for the exact and asymptotic outage probabilities. The asymptotic outage results are then used to obtain the optimal RF transmission power based on the dominant link between the RF and FSO links. Then, the considered system secrecy performance is investigated in the presence of multi- eavesdroppers where exact closed-form expression for the intercept probability is derived. Finally, a cooperative jamming model is proposed along with power allocation to enhance the system secrecy performance. Monte-Carlo simulations are provided to validate the achieved exact and asymptotic results.

  2. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-12-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter\\'s estimate of the main channel. On the other hand, the eavesdropper\\'s receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter\\'s estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  3. Performance of non-ideal OT-MRC with co-channel interference

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2010-12-01

    This paper studies the effect of non-ideal estimation of channel state information (CSI) on the performance of output-threshold maximal-ratio combining (OT-MRC) diversity scheme in the presence of co-channel interference as well as white noise. The channel fading envelopes are assumed to follow slowly varying flat Rayleigh model. New closed-form expressions for the combined signal-to-interference-plus-noise ratio (SINR) distribution and outage probability performance are presented. Performance comparisons between the conventional MRC and OT-MRC for the system model described above are provided. © 2010 IEEE.

  4. A study of optimization problem for amplify-and-forward relaying over weibull fading channels

    KAUST Repository

    Ikki, Salama Said

    2010-09-01

    This paper addresses the power allocation and relay positioning problems in amplify-and-forward cooperative networks operating in Weibull fading environments. We study adaptive power allocation (PA) with fixed relay location, optimal relay location with fixed power allocation, and joint optimization of the PA and relay location under total transmit power constraint, in order to minimize the outage probability and average error probability at high signal-to-noise ratios (SNR). Analytical results are validated by numerical simulations and comparisons between the different optimization schemes and their performance are provided. Results show that optimum PA brings only coding gain, while optimum relay location yields, in addition to the latter, diversity gains as well. Also, joint optimization improves both, the diversity gain and coding gain. Furthermore, results illustrate that the analyzed adaptive algorithms outperform uniform schemes. ©2010 IEEE.

  5. MIMO Fading Emulator Development with FPGA and Its Application to Performance Evaluation of Mobile Radio Systems

    Directory of Open Access Journals (Sweden)

    Yoshio Karasawa

    2017-01-01

    Full Text Available We present four new developments for a multiple-input multiple-output (MIMO over-the-air measurement system based on our previous studies. The first two developments relate to the channel model for multipath environment generation. One is a further simplification of the circuit configuration without performance degradation by reducing the number of delay generation units, which dominate the performance limit when implementing the circuit on a field-programmable gate array (FPGA. The other is to realize spatial correlation characteristics among the input ports on the transmission side, whereas the previously proposed channel model did not consider this correlation. The third development involves the details of implementing the MIMO fading emulator on an FPGA as a two-stage scheme. The fourth is the demonstration of application examples of the developed system.

  6. Secure Broadcasting with Uncertain Channel State Information

    KAUST Repository

    Hyadi, Amal

    2016-01-06

    We investigate the problem of secure broadcasting over fast fading channels with imperfect main channel state information (CSI) at the transmitter. In particular, we analyze the effect of the noisy estimation of the main CSI on the throughput of a broadcast channel where the transmission is intended for multiple legitimate receivers in the presence of an eavesdropper. Besides, we consider the realistic case where the transmitter is only aware of the statistics of the eavesdropper s CSI and not of its channel s realizations. First, we discuss the common message transmission case where the source broadcasts the same information to all the receivers, and we provide an upper and a lower bounds on the ergodic secrecy capacity. For this case, we show that the secrecy rate is limited by the legitimate receiver having, on average, the worst main channel link and we prove that a non-zero secrecy rate can still be achieved even when the CSI at the transmitter is noisy. Then, we look at the independent messages case where the transmitter broadcasts multiple messages to the receivers, and each intended user is interested in an independent message. For this case, we present an expression for the achievable secrecy sum-rate and an upper bound on the secrecy sum-capacity and we show that, in the limit of large number of legitimate receivers K, our achievable secrecy sum-rate follows the scaling law log((1-a ) log(K)), where is the estimation error variance of the main CSI. The special cases of high SNR, perfect and no-main CSI are also analyzed. Analytical derivations and numerical results are presented to illustrate the obtained expressions for the case of independent and identically distributed Rayleigh fading channels.

  7. Low SNR capacity for MIMO Rician and Rayleigh-product fading channels with single co-channel interferer and noise

    KAUST Repository

    Zhong, Caijun; Jin, Shi; Wong, Kaikit; Alouini, Mohamed-Slim; Ratnarajah, Tharm

    2010-01-01

    . Exact analytical expressions for the minimum energy per information bit, {Eb/N0min, and wideband slope, S0, are derived for both channels. Our results show that the minimum energy per information bit is the same for both channels while their wideband

  8. Performance Analysis of 5G Transmission over Fading Channels with Random IG Distributed LOS Components

    Directory of Open Access Journals (Sweden)

    Dejan Jaksic

    2017-01-01

    Full Text Available Mathematical modelling of the behavior of the radio propagation at mmWave bands is crucial to the development of transmission and reception algorithms of new 5G systems. In this study we will model 5G propagation in nondeterministic line-of-sight (LOS conditions, when the random nature of LOS component ratio will be observed as Inverse Gamma (IG distributed process. Closed-form expressions will be presented for the probability density function (PDF and cumulative distribution function (CDF of such random process. Further, closed-form expressions will be provided for important performance measures such as level crossing rate (LCR and average fade duration (AFD. Capitalizing on proposed expressions, LCR and AFD will be discussed in the function of transmission parameters.

  9. Pilot power optimization for AF relaying using maximum likelihood channel estimation

    KAUST Repository

    Wang, Kezhi

    2014-09-01

    Bit error rates (BERs) for amplify-and-forward (AF) relaying systems with two different pilot-symbol-aided channel estimation methods, disintegrated channel estimation (DCE) and cascaded channel estimation (CCE), are derived in Rayleigh fading channels. Based on these BERs, the pilot powers at the source and at the relay are optimized when their total transmitting powers are fixed. Numerical results show that the optimized system has a better performance than other conventional nonoptimized allocation systems. They also show that the optimal pilot power in variable gain is nearly the same as that in fixed gain for similar system settings. andcopy; 2014 IEEE.

  10. On the ergodic secret message capacity of the wiretap channel with finite-rate feedback

    KAUST Repository

    Rezki, Zouheir

    2012-07-01

    We study the secret message capacity of an ergodic block fading wiretap channel with partial channel state information at the transmitter and perfect channel state information at the receivers. We consider that in addition to the statistics of the main and the eavesdropper channel state information (CSI), the sender is provided by the legitimate receiver with a q-bit feedback, at the beginning of each coherence block, through an error-free feedback channel, with capacity q bits. We establish upper and lower bounds on the secrecy capacity. We show that a positive secrecy rate is achievable even when the feedback is at the end of each coherence block and q = 1. We also show that the lower and the upper bounds coincide asymptotically as q → ∞. Finally, asymptotic analysis at high Signal-to-Noise Ratio (SNR) are presented where it is found that the capacity is bounded at high-SNR and present a simple suboptimal scalar quantizer that is capacity achieving, without the need of any numerical optimization, as q → ∞. When applied to Rayleigh fading channels, we show that, at high-SNR, a 4-bit feedback achieves 90% of the secrecy capacity when perfect main CSI is available at the transmitter. © 2012 IEEE.

  11. On the ergodic secret message capacity of the wiretap channel with finite-rate feedback

    KAUST Repository

    Rezki, Zouheir; Khisti, Ashish J.; Alouini, Mohamed-Slim

    2012-01-01

    We study the secret message capacity of an ergodic block fading wiretap channel with partial channel state information at the transmitter and perfect channel state information at the receivers. We consider that in addition to the statistics of the main and the eavesdropper channel state information (CSI), the sender is provided by the legitimate receiver with a q-bit feedback, at the beginning of each coherence block, through an error-free feedback channel, with capacity q bits. We establish upper and lower bounds on the secrecy capacity. We show that a positive secrecy rate is achievable even when the feedback is at the end of each coherence block and q = 1. We also show that the lower and the upper bounds coincide asymptotically as q → ∞. Finally, asymptotic analysis at high Signal-to-Noise Ratio (SNR) are presented where it is found that the capacity is bounded at high-SNR and present a simple suboptimal scalar quantizer that is capacity achieving, without the need of any numerical optimization, as q → ∞. When applied to Rayleigh fading channels, we show that, at high-SNR, a 4-bit feedback achieves 90% of the secrecy capacity when perfect main CSI is available at the transmitter. © 2012 IEEE.

  12. A Perspective on the MIMO Wiretap Channel

    KAUST Repository

    Oggier, Frederique; Hassibi, Babak

    2015-01-01

    A wiretap channel is a communication channel between a transmitter Alice and a legitimate receiver Bob, in the presence of an eavesdropper Eve. The goal of communication is to achieve reliability between Alice and Bob, but also confidentiality despite Eve’s presence. Wiretap channels are declined in all kinds of flavors, depending on the underlying channels used by the three players: discrete memoryless channels, additive Gaussian noise channels, or fading channels, to name a few. In this survey, we focus on the case where the three players use multiple-antenna channels with Gaussian noise to communicate. After summarizing known results for multiple-input–multiple-output (MIMO) channels, both in terms of achievable reliable data rate (capacity) and code design, we introduce the MIMO wiretap channel. We then state the MIMO wiretap capacity, summarize the idea of the proof(s) behind this result, and comment on the insights given by the proofs on the physical meaning of the secrecy capacity. We finally discuss design criteria for MIMO wiretap codes.

  13. A Perspective on the MIMO Wiretap Channel

    KAUST Repository

    Oggier, Frederique

    2015-10-01

    A wiretap channel is a communication channel between a transmitter Alice and a legitimate receiver Bob, in the presence of an eavesdropper Eve. The goal of communication is to achieve reliability between Alice and Bob, but also confidentiality despite Eve’s presence. Wiretap channels are declined in all kinds of flavors, depending on the underlying channels used by the three players: discrete memoryless channels, additive Gaussian noise channels, or fading channels, to name a few. In this survey, we focus on the case where the three players use multiple-antenna channels with Gaussian noise to communicate. After summarizing known results for multiple-input–multiple-output (MIMO) channels, both in terms of achievable reliable data rate (capacity) and code design, we introduce the MIMO wiretap channel. We then state the MIMO wiretap capacity, summarize the idea of the proof(s) behind this result, and comment on the insights given by the proofs on the physical meaning of the secrecy capacity. We finally discuss design criteria for MIMO wiretap codes.

  14. Iterative List Decoding of Concatenated Source-Channel Codes

    Directory of Open Access Journals (Sweden)

    Hedayat Ahmadreza

    2005-01-01

    Full Text Available Whenever variable-length entropy codes are used in the presence of a noisy channel, any channel errors will propagate and cause significant harm. Despite using channel codes, some residual errors always remain, whose effect will get magnified by error propagation. Mitigating this undesirable effect is of great practical interest. One approach is to use the residual redundancy of variable length codes for joint source-channel decoding. In this paper, we improve the performance of residual redundancy source-channel decoding via an iterative list decoder made possible by a nonbinary outer CRC code. We show that the list decoding of VLC's is beneficial for entropy codes that contain redundancy. Such codes are used in state-of-the-art video coders, for example. The proposed list decoder improves the overall performance significantly in AWGN and fully interleaved Rayleigh fading channels.

  15. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    Science.gov (United States)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  16. Impact of co-channel interference on the performance of adaptive generalized transmit beamforming

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh

    2011-08-01

    The impact of co-channel interference on the performance of adaptive generalized transmit beamforming for low-complexity multiple-input single-output (MISO) configuration is investigated. The transmit channels are assumed to be sufficiently separated and undergo Rayleigh fading conditions. Due to the limited space, a single receive antenna is employed to capture desired user transmission. The number of active transmit channels is adjusted adaptively based on statistically unordered and/or ordered instantaneous signal-to-noise ratios (SNRs), where the transmitter has no information about the statistics of undesired signals. The adaptation thresholds are identified to guarantee a target performance level, and the adaptation schemes with enhanced spectral efficiency or power efficiency are studied and their performance are compared under various channels conditions. To facilitate comparison studies, results for the statistics of instantaneous combined signal-to-interference-plus-noise ratio (SINR) are derived, which can be applied for different fading conditions of interfering signals. The statistics for combined SNR and combined SINR are then used to quantify various performance measures, considering the impact of non-ideal estimation of the desired user channel state information (CSI) and the randomness in the number of active interferers. Numerical and simulation comparisons for the achieved performance of the adaptation schemes are presented. © 2006 IEEE.

  17. Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium.

    Science.gov (United States)

    Pattnaik, Bikash R; Hughes, Bret A

    2012-03-01

    Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in monkey retinal pigment epithelium (RPE) and showed that the M-type current in RPE cells is blocked by the specific KCNQ channel blocker XE991. Using patch-clamp electrophysiology, we investigated the pharmacological sensitivity of the M-type current in isolated monkey RPE cells to elucidate the subunit composition of the channel. Most RPE cells exhibited an M-type current with a voltage for half-maximal activation of approximately -35 mV. The M-type current activation followed a double-exponential time course and was essentially complete within 1 s. The M-type current was inhibited by micromolar concentrations of the nonselective KCNQ channel blockers linopirdine and XE991 but was relatively insensitive to block by 10 μM chromanol 293B or 135 mM tetraethylammonium (TEA), two KCNQ1 channel blockers. The M-type current was activated by 1) 10 μM retigabine, an opener of all KCNQ channels except KCNQ1, 2) 10 μM zinc pyrithione, which augments all KCNQ channels except KCNQ3, and 3) 50 μM N-ethylmaleimide, which activates KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3, channels. Application of cAMP, which activates KCNQ1 and KCNQ4 channels, had no significant effect on the M-type current. Finally, diclofenac, which activates KCNQ2/3 and KCNQ4 channels but inhibits KCNQ5 channels, inhibited the M-type current in the majority of RPE cells but activated it in others. The results indicate that the M-type current in monkey RPE is likely mediated by channels encoded by KCNQ4 and KCNQ5 subunits.

  18. Channel Estimation and Optimal Power Allocation for a Multiple-Antenna OFDM System

    Directory of Open Access Journals (Sweden)

    Yao Kung

    2002-01-01

    Full Text Available We propose combining channel estimation and optimal power allocation approaches for a multiple-antenna orthogonal frequency division multiplexing (OFDM system in high-speed transmission applications. We develop a least-square channel estimation approach, derive the performance bound of the estimator, and investigate the optimal training sequences for initial channel acquisition. Based on the channel estimates, the optimal power allocation solution which maximizes the bandwidth efficiency is derived under power and quality of service (Qos (symbol error rate constraints. It is shown that combining channel tracking and adaptive power allocation can dramatically enhance the outage capacity of an OFDM multiple-antenna system when severing fading occurs.

  19. Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries

    Science.gov (United States)

    Yan, Jianhua; Liu, Xingbo

    2016-01-01

    Rechargeable lithium–sulfur (Li–S) batteries are receiving ever‐increasing attention due to their high theoretical energy density and inexpensive raw sulfur materials. However, their rapid capacity fade has been one of the key barriers for their further improvement. It is well accepted that the major degradation mechanisms of S‐cathodes include low electrical conductivity of S and sulfides, precipitation of nonconductive Li2S2 and Li2S, and poly‐shuttle effects. To determine these degradation factors, a comprehensive study of sulfur cathodes with different amounts of electrolytes is presented here. A survey of the fundamentals of Li–S chemistry with respect to capacity fade is first conducted; then, the parameters obtained through electrochemical performance and characterization are used to determine the key causes of capacity fade in Li–S batteries. It is confirmed that the formation and accumulation of nonconductive Li2S2/Li2S films on sulfur cathode surfaces are the major parameters contributing to the rapid capacity fade of Li–S batteries. PMID:27981001

  20. Fast Faraday fading of long range satellite signals.

    Science.gov (United States)

    Heron, M. L.

    1972-01-01

    20 MHz radio signals have been received during the day from satellite Beacon-B when it was below the optical horizon by using a bank of narrow filters to improve the signal to noise ratio. The Faraday fading rate becomes constant, under these conditions, at a level determined by the plasma frequency just below the F-layer peak. Variations in the Faraday fading rate reveal fluctuations in the electron density near the peak, while the rate of attaining the constant level depends on the shape of the electron density profile.