WorldWideScience

Sample records for nadph oxidase-dependent superoxide

  1. Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase.

    Science.gov (United States)

    White, Caroline N; Figtree, Gemma A; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Rasmussen, Helge H

    2009-04-01

    The sarcolemmal Na(+)-K(+) pump, pivotal in cardiac myocyte function, is inhibited by angiotensin II (ANG II). Since ANG II activates NADPH oxidase, we tested the hypothesis that NADPH oxidase mediates the pump inhibition. Exposure to 100 nmol/l ANG II increased superoxide-sensitive fluorescence of isolated rabbit ventricular myocytes. The increase was abolished by pegylated superoxide dismutase (SOD), by the NADPH oxidase inhibitor apocynin, and by myristolated inhibitory peptide to epsilon-protein kinase C (epsilonPKC), previously implicated in ANG II-induced Na(+)-K(+) pump inhibition. A role for epsilonPKC was also supported by an ANG II-induced increase in coimmunoprecipitation of epsilonPKC with the receptor for the activated kinase and with the cytosolic p47(phox) subunit of NADPH oxidase. ANG II decreased electrogenic Na(+)-K(+) pump current in voltage-clamped myocytes. The decrease was abolished by SOD, by the gp91ds inhibitory peptide that blocks assembly and activation of NADPH oxidase, and by epsilonPKC inhibitory peptide. Since colocalization should facilitate NADPH oxidase-dependent regulation of the Na(+)-K(+) pump, we examined whether there is physical association between the pump subunits and NADPH oxidase. The alpha(1)-subunit coimmunoprecipitated with caveolin 3 and with membrane-associated p22(phox) and cytosolic p47(phox) NADPH oxidase subunits at baseline. ANG II had no effect on alpha(1)/caveolin 3 or alpha(1)/p22(phox) interaction, but it increased alpha(1)/p47(phox) coimmunoprecipitation. We conclude that ANG II inhibits the Na(+)-K(+) pump via PKC-dependent NADPH oxidase activation.

  2. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Pedersen, G

    2003-01-01

    Superoxide (O(2)(-)) generation through the activity of reduced nicotinamide dinucleotide (NADH) or reduced nicotinamide dinucleotide phosphate (NADPH) oxidases has been demonstrated in a variety of cell types, but not in human colonic epithelial cells....

  3. A role for NADPH oxidase in antigen presentation

    Directory of Open Access Journals (Sweden)

    Gail J Gardiner

    2013-09-01

    Full Text Available The nicotinamide adenine dinucleotide phosphate (NADPH oxidase expressed in phagocytes is a multi-subunit enzyme complex that generates superoxide (O2.-. This radical is an important precursor of hydrogen peroxide (H2O2 and other reactive oxygen species (ROS needed for microbicidal activity during innate immune responses. Inherited defects in NADPH oxidase give rise to chronic granulomatous disease (CGD, a primary immunodeficiency characterized by recurrent infections and granulomatous inflammation. Interestingly, CGD, CGD carrier status, and oxidase gene polymorphisms have all been associated with autoinflammatory and autoimmune disorders, suggesting a potential role for NADPH oxidase in regulating adaptive immune responses. Here, NADPH oxidase function in antigen processing and presentation is reviewed. NADPH oxidase influences dendritic cell (DC crosspresentation by major histocompatibility complex class I molecules (MHC-I through regulation of the phagosomal microenvironment, while in B lymphocytes, NADPH oxidase alters epitope selection by major histocompatibility complex class II molecules (MHC-II.

  4. Interrupted reperfusion reduces the activation of NADPH oxidase after cerebral I/R injury.

    Science.gov (United States)

    Shen, Jia; Bai, Xiao-Yin; Qin, Yuan; Jin, Wei-Wei; Zhou, Jing-Yin; Zhou, Ji-Ping; Yan, Ying-Gang; Wang, Qiong; Bruce, Iain C; Chen, Jiang-Hua; Xia, Qiang

    2011-06-15

    Interrupted reperfusion reduces ischemia/reperfusion (I/R) injury. This study was designed to determine whether NADPH oxidase participates in the neural protection against global I/R injury after interrupted reperfusion. Mice were randomly divided into five groups: sham (sham-operated), I/R (20-min global I/R), RR (I/R+interrupted reperfusion), Apo (I/R+apocynin administration), and RR+Apo. Behavioral tests (pole test, beam walking, and Morris water maze) and Nissl staining were undertaken in all five groups; superoxide levels, expression of gp91(phox) and p47(phox), p47(phox) translocation, and Rac1 activation were measured in the sham, I/R, and RR groups. The motor coordination, bradykinesia, and spatial learning and memory, as well as the neuron survival rates, were better in the RR, Apo, and RR+Apo groups than in the I/R group. The NADPH oxidase-dependent superoxide levels, p47(phox) and gp91(phox) expression, p47(phox) translocation, and Rac1 activation were lower in the RR group than in the I/R group. In conclusion, the neural protective effect of interrupted reperfusion is at least partly mediated by decreasing the expression and assembly of NADPH oxidase and the levels of NADPH oxidase-derived superoxide. The most striking reduction Rac1-GTP in the RR group suggests that interrupted reperfusion also acts on the activation of assembled NADPH oxidase by reducing the availability of Rac1-GTP. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China); Wei, Ling [Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Liu, Yutong [School of Life Science, Beijing Normal University, Beijing 100875 (China); Liao, Jieying [Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024 (China); Gao, Hui-Ming [Model Animal Research Center of Nanjing University, Nanjing 211800 (China); Zhou, Hui, E-mail: hardhui@gmail.com [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China)

    2017-05-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to

  6. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  7. The study of the mechanism of arsenite toxicity in respiration-deficient cells reveals that NADPH oxidase-derived superoxide promotes the same downstream events mediated by mitochondrial superoxide in respiration-proficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidarelli, Andrea; Fiorani, Mara; Carloni, Silvia; Cerioni, Liana; Balduini, Walter; Cantoni, Orazio, E-mail: orazio.cantoni@uniurb.it

    2016-09-15

    We herein report the results from a comparative study of arsenite toxicity in respiration-proficient (RP) and -deficient (RD) U937 cells. An initial characterization of these cells led to the demonstration that the respiration-deficient phenotype is not associated with apparent changes in mitochondrial mass and membrane potential. In addition, similar levels of superoxide (O{sub 2}{sup .-}) were generated by RP and RD cells in response to stimuli specifically triggering respiratory chain-independent mitochondrial mechanisms or extramitochondrial, NADPH-oxidase dependent, mechanisms. At the concentration of 2.5 μM, arsenite elicited selective formation of O{sub 2}{sup .-} in the respiratory chain of RP cells, with hardly any contribution of the above mechanisms. Under these conditions, O{sub 2}{sup .-} triggered downstream events leading to endoplasmic reticulum (ER) stress, autophagy and apoptosis. RD cells challenged with similar levels of arsenite failed to generate O{sub 2}{sup .-} because of the lack of a functional respiratory chain and were therefore resistant to the toxic effects mediated by the metalloid. Their resistance, however, was lost after exposure to four fold greater concentrations of arsenite, coincidentally with the release of O{sub 2}{sup .-} mediated by NADPH oxidase. Interestingly, extramitochondrial O{sub 2}{sup .-} triggered the same downstream events and an identical mode of death previously observed in RP cells. Taken together, the results obtained in this study indicate that arsenite toxicity is strictly dependent on O{sub 2}{sup .-} availability that, regardless of whether generated in the mitochondrial or extramitochondrial compartments, triggers similar downstream events leading to ER stress, autophagy and apoptosis. - Highlights: • Mitochondrial superoxide mediates arsenite toxicity in respiration-proficient cells. • NADPH-derived superoxide mediates arsenite toxicity in respiration-deficient cells. • Arsenite causes apoptosis

  8. Peroxisomal Polyamine Oxidase and NADPH-Oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Efthimios A. Andronis

    2014-04-01

    Full Text Available Homeostasis of reactive oxygen species (ROS in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd and spermine (Spm to putrescine (Put and Spd, respectively is catalyzed by two peroxisomal PA oxidases (AtPAO. However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI. Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2.-, but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX. On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2.-. These results suggest that the ratio of O2.-/H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2.- by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

  9. Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis

    DEFF Research Database (Denmark)

    Roepstorff, Kirstine; Rasmussen, Izabela Zorawska; Sawada, Makoto

    2008-01-01

    dominant-positive mutants enhanced, whereas dominant-negative mutants inhibited, NADPH oxidase-mediated superoxide generation following formyl-methionyl-leucylphenylalanine or phorbol 12-myristate 13-acetate stimulation. Both Rac1 and the GTP exchange factor VAV1 were required as upstream signaling......The p21-activated kinase-1 (PAK1) is best known for its role in the regulation of cytoskeletal and transcriptional signaling pathways. We show here in the microglia cell line Ra2 that PAK1 regulates NADPH oxidase (NOX-2) activity in a stimulus-specific manner. Thus, conditional expression of PAK1...... proteins in the formyl-methionyl-leucyl-phenylalanine-induced activation of endogenous PAK1. In contrast, PAK1 mutants had no effect on superoxide generation downstream of FcgammaR signaling during phagocytosis of IgG-immune complexes. We further present evidence that the effect of PAK1 on the respiratory...

  10. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    Science.gov (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Blockade of TGF-β 1 Signalling Inhibits Cardiac NADPH Oxidase Overactivity in Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    José Luis Miguel-Carrasco

    2012-01-01

    Full Text Available NADPH oxidases constitute a major source of superoxide anion (⋅O2 - in hypertension. Several studies suggest an important role of NADPH oxidases in different effects mediated by TGF-β 1. In this study we show that chronic administration of P144, a peptide synthesized from type III TGF-β 1 receptor, significantly reduced the cardiac NADPH oxidase expression and activity as well as in the nitrotyrosine levels observed in control spontaneously hypertensive rats (V-SHR to levels similar to control normotensive Wistar Kyoto rats. In addition, P144 was also able to reduce the significant increases in the expression of collagen type I protein and mRNA observed in hearts from V-SHR. In addition, positive correlations between collagen expression, NADPH oxidase activity, and nitrotyrosine levels were found in all animals. Finally, TGF-β 1-stimulated Rat-2 exhibited significant increases in NADPH oxidase activity that was inhibited in the presence of P144. It could be concluded that the blockade of TGF-β 1 with P144 inhibited cardiac NADPH oxidase in SHR, thus adding new data to elucidate the involvement of this enzyme in the profibrotic actions of TGF-β 1.

  12. The effect of orexin-A on cardiac dysfunction mediated by NADPH oxidase-derived superoxide anion in ventrolateral medulla.

    Directory of Open Access Journals (Sweden)

    Jun Chen

    Full Text Available Hypocretin/orexin-producing neurons, located in the perifornical region of the lateral hypothalamus area (LHA and projecting to the brain sites of rostral ventrolateral medulla (RVLM, involve in the increase of sympathetic activity, thereby regulating cardiovascular function. The current study was designed to test the hypothesis that the central orexin-A (OXA could be involved in the cardiovascular dysfunction of acute myocardial infarction (AMI by releasing NAD(PH oxidase-derived superoxide anion (O2 (- generation in RVLM, AMI rat model established by ligating the left anterior descending (LAD coronary artery to induce manifestation of cardiac dysfunction, monitored by the indicators as heart rate (HR, heart rate variability (HRV, mean arterial pressure (MAP and left intraventricular pressure. The results showed that the expressions of OXA in LHA and orexin 1 receptor (OX1R increased in RVLM of AMI rats. The double immunofluorescent staining indicated that OX1R positive cells and NAD(PH oxidative subunit gp91phox or p47phox-immunoreactive (IR cells were co-localized in RVLM. Microinjection of OXA into the cerebral ventricle significantly increased O2 (- production and mRNA expression of NAD(PH oxidase subunits when compared with aCSF-treated ones. Exogenous OXA administration in RVLM produced pressor and tachycardiac effects. Furthermore, the antagonist of OX1R and OX2R (SB-408124 and TCS OX2 29, respectively or apocynin (APO, an inhibitor of NAD(PH oxidase, partly abolished those cardiovascular responses of OXA. HRV power spectral analysis showed that exogenous OXA led to decreased HF component of HRV and increased LF/HF ratio in comparison with aCSF, which suggested that OXA might be related to sympathovagal imbalance. As indicated by the results, OXA might participate in the central regulation of cardiovascular activities by disturbing the sympathovagal balance in AMI, which could be explained by the possibility that OXR and NAD(PH-derived O

  13. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions.

    Directory of Open Access Journals (Sweden)

    Keith D Rochfort

    Full Text Available Blood-brain barrier (BBB dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.The present study employs human brain microvascular endothelial cells (HBMvECs to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5 to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.In response to treatment with either TNF-α or IL-6 (0-100 ng/ml, 0-24 hrs, our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766.A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the

  14. Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Liu, Tongyun; Sezen, Sena F; Burnett, Arthur L

    2012-08-01

    Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Relative to hemi mice, SCD increased (Ppenis. Apocynin treatment of sickle mice reversed (P0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. © 2012 International Society for Sexual Medicine.

  15. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    Science.gov (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  16. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    Directory of Open Access Journals (Sweden)

    Elaine Hatanaka

    Full Text Available The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  17. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  18. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex.

    Science.gov (United States)

    Souabni, Hajer; Ezzine, Aymen; Bizouarn, Tania; Baciou, Laura

    2017-01-01

    Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558 ), constituted by the tight association of the gp91 phox (also named Nox2) and p22 phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47 phox , p67 phox , p40 phox , Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.

  19. Peroxidasin-mediated crosslinking of collagen IV is independent of NADPH oxidases

    Directory of Open Access Journals (Sweden)

    Gábor Sirokmány

    2018-06-01

    Full Text Available Collagen IV is a major component of the basement membrane in epithelial tissues. The NC1 domains of collagen IV protomers are covalently linked together through sulfilimine bonds, the formation of which is catalyzed by peroxidasin. Although hydrogen peroxide is essential for this reaction, the exact source of the oxidant remains elusive. Members of the NOX/DUOX NADPH oxidase family are specifically devoted to the production of superoxide and hydrogen peroxide. Our aim in this study was to find out if NADPH oxidases contribute in vivo to the formation of collagen IV sulfilimine crosslinks. We used multiple genetically modified in vivo model systems to provide a detailed assessment of this question. Our data indicate that in various peroxidasin-expressing tissues sulfilimine crosslinks between the NC1 domains of collagen IV can be readily detected in the absence of functioning NADPH oxidases. We also analyzed how subatmospheric oxygen levels influence the collagen IV network in collagen-producing cultured cells with rapid matrix turnover. We showed that collagen IV crosslinks remain intact even under strongly hypoxic conditions. Our hypothesis is that during collagen IV network formation PXDN cooperates with a NOX/DUOX-independent H2O2 source that is functional also at very low ambient oxygen levels. Keywords: Peroxidasin, NADPH oxidase, Hydrogen peroxide, Collagen IV, Sulfilimine

  20. Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation

    International Nuclear Information System (INIS)

    Hou, Liyan; Zhang, Cong; Wang, Ke; Liu, Xiaofang; Wang, Hongwei; Che, Yuning; Sun, Fuqiang; Zhou, Xueying; Zhao, Xiulan; Wang, Qingshan

    2017-01-01

    Highlights: • Microglial activation induced by paraquat and maneb precedes noradrenergic neurodegeneration in locus coeruleus. • NADPH oxidase activation contributes to microglia-mediated neuroinflammation and related noradrenergic neurodegeneration. • Inhibition of NADPH oxidase by apocynin protects noradrenergic neurons against paraquat and maneb-induced toxicity. - Abstract: Co-exposure to paraquat (PQ) and maneb (Mb) has been shown to increase the risk of Parkinson’s disease (PD) and dopaminergic (DA) neurodegeneration in the substantia nigra pars compacta (SNpc) is observed in PQ and Mb-treated experimental animals. The loss of noradrenergic locus coeruleus (LC/NE) neurons in brainstem is a common feature shared by multiple neurodegenerative diseases, including PD. However, whether PQ and Mb is able to damage LC/NE neurons remains undefined. In this study, mice treated with combined PQ and Mb displayed progressive LC/NE neurodegeneration. Time course studies revealed that the activation of microglia preceded LC/NE neurodegeneration. Mechanistically, the activation of NADPH oxidase contributed to microglial activation and subsequent LC/NE neurodegeneration. We found that PQ and Mb co-exposure induced activation of NADPH oxidase as shown by increased superoxide production and membrane translocation of p47 phox , a cytosolic subunit of NADPH oxidase. Inhibition of NADPH oxidase by apocynin, a widely used NADPH oxidase inhibitor, suppressed microglial activation and gene expressions of proinflammatory factors. Furthermore, reduced activation of nuclear factor-κB (NF-κB) pathway was observed in apocynin-treated mice. More importantly, inhibition of NADPH oxidase by apocynin afforded LC/NE neuroprotection against PQ and Mb-induced neurotoxicity. Thus, our findings revealed the critical role NADPH oxidase-mediated microglial activation in driving LC/NE neurodegeneration induced by PQ and Mb, providing new insights into the pathogenesis of environmental

  1. Functional heterogeneity of NADPH oxidase-mediated contractions to endothelin with vascular aging.

    Science.gov (United States)

    Meyer, Matthias R; Barton, Matthias; Prossnitz, Eric R

    2014-11-24

    Aging, a physiological process and main risk factor for cardiovascular and renal diseases, is associated with endothelial cell dysfunction partly resulting from NADPH oxidase-dependent oxidative stress. Because increased formation of endothelium-derived endothelin-1 (ET-1) may contribute to vascular aging, we studied the role of NADPH oxidase function in age-dependent contractions to ET-1. Renal arteries and abdominal aortas from young and old C57BL6 mice (4 and 24 months of age) were prepared for isometric force measurements. Contractions to ET-1 (0.1-100 nmol/L) were determined in the presence and absence of the NADPH oxidase-selective inhibitor gp91ds-tat (3 μmol/L). To exclude age-dependent differential effects of NO bioactivity between vascular beds, all experiments were conducted in the presence of the NO synthase inhibitor L-NAME (300 μmol/L). In young animals, ET-1-induced contractions were 6-fold stronger in the renal artery than in the aorta (prenal artery and aorta, respectively (pAging had no effect on NADPH oxidase-dependent and -independent contractions to ET-1 in the renal artery. In contrast, contractions to ET-1 were markedly reduced in the aged aorta (5-fold, page-dependent heterogeneity of NADPH oxidase-mediated vascular contractions to ET-1, demonstrating an inherent resistance to functional changes in the renal artery but not in the aorta with aging. Thus, local activity of NADPH oxidase differentially modulates responses to ET-1 with aging in distinct vascular beds. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  3. Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits.

    Science.gov (United States)

    Smith, Susan M E; Min, Jaeki; Ganesh, Thota; Diebold, Becky; Kawahara, Tsukasa; Zhu, Yerun; McCoy, James; Sun, Aiming; Snyder, James P; Fu, Haian; Du, Yuhong; Lewis, Iestyn; Lambeth, J David

    2012-06-22

    NADPH oxidases (Nox) are a primary source of reactive oxygen species (ROS), which function in normal physiology and, when overproduced, in pathophysiology. Recent studies using mice deficient in Nox2 identify this isoform as a novel target against Nox2-implicated inflammatory diseases. Nox2 activation depends on the binding of the proline-rich domain of its heterodimeric partner p22phox to p47phox. A high-throughput screen that monitored this interaction via fluorescence polarization identified ebselen and several of its analogs as inhibitors. Medicinal chemistry was performed to explore structure-activity relationships and to optimize potency. Ebselen and analogs potently inhibited Nox1 and Nox2 activity but were less effective against other isoforms. Ebselen also blocked translocation of p47phox to neutrophil membranes. Thus, ebselen and its analogs represent a class of compounds that inhibit ROS generation by interrupting the assembly of Nox2-activating regulatory subunits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. NADPH Oxidases: Progress and Opportunities

    OpenAIRE

    San Martin, Alejandra; Griendling, Kathy K.

    2014-01-01

    From the initial discovery in 1999 that NADPH oxidases comprise a family of enzymes to our current focus on drug development to treat multiple pathologies related to this enzyme family, progress has been swift and impressive. We have expanded our understanding of the extent of the family, the basic enzymatic biochemistry, the multiple cellular functions controlled by NADPH oxidases, and their varied roles in physiology and diseases. We have developed numerous cell culture tools, animal models...

  5. Modulation of NADPH oxidase activity by known uraemic retention solutes

    DEFF Research Database (Denmark)

    Schulz, Anna Marta; Terne, Cindy; Jankowski, Vera

    2014-01-01

    chloride (DPI), an inhibitor of NADPH oxidase. The effect on enzymatic activity of NADPH oxidase was quantified within an incubation time of 120 min. RESULTS: Thirty-nine of the 48 uraemic retention solutes tested had a significant decreasing effect on NADPH oxidase activity. Oxalate has been characterized......BACKGROUND: Uraemia and cardiovascular disease appear to be associated with an increased oxidative burden. One of the key players in the genesis of reactive oxygen species (ROS) is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Based on initial experiments demonstrating a decreased...... inhibitory effect on NADPH oxidase activity in the presence of plasma from patients with CKD-5D after dialysis compared with before dialysis, we investigated the effect of 48 known and commercially available uraemic retention solutes on the enzymatic activity of NADPH oxidase. METHODS: Mononuclear leucocytes...

  6. NADPH oxidase 4-derived superoxide mediates flow-stimulated NKCC2 activity in thick ascending limbs.

    Science.gov (United States)

    Saez, Fara; Hong, Nancy J; Garvin, Jeffrey L

    2018-05-01

    Luminal flow augments Na + reabsorption in the thick ascending limb more than can be explained by increased ion delivery. This segment reabsorbs 30% of the filtered load of Na + , playing a key role in its homeostasis. Whether flow elevations enhance Na + -K + -2Cl - cotransporter (NKCC2) activity and the second messenger involved are unknown. We hypothesized that raising luminal flow augments NKCC2 activity by enhancing superoxide ([Formula: see text]) production by NADPH oxidase 4 (NOX4). NKCC2 activity was measured in thick ascending limbs perfused at either 5 or 20 nl/min with and without inhibitors of [Formula: see text] production. Raising luminal flow from 5 to 20 nl/min enhanced NKCC2 activity from 4.8 ± 0.9 to 6.3 ± 1.2 arbitrary fluorescent units (AFU)/s. Maintaining flow at 5 nl/min did not alter NKCC2 activity. The superoxide dismutase mimetic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride blunted NKCC2 activity from 3.5 ± 0.4 to 2.5 ± 0.2 AFU/s when flow was 20 nl/min but not 5 nl/min. When flow was 20 nl/min, NKCC2 activity showed no change with time. The selective NOX1/4 inhibitor GKT-137831 blunted NKCC2 activity when thick ascending limbs were perfused at 20 nl/min from 7.2 ± 1.1 to 4.5 ± 0.8 AFU/s but not at 5 nl/min. The inhibitor also prevented luminal flow from elevating [Formula: see text] production. Allopurinol, a xanthine oxidase inhibitor, had no effect on NKCC2 activity when flow was 20 nl/min. Tetanus toxin prevents flow-induced stimulation of NKCC2 activity. We conclude that elevations in luminal flow enhance NaCl reabsorption in thick ascending limbs by stimulating NKCC2 via NOX4 activation and increased [Formula: see text]. NKCC2 activation is primarily the result of insertion of new transporters in the membrane.

  7. Modulation of NADPH oxidase activity by known uraemic retention solutes.

    Science.gov (United States)

    Schulz, Anna Marta; Terne, Cindy; Jankowski, Vera; Cohen, Gerald; Schaefer, Mandy; Boehringer, Falko; Tepel, Martin; Kunkel, Desiree; Zidek, Walter; Jankowski, Joachim

    2014-08-01

    Uraemia and cardiovascular disease appear to be associated with an increased oxidative burden. One of the key players in the genesis of reactive oxygen species (ROS) is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Based on initial experiments demonstrating a decreased inhibitory effect on NADPH oxidase activity in the presence of plasma from patients with CKD-5D after dialysis compared with before dialysis, we investigated the effect of 48 known and commercially available uraemic retention solutes on the enzymatic activity of NADPH oxidase. Mononuclear leucocytes isolated from buffy coats of healthy volunteers were isolated, lysed and incubated with NADH in the presence of plasma from healthy controls and patients with CKD-5D. Furthermore, the leucocytes were lysed and incubated in the presence of uraemic retention solute of interest and diphenyleneiodonium chloride (DPI), an inhibitor of NADPH oxidase. The effect on enzymatic activity of NADPH oxidase was quantified within an incubation time of 120 min. Thirty-nine of the 48 uraemic retention solutes tested had a significant decreasing effect on NADPH oxidase activity. Oxalate has been characterized as the strongest inhibitor of NADPH oxidase (90% of DPI inhibition). Surprisingly, none of the uraemic retention solutes we investigated was found to increase NADPH oxidase activity. Furthermore, plasma from patients with CKD-5D before dialysis caused significantly higher inhibitory effect on NADPH oxidase activity compared with plasma from healthy subjects. However, this effect was significantly decreased in plasma from patients with CKD-5D after dialysis. The results of this study show that uraemic retention solutes modulated the activity of the NADPH oxidase. The results of this study might be the basis for the development of inhibitors applicable as drug in the situation of increased oxidative stress. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  8. [The X+ chronic granulomatous disease as a fabulous model to study the NADPH oxidase complex activation].

    Science.gov (United States)

    Stasia, Marie-José

    2007-05-01

    Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes lack NADPH oxidase activity. Patients with CGD suffer from recurrent bacterial and fungal infections because of the absence of superoxide anions (O2- degrees ) generatingsystem. The NADPH oxidase complex is composed of a membranous cytochrome b558, cytosolic proteins p67phox, p47phox, p40phox and two small GTPases Rac2 and Rap1A. Cytochrome b558 consists of two sub-units gp91phox and p22phox. The most common form of CGD is due to mutations in CYBB gene encoding gp91phox. In some rare cases, the mutated gp91phox is normally expressed but is devoided of oxidase activity. These variants called X+ CGD, have provided interesting informations about oxidase activation mechanisms. However modelization of such variants is necessary to obtain enough biological material for studies at the molecular level. A cellular model (knock-out PLB-985 cells) has been developed for expressing recombinant mutated gp91phox for functional analysis of the oxidase complex. Recent works demonstrated that this cell line genetically deficient in gp91phox is a powerful tool for functional analysis of the NADPH oxidase complex activation.

  9. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  10. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites

    DEFF Research Database (Denmark)

    Dang, Pham My-Chan; Stensballe, Allan; Boussetta, Tarek

    2006-01-01

    mass spectrometry to show that GM-CSF and TNF-alpha induce phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase, in human neutrophils. As Ser345 is located in the MAPK consensus sequence, we tested the effects of MAPK inhibitors. Inhibitors of the ERK1/2 pathway abrogated GM......Neutrophil NADPH oxidase plays a key role in host defense and in inflammation by releasing large amounts of superoxide and other ROSs. Proinflammatory cytokines such as GM-CSF and TNF-alpha prime ROS production by neutrophils through unknown mechanisms. Here we used peptide sequencing by tandem...

  11. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase.

    Science.gov (United States)

    Block, M L; Wu, X; Pei, Z; Li, G; Wang, T; Qin, L; Wilson, B; Yang, J; Hong, J S; Veronesi, B

    2004-10-01

    The contributing role of environmental factors to the development of Parkinson's disease has become increasingly evident. We report that mesencephalic neuron-glia cultures treated with diesel exhaust particles (DEP; 0.22 microM) (5-50 microg/ml) resulted in a dose-dependent decrease in dopaminergic (DA) neurons, as determined by DA-uptake assay and tyrosine-hydroxylase immunocytochemistry (ICC). The selective toxicity of DEP for DA neurons was demonstrated by the lack of DEP effect on both GABA uptake and Neu-N immunoreactive cell number. The critical role of microglia was demonstrated by the failure of neuron-enriched cultures to exhibit DEP-induced DA neurotoxicity, where DEP-induced DA neuron death was reinstated with the addition of microglia to neuron-enriched cultures. OX-42 ICC staining of DEP treated neuron-glia cultures revealed changes in microglia morphology indicative of activation. Intracellular reactive oxygen species and superoxide were produced from enriched-microglia cultures in response to DEP. Neuron-glia cultures from NADPH oxidase deficient (PHOX-/-) mice were insensitive to DEP neurotoxicity when compared with control mice (PHOX+/+). Cytochalasin D inhibited DEP-induced superoxide production in enriched-microglia cultures, implying that DEP must be phagocytized by microglia to produce superoxide. Together, these in vitro data indicate that DEP selectively damages DA neurons through the phagocytic activation of microglial NADPH oxidase and consequent oxidative insult.

  12. Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available Reactive oxygen species (ROS have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs. Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2 scavenger, catalase (CAT, significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI, and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM, suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi in Vicia faba via a reduction in leaf transpiration rate (E without a parallel reduction in net photosynthetic rate (Pn assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.

  13. Sildenafil promotes eNOS activation and inhibits NADPH oxidase in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Bivalacqua, Trinity J; Champion, Hunter C; Burnett, Arthur L

    2014-02-01

    Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Continuous treatment with sildenafil reversed (P penis. Sildenafil treatment of WT mice did not affect any of these parameters. Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. © 2013 International Society for Sexual Medicine.

  14. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    International Nuclear Information System (INIS)

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-01-01

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47 phox , p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF-α induces

  15. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane.

    Science.gov (United States)

    El-Benna, Jamel; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne

    2008-07-01

    Neutrophils play an essential role in host defense against microbial pathogens and in the inflammatory reaction. Upon activation, neutrophils produce superoxide anion (O*2), which generates other reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH*) and hypochlorous acid (HOCl), together with microbicidal peptides and proteases. The enzyme responsible for O2* production is called the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans-membrane proteins (p22phox and gp91phox/NOX2, which form the cytochrome b558), three cytosolic proteins (p47phox, p67phox, p40phox) and a GTPase (Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate factors. Three major events accompany NAPDH oxidase activation: (1) protein phosphorylation, (2) GTPase activation, and (3) translocation of cytosolic components to the plasma membrane to form the active enzyme. Actually, the neutrophil NADPH oxidase exists in different states: resting, primed, activated, or inactivated. The resting state is found in circulating blood neutrophils. The primed state can be induced by neutrophil adhesion, pro-inflammatory cytokines, lipopolysaccharide, and other agents and has been characterized as a "ready to go" state, which results in a faster and higher response upon exposure to a second stimulus. The active state is found at the inflammatory or infection site. Activation is induced by the pathogen itself or by pathogen-derived formylated peptides and other agents. Finally, inactivation of NADPH oxidase is induced by anti-inflammatory agents to limit inflammation. Priming is a "double-edged sword" process as it contributes to a rapid and efficient elimination of the pathogens but can also induce the generation of large quantities of toxic ROS by hyperactivation of

  16. NADPH oxidase is involved in regulation of gene expression and ROS overproduction in soybean (Glycine max L. seedlings exposed to cadmium

    Directory of Open Access Journals (Sweden)

    Jagna Chmielowska-Bąk

    2017-06-01

    Full Text Available Cadmium-induced oxidative burst is partially mediated by NADPH oxidase. The aim of the present research was to evaluate the role of NADPH oxidase in soybeans’ response to short-term cadmium stress. The application of an NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI, affected expression of two Cd-inducible genes, encoding DOF1 and MYBZ2 transcription factors. This effect was observed after 3 h of treatment. Interestingly, Cd-dependent increases in NADPH oxidase activity occurred only after a period of time ranging from 6 and 24 h of stress. Stimulation of the enzyme correlated in time with a significant accumulation of reactive oxygen species (ROS. Further analysis revealed that pharmacological inhibition of NADPH oxidase activity during 24 h of Cd stress does not affect Cd uptake, seedling growth, or the level of lipid peroxidation. The role of NADPH oxidase in the response of soybean seedlings to short-term Cd exposure is discussed.

  17. NADPH oxidase and redox status in amygdala, hippocampus and cortex of male Wistar rats in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Petrovic, Romana; Puskas, Laslo; Jevtic Dozudic, Gordana; Stojkovic, Tihomir; Velimirovic, Milica; Nikolic, Tatjana; Zivkovic, Milica; Djorovic, Djordje J; Nenadovic, Milutin; Petronijevic, Natasa

    2018-05-26

    Post-traumatic stress disorder (PTSD) is a highly prevalent and impairing disorder. Oxidative stress is implicated in its pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of free radicals. The aim of the study was to assess oxidative stress parameters, activities of respiratory chain enzymes, and the expression of NADPH oxidase subunits (gp91phox, p22phox, and p67phox) in the single prolonged stress (SPS) animal model of PTSD. Twenty-four (12 controls; 12 subjected to SPS), 9-week-old, male Wistar rats were used. SPS included physical restraint, forced swimming, and ether exposure. The rats were euthanized seven days later. Cortex, hippocampus, amygdala, and thalamus were dissected. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Complex I, and cytochrome C oxidase were measured using spectrophotometric methods, while the expression of NADPH oxidase subunits was determined by Western blot. Increased MDA and decreased GSH concentrations were found in the amygdala and hippocampus of the SPS rats. SOD activity was decreased in amygdala and GPx was decreased in hippocampus. Increased expression of the NADPH oxidase subunits was seen in amygdala, while mitochondrial respiratory chain enzyme expression was unchanged both in amygdala and hippocampus. In the cortex concentrations of MDA and GSH were unchanged despite increased Complex I and decreased GPx, while in the thalamus no change of any parameter was noticed. We conclude that oxidative stress is present in hippocampus and amygdala seven days after the SPS procedure. NADPH oxidase seems to be a main source of free radicals in the amygdala.

  18. Safrole oxide induces neuronal apoptosis through inhibition of integrin beta4/SOD activity and elevation of ROS/NADPH oxidase activity.

    Science.gov (United States)

    Su, Le; Zhao, BaoXiang; Lv, Xin; Wang, Nan; Zhao, Jing; Zhang, ShangLi; Miao, JunYing

    2007-02-20

    Neuronal apoptosis is a very important event in the development of the central nervous system (CNS), but the underlying mechanisms remain to be elucidated. We have previously shown that safrole oxide, a small molecule, induces integrin beta4 expression and promotes apoptosis in vascular endothelial cells. In this study, the effects of safrole oxide on cell growth and apoptosis have been examined in primary cultures of mouse neurons. Safrole oxide was found to significantly inhibit neuronal cell growth and to induce apoptosis. The inhibitory and apoptotic activities of safrole oxide followed a dose- and time-dependent manner. Interestingly, the expression of integrin beta4 was significantly inhibited with safrole oxide treatment. Furthermore, safrole oxide dramatically increases the level of intracellular reactive oxygen species (ROS) and the activity of NADPH oxidase. Moreover, manganese-dependent superoxide dismutase (MnSOD) activity was decreased significantly with safrole oxide treatment. Our study thus demonstrates that safrole oxide induces neuronal apoptosis through integrin beta4, ROS, NADPH, and MnSOD.

  19. Hu-Lu-Ba-Wan Attenuates Diabetic Nephropathy in Type 2 Diabetic Rats through PKC-α/NADPH Oxidase Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Lishan Zhou

    2013-01-01

    Full Text Available Hu-Lu-Ba-Wan (HLBW is a Chinese herbal prescription used to treat kidney deficiency. The aim of this study was to explore the effect and mechanism of HLBW on diabetic nephropathy (DN in type 2 diabetic rats. The rat model of DN was established by being fed a high-fat diet and intravenous injection of streptozotocin. Then, HLBW decoction was administered for 16 weeks. Blood glucose level, lipid profile, renal function, 24-hour total urinary protein, and albumin content were examined. Renal morphology and superoxide anion levels were evaluated. The activity of nicotinamide-adenine dinucleotide phosphate (NADPH and protein kinase C-alpha (PKC-α related genes expression in renal tissue were also determined. Our data demonstrated that HLBW significantly improved hyperglycemia, hyperlipidemia, and proteinuria in diabetic rats compared with those of control group. HLBW also alleviated glomerular expansion and fibrosis, extracellular matrix accumulation and effacement of the foot processes. Additionally, HLBW reduced superoxide anion level, NADPH oxidase activity, the protein and mRNA expressions of p47phox, and the protein expression of phosphorylated PKC-α in renal tissue. These results suggest that HLBW is effective in the treatment of DN in rats. The underlying mechanism may be related to the attenuation of renal oxidative stress via PKC-α/NADPH oxidase signaling pathway.

  20. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Mori, Izumi C.; Pei, Zhen-Ming; Leonhardt, Nathalie; Torres, Miguel Angel; Dangl, Jeffery L.; Bloom, Rachel E.; Bodde, Sara; Jones, Jonathan D.G.; Schroeder, Julian I.

    2003-01-01

    Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca2+ increases and ABA- activation of plasma membrane Ca2+-permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction. PMID:12773379

  1. Two X-linked chronic granulomatous disease patients with unusual NADPH oxidase properties

    NARCIS (Netherlands)

    Wolach, Baruch; Broides, Arnon; Zeeli, Tal; Gavrieli, Ronit; de Boer, Martin; van Leeuwen, Karin; Levy, Jacov; Roos, Dirk

    2011-01-01

    Chronic granulomatous disease (CGD) is an immune deficiency syndrome caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, the enzyme that generates reactive oxygen species (ROS) in phagocytizing leukocytes. This study evaluates the NADPH oxidase capacity in two

  2. NADPH oxidase-mediated generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell death

    International Nuclear Information System (INIS)

    Liu Qing; He Xiaoqing; Liu Yongsheng; Du Bingbing; Wang Xiaoyan; Zhang Weisheng; Jia Pengfei; Dong Jingmei; Ma Jianxiu; Wang Xiaohu; Li Sha; Zhang Hong

    2008-01-01

    Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91 phox was dose-dependent. Meanwhile, the cytoplasmic subunit p47 phox was translocated to the cell membrane and localized with p22 phox and gp91 phox to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.

  3. Apocynin: Chemical and Biophysical Properties of a NADPH Oxidase Inhibitor

    Directory of Open Access Journals (Sweden)

    Valdecir F. Ximenes

    2013-03-01

    Full Text Available Apocynin is the most employed inhibitor of NADPH oxidase (NOX, a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V, the hydrophobicity index was calculated (logP = 0.83 and the molar absorption coefficient was determined (e275nm = 1.1 × 104 M−1 cm−1. Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA with a binding affinity of 2.19 × 104 M−1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.

  4. Arctigenin reduces blood pressure by modulation of nitric oxide synthase and NADPH oxidase expression in spontaneously hypertensive rats.

    Science.gov (United States)

    Liu, Ying; Wang, Guoyuan; Yang, Mingguang; Chen, Haining; zhao, Yan; Yang, Shucai; Sun, Changhao

    2015-12-25

    Arctigenin is a bioactive constituent from dried seeds of Arctium lappa L., which was traditionally used as medicine. Arctigenin exhibits various bioactivities, but its effects on blood pressure regulation are still not widely studied. In this study, we investigated antihypertensive effects of arctigenin by long-term treatment in spontaneously hypertensive rats (SHRs). Arctigenin (50 mg/kg) or vehicle was administered to SHRs or Wistar rats as negative control by oral gavage once a day for total 8 weeks. Nifedipine (3 mg/kg) was used as a positive drug control. After treatment, hemodynamic and physical parameters, vascular reactivity in aorta, the concentration of plasma arctigenin and serum thromboxane B2, NO release and vascular p-eNOS, p-Akt, caveolin-1 protein expression, and vascular superoxide anion generation and p47phox protein expression were detected and analyzed. The results showed that arctigenin significantly reduced systolic blood pressure and ameliorated endothelial dysfunction of SHRs. Arctigenin reduced the levels of thromboxane B2 in plasma and superoxide anion in thoracic aorta of SHRs. Furthermore, arctigenin increased the NO production by enhancing the phosphorylation of Akt and eNOS (Ser 1177), and inhibiting the expression of NADPH oxidase in thoracic aorta of SHRs. Our data suggested that antihypertensive mechanisms of arctigenin were associated with enhanced eNOS phosphorylation and decreased NADPH oxidase-mediated superoxide anion generation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Desbalanço redox: NADPH oxidase como um alvo terapêutico no manejo cardiovascular Desbalance redox: NADPH oxidasa como un objetivo terapéutico en el manejo cardiovascular Redox unbalance: NADPH oxidase as therapeutic target in blood pressure control

    Directory of Open Access Journals (Sweden)

    Luiza A. Rabêlo

    2010-05-01

    Full Text Available Vários estudos destacam as espécies reativas de oxigênio e nitrogênio (ERONs como importantes contribuintes na patogênese de numerosas doenças cardiovasculares, incluindo hipertensão, aterosclerose e falência cardíaca. Tais espécies são moléculas altamente bioativas e com vida curta derivadas, principalmente, da redução do oxigênio molecular. O complexo enzimático da NADPH oxidase é a maior fonte dessas espécies reativas na vasculatura. Sob condições fisiológicas, a formação e eliminação destas substâncias aparecem balanceadas na parede vascular. Durante o desbalanço redox, entretanto, há um aumento na atividade da NADPH oxidase e predomínio de agentes pró-oxidantes, superando a capacidade de defesa orgânica antioxidante. Além disso, tal hiperatividade enzimática reduz a biodisponibilidade do óxido nítrico, crucial para a vasodilatação e a manutenção da função vascular normal. Apesar de a NADPH oxidase relacionar-se diretamente à disfunção endotelial, foi primeiramente descrita por sua expressão em fagócitos, onde sua atividade determina a eficácia dos mecanismos de defesa orgânica contra patógenos. As sutis diferenças existentes entre as unidades estruturais das NADPH oxidases, a depender do tipo celular que as expressa, podem ter implicações terapêuticas, permitindo a inibição seletiva do desequilíbrio redox induzido pela NADPH oxidase, sem comprometer, entretanto, sua participação nas vias fisiológicas de sinalização celular que garantem a proteção contra microorganismos.Varios estudios destacan las especies reactivas de oxígeno y nitrógeno (ERON como importantes contribuyentes en la patogénesis de numerosas enfermedades cardiovasculares, incluyendo hipertensión, aterosclerosis y falla cardíaca. Tales especies son moléculas altamente bioactivas y con vida corta derivadas, principalmente, de la reducción del oxígeno molecular. El complejo enzimático de la NADPH oxidasa es

  6. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO 2 ), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO 2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO 2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO 2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO 2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO 2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22 phox up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO 2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  7. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Peiying Yu

    2014-01-01

    Full Text Available NADPH oxidases are the major sources of reactive oxygen species in cardiovascular, neural, and kidney cells. The NADPH oxidase 5 (NOX5 gene is present in humans but not rodents. Because Nox isoforms in renal proximal tubules (RPTs are involved in the pathogenesis of hypertension, we tested the hypothesis that NOX5 is differentially expressed in RPT cells from normotensive (NT and hypertensive subjects (HT. We found that NOX5 mRNA, total NOX5 protein, and apical membrane NOX5 protein were 4.2±0.7-fold, 5.2±0.7-fold, and 2.8±0.5-fold greater in HT than NT. Basal total NADPH oxidase activity was 4.5±0.2-fold and basal NOX5 activity in NOX5 immunoprecipitates was 6.2±0.2-fold greater in HT than NT (P=<0.001, n=6–14/group. Ionomycin increased total NOX and NOX5 activities in RPT cells from HT (P<0.01, n=4, ANOVA, effects that were abrogated by pre-treatment of the RPT cells with diphenylene-iodonium or superoxide dismutase. Silencing NOX5 using NOX5-siRNA decreased NADPH oxidase activity (−45.1±3.2% vs. mock-siRNA, n=6–8 in HT. D1-like receptor stimulation decreased NADPH oxidase activity to a greater extent in NT (−32.5±1.8% than HT (−14.8±1.8. In contrast to the marked increase in expression and activity of NOX5 in HT, NOX1 mRNA and protein were minimally increased in HT, relative to NT; total NOX2 and NOX4 proteins were not different between HT and NT, while the increase in apical RPT cell membrane NOX1, NOX2, and NOX4 proteins in HT, relative to NT, was much less than those observed with NOX5. Thus, we demonstrate, for the first time, that NOX5 is expressed in human RPT cells and to greater extent than the other Nox isoforms in HT than NT. We suggest that the increased expression of NOX5, which may be responsible for the increased oxidative stress in RPT cells in human essential hypertension, is caused, in part, by a defective renal dopaminergic system.

  8. NADPH oxidases as novel pharmacologic targets against influenza A virus infection.

    Science.gov (United States)

    Vlahos, Ross; Selemidis, Stavros

    2014-12-01

    Influenza A viruses represent a major global health care challenge, with imminent pandemics, emerging antiviral resistance, and long lag times for vaccine development, raising a pressing need for novel pharmacologic strategies that ideally target the pathology irrespective of the infecting strain. Reactive oxygen species (ROS) pervade all facets of cell biology with both detrimental and protective properties. Indeed, there is compelling evidence that activation of the NADPH oxidase 2 (NOX2) isoform of the NADPH oxidase family of ROS-producing enzymes promotes lung oxidative stress, inflammation, injury, and dysfunction resulting from influenza A viruses of low to high pathogenicity, as well as impeding virus clearance. By contrast, the dual oxidase isoforms produce ROS that provide vital protective antiviral effects for the host. In this review, we propose that inhibitors of NOX2 are better alternatives than broad-spectrum antioxidant approaches for treatment of influenza pathologies, for which clinical efficacy may have been limited owing to poor bioavailability and inadvertent removal of beneficial ROS. Finally, we briefly describe the current suite of NADPH oxidase inhibitors and the molecular features of the NADPH oxidase enzymes that could be exploited by drug discovery for development of more specific and novel inhibitors to prevent or treat disease caused by influenza. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  9. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    International Nuclear Information System (INIS)

    Riganti, Chiara; Costamagna, Costanzo; Bosia, Amalia; Ghigo, Dario

    2006-01-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H 2 O 2 concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution

  10. Regulation of the NADPH Oxidase RBOHD During Plant Immunity.

    Science.gov (United States)

    Kadota, Yasuhiro; Shirasu, Ken; Zipfel, Cyril

    2015-08-01

    Pathogen recognition induces the production of reactive oxygen species (ROS) by NADPH oxidases in both plants and animals. ROS have direct antimicrobial properties, but also serve as signaling molecules to activate further immune outputs. However, ROS production has to be tightly controlled to avoid detrimental effects on host cells, but yet must be produced in the right amount, at the right place and at the right time upon pathogen perception. Plant NADPH oxidases belong to the respiratory burst oxidase homolog (RBOH) family, which contains 10 members in the model plant Arabidopsis thaliana. The perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) leads to a rapid, specific and strong production of ROS, which is dependent on RBOHD. RBOHD is mainly controlled by Ca(2+) via direct binding to EF-hand motifs and phosphorylation by Ca(2+)-dependent protein kinases. Recent studies have, however, revealed a critical role for a Ca(2+)-independent regulation of RBOHD. The plasma membrane-associated cytoplasmic kinase BIK1 (BOTRYTIS-INDUCED KINASE1), which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. Impairment of these phosphorylation events completely abolishes the function of RBOHD in immunity. These results suggest that RBOHD activity is tightly controlled by multilayered regulations. In this review, we summarize recent advances in our understanding of the regulatory mechanisms controlling RBOHD activation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity.

    Science.gov (United States)

    Gupta, D K; Pena, L B; Romero-Puertas, M C; Hernández, A; Inouhe, M; Sandalio, L M

    2017-04-01

    The role of NADPH oxidases under cadmium (Cd) toxicity was studied using Arabidopsis thaliana mutants AtrbohC, AtrbohD and AtrbohF, which were grown under hydroponic conditions with 25 and 100 μM Cd for 1 and 5 days. Cadmium reduced the growth of leaves in WT, AtrbohC and D, but not in AtrbohF. A time-dependent increase in H 2 O 2 and lipid peroxidation was observed in all genotypes, with AtrbohC showing the smallest increase. An opposite behaviour was observed with NO accumulation. Cadmium increased catalase activity in WT plants and decreased it in Atrboh mutants, while glutathione reductase and glycolate oxidase activities increased in Atrboh mutants, and superoxide dismutases were down-regulated in AtrbohC. The GSH/GSSG and ASA/DHA couples were also affected by the treatment, principally in AtrbohC and AtrbohF, respectively. Cadmium translocation to the leaves was severely reduced in Atrboh mutants after 1 day of treatment and even after 5 days in AtrbohF. Similar results were observed for S, P, Ca, Zn and Fe accumulation, while an opposite trend was observed for K accumulation, except in AtrbohF. Thus, under Cd stress, RBOHs differentially regulate ROS metabolism, redox homeostasis and nutrient balance and could be of potential interest in biotechnology for the phytoremediation of polluted soils. © 2016 John Wiley & Sons Ltd.

  12. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    Science.gov (United States)

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  13. Oxidative inhibition of the vascular Na+-K+ pump via NADPH oxidase-dependent β1-subunit glutathionylation: implications for angiotensin II-induced vascular dysfunction.

    Science.gov (United States)

    Liu, Chia-Chi; Karimi Galougahi, Keyvan; Weisbrod, Robert M; Hansen, Thomas; Ravaie, Ramtin; Nunez, Andrea; Liu, Yi B; Fry, Natasha; Garcia, Alvaro; Hamilton, Elisha J; Sweadner, Kathleen J; Cohen, Richard A; Figtree, Gemma A

    2013-12-01

    Glutathionylation of the Na(+)-K(+) pump's β1-subunit is a key molecular mechanism of physiological and pathophysiological pump inhibition in cardiac myocytes. Its contribution to Na(+)-K(+) pump regulation in other tissues is unknown, and cannot be assumed given the dependence on specific β-subunit isoform expression and receptor-coupled pathways. As Na(+)-K(+) pump activity is an important determinant of vascular tone through effects on [Ca(2+)]i, we have examined the role of oxidative regulation of the Na(+)-K(+) pump in mediating angiotensin II (Ang II)-induced increases in vascular reactivity. β1-subunit glutathione adducts were present at baseline and increased by exposure to Ang II in rabbit aortic rings, primary rabbit aortic vascular smooth muscle cells (VSMCs), and human arterial segments. In VSMCs, Ang II-induced glutathionylation was associated with marked reduction in Na(+)-K(+)ATPase activity, an effect that was abolished by the NADPH oxidase inhibitory peptide, tat-gp91ds. In aortic segments, Ang II-induced glutathionylation was associated with decreased K(+)-induced vasorelaxation, a validated index of pump activity. Ang II-induced oxidative inhibition of Na(+)-K(+) ATPase and decrease in K(+)-induced relaxation were reversed by preincubation of VSMCs and rings with recombinant FXYD3 protein that is known to facilitate deglutathionylation of β1-subunit. Knock-out of FXYD1 dramatically decreased K(+)-induced relaxation in a mouse model. Attenuation of Ang II signaling in vivo by captopril (8 mg/kg/day for 7 days) decreased superoxide-sensitive DHE levels in the media of rabbit aorta, decreased β1-subunit glutathionylation, and enhanced K(+)-induced vasorelaxation. Ang II inhibits the Na(+)-K(+) pump in VSMCs via NADPH oxidase-dependent glutathionylation of the pump's β1-subunit, and this newly identified signaling pathway may contribute to altered vascular tone. FXYD proteins reduce oxidative inhibition of the Na(+)-K(+) pump and may have an

  14. Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain.

    Science.gov (United States)

    Nisimoto, Yukio; Jackson, Heather M; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J David

    2010-03-23

    NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47(phox) and p67(phox) and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K(m) for NADPH of 55 +/- 10 microM. The concentration of Nox4 in cell lysates was estimated using Western blotting and allowed calculation of a turnover of approximately 200 mol of H(2)O(2) min(-1) (mol of Nox4)(-1). A chimeric protein (Nox2/4) consisting of the Nox2 transmembrane (TM) domain and the Nox4 dehydrogenase (DH) domain showed H(2)O(2) production in the absence of cytosolic regulatory subunits. In contrast, chimera Nox4/2, consisting of the Nox4 TM and Nox2 DH domains, exhibited PMA-dependent activation that required coexpression of regulatory subunits. Nox DH domains from several Nox isoforms were purified and evaluated for their electron transferase activities. Nox1 DH, Nox2 DH, and Nox5 DH domains exhibited barely detectable activities toward artificial electron acceptors, while the Nox4 DH domain exhibited significant rates of reduction of cytochrome c (160 min(-1), largely superoxide dismutase-independent), ferricyanide (470 min(-1)), and other electron acceptors (artificial dyes and cytochrome b(5)). Rates were similar to those observed for H(2)O(2) production by the Nox4 holoenzyme in cell lysates. The activity required added FAD and was seen with NADPH but not NADH. These results indicate that the Nox4 DH domain exists in an intrinsically activated state and that electron transfer from NADPH to FAD is likely to be rate-limiting in the NADPH-dependent reduction of oxygen by holo-Nox4.

  15. Neuroprotection of taurine against reactive oxygen species is associated with inhibiting NADPH oxidases.

    Science.gov (United States)

    Han, Zhou; Gao, Li-Yan; Lin, Yu-Hui; Chang, Lei; Wu, Hai-Yin; Luo, Chun-Xia; Zhu, Dong-Ya

    2016-04-15

    It is well established that taurine shows potent protection against glutamate-induced injury to neurons in stroke. The neuroprotection may result from multiple mechanisms. Increasing evidences suggest that NADPH oxidases (Nox), the primary source of superoxide induced by N-methyl-d-aspartate (NMDA) receptor activation, are involved in the process of oxidative stress. We found that 100μM NMDA induced oxidative stress by increasing the reactive oxygen species level, which contributed to the cell death, in vitro. Neuron cultures pretreated with 25mM taurine showed lower percentage of death cells and declined reactive oxygen species level. Moreover, taurine attenuated Nox2/Nox4 protein expression and enzyme activity and declined intracellular calcium intensity during NMDA-induced neuron injury. Additionally, taurine also showed neuroprotection against H2O2-induced injury, accompanying with Nox inhibition. So, we suppose that protection of taurine against reactive oxygen species during NMDA-induced neuron injury is associated with Nox inhibition, probably in a calcium-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen

    International Nuclear Information System (INIS)

    Pasqualini, Stefania; Tedeschini, Emma; Frenguelli, Giuseppe; Wopfner, Nicole; Ferreira, Fatima; D'Amato, Gennaro; Ederli, Luisa

    2011-01-01

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O 3 ) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O 3 fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O 3 fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O 3 , determined from the mRNA levels of the major allergens. We conclude that O 3 can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. - Highlights: → O 3 reduces the viability of ragweed pollen. → ROS and allergens of ragweed pollen were not affected by O 3 exposure. → O 3 enhances the activity of the ROS-generating enzyme NAD(P)H oxidase. → O 3 increases ragweed pollen allergenicity through NAD(P)H-oxidase stimulation. - This study focuses on the effects of the atmospheric pollutant ozone on ROS content and NAD(P)H oxidase activity of ragweed pollen grains.

  17. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Stefania, E-mail: spas@unipg.it [Department of Applied Biology, University of Perugia, Perugia (Italy); Tedeschini, Emma; Frenguelli, Giuseppe [Department of Applied Biology, University of Perugia, Perugia (Italy); Wopfner, Nicole; Ferreira, Fatima [Department of Molecular Biology, CD Laboratory for Allergy Diagnosis and Therapy, University of Salzburg, Salzburg (Austria); D' Amato, Gennaro [Division of Respiratory and Allergic Diseases, ' A. Cardarelli' High Speciality Hospital, Naples (Italy); Ederli, Luisa [Department of Applied Biology, University of Perugia, Perugia (Italy)

    2011-10-15

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O{sub 3}) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O{sub 3} fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O{sub 3} fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O{sub 3}, determined from the mRNA levels of the major allergens. We conclude that O{sub 3} can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. - Highlights: > O{sub 3} reduces the viability of ragweed pollen. > ROS and allergens of ragweed pollen were not affected by O{sub 3} exposure. > O{sub 3} enhances the activity of the ROS-generating enzyme NAD(P)H oxidase. > O{sub 3} increases ragweed pollen allergenicity through NAD(P)H-oxidase stimulation. - This study focuses on the effects of the atmospheric pollutant ozone on ROS content and NAD(P)H oxidase activity of ragweed pollen grains.

  18. Amyloid β induces NLRP3 inflammasome activation in retinal pigment epithelial cells via NADPH oxidase- and mitochondria-dependent ROS production.

    Science.gov (United States)

    Wang, Ke; Yao, Yong; Zhu, Xue; Zhang, Kai; Zhou, Fanfan; Zhu, Ling

    2017-06-01

    Amyloid β (Aβ)-induced chronic inflammation is believed to be a key pathogenic process in early-stage age-related macular degeneration (AMD). Nucleotide oligomerization domain (NOD)-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation triggered by Aβ is responsible for retinal pigment epithelium (RPE) dysfunction in the onset of AMD; however, the detailed molecular mechanism remains unclear. In this study, we investigated the involvement of NADPH oxidase- and mitochondria-derived reactive oxygen species (ROS) in the process of Aβ 1-40 -induced NLRP3 inflammasome activation in LPS-primed ARPE-19 cells. The results showed that Aβ 1-40 could induce excessive ROS generation, MAPK/NF-κB signaling activation and subsequently NLRP3 inflammasome activation in LPS-primed ARPE-19 cells. Furthermore, the inductive effect of Aβ 1-40 on NLRP3 inflammasome activation was mediated in a manner dependent on NADPH oxidase- and mitochondria-derived ROS. Our findings may provide a novel insight into the molecular mechanism by which Aβ contributes to the early-stage AMD. © 2016 Wiley Periodicals, Inc.

  19. Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation

    International Nuclear Information System (INIS)

    Tateishi, Yoshihisa; Sasabe, Eri; Ueta, Eisaku; Yamamoto, Tetsuya

    2008-01-01

    Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by γ-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10 Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment

  20. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries.

    Science.gov (United States)

    Simplicio, Janaina A; Hipólito, Ulisses Vilela; Vale, Gabriel Tavares do; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R

    2016-11-01

    The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase

  1. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits.

    Science.gov (United States)

    Li, Bao; Tian, Jing; Sun, Yi; Xu, Tao-Rui; Chi, Rui-Fang; Zhang, Xiao-Li; Hu, Xin-Ling; Zhang, Yue-An; Qin, Fu-Zhong; Zhang, Wei-Fang

    2015-05-01

    Nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidase activity and endoplasmic reticulum (ER) stress are increased after myocardial infarction (MI). In this study, we proposed to test whether activation of the NADPH oxidase in the remote non-infarcted myocardium mediates ER stress and left ventricular (LV) remodeling after MI. Rabbits with MI or sham operation were randomly assigned to orally receive an NADPH oxidase inhibitor apocynin or placebo for 30 days. The agents were administered beginning at 1 week after surgery. MI rabbits exhibited decreases in LV fractional shortening, LV ejection fraction and the first derivative of the LV pressure rise, which were abolished by apocynin treatment. NADPH oxidase Nox2 protein and mRNA expressions were increased in the remote non-infarcted myocardium after MI. Immunolabeling further revealed that Nox2 was increased in cardiac myocytes in the remote myocardium. The apocynin treatment prevented increases in the Nox2 expression, NADPH oxidase activity, oxidative stress, myocyte apoptosis and GRP78, CHOP and cleaved caspase 12 protein expression in the remote myocardium. The apocynin treatment also attenuated increases in myocyte diameter and cardiac fibrosis. In cultured H9C2 cardiomyocytes exposed to angiotensin II, an important stimulus for post-MI remodeling, Nox2 knockdown with siRNA significantly inhibited angiotensin II-induced NADPH oxidase activation, reactive oxygen species and GRP78 and CHOP protein expression. We conclude that NADPH oxidase inhibition attenuates increased ER stress in the remote non-infarcted myocardium and LV remodeling late after MI in rabbits. These findings suggest that the activation of NADPH oxidase in the remote non-infarcted myocardium mediates increased ER stress, contributing to myocyte apoptosis and LV remodeling after MI. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspase-dependent NADPH oxidase activation.

    Science.gov (United States)

    Aguiló, Juan I; Anel, Alberto; Catalán, Elena; Sebastián, Alvaro; Acín-Pérez, Rebeca; Naval, Javier; Wallich, Reinhard; Simon, Markus M; Pardo, Julián

    2010-07-01

    Induction of reactive oxygen species (ROS) is a hallmark of granzyme B (gzmB)-mediated pro-apoptotic processes and target cell death. However, it is unclear to what extent the generated ROS derive from mitochondrial and/or extra-mitochondrial sources. To clarify this point, we have produced a mutant EL4 cell line, termed EL4-rho(0), which lacks mitochondrial DNA, associated with a decreased mitochondrial membrane potential and a defective ROS production through the electron transport chain of oxidative phosphorylation. When incubated with either recombinant gzmB plus streptolysin or ex vivo gzmB(+) cytotoxic T cells, EL4-rho(0) cells showed phosphatydylserine translocation, caspase 3 activation, Bak conformational change, cytochrome c release and apoptotic morphology comparable to EL4 cells. Moreover, EL4-rho(0) cells produced ROS at levels similar to EL4 under these conditions. GzmB-mediated ROS production was almost totally abolished in both cell lines by the pan-caspase inhibitor, Z-VAD-fmk. However, addition of apocynin, a specific inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, led to a significant reduction of ROS production and cell death only in EL4-rho(0) but not EL4 cells. These data suggest that gzmB-induced cell death is accompanied by a caspase-dependent pathway of extra-mitochondrial ROS production, most probably through activation of NADPH oxidase.

  3. Serotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Hood, Katie Y; Mair, Kirsty M; Harvey, Adam P; Montezano, Augusto C; Touyz, Rhian M; MacLean, Margaret R

    2017-07-01

    Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. HPASMCs from controls and PAH patients, and PASMCs from Nox1 -/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT 1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT 1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT 1B receptor signaling and Nox1, confirmed in PASMCs from Nox1 -/- mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT 1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Serotonin can induce cellular Src-related kinase-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT 1B receptors contribute to

  4. Interferon gamma/NADPH oxidase defence system in immunity and cancer

    Czech Academy of Sciences Publication Activity Database

    Hodný, Zdeněk; Reiniš, Milan; Hubáčková, Soňa; Vašicová, Pavla; Bartek, Jiří

    -, 01 Sep (2015) ISSN 2162-4011 Institutional support: RVO:68378050 ; RVO:61388971 Keywords : IFNγ * NADPH oxidase * immunity * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.266, year: 2014

  5. Crosstalk between HDAC6 and Nox2-based NADPH oxidase mediates HIV-1 Tat-induced pro-inflammatory responses in astrocytes

    Directory of Open Access Journals (Sweden)

    Gi Soo Youn

    2017-08-01

    Full Text Available Histone deacetylase 6 (HDAC6 likely is important in inflammatory diseases. However, how HDAC6 exerts its effect on inflammatory processes remains unclear. HIV-1 transactivator of transcription (Tat activates NADPH oxidase resulting in generation of reactive oxygen species (ROS, leading to extensive neuro-inflammation in the central nervous system. We investigated the correlation of HDAC6 and NADPH oxidase in HIV-1 Tat-stimulated astrocytes. HDAC6 knockdown attenuated HIV-1 Tat-induced ROS generation and NADPH oxidase activation. HDAC6 knockdown suppressed HIV-1 Tat-induced expression of NADPH oxidase subunits, such as Nox2, p47phox, and p22phox. Specific inhibition of HDAC6 using tubastatin A suppressed HIV-1 Tat-induced ROS generation and activation of NADPH oxidase. N-acetyl cysteine, diphenyl iodonium, and apocynin suppressed HIV-1 Tat-induced expression of HDAC6 and the pro-inflammatory chemokines CCL2, CXCL8, and CXCL10. Nox2 knockdown attenuated HIV-1 Tat-induced HDAC6 expression and subsequent expression of chemokines. The collective results point to the potential crosstalk between HDAC6 and NADPH oxidase, which could be a combined therapeutic target for relief of HIV-1 Tat-mediated neuro-inflammation. Keywords: HIV-1 Tat, HDAC6, NADPH oxidase, ROS, Inflammation, Astrocytes

  6. Constitutive NADPH-Dependent Electron Transferase Activity of the Nox4 Dehydrogenase Domain?

    OpenAIRE

    Nisimoto, Yukio; Jackson, Heather M.; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J. David

    2010-01-01

    NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47 phox and p67 phox and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K m for NADPH of 55 ? 10 ?M. The concentration of Nox4 in cell lysates was esti...

  7. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression.

    Science.gov (United States)

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata

    2016-02-01

    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (Pextra virgin olive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...... measured the acute effects of high glucose or the G6PD inhibitor dehydroepiandrosterone (DHEA) on the production of O(2)(-) from isolated human neutrophils....

  9. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    African Journals Online (AJOL)

    Effect of a heme oxygenase-1 inducer on NADPH oxidase expression in ... and immunohistochemistry of hepatic NOX1 and NOX4 were investigated in week 4. ... (HO-1 inhibitor) administration caused upregulation of NOX gene expression ...

  10. Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine.

    Science.gov (United States)

    Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Salsoso, Rocío; Miguel-Carrasco, José L; Fortuño, Ana; Revilla, Elisa; Mate, Alfonso; Vázquez, Carmen M

    2016-10-01

    Leptin is a protein involved in the regulation of food intake and in the immune and inflammatory responses, among other functions. Evidences demonstrate that obesity is directly associated with high levels of leptin, suggesting that leptin may directly link obesity with the elevated cardiovascular and renal risk associated with increased body weight. Adverse effects of leptin include oxidative stress mediated by activation of NADPH oxidase. The aim of this study was to evaluate the effect of L-carnitine (LC) in rat renal epithelial cells (NRK-52E) exposed to leptin in order to generate a state of oxidative stress characteristic of obesity. Leptin increased superoxide anion (O2 (•) -) generation from NADPH oxidase (via PI3 K/Akt pathway), NOX2 expression and nitrotyrosine levels. On the other hand, NOX4 expression and hydrogen peroxide (H2 O2 ) levels diminished after leptin treatment. Furthermore, the expression of antioxidant enzymes, catalase, and superoxide dismutase, was altered by leptin, and an increase in the mRNA expression of pro-inflammatory factors was also found in leptin-treated cells. LC restored all changes induced by leptin to those levels found in untreated cells. In conclusion, stimulation of NRK-52E cells with leptin induced a state of oxidative stress and inflammation that could be reversed by preincubation with LC. Interestingly, LC induced an upregulation of NOX4 and restored the release of its product, hydrogen peroxide, which suggests a protective role of NOX4 against leptin-induced renal damage. J. Cell. Biochem. 117: 2281-2288, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. NADPH oxidase: an enzyme for multicellularity?

    Science.gov (United States)

    Lalucque, Hervé; Silar, Philippe

    2003-01-01

    Multicellularity has evolved several times during the evolution of eukaryotes. One evolutionary pressure that permits multicellularity relates to the division of work, where one group of cells functions as nutrient providers and the other in specialized roles such as defence or reproduction. This requires signalling systems to ensure harmonious development of multicellular structures. Here, we show that NADPH oxidases are specifically present in organisms that differentiate multicellular structures during their life cycle and are absent from unicellular life forms. The biochemical properties of these enzymes make them ideal candidates for a role in intercellular signalling.

  12. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    Science.gov (United States)

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Science.gov (United States)

    Khan, Meraj A.; Philip, Lijy M.; Cheung, Guillaume; Vadakepeedika, Shawn; Grasemann, Hartmut; Sweezey, Neil; Palaniyar, Nades

    2018-01-01

    Neutrophils migrating from the blood (pH 7.35–7.45) into the surrounding tissues encounter changes in extracellular pH (pHe) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units) increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative)-, and Staphylococcus aureus (Gram-positive)-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  14. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Directory of Open Access Journals (Sweden)

    Meraj A. Khan

    2018-02-01

    Full Text Available Neutrophils migrating from the blood (pH 7.35–7.45 into the surrounding tissues encounter changes in extracellular pH (pHe conditions. Upon activation of NADPH oxidase 2 (Nox, neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi. Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET formation (NETosis is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements. Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs. In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative-, and Staphylococcus aureus (Gram-positive-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  15. Intermittent hypoxia-induced cognitive deficits are mediated by NADPH oxidase activity in a murine model of sleep apnea.

    Directory of Open Access Journals (Sweden)

    Deepti Nair

    Full Text Available In rodents, exposure to intermittent hypoxia (IH, a hallmark of obstructive sleep apnea (OSA, is associated with neurobehavioral impairments, increased apoptosis in the hippocampus and cortex, as well as increased oxidant stress and inflammation. Excessive NADPH oxidase activity may play a role in IH-induced CNS dysfunction.The effect of IH during light period on two forms of spatial learning in the water maze and well as markers of oxidative stress was assessed in mice lacking NADPH oxidase activity (gp91phox(_/Y and wild-type littermates. On a standard place training task, gp91phox(_/Y displayed normal learning, and were protected from the spatial learning deficits observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to IH as compared to room air (RA controls, while no changes emerged in gp91phox(_/Y mice. Additionally, wild-type mice, but not gp91phox(_/Y mice had significantly elevated levels of NADPH oxidase expression and activity, as well as MDA and 8-OHDG in cortical and hippocampal lysates following IH exposures.The oxidative stress responses and neurobehavioral impairments induced by IH during sleep are mediated, at least in part, by excessive NADPH oxidase activity, and thus pharmacological agents targeting NADPH oxidase may provide a therapeutic strategy in sleep-disordered breathing.

  16. New insights into the roles of NADPH oxidases in sexual development and ascospore germination in Sordaria macrospora.

    Science.gov (United States)

    Dirschnabel, Daniela Elisabeth; Nowrousian, Minou; Cano-Domínguez, Nallely; Aguirre, Jesus; Teichert, Ines; Kück, Ulrich

    2014-03-01

    NADPH oxidase (NOX)-derived reactive oxygen species (ROS) act as signaling determinants that induce different cellular processes. To characterize NOX function during fungal development, we utilized the genetically tractable ascomycete Sordaria macrospora. Genome sequencing of a sterile mutant led us to identify the NADPH oxidase encoding nox1 as a gene required for fruiting body formation, regular hyphal growth, and hyphal fusion. These phenotypes are shared by nor1, lacking the NOX regulator NOR1. Further phenotypic analyses revealed a high correlation between increased ROS production and hyphal fusion deficiencies in nox1 and other sterile mutants. A genome-wide transcriptional profiling analysis of mycelia and isolated protoperithecia from wild type and nox1 revealed that nox1 inactivation affects the expression of genes related to cytoskeleton remodeling, hyphal fusion, metabolism, and mitochondrial respiration. Genetic analysis of nox2, lacking the NADPH oxidase 2 gene, nor1, and transcription factor deletion mutant ste12, revealed a strict melanin-dependent ascospore germination defect, indicating a common genetic pathway for these three genes. We report that gsa3, encoding a G-protein α-subunit, and sac1, encoding cAMP-generating adenylate cyclase, act in a separate pathway during the germination process. The finding that cAMP inhibits ascospore germination in a melanin-dependent manner supports a model in which cAMP inhibits NOX2 activity, thus suggesting a link between both pathways. Our results expand the current knowledge on the role of NOX enzymes in fungal development and provide a frame to define upstream and downstream components of the NOX signaling pathways in fungi.

  17. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen.

    Science.gov (United States)

    Pasqualini, Stefania; Tedeschini, Emma; Frenguelli, Giuseppe; Wopfner, Nicole; Ferreira, Fatima; D'Amato, Gennaro; Ederli, Luisa

    2011-10-01

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O(3)) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O(3) fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O(3) fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O(3), determined from the mRNA levels of the major allergens. We conclude that O(3) can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Sphingosine 1-phosphate-induced ICAM-1 expression via NADPH oxidase/ROS-dependent NF-kappaB cascade on human pulmonary alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Chin-Chung eLin

    2016-03-01

    Full Text Available The intercellular adhesion molecule-1 (ICAM-1 expression is frequently correlated with the lung inflammation. A bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P, was involved in inflammation through the adhesion molecules induction, and then caused lung injury. However, the transduction mechanisms of the S1P stimulation to induce ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs remain unclear. Here, we demonstrated that exposure of HPAEpiCs to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCdelta, PF431396 (PYK2, diphenyleneiodonium chloride (DPI, apocynin (NADPH oxidase, Edaravone (ROS, and Bay11-7082 (NF-kappaB. Consistently, knockdown with siRNA transfection of PKCdelta, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A and Gi/o-coupled receptor antagonist (GPA2 also blocked S1P-induced ICAM-1 protein and mRNA expression. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCdelta-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-kappaB p65 phosphorylation and translocation from the cytosol to the nucleus in HPAEpiCs, which was inhibited by Rottlerin, PF431396, APO, DPI, or Edaravone. In the in vitro study, we established that S1P induced monocyte adhesion via an ICAM-1-dependent pathway. In the in vivo study, we found that S1P induced ICAM-1 protein and mRNA levels in the lung fractions, pulmonary hematoma, and leukocyte (mainly eosinophils and neutrophils count in bronchoalveolar lavage (BAL fluid in mice via a PKCdelta/PYK2/NADPH oxidase/ROS/NF-kappaB signaling pathway. We concluded that S1P may induce lung

  19. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism.

    Science.gov (United States)

    Wang, Yimin; Luo, Xiao; Pan, Hao; Huang, Wei; Wang, Xueping; Wen, Huali; Shen, Kezhen; Jin, Baiye

    2015-09-01

    Cisplatin induced nephrotoxicity is primarily caused by ROS (Reactive Oxygen Species) induced proximal tubular cell death. NADPH oxidase is major source of ROS production by cisplatin. Here, we reported that pharmacological inhibition of NADPH oxidase by acetovanillone (obtained from medicinal herb Picrorhiza kurroa) led to reduced cisplatin nephrotoxicity in mice. In this study we used various molecular biology and biochemistry methods a clinically relevant model of nephropathy, induced by an important chemotherapeutic drug cisplatin. Cisplatin-induced nephrotoxicity was evident by histological damage from loss of the tubular structure. The damage was also marked by the increase in blood urea nitrogen, creatinine, protein nitration as well as cell death markers such as caspase 3/7 activity and DNA fragmentation. Tubular cell death by cisplatin led to pro-inflammatory response by production of TNFα and IL1β followed by leukocyte/neutrophil infiltration which resulted in new wave of ROS involving more NADPH oxidases. Cisplatin-induced markers of kidney damage such as oxidative stress, cell death, inflammatory cytokine production and nephrotoxicity were attenuated by acetovanillone. In addition to that, acetovanillone enhanced cancer cell killing efficacy of cisplatin. Thus, pharmacological inhibition of NADPH oxidase can be protective for cisplatin-induced nephrotoxicity in mice. Copyright © 2015. Published by Elsevier Ltd.

  20. H2O2 and NADPH oxidases involve in regulation of 2-(2-phenylethyl)chromones accumulation during salt stress in Aquilaria sinensis calli.

    Science.gov (United States)

    Wang, Xiaohui; Dong, Xianjuan; Feng, Yingying; Liu, Xiao; Wang, Jinling; Zhang, Zhongxiu; Li, Jun; Zhao, Yunfang; Shi, Shepo; Tu, Pengfei

    2018-04-01

    2-(2-Phenylethyl)chromones are the main compounds responsible for the quality of agarwood, which is widely used in traditional medicines, incenses and perfumes. H 2 O 2 and NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) mediate diverse physiological and biochemical processes in environmental stress responses. However, little is known about the function of H 2 O 2 and NADPH oxidases in 2-(2-phenylethyl)chromones accumulation. In this study, we found that salt stress induced a transient increase in content of H 2 O 2 and 2-(2-phenylethyl)chromones accumulation in Aquilaria sinensis calli. Exogenous H 2 O 2 remarkably decreased the production of 2-(2-phenylethyl)chromones, while dimethylthiourea (DMTU), a scavenger of H 2 O 2 , significantly increased 2-(2-phenylethyl)chromones accumulation in salt treated calli. Three new H 2 O 2 -generating genes, named AsRbohA-C, were isolated and characterized from A. sinensis. Salt stress also induced a transient increase in AsRbohA-C expression and NADPH oxidase activity. Furthermore, exogenous H 2 O 2 increased AsRbohA-C expression and NADPH oxidase activity, while DMTU inhibited AsRbohA-C expression and NADPH oxidase activity under salt stress. Moreover, diphenylene iodonium (DPI), the inhibitor of NADPH oxidases, reduced AsRbohA-C expression and NADPH oxidase activity, but significantly induced 2-(2-phenylethyl)chromones accumulation during salt stress. These results clearly demonstrated the central role of H 2 O 2 and NADPH oxidases in regulation of salt-induced 2-(2-phenylethyl)chromones accumulation in A. sinensis calli. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells.

    Science.gov (United States)

    Elumalai, Suma; Karunakaran, Udayakumar; Lee, In Kyu; Moon, Jun Sung; Won, Kyu Chang

    2017-04-01

    We recently reported that cluster determinant 36 (CD36), a fatty acid transporter, plays a pivotal role in glucotoxicity-induced β-cell dysfunction. However, little is known about how glucotoxicity influences CD36 expression. Emerging evidence suggests that the small GTPase Rac1 is involved in the pathogenesis of beta cell dysfunction in type 2 diabetes (T2D). The primary objective of the current study was to determine the role of Rac1 in CD36 activation and its impact on β-cell dysfunction in diabetes mellitus. To address this question, we subjected INS-1 cells and human beta cells (1.1B4) to high glucose conditions (30mM) in the presence or absence of Rac1 inhibition either by NSC23766 (Rac1 GTPase inhibitor) or small interfering RNA. High glucose exposure in INS-1 and human beta cells (1.1b4) resulted in the activation of Rac1 and induced cell apoptosis. Rac1 activation mediates NADPH oxidase (NOX) activation leading to elevated ROS production in both cells. Activation of the Rac1-NOX complex by high glucose levels enhanced CD36 expression in INS-1 and human 1.1b4 beta cell membrane fractions. The inhibition of Rac1 by NSC23766 inhibited NADPH oxidase activity and ROS generation induced by high glucose concentrations in INS-1 & human 1.1b4 beta cells. Inhibition of Rac1-NOX complex activation by NSC23766 significantly reduced CD36 expression in INS-1 and human 1.1b4 beta cell membrane fractions. In addition, Rac1 inhibition by NSC23766 significantly reduced high glucose-induced mitochondrial dysfunction. Furthermore, NADPH oxidase inhibition by VAS2870 also attenuated high glucose-induced ROS generation and cell apoptosis. These results suggest that Rac1-NADPH oxidase dependent CD36 expression contributes to high glucose-induced beta cell dysfunction and cell death. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Sphingosine 1-Phosphate-Induced ICAM-1 Expression via NADPH Oxidase/ROS-Dependent NF-κB Cascade on Human Pulmonary Alveolar Epithelial Cells

    Science.gov (United States)

    Lin, Chih-Chung; Yang, Chien-Chung; Cho, Rou-Ling; Wang, Chen-Yu; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-01-01

    The intercellular adhesion molecule-1 (ICAM-1) expression is frequently correlated with the lung inflammation. In lung injury, sphingosine-1-phosphate (S1P, bioactive sphingolipid metabolite), participate gene regulation of adhesion molecule in inflammation progression and aggravate tissue damage. To investigate the transduction mechanisms of the S1P in pulmonary epithelium, we demonstrated that exposure of HPAEpiCs (human pulmonary alveolar epithelial cells) to S1P significantly induces ICAM-1 expression leading to increase monocyte adhesion on the surface of HPAEpiCs. These phenomena were effectively attenuated by pretreatments with series of inhibitors such as Rottlerin (PKCδ), PF431396 (PYK2), diphenyleneiodonium chloride (DPI), apocynin (NADPH oxidase), Edaravone (ROS), and Bay11-7082 (NF-κB). Consistently, knockdown with siRNA transfection of PKCδ, PYK2, p47phox, and p65 exhibited the same results. Pretreatment with both Gq-coupled receptor antagonist (GPA2A) and Gi/o-coupled receptor antagonist (GPA2) also blocked the upregulation of ICAM-1 protein and mRNA induced by S1P. We observed that S1P induced PYK2 activation via a Gq-coupled receptor/PKCδ-dependent pathway. In addition, S1P induced NADPH oxidase activation and intracellular ROS generation, which were also reduced by Rottlerin or PF431396. We demonstrated that S1P induced NF-κB p65 phosphorylation and nuclear translocation in HPAEpiCs. Activated NF-κB was blocked by Rottlerin, PF431396, APO, DPI, or Edaravone. Besides, the results of monocyte adhesion assay indicated that S1P-induced ICAM-1 expression on HPAEpiCs can enhance the monocyte attachments. In the S1P-treated mice, we found that the levels of ICAM-1 protein and mRNA in the lung fractions, the pulmonary hematoma and leukocyte count in bronchoalveolar lavage fluid were enhanced through a PKCδ/PYK2/NADPH oxidase/ROS/NF-κB signaling pathway. We concluded that S1P-accelerated lung damage is due to the ICAM-1 induction associated with

  3. Angiotensin II induced catabolic effect and muscle atrophy are redox dependent

    Science.gov (United States)

    Semprun-Prieto, Laura C.; Sukhanov, Sergiy; Yoshida, Tadashi; Rezk, Bashir M.; Gonzalez-Villalobos, Romer A.; Vaughn, Charlotte; Tabony, A. Michael; Delafontaine, Patrice

    2011-01-01

    Angiotensin II (Ang II) causes skeletal muscle wasting via an increase in muscle catabolism. To determine whether the wasting effects of Ang II were related to its ability to increase NADPH oxidase-derived reactive oxygen species (ROS) we infused wild-type C57BL/6J or p47phox−/− mice with vehicle or Ang II for 7 days. Superoxide production was increased 2.4 fold in the skeletal muscle of Ang II infused mice, and this increase was prevented in p47phox−/− mice. Apocynin treatment prevented Ang II-induced superoxide production in skeletal muscle, consistent with Ang II increasing NADPH oxidase derived ROS. Ang II induced loss of body and skeletal muscle weight in C57BL/6J mice, whereas the reduction was significantly attenuated in p47phox−/− animals. The reduction of skeletal muscle weight caused by Ang II was associated with an increase of proteasome activity, and this increase was completely prevented in the skeletal muscle of p47phox−/− mice. In conclusion, Ang II-induced skeletal muscle wasting is in part dependent on NADPH oxidase derived ROS. PMID:21570954

  4. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2018-06-01

    Full Text Available Reactive oxygen species (ROS generated by up-regulated NADPH oxidase (Nox contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA, a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression. Keywords: NADPH oxidase, Epigenetics, HDAC, Histone acetylation, Diabetes

  5. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance

    Directory of Open Access Journals (Sweden)

    Giang T. Nguyen

    2017-08-01

    Full Text Available Reactive oxygen species (ROS generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs, toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs. Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation

  6. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    Science.gov (United States)

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  7. NADPH Oxidase-Mediated ROS Production Determines Insulin's Action on the Retinal Microvasculature.

    Science.gov (United States)

    Kida, Teruyo; Oku, Hidehiro; Horie, Taeko; Matsuo, Junko; Kobayashi, Takatoshi; Fukumoto, Masanori; Ikeda, Tsunehiko

    2015-10-01

    To determine whether insulin induces nitric oxide (NO) formation in retinal microvessels and to examine the effects of high glucose on the formation of NO. Freshly isolated rat retinal microvessels were incubated in normal (5.5 mM) or high (20 mM) glucose with or without insulin (100 nM). The levels of insulin-induced NO and reactive oxygen species (ROS) in the retinal microvessels were determined semiquantitatively using fluorescent probes, 4,5-diaminofluorescein diacetate, and hydroethidine, respectively, and a laser scanning confocal microscope. The insulin-induced changes of NO in rat retinal endothelial cells and pericytes cultured at different glucose concentrations (5.5 and 25 mM) were determined using flow cytometry. Nitric oxide synthase (NOS) protein levels were determined by Western blot analysis; intracellular levels of ROS were determined using fluorescence-activated cell sorting (FACS) analysis of ethidium fluorescence; and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase RNA expression was quantified using real-time PCR. Exposure of microvessels to insulin under normal glucose conditions led to a significant increase in NO levels; however, this increase was significantly suppressed when the microvessels were incubated under high glucose conditions. Intracellular levels of ROS were significantly increased in both retinal microvessels and cultured microvascular cells under high glucose conditions. The expression of NOS and NADPH oxidase were significantly increased in endothelial cells and pericytes under high glucose conditions. The increased formation of NO by insulin and its suppression by high glucose conditions suggests that ROS production mediated by NADPH oxidase is important by insulin's effect on the retinal microvasculature.

  8. Congruence between PM H+-ATPase and NADPH oxidase during root growth: a necessary probability.

    Science.gov (United States)

    Majumdar, Arkajo; Kar, Rup Kumar

    2018-07-01

    Plasma membrane (PM) H + -ATPase and NADPH oxidase (NOX) are two key enzymes responsible for cell wall relaxation during elongation growth through apoplastic acidification and production of ˙OH radical via O 2 ˙ - , respectively. Our experiments revealed a putative feed-forward loop between these enzymes in growing roots of Vigna radiata (L.) Wilczek seedlings. Thus, NOX activity was found to be dependent on proton gradient generated across PM by H + -ATPase as evident from pharmacological experiments using carbonyl cyanide m-chlorophenylhydrazone (CCCP; protonophore) and sodium ortho-vanadate (PM H + -ATPase inhibitor). Conversely, H + -ATPase activity retarded in response to different ROS scavengers [CuCl 2 , N, N' -dimethylthiourea (DMTU) and catalase] and NOX inhibitors [ZnCl 2 and diphenyleneiodonium (DPI)], while H 2 O 2 promoted PM H + -ATPase activity at lower concentrations. Repressing effects of Ca +2 antagonists (La +3 and EGTA) on the activity of both the enzymes indicate its possible mediation. Since, unlike animal NOX, the plant versions do not possess proton channel activity, harmonized functioning of PM H + -ATPase and NOX appears to be justified. Plasma membrane NADPH oxidase and H + -ATPase are functionally synchronized and they work cooperatively to maintain the membrane electrical balance while mediating plant cell growth through wall relaxation.

  9. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity.

    Science.gov (United States)

    White, Caroline N; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Figtree, Gemma A; Rasmussen, Helge H

    2010-04-30

    Cellular signaling can inhibit the membrane Na(+)-K(+) pump via protein kinase C (PKC)-dependent activation of NADPH oxidase and a downstream oxidative modification, glutathionylation, of the beta(1) subunit of the pump alpha/beta heterodimer. It is firmly established that cAMP-dependent signaling also regulates the pump, and we have now examined the hypothesis that such regulation can be mediated by glutathionylation. Exposure of rabbit cardiac myocytes to the adenylyl cyclase activator forskolin increased the co-immunoprecipitation of NADPH oxidase subunits p47(phox) and p22(phox), required for its activation, and increased superoxide-sensitive fluorescence. Forskolin also increased glutathionylation of the Na(+)-K(+) pump beta(1) subunit and decreased its co-immunoprecipitation with the alpha(1) subunit, findings similar to those already established for PKC-dependent signaling. The decrease in co-immunoprecipitation indicates a decrease in the alpha(1)/beta(1) subunit interaction known to be critical for pump function. In agreement with this, forskolin decreased ouabain-sensitive electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange ratio) of voltage-clamped, internally perfused myocytes. The decrease was abolished by the inclusion of superoxide dismutase, the inhibitory peptide for the epsilon-isoform of PKC or inhibitory peptide for NADPH oxidase in patch pipette solutions that perfuse the intracellular compartment. Pump inhibition was also abolished by inhibitors of protein kinase A and phospholipase C. We conclude that cAMP- and PKC-dependent inhibition of the cardiac Na(+)-K(+) pump occurs via a shared downstream oxidative signaling pathway involving NADPH oxidase activation and glutathionylation of the pump beta(1) subunit.

  10. Seasonal superoxide overproduction and endothelial activation in guinea-pig heart; seasonal oxidative stress in rats and humans.

    Science.gov (United States)

    Konior, Anna; Klemenska, Emilia; Brudek, Magdalena; Podolecka, Ewa; Czarnowska, Elżbieta; Beręsewicz, Andrzej

    2011-04-01

    Seasonality in endothelial dysfunction and oxidative stress was noted in humans and rats, suggesting it is a common phenomenon of a potential clinical relevance. We aimed at studying (i) seasonal variations in cardiac superoxide (O(2)(-)) production in rodents and in 8-isoprostane urinary excretion in humans, (ii) the mechanism of cardiac O(2)(-) overproduction occurring in late spring/summer months in rodents, (iii) whether this seasonal O(2)(-)-overproduction is associated with a pro-inflammatory endothelial activation, and (iv) how the summer-associated changes compare to those caused by diabetes, a classical cardiovascular risk factor. Langendorff-perfused guinea-pig and rat hearts generated ~100% more O(2)(-), and human subjects excreted 65% more 8-isoprostane in the summer vs. other seasons. Inhibitors of NADPH oxidase, xanthine oxidase, and NO synthase inhibited the seasonal O(2)(-)-overproduction. In the summer vs. other seasons, cardiac NADPH oxidase and xanthine oxidase activity, and protein expression were increased, the endothelial NO synthase and superoxide dismutases were downregulated, and, in guinea-pig hearts, adhesion molecules upregulation and the endothelial glycocalyx destruction associated these changes. In guinea-pig hearts, the summer and a streptozotocin-induced diabetes mediated similar changes, yet, more severe endothelial activation associated the diabetes. These findings suggest that the seasonal oxidative stress is a common phenomenon, associated, at least in guinea-pigs, with the endothelial activation. Nonetheless, its biological meaning (regulatory vs. deleterious) remains unclear. Upregulated NADPH oxidase and xanthine oxidase and uncoupled NO synthase are the sources of the seasonal O(2)(-)-overproduction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    Science.gov (United States)

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  12. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells.

    Science.gov (United States)

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2014-07-10

    Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an

  13. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Schudt Christian

    2005-07-01

    Full Text Available Abstract Background The sources and measurement of reactive oxygen species (ROS in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR with spin trapping is a specific method for ROS detection, and may address some these technical problems. Methods We have established a protocol for the measurement of intravascular ROS release from isolated buffer-perfused and ventilated rabbit and mouse lungs, combining lung perfusion with the spin probe l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH and ESR spectroscopy. We then employed this technique to characterize hypoxia-dependent ROS release, with specific attention paid to NADPH oxidase-dependent superoxide formation as a possible vasoconstrictor pathway. Results While perfusing lungs with CPH over a range of inspired oxygen concentrations (1–21 %, the rate of CP• formation exhibited an oxygen-dependence, with a minimum at 2.5 % O2. Addition of superoxide dismutase (SOD to the buffer fluid illustrated that a minor proportion of this intravascular ROS leak was attributable to superoxide. Stimulation of the lungs by injection of phorbol-12-myristate-13-acetate (PMA into the pulmonary artery caused a rapid increase in CP• formation, concomitant with pulmonary vasoconstriction. Both the PMA-induced CPH oxidation and the vasoconstrictor response were largely suppressed by SOD. When the PMA challenge was performed at different oxygen concentrations, maximum superoxide liberation and pulmonary vasoconstriction occurred at 5 % O2. Using a NADPH oxidase inhibitor and NADPH-oxidase deficient mice, we illustrated that the PMA-induced superoxide release was attributable to the stimulation of NADPH oxidases. Conclusion The perfusion of isolated lungs with CPH is suitable for detection of intravascular ROS release by ESR spectroscopy. We employed this technique to

  14. NADPH Oxidase Contributes to Resistance against Aggregatibacter actinomycetemcomitans-Induced Periodontitis in Mice.

    Science.gov (United States)

    Bast, Antje; Kubis, Helen; Holtfreter, Birte; Ribback, Silvia; Martin, Heiner; Schreiner, Helen C; Dominik, Malte J; Breitbach, Katrin; Dombrowski, Frank; Kocher, Thomas; Steinmetz, Ivo

    2017-02-01

    Aggregatibacter actinomycetemcomitans is a Gram-negative commensal bacterium of the oral cavity which has been associated with the pathogenesis of periodontitis with severe alveolar bone destruction. The role of host factors such as reactive oxygen and nitrogen intermediates in periodontal A. actinomycetemcomitans infection and progression to periodontitis is still ill-defined. Therefore, this study aimed to analyze the role of NADPH oxidase and inducible nitric oxide synthase (iNOS) in a murine model of A. actinomycetemcomitans-induced periodontitis. NADPH oxidase-deficient (gp91 phox knockout [KO]), iNOS-deficient (iNOS KO), and C57BL/6 wild-type mice were orally infected with A. actinomycetemcomitans and analyzed for bacterial colonization at various time points. Alveolar bone mineral density and alveolar bone volume were quantified by three-dimensional micro-computed tomography, and the degree of tissue inflammation was calculated by histological analyses. At 5 weeks after infection, A. actinomycetemcomitans persisted at significantly higher levels in the murine oral cavities of infected gp91 phox KO mice than in those of iNOS KO and C57BL/6 mice. Concomitantly, alveolar bone mineral density was significantly lower in all three infected groups than in uninfected controls, but with the highest loss of bone density in infected gp91 phox KO mice. Only infected gp91 phox KO mice revealed significant loss of alveolar bone volume and enhanced inflammatory cell infiltration, as well as an increased number of osteoclasts. Our results indicate that NADPH oxidase is important to control A. actinomycetemcomitans infection in the murine oral cavity and to prevent subsequent alveolar bone destruction and osteoclastogenesis. Copyright © 2017 American Society for Microbiology.

  15. Astragaloside IV prevents damage to human mesangial cells through the inhibition of the NADPH oxidase/ROS/Akt/NF‑κB pathway under high glucose conditions.

    Science.gov (United States)

    Sun, Li; Li, Weiping; Li, Weizu; Xiong, Li; Li, Guiping; Ma, Rong

    2014-07-01

    Glomerular hypertrophy and hyperfiltration are the two major pathological characteristics of the early stages of diabetic nephropathy (DN), which are respectively related to mesangial cell (MC) proliferation and a decrease in calcium influx conducted by canonical transient receptor potential cation channel 6 (TRPC6). The marked increase in the production of reactive oxygen species (ROS) induced by hyperglycemia is the main sponsor of multiple pathological pathways in DN. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an important source of ROS production in MCs. Astragaloside IV (AS‑IV) is an active ingredient of Radix Astragali which has a potent antioxidative effect. In this study, we aimed to investigate whether high glucose (HG)‑induced NADPH oxidase activation and ROS production contribute to MC proliferation and the downregulation of TRPC6 expression; we also wished to determine the effects of AS‑IV on MCs under HG conditions. Using a human glomerular mesangial cell line, we found that treatment with AS‑IV for 48 h markedly attenuated HG‑induced proliferation and the hypertrophy of MCs in a dose‑dependent manner. The intracellular ROS level was also markedly reduced following treatment with AS‑IV. In addition, the enhanced activity of NADPH oxidase and the expression level of NADPH oxidase 4 (Nox4) protein were decreased. Treatment with AS‑IV also inhibited the phosphorylation level of Akt and IκBα in the MCs. In addition, TRPC6 protein expression and the intracellular free calcium concentration were also markedly reduced following treatment with AS‑IV under HG conditions. These results suggest that AS‑IV inhibits HG‑induced mesangial cell proliferation and glomerular contractile dysfunction through the NADPH oxidase/ROS/Akt/nuclear factor‑κB (NF‑κB) pathway, providing a new perspective for the clinical treatment of DN.

  16. NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease-Implications for Prevention.

    Science.gov (United States)

    McCarty, Mark F

    2015-04-15

    Cerebral small vessel disease (SVD), a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS) activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways-exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea), and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine-which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine-mediate this benefit. Ameliorating the risk factors for SVD-including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine-also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.

  17. Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations

    DEFF Research Database (Denmark)

    Rehn, Gustav; Pedersen, Asbjørn Toftgaard; Woodley, John

    2016-01-01

    alcohol dehydrogenases. However, their effective use requires an effective regeneration of the oxidized nicotinamide cofactor (NAD(P)+), which is critical for the economic feasibility of the process. NAD(P)H oxidase is an enzyme class of particular interest for this cofactor regeneration since it enables...

  18. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    Science.gov (United States)

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2017-10-01

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC 50 ) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  19. NADPH Oxidase Activity in Cerebral Arterioles Is a Key Mediator of Cerebral Small Vessel Disease—Implications for Prevention

    Directory of Open Access Journals (Sweden)

    Mark F. McCarty

    2015-04-01

    Full Text Available Cerebral small vessel disease (SVD, a common feature of brain aging, is characterized by lacunar infarcts, microbleeds, leukoaraiosis, and a leaky blood-brain barrier. Functionally, it is associated with cognitive decline, dementia, depression, gait abnormalities, and increased risk for stroke. Cerebral arterioles in this syndrome tend to hypertrophy and lose their capacity for adaptive vasodilation. Rodent studies strongly suggest that activation of Nox2-dependent NADPH oxidase activity is a crucial driver of these structural and functional derangements of cerebral arterioles, in part owing to impairment of endothelial nitric oxide synthase (eNOS activity. This oxidative stress may also contribute to the breakdown of the blood-brain barrier seen in SVD. Hypertension, aging, metabolic syndrome, smoking, hyperglycemia, and elevated homocysteine may promote activation of NADPH oxidase in cerebral arterioles. Inhibition of NADPH oxidase with phycocyanobilin from spirulina, as well as high-dose statin therapy, may have potential for prevention and control of SVD, and high-potassium diets merit study in this regard. Measures which support effective eNOS activity in other ways—exercise training, supplemental citrulline, certain dietary flavonoids (as in cocoa and green tea, and capsaicin, may also improve the function of cerebral arterioles. Asian epidemiology suggests that increased protein intakes may decrease risk for SVD; conceivably, arginine and/or cysteine—which boosts tissue glutathione synthesis, and can be administered as N-acetylcysteine—mediate this benefit. Ameliorating the risk factors for SVD—including hypertension, metabolic syndrome, hyperglycemia, smoking, and elevated homocysteine—also may help to prevent and control this syndrome, although few clinical trials have addressed this issue to date.

  20. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis

    Directory of Open Access Journals (Sweden)

    Ajantha Nadesalingam

    2018-03-01

    Full Text Available Tonicity of saline (NaCl is important in regulating cellular functions and homeostasis. Hypertonic saline is administered to treat many inflammatory diseases, including cystic fibrosis. Excess neutrophil extracellular trap (NET formation, or NETosis, is associated with many pathological conditions including chronic inflammation. Despite the known therapeutic benefits of hypertonic saline, its underlying mechanisms are not clearly understood. Therefore, we aimed to elucidate the effects of hypertonic saline in modulating NETosis. For this purpose, we purified human neutrophils and induced NETosis using agonists such as diacylglycerol mimetic phorbol myristate acetate (PMA, Gram-negative bacterial cell wall component lipopolysaccharide (LPS, calcium ionophores (A23187 and ionomycin from Streptomyces conglobatus, and bacteria (Pseudomonas aeruginosa and Staphylococcus aureus. We then analyzed neutrophils and NETs using Sytox green assay, immunostaining of NET components and apoptosis markers, confocal microscopy, and pH sensing reagents. This study found that hypertonic NaCl suppresses nicotinamide adenine dinucleotide phosphate oxidase (NADPH2 or NOX2-dependent NETosis induced by agonists PMA, Escherichia coli LPS (0111:B4 and O128:B12, and P. aeruginosa. Hypertonic saline also suppresses LPS- and PMA- induced reactive oxygen species production. It was determined that supplementing H2O2 reverses the suppressive effect of hypertonic saline on NOX2-dependent NETosis. Many of the aforementioned suppressive effects were observed in the presence of equimolar concentrations of choline chloride and osmolytes (d-mannitol and d-sorbitol. This suggests that the mechanism by which hypertonic saline suppresses NOX2-dependent NETosis is via neutrophil dehydration. Hypertonic NaCl does not significantly alter the intracellular pH of neutrophils. We found that hypertonic NaCl induces apoptosis while suppressing NOX2-dependent NETosis. In contrast, hypertonic

  1. NADPH Oxidase Contributes to Photoreceptor Degeneration in Constitutively Active RAC1 Mice

    Science.gov (United States)

    Song, Hongman; Vijayasarathy, Camasamudram; Zeng, Yong; Marangoni, Dario; Bush, Ronald A.; Wu, Zhijian; Sieving, Paul A.

    2016-01-01

    Purpose The active form of small GTPase RAC1 is required for activation of NADPH oxidase (NOX), which in turn generates reactive oxygen species (ROS) in nonphagocytic cells. We explored whether NOX-induced oxidative stress contributes to rod degeneration in retinas expressing constitutively active (CA) RAC1. Methods Transgenic (Tg)–CA-RAC1 mice were given apocynin (10 mg/kg, intraperitoneal), a NOX inhibitor, or vehicle daily for up to 13 weeks. Superoxide production and oxidative damage were assessed by dihydroethidium staining and by protein carbonyls and malondialdehyde levels, respectively. Outer nuclear layer (ONL) cells were counted and electroretinogram (ERG) amplitudes measured in Tg-CA-RAC1 mice. Outer nuclear layer cells were counted in wild-type (WT) mice after transfer of CA-Rac1 gene by subretinal injection of AAV8-pOpsin-CA Rac1-GFP. Results Transgenic-CA-RAC1 retinas had significantly fewer photoreceptor cells and more apoptotic ONL cells than WT controls from postnatal week (Pw) 3 to Pw13. Superoxide accumulation and protein and lipid oxidation were increased in Tg-CA-RAC1 retinas and were reduced in mice treated with apocynin. Apocynin reduced the loss of photoreceptors and increased the rod ERG a- and b-wave amplitudes when compared with vehicle-injected transgenic controls. Photoreceptor loss was also observed in regions of adult WT retina transduced with AAV8-pOpsin-CA Rac1-GFP but not in neighboring regions that were not transduced or in AAV8-pOpsin-GFP–transduced retinas. Conclusions Constitutively active RAC1 promotes photoreceptor cell death by oxidative damage that occurs, at least partially, through NOX-induced ROS. Reactive oxygen species are likely involved in multiple forms of retinal degenerations, and our results support investigating RAC1 inhibition as a therapeutic approach that targets this disease pathway. PMID:27233035

  2. Urotensin II inhibits skeletal muscle glucose transport signaling pathways via the NADPH oxidase pathway.

    Directory of Open Access Journals (Sweden)

    Hong-Xia Wang

    Full Text Available Our previous studies have demonstrated that the urotensin (UII and its receptor are up-regulated in the skeletal muscle of mice with type II diabetes mellitus (T2DM, but the significance of UII in skeletal muscle insulin resistance remains unknown. The purpose of this study was to investigate the effect of UII on NADPH oxidase and glucose transport signaling pathways in the skeletal muscle of mice with T2DM and in C2C12 mouse myotube cells. KK/upj-AY/J mice (KK mice were divided into the following groups: KK group, with saline treatment for 2 weeks; KK+ urantide group, with daily 30 µg/kg body weight injections over the same time period of urantide, a potent urotensin II antagonist peptide; Non-diabetic C57BL/6J mice were used as normal controls. After urantide treatment, mice were subjected to an intraperitoneal glucose tolerance test, in addition to measurements of the levels of ROS, NADPH oxidase and the phosphorylated AKT, PKC and ERK. C2C12 cells were incubated with serum-free DMEM for 24 hours before conducting the experiments, and then administrated with 100 nM UII for 2 hours or 24 hours. Urantide treatment improved glucose tolerance, decreased the translocation of the NADPH subunits p40-phox and p47-phox, and increased levels of the phosphorylated PKC, AKT and ERK. In contrast, UII treatment increased ROS production and p47-phox and p67-phox translocation, and decreased the phosphorylated AKT, ERK1/2 and p38MAPK; Apocynin abrogated this effect. In conclusion, UII increased ROS production by NADPH oxidase, leading to the inhibition of signaling pathways involving glucose transport, such as AKT/PKC/ERK. Our data imply a role for UII at the molecular level in glucose homeostasis, and possibly in skeletal muscle insulin resistance in T2DM.

  3. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    International Nuclear Information System (INIS)

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-01-01

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O 2 ·- generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67 phox siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91 phox knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47 phox , p67 phox and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67 phox siRNA. Exposure of MPMVEC obtained from gp91 phox knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly via activation of NADPH oxidase. UFP-induced ROS lead to

  4. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-07-22

    Plant NADPH oxidases (NOXs) encompass a group of membrane-bound enzymes participating in formation of reactive oxygen species (ROS) under physiological conditions as well as in response to environmental stressors. The purpose of the survey was to unveil the role of NADPH oxidase in pro-oxidative responses of maize (Zea mays L.) seedling leaves exposed to cereal aphids' infestation. The impact of apteral females of bird cherry-oat aphid (Rhopalosiphum padi L.) and grain aphid (Sitobion avenae F.) feeding on expression levels of all four NADPH oxidase genes (rbohA, rbohB, rbohC, rbohD) and total activity of NOX enzyme in maize plants were investigated. In addition, inhibitory effect of diphenylene iodonium (DPI) pre-treatment on NOX activity and hydrogen peroxide content in aphid-stressed maize seedlings was studied. Leaf infestation biotests were accomplished on 14-day-old seedlings representing two aphid-resistant varieties (Ambrozja and Waza) and two aphid-susceptible ones (Tasty Sweet and Złota Karłowa). Insects' attack led to profound upregulation of rbohA and rbohD genes in tested host plants, lower elevations were noted in level of rbohB mRNA, whereas abundance of rbohC transcript was not significantly altered. It was uncovered aphid-induced enhancement of NOX activity in examined plants. Higher increases in expression of all investigated rboh genes and activity of NADPH oxidase occurred in tissues of more resistant maize cultivars than in susceptible ones. Furthermore, DPI treatment resulted in strong reduction of NOX activity and H2O2 accumulation in aphid-infested Z. mays plants, thus evidencing circumstantial role of the enzyme in insect-elicited ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway.

    Science.gov (United States)

    He, Ting; Guan, Xu; Wang, Song; Xiao, Tangli; Yang, Ke; Xu, Xinli; Wang, Junping; Zhao, Jinghong

    2015-02-15

    Resveratrol (RSV) is reported to have renoprotective activity against diabetic nephropathy, while the mechanisms underlying its function have not been fully elucidated. In this study, we investigate the effect and related mechanism of RSV against high glucose-induced epithelial to mesenchymal transition (EMT) in human tubular epithelial cells (HK-2). A typical EMT is induced by high glucose in HK-2 cells, accompanied by increased levels of reactive oxygen species (ROS). RSV exhibits a strong ability to inhibit high glucose-induced EMT by decreasing intracellular ROS levels via down-regulation of NADPH oxidase subunits NOX1 and NOX4. The activation of extracellular signal-regulated kinase (ERK1/2) is found to be involved in high glucose-induced EMT in HK-2 cells. RSV, like NADPH oxidase inhibitor diphenyleneiodonium, can block ERK1/2 activation induced by high glucose. Our results demonstrate that RSV is a potent agent against high glucose-induced EMT in renal tubular cells via inhibition of NADPH oxidase/ROS/ERK1/2 pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. NADPH oxidase 1 deficiency alters caveolin phosphorylation and angiotensin II-receptor localization in vascular smooth muscle.

    Science.gov (United States)

    Basset, Olivier; Deffert, Christine; Foti, Michelangelo; Bedard, Karen; Jaquet, Vincent; Ogier-Denis, Eric; Krause, Karl-Heinz

    2009-10-01

    The superoxide-generating NADPH oxidase NOX1 is thought to be involved in signaling by the angiotensin II-receptor AT1R. However, underlying signaling steps are poorly understood. In this study, we investigated the effect of AngII on aortic smooth muscle from wild-type and NOX1-deficient mice. NOX1-deficient cells showed decreased basal ROS generation and did not produce ROS in response to AngII. Unexpectedly, AngII-dependent Ca(2+) signaling was markedly decreased in NOX1-deficient cells. Immunostaining demonstrated that AT1R was localized on the plasma membrane in wild-type, but intracellularly in NOX1-deficient cells. Immunohistochemistry and immunoblotting showed a decreased expression of AT1R in the aorta of NOX1-deficient mice. To investigate the basis of the abnormal AT1R targeting, we studied caveolin expression and phosphorylation. The amounts of total caveolin and of caveolae were not different in NOX1-deficient mice, but a marked decrease occurred in the phosphorylated form of caveolin. Exogenous H(2)O(2) or transfection of a NOX1 plasmid restored AngII responses in NOX1-deficient cells. Based on these findings, we propose that NOX1-derived reactive oxygen species regulate cell-surface expression of AT1R through mechanisms including caveolin phosphorylation. The lack cell-surface AT1R expression in smooth muscle could be involved in the decreased blood pressure in NOX1-deficient mice.

  7. Low-Dose Dextromethorphan, a NADPH Oxidase Inhibitor, Reduces Blood Pressure and Enhances Vascular Protection in Experimental Hypertension

    Science.gov (United States)

    Wu, Tao-Cheng; Chao, Chih-Yu; Lin, Shing-Jong; Chen, Jaw-Wen

    2012-01-01

    Background Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM), a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP) and vascular protection in aged spontaneous hypertensive rats (SHRs). Methodology/Principal Findings Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker) monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. Conclusions/Significance Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension. PMID:23049937

  8. Low-dose dextromethorphan, a NADPH oxidase inhibitor, reduces blood pressure and enhances vascular protection in experimental hypertension.

    Directory of Open Access Journals (Sweden)

    Tao-Cheng Wu

    Full Text Available BACKGROUND: Vascular oxidative stress may be increased with age and aggravate endothelial dysfunction and vascular injury in hypertension. This study aimed to investigate the effects of dextromethorphan (DM, a NADPH oxidase inhibitor, either alone or in combination treatment, on blood pressure (BP and vascular protection in aged spontaneous hypertensive rats (SHRs. METHODOLOGY/PRINCIPAL FINDINGS: Eighteen-week-old WKY rats and SHRs were housed for 2 weeks. SHRs were randomly assigned to one of the 12 groups: untreated; DM monotherapy with 1, 5 or 25 mg/kg/day; amlodipine (AM, a calcium channel blocker monotherapy with 1 or 5 mg/kg/day; and combination therapy of DM 1, 5 or 25 mg/kg/day with AM 1 or 5 mg/kg/day individually for 4 weeks. The in vitro effects of DM were also examined. In SHRs, AM monotherapy dose-dependently reduced arterial systolic BP. DM in various doses significantly and similarly reduced arterial systolic BP. Combination of DM with AM gave additive effects on BP reduction. DM, either alone or in combination with AM, improved aortic endothelial function indicated by ex vivo acetylcholine-induced relaxation. The combination of low-dose DM with AM gave most significant inhibition on aortic wall thickness in SHRs. Plasma total antioxidant status was significantly increased by all the therapies except for the combination of high-dose DM with high-dose AM. Serum nitrite and nitrate level was significantly reduced by AM but not by DM or the combination of DM with AM. Furthermore, in vitro treatment with DM reduced angiotensin II-induced reactive oxygen species and NADPH oxidase activation in human aortic endothelial cells. CONCLUSIONS/SIGNIFICANCE: Treatment of DM reduced BP and enhanced vascular protection probably by inhibiting vascular NADPH oxidase in aged hypertensive animals with or without AM treatment. It provides the potential rationale to a novel combination treatment with low-dose DM and AM in clinical hypertension.

  9. Biological Superoxide In Manganese Oxide Formation

    Science.gov (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  10. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.

    Science.gov (United States)

    Wang, Su Bin; Jang, Ji Yong; Chae, Yun Hee; Min, Ji Hyun; Baek, Jin Young; Kim, Myunghee; Park, Yunjeong; Hwang, Gwi Seo; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-06-01

    Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor

    Science.gov (United States)

    Morre, D. James

    2002-01-01

    The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.

  12. Acupuncture elicits neuroprotective effect by inhibiting NAPDH oxidase-mediated reactive oxygen species production in cerebral ischaemia.

    Science.gov (United States)

    Shi, Guang-Xia; Wang, Xue-Rui; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Zeng, Xiang-Hong; Xu, Qian; Zhu, Wen; Du, Si-Qi; Liu, Cun-Zhi

    2015-12-10

    In the current study, we aimed to investigate whether NADPH oxidase, a major ROS-producing enzyme, was involved in the antioxidant effect of acupuncture on cognitive impairment after cerebral ischaemia. The cognitive function, infract size, neuron cell loss, level of superoxide anion and expression of NADPH oxidase subunit in hippocampus of two-vessel occlusion (2VO) rats were determined after 2-week acupuncture. Furthermore, the cognitive function and production of O2(-) were determined in the presence and absence of NADPH oxidase agonist (TBCA) and antagonist (Apocynin). The effect of acupuncture on cognitive function after cerebral ischaemia in gp91phox-KO mice was evaluated by Morris water maze. Acupuncture reduced infarct size, attenuated overproduction of O2(-), and reversed consequential cognitive impairment and neuron cell loss in 2VO rats. The elevations of gp91phox and p47phox after 2VO were significantly decreased after acupuncture treatment. However, no differences of gp91phox mRNA were found among any experimental groups. Furthermore, these beneficial effects were reversed by TBCA, whereas apocynin mimicked the effect of acupuncture by improving cognitive function and decreasing O2(-) generation. Acupuncture failed to improve the memory impairment in gp91phox KO mice. Full function of the NADPH oxidase enzyme plays an important role in neuroprotective effects against cognitive impairment via inhibition of NAPDH oxidase-mediated oxidative stress.

  13. Downstream components of RhoA required for signal pathway of superoxide formation during phagocytosis of serum opsonized zymosans in macrophages.

    Science.gov (United States)

    Kim, Jun Sub; Kim, Jae Gyu; Jeon, Chan Young; Won, Ha Young; Moon, Mi Young; Seo, Ji Yeon; Kim, Jong Il; Kim, Jaebong; Lee, Jae Yong; Choi, Soo Young; Park, Jinseu; Yoon Park, Jung Han; Ha, Kwon Soo; Kim, Pyeung Hyeun; Park, Jae Bong

    2005-12-31

    Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47(PHOX). Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47(PHOX) may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.

  14. Zinc-Dependent Protection of Tobacco and Rice Cells From Aluminum-Induced Superoxide-Mediated Cytotoxicity

    Science.gov (United States)

    Lin, Cun; Hara, Ayaka; Comparini, Diego; Bouteau, François; Kawano, Tomonori

    2015-01-01

    Al3+ toxicity in growing plants is considered as one of the major factors limiting the production of crops on acidic soils worldwide. In the last 15 years, it has been proposed that Al3+ toxicity are mediated with distortion of the cellular signaling mechanisms such as calcium signaling pathways, and production of cytotoxic reactive oxygen species (ROS) causing oxidative damages. On the other hand, zinc is normally present in plants at high concentrations and its deficiency is one of the most widespread micronutrient deficiencies in plants. Earlier studies suggested that lack of zinc often results in ROS-mediated oxidative damage to plant cells. Previously, inhibitory action of Zn2+ against lanthanide-induced superoxide generation in tobacco cells have been reported, suggesting that Zn2+ interferes with the cation-induced ROS production via stimulation of NADPH oxidase. In the present study, the effect of Zn2+ on Al3+-induced superoxide generation in the cell suspension cultures of tobacco (Nicotiana tabacum L., cell-line, BY-2) and rice (Oryza sativa L., cv. Nipponbare), was examined. The Zn2+-dependent inhibition of the Al3+-induced oxidative burst was observed in both model cells selected from the monocots and dicots (rice and tobacco), suggesting that this phenomenon (Al3+/Zn2+ interaction) can be preserved in higher plants. Subsequently induced cell death in tobacco cells was analyzed by lethal cell staining with Evans blue. Obtained results indicated that presence of Zn2+ at physiological concentrations can protect the cells by preventing the Al3+-induced superoxide generation and cell death. Furthermore, the regulation of the Ca2+ signaling, i.e., change in the cytosolic Ca2+ ion concentration, and the cross-talks among the elements which participate in the pathway were further explored. PMID:26648960

  15. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    International Nuclear Information System (INIS)

    Riganti, Chiara; Costamagna, Costanzo; Doublier, Sophie; Miraglia, Erica; Polimeni, Manuela; Bosia, Amalia; Ghigo, Dario

    2008-01-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-κB and decreased intracellular level of its inhibitor IkBα. These effects, accompanied by increased production of H 2 O 2 , were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-κB activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed

  16. Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Serizawa Ken-ichi

    2011-11-01

    Full Text Available Abstract Background Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes. Methods Male Sprague-Dawley rats (6 weeks old were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days to induce diabetes. Nicorandil (15 mg/kg/day and tempol (20 mg/kg/day, superoxide dismutase mimetic were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs were treated with high glucose (35.6 mM, 24 h and reactive oxygen species (ROS production with or without L-NAME (300 μM, apocynin (100 μM or nicorandil (100 μM was measured using fluorescent probes. Results Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; n = 6-7. There was a 2.4-fold increase in p47phox expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; n = 6. Nicorandil significantly inhibited the increased expressions of p47phox and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil

  17. The role of brassinosteroids in the regulation of the plasma membrane H+-ATPase and NADPH oxidase under cadmium stress.

    Science.gov (United States)

    Jakubowska, Dagmara; Janicka, Małgorzata

    2017-11-01

    The present research aim was to define the role of brassinosteroids (BRs) in plant adaptation to cadmium stress. We observed a stimulating effect of exogenous BR on the activity of two plasma membrane enzymes which play a key role in plants adaptation to cadmium stress, H + -ATPase (EC 3.6.3.14) and NADPH oxidase (EC 1.6.3.1). Using anti-phosphothreonine antibody we showed that modification of PM H + -ATPase activity under BR action could result from phosphorylation of the enzyme protein. Also the relative expression of genes encoding both PM H + -ATPase and NADPH oxidase was affected by BR. To confirm the role of BR in the cadmium stimulating effect on activity of both studied plasma membrane enzymes, an assay in the presence of a BR biosynthesis inhibitor (propiconazole) was performed. Moreover, as a tool in our work we used commercially available plant mutants unable to BR biosynthesis or with dysfunctional BR signaling pathway, to further confirm participation of BR in plant adaptation to heavy metal stress. Presented results demonstrate some elements of the brassinosteroid-induced pathway activated under cadmium stress, wherein H + -ATPase and NADPH oxidase are key factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. NADPH oxidase is not an essential mediator of oxidative stress or liver injury in murine MCD diet-induced steatohepatitis.

    Science.gov (United States)

    dela Peña, Aileen; Leclercq, Isabelle A; Williams, Jacqueline; Farrell, Geoffrey C

    2007-02-01

    Hepatic oxidative stress is a key feature of metabolic forms of steatohepatitis, but the sources of pro-oxidants are unclear. The NADPH oxidase complex is critical for ROS generation in inflammatory cells; loss of any one component (e.g., gp91phox) renders NADPH oxidase inactive. We tested whether activated inflammatory cells contribute to oxidant stress in steatohepatitis. gp91phox-/- and wildtype (wt) mice were fed a methionine and choline-deficient (MCD) diet. Serum ALT, hepatic triglycerides, histopathology, lipid peroxidation, activation of NF-kappaB, expression of NF-kappaB-regulated genes and macrophage chemokines were measured. After 10 days of MCD dietary feeding, gp91phox-/- and wt mice displayed equivalent hepatocellular injury. After 8 weeks, there were fewer activated macrophages in livers of gp91phox-/- mice than controls, despite similar mRNA levels for MCP and MIP chemokines, but fibrosis was similar. NF-kappaB activation and increased expression of ICAM-1, TNF-alpha and COX-2 mRNA were evident in both genotypes, but in gp91phox-/- mice, expression of these genes was confined to hepatocytes. A functional NADPH oxidase complex does not contribute importantly to oxidative stress in this model and therefore is not obligatory for induction or perpetuation of dietary steatohepatitis.

  19. EPA:DHA 6:1 prevents angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase- and COX-derived oxidative stress.

    Science.gov (United States)

    Niazi, Zahid Rasul; Silva, Grazielle C; Ribeiro, Thais Porto; León-González, Antonio J; Kassem, Mohamad; Mirajkar, Abdur; Alvi, Azhar; Abbas, Malak; Zgheel, Faraj; Schini-Kerth, Valérie B; Auger, Cyril

    2017-12-01

    Eicosapentaenoic acid:docosahexaenoic acid (EPA:DHA) 6:1, an omega-3 polyunsaturated fatty acid formulation, has been shown to induce a sustained formation of endothelial nitric oxide (NO) synthase-derived NO, a major vasoprotective factor. This study examined whether chronic intake of EPA:DHA 6:1 prevents hypertension and endothelial dysfunction induced by angiotensin II (Ang II) in rats. Male Wister rats received orally corn oil or EPA:DHA 6:1 (500 mg kg -1 per day) before chronic infusion of Ang II (0.4 mg kg -1 per day). Systolic blood pressure was determined by tail cuff sphingomanometry, vascular reactivity using a myograph, oxidative stress using dihydroethidium and protein expression by immunofluorescence and western blot analysis. Ang II-induced hypertension was associated with reduced acetylcholine-induced relaxations of secondary branch mesenteric artery rings affecting the endothelium-dependent hyperpolarization (EDH)- and the NO-mediated relaxations, both of which were improved by the NADPH oxidase inhibitor VAS-2870. The Ang II treatment induced also endothelium-dependent contractile responses (EDCFs), which were abolished by the cyclooxygenase (COX) inhibitor indomethacin. An increased level of vascular oxidative stress and expression of NADPH oxidase subunits (p47 phox and p22 phox ), COX-1 and COX-2, endothelial NO synthase and Ang II type 1 receptors were observed in the Ang II group, whereas SK Ca and connexin 37 were downregulated. Intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction by improving both the NO- and EDH-mediated relaxations, and by reducing EDCFs and the expression of target proteins. The present findings indicate that chronic intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction in rats, most likely by preventing NADPH oxidase- and COX-derived oxidative stress.

  20. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    Science.gov (United States)

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  1. Novel p47phox-related organizers regulate NADPH oxidase 1 (Nox1) activity and localization

    Science.gov (United States)

    Gianni, Davide; Diaz, Begoña; Taulet, Nicolas; Fowler, Bruce; Courtneidge, Sara A.; Bokoch, Gary M.

    2010-01-01

    The mechanisms that determine localized formation of reactive oxygen species (ROS) via NADPH oxidases (Nox) in nonphagocytic cells are unknown. We show that the c-Src substrate proteins Tks4 and Tks5 are functional members of a p47phox-related organizer superfamily. Tks proteins selectively support Nox1 and Nox3 (vs. Nox2 and Nox4) activity in reconstituted cellular systems, and interact with the NoxA1 activator protein through an SH3-mediated interaction. Endogenous Tks4 is required for Rac GTPase-dependent ROS production by DLD1 colon cancer cells. Tks4 recruits Nox1 to invadopodia that form in DLD1 cells in a Tks- and Nox-dependent fashion. We propose that Tks organizers represent novel members of an organizer superfamily that link Nox to localized ROS formation. PMID:19755710

  2. JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

    Directory of Open Access Journals (Sweden)

    Ling Yan

    2013-01-01

    Full Text Available Excessive fluoride may cause central nervous system (CNS dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS, and NADPH oxidase (NOX is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells.

  3. JNK and NADPH Oxidase Involved in Fluoride-Induced Oxidative Stress in BV-2 Microglia Cells

    Science.gov (United States)

    Yan, Ling; Liu, Shengnan; Wang, Chen; Wang, Fei; Song, Yingli; Yan, Nan; Xi, Shuhua; Liu, Ziyou; Sun, Guifan

    2013-01-01

    Excessive fluoride may cause central nervous system (CNS) dysfunction, and oxidative stress is a recognized mode of action of fluoride toxicity. In CNS, activated microglial cells can release more reactive oxygen species (ROS), and NADPH oxidase (NOX) is the major enzyme for the production of extracellular superoxide in microglia. ROS have been characterized as an important secondary messenger and modulator for various mammalian intracellular signaling pathways, including the MAPK pathways. In this study we examined ROS production and TNF-α, IL-1β inflammatory cytokines releasing, and the expression of MAPKs in BV-2 microglia cells treated with fluoride. We found that fluoride increased JNK phosphorylation level of BV-2 cells and pretreatment with JNK inhibitor SP600125 markedly reduced the levels of intracellular O2 ·− and NO. NOX inhibitor apocynin and iNOS inhibitor SMT dramatically decreased NaF-induced ROS and NO generations, respectively. Antioxidant melatonin (MEL) resulted in a reduction in JNK phosphorylation in fluoride-stimulated BV-2 microglia. The results confirmed that NOX and iNOS played an important role in fluoride inducing oxidative stress and NO production and JNK took part in the oxidative stress induced by fluoride and meanwhile also could be activated by ROS in fluoride-treated BV-2 cells. PMID:24072958

  4. NAD(P)H oxidase/nitric oxide interactions in peroxisome proliferator activated receptor (PPAR)α-mediated cardiovascular effects

    International Nuclear Information System (INIS)

    Newaz, Mohammad; Blanton, Ahmad; Fidelis, Paul; Oyekan, Adebayo

    2005-01-01

    Activation of peroxisome proliferator activated receptor (PPAR)α and its protective role in cardiovascular function has been reported but the exact mechanism(s) involved is not clear. As we have shown that PPARα ligands increased nitric oxide (NO) production and cardiovascular function is controlled by a balance between NO and free radicals, we hypothesize that PPARα activation tilts the balance between NO and free radicals and that this mechanism defines the protective effects of PPARα ligands on cardiovascular system. Systolic blood pressure (SBP) was greater in PPARα knockout (KO) mice compared with its wild type (WT) litter mates (130 ± 10 mmHg versus 107 ± 4 mmHg). L-NAME (100 mg/L p.o.), the inhibitor of NO production abolished the difference between PPARα KO and WT mice. In kidney homogenates, tissue lipid hydroperoxide generation was greater in KO mice (11.8 ± 1.4 pM/mg versus 8.3 ± 0.6 pM/mg protein). This was accompanied by a higher total NOS activity (46 ± 6%, p 2+ -dependent NOS activity in kidney homogenates of untreated PPARα WT compared with the KO mice. Clofibrate, a PPARα ligand, increased NOS activity in WT but not KO mice. Bezafibrate (30 mg/kg) reduced SBP in conscious rats (19 ± 4%, p < 0.05), increased urinary NO excretion (4.06 ± 0.53-7.07 ± 1.59 μM/24 h; p < 0.05) and reduced plasma 8-isoprostane level (45.8 ± 15 μM versus 31.4 ± 8 μM), and NADP(H) oxidase activity (16 ± 5%). Implantation of DOCA pellet (20 mg s.c.) in uninephrectomized mice placed on 1% NaCl drinking water increased SBP by a margin that was markedly greater in KO mice (193 ± 13 mmHg versus 130 ± 12 mmHg). In the rat, DOCA increased SBP and NAD(P)H oxidase activity and both effects were diminished by clofibrate. In addition, clofibrate reduced ET-1 production in DOCA/salt hypertensive rats. Thus, apart from inhibition of ET-1 production, PPARα activation exerts protective actions in hypertension via a mechanism that involves NO production and

  5. Novel p47(phox)-related organizers regulate localized NADPH oxidase 1 (Nox1) activity.

    Science.gov (United States)

    Gianni, Davide; Diaz, Begoña; Taulet, Nicolas; Fowler, Bruce; Courtneidge, Sara A; Bokoch, Gary M

    2009-09-15

    The mechanisms that determine localized formation of reactive oxygen species (ROS) through NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase (Nox) family members in nonphagocytic cells are unknown. We show that the c-Src substrate proteins Tks4 (tyrosine kinase substrate with four SH3 domains) and Tks5 are functional members of a p47(phox)-related organizer superfamily. Tks proteins selectively support Nox1 and Nox3 (and not Nox2 and Nox4) activity in reconstituted cellular systems and interact with the NoxA1 activator protein through an Src homology 3 domain-mediated interaction. Endogenous Tks4 is required for Rac guanosine triphosphatase- and Nox1-dependent ROS production by DLD1 colon cancer cells. Our results are consistent with the Tks-mediated recruitment of Nox1 to invadopodia that form in DLD1 cells in a Tks- and Nox-dependent fashion. We propose that Tks organizers represent previously unrecognized members of an organizer superfamily that link Nox to localized ROS formation.

  6. Role of TLR4/NADPH oxidase/ROS-activated p38 MAPK in VCAM-1 expression induced by lipopolysaccharide in human renal mesangial cells

    Directory of Open Access Journals (Sweden)

    Lee I-Ta

    2012-11-01

    Full Text Available Abstract Background In bacteria-induced glomerulonephritis, Toll-like receptor 4 (TLR4 activation by lipopolysaccharide (LPS, a key component of the outer membranes of Gram-negative bacteria can increase oxidative stress and the expression of vascular cell adhesion molecule-1 (VCAM-1, which recruits leukocytes to the glomerular mesangium. However, the mechanisms underlying VCAM-1 expression induced by LPS are still unclear in human renal mesangial cells (HRMCs. Results We demonstrated that LPS induced VCAM-1 mRNA and protein levels associated with an increase in the promoter activity of VCAM-1, determined by Western blot, RT-PCR, and promoter assay. LPS-induced responses were inhibited by transfection with siRNAs of TLR4, myeloid differentiation factor 88 (MyD88, Nox2, Nox4, p47phox, c-Src, p38 MAPK, activating transcription factor 2 (ATF2, and p300 or pretreatment with the inhibitors of reactive oxygen species (ROS, edaravone, NADPH oxidase [apocynin (APO or diphenyleneiodonium chloride (DPI], c-Src (PP1, p38 MAPK (SB202190, and p300 (GR343. LPS induced NADPH oxidase activation, ROS production, and p47phox translocation from the cytosol to the membrane, which were reduced by PP1 or c-Src siRNA. We observed that LPS induced TLR4, MyD88, c-Src, and p47phox complex formation determined by co-immunoprecipitation and Western blot. We further demonstrated that LPS stimulated ATF2 and p300 phosphorylation and complex formation via a c-Src/NADPH oxidase/ROS/p38 MAPK pathway. Up-regulation of VCAM-1 led to enhancing monocyte adhesion to HRMCs challenged with LPS, which was inhibited by siRNAs of c-Src, p47phox, p38 MAPK, ATF2, and p300 or pretreatment with an anti-VCAM-1 neutralizing antibody. Conclusions In HRMCs, LPS-induced VCAM-1 expression was, at least in part, mediated through a TLR4/MyD88/ c-Src/NADPH oxidase/ROS/p38 MAPK-dependent p300 and ATF2 pathway associated with recruitment of monocyte adhesion to kidney. Blockade of these pathways may

  7. NADPH promotes the rapid growth of the tumor

    Directory of Open Access Journals (Sweden)

    Hao Sheng

    2018-04-01

    Full Text Available NADPH oxidase is the main source of intracellular reactive oxygen species (ROS. ROS plays an important role in a variety of tumor types. The ROS mediated by NADPH oxidase increases the expression of hypoxia-inducible factor alpha (HIF-α through multiple signaling pathways in tumor, and HIF-α could be regulated and controlled by downstream multiple targeted genes such as vascular endothelial growth factor, glucose transporter to promote tumor angiogenesis, cell energy metabolism reprogram and tumor metastasis. Meanwhile, HIF-α can also regulate the expression of NADPH oxidase by ROS, thus further promoting development of tumor. In this review, we summarized the functions of NADPH in tumorigenesis and discussed their potential implications in cancer therapy.

  8. A benzoxazine derivative induces vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 by elevating NADPH oxidase activity and reactive oxygen species levels.

    Science.gov (United States)

    Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2009-09-01

    Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.

  9. ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation.

    Directory of Open Access Journals (Sweden)

    Shin-Ei Cheng

    Full Text Available BACKGROUND: Up-regulation of cyclooxygenase (COX-2 and its metabolite prostaglandin E(2 (PGE(2 are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE(2 release remain unclear. PRINCIPAL FINDINGS: Here, we showed that ATPγS induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin, PKC (Gö6983, Gö6976, Ro318220, and Rottlerin, ROS (Edaravone, NADPH oxidase [diphenyleneiodonium chloride (DPI and apocynin], Jak2 (AG490, and STAT3 [cucurbitacin E (CBE] and transfection with siRNAs of PKCα, PKCι, PKCμ, p47(phox, Jak2, STAT3, and cPLA(2 markedly reduced ATPγS-induced COX-2 expression and PGE(2 production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATPγS. Moreover, ATPγS-induced ROS generation and p47(phox translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATPγS stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Gö6983, Gö6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells. SIGNIFICANCE: Taken together, these results showed that ATPγS induced COX-2 expression and PGE(2 production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA(2 signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies.

  10. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Park, Ji-hoon [Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Kim, Soon Ha, E-mail: shakim@lgls.com [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of)

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  11. Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase

    OpenAIRE

    Gandara, Ana Caroline Paiva; Torres, Andr?; Bahia, Ana Cristina; Oliveira, Pedro L.; Schama, Renata

    2017-01-01

    Background NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropod genes. In arthropods, only NOX5 and DUOX genes have been found and a gene called NOXm was found in mosquitoes but its origin and function has not b...

  12. Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Saikumar, Jagannath H; Massey, Katherine J; Hong, Nancy J; Dominici, Fernando P; Carretero, Oscar A; Garvin, Jeffrey L

    2016-02-01

    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Long-Term Effects of Maternal Deprivation on Redox Regulation in Rat Brain: Involvement of NADPH Oxidase

    Directory of Open Access Journals (Sweden)

    Branka Marković

    2017-01-01

    Full Text Available Maternal deprivation (MD causes perinatal stress, with subsequent behavioral changes which resemble the symptoms of schizophrenia. The NADPH oxidase is one of the major generators of reactive oxygen species, known to play a role in stress response in different tissues. The aim of this study was to elucidate the long-term effects of MD on the expression of NADPH oxidase subunits (gp91phox, p22phox, p67phox, p47phox, and p40phox. Activities of cytochrome C oxidase and respiratory chain Complex I, as well as the oxidative stress parameters using appropriate spectrophotometric techniques were analyzed. Nine-day-old Wistar rats were exposed to a 24 h maternal deprivation and sacrificed at young adult age. The structures affected by perinatal stress, cortex, hippocampus, thalamus, and caudate nuclei were investigated. The most prominent findings were increased expressions of gp91phox in the cortex and hippocampus, increased expression of p22phox and p40phox, and decreased expression of gp91phox, p22phox, and p47phox in the caudate nuclei. Complex I activity was increased in all structures except cortex. Content of reduced glutathione was decreased in all sections while region-specific changes of other oxidative stress parameters were found. Our results indicate the presence of long-term redox alterations in MD rats.

  14. Association between NADPH oxidase p22(phox C242T polymorphism and ischemic cerebrovascular disease: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Bing-Hu Li

    Full Text Available BACKGROUND: Epidemiological studies have evaluated the association between nicotinamide adenine dinucleotide phosphate (NADPH oxidase p22(phox C242T polymorphism and risk of ischemic cerebrovascular disease (ICVD, but the results remain inconclusive. This meta-analysis was therefore designed to clarify these controversies. METHODOLOGY/PRINCIPAL FINDINGS: Systematic searches of electronic databases Embase, PubMed and Web of Science, as well as hand searching of the references of identified articles and the meeting abstracts were performed. Statistical analyses were performed using software Review Manager (Version 5.1.7 and Stata (Version 11.0. The pooled odds ratios (ORs with 95% confidence intervals (95%CIs were performed. Fixed or random effects model was separately used depending on the heterogeneity between studies. Publication bias was tested by Begg's funnel plot and Egger's regression test. A total of 6 studies including 1,948 cases and 2,357 controls were combined showing no statistical evidence of association between NADPH oxidase p22(phox C242T polymorphism and overall ICVD (allelic model: OR = 1.08, 95%CI = 0.93-1.26; additive model: OR = 1.33, 95%CI = 0.81-2.17; dominant model: OR = 1.00, 95%CI = 0.86-1.15; recessive model: OR = 1.06, 95%CI = 0.77-1.45. Significant association was found in large-artery atherosclerotic stroke subgroup (allelic model: OR = 1.12, 95%CI = 0.88-1.41; additive model: OR = 1.36, 95%CI = 0.60-3.09; dominant model: OR = 1.25, 95%CI = 0.74-2.11; recessive model: OR = 2.17, 95%CI = 1.11-4.23. No statistical evidence of significant association was observed for small-vessel occlusive stroke, as well as Asian subgroup and Caucasian subgroup. Statistical powers on the combined sample size (total and subgroup were all lower than 80%. CONCLUSIONS/SIGNIFICANCE: This meta-analysis indicates that NADPH oxidase p22(phox C242T polymorphism is more associated

  15. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway.

    Science.gov (United States)

    Zuo, Xuezhi; Tian, Chong; Zhao, Nana; Ren, Weiye; Meng, Yi; Jin, Xin; Zhang, Ying; Ding, Shibin; Ying, Chenjiang; Ye, Xiaolei

    2014-03-02

    Hyperglycemia-induced endothelial hyperpermeability is crucial to cardiovascular disorders and macro-vascular complications in diabetes mellitus. The objective of this study is to investigate the effects of green tea polyphenols (GTPs) on endothelial hyperpermeability and the role of nicotinamide adenine dinucleotide phosphate (NADPH) pathway. Male Wistar rats fed on a high fat diet (HF) were treated with GTPs (0, 0.8, 1.6, 3.2 g/L in drinking water) for 26 weeks. Bovine aortic endothelial cells (BAECs) were treated with high glucose (HG, 33 mmol/L) and GTPs (0.0, 0.4, or 4 μg/mL) for 24 hours in vitro. The endothelial permeabilities in rat aorta and monolayer BAECs were measured by Evans blue injection method and efflux of fluorescein isothiocyanate (FITC)-dextran, respectively. The reactive oxygen species (ROS) levels in rat aorta and monolayer BAECs were measured by dihydroethidium (DHE) and 2', 7'-dichloro-fluorescein diacetate (DCFH-DA) fluorescent probe, respectively. Protein levels of NADPH oxidase subunits were determined by Western-blot. HF diet-fed increased the endothelial permeability and ROS levels in rat aorta while HG treatments increased the endothelial permeability and ROS levels in cultured BAECs. Co-treatment with GTPs alleviated those changes both in vivo and in vitro. In in vitro studies, GTPs treatments protected against the HG-induced over-expressions of p22phox and p67phox. Diphenylene iodonium chloride (DPI), an inhibitor of NADPH oxidase, alleviated the hyperpermeability induced by HG. GTPs could alleviate endothelial hyperpermeabilities in HF diet-fed rat aorta and in HG treated BAECs. The decrease of ROS production resulting from down-regulation of NADPH oxidase contributed to the alleviation of endothelial hyperpermeability.

  16. NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases

    Czech Academy of Sciences Publication Activity Database

    Potocký, Martin; Pejchar, Přemysl; Gutkowska, Malgorzata; Jiménez-Quesada, M. J.; Potocká, Andrea; Alché, J.; Kost, B.; Žárský, Viktor

    2012-01-01

    Roč. 169, č. 16 (2012), s. 1654-1663 ISSN 0176-1617 R&D Projects: GA ČR GP522/09/P299 Institutional research plan: CEZ:AV0Z50380511 Keywords : Pollen tube * Tip growth * NADPH oxidase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.699, year: 2012

  17. Phagocytosis of mast cell granules results in decreased macrophage superoxide production

    Directory of Open Access Journals (Sweden)

    Bobby A. Shah

    1995-01-01

    Full Text Available The mechanism by which phagocytosed mast cell granules (MCGs inhibit macrophage superoxide production has not been defined. In this study, rat peritoneal macrophages were co-incubated with either isolated intact MCGs or MCG-sonicate, and their respiratory burst capacity and morphology were studied. Co-incubation of macrophages with either intact MCGs or MCG-sonicate resulted in a dose-dependent inhibition of superoxide- mediated cytochrome c reduction. This inhibitory effect was evident within 5 min of incubation and with MCG-sonicate was completely reversed when macrophages were washed prior to activation with PMA. In the case of intact MCGs, the inhibitory effect was only partially reversed by washing after a prolonged co-incubation time. Electron microscopic analyses revealed that MCGs were rapidly phagocytosed by macrophages and were subsequently disintegrated within the phagolysosomes. Assay of MCGs for superoxide dismutase (SOD revealed the presence of significant activity of this enzyme. A comparison of normal macrophages and those containing phagocytosed MCGs did not reveal a significant difference in total SOD activity. It is speculated that, although there was no significant increase in total SOD activity in macrophages containing phagocytosed MCGs, the phagocytosed MCGs might cause a transient increase in SOD activity within the phagolysosomes. This transient rise in SOD results in scavenging of the newly generated superoxide. Alternatively, MCG inhibition of NADPH oxidase would explain the reported observations.

  18. Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Eldad Saragosti

    2010-09-01

    Full Text Available Reactive oxygen species (ROS are thought to play a major role in cell death pathways and bleaching in scleractinian corals. Direct measurements of ROS in corals are conspicuously in short supply, partly due to inherent problems with ROS quantification in cellular systems.In this study we characterized the dynamics of the reactive oxygen species superoxide anion radical (O(2(- in the external milieu of the coral Stylophora pistillata. Using a sensitive, rapid and selective chemiluminescence-based technique, we measured extracellular superoxide production and detoxification activity of symbiont (non-bleached and aposymbiont (bleached corals, and of cultured Symbiodinium (from clades A and C. Bleached and non-bleached Stylophora fragments were found to produce superoxide at comparable rates of 10(-11-10(-9 mol O(2(- mg protein(-1 min(-1 in the dark. In the light, a two-fold enhancement in O(2(- production rates was observed in non-bleached corals, but not in bleached corals. Cultured Symbiodinium produced superoxide in the dark at a rate of . Light was found to markedly enhance O(2(- production. The NADPH Oxidase inhibitor Diphenyleneiodonium chloride (DPI strongly inhibited O(2(- production by corals (and more moderately by algae, possibly suggesting an involvement of NADPH Oxidase in the process. An extracellular O(2(- detoxifying activity was found for bleached and non-bleached Stylophora but not for Symbiodinium. The O(2(- detoxifying activity was partially characterized and found to resemble that of the enzyme superoxide dismutase (SOD.The findings of substantial extracellular O(2(- production as well as extracellular O(2(- detoxifying activity may shed light on the chemical interactions between the symbiont and its host and between the coral and its environment. Superoxide production by Symbiodinium possibly implies that algal bearing corals are more susceptible to an internal build-up of O(2(-, which may in turn be linked to oxidative stress

  19. Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues

    NARCIS (Netherlands)

    Weyemi, Urbain; Caillou, Bernard; Talbot, Monique; Ameziane-El-Hassani, Rabii; Lacroix, Ludovic; Lagent-Chevallier, Odile; Al Ghuzlan, Abir; Roos, Dirk; Bidart, Jean-Michel; Virion, Alain; Schlumberger, Martin; Dupuy, Corinne

    2010-01-01

    NADPH oxidase 4 (NOX4) belongs to the NOX family that generates reactive oxygen species (ROS). Function and tissue distribution of NOX4 have not yet been entirely clarified. To date, in the thyroid gland, only DUOX1/2 NOX systems have been described. NOX4 mRNA expression, as shown by real-time PCR,

  20. Effects of co-administration of dietary sodium arsenite and an NADPH oxidase inhibitor on the rat bladder epithelium

    International Nuclear Information System (INIS)

    Suzuki, Shugo; Arnold, Lora L.; Pennington, Karen L.; Kakiuchi-Kiyota, Satoko; Cohen, Samuel M.

    2009-01-01

    Arsenite (As III ), an inorganic arsenical, is a known human carcinogen, inducing tumors of the skin, urinary bladder and lung. It is metabolized to organic methylated arsenicals. Oxidative stress has been suggested as a mechanism for arsenic-induced carcinogenesis. Reactive oxygen species (ROS) can be important factors for carcinogenesis and tumor progression. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is known to produce intracellular ROS, therefore, we investigated the ability of apocynin (acetovanillone), an NADPH oxidase inhibitor, to inhibit the cytotoxicity and regenerative cell proliferation of arsenic in vitro and in vivo. Apocynin had similar effects in reducing the cytotoxicity of As III and dimethylarsinous acid (DMA III ) in rat urothelial cells in vitro. When tested at the same concentrations as apocynin, other antioxidants, such as L-ascorbate and N-acetylcysteine, did not inhibit As III -induced cytotoxicity but they were more effective at inhibiting DMA III -induced cytotoxicity compared with apocynin. In vivo, female rats were treated for 3 weeks with 100 ppm As III . Immunohistochemical staining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed that apocynin reduced oxidative stress partially induced by As III treatment on rat urothelium, and significantly reduced the cytotoxicity of superficial cells detected by scanning electron microscopy (SEM). However, based on the incidence of simple hyperplasia and the bromodeoxyuridine (BrdU) labeling index, apocynin did not inhibit As III -induced urothelial cell proliferation. These data suggest that the NADPH oxidase inhibitor, apocynin, may have the ability to partially inhibit arsenic-induced oxidative stress and cytotoxicity of the rat bladder epithelium in vitro and in vivo. However, apocynin did not inhibit the regenerative cell proliferation induced by arsenite in a short-term study.

  1. The Role of NADPH Oxidase in the Inhibition of Trichophyton rubrum by 420-nm Intense Pulsed Light

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2018-01-01

    Full Text Available Objectives: To evaluate the effect of intense pulsed light (IPL on Trichophyton rubrum and investigate its mechanism of action.Methods: The viability of fungi treated with IPL alone and with IPL combined with an NADPH oxidase inhibitor (DPI pretreatment was determined by MTT assays. The reactive oxygen species (ROS were quantified with a DCFH-DA fluorescent probe. Malondialdehyde (MDA content and superoxide dismutase (SOD and glutathione peroxidase (GSH-Px activities were determined by commercial kits. The transcription of the Nox gene was quantified using quantitative real-time PCR (qRT-PCR analysis, and micromorphology was observed using scanning electron microscopy (SEM. In addition, fungal keratinase activity was detected by measuring dye release from keratin azure.Results: The growth declined with statistical significance after 6 h of treatment (P < 0.001. The ROS and MDA content increased after IPL treatment, whereas the SOD and GSH-Px activity decreased. Nox gene expression was upregulated, and the micromorphology was damaged. Keratinase activity decreased. Fungi that received DPI pretreatment exhibited contrasting outcomes.Conclusion: We found that 420-nm IPL significantly inhibited the growth and pathogenicity of T. rubrum in vitro. A suggested mechanism involves Nox as a factor that mediates 420-nm IPL-induced oxidative damage of T. rubrum.

  2. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans is mediated by NADPH Oxidase; Influence of Exercise Training

    Science.gov (United States)

    La Favor, Justin D.; Dubis, Gabriel S.; Yan, Huimin; White, Joseph D.; Nelson, Margaret A.M.; Anderson, Ethan J.; Hickner, Robert C.

    2016-01-01

    Objective The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and to determine the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Approach and Results Young, sedentary men and women were divided into lean (BMI 18–25; n=14), intermediate (BMI 28–32.5; n=13), and obese (BMI 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared to both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase (Nox) inhibitor, lowered (normalized) H2O2 and superoxide levels and reversed microvascular endothelial dysfunction in obese subjects. Following 8-weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the Nox subunits p22phox, p47phox, and p67phox were increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. Conclusions This study implicates Nox as a source of excessive ROS production in skeletal muscle of obese individuals, and links excessive Nox derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. PMID:27765769

  3. Inhibitors of NADPH oxidase decrease endotoxin mediated induction of inducible nitric oxide expression in mouse macrophages

    Czech Academy of Sciences Publication Activity Database

    Krejčová, Daniela; Okénková, Kateřina; Konopka, Roman; Lojek, Antonín; Kubala, Lukáš

    2007-01-01

    Roč. 101, č. 14 (2007), s203-s204 E-ISSN 1213-7103. [Mezioborová česko-slovenská toxikologická konference /12./. Praha, 11.06.2007-13.06.2007] R&D Projects: GA ČR(CZ) GA524/06/1197 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : lipopolysaccharide * inhibitors of NADPH oxidase * macrophage s Subject RIV: BO - Biophysics

  4. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses.

    Directory of Open Access Journals (Sweden)

    Marta Berrocal-Lobo

    2010-12-01

    Full Text Available Pathogen associated molecular patterns (PAMPs are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA, jasmonic acid (JA and ethylene (ET signaling pathways. One of these genes is ATL9 ( = ATL2G, which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET, full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst.

  5. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.

    Science.gov (United States)

    Hansel, Colleen M; Zeiner, Carolyn A; Santelli, Cara M; Webb, Samuel M

    2012-07-31

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  6. The lipidated peptidomimetic Lau-[(S)-Aoc]-(Lys-βNphe)6-NH2 is a novel formyl peptide receptor 2 agonist that activates both human and mouse neutrophil NADPH-oxidase

    DEFF Research Database (Denmark)

    Holdfeldt, Andre; Skovbakke, Sarah Line; Winther, Malene

    2016-01-01

    Neutrophils expressing formyl peptide receptor 2 (FPR2) play key roles in host defense, immune regulation, and resolution of inflammation. Consequently, the search for FPR2-specific modulators has attracted much attention due to its therapeutic potential. Earlier described agonists......2 (F2M2), showing comparable potency in activating human and mouse neutrophils by inducing a rise in intracellular Ca2+ concentration and assembly of the superoxide-generating NADPH oxidase. This FPR2/Fpr2 agonist contains a headgroup consisting of a 2-aminooctanoic acid (Aoc) residue acylated......2 signaling as well as for development of prophylactic immunomodulatory therapy. This novel class of cross-species FPR2/Fpr2 agonists should enable translation of results obtained with mouse neutrophils (and disease models) into enhanced understanding of human inflammatory and immune diseases....

  7. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis

    DEFF Research Database (Denmark)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting

    2016-01-01

    Hydronephrosis is associated with development of salt-sensitive hypertension. Studies suggest that increased sympathetic nerve activity (SNA) and oxidative stress play important roles in renovascular hypertension. This study aimed to investigate the link between renal SNA and NADPH oxidase (NOX......) regulation in the development of hypertension in rats with hydronephrosis. Hydronephrosis was induced by partial unilateral ureteral obstruction (PUUO) in young rats. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high and low salt diets. Renal...

  8. NADPH oxidase 4 attenuates cerebral artery changes during the progression of Marfan syndrome.

    Science.gov (United States)

    Onetti, Yara; Meirelles, Thayna; Dantas, Ana P; Schröder, Katrin; Vila, Elisabet; Egea, Gustavo; Jiménez-Altayó, Francesc

    2016-05-01

    Marfan syndrome (MFS) is a connective tissue disorder that is often associated with the fibrillin-1 (Fbn1) gene mutation and characterized by cardiovascular alterations, predominantly ascending aortic aneurysms. Although neurovascular complications are uncommon in MFS, the improvement in Marfan patients' life expectancy is revealing other secondary alterations, potentially including neurovascular disorders. However, little is known about small-vessel pathophysiology in MFS. MFS is associated with hyperactivated transforming growth factor (TGF)-β signaling, which among numerous other downstream effectors, induces the NADPH oxidase 4 (Nox4) isoform of NADPH oxidase, a strong enzymatic source of H2O2 We hypothesized that MFS induces middle cerebral artery (MCA) alterations and that Nox4 contributes to them. MCA properties from 3-, 6-, or 9-mo-old Marfan (Fbn1(C1039G/+)) mice were compared with those from age/sex-matched wild-type littermates. At 6 mo, Marfan compared with wild-type mice developed higher MCA wall/lumen (wild-type: 0.081 ± 0.004; Marfan: 0.093 ± 0.002; 60 mmHg; P Marfan mice with Nox4 deficiency (Nox4(-/-)). Strikingly, Nox4 deletion in Marfan mice aggravated MCA wall thickening (cross-sectional area; Marfan: 6,660 ± 363 μm(2); Marfan Nox4(-/-): 8,795 ± 824 μm(2); 60 mmHg; P < 0.05), accompanied by decreased TGF-β expression and increased collagen deposition and Nox1 expression. These findings provide the first evidence that Nox4 mitigates cerebral artery structural changes in a murine model of MFS. Copyright © 2016 the American Physiological Society.

  9. Activation of PAR-1/NADPH Oxidase/ROS Signaling Pathways is Crucial for the Thrombin-Induced sFlt-1 Production in Extravillous Trophoblasts: Possible Involvement in the Pathogenesis of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Qi-tao Huang

    2015-03-01

    Full Text Available Backgrounds/Aims: Preeclampsia was characterized by excessive thrombin generation in placentas and previous researches showed that thrombin could enhance soluble Fms-like tyrosine kinase 1 (sFlt-1 expression in first trimester trophoblasts. However, the detailed mechanism for the sFlt-1 over-production induced by thrombin was largely unknown. The purpose of this study was to explore the possible signaling pathway of thrombin-induced sFlt-1 production in extravillous trophoblasts (EVT. Methods: An EVT cell line (HRT-8/SVneo was treated with various concentrations of thrombin. The mRNA expression and protein secretion of sFlt-1 in EVT were detected with real-time polymerase chain reaction and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS production were determined by DCFH-DA. Results: Exposure of EVT to thrombin induced increased intracellular ROS generation and overexpression of sFlt-1 at both mRNA and protein levels in a dose dependent manner. Short interfering RNA (siRNA directed against PAR-1 or apocynin (an inhibitor of NADPH oxidase could decrease the intracellular ROS generation and subsequently suppressed the production of sFlt-1 at mRNA and protein levels. Conclusions: Our results suggested that thrombin increased sFlt-1 production in EVT via the PAR-1 /NADPH oxidase /ROS signaling pathway. This also highlights the PAR-1 / NADPH oxidase / ROS pathway might be a potential therapeutic target for the prevention of preeclampsia in the future.

  10. Activation of PAR-1/NADPH oxidase/ROS signaling pathways is crucial for the thrombin-induced sFlt-1 production in extravillous trophoblasts: possible involvement in the pathogenesis of preeclampsia.

    Science.gov (United States)

    Huang, Qi-Tao; Chen, Jian-Hong; Hang, Li-Lin; Liu, Shi-San; Zhong, Mei

    2015-01-01

    Preeclampsia was characterized by excessive thrombin generation in placentas and previous researches showed that thrombin could enhance soluble Fms-like tyrosine kinase 1 (sFlt-1) expression in first trimester trophoblasts. However, the detailed mechanism for the sFlt-1 over-production induced by thrombin was largely unknown. The purpose of this study was to explore the possible signaling pathway of thrombin-induced sFlt-1 production in extravillous trophoblasts (EVT). An EVT cell line (HRT-8/SVneo) was treated with various concentrations of thrombin. The mRNA expression and protein secretion of sFlt-1 in EVT were detected with real-time polymerase chain reaction and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS) production were determined by DCFH-DA. Exposure of EVT to thrombin induced increased intracellular ROS generation and overexpression of sFlt-1 at both mRNA and protein levels in a dose dependent manner. Short interfering RNA (siRNA) directed against PAR-1 or apocynin (an inhibitor of NADPH oxidase) could decrease the intracellular ROS generation and subsequently suppressed the production of sFlt-1 at mRNA and protein levels. Our results suggested that thrombin increased sFlt-1 production in EVT via the PAR-1 /NADPH oxidase /ROS signaling pathway. This also highlights the PAR-1 / NADPH oxidase / ROS pathway might be a potential therapeutic target for the prevention of preeclampsia in the future. © 2015 S. Karger AG, Basel.

  11. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise

    2010-01-01

    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...... dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton....

  12. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.

    Science.gov (United States)

    Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R

    2005-01-28

    The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.

  13. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells.

    Science.gov (United States)

    Oliveira, Jessica Silva Santos de; Santos, Gabriela da Silva; Moraes, João Alfredo; Saliba, Alessandra Mattos; Barja-Fidalgo, Thereza Christina; Mattos-Guaraldi, Ana Luíza; Nagao, Prescilla Emy

    2018-01-01

    BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.

  14. QSYQ Attenuates Oxidative Stress and Apoptosis Induced Heart Remodeling Rats through Different Subtypes of NADPH-Oxidase

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2013-01-01

    Full Text Available We aim to investigate the therapeutic effects of QSYQ, a drug of heart failure (HF in clinical practice in China, on a rat heart failure (HF model. 3 groups were divided: HF model group (LAD ligation, QSYQ group (LAD ligation and treated with QSYQ, and sham-operated group. After 4 weeks, rats were sacrificed for cardiac injury measurements. Rats with HF showed obvious histological changes including necrosis and inflammation foci, elevated ventricular remodeling markers levels(matrix metalloproteinases-2, MMP-2, deregulated ejection fraction (EF value, increased formation of oxidative stress (Malondialdehyde, MDA, and up-regulated levels of apoptotic cells (caspase-3, p53 and tunnel in myocardial tissue. Treatment of QSYQ improved cardiac remodeling through counter-acting those events. The improvement of QSYQ was accompanied with a restoration of NADPH oxidase 4 (NOX4 and NADPH oxidase 2 (NOX2 pathways in different patterns. Administration of QSYQ could attenuate LAD-induced HF, and AngII-NOX2-ROS-MMPs pathway seemed to be the critical potential targets for QSYQ to reduce the remodeling. Moreover, NOX4 was another key targets to inhibit the p53 and Caspase3, thus to reduce the hypertrophy and apoptosis, and eventually provide a synergetic cardiac protective effect.

  15. Expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and mitochondrial oxidative phosphorylation in septic patients.

    Directory of Open Access Journals (Sweden)

    Laura A Nucci

    Full Text Available Sepsis is a complex disease that is characterized by activation and inhibition of different cell signaling pathways according to the disease stage. Here, we evaluated genes involved in the TLR signaling pathway, oxidative phosphorylation and oxidative metabolism, aiming to assess their interactions and resulting cell functions and pathways that are disturbed in septic patients.Blood samples were obtained from 16 patients with sepsis secondary to community acquired pneumonia at admission (D0, and after 7 days (D7, N = 10 of therapy. Samples were also collected from 8 healthy volunteers who were matched according to age and gender. Gene expression of 84 genes was performed by real-time polymerase chain reactions. Their expression was considered up- or down-regulated when the fold change was greater than 1.5 compared to the healthy volunteers. A p-value of ≤ 0.05 was considered significant.Twenty-two genes were differently expressed in D0 samples; most of them were down-regulated. When gene expression was analyzed according to the outcomes, higher number of altered genes and a higher intensity in the disturbance was observed in non-survivor than in survivor patients. The canonical pathways altered in D0 samples included interferon and iNOS signaling; the role of JAK1, JAK2 and TYK2 in interferon signaling; mitochondrial dysfunction; and superoxide radical degradation pathways. When analyzed according to outcomes, different pathways were disturbed in surviving and non-surviving patients. Mitochondrial dysfunction, oxidative phosphorylation and superoxide radical degradation pathway were among the most altered in non-surviving patients.Our data show changes in the expression of genes belonging to the interacting TLR cascades, NADPH-oxidase and oxidative phosphorylation. Importantly, distinct patterns are clearly observed in surviving and non-surviving patients. Interferon signaling, marked by changes in JAK-STAT modulation, had prominent changes in

  16. The Human NADPH Oxidase, Nox4, Regulates Cytoskeletal Organization in Two Cancer Cell Lines, HepG2 and SH-SY5Y

    Directory of Open Access Journals (Sweden)

    Simon Auer

    2017-05-01

    Full Text Available NADPH oxidases of human cells are not only functional in defense against invading microorganisms and for oxidative reactions needed for specialized biosynthetic pathways but also during the past few years have been established as signaling modules. It has been shown that human Nox4 is expressed in most somatic cell types and produces hydrogen peroxide, which signals to remodel the actin cytoskeleton. This correlates well with the function of Yno1, the only NADPH oxidase of yeast cells. Using two established tumor cell lines, which are derived from hepatic and neuroblastoma tumors, respectively, we are showing here that in both tumor models Nox4 is expressed in the ER (like the yeast NADPH oxidase, where according to published literature, it produces hydrogen peroxide. Reducing this biochemical activity by downregulating Nox4 transcription leads to loss of F-actin stress fibers. This phenotype is reversible by adding hydrogen peroxide to the cells. The effect of the Nox4 silencer RNA is specific for this gene as it does not influence the expression of Nox2. In the case of the SH-SY5Y neuronal cell line, Nox4 inhibition leads to loss of cell mobility as measured in scratch assays. We propose that inhibition of Nox4 (which is known to be strongly expressed in many tumors could be studied as a new target for cancer treatment, in particular for inhibition of metastasis.

  17. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides

    DEFF Research Database (Denmark)

    Winterbourn, Christine C; Parsons-Mair, Helena N; Gebicki, Silvia

    2004-01-01

    Superoxide reacts rapidly with other radicals, but these reactions have received little attention in the context of oxidative stress. For tyrosyl radicals, reaction with superoxide is 3-fold faster than dimerization, and forms the addition product tyrosine hydroperoxide. We have explored structural...... requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine...... formed stable hydroperoxides, but N-acetyltyrosine and p-hydroxyphenylacetic acid did not, demonstrating a requirement for a free amino group. Using [14C]tyrosine, the hydroperoxide and dityrosine were formed at a molar ratio of 1.8:1. Studies with pre-formed hydroperoxides, and measurements of substrate...

  18. Contribution of NADPH Oxidase to Membrane CD38 Internalization and Activation in Coronary Arterial Myocytes

    Science.gov (United States)

    Xu, Ming; Li, Xiao-Xue; Ritter, Joseph K.; Abais, Justine M.; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    The CD38-ADP-ribosylcyclase-mediated Ca2+ signaling pathway importantly contributes to the vasomotor response in different arteries. Although there is evidence indicating that the activation of CD38-ADP-ribosylcyclase is associated with CD38 internalization, the molecular mechanism mediating CD38 internalization and consequent activation in response to a variety of physiological and pathological stimuli remains poorly understood. Recent studies have shown that CD38 may sense redox signals and is thereby activated to produce cellular response and that the NADPH oxidase isoform, NOX1, is a major resource to produce superoxide (O2 ·−) in coronary arterial myocytes (CAMs) in response to muscarinic receptor agonist, which uses CD38-ADP-ribosylcyclase signaling pathway to exert its action in these CAMs. These findings led us hypothesize that NOX1-derived O2 ·− serves in an autocrine fashion to enhance CD38 internalization, leading to redox activation of CD38-ADP-ribosylcyclase activity in mouse CAMs. To test this hypothesis, confocal microscopy, flow cytometry and a membrane protein biotinylation assay were used in the present study. We first demonstrated that CD38 internalization induced by endothelin-1 (ET-1) was inhibited by silencing of NOX1 gene, but not NOX4 gene. Correspondingly, NOX1 gene silencing abolished ET-1-induced O2 ·− production and increased CD38-ADP-ribosylcyclase activity in CAMs, while activation of NOX1 by overexpression of Rac1 or Vav2 or administration of exogenous O2 ·− significantly increased CD38 internalization in CAMs. Lastly, ET-1 was found to markedly increase membrane raft clustering as shown by increased colocalization of cholera toxin-B with CD38 and NOX1. Taken together, these results provide direct evidence that Rac1-NOX1-dependent O2 ·− production mediates CD38 internalization in CAMs, which may represent an important mechanism linking receptor activation with CD38 activity in these cells. PMID:23940720

  19. A role for mitochondrial oxidants in stress-induced premature senescence of human vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Yogita Mistry

    2013-01-01

    Full Text Available Mitochondria are a major source of cellular oxidants and have been implicated in aging and associated pathologies, notably cardiovascular diseases. Vascular cell senescence is observed in experimental and human cardiovascular pathologies. Our previous data highlighted a role for angiotensin II in the induction of telomere-dependent and -independent premature senescence of human vascular smooth muscle cells and suggested this was due to production of superoxide by NADPH oxidase. However, since a role for mitochondrial oxidants was not ruled out we hypothesise that angiotensin II mediates senescence by mitochondrial superoxide generation and suggest that inhibition of superoxide may prevent vascular smooth muscle cell aging in vitro. Cellular senescence was induced using a stress-induced premature senescence protocol consisting of three successive once-daily exposure of cells to 1×10−8 mol/L angiotensin II and was dependent upon the type-1 angiotensin II receptor. Angiotensin stimulated NADPH-dependent superoxide production as estimated using lucigenin chemiluminescence in cell lysates and this was attenuated by the mitochondrial electron transport chain inhibitor, rotenone. Angiotensin also resulted in an increase in mitoSOX fluorescence indicating stimulation of mitochondrial superoxide. Significantly, the induction of senescence by angiotensin II was abrogated by rotenone and by the mitochondria-targeted superoxide dismutase mimetic, mitoTEMPO. These data suggest that mitochondrial superoxide is necessary for the induction of stress-induced premature senescence by angiotensin II and taken together with other data suggest that mitochondrial cross-talk with NADPH oxidases, via as yet unidentified signalling pathways, is likely to play a key role.

  20. Oral treatment with the NADPH oxidase antagonist apocynin mitigates clinical and pathological features of parkinsonism in the MPTP marmoset model

    DEFF Research Database (Denmark)

    Philippens, Ingrid H C H M; Wubben, Jacqueline A; Finsen, Bente

    2013-01-01

    models, the conditions for metabolic activation of apocynin and inhibition of microglia NADPH oxidase are in place. Marmoset monkeys received oral apocynin (100 mg/kg; p.o.) (n = 5) or Gum Arabica (controls; n = 5) three times daily until the end of the study, starting 1 week before PD induction...

  1. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension.

    Science.gov (United States)

    Ma, Ming-Ming; Gao, Min; Guo, Kai-Min; Wang, Mi; Li, Xiang-Yu; Zeng, Xue-Lin; Sun, Lu; Lv, Xiao-Fei; Du, Yan-Hua; Wang, Guan-Lei; Zhou, Jia-Guo; Guan, Yong-Yuan

    2017-05-01

    Ca 2+ -activated Cl - channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca 2+ -activated Cl - channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases. © 2017 American Heart Association, Inc.

  2. Isolation of a cotton NADP(H oxidase homologue induced by drought stress

    Directory of Open Access Journals (Sweden)

    NEPOMUCENO ALEXANDRE LIMA

    2000-01-01

    Full Text Available The aim of this study was to identify and isolate genes that are differentially expressed in four selected cotton (Gossypium hirsutum L. genotypes contrasting according to their tolerance to water deficit. The genotypes studied were Siokra L-23, Stoneville 506, CS 50 and T-1521. Physiological, morphological and developmental changes that confer drought tolerance in plants must have a molecular genetic basis. To identify and isolate the genes, the mRNA Differential Display (DD technique was used. Messenger RNAs differentially expressed during water deficit were identified, isolated, cloned and sequenced. The cloned transcript A12B15-5, a NADP(H oxidase homologue, was up regulated only during the water deficit stress and only in Siokra L-23, a drought tolerant genotype. Ribonuclease protection assay confirmed that transcription.

  3. Role of catechins on ET-1 induced stimulation of PLD and NADPH oxidase activities in pulmonary smooth muscle cells: Determination of the probable mechanism by molecular docking studies.

    Science.gov (United States)

    Chakraborti, Sajal; Sarkar, Jaganmay; Bhuyan, Rajabrata; Chakraborti, Tapati

    2017-12-05

    Treatment of human pulmonary artery smooth muscle cells with ET-1 stimulated PLD and NADPH oxidase activities, which were inhibited upon pretreatment with bosentan (ET-1 receptor antagonist), FIPI (PLD inhibitor), apocynin (NADPH oxidase inhibitor) and EGCG & ECG (catechins having galloyl group), but not EGC & EC (catechins devoid of galloyl group). Herein, we determined the probable mechanism by which the galloyl group containing catechins inhibit ET-1 induced stimulation of PLD activity by molecular docking analyses based on our biochemical studies. ET-1 induced stimulation of PLD activity was inhibited by SecinH3 (inhibitor of cytohesin). Arf-6 and cytohesin-1 were associated in the cell membrane, which was not inhibited by the catechins during ET-1 treatment to the cells. However, EGCG and ECG inhibited binding of GTPγS with Arf-6 even in presence of cytohesin-1. The molecular docking analyses revealed that the galloyl group containing catechins (EGCG/ECG) with cytohesin1-Arf6GDP, but not the non-galloyl-containing catechins (EGC and EC), prevents GDP/GTP exchange in Arf-6 which seems to be an important mechanism for inhibition of ET-1 induced activation of PLD and subsequently increase in NADPH oxidase activities.

  4. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Harrigan, Daniel J; Mitchell, Gordon S

    2015-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated super-oxide dismutase-1 (SOD1(G93A)), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1(G93A) (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600 μM; 12 μL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms

  5. Sex-related differences in NADPH-dependent lipid peroxidation induced by cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masao; Nagai, Yasushi

    1986-10-01

    Male and female rats were dosed once a day for 2 days with injections of 1.5 mg Cd/kg. Formation of thiobarbituric acid reactive substances (TBA-RS) was significantly increased in male rat liver but not in the females. NADPH-dependent lipid peroxidation in vitro in microsomes derived from untreated rat liver was greater in males than in females. Furthermore, addition of cadmium (Cd) to microsomes isolated from male rat liver produced a dose-dependent potentiation of NADPH-dependent lipid peroxidation from low concentrations of CD. In microsomes derived from females a significant increase in lipid peroxidation was observed only at high Cd concentrations. NADPH-dependent lipid peroxidation enhanced by Cd was greater in the males than in the females. These data suggest that a sex-related difference in the ability of Cd to induce lipid peroxidation in vivo in rat liver appears to be mediated partly through differences in hepatic microsomal NADPH-dependent lipid peroxidation.

  6. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    International Nuclear Information System (INIS)

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  7. Alzheimer's disease: a gas model. The NADPH oxidase-Nitric Oxide system as an antibubble biomachinery.

    Science.gov (United States)

    Denis, Pierre A

    2013-12-01

    Alzheimer's disease (AD) is a neurodegenerative disease of unknown origin. The pathological lesions that define AD would be linked to the insidious accumulation of nitrogen, having invaded the brain interstitial fluid (ISF) from the blood via the physiological cycling pool of vascular glucose transporters (GLUT-1). According to this hypothesis, the nitrogen nanobubbles, being chemically inert and actually indestructible for human beings, can not escape from the ISF anymore. They would exert a huge and deleterious pressure against cellular components, especially in microglia and in astrocytes. They could enhance the existing cell oxygen anisotropy, which might enhance the natural bubble nucleation of O2-2O2 in cells or in mitochondria. Indeed, with the help of a new symbolic representation for gas nuclei in chemical reactions, the NADPH oxidase-NO system is identified for the first time, as an antibubble biomachinery, able to break O2-2O2 bubbles up as it releases superoxide O2-. Superoxide is considered as a quantum bubble, which collapses through the reactivity of the gaseous NO radical. Their combination in soluble peroxinitrite provides the change from one state of matter to another, avoiding any risk of a bubble enlargement, and finally avoiding the risk of enzyme crowding or of a bulk pressure variation. However, a bubble is expected to entrap Nitric Oxide (NO), which leads theoretically to a decrease in its bioavailability, and is expected to trigger a guanylyl-cyclase-mediated inflammatory cascade, that could explain the inflammation in AD. In vitro, any increase in the hydrostatic pressure has already been linked to the microtubule disorganization. The amyloid deposits, also known as senile plaques, would behave as a sponge toward ISF nitrogen; Aβ is considered as a foam-stabilizing agent. By taking the shape of cerebral amyloid angiopathy, the amyloid could confine the nitrogen leak from the blood, and progressively insulate the Blood-Brain Barrier

  8. Associations Between Genetic Variants of NADPH Oxidase-Related Genes and Blood Pressure Responses to Dietary Sodium Intervention: The GenSalt Study.

    Science.gov (United States)

    Han, Xikun; Hu, Zunsong; Chen, Jing; Huang, Jianfeng; Huang, Chen; Liu, Fangchao; Gu, Charles; Yang, Xueli; Hixson, James E; Lu, Xiangfeng; Wang, Laiyuan; Liu, De-Pei; He, Jiang; Chen, Shufeng; Gu, Dongfeng

    2017-04-01

    The aim of this study was to comprehensively test the associations of genetic variants of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-related genes with blood pressure (BP) responses to dietary sodium intervention in a Chinese population. We conducted a 7-day low-sodium intervention followed by a 7-day high-sodium intervention among 1,906 participants in rural China. BP measurements were obtained at baseline and each dietary intervention using a random-zero sphygmomanometer. Linear mixed-effect models were used to assess the additive associations of 63 tag single-nucleotide polymorphisms in 11 NADPH oxidase-related genes with BP responses to dietary sodium intervention. Gene-based analyses were conducted using the truncated product method. The Bonferroni method was used to adjust for multiple testing in all analyses. Systolic BP (SBP) response to high-sodium intervention significantly decreased with the number of minor T allele of marker rs6967221 in RAC1 (P = 4.51 × 10-4). SBP responses (95% confidence interval) for genotypes CC, CT, and TT were 5.03 (4.71, 5.36), 4.20 (3.54, 4.85), and 0.56 (-1.08, 2.20) mm Hg, respectively, during the high-sodium intervention. Gene-based analyses revealed that RAC1 was significantly associated with SBP response to high-sodium intervention (P = 1.00 × 10-6) and diastolic BP response to low-sodium intervention (P = 9.80 × 10-4). These findings suggested that genetic variants of NADPH oxidase-related genes may contribute to the variation of BP responses to sodium intervention in Chinese population. Further replication of these findings is warranted. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity.

    Science.gov (United States)

    Winiarska, Katarzyna; Jarzyna, Robert; Dzik, Jolanta M; Jagielski, Adam K; Grabowski, Michal; Nowosielska, Agata; Focht, Dorota; Sierakowski, Bartosz

    2015-04-01

    The aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water. The main in vitro findings are the following: (1) both apocynin and TEMPOL attenuate the rate of gluconeogenesis, inhibiting the step catalyzed by phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the process; (2) in the presence of the above-noted compounds the expression of PEPCK and the phosphorylation of transcription factor CREB and ERK1/2 kinases are lowered; (3) both U0126 (MEK inhibitor) and 3-(2-aminoethyl)-5-((4-ethoxyphenyl)methylene)-2,4-thiazolidinedione (ERK inhibitor) diminish the rate of glucose synthesis via mechanisms similar to those of apocynin and TEMPOL. The observed apocynin in vivo effects include: (1) slight attenuation of hyperglycemia; (2) inhibition of renal gluconeogenesis; (3) a decrease in renal PEPCK activity and content. In view of the results summarized above, it can be concluded that: (1) the lowered activity of the ERK1/2 pathway is of importance for the inhibition of renal gluconeogenesis found under conditions of lowered superoxide radical production by Nox; (2) the mechanism of this phenomenon includes decreased PEPCK expression, resulting from diminished activity of transcription factor CREB; (3) apocynin-evoked inhibition of renal gluconeogenesis contributes to the hypoglycemic action of this compound observed in diabetic animals. Thus, the study has

  10. Differential effect of amylin on endothelial-dependent vasodilation in mesenteric arteries from control and insulin resistant rats.

    Directory of Open Access Journals (Sweden)

    Mariam El Assar

    Full Text Available Insulin resistance (IR is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD. On the other hand, amylin has long been related to IR. However the role of amylin in the vascular dysfunction associated to IR is not well addressed. Therefore, the aim of the study was to assess the effect of acute treatment with amylin on endothelium-dependent vasodilation of isolated mesenteric arteries from control (CR and insulin resistant (IRR rats and to evaluate the possible mechanisms involved. Five week-old male Wistar rats received 20% D-fructose dissolved in drinking water for 8 weeks and were compared with age-matched CR. Plasmatic levels of glucose, insulin and amylin were measured. Mesenteric microvessels were dissected and mounted in wire myographs to evaluate endothelium-dependent vasodilation to acetylcholine. IRR displayed a significant increase in plasmatic levels of glucose, insulin and amylin and reduced endothelium-dependent relaxation when compared to CR. Acute treatment of mesenteric arteries with r-amylin (40 pM deteriorated endothelium-dependent responses in CR. Amylin-induced reduction of endothelial responses was unaffected by the H2O2 scavenger, catalase, but was prevented by the extracellular superoxide scavenger, superoxide dismutase (SOD or the NADPH oxidase inhibitor (VAS2870. By opposite, amylin failed to further inhibit the impaired relaxation in mesenteric arteries of IRR. SOD, or VAS2870, but not catalase, ameliorated the impairment of endothelium-dependent relaxation in IRR. At concentrations present in insulin resistance conditions, amylin impairs endothelium-dependent vasodilation in mircrovessels from rats with preserved vascular function and low levels of endogenous amylin. In IRR with established endothelial dysfunction and elevated levels of amylin, additional exposure to this peptide has no effect on endothelial vasodilation. Increased superoxide

  11. Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue.

    Science.gov (United States)

    Prince, Paula D; Santander, Yanina A; Gerez, Estefania M; Höcht, Christian; Polizio, Ariel H; Mayer, Marcos A; Taira, Carlos A; Fraga, Cesar G; Galleano, Monica; Carranza, Andrea

    2017-08-01

    Metabolic syndrome is an array of closely metabolic disorders that includes glucose intolerance/insulin resistance, central obesity, dyslipidemia, and hypertension. Fructose, a highly lipogenic sugar, has profound metabolic effects in adipose tissue, and has been associated with the etiopathology of many components of the metabolic syndrome. In adipocytes, the enzyme 11 β-HSD1 amplifies local glucocorticoid production, being a key player in the pathogenesis of central obesity and metabolic syndrome. 11 β-HSD1 reductase activity is dependent on NADPH, a cofactor generated by H6PD inside the endoplasmic reticulum. Our focus was to explore the effect of fructose overload on epididymal white adipose tissue (EWAT) machinery involved in glucocorticoid production and NADPH and oxidants metabolism. Male Sprague-Dawley rats fed with a fructose solution (10% (w/v) in tap water) during 9 weeks developed some characteristic features of metabolic syndrome, such as hypertriglyceridemia, and hypertension. In addition, high levels of plasma and EWAT corticosterone were detected. Activities and expressions of H6PD and 11 β-HSD1, NAPDH content, superoxide anion production, expression of NADPH oxidase 2 subunits, and indicators of oxidative metabolism were measured. Fructose overloaded rats showed an increased potential in oxidant production respect to control rats. In parallel, in EWAT from fructose overloaded rats we found higher expression/activity of H6PD and 11 β-HSD1, and NADPH/NADP + ratio. Our in vivo results support that fructose overload installs in EWAT conditions favoring glucocorticoid production through higher H6PD expression/activity supplying NADPH for enhanced 11 β-HSD1 expression/activity, becoming this tissue a potential extra-adrenal source of corticosterone under these experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Chloride Channel 3 Channels in the Activation and Migration of Human Blood Eosinophils in Allergic Asthma.

    Science.gov (United States)

    Gaurav, Rohit; Bewtra, Againdra K; Agrawal, Devendra K

    2015-08-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is responsible for respiratory burst in immune cells. Chloride channel 3 (CLC3) has been linked to the respiratory burst in eosinophils and neutrophils. The effect of cytokines and the involvement of CLC3 in the regulation of NADPH-dependent oxidative stress and on cytokine-mediated migration of eosinophils are not known. Human peripheral blood eosinophils were isolated from healthy individuals and from individuals with asthma by negative selection. Real-time PCR was used to detect the expression of NADPH oxidases in eosinophils. Intracellular reactive oxygen species (ROS) measurement was done with flow cytometry. Superoxide generation was measured with transforming growth factor (TGF)-β, eotaxin, and CLC3 blockers. CLC3 dependence of eosinophils in TGF-β- and eotaxin-induced migration was also examined. The messenger RNA (mRNA) transcripts of NADPH oxidase (NOX) 2, dual oxidase (DUOX) 1, and DUOX2 were detected in blood eosinophils, with very low expression of NOX1, NOX3, and NOX5 and no NOX4 mRNA. The level of NOX2 mRNA transcripts increased with disease severity in the eosinophils of subjects with asthma compared with healthy nonatopic volunteers. Change in granularity and size in eosinophils, but no change in intracellular ROS, was observed with phorbol myristate acetate (PMA). PMA, TGF-β, and eotaxin used the CLC3-dependent pathway to increase superoxide radicals. TGF-β and eotaxin induced CLC3-dependent chemotaxis of eosinophils. These findings support the requirement of CLC3 in the activation and migration of human blood eosinophils and may provide a potential novel therapeutic target to regulate eosinophil hyperactivity in allergic airway inflammation in asthma.

  13. Identification of the NADPH Oxidase 4 Inhibiting Principle of Lycopus europaeus

    Directory of Open Access Journals (Sweden)

    Silvia Revoltella

    2018-03-01

    Full Text Available NADPH oxidase 4 (Nox4 has recently been implicated as driving force in cellular senescence. Thus, there is growing interest to develop Nox4 inhibitors, which might be valuable agents for cosmeceutical applications. Alpine plants represent a valuable source for the identification of novel bioactive natural products with anti-ageing effects, especially substances that protect plants against UV radiation, which is also known to contribute to the ageing of human skin. Therefore, the aim of this study was to identify novel Nox4 inhibitors from alpine plants. Within an initial screening of extracts of alpine plants on their ability to inhibit Nox4 activity in HEK cells, the methanolic extract of the subaerial parts of Lycopus europaeus showed a strong inhibition of Nox4 (81% chemiluminescence quenching and a simultaneously high cell viability (91% vitality. Rosmarinic acid was isolated and identified as the major compound in this bioactive extract. It showed a dose dependent inhibitory activity on Nox4 with an IC50 of 1 µM. Moreover, it also showed a significant inhibitory activity on Nox2 in the low micromolar range, whereas no inhibition of Nox5 was detected. Further investigations confirmed that the observed effects of rosmarinic acid on Nox2 and Nox4 are real inhibitory activities, and not due to ROS scavenging effects. Therefore, L. europaeus, which we demonstrated to be a good source of rosmarinic acid, has great potential for usage in cosmeceutical products with anti-ageing activity.

  14. Andrographolide inhibits TNFα-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells.

    Science.gov (United States)

    Lu, Chia-Yang; Yang, Ya-Chen; Li, Chien-Chun; Liu, Kai-Li; Lii, Chong-Kuei; Chen, Haw-Wen

    2014-09-01

    Andrographolide, the major bioactive component of Andrographis paniculata, has been demonstrated to have various biological properties including anti-inflammation, antioxidation, and anti-hepatotoxicity. Oxidative stress is considered a major risk factor in aging, inflammation, cancer, atherosclerosis, and diabetes mellitus. NADPH oxidase is a major source of endogenous reactive oxygen species (ROS). In this study, we used EA.hy926 endothelial-like cells to explore the anti-inflammatory activity of andrographolide. Andrographolide attenuated TNFα-induced ROS generation, Src phosphorylation, membrane translocation of the NADPH oxidase subunits p47(phox) and p67(phox), and ICAM-1 gene expression. In the small hairpin RNA interference assay, shp47(phox) abolished TNFα-induced p65 nuclear translocation, ICAM-1 gene expression, and adhesion of HL-60 cells. Andrographolide induced the gene expression of heme oxygenase 1 (HO-1) and glutamate cysteine ligase modifier subunit (GCLM) in a time-dependent manner. Cellular glutathione (GSH) content was increased by andrographolide. shGCLM attenuated the andrographolide-induced increase in GSH content and reversed the andrographolide inhibition of HL-60 adhesion. shHO-1 showed a similar effect on andrographolide inhibition of HL-60 adhesion to shGCLM. The mechanism underlying the up-regulation of HO-1 and GCLM by andrographolide was dependent on the PI3K/Akt pathway, and both the Nrf2 and AP-1 transcriptional factors were involved. Our results suggest that andrographolide attenuates TNFα-induced ICAM-1 expression at least partially through suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression, which is PI3K/Akt pathway-dependent. Copyright © 2014. Published by Elsevier Inc.

  15. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Wen-Yan Li

    2017-01-01

    Full Text Available Seed germination is a complicated biological process that requires regulation through various enzymatic and non-enzymatic mechanisms. Although it has been recognized that reactive oxygen species (ROS regulate radicle emergence and root elongation in a non-enzymatic manner during dicot seed germination, the role of ROS in monocot seed germination remains unknown. NADPH oxidases (NOXs are the major ROS producers in plants; however, whether and how NOXs regulate rice seed germination through ROS generation remains unclear. Here, we report that diphenyleneiodinium (DPI, a specific NOX inhibitor, potently inhibited embryo and seedling growth—especially that of the radicle and of root elongation—in a dose-dependent manner. Notably, the DPI-mediated inhibition of radicle and root growth could be eliminated by transferring seedlings from DPI to water. Furthermore, ROS production/accumulation during rice seed germination was quantified via histochemistry. Superoxide radicals (O2−, hydrogen peroxide (H2O2 and hydroxyl radicals (•OH accumulated steadily in the coleorhiza, radicle and seedling root of germinating rice seeds. Expression profiles of the nine typical NOX genes were also investigated. According to quantitative PCR, OsNOX5, 7 and 9 were expressed relatively higher. When seeds were incubated in water, OsNOX5 expression progressively increased in the embryo from 12 to 48 h, whereas OsNOX7 and 9 expressions increased from 12 to 24 h and decreased thereafter. As expected, DPI inhibits the expression at predetermined time points for each of these genes. Taken together, these results suggest that ROS produced by NOXs are involved in radicle and root elongation during rice seed germination, and OsNOX5, 7 and 9 could play crucial roles in rice seed germination. These findings will facilitate further studies of the roles of ROS generated by NOXs during seed germination and seedling establishment and also provide valuable information for the

  16. Thermodynamic and NMR analyses of NADPH binding to lipocalin-type prostaglandin D synthase

    International Nuclear Information System (INIS)

    Qin, Shubin; Shimamoto, Shigeru; Maruno, Takahiro; Kobayashi, Yuji; Kawahara, Kazuki; Yoshida, Takuya; Ohkubo, Tadayasu

    2015-01-01

    Lipocalin-type prostaglandin D synthase (L-PGDS) is one of the most abundant proteins in human cerebrospinal fluid (CSF) with dual functions as a prostaglandin D_2 (PGD_2) synthase and a transporter of lipophilic ligands. Recent studies revealed that L-PGDS plays important roles in protecting against various neuronal diseases induced by reactive oxygen species (ROS). However, the molecular mechanisms of such protective actions of L-PGDS remain unknown. In this study, we conducted thermodynamic and nuclear magnetic resonance (NMR) analyses, and demonstrated that L-PGDS binds to nicotinamide coenzymes, including NADPH, NADP"+, and NADH. Although a hydrophilic ligand is not common for L-PGDS, these ligands, especially NADPH showed specific interaction with L-PGDS at the upper pocket of its ligand-binding cavity with an unusually bifurcated shape. The binding affinity of L-PGDS for NADPH was comparable to that previously reported for NADPH oxidases and NADPH in vitro. These results suggested that L-PGDS potentially attenuates the activities of NADPH oxidases through interaction with NADPH. Given that NADPH is the substrate for NADPH oxidases that play key roles in neuronal cell death by generating excessive ROS, these results imply a novel linkage between L-PGDS and ROS. - Highlights: • Interactions of L-PGDS with nicotinamide coenzymes were studied by ITC and NMR. • The binding affinity of L-PGDS was strongest to NADPH among nicotinamide coenzymes. • NADPH binds to the upper part of L-PGDS ligand-binding cavity. • L-PGDS binds to both lipophilic and hydrophilic ligands. • This study implies a novel linkage between L-PGDS and reactive oxygen species.

  17. Thermodynamic and NMR analyses of NADPH binding to lipocalin-type prostaglandin D synthase

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shubin [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Shimamoto, Shigeru [Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502 (Japan); Maruno, Takahiro; Kobayashi, Yuji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kawahara, Kazuki; Yoshida, Takuya [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohkubo, Tadayasu, E-mail: ohkubo@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-12-04

    Lipocalin-type prostaglandin D synthase (L-PGDS) is one of the most abundant proteins in human cerebrospinal fluid (CSF) with dual functions as a prostaglandin D{sub 2} (PGD{sub 2}) synthase and a transporter of lipophilic ligands. Recent studies revealed that L-PGDS plays important roles in protecting against various neuronal diseases induced by reactive oxygen species (ROS). However, the molecular mechanisms of such protective actions of L-PGDS remain unknown. In this study, we conducted thermodynamic and nuclear magnetic resonance (NMR) analyses, and demonstrated that L-PGDS binds to nicotinamide coenzymes, including NADPH, NADP{sup +}, and NADH. Although a hydrophilic ligand is not common for L-PGDS, these ligands, especially NADPH showed specific interaction with L-PGDS at the upper pocket of its ligand-binding cavity with an unusually bifurcated shape. The binding affinity of L-PGDS for NADPH was comparable to that previously reported for NADPH oxidases and NADPH in vitro. These results suggested that L-PGDS potentially attenuates the activities of NADPH oxidases through interaction with NADPH. Given that NADPH is the substrate for NADPH oxidases that play key roles in neuronal cell death by generating excessive ROS, these results imply a novel linkage between L-PGDS and ROS. - Highlights: • Interactions of L-PGDS with nicotinamide coenzymes were studied by ITC and NMR. • The binding affinity of L-PGDS was strongest to NADPH among nicotinamide coenzymes. • NADPH binds to the upper part of L-PGDS ligand-binding cavity. • L-PGDS binds to both lipophilic and hydrophilic ligands. • This study implies a novel linkage between L-PGDS and reactive oxygen species.

  18. Glucose impairs aspirin inhibition in platelets through a NAD(P)H oxidase signaling pathway.

    Science.gov (United States)

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2017-07-01

    Hyperglycemia has been suggested to play a role in the increased platelet resistance to antiplatelet therapy in patients with diabetes mellitus. Exposure to high glucose impairs platelet inhibition by aspirin. It has been found that antioxidant agents reduce the effect of glucose, confirming the involvement of reactive oxygen species (ROS) in the effect of glucose. The aim of the study was to examine the mechanism of ROS increase by high glucose in aspirin-treated platelets. Platelet aggregation was measured by the optical method, and the production of ROS was detected using luminol-dependent horseradish peroxidase-enhanced chemiluminescence. We found that glucose did not affect ADP-induced platelet aggregation. However, it reduced the effect of aspirin on platelet aggregation, which was accompanied by an increase in ROS generation. The inhibition of NAD(P)H oxidase (NOX) prevented the glucose effect and ROS generation. The same result was recorded after the inhibition of p38 mitogen-activated protein kinases (p38 MAPK), phospholipase A 2 (PLA 2 ) or 12-lipoxygenase (12-LOX). The inhibition of TxA 2 receptor did not decrease the effect of glucose indicating that the effect was not caused by activation of TxA 2 receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Bacillus calmette-guerin infection in NADPH oxidase deficiency: defective mycobacterial sequestration and granuloma formation.

    Directory of Open Access Journals (Sweden)

    Christine Deffert

    2014-09-01

    Full Text Available Patients with chronic granulomatous disease (CGD lack generation of reactive oxygen species (ROS through the phagocyte NADPH oxidase NOX2. CGD is an immune deficiency that leads to frequent infections with certain pathogens; this is well documented for S. aureus and A. fumigatus, but less clear for mycobacteria. We therefore performed an extensive literature search which yielded 297 cases of CGD patients with mycobacterial infections; M. bovis BCG was most commonly described (74%. The relationship between NOX2 deficiency and BCG infection however has never been studied in a mouse model. We therefore investigated BCG infection in three different mouse models of CGD: Ncf1 mutants in two different genetic backgrounds and Cybb knock-out mice. In addition, we investigated a macrophage-specific rescue (transgenic expression of Ncf1 under the control of the CD68 promoter. Wild-type mice did not develop severe disease upon BCG injection. In contrast, all three types of CGD mice were highly susceptible to BCG, as witnessed by a severe weight loss, development of hemorrhagic pneumonia, and a high mortality (∼ 50%. Rescue of NOX2 activity in macrophages restored BCG resistance, similar as seen in wild-type mice. Granulomas from mycobacteria-infected wild-type mice generated ROS, while granulomas from CGD mice did not. Bacterial load in CGD mice was only moderately increased, suggesting that it was not crucial for the observed phenotype. CGD mice responded with massively enhanced cytokine release (TNF-α, IFN-γ, IL-17 and IL-12 early after BCG infection, which might account for severity of the disease. Finally, in wild-type mice, macrophages formed clusters and restricted mycobacteria to granulomas, while macrophages and mycobacteria were diffusely distributed in lung tissue from CGD mice. Our results demonstrate that lack of the NADPH oxidase leads to a markedly increased severity of BCG infection through mechanisms including increased cytokine

  20. Advanced oxidation protein products sensitized the transient receptor potential vanilloid 1 via NADPH oxidase 1 and 4 to cause mechanical hyperalgesia

    Directory of Open Access Journals (Sweden)

    Ruoting Ding

    2016-12-01

    Full Text Available Oxidative stress is a possible pathogenesis of hyperalgesia. Advanced oxidation protein products (AOPPs, a new family of oxidized protein compounds, have been considered as a novel marker of oxidative stress. However, the role of AOPPs in the mechanism of hyperalgesia remains unknown. Our study aims to investigate whether AOPPs have an effect on hyperalgesia and the possible underlying mechanisms. To identify the AOPPs involved, we induced hyperalgesia in rats by injecting complete Freund’s adjuvant (CFA in hindpaw. The level of plasma AOPPs in CFA-induced rats was 1.6-fold in comparison with what in normal rats (P<0.05. After intravenous injection of AOPPs-modified rat serum albumin (AOPPs-RSA in Sprague-Dawley rats, the paw mechanical thresholds, measured by the electronic von Frey system, significantly declined. Immunofluorescence staining indicated that AOPPs increased expressions of NADPH oxidase 1 (Nox1, NADPH oxidase 4 (Nox4, transient receptor potential vanilloid 1 (TRPV1 and calcitonin gene-related peptide (CGRP in the dorsal root ganglia (DRG tissues. In-vitro studies were performed on primary DRG neurons which were obtained from both thoracic and lumbar DRG of rats. Results indicated that AOPPs triggered reactive oxygen species (ROS production in DRG neurons, which were significantly abolished by ROS scavenger N-acetyl-l-cysteine (NAC and small-interfering RNA (siRNA silencing of Nox1 or Nox4. The expressions of Nox1, Nox4, TRPV1 and CGRP were significantly increased in AOPPs-induced DRG neurons. And relevant siRNA or inhibitors notably suppressed the expressions of these proteins and the calcium influxes in AOPPs-induced DRG neurons. In conclusion, AOPPs increased significantly in CFA-induced hyperalgesia rats and they activated Nox1/Nox4-ROS to sensitize TRPV1-dependent Ca2+ influx and CGRP release which led to inducing mechanical hyperalgesia.

  1. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Aguado, Andrea [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Fiorim, Jonaína; Silveira, Edna Aparecida; Azevedo, Bruna Fernandes; Toscano, Cindy Medice [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Zhenyukh, Olha; Briones, Ana María [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain); Alonso, María Jesús [Dept. of Biochemistry, Physiology and Molecular Genetics, Universidad Rey Juan Carlos, Alcorcón (Spain); Vassallo, Dalton Valentim [Dept. of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES CEP 29040-091 (Brazil); Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402 (Brazil); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid (Spain)

    2015-03-01

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and did not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by

  2. Squamosamide derivative FLZ protects dopaminergic neurons against inflammation-mediated neurodegeneration through the inhibition of NADPH oxidase activity

    Directory of Open Access Journals (Sweden)

    Wilson Belinda

    2008-05-01

    Full Text Available Abstract Background Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD through over-activation of microglia, which consequently causes the excessive production of proinflammatory and neurotoxic factors, and impacts surrounding neurons and eventually induces neurodegeneration. Hence, prevention of microglial over-activation has been shown to be a prime target for the development of therapeutic agents for inflammation-mediated neurodegenerative diseases. Methods For in vitro studies, mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanism by which FLZ, a squamosamide derivative, mediates anti-inflammatory and neuroprotective effects in both lipopolysaccharide-(LPS- and 1-methyl-4-phenylpyridinium-(MPP+-mediated models of PD. For in vivo studies, a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-(MPTP- induced PD mouse model was used. Results FLZ showed potent efficacy in protecting dopaminergic (DA neurons against LPS-induced neurotoxicity, as shown in rat and mouse primary mesencephalic neuronal-glial cultures by DA uptake and tyrosine hydroxylase (TH immunohistochemical results. The neuroprotective effect of FLZ was attributed to a reduction in LPS-induced microglial production of proinflammatory factors such as superoxide, tumor necrosis factor-α (TNF-α, nitric oxide (NO and prostaglandin E2 (PGE2. Mechanistic studies revealed that the anti-inflammatory properties of FLZ were mediated through inhibition of NADPH oxidase (PHOX, the key microglial superoxide-producing enzyme. A critical role for PHOX in FLZ-elicited neuroprotection was further supported by the findings that 1 FLZ's protective effect was reduced in cultures from PHOX-/- mice, and 2 FLZ inhibited LPS-induced translocation of the cytosolic subunit of p47PHOX to the membrane and thus inhibited the activation of PHOX. The neuroprotective effect of FLZ demonstrated in primary neuronal

  3. Allelic variations in the CYBA gene of NADPH oxidase and risk of kidney complications in patients with type 1 diabetes.

    Science.gov (United States)

    Patente, Thiago A; Mohammedi, Kamel; Bellili-Muñoz, Naïma; Driss, Fathi; Sanchez, Manuel; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Corrêa-Giannella, Maria Lúcia; Marre, Michel; Velho, Gilberto

    2015-09-01

    Oxidative stress plays a pivotal role in the pathophysiology of diabetic nephropathy, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system is an important source of reactive oxygen species in hyperglycemic conditions in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, is increased in patients with diabetic nephropathy. We investigated associations of variants in the CYBA gene, encoding the regulatory subunit p22(phox) of NADPH oxidase, with diabetic nephropathy and plasma AOPP and myeloperoxidase (MPO) concentrations in type 1 diabetic patients. Seven SNPs in the CYBA region were analyzed in 1357 Caucasian subjects with type 1 diabetes from the SURGENE (n=340), GENEDIAB (n=444), and GENESIS (n=573) cohorts. Duration of follow-up was 10, 9, and 6 years, respectively. Cox proportional hazards and logistic regression analyses were used to estimate hazard ratios (HR) or odds ratios (OR) for incidence and prevalence of diabetic nephropathy. The major G-allele of rs9932581 was associated with the incidence of renal events defined as new cases of microalbuminuria or the progression to a more severe stage of nephropathy during follow-up (HR 1.59, 95% CI 1.17-2.18, P=0.003) in SURGENE. The same allele was associated with established/advanced nephropathy (OR 1.52, 95% CI 1.22-1.92, P=0.0001) and with the incidence of end-stage renal disease (ESRD) (HR 2.01, 95% CI 1.30-3.24, P=0.001) in GENEDIAB/GENESIS pooled studies. The risk allele was also associated with higher plasma AOPP concentration in subsets of SURGENE and GENEDIAB, with higher plasma MPO concentration in a subset of GENEDIAB, and with lower estimated glomerular filtration rate (eGFR) in the three cohorts. In conclusion, a functional variant in the promoter of the CYBA gene was associated with lower eGFR and with prevalence and incidence of diabetic nephropathy and ESRD in type 1 diabetic patients. These results are consistent with

  4. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox family of enzymes

    Directory of Open Access Journals (Sweden)

    Lambeth J David

    2007-07-01

    Full Text Available Abstract Background NADPH-oxidases (Nox and the related Dual oxidases (Duox play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS. Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes. Results We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchin Strongylocentrotus purpuratus possesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phox and p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to

  5. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase.

    Science.gov (United States)

    Nestler, Josefine; Liu, Sanzhen; Wen, Tsui-Jung; Paschold, Anja; Marcon, Caroline; Tang, Ho Man; Li, Delin; Li, Li; Meeley, Robert B; Sakai, Hajime; Bruce, Wesley; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  6. Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis.

    Science.gov (United States)

    Da, Qingen; Wang, Peng; Wang, Menglong; Sun, Ting; Jin, Honglei; Liu, Bing; Wang, Jinfa; Grimm, Bernhard; Wang, Hong-Bin

    2017-10-01

    In chloroplasts, thioredoxin (TRX) isoforms and NADPH-dependent thioredoxin reductase C (NTRC) act as redox regulatory factors involved in multiple plastid biogenesis and metabolic processes. To date, less is known about the functional coordination between TRXs and NTRC in chlorophyll biosynthesis. In this study, we aimed to explore the potential functions of TRX m and NTRC in the regulation of the tetrapyrrole biosynthesis (TBS) pathway. Silencing of three genes, TRX m1 , TRX m2 , and TRX m4 ( TRX ms ), led to pale-green leaves, a significantly reduced 5-aminolevulinic acid (ALA)-synthesizing capacity, and reduced accumulation of chlorophyll and its metabolic intermediates in Arabidopsis ( Arabidopsis thaliana ). The contents of ALA dehydratase, protoporphyrinogen IX oxidase, the I subunit of Mg-chelatase, Mg-protoporphyrin IX methyltransferase (CHLM), and NADPH-protochlorophyllide oxidoreductase were decreased in triple TRX m- silenced seedlings compared with the wild type, although the transcript levels of the corresponding genes were not altered significantly. Protein-protein interaction analyses revealed a physical interaction between the TRX m isoforms and CHLM. 4-Acetoamido-4-maleimidylstilbene-2,2-disulfonate labeling showed the regulatory impact of TRX ms on the CHLM redox status. Since CHLM also is regulated by NTRC (Richter et al., 2013), we assessed the concurrent functions of TRX m and NTRC in the control of CHLM. Combined deficiencies of three TRX m isoforms and NTRC led to a cumulative decrease in leaf pigmentation, TBS intermediate contents, ALA synthesis rate, and CHLM activity. We discuss the coordinated roles of TRX m and NTRC in the redox control of CHLM stability with its corollary activity in the TBS pathway. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. RXR agonists inhibit high glucose-induced upregulation of inflammation by suppressing activation of the NADPH oxidase-nuclear factor-κB pathway in human endothelial cells.

    Science.gov (United States)

    Ning, R B; Zhu, J; Chai, D J; Xu, C S; Xie, H; Lin, X Y; Zeng, J Z; Lin, J X

    2013-12-13

    An inflammatory response induced by high glucose is a cause of endothelial dysfunction in diabetes and is an important contributing link to atherosclerosis. Diabetes is an independent risk factor of atherosclerosis and activation of retinoid X receptor (RXR) has been shown to exert anti-atherogenic effects. In the present study, we examined the effects of the RXR ligands 9-cis-retinoic acid (9-cis-RA) and SR11237 on high glucose-induced inflammation in human umbilical endothelial vein endothelial cells (HUVECs) and explored the potential mechanism. Our results showed that the inflammation induced by high-glucose in HUVECs was mainly mediated by the activation of nuclear factor-B (NF- κB). High glucose-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were in comparison, significantly decreased by treatment with RXR. The effect of RXR agonists was mainly due to the inhibition of NF-κB activation. Using pharmacological inhibitors and siRNA, we confirmed that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was an upstream activator of NF-κB. Furthermore, RXR agonists significantly inhibited high glucose-induced activation of NADPH oxidase and significantly decreased the production of reactive oxygen species (ROS). To explore whether the rapid inhibitory effects of RXR agonists were in fact mediated by RXR, we examined the effect of RXR downregulation by RXR siRNA. Our results showed that RXR siRNA largely abrogated the effects of RXR agonists, suggesting the requirement of RXR expression. Therefore, we have shown that RXR is involved in the regulation of NADPH oxidase- NF-κB signal pathway, as the RXR ligands antagonized the inflammatory response in HUVECs induced by high glucose.

  8. Burkholderia pseudomallei Evades Nramp1 (Slc11a1- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression

    Directory of Open Access Journals (Sweden)

    Veerachat Muangsombut

    2017-08-01

    Full Text Available Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1 which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in Burkholderia infection, in particular whether this differs for pathogenic species like Burkholderia pseudomallei causing melioidosis or non-pathogenic species like Burkholderia thailandensis. Here we show that transfected macrophages stably expressing wild-type Nramp1 (Nramp1+ control the net replication of B. thailandensis, but not B. pseudomallei. Control of B. thailandensis was associated with increased cytokine responses, and could be abrogated by blocking NADPH oxidase-mediated production of reactive oxygen species but not by blocking generation of reactive nitrogen species. The inability of Nramp1+ macrophages to control B. pseudomallei was associated with rapid escape of bacteria from phagosomes, as indicated by decreased co-localization with LAMP1 compared to B. thailandensis. A B. pseudomallei bipB mutant impaired in escape from phagosomes was controlled to a greater extent than the parent strain in Nramp1+ macrophages, but was also attenuated in Nramp1− cells. Consistent with reduced escape from phagosomes, B. thailandensis formed fewer multinucleated giant cells in Nramp1+ macrophages at later time points compared to B. pseudomallei. B. pseudomallei exhibited elevated transcription of virulence-associated genes of Type VI Secretion System cluster 1 (T6SS-1, the Bsa Type III Secretion System (T3SS-3 and the bimA gene required for actin-based motility in Nramp1+ macrophages. Nramp1+ macrophages were found to contain decreased iron levels that may impact on expression of such genes. Our data show that B. pseudomallei is able to evade Nramp1- and NADPH oxidase-mediated killing in macrophages and that expression of virulence

  9. Rho-kinase inhibitor and nicotinamide adenine dinucleotide phosphate oxidase inhibitor prevent impairment of endothelium-dependent cerebral vasodilation by acute cigarette smoking in rats.

    Science.gov (United States)

    Iida, Hiroki; Iida, Mami; Takenaka, Motoyasu; Fukuoka, Naokazu; Dohi, Shuji

    2008-06-01

    We previously reported that acute cigarette smoking can cause a dysfunction of endothelium-dependent vasodilation in cerebral vessels, and that blocking the angiotensin II (Ang II) type 1 (AT1) receptor with valsartan prevented this impairment. Our aim was to investigate the effects of a Rho-kinase inhibitor (fasudil) and a Nicotinamide Adenine Dinucleotide PHosphate (NADPH) oxidase inhibitor (apocynin) on smoking-induced endothelial dysfunction in cerebral arterioles. In Sprague-Dawley rats, we used a closed cranial window preparation to measure changes in pial vessel diameters following topical acetylcholine (ACh) before smoking. After one-minute smoking, we again examined the arteriolar responses to ACh. Finally, after intravenous fasudil or apocynin pre-treatment we re-examined the vasodilator responses to topical ACh (before and after cigarette smoking). Under control conditions, cerebral arterioles were dose-dependently dilated by topical ACh (10(-6) M and 10(-5) M). One hour after a one-minute smoking (1 mg-nicotine cigarette), 10(-5) M ACh constricted cerebral arterioles. However, one hour after a one-minute smoking, 10(-5) M ACh dilated cerebral pial arteries both in the fasudil pre-treatment and the apocynin pre-treatment groups, responses that were significantly different from those obtained without fasudil or apocynin pre-treatment. Thus, inhibition of Rho-kinase and NADPH oxidase activities may prevent the above smoking-induced impairment of endothelium-dependent vasodilation.

  10. Effects of telmisartan on the expression of NADPH oxidase subunits in the myocardium of type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Jia-wei LI

    2011-10-01

    Full Text Available Objective To explore the effect of telmisartan on the expression of NADPH oxidase subunits p22phox and NOX4 in the myocardiam of type 2 diabetic rats.Methods Thirty-six male Wistar rats were randomly divided into two groups: normal control group(group A,n=10,diabetic model group(n=26.Type 2 diabetic model was established by high-fat and high-sugar diet followed by intraperitoneal injection of a low dose of streptozotocin(STZ.After the model was reproduced successfully,20 diabetic rats were randomly divided into diabetic subgroup(group B,n=10 and telmisartan-treated subgroup(group C,n=10.Rats in group C were orally administered telmisartan(5mg/kg/d,and rats in group A and B were given equivalent volume of normal saline.All rats were sacrificed 12 weeks after treatment.The mRNA expressions of myocardial p22phox and NOX4 were detected by real-time fluorescence quantitative PCR,and the protein expressions of myocardial connective tissue growth factor(CTGF and copper-zinc-superoxide dismutase(Cu-Zn-SOD were detected by immunohistochemical staining.Results Compared with group A,the ratio of heart/body weight,the mRNA expression of myocardial p22phox and NOX4,and the protein expression of myocardial CTGF increased significantly in group B,and the protein expression of myocardial Cu-Zn-SOD decreased significantly(P 0.05.Conclusions Telmisartan can down-regulate the over-expression of myocardial NOX4 and p22phox mRNA in type 2 diabetic rats,lessen the myocardial damage induced by oxidative stress,thus plays a protective role in the myocardium of diabetic rats.

  11. The oxidative burst reaction in mammalian cells depends on gravity

    OpenAIRE

    Adrian, A; Schoppmann, K; Sromicki, J; Brungs, S; von der Wiesche, M; Hock, B; Kolanus, W; Hemmersbach, R; Ullrich, O

    2013-01-01

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to...

  12. Chronic granulomatous disease caused by mutations other than the common GT deletion in NCF1, the gene encoding the p47phox component of the phagocyte NADPH oxidase

    NARCIS (Netherlands)

    Roos, Dirk; de Boer, Martin; Köker, M. Yavuz; Dekker, Jan; Singh-Gupta, Vinita; Ahlin, Anders; Palmblad, Jan; Sanal, Ozden; Kurenko-Deptuch, Magdalena; Jolles, Stephen; Wolach, Baruch

    2006-01-01

    Chronic granulomatous disease (CGD) is an inherited immunodeficiency caused by defects in any of four genes encoding components of the leukocyte nicotinamide dinucleotide phosphate, reduced (NADPH) oxidase. One of these is the autosomal neutrophil cytosolic factor 1 (NCF1) gene encoding the p47phox

  13. Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase

    Directory of Open Access Journals (Sweden)

    Wilson Belinda

    2007-09-01

    Full Text Available Abstract Background The mechanisms involved in the induction and regulation of inflammation resulting in dopaminergic (DA neurotoxicity in Parkinson's disease (PD are complex and incompletely understood. Microglia-mediated inflammation has recently been implicated as a critical mechanism responsible for progressive neurodegeneration. Methods Mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanisms of sinomenine (SN-mediated anti-inflammatory and neuroprotective effects in both the lipopolysaccharide (LPS- and the 1-methyl-4-phenylpyridinium (MPP+-mediated models of PD. Results SN showed equivalent efficacy in protecting against DA neuron death in rat midbrain neuron-glial cultures at both micro- and sub-picomolar concentrations, but no protection was seen at nanomolar concentrations. The neuroprotective effect of SN was attributed to inhibition of microglial activation, since SN significantly decreased tumor necrosis factor-α (TNF-α, prostaglandin E2 (PGE2 and reactive oxygen species (ROS production by microglia. In addition, from the therapeutic point of view, we focused on sub-picomolar concentration of SN for further mechanistic studies. We found that 10-14 M of SN failed to protect DA neurons against MPP+-induced toxicity in the absence of microglia. More importantly, SN failed to show a protective effect in neuron-glia cultures from mice lacking functional NADPH oxidase (PHOX, a key enzyme for extracellular superoxide production in immune cells. Furthermore, we demonstrated that SN reduced LPS-induced extracellular ROS production through the inhibition of the PHOX cytosolic subunit p47phoxtranslocation to the cell membrane. Conclusion Our findings strongly suggest that the protective effects of SN are most likely mediated through the inhibition of microglial PHOX activity. These findings suggest a novel therapy to treat inflammation-mediated neurodegenerative diseases.

  14. Decoding NADPH oxidase 4 expression in human tumors

    Directory of Open Access Journals (Sweden)

    Jennifer L. Meitzler

    2017-10-01

    Full Text Available NADPH oxidase 4 (NOX4 is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients, esophagus (12/18 patients, bladder (10/19 patients, ovary (6/17 patients, and prostate (7/19 patients, as well as malignant melanoma (7/15 patients when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.

  15. Prolonged Exposure of Cortical Neurons to Oligomeric Amyloid-β Impairs NMDA Receptor Function Via NADPH Oxidase-Mediated ROS Production: Protective Effect of Green Tea (--Epigallocatechin-3-Gallate

    Directory of Open Access Journals (Sweden)

    Yan He

    2011-01-01

    Full Text Available Excessive production of Aβ (amyloid β-peptide has been shown to play an important role in the pathogenesis of AD (Alzheimer's disease. Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species in neurons through an NMDA (N-methyl-D-aspartate-dependent pathway. However, whether prolonged exposure of neurons to aggregated Aβ is associated with impairment of NMDA receptor function has not been extensively investigated. In the present study, we show that prolonged exposure of primary cortical neurons to Aβ oligomers caused mitochondrial dysfunction, an attenuation of NMDA receptor-mediated Ca2+ influx and inhibition of NMDA-induced AA (arachidonic acid release. Mitochondrial dysfunction and the decrease in NMDA receptor activity due to oligomeric Aβ are associated with an increase in ROS production. Gp91ds-tat, a specific peptide inhibitor of NADPH oxidase, and Mn(III-tetrakis(4-benzoic acid-porphyrin chloride, an ROS scavenger, effectively abrogated Aβ-induced ROS production. Furthermore, Aβ-induced mitochondrial dysfunction, impairment of NMDA Ca2+ influx and ROS production were prevented by pretreatment of neurons with EGCG [(–-epigallocatechin-3-gallate], a major polyphenolic component of green tea. Taken together, these results support a role for NADPH oxidase-mediated ROS production in the cytotoxic effects of Aβ, and demonstrate the therapeutic potential of EGCG and other dietary polyphenols in delaying onset or retarding the progression of AD.

  16. Involvement of NADPH oxidase isoforms in the production of O2- manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa).

    Science.gov (United States)

    Li, Zhaowei; Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  17. The role of oxidative stress and NADPH oxidase in the pathogenesis of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Dorota Bryk

    2017-01-01

    Full Text Available Reactive oxygen species (ROS play a key role in the pathogenesis of atherosclerosis. The main mechanisms which are involved are low-density lipoprotein oxidative modification, inactivation of nitric oxide and modulation of redox-sensitive signaling pathways. ROS contribute to several aspects of atherosclerosis including endothelial cell dysfunction, monocyte/macrophage recruitment and activation, stimulation of inflammation, and inducing smooth muscle cell migration and proliferation. NADPH oxidase is the main source of ROS in the vasculature. This enzyme consists of a membrane-bound heterodimer of gp91phox and p22phox, cytosolic regulatory subunits p47phox, p67phox and p40phox, and small GTP-binding proteins rac1 and rac 2. Seven distinct isoforms of this enzyme have been identified, of which four (NOX1, 2, 4 and 5 may have cardiovascular function. In this paper, we review the current state of knowledge concerning the role of oxidative stress and NOX enzymes in pathogenesis of atherosclerosis. Moreover, we analyze the experimental studies that explore the relationship between the NOX family and atherosclerosis.

  18. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.

    Science.gov (United States)

    Martínez, Irene; Zhu, Jiangfeng; Lin, Henry; Bennett, George N; San, Ka-Yiu

    2008-11-01

    Reactions requiring reducing equivalents, NAD(P)H, are of enormous importance for the synthesis of industrially valuable compounds such as carotenoids, polymers, antibiotics and chiral alcohols among others. The use of whole-cell biocatalysis can reduce process cost by acting as catalyst and cofactor regenerator at the same time; however, product yields might be limited by cofactor availability within the cell. Thus, our study focussed on the genetic manipulation of a whole-cell system by modifying metabolic pathways and enzymes to improve the overall production process. In the present work, we genetically engineered an Escherichia coli strain to increase NADPH availability to improve the productivity of products that require NADPH in its biosynthesis. The approach involved an alteration of the glycolysis step where glyceraldehyde-3-phosphate (GAP) is oxidized to 1,3 bisphophoglycerate (1,3-BPG). This reaction is catalyzed by NAD-dependent endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoded by the gapA gene. We constructed a recombinant E. coli strain by replacing the native NAD-dependent gapA gene with a NADP-dependent GAPDH from Clostridium acetobutylicum, encoded by the gene gapC. The beauty of this approach is that the recombinant E. coli strain produces 2 mol of NADPH, instead of NADH, per mole of glucose consumed. Metabolic flux analysis showed that the flux through the pentose phosphate (PP) pathway, one of the main pathways that produce NADPH, was reduced significantly in the recombinant strain when compared to that of the parent strain. The effectiveness of the NADPH enhancing system was tested using the production of lycopene and epsilon-caprolactone as model systems using two different background strains. The recombinant strains, with increased NADPH availability, consistently showed significant higher productivity than the parent strains.

  19. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    Science.gov (United States)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P < 0.05) and displayed increased urine production and lower urine osmolality. The blood pressure change in response to salt loading (salt sensitivity) was more pronounced in the PUUO group compared with the control group (15 ± 2 vs. 5 ± 1 mmHg, P < 0.05). Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P < 0.05) and normalized the renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates

  20. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction.

    Science.gov (United States)

    Juhasz, Agnes; Markel, Susan; Gaur, Shikha; Liu, Han; Lu, Jiamo; Jiang, Guojian; Wu, Xiwei; Antony, Smitha; Wu, Yongzhong; Melillo, Giovanni; Meitzler, Jennifer L; Haines, Diana C; Butcher, Donna; Roy, Krishnendu; Doroshow, James H

    2017-05-12

    Reactive oxygen species (ROS) play a critical role in cell signaling and proliferation. NADPH oxidase 1 (NOX1), a membrane-bound flavin dehydrogenase that generates O 2 ̇̄ , is highly expressed in colon cancer. To investigate the role that NOX1 plays in colon cancer growth, we used shRNA to decrease NOX1 expression stably in HT-29 human colon cancer cells. The 80-90% decrease in NOX1 expression achieved by RNAi produced a significant decline in ROS production and a G 1 /S block that translated into a 2-3-fold increase in tumor cell doubling time without increased apoptosis. The block at the G 1 /S checkpoint was associated with a significant decrease in cyclin D 1 expression and profound inhibition of mitogen-activated protein kinase (MAPK) signaling. Decreased steady-state MAPK phosphorylation occurred concomitant with a significant increase in protein phosphatase activity for two colon cancer cell lines in which NOX1 expression was knocked down by RNAi. Diminished NOX1 expression also contributed to decreased growth, blood vessel density, and VEGF and hypoxia-inducible factor 1α (HIF-1α) expression in HT-29 xenografts initiated from NOX1 knockdown cells. Microarray analysis, supplemented by real-time PCR and Western blotting, revealed that the expression of critical regulators of cell proliferation and angiogenesis, including c-MYC, c-MYB, and VEGF, were down-regulated in association with a decline in hypoxic HIF-1α protein expression downstream of silenced NOX1 in both colon cancer cell lines and xenografts. These studies suggest a role for NOX1 in maintaining the proliferative phenotype of some colon cancers and the potential of NOX1 as a therapeutic target in this disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. NADPH Oxidase 1 Modulates WNT and NOTCH1 Signaling To Control the Fate of Proliferative Progenitor Cells in the Colon▿

    Science.gov (United States)

    Coant, Nicolas; Ben Mkaddem, Sanae; Pedruzzi, Eric; Guichard, Cécile; Tréton, Xavier; Ducroc, Robert; Freund, Jean-Noel; Cazals-Hatem, Dominique; Bouhnik, Yoram; Woerther, Paul-Louis; Skurnik, David; Grodet, Alain; Fay, Michèle; Biard, Denis; Lesuffleur, Thécla; Deffert, Christine; Moreau, Richard; Groyer, André; Krause, Karl-Heinz; Daniel, Fanny; Ogier-Denis, Eric

    2010-01-01

    The homeostatic self-renewal of the colonic epithelium requires coordinated regulation of the canonical Wnt/β-catenin and Notch signaling pathways to control proliferation and lineage commitment of multipotent stem cells. However, the molecular mechanisms by which the Wnt/β-catenin and Notch1 pathways interplay in controlling cell proliferation and fate in the colon are poorly understood. Here we show that NADPH oxidase 1 (NOX1), a reactive oxygen species (ROS)-producing oxidase that is highly expressed in colonic epithelial cells, is a pivotal determinant of cell proliferation and fate that integrates Wnt/β-catenin and Notch1 signals. NOX1-deficient mice reveal a massive conversion of progenitor cells into postmitotic goblet cells at the cost of colonocytes due to the concerted repression of phosphatidylinositol 3-kinase (PI3K)/AKT/Wnt/β-catenin and Notch1 signaling. This conversion correlates with the following: (i) the redox-dependent activation of the dual phosphatase PTEN, causing the inactivation of the Wnt pathway effector β-catenin, and (ii) the downregulation of Notch1 signaling that provokes derepression of mouse atonal homolog 1 (Math1) expression. We conclude that NOX1 controls the balance between goblet and absorptive cell types in the colon by coordinately modulating PI3K/AKT/Wnt/β-catenin and Notch1 signaling. This finding provides the molecular basis for the role of NOX1 in cell proliferation and postmitotic differentiation. PMID:20351171

  2. Quantitative flux analysis reveals folate-dependent NADPH production

    Science.gov (United States)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  3. Convergent evolution of morphogenetic processes in fungi: Role of tetraspanins and NADPH oxidases 2 in plant pathogens and saprobes.

    Science.gov (United States)

    Malagnac, Fabienne; Bidard, Frédérique; Lalucque, Hervé; Brun, Sylvain; Lambou, Karine; Lebrun, Marc-Henri; Silar, Philippe

    2008-01-01

    Convergent evolution of trophic life style and morphological characters are very common in the fungal kingdom. Recently, we have shown that the same molecular machinery containing a tetraspanin and a NADPH oxidase has been recruited in two different fungal species for the same purpose (exiting from a melanized re-enforced cell at a focal weakened point), but at different stages of their development (ascospore germination and appressorium mediated penetration). Although this molecular machinery is required at these key developmental steps, it is also likely involved in specialized cellular functions at other stages of fungal development, as shown here for nutrient acquisition by Podospora anserina.

  4. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism.

    Science.gov (United States)

    Cullen, Joseph J; Hinkhouse, Marilyn M; Grady, Matthew; Gaut, Andrew W; Liu, Jingru; Zhang, Yu Ping; Weydert, Christine J Darby; Domann, Frederick E; Oberley, Larry W

    2003-09-01

    NADPH:quinone oxidoreductase (NQO(1)), a homodimeric, ubiquitous, flavoprotein, catalyzes the two-electron reduction of quinones to hydroquinones. This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in oxidative cycling with generation of superoxide (O(2)(.-)). NQO(1) gene regulation may be up-regulated in some tumors to accommodate the needs of rapidly metabolizing cells to regenerate NAD(+). We hypothesized that pancreatic cancer cells would exhibit high levels of this enzyme, and inhibiting it would suppress the malignant phenotype. Reverse transcription-PCR, Western blots, and activity assays demonstrated that NQO(1) was up-regulated in the pancreatic cancer cell lines tested but present in very low amounts in the normal human pancreas. To determine whether inhibition of NQO(1) would alter the malignant phenotype, MIA PaCa-2 pancreatic cancer cells were treated with a selective inhibitor of NQO(1), dicumarol. Dicumarol increased intracellular production of O(2)(.-), as measured by hydroethidine staining, and inhibited cell growth. Both of these effects were blunted with infection of an adenoviral vector containing the cDNA for manganese superoxide dismutase. Dicumarol also inhibited cell growth, plating efficiency, and growth in soft agar. We conclude that inhibition of NQO(1) increases intracellular O(2)(.-) production and inhibits the in vitro malignant phenotype of pancreatic cancer. These mechanisms suggest that altering the intracellular redox environment of pancreatic cancer cells may inhibit growth and delineate a potential strategy directed against pancreatic cancer.

  5. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox

    Science.gov (United States)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Rafalowski, Meirav; Federman-Gross, Aya; Pick, Edgar

    2015-02-01

    The superoxide (O2.-)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b558 (a heterodimer of Nox2 and p22phox), and four cytosolic components, p47phox, p67phox, p40phox, and Rac. The catalytic component, responsible for O2.- generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67phox. Using a peptide-protein binding assay, we found that Nox2 peptides containing a 369CysGlyCys371 triad (CGC) bound p67phox with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67phox only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67phox via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: 1. Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; 2. Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; 3. Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; 4. Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; 5. A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; 6. p67phox, in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67phox to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.

  6. Hematologically important mutations: X-linked chronic granulomatous disease (third update)

    NARCIS (Netherlands)

    Roos, Dirk; Kuhns, Douglas B.; Maddalena, Anne; Roesler, Joachim; Lopez, Juan Alvaro; Ariga, Tadashi; Avcin, Tadej; de Boer, Martin; Bustamante, Jacinta; Condino-Neto, Antonio; Di Matteo, Gigliola; He, Jianxin; Hill, Harry R.; Holland, Steven M.; Kannengiesser, Caroline; Köker, M. Yavuz; Kondratenko, Irina; van Leeuwen, Karin; Malech, Harry L.; Marodi, László; Nunoi, Hiroyuki; Stasia, Marie-José; Ventura, Anna Maria; Witwer, Carl T.; Wolach, Baruch; Gallin, John I.

    2010-01-01

    Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide is used to kill phagocytosed micro-organisms in neutrophils, eosinophils, monocytes

  7. NADPH Oxidase, NOX1, Mediates Vascular Injury in Ischemic Retinopathy

    Science.gov (United States)

    Deliyanti, Devy; Rana, Indrajeetsinh; Miller, Antonia G.; Agrotis, Alex; Armani, Roksana; Szyndralewiez, Cédric; Wingler, Kirstin; Touyz, Rhian M.; Cooper, Mark E.; Jandeleit-Dahm, Karin A.; Schmidt, Harald H.H.W.

    2014-01-01

    Abstract Aims: Ischemic retinal diseases such as retinopathy of prematurity are major causes of blindness due to damage to the retinal microvasculature. Despite this clinical situation, retinopathy of prematurity is mechanistically poorly understood. Therefore, effective preventative therapies are not available. However, hypoxic-induced increases in reactive oxygen species (ROS) have been suggested to be involved with NADPH oxidases (NOX), the only known dedicated enzymatic source of ROS. Our major aim was to determine the contribution of NOX isoforms (1, 2, and 4) to a rodent model of retinopathy of prematurity. Results: Using a genetic approach, we determined that only mice with a deletion of NOX1, but not NOX2 or NOX4, were protected from retinal neovascularization and vaso-obliteration, adhesion of leukocytes, microglial accumulation, and the increased generation of proangiogenic and proinflammatory factors and ROS. We complemented these studies by showing that the specific NOX inhibitor, GKT137831, reduced vasculopathy and ROS levels in retina. The source of NOX isoforms was evaluated in retinal vascular cells and neuro-glial elements. Microglia, the immune cells of the retina, expressed NOX1, 2, and 4 and responded to hypoxia with increased ROS formation, which was reduced by GKT137831. Innovation: Our studies are the first to identify the NOX1 isoform as having an important role in the pathogenesis of retinopathy of prematurity. Conclusions: Our findings suggest that strategies targeting NOX1 have the potential to be effective treatments for a range of ischemic retinopathies. Antioxid. Redox Signal. 20, 2726–2740. PMID:24053718

  8. Cambogin exerts anti-proliferative and pro-apoptotic effects on breast adenocarcinoma through the induction of NADPH oxidase 1 and the alteration of mitochondrial morphology and dynamics.

    Science.gov (United States)

    Shen, Kaikai; Lu, Fangfang; Xie, Jianling; Wu, Minfeng; Cai, Bo; Liu, Yurong; Zhang, Hong; Tan, Hongsheng; Pan, Yingyi; Xu, Hongxi

    2016-08-02

    Cambogin, a bioactive polycyclic polyprenylated acylphoroglucinol (PPAP) derived from the Garcinia genus, possesses proapoptotic effect in medulloblastoma and breast cancer cells. We have previously demonstrated that the proapoptotic effect of cambogin is driven by the production of reactive oxygen species (ROS). Here we have shown that the inhibitory effect of cambogin on cell proliferation is associated with the loss of mitochondrial transmembrane potential (ΔΨm) and mitochondrial fragmentation. Cambogin also promotes the mutual complex formation of the membrane-bound subunit p22phox of NADPH oxidase 1 (NOX1), as well as the phosphorylation of the cytosolic subunit p47phox, subsequently enhancing membrane-bound NOX1 activity, which leads to increases in intracellular and mitochondrial levels of O2.- and H2O2. Pharmacological inhibition of NOX1 using apocynin (pan-NOX inhibitor), ML171 (NOX1 inhibitor) or siRNA against NOX1 prevents the increases in O2.- and H2O2 levels and the anti-proliferative effect of cambogin. Antioxidants, including SOD (superoxide dismutase), CAT (catalase) and EUK-8, are also able to restore cell viability in the presence of cambogin. Besides, cambogin increases the dissociation of thioredoxin-1 (Trx1) from ASK1, switching the inactive form of ASK1 to the active kinase, subsequently leads to the phosphorylation of JNK/SAPK, which is abolished upon ML171 treatment. The proapoptotic effect of cambogin in breast cancer cells is also aggravated upon knocking down Trx1 in MCF-7 cells. Taken in conjunction, these data indicate that the anti-proliferative and pro-apoptotic effect of cambogin is mediated via inducing NOX1-dependent ROS production and the dissociation of ASK1 and Trx1.

  9. Change of the NADPH depending superoxide producing and ferri hemoglobin reducing activities of cytochrome b558 from spleen cells and erythrocytes membranes induced by the radiation of different character

    International Nuclear Information System (INIS)

    Melkonyan, L.G.; Simonyan, R.M.; Simonyan, M.A.; Sekoyan, E.S.

    2009-01-01

    After the X radiation, UVA radiation and ultrasound radiation of new isoforms of cytochrome cyt b 5 58 from rats erythrocyte membranes - EM (cyt b 5 58III) and from spleen cell membranes (SCM) in vitro, as well as after the radiation of EM ex vivo, the suppression of both NADPH depending O 2 - producing and ferrihemoglobin (ferriHb)-reducing activities of cyt b 5 58 from EM and SCM in homogeneous (in solution) and heterogeneous phases (in EM and SCM) at various scopes takes place. These changes are associated with the destabilization of EM and SCM, conditioned by the change of the aggregation degree of these hemoproteins in EM and SCM, hemoproteins as a result of the influence of the hydrogen peroxide formed during radiolysis and photolysis of the water medium. After He-Ne laser radiation of the cyt b 5 58 from EM and SCM in vitro an increase of the NADPH depending O 2 - producing and ferriHb-reducing activities of the cyt b 5 58 from EM and SCM in homogenous and heterogeneous phases (in membranes) takes place. It is supposed that the suppression (by X-, UVA- and US-radiation) and the stimulation (by He-Ne laser radiation) of the immune system activity and the oxygen homeostasis are associated with the corresponding decrease and increase of the NADPH depending O 2 - producing and ferriHb-reducings activity of the new isoforms of cyt b 5 58 from EM and SCM in homogeneous and heterogeneous phases

  10. Superoxide Mediates Depressive Effects Induced by Hydrogen Sulfide in Rostral Ventrolateral Medulla of Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Haiyun Yu

    2015-01-01

    Full Text Available Hydrogen sulfide (H2S plays a crucial role in the regulation of blood pressure and oxidative stress. In the present study, we tested the hypothesis that H2S exerts its cardiovascular effects by reducing oxidative stress via inhibition of NADPH oxidase activity in the rostral ventrolateral medulla (RVLM. We examined cell distributions of cystathionine-β-synthase (CBS and effects of H2S on reactive oxygen species (ROS and mean arterial blood pressure (MAP in spontaneously hypertensive rats (SHRs. We found that CBS was expressed in neurons of the RVLM, and the expression was lower in SHRs than in Wistar-Kyoto rats. Microinjection of NaHS (H2S donor, S-adenosyl-l-methionine (SAM, a CBS agonist, or Apocynin (NADPH oxidase inhibitor into the RVLM reduced the ROS level, NADPH oxidase activity, and MAP, whereas microinjection of hydroxylamine hydrochloride (HA, a CBS inhibitor increased MAP. Furthermore, intracerebroventricular infusion of NaHS inhibited phosphorylation of p47phox, a key step of NADPH oxidase activation. Since decreasing ROS level in the RVLM reduces MAP and heart rate and increasing H2S reduces ROS production, we conclude that H2S exerts an antihypertensive effect via suppressing ROS production. H2S, as an antioxidant, may be a potential target for cardiovascular diseases.

  11. The role of free radicals and stress signalling in persistent genomic instability induced by long wavelength UV light

    International Nuclear Information System (INIS)

    Phillipson, R.; McMillan, T.J.

    2003-01-01

    Induction of persistent genomic instability has commonly been investigated with ionising radiation. It has been characterised as a decrease in plating efficiency, and an increase in chromosomal aberrations and mutation frequency in the progeny of cells that survive the initial irradiation. We now present data demonstrating the phenomenon following exposure to long-wavelength solar UV-A (320-400nm) radiation at environmentally relevant doses. Using the spontaneously immortalised human skin keratinocyte line, HaCaT, we observed a significant decrease in plating efficiency (77 +/- 2% of control), and increase in micronuclei (2.5 fold) and mutation frequency (2 fold), 7 days after the initial radiation insult. Modification of UV-A-induced instability by incubation with exogenous catalase implicated reactive oxygen species (ROS), in-particular hydrogen peroxide, in the production and/or maintenance of the phenomenon. Assessment of anti-oxidant enzymes revealed a significant increase in glutathione-s-transferase activity (158 +/- 4% of control) at day 7 in the irradiated cell population, which was inhibited by incubation with exogenous catalase (97 +/- 3%), providing further evidence for an ROS-mediated pathway. Furthermore, inhibition of UV-A-induced micronuclei at day 7 by the flavonoid-containing-protein inhibitor diphenyleneiodonium (DPI) indicates that the NADPH oxidase family of enzymes may be involved in this phenomenon. Measurement of superoxide production by the cytochrome c reduction assay revealed that the irradiated cell population produce 50% more superoxide than the unirradiated controls, and that incubation with DPI led to a preferential reduction in superoxide production in the UV-A treated population at day 7. Finally, NADPH oxidase activity is increased significantly over controls in UV-A-treated cells. These data demonstrate that oxidative stress, analogous to that produced by ionising radiation, induces persistent genomic instability through a

  12. Involvement of NADPH oxidase isoforms in the production of O2− manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa)

    Science.gov (United States)

    Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  13. The NADPH thioredoxin reductase C functions as an electron donor to 2-Cys peroxiredoxin in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1

    International Nuclear Information System (INIS)

    Sueoka, Keigo; Yamazaki, Teruaki; Hiyama, Tetsuo; Nakamoto, Hitoshi

    2009-01-01

    An NADPH thioredoxin reductase C was co-purified with a 2-Cys peroxiredoxin by the combination of anion exchange chromatography and electroelution from gel slices after native PAGE from a thermophilic cyanobacterium Thermosynechococcus elongatus as an NAD(P)H oxidase complex induced by oxidative stress. The result provided a strong evidence that the NADPH thioredoxin reductase C interacts with the 2-Cys peroxiredoxin in vivo. An in vitro reconstitution assay with purified recombinant proteins revealed that both proteins were essential for an NADPH-dependent reduction of H 2 O 2 . These results suggest that the reductase transfers the reducing power from NADPH to the peroxiredoxin, which reduces peroxides in the cyanobacterium under oxidative stress. In contrast with other NADPH thioredoxin reductases, the NADPH thioredoxin reductase C contains a thioredoxin-like domain in addition to an NADPH thioredoxin reductase domain in the same polypeptide. Each domain contains a conserved CXYC motif. A point mutation at the CXYC motif in the NADPH thioredoxin reductase domain resulted in loss of the NADPH oxidation activity, while a mutation at the CXYC motif in the thioredoxin-like domain did not affect the electron transfer, indicating that this motif is not essential in the electron transport from NADPH to the 2-Cys peroxiredoxin.

  14. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells

    Directory of Open Access Journals (Sweden)

    Seung Eun Song

    2016-04-01

    Full Text Available This study examined the effect of delphinidin on high glucose-induced cell proliferation and collagen synthesis in mesangial cells. Glucose dose-dependently (5.6–25 mM increased cell proliferation and collagen I and IV mRNA levels, whereas pretreatment with delphinidin (50 μM prevented cell proliferation and the increased collagen mRNA levels induced by high glucose (25 mM. High glucose increased reactive oxygen species (ROS generation, and this was suppressed by pretreating delphinidin or the antioxidant N-acetyl cysteine. NADPH oxidase (NOX 1 was upregulated by high glucose, but pretreatment with delphinidin abrogated this upregulation. Increased mitochondrial superoxide by 25 mM glucose was also suppressed by delphinidin. The NOX inhibitor apocynin and mitochondria-targeted antioxidant Mito TEMPO inhibited ROS generation and cell proliferation induced by high glucose. Phosphorylation of extracellular signal regulated kinase (ERK1/2 was increased by high glucose, which was suppressed by delphinidin, apocynin or Mito TEMPO. Furthermore, PD98059 (an ERK1/2 inhibitor prevented the high glucose-induced cell proliferation and increased collagen mRNA levels. Transforming growth factor (TGF-β protein levels were elevated by high glucose, and pretreatment with delphinidin or PD98059 prevented this augmentation. These results suggest that delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells.

  15. NADPH oxidase-2 derived ROS dictates murine DC cytokine-mediated cell fate decisions during CD4 T helper-cell commitment.

    Directory of Open Access Journals (Sweden)

    Meghan A Jendrysik

    Full Text Available NADPH oxidase-2 (Nox2/gp91(phox and p47(phox deficient mice are prone to hyper-inflammatory responses suggesting a paradoxical role for Nox2-derived reactive oxygen species (ROS as anti-inflammatory mediators. The molecular basis for this mode of control remains unclear. Here we demonstrate that IFNγ/LPS matured p47(phox-/--ROS deficient mouse dendritic cells (DC secrete more IL-12p70 than similarly treated wild type DC, and in an in vitro co-culture model IFNγ/LPS matured p47(phox-/- DC bias more ovalbumin-specific CD4(+ T lymphocytes toward a Th1 phenotype than wild type (WT DC through a ROS-dependent mechanism linking IL-12p70 expression to regulation of p38-MAPK activation. The Nox2-dependent ROS production in DC negatively regulates proinflammatory IL-12 expression in DC by constraining p38-MAPK activity. Increasing endogenous H(2O(2 attenuates p38-MAPK activity in IFNγ/LPS stimulated WT and p47(phox-/- DC, which suggests that endogenous Nox 2-derived ROS functions as a secondary messenger in the activated p38-MAPK signaling pathway during IL-12 expression. These findings indicate that ROS, generated endogenously by innate and adaptive immune cells, can function as important secondary messengers that can regulate cytokine production and immune cell cross-talk to control during the inflammatory response.

  16. Leonurine (SCM-198) attenuates myocardial fibrotic response via inhibition of NADPH oxidase 4.

    Science.gov (United States)

    Liu, Xin-Hua; Pan, Li-Long; Deng, Hai-Yan; Xiong, Qing-Hui; Wu, Dan; Huang, Guo-Ying; Gong, Qi-Hai; Zhu, Yi-Zhun

    2013-01-01

    In our previous studies, we have reported that leonurine, a plant phenolic alkaloid in Herba leonuri, exerted cardioprotective properties in a number of preclinical experiments. Herein, we investigated the roles and the possible mechanisms of leonurine for reducing fibrotic responses in angiotensin II (Ang II)-stimulated primary neonatal rat cardiac fibroblasts and post-myocardial infarction (MI) rats. In in vitro experiments performed in neonatal rat cardiac fibroblasts, leonurine (10-20 μM) pretreatment attenuated Ang II-induced activation of extracellular signal-regulated kinase 1/2, production of intracellular reactive oxygen species (ROS), expression and activity of matrix metalloproteinase (MMP)-2/9, and expression of α-smooth muscle actin and types I and III collagen. A small interfering RNA-mediated knockdown strategy for NADPH oxidase 4 (Nox4) revealed that Nox4 was required for Ang II-induced activation of cardiac fibroblasts. In vivo studies using a post-MI model in rats indicated that administration of leonurine inhibited myocardial fibrosis while reducing cardiac Nox4 expression, ROS production, NF-κB activation, and plasma MMP-2 activity. In conclusion, our results provide the first evidence that leonurine could prevent cardiac fibrosis and the activation of cardiac fibroblasts partly through modulation of a Nox4-ROS pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

    Science.gov (United States)

    Batchuluun, Battsetseg; Inoguchi, Toyoshi; Sonoda, Noriyuki; Sasaki, Shuji; Inoue, Tomoaki; Fujimura, Yoshinori; Miura, Daisuke; Takayanagi, Ryoichi

    2014-01-01

    Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. Production of reactive oxygen species (ROS), activation of protein kinase C (PKC) and NAD(P)H oxidase, and changes in signaling molecules in response to high glucose exposure were evaluated in human aortic endothelial cells with and without treatment of metformin and liraglutide, alone or in combination. PKC-NAD(P)H oxidase pathway was assessed by translocation of GFP-fused PKCβ2 isoform and GFP-fused p47phox, a regulatory subunit of NAD(P)H oxidase, in addition to endogenous PKC phosphorylation and NAD(P)H oxidase activity. High glucose-induced ROS overproduction was blunted by metformin or liraglutide treatment, with a further decrease by a combination of these drugs. Exposure to high glucose caused PKCβ2 translocation and a time-dependent phosphorylation of endogenous PKC but failed to induce its translocation and phosphorylation in the cells treated with metformin and liraglutide. Furthermore, both drugs inhibited p47phox translocation and NAD(P)H oxidase activation, and prevented the high glucose-induced changes in intracellulalr diacylglycerol (DAG) level and phosphorylation of AMP-activated protein kinase (AMPK). A combination of these drugs further enhanced all of these effects. Metformin and liraglutide ameliorate high glucose-induced oxidative stress by inhibiting PKC-NAD(P)H oxidase pathway. A combination of these two drugs provides augmented protective effects, suggesting the clinical usefulness in prevention of diabetic vascular complications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Sistema NADPH oxidasa: nuevos retos y perspectivas = NADPH oxidase system: new challenges and perspectives

    Directory of Open Access Journals (Sweden)

    Arango Rincón, Julián Camilo

    2010-12-01

    Full Text Available El sistema NADPH oxidasa es un complejo multiproteico encargado de producir especies reactivas del oxígeno (ROS, por reactive oxygen species en diferentes células y tejidos. Es de gran importancia en las células fagocíticas (principalmente neutrófilos y macrófagos porque participa en la destrucción de microorganismos patógenos, mediante la fagocitosis y la formación de las trampas extracelulares de neutrófilos (NET, por neutrophils extracelular traps, así como en la activación de procesos inflamatorios. Las alteraciones en la producción de ROS por parte de las células fagocíticas a causa de defectos genéticos en los componentes del sistema generan la inmunodeficiencia primaria denominada enfermedad granulomatosa crónica (EGC. Este es un artículo de revisión sobre los componentes del sistema NADPH oxidasa, su distribución celular, mecanismo de activación y acción, así como de las funciones que desempeña en otros tejidos. Además, se revisan los defectos moleculares que llevan a la EGC y el tratamiento de esta, incluyendo la terapia con IFNγ, y finalmente las perspectivas para el estudio del sistema.

  19. Resveratrol Protects and Restores Endothelium-Dependent Relaxation in Hypercholesterolemic Rabbit Corpus Cavernosum.

    Science.gov (United States)

    Murat, Nergiz; Korhan, Peyda; Kizer, Onur; Evcim, Sinem; Kefi, Aykut; Demir, Ömer; Gidener, Sedef; Atabey, Neşe; Esen, Ahmet Adil

    2016-01-01

    Oxidative stress dependent-decrease in nitric oxide (NO) bioavailability plays an integral role in hypercholesterolemia-induced erectile dysfunction (ED). Resveratrol has been demonstrated to exert beneficial effects against oxidative stress and improve NO bioavailability. The protective and restorative potentials of resveratrol on endothelium-dependent relaxations were evaluated in hypercholesterolemic rabbit corpus cavernosum (CC). Hypercholesterolemia was induced by administering 2% cholesterol diet (CD) (w/w) to the rabbits for 6 weeks. Two different protocols were applied to test the effects of resveratrol on hypercholesterolemia-induced ED. In Protocol-1 (P1), resveratrol was administrated to the rabbits simultaneously with CD in order to evaluate the protective effect, and for Protocol-2 (P2), resveratrol was administrated for 6 weeks after termination of CD in order to evaluate the restorative effect. Endothelium-dependent relaxations of CC were evaluated by using organ bath studies. In order to elucidate the possible molecular mechanisms, we measured endothelial NO synthase (eNOS) and phosphovasodilator-stimulated phosphoprotein (VASP) expressions and activations, NADPH oxidase, superoxide dismutase (SOD), and catalase (CAT) and glutathione peroxidase (GPx) activity in cavernosal tissues obtained at the end of the study. Resveratrol showed an improvement in the endothelium-dependent relaxation responses in vitro. We demonstrated significantly increased activatory-phosphorylation (p[S1177]-eNOS) and activated phosphovasodilator-stimulated phosphoprotein (phospho-VASP) levels, but reduced phosphorylation (p[T495]-eNOS) of eNOS and NADPH oxidase activity in the resveratrol-administered HC animals compared with hypercholesterolemic control rabbits in the P1. In the P2, resveratrol exhibited an improvement in endothelium-dependent relaxation responses and more pronounced effects on eNOS activation. Resveratrol administration, either simultaneously with HC diet

  20. Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Monetti, Emanuela; Kadono, Takashi; Tran, Daniel; Azzarello, Elisa; Arbelet-Bonnin, Delphine; Biligui, Bernadette; Briand, Joël; Kawano, Tomonori; Mancuso, Stefano; Bouteau, François

    2014-03-01

    Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·(-)) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·(-) generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca(2+)]cyt increase and singlet oxygen production, do not seem to be involved in PCD.

  1. Endothelium-Dependent Relaxation Effect of Apocynum venetum Leaf Extract via Src/PI3K/Akt Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Yeh Siang Lau

    2015-06-01

    Full Text Available Botanical herbs are consumed globally not only as an essential diet but also as medicines or as functional/recreational food supplements. The extract of the Apocynum venetum leaves (AVLE, also known as Luobuma, exerts its antihypertensive effect via dilating the blood vessels in an endothelium- and concentration-dependent manner with optimal effect seen at as low as 10 µg/mL. A commercial Luoboma “antihypertensive tea” is available commercially in the western province of China. The present study seeks to investigate the underlying cellular mechanisms of the nitric oxide (NO-releasing property of AVLE in rat aortas and human umbilical vein endothelial cells (HUVECs. Endothelium-dependent relaxation induced by AVLE was assessed in organ chambers in the presence or absence of polyethyleneglycol catalase (PP2, 20 µM; inhibitor of Src kinase, wortmannin (30 nM and LY294002 (20 µM; PI3 (phosphatidylinositol3-Kinase inhibitor, NG-nitro-l-arginine (L-NAME, 100 µM; endothelial NO synthase inhibitor (eNOS and ODQ (1 µM; soluble guanylyl cyclase inhibitor. Total nitrite and nitrate (NOx level and protein expression of p-Akt and p-eNOS were measured. AVLE-induced endothelium-dependent relaxation was reduced by PP2, wortmannin and LY294002 and abolished by L-NAME and ODQ. AVLE significantly increased total NOx level in rat aortas and in HUVECs compared to control. It also instigated phosphorylation of Akt and eNOS in cultured HUVECs in a concentration-dependent manner and this was markedly suppressed by PP2, wortmannin and LY294002. AVLE also inhibited superoxide generated from both NADPH oxidase and xanthine/xanthine oxidase system. Taken together, AVLE causes endothelium-dependent NO mediated relaxations of rat aortas through Src/PI3K/Akt dependent NO signalling pathway and possesses superoxide scavenging activity.

  2. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    He, Huan [Nanjing Agricultural Univ. (China); Yan, Jingwei [Nanjing Agricultural Univ. (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Xiaoyun [Nanjing Agricultural Univ. (China); Liang, Yan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fang, Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scheller, Henrik Vibe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Aying [Nanjing Agricultural Univ. (China)

    2017-05-27

    As the major resource of reactive oxygen species (ROS), the NADPH oxidases (Rbohs) have been shown to play important roles in plant cells under normal growth and stress conditions. Although many family members of Rbohs were studied, little is known about the function of RbohI in Arabidopsis thaliana. Here, we report that exogenous ABA application decreases RbohI expression and mannitol significantly increases RbohI expression at transcript level. The RbohI transcripts were strongly detected in dry seeds and roots. The loss-of-function mutant rbohI exhibited sensitivity to ABA and mannitol stress during germination. Furthermore, the lateral root growth of rbohI was severely inhibited after treatment with mannitol stress. Overexpression of RbohI in Arabidopsis significantly improves the drought tolerance. Moreover, more H2O2 accumulated in RbohI overexpressors than in wild type plants in response to mannitol stress. Our conclusion is that AtRbohI functions in drought-stress response in Arabidopsis thaliana.

  3. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A. [Departments of Biochemistry and Chemistry, University of Illinois, 505 South Goodwin Avenue (United States); Sligar, Stephen G., E-mail: s-sligar@illinois.edu [Departments of Biochemistry and Chemistry, University of Illinois, 505 South Goodwin Avenue (United States)

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  4. Association of a variant in the regulatory region of NADPH oxidase 4 gene and metabolic syndrome in patients with chronic hepatitis C.

    Science.gov (United States)

    Siqueira, Erika Rabelo Forte de; Pereira, Luciano Beltrao; Stefano, Jose Tadeu; Patente, Thiago; Cavaleiro, Ana Mercedes; Silva Vasconcelos, Luydson Richardson; Carmo, Rodrigo Feliciano; Moreira Beltrao Pereira, Leila Maria; Carrilho, Flair Jose; Corrêa-Giannella, Maria Lucia; Oliveira, Claudia P

    2015-03-28

    Given the important contribution of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system to the generation of reactive oxygen species induced by hepatitis C virus (HCV), we investigated two single nucleotide polymorphisms (SNPs) in the putative regulatory region of the genes encoding NADPH oxidase 4 catalytic subunit (NOX4) and its regulatory subunit p22phox (CYBA) and their relation with metabolic and histological variables in patients with HCV. One hundred seventy eight naïve HCV patients (49.3% male; 65% HCV genotype 1) with positive HCV RNA were genotyped using specific primers and fluorescent-labeled probes for SNPs rs3017887 in NOX4 and -675 T → A in CYBA. No association was found between the genotype frequencies of NOX4 and CYBA SNPs and inflammation scores or fibrosis stages in the overall population. The presence of the CA + AA genotypes of the NOX4 SNP was nominally associated with a lower alanine aminotransferase (ALT) concentration in the male population (CA + AA = 72.23 ± 6.34 U/L versus CC = 100.22 ± 9.85; mean ± SEM; P = 0.05). The TT genotype of the CYBA SNP was also nominally associated with a lower ALT concentration in the male population (TT = 84.01 ± 6.77 U/L versus TA + AA = 109.67 ± 18.37 U/L; mean ± SEM; P = 0.047). The minor A-allele of the NOX4 SNP was inversely associated with the frequency of metabolic syndrome (MS) in the male population (odds ratio (OR): 0.15; 95% confidence interval (CI): 0.03 to 0.79; P = 0.025). The results suggest that the evaluated NOX4 and CYBA SNPs are not direct genetic determinants of fibrosis in HCV patients, but nevertheless NOX4 rs3017887 SNP could indirectly influence fibrosis susceptibility due to its inverse association with MS in male patients.

  5. Characterization of the 1st and 2nd EF-hands of NADPH oxidase 5 by fluorescence, isothermal titration calorimetry, and circular dichroism

    Directory of Open Access Journals (Sweden)

    Wei Chin-Chuan

    2012-04-01

    Full Text Available Abstract Background Superoxide generated by non-phagocytic NADPH oxidases (NOXs is of growing importance for physiology and pathobiology. The calcium binding domain (CaBD of NOX5 contains four EF-hands, each binding one calcium ion. To better understand the metal binding properties of the 1st and 2nd EF-hands, we characterized the N-terminal half of CaBD (NCaBD and its calcium-binding knockout mutants. Results The isothermal titration calorimetry measurement for NCaBD reveals that the calcium binding of two EF-hands are loosely associated with each other and can be treated as independent binding events. However, the Ca2+ binding studies on NCaBD(E31Q and NCaBD(E63Q showed their binding constants to be 6.5 × 105 and 5.0 × 102 M-1 with ΔHs of -14 and -4 kJ/mol, respectively, suggesting that intrinsic calcium binding for the 1st non-canonical EF-hand is largely enhanced by the binding of Ca2+ to the 2nd canonical EF-hand. The fluorescence quenching and CD spectra support a conformational change upon Ca2+ binding, which changes Trp residues toward a more non-polar and exposed environment and also increases its α-helix secondary structure content. All measurements exclude Mg2+-binding in NCaBD. Conclusions We demonstrated that the 1st non-canonical EF-hand of NOX5 has very weak Ca2+ binding affinity compared with the 2nd canonical EF-hand. Both EF-hands interact with each other in a cooperative manner to enhance their Ca2+ binding affinity. Our characterization reveals that the two EF-hands in the N-terminal NOX5 are Ca2+ specific. Graphical abstract

  6. Superoxide Anions and NO in the Paraventricular Nucleus Modulate the Cardiac Sympathetic Afferent Reflex in Obese Rats

    Directory of Open Access Journals (Sweden)

    Qing-Bo Lu

    2017-12-01

    Full Text Available This study was conducted to explore the hypothesis that the endogenous superoxide anions (O2− and nitric oxide (NO system of the paraventricular nucleus (PVN regulates the cardiac sympathetic afferent reflex (CSAR contributing to sympathoexcitation in obese rats induced by a high-fat diet (42% kcal as fat for 12 weeks. CSAR was evaluated by monitoring the changes of renal sympathetic nerve activity (RSNA and the mean arterial pressure (MAP responses to the epicardial application of capsaicin (CAP in anaesthetized rats. In obese rats with hypertension (OH group or without hypertension (OB group, the levels of PVN O2−, angiotensinII (Ang II, Ang II type 1 receptor (AT1R, and nicotinamide adenine dinucleotide phosphate (NADPH oxidase were elevated, whereas neural NO synthase (nNOS and NO were significantly reduced. Moreover, CSAR was markedly enhanced, which promoted the elevation of plasma norepinephrine levels. The enhanced CSAR was attenuated by PVN application of the superoxide scavenger polyethylene glycol-superoxide dismutase (PEG-SOD and the NO donor sodium nitroprusside (SNP, and was strengthened by the superoxide dismutase inhibitor diethyldithiocarbamic acid (DETC and the nNOS inhibitor N(ω-propyl-l-arginine hydrochloride (PLA; conversely, there was a smaller CSAR response to PLA or SNP in rats that received a low-fat (12% kcal diet. Furthermore, PVN pretreatment with the AT1R antagonist losartan or with PEG-SOD, but not SNP, abolished Ang II-induced CSAR enhancement. These findings suggest that obesity alters the PVN O2− and NO system that modulates CSAR and promotes sympathoexcitation.

  7. Involvement of Polyamines in the Chilling Tolerance of Cucumber Cultivars

    Science.gov (United States)

    Shen, Wenyun; Nada, Kazuyoshi; Tachibana, Shoji

    2000-01-01

    The possible involvement of polyamines (PAs) in the chilling tolerance of cucumber (Cucumis sativus L. cv Jinchun No. 3 and cv Suyo) was investigated. Plants with the first expanded leaves were exposed to 3°C or 15°C in the dark for 24 h (chilling), and then transferred to 28°C/22°C under a 12-h photoperiod for another 24 h (rewarming). Chilling-tolerant cv Jinchun No. 3 showed a marked increase of free spermidine (Spd) in leaves, once during chilling and again during rewarming. Putrescine increased significantly during rewarming, but the increase of spermine was slight. Any of these PAs did not increase in chilling-sensitive cv Suyo during either period. PA-biosynthetic enzyme activities appear to mediate these differences between cultivars. Pretreatment of Spd to cv Suyo prevented chill-induced increases in the contents of hydrogen peroxide in leaves and activities of NADPH oxidases and NADPH-dependent superoxide generation in microsomes and alleviated chilling injury. Pretreatment of methylglyoxal-bis-(guanylhydrazone), a PA biosynthesis inhibitor, to chilled cv Jinchun No. 3 prevented Spd increase and enhanced microsomal NADPH oxidase activity and chilling injury. The results suggest that Spd plays important roles in chilling tolerance of cucumber, probably through prevention of chill-induced activation of NADPH oxidases in microsomes. PMID:10982456

  8. Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism

    International Nuclear Information System (INIS)

    Kirkensgaard, Kristine G.; Hägglund, Per; Finnie, Christine; Svensson, Birte; Henriksen, Anette

    2009-01-01

    The first crystal structure of a cereal NTR, a protein involved in seed development and germination, has been determined. The structure is in a conformation that excludes NADPH binding and indicates that a domain reorientation facilitated by Trx binding precedes NADPH binding in the reaction mechanism. Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs to the active form. Here, the first crystal structure of a cereal NTR, HvNTR2 from Hordeum vulgare (barley), is presented, which is also the first structure of a monocot plant NTR. The structure was determined at 2.6 Å resolution and refined to an R cryst of 19.0% and an R free of 23.8%. The dimeric protein is structurally similar to the structures of AtNTR-B from Arabidopsis thaliana and other known low-molecular-weight NTRs. However, the relative position of the two NTR cofactor-binding domains, the FAD and the NADPH domains, is not the same. The NADPH domain is rotated by 25° and bent by a 38% closure relative to the FAD domain in comparison with AtNTR-B. The structure may represent an intermediate between the two conformations described previously: the flavin-oxidizing (FO) and the flavin-reducing (FR) conformations. Here, analysis of interdomain contacts as well as phylogenetic studies lead to the proposal of a new reaction scheme in which NTR–Trx interactions mediate the FO to FR transformation

  9. Structure of Hordeum vulgare NADPH-dependent thioredoxin reductase 2. Unwinding the reaction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kirkensgaard, Kristine G. [Carlsberg Laboratory (Denmark); Enzyme and Protein Chemistry, Department of Systems BioIogy, Technical University of Denmark (Denmark); Hägglund, Per; Finnie, Christine; Svensson, Birte [Enzyme and Protein Chemistry, Department of Systems BioIogy, Technical University of Denmark (Denmark); Henriksen, Anette, E-mail: anette@crc.dk [Carlsberg Laboratory (Denmark)

    2009-09-01

    The first crystal structure of a cereal NTR, a protein involved in seed development and germination, has been determined. The structure is in a conformation that excludes NADPH binding and indicates that a domain reorientation facilitated by Trx binding precedes NADPH binding in the reaction mechanism. Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs to the active form. Here, the first crystal structure of a cereal NTR, HvNTR2 from Hordeum vulgare (barley), is presented, which is also the first structure of a monocot plant NTR. The structure was determined at 2.6 Å resolution and refined to an R{sub cryst} of 19.0% and an R{sub free} of 23.8%. The dimeric protein is structurally similar to the structures of AtNTR-B from Arabidopsis thaliana and other known low-molecular-weight NTRs. However, the relative position of the two NTR cofactor-binding domains, the FAD and the NADPH domains, is not the same. The NADPH domain is rotated by 25° and bent by a 38% closure relative to the FAD domain in comparison with AtNTR-B. The structure may represent an intermediate between the two conformations described previously: the flavin-oxidizing (FO) and the flavin-reducing (FR) conformations. Here, analysis of interdomain contacts as well as phylogenetic studies lead to the proposal of a new reaction scheme in which NTR–Trx interactions mediate the FO to FR transformation.

  10. Real-Time In Vivo Monitoring of Reactive Oxygen Species in Guard Cells.

    Science.gov (United States)

    Park, Ky Young; Roubelakis-Angelakis, Kalliopi A

    2018-01-01

    The intra-/intercellular homeostasis of reactive oxygen species (ROS), and especially of superoxides (O 2 .- ) and hydrogen peroxide (O 2 .- ) participate in signalling cascades which dictate developmental processes and reactions to biotic/abiotic stresses. Polyamine oxidases terminally oxidize/back convert polyamines generating H 2 O 2 . Recently, an NADPH-oxidase/Polyamine oxidase feedback loop was identified to control oxidative burst under salinity. Thus, the real-time localization/monitoring of ROS in specific cells, such as the guard cells, can be of great interest. Here we present a detailed description of the real-time in vivo monitoring of ROS in the guard cells using H 2 O 2 - and O 2 .- specific fluorescing probes, which can be used for studying ROS accumulation generated from any source, including the amine oxidases-dependent pathway, during development and stress.

  11. HMGB1-RAGE pathway drives peroxynitrite signaling-induced IBD-like inflammation in murine nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Varun Chandrashekaran

    2017-10-01

    Full Text Available Recent clinical studies found a strong association of colonic inflammation and Inflammatory bowel disease (IBD-like phenotype with NonAlcoholic Fatty liver Disease (NAFLD yet the mechanisms remain unknown. The present study identifies high mobility group box 1 (HMGB1 as a key mediator of intestinal inflammation in NAFLD and outlines a detailed redox signaling mechanism for such a pathway. NAFLD mice showed liver damage and release of elevated HMGB1 in systemic circulation and increased intestinal tyrosine nitration that was dependent on NADPH oxidase. Intestines from NAFLD mice showed higher Toll like receptor 4 (TLR4 activation and proinflammatory cytokine release, an outcome strongly dependent on the existence of NAFLD pathology and NADPH oxidase. Mechanistically intestinal epithelial cells showed the HMGB1 activation of TLR-4 was both NADPH oxidase and peroxynitrite dependent with the latter being formed by the activation of NADPH oxidase. Proinflammatory cytokine production was significantly blocked by the specific peroxynitrite scavenger phenyl boronic acid (FBA, AKT inhibition and NADPH oxidase inhibitor Apocynin suggesting NADPH oxidase-dependent peroxynitrite is a key mediator in TLR-4 activation and cytokine release via an AKT dependent pathway. Studies to ascertain the mechanism of HMGB1-mediated NADPH oxidase activation showed a distinct role of Receptor for advanced glycation end products (RAGE as the use of inhibitors targeted against RAGE or use of deformed HMGB1 protein prevented NADPH oxidase activation, peroxynitrite formation, TLR4 activation and finally cytokine release. Thus, in conclusion the present study identifies a novel role of HMGB1 mediated inflammatory pathway that is RAGE and redox signaling dependent and helps promote ectopic intestinal inflammation in NAFLD.

  12. The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana.

    Science.gov (United States)

    He, Huan; Yan, Jingwei; Yu, Xiaoyun; Liang, Yan; Fang, Lin; Scheller, Henrik Vibe; Zhang, Aying

    2017-09-23

    As the major resource of reactive oxygen species (ROS), the NADPH oxidases (Rbohs) have been shown to play important roles in plant cells under normal growth and stress conditions. Although many family members of Rbohs were studied, little is known about the function of RbohI in Arabidopsis thaliana. Here, we report that exogenous ABA application decreases RbohI expression and mannitol significantly increases RbohI expression at transcript level. The RbohI transcripts were strongly detected in dry seeds and roots. The loss-of-function mutant rbohI exhibited sensitivity to ABA and mannitol stress during germination. Furthermore, the lateral root growth of rbohI was severely inhibited after treatment with mannitol stress. Overexpression of RbohI in Arabidopsis significantly improves the drought tolerance. Moreover, more H 2 O 2 accumulated in RbohI overexpressors than in wild type plants in response to mannitol stress. Our conclusion is that AtRbohI functions in drought-stress response in Arabidopsis thaliana. Copyright © 2017. Published by Elsevier Inc.

  13. Implication of NADPH Oxidases in the Early Inflammation Process Generated by Cystic Fibrosis Cells

    Science.gov (United States)

    Pongnimitprasert, Nushjira; Hurtado, Margarita; Lamari, Foudil; El Benna, Jamel; Dupuy, Corinne; Fay, Michèle; Foglietti, Marie-José; Bernard, Maguy; Gougerot-Pocidalo, Marie-Anne; Braut-Boucher, Françoise

    2012-01-01

    In cystic fibrosis (CF) patients, pulmonary inflammation is a major cause of morbidity and mortality. The aim of this study was to further investigate whether oxidative stress could be involved in the early inflammatory process associated with CF pathogenesis. We used a model of CFTR defective epithelial cell line (IB3-1) and its reconstituted CFTR control (S9) cell line cultured in various ionic conditions. This study showed that IB3-1 and S9 cells expressed the NADPH oxidases (NOXs) DUOX1/2 and NOX2 at the same level. Nevertheless, several parameters participating in oxidative stress (increased ROS production and apoptosis, decreased total thiol content) were observed in IB3-1 cells cultured in hypertonic environment as compared to S9 cells and were inhibited by diphenyleneiodonium (DPI), a well-known inhibitor of NOXs; besides, increased production of the proinflammatory cytokines IL-6 and IL-8 by IB3-1 cells was also inhibited by DPI as compared to S9 cells. Furthermore, calcium ionophore (A23187), which upregulates DUOX and NOX2 activities, strongly induced oxidative stress and IL-8 and IL-6 overexpression in IB3-1 cells. All these events were suppressed by DPI, supporting the involvement of NOXs in the oxidative stress, which can upregulate proinflammatory cytokine production by the airway CFTR-deficient cells and trigger early pulmonary inflammation in CF patients. PMID:24049649

  14. Ghrelin-related peptides do not modulate vasodilator nitric oxide production or superoxide levels in mouse systemic arteries.

    Science.gov (United States)

    Ku, Jacqueline M; Sleeman, Mark W; Sobey, Christopher G; Andrews, Zane B; Miller, Alyson A

    2016-04-01

    The ghrelin gene is expressed in the stomach where it ultimately encodes up to three peptides, namely, acylated ghrelin, des-acylated ghrelin and obestatin, which all have neuroendocrine roles. Recently, the authors' reported that these peptides have important physiological roles in positively regulating vasodilator nitric oxide (NO) production in the cerebral circulation, and may normally suppress superoxide production by the pro-oxidant enzyme, Nox2-NADPH oxidase. To date, the majority of studies using exogenous peptides infer that they may have similar roles in the systemic circulation. Therefore, this study examined whether exogenous and endogenous ghrelin-related peptides modulate NO production and superoxide levels in mouse mesenteric arteries and/or thoracic aorta. Using wire myography, it was found that application of exogenous acylated ghrelin, des-acylated ghrelin or obestatin to mouse thoracic aorta or mesenteric arteries failed to elicit a vasorelaxation response, whereas all three peptides elicited vasorelaxation responses of rat thoracic aorta. Also, none of the peptides modulated mouse aortic superoxide levels as measured by L-012-enhanced chemiluminescence. Next, it was found that NO bioactivity and superoxide levels were unaffected in the thoracic aorta from ghrelin-deficient mice when compared with wild-type mice. Lastly, using novel GHSR-eGFP reporter mice in combination with double-labelled immunofluorescence, no evidence was found for the growth hormone secretagogue receptor (GHSR1a) in the throracic aorta, which is the only functional ghrelin receptor identified to date. Collectively these findings demonstrate that, in contrast to systemic vessels of other species (e.g. rat and human) and mouse cerebral vessels, ghrelin-related peptides do not modulate vasodilator NO production or superoxide levels in mouse systemic arteries. © 2016 John Wiley & Sons Australia, Ltd.

  15. Skewing of X-chromosome inactivation in three generations of carriers with X-linked chronic granulomatous disease within one family

    NARCIS (Netherlands)

    Köker, M. Y.; Sanal, O.; de Boer, M.; Tezcan, I.; Metin, A.; Tan, C.; Ersoy, F.; Roos, D.

    2006-01-01

    BACKGROUND: Chronic granulomatous disease (CGD) is an inherited disorder of the innate immune system characterized by impairment of intracellular microbicidal activity of phagocytes. Mutations in one of the four known NADPH-oxidase components preclude generation of superoxide and related

  16. NADPH oxidase 4 mediates insulin-stimulated HIF-1α and VEGF expression, and angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Dan Meng

    Full Text Available Acute intensive insulin therapy causes a transient worsening of diabetic retinopathy in type 1 diabetes patients and is related to VEGF expression. Reactive oxygen species (ROS have been shown to be involved in HIF-1α and VEGF expression induced by insulin, but the role of specific ROS sources has not been fully elucidated. In this study we examined the role of NADPH oxidase subunit 4 (Nox4 in insulin-stimulated HIF-1α and VEGF expression, and angiogenic responses in human microvascular endothelial cells (HMVECs. Here we demonstrate that knockdown of Nox4 by siRNA reduced insulin-stimulated ROS generation, the tyrosine phosphorylation of IR-β and IRS-1, but did not change the serine phosphorylation of IRS-1. Nox4 gene silencing had a much greater inhibitory effect on insulin-induced AKT activation than ERK1/2 activation, whereas it had little effect on the expression of the phosphatases such as MKP-1 and SHIP. Inhibition of Nox4 expression inhibited the transcriptional activity of VEGF through HIF-1. Overexpression of wild-type Nox4 was sufficient to increase VEGF transcriptional activity, and further enhanced insulin-stimulated the activation of VEGF. Downregulation of Nox4 expression decreased insulin-stimulated mRNA and protein expression of HIF-1α, but did not change the rate of HIF-1α degradation. Inhibition of Nox4 impaired insulin-stimulated VEGF expression, cell migration, cell proliferation, and tube formation in HMVECs. Our data indicate that Nox4-derived ROS are essential for HIF-1α-dependent VEGF expression, and angiogenesis in vitro induced by insulin. Nox4 may be an attractive therapeutic target for diabetic retinopathy caused by intensive insulin treatment.

  17. The oxidative burst reaction in mammalian cells depends on gravity.

    Science.gov (United States)

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  18. Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Camila P. Jordão

    Full Text Available OBJECTIVE: We aimed to determine whether aerobic training decreases superoxide levels, increases nitric oxide levels, and improves endothelium-dependent vasodilation in the aortas of spontaneously hypertensive rats. METHODS: Spontaneously hypertensive rats (SHR and Wistar Kyoto rats (WKY were distributed into 2 groups: sedentary (SHRsd and WKYsd, n=10 each and swimming-trained (SHRtr, n=10 and WKYtr, n=10, respectively. The trained group participated in training sessions 5 days/week for 1 h/day with an additional work load of 4% of the animal’s body weight. After a 10-week sedentary or aerobic training period, the rats were euthanized. The thoracic aortas were removed to evaluate the vasodilator response to acetylcholine (10-10 to 10-4 M with or without preincubation with L-NG-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M in vitro. The aortic tissue was also used to assess the levels of the endothelial nitric oxide synthase and nicotinamide adenine dinucleotide oxidase subunit isoforms 1 and 4 proteins, as well as the superoxide and nitrite contents. Blood pressure was measured using a computerized tail-cuff system. RESULTS: Aerobic training significantly increased the acetylcholine-induced maximum vasodilation observed in the SHRtr group compared with the SHRsd group (85.9±4.3 vs. 71.6±5.2%. Additionally, in the SHRtr group, superoxide levels were significantly decreased, nitric oxide bioavailability was improved, and the levels of the nicotinamide adenine dinucleotide oxidase subunit isoform 4 protein were decreased compared to the SHRsd group. Moreover, after training, the blood pressure of the SHRtr group decreased compared to the SHRsd group. Exercise training had no effect on the blood pressure of the WKYtr group. CONCLUSIONS: In SHR, aerobic swim training decreased vascular superoxide generation by nicotinamide adenine dinucleotide oxidase subunit isoform 4 and increased nitric oxide bioavailability, thereby improving

  19. siRNA-based Analysis of the Abrogation of the Protective Function of Membrane-associated Catalase of Tumor Cells.

    Science.gov (United States)

    Bauer, Georg

    2017-02-01

    Tumor cells, in contrast to non-malignant cells, show sustained expression of membrane-associated NADPH oxidase-1 and therefore generate extracellular superoxide anions and their dismutation product H 2 O 2 In order to prevent intercellular reactive oxygen species/reactive nitrogen species (ROS/RNS)-dependent apoptosis-inducing signaling, tumor cells need to express membrane-associated catalase that interferes with HOCl and nitric oxide/peroxynitrite signaling. Catalase is attached to tumor cells through the activity of transglutaminase-2 and is prevented from superoxide anion-dependent inhibition through coexpression of membrane-associated superoxide dismutase. Therefore, specific inhibition of membrane-associated catalase should reactivate intercellular ROS/RNS-dependent apoptosis-inducing signaling. These processes are analyzed here through small interfering RNA-mediated knockdown of essential signaling compounds. This allows to establish a rather comprehensive picture of intercellular ROS/RNS signaling that may be instrumental for future therapeutic approaches. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy.

    Science.gov (United States)

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M

    2010-03-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.

  1. ASIC-like currents in freshly isolated cerebral artery smooth muscle cells are inhibited by endogenous oxidase activity.

    Science.gov (United States)

    Chung, Wen-Shuo; Farley, Jerry M; Drummond, Heather A

    2011-01-01

    The aim of this study was to determine if VSMC ASIC-like currents are regulated by oxidative state. We used whole-cell patch clamp of isolated mouse cerebral VSMCs to determine if 1) reducing agents, such as DTT and GSH, and 2) inhibition of endogenous oxidase activity from NADPH and Xanthine oxidases potentiate active currents and activate electrically silent currents. Pretreatment with 2 mM DTT or GSH, increased the mean peak amplitude of ASIC-like currents evoked by pH 6.0 from 0.4 ± 0.1 to 14.9 ± 3.6 pA/pF, and from 0.9 ± 0.3 to 11.3 ± 2.4 pA/pF, respectively. Pretreatment with apocynin, a NADPH oxidase inhibitor, mimics the effect of the reducing agents, with the mean peak current amplitude increased from 0.9 ± 0.5 to 7.0 ± 2.6 pA/pF and from 0.5 ± 0.2 to 26.4 ± 6.8 pA/pF by 50 and 200 μM apocynin, respectively. Pretreatment with allopurinol, a xanthine oxidase inhibitor, also potentiates the VSMC ASIC-like activity. These findings suggest that VSMC ASIC-like channels are regulated by oxidative state and may be inhibited by basal endogenous oxidative sources such as NADPH and xanthine oxidase. Copyright © 2011 S. Karger AG, Basel.

  2. Effects of stevia on synaptic plasticity and NADPH oxidase level of CNS in conditions of metabolic disorders caused by fructose.

    Science.gov (United States)

    Chavushyan, V A; Simonyan, K V; Simonyan, R M; Isoyan, A S; Simonyan, G M; Babakhanyan, M A; Hovhannisyian, L E; Nahapetyan, Kh H; Avetisyan, L G; Simonyan, M A

    2017-12-19

    Excess dietary fructose intake associated with metabolic syndrome and insulin resistance and increased risk of developing type 2 diabetes. Previous animal studies have reported that diabetic animals have significantly impaired behavioural and cognitive functions, pathological synaptic function and impaired expression of glutamate receptors. Correction of the antioxidant status of laboratory rodents largely prevents the development of fructose-induced plurimetabolic changes in the nervous system. We suggest a novel concept of efficiency of Stevia leaves for treatment of central diabetic neuropathy. By in vivo extracellular studies induced spike activity of hippocampal neurons during high frequency stimulation of entorhinal cortex, as well as neurons of basolateral amygdala to high-frequency stimulation of the hippocampus effects of Stevia rebaudiana Bertoni plant evaluated in synaptic activity in the brain of fructose-enriched diet rats. In the conditions of metabolic disorders caused by fructose, antioxidant activity of Stevia rebaudiana was assessed by measuring the NOX activity of the hippocampus, amygdala and spinal cord. In this study, the characteristic features of the metabolic effects of dietary fructose on synaptic plasticity in hippocampal neurons and basolateral amygdala and the state of the NADPH oxidase (NOX) oxidative system of these brain formations are revealed, as well as the prospects for development of multitarget and polyfunctional phytopreparations (with adaptogenic, antioxidant, antidiabetic, nootropic activity) from native raw material of Stevia rebaudiana. Stevia modulates degree of expressiveness of potentiation/depression (approaches but fails to achieve the norm) by shifting the percentage balance in favor of depressor type of responses during high-frequency stimulation, indicating its adaptogenic role in plasticity of neural networks. Under the action of fructose an increase (3-5 times) in specific quantity of total fraction of NOX

  3. Voltage-gated proton channel is expressed on phagosomes

    International Nuclear Information System (INIS)

    Okochi, Yoshifumi; Sasaki, Mari; Iwasaki, Hirohide; Okamura, Yasushi

    2009-01-01

    Voltage-gated proton channel has been suggested to help NADPH oxidase activity during respiratory burst of phagocytes through its activities of compensating charge imbalance and regulation of pH. In phagocytes, robust production of reactive oxygen species occurs in closed membrane compartments, which are called phagosomes. However, direct evidence for the presence of voltage-gated proton channels in phagosome has been lacking. In this study, the expression of voltage-gated proton channels was studied by Western blot with the antibody specific to the voltage-sensor domain protein, VSOP/Hv1, that has recently been identified as the molecular correlate for the voltage-gated proton channel. Phagosomal membranes of neutrophils contain VSOP/Hv1 in accordance with subunits of NADPH oxidases, gp91, p22, p47 and p67. Superoxide anion production upon PMA activation was significantly reduced in neutrophils from VSOP/Hv1 knockout mice. These are consistent with the idea that voltage-gated proton channels help NADPH oxidase in phagocytes to produce reactive oxygen species.

  4. Effects of Greek legume plant extracts on xanthine oxidase, catalase and superoxide dismutase activities.

    Science.gov (United States)

    Spanou, Chrysoula I; Veskoukis, Aristidis S; Stagos, Dimitrios; Liadaki, Kalliopi; Aligiannis, Nectarios; Angelis, Apostolos; Skaltsounis, Alexios-Leandros; Anastasiadi, Maria; Haroutounian, Serkos A; Kouretas, Dimitrios

    2012-03-01

    Legumes are considered to have beneficial health implications, which have been attributed to their phytochemical content. Polyphenols are considered the most important phytochemical compounds extensively studied for their antioxidant properties. The aim of the present study was to examine the effects of potent antioxidant legume plant extracts on xanthine oxidase (XO), catalase (CAT) and superoxide dismutase (SOD) activities. XO exerts a dual role, as it is the major contributor of free radicals during exercise while it generates uric acid, the most potent antioxidant molecule in plasma. CAT and SOD are two of the main enzymes of the antioxidant defence of tissues. We demonstrate that the majority of the extracts inhibited XO activity, but they had no effect on CAT inhibition and SOD induction when used at low concentrations. These results imply that the tested extracts may be considered as possible source of novel XO inhibitors. However, we have shown that allopurinol administration, a known XO inhibitor, before exercise reduces performance and induces oxidative stress in rats. Considering the fact that the extracts examined had an inhibitory effect on XO activity, possibly posing a restriction in their characterization as antioxidants, phytochemical antioxidant administration before exercise should probably be reconsidered.

  5. Hematologically important mutations: The autosomal recessive forms of chronic granulomatous disease (second update)

    NARCIS (Netherlands)

    Roos, Dirk; Kuhns, Douglas B.; Maddalena, Anne; Bustamante, Jacinta; Kannengiesser, Caroline; de Boer, Martin; van Leeuwen, Karin; Köker, M. Yavuz; Wolach, Baruch; Roesler, Joachim; Malech, Harry L.; Holland, Steven M.; Gallin, John I.; Stasia, Marie-José

    2010-01-01

    Chronic granulomatous Disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. The disease is caused by mutations in the genes encoding the components of the leukocyte NADPH oxidase. This enzyme produces superoxide, which is essential in the process of intracellular

  6. Role of nitric oxide and superoxide in Giardia lamblia killing

    Directory of Open Access Journals (Sweden)

    P.D. Fernandes

    1997-01-01

    Full Text Available Giardia lamblia trophozoites were incubated for 2 h with activated murine macrophages, nitric oxide (NO donors or a superoxide anion generator (20 mU/ml xanthine oxidase plus 1 mM xanthine. Activated macrophages were cytotoxic to Giardia trophozoites (~60% dead trophozoites. This effect was inhibited (>90% by an NO synthase inhibitor (200 µM and unaffected by superoxide dismutase (SOD, 300 U/ml. Giardia trophozoites were killed by the NO donors, S-nitroso-acetyl-penicillamine (SNAP and sodium nitroprusside (SNP in a dose-dependent manner (LD50 300 and 50 µM, respectively. A dual NO-superoxide anion donor, 3-morpholino-sydnonimine hydrochloride (SIN-1, did not have a killing effect in concentrations up to 1 mM. However, when SOD (300 U/ml was added simultaneously with SIN-1 to Giardia, a significant trophozoite-killing effect was observed (~35% dead trophozoites at 1 mM. The mixture of SNAP or SNP with superoxide anion, which yields peroxynitrite, abolished the trophozoite killing induced by NO donors. Authentic peroxynitrite only killed trophozoites at very high concentrations (3 mM. These results indicate that NO accounts for Giardia trophozoite killing and this effect is not mediated by peroxynitrite

  7. Pivotal Advance: Eosinophilia in the MES rat strain is caused by a loss-of-function mutation in the gene for cytochrome b(-245), alpha polypeptide (Cyba).

    Science.gov (United States)

    Mori, Masayuki; Li, Guixin; Hashimoto, Maiko; Nishio, Ayako; Tomozawa, Hiroshi; Suzuki, Nobuyoshi; Usami, Shin-ichi; Higuchi, Keiichi; Matsumoto, Kiyoshi

    2009-09-01

    MES is a rat strain that spontaneously develops severe blood eosinophilia as a hereditary trait. Herein, we report that eosinophilia in MES rats is caused by a loss-of-function mutation in the gene for cytochrome b(-245), alpha polypeptide (Cyba; also known as p22(phox)), which is an essential component of the superoxide-generating NADPH oxidase complex. The MES rat has a deletion of four nucleotides, including the 5' splice donor GpT of intron 4 of the Cyba gene. As a consequence of the deletion, a 51-nucleotide sequence of intron 4 is incorporated into the Cyba transcripts. Leukocytes from the MES strain lack both CYBA protein and NADPH oxidase activity. Nevertheless, unlike patients with chronic granulomatous disease, who suffer from infections with pathogens due to similar genetic defects in NADPH oxidase, MES rats retain normal innate immune defense against Staphylococcus aureus infection. This is due to large quantities of peritoneal eosinophils in MES rats, which phagocytose and kill the bacteria. MES rat has a balance defect due to impaired formation of otoconia in the utricles and saccules. Eosinophilia of the MES rat was normalized by introduction of a normal Cyba transgene. The mechanisms by which impairment of NADPH oxidase leads to eosinophilia in the MES rat are elusive. However, our study highlights the essential role of NADPH oxidase in homeostatic regulation of innate immunity beyond conventional microbicidial functions.

  8. Limb Remote Ischemic Postconditioning Reduces Ischemia-Reperfusion Injury by Inhibiting NADPH Oxidase Activation and MyD88-TRAF6-P38MAP-Kinase Pathway of Neutrophils

    Directory of Open Access Journals (Sweden)

    Gangling Chen

    2016-11-01

    Full Text Available Limb remote ischemic postconditioning (LRIP has been confirmed to reduce the ischemia-reperfusion injury but its mechanisms are still not clear. This study clarified the mechanism of LRIP based on the nicotinamide-adenine dinucleotide phosphate (NADPH oxidase and Myeloid differentiation factor 88 (MyD88-Tumor necrosis factor (TNF receptor-associated factor 6 (TRAF6-P38 pathway of neutrophils. Rat middle cerebral artery occlusion (MCAO model was used in this study. Ischemia-reperfusion injury was carried out by MCAO 1.5 h followed by 24 h reperfusion. LRIP operation was performed to the left femoral artery at 0, 1 or 3 h after reperfusion. Behavioral testing, including postural reflex test, vibrissae-elicited forelimb placing test and tail hang test, showed that LRIP operated at 0 h of reperfusion could significantly ameliorate these behavioral scores. Pathological examinations, infarct size, Myeloperoxidase (MPO activity showed that LRIP operated at 0 h of reperfusion could significantly ameliorate the pathological scores, reduce the infarct size and MPO activity in the brain and increase the MPO activity in the left leg. By using Neutrophil counting, immunofluorescence and real-time PCR techniques, we found that LRIP operated at 0 h of reperfusion could reduce neutrophil counts in the peripheral blood and downregulate the activation of neutrophil in the peripheral blood and rat brain. Western blots revealed that MyD88, TRAF6, p38 mitogen-activated protein kinase (p38-MAPK in neutrophils and the phosphorylation of p47phox (Ser 304 and Ser 345 in neutrophil could be downregulated by LRIP. Our study suggests that LRIP inhibits the number and activation of neutrophils in the rat brain and peripheral blood linked to down-regulating the activation of NADPH oxidase in neutrophils by MyD88/TRAF6/p38-MAPK pathway.

  9. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse.

    Science.gov (United States)

    Kücükgöze, Gökhan; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke

    2017-08-01

    Aldehyde oxidases (AOXs) are molybdoflavoenzymes with an important role in the metabolism and detoxification of heterocyclic compounds and aliphatic as well as aromatic aldehydes. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. Four different enzymes, mAOX1, mAOX3, mAOX4, and mAOX2, which are the products of distinct genes, are present in the mouse. A direct and simultaneous comparison of the enzymatic properties and characteristics of the four enzymes has never been performed. In this report, the four catalytically active mAOX enzymes were purified after heterologous expression in Escherichia coli The kinetic parameters of the four mouse AOX enzymes were determined and compared with the use of six predicted substrates of physiologic and toxicological interest, i.e., retinaldehyde, N 1 -methylnicotinamide, pyridoxal, vanillin, 4-(dimethylamino)cinnamaldehyde ( p- DMAC), and salicylaldehyde. While retinaldehyde, vanillin, p- DMAC, and salycilaldehyde are efficient substrates for the four mouse AOX enzymes, N 1 -methylnicotinamide is not a substrate of mAOX1 or mAOX4, and pyridoxal is not metabolized by any of the purified enzymes. Overall, mAOX1, mAOX2, mAOX3, and mAOX4 are characterized by significantly different K M and k cat values for the active substrates. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. With respect to this last point, mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40% in relation to moles of substrate converted, and mAOX1, the homolog to the human enzyme, produces a rate of approximately 30% of superoxide radicals with the same substrate. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    Science.gov (United States)

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways.

    Science.gov (United States)

    Janes, Kali; Esposito, Emanuela; Doyle, Timothy; Cuzzocrea, Salvatore; Tosh, Dillip K; Jacobson, Kenneth A; Salvemini, Daniela

    2014-12-01

    Chemotherapy-induced peripheral neuropathy accompanied by chronic neuropathic pain is the major dose-limiting toxicity of several anticancer agents including the taxane paclitaxel (Taxol). A critical mechanism underlying paclitaxel-induced neuropathic pain is the increased production of peroxynitrite in spinal cord generated in response to activation of the superoxide-generating enzyme, NADPH oxidase. Peroxynitrite in turn contributes to the development of neuropathic pain by modulating several redox-dependent events in spinal cord. We recently reported that activation of the Gi/Gq-coupled A3 adenosine receptor (A3AR) with selective A3AR agonists (ie, IB-MECA) blocked the development of chemotherapy induced-neuropathic pain evoked by distinct agents, including paclitaxel, without interfering with anticancer effects. The mechanism or mechanisms of action underlying these beneficial effects has yet to be explored. We now demonstrate that IB-MECA attenuates the development of paclitaxel-induced neuropathic pain by inhibiting the activation of spinal NADPH oxidase and two downstream redox-dependent systems. The first relies on inhibition of the redox-sensitive transcription factor (NFκB) and mitogen activated protein kinases (ERK and p38) resulting in decreased production of neuroexcitatory/proinflammatory cytokines (TNF-α, IL-1β) and increased formation of the neuroprotective/anti-inflammatory IL-10. The second involves inhibition of redox-mediated posttranslational tyrosine nitration and modification (inactivation) of glia-restricted proteins known to play key roles in regulating synaptic glutamate homeostasis: the glutamate transporter GLT-1 and glutamine synthetase. Our results unravel a mechanistic link into biomolecular signaling pathways employed by A3AR activation in neuropathic pain while providing the foundation to consider use of A3AR agonists as therapeutic agents in patients with chemotherapy-induced peripheral neuropathy. Copyright © 2014

  12. Effects of sphingosine and sphingosine analogues on the free radical production by stimulated neutrophils: ESR and chemiluminescence studies

    Directory of Open Access Journals (Sweden)

    A. Mouithys-Mickalad

    1997-01-01

    Full Text Available Sphingolipids inhibit the activation of the neutrophil (PMN NADPH oxidase by protein kinase C pathway. By electron spin resonance spectroscopy (ESR and chemiluminescence (CL, we studied the effects of sphingosine (SPN and ceramide analogues on phorbol 12-myristate 13-acetate (PMA, 5 × 10-7M stimulated PMN (6 × 106 cells. By ESR with spin trapping (100 mM DMPO: 5,5-dimethyl-1-pyrroline-Noxide, we showed that SPN (5 to 8 × 10-6M, C2-ceramide (N-acetyl SPN and C6-ceramide (N-hexanoyl SPN at the final concentration of 2 × 10-5 and 2 × 10-4M inhibit the production of free radicals by stimulated PMN. The ESR spectrum of stimulated PMN was that of DMPO-superoxide anion spin adduct. Inhibition by 5 × 10-6M SPN was equivalent to that of 30 U/ml SOD. SPN (5 to 8 × 10-6M has no effect on in vitro systems generating superoxide anion (xanthine 50 mM/xanthine oxidase 110 mU/ml or hydroxyl radical (Fenton reaction: 88 mM H2O2, 0.01 mM Fe2+ and 0.01 mM EDTA. SPN and N-acetyl SPN also inhibited the CL of PMA stimulated PMN in a dose dependent manner (from 2 × 10-6 to 10-5M, but N-hexanoyl SPN was less active (from 2 × 10-5 to 2 × 10-4M. These effects were compared with those of known PMN inhibitors, superoxide dismutase, catalase and azide. SPN was a better inhibitor compared with these agents. The complete inhibition by SPN of ESR signal and CL of stimulated PMN confirms that this compound or one of its metabolites act at the level of NADPH-oxidase, the key enzyme responsible for production of oxygen-derived free radicals.

  13. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-kB, and AP-1 pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Khoi, Pham Ngoc; Ung, Trong Thuan; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2015-01-01

    Highlights: • Cadmium induces MMP-9 expression through NADPH oxidase-derived ROS. • Cadmium induces MMP-9 through EGFR-mediated Akt, Erk1/2 and JNK1/2 signaling pathways. • Akt, MAPKs (Erk1/2 and JNK1/2) functioned as upstream signals of NF-kB and AP-1 respectively, in cadmium-induced MMP-9 in endothelial cells. • ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression in ECV304 cells. - Abstract: Cadmium (Cd), a widespread cumulative pollutant, is a known human carcinogen, associated with inflammation and tumors. Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in tumor metastasis; however, the mechanisms underlying the MMP-9 expression induced by Cd remain obscure in human endothelial cells. Here, Cd elevated MMP-9 expression in dose- and time-dependent manners in human endothelial cells. Cd increased ROS production and the ROS-producing NADPH oxidase. Cd translocates p47 phox , a key subunit of NADPH oxidase, to the cell membrane. Cd also activated the phosphorylation of EGFR, Akt, Erk1/2, and JNK1/2 in addition to promoting NF-kB and AP-1 binding activities. Specific inhibitor and mutagenesis studies showed that EGFR, Akt, Erk1/2, JNK1/2 and transcription factors NF-κB and AP-1 were related to Cd-induced MMP-9 expression in endothelial cells. Akt, Erk1/2, and JNK1/2 functioned as upstream signals in the activation of NF-κB and AP-1, respectively. In addition, N-acetyl-L-cystein (NAC), diphenyleneiodonium chloride (DPI) and apocynin (APO) inhibited the Cd-induced activation of EGFR, Akt, Erk1/2, JNK1/2, and p38 MAPK, indicating that ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression. At present, it states that Cd displayed marked invasiveness in ECV304 cells, which was partially abrogated by MMP-9 neutralizing antibodies. These results demonstrated that Cd induces MMP-9 expression via ROS-dependent EGFR- > Erk1/2, JNK1/2- > AP-1 and EGFR- > Akt- > NF-κB signaling pathways and, in turn

  14. Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450

    DEFF Research Database (Denmark)

    Laursen, Tomas; Jensen, Kenneth; Møller, Birger Lindberg

    2011-01-01

    The NADPH-dependent cytochrome P450 reductase (CPR) is a key electron donor to eucaryotic cytochromes P450 (CYPs). CPR shuttles electrons from NADPH through the FAD and FMN-coenzymes into the iron of the prosthetic heme-group of the CYP. In the course of these electron transfer reactions, CPR und...... to serve as an effective electron transferring "nano-machine"....

  15. Effect of NADPH oxidase inhibitor-apocynin on the expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 exposed renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Zhiming Li

    2015-01-01

    Full Text Available This study was designed to evaluate whether NADPH oxidase inhibitor (apocynin preconditioning induces expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 to protect against renal ischemia/reperfusion (I/R injury (RI/RI in rats. Rats were pretreated with 50 mg/kg apocynin, then subjected to 45 min ischemia and 24 h reperfusion. The results indicated that apocynin preconditioning improved the recovery of renal function and nitroso-redox balance, reduced oxidative stress injury and inflammation damage, and upregulated expression of SHP-1 as compared to RI/RI group. Therefore our study demonstrated that apocynin preconditioning provided a protection to the kidney against I/R injury in rats partially through inducing expression of SHP-1.

  16. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  17. Identification of NoxD/Pro41 as the homologue of the p22phox NADPH oxidase subunit in fungi.

    Science.gov (United States)

    Lacaze, Isabelle; Lalucque, Hervé; Siegmund, Ulrike; Silar, Philippe; Brun, Sylvain

    2015-03-01

    NADPH oxidases (Nox) are membrane complexes that produce O2(-). Researches in mammals, plants and fungi highlight the involvement of Nox-generated ROS in cell proliferation, differentiation and defense. In mammals, the core enzyme gp91(phox)/Nox2 is associated with p22(phox) forming the flavocytochrome b558 ready for activation by a cytosolic complex. Intriguingly, no homologue of the p22(phox) gene has been found in fungal genomes, questioning how the flavoenzyme forms. Using whole genome sequencing combined with phylogenetic analysis and structural studies, we identify the fungal p22(phox) homologue as being mutated in the Podospora anserina mutant IDC(509). Functional studies show that the fungal p22(phox), PaNoxD, acts along PaNox1, but not PaNox2, a second fungal gp91(phox) homologue. Finally, cytological analysis of functional tagged versions of PaNox1, PaNoxD and PaNoxR shows clear co-localization of PaNoxD and PaNox1 and unravel a dynamic assembly of the complex in the endoplasmic reticulum and in the vacuolar system. © 2014 John Wiley & Sons Ltd.

  18. Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart.

    Science.gov (United States)

    Gharib, Mohamed; Tao, Huan; Fungwe, Thomas V; Hajri, Tahar

    2016-01-01

    Obesity is often associated with a state of oxidative stress and increased lipid deposition in the heart. More importantly, obesity increases lipid influx into the heart and induces excessive production of reactive oxygen species (ROS) leading to cell toxicity and metabolic dysfunction. Cluster differentiating 36 (CD36) protein is highly expressed in the heart and regulates lipid utilization but its role in obesity-associated oxidative stress is still not clear. The aim of this study was to determine the impact of CD36 deficiency on cardiac steatosis, oxidative stress and lipotoxicity associated with obesity. Studies were conducted in control (Lean), obese leptin-deficient (Lepob/ob) and leptin-CD36 double null (Lepob/obCD36-/-) mice. Compared to lean mice, cardiac steatosis, and fatty acid (FA) uptake and oxidation were increased in Lepob/ob mice, while glucose uptake and oxidation was reduced. Moreover, insulin resistance, oxidative stress markers and NADPH oxidase-dependent ROS production were markedly enhanced. This was associated with the induction of NADPH oxidase expression, and increased membrane-associated p47phox, p67phox and protein kinase C. Silencing CD36 in Lepob/ob mice prevented cardiac steatosis, increased insulin sensitivity and glucose utilization, but reduced FA uptake and oxidation. Moreover, CD36 deficiency reduced NADPH oxidase activity and decreased NADPH oxidase-dependent ROS production. In isolated cardiomyocytes, CD36 deficiency reduced palmitate-induced ROS production and normalized NADPH oxidase activity. CD36 deficiency prevented obesity-associated cardiac steatosis and insulin resistance, and reduced NADPH oxidase-dependent ROS production. The study demonstrates that CD36 regulates NADPH oxidase activity and mediates FA-induced oxidative stress.

  19. Serotonin disturbs colon epithelial tolerance of commensal E. coli by increasing NOX2-derived superoxide.

    Science.gov (United States)

    Banskota, Suhrid; Regmi, Sushil Chandra; Gautam, Jaya; Gurung, Pallavi; Lee, Yu-Jeong; Ku, Sae Kwang; Lee, Jin-Hyung; Lee, Jintae; Chang, Hyeun Wook; Park, Sang Joon; Kim, Jung-Ae

    2017-05-01

    Adherent-invasive E. coli colonization and Toll-like receptor (TLR) expression are increased in the gut of inflammatory bowel disease (IBD) patients. However, the underlying mechanism of such changes has not been determined. In the current study, it was examined whether gut serotonin (5-hydroxytryptamine, 5-HT) can induce adherent-invasive E. coli colonization and increase TLR expression. In a co-culture system, commensal E. coli strain (BW25113, BW) adhered minimally to colon epithelial cells, but this was significantly enhanced by 5-HT to the level of a pathogenic strain (EDL933). Without inducing bacterial virulence, such as, biofilm formation, 5-HT enhanced BW-induced signaling in colon epithelial cells, that is, NADPH oxidase (NOX)-dependent superoxide production, the up-regulations of IL-8, TLR2, TLR4, and ICAM-1, and the down-regulations of E-cadherin and claudin-2. In a manner commensurate with these gene modulations, BW induced an increase in NF-κB and a decrease in GATA reporter signals in colon epithelial cells. However, 5-HT-enhanced BW adhesion and colon epithelial responses were blocked by knock-down of NOX2, TLR2, or TLR4. In normal mice, 5-HT induced the invasion of BW into gut submucosa, and the observed molecular changes were similar to those observed in vitro, except for significant increases in TNFα and IL-1β, and resulted in death. In dextran sulfate sodium-induced colitis mice (an IBD disease model), in which colonic 5-HT levels were markedly elevated, BW administration induced death in along with large amount of BW invasion into colon submucosa, and time to death was negatively related to the amount of BW injected. Taken together, our results demonstrate that 5-HT induces the invasion of commensal E. coli into gut submucosa by amplifying commensal bacteria-induced epithelial signaling (superoxide production and the inductions of NOX2 and TLR2/TLR4). The authors suggest that these changes may constitute the molecular basis for the

  20. Reduction of NADPH-oxidase activity ameliorates the cardiovascular phenotype in a mouse model of Williams-Beuren Syndrome.

    Directory of Open Access Journals (Sweden)

    Victoria Campuzano

    2012-02-01

    Full Text Available A hallmark feature of Williams-Beuren Syndrome (WBS is a generalized arteriopathy due to elastin deficiency, presenting as stenoses of medium and large arteries and leading to hypertension and other cardiovascular complications. Deletion of a functional NCF1 gene copy has been shown to protect a proportion of WBS patients against hypertension, likely through reduced NADPH-oxidase (NOX-mediated oxidative stress. DD mice, carrying a 0.67 Mb heterozygous deletion including the Eln gene, presented with a generalized arteriopathy, hypertension, and cardiac hypertrophy, associated with elevated angiotensin II (angII, oxidative stress parameters, and Ncf1 expression. Genetic (by crossing with Ncf1 mutant and/or pharmacological (with ang II type 1 receptor blocker, losartan, or NOX inhibitor apocynin reduction of NOX activity controlled hormonal and biochemical parameters in DD mice, resulting in normalized blood pressure and improved cardiovascular histology. We provide strong evidence for implication of the redox system in the pathophysiology of the cardiovascular disease in a mouse model of WBS. The phenotype of these mice can be ameliorated by either genetic or pharmacological intervention reducing NOX activity, likely through reduced angII-mediated oxidative stress. Therefore, anti-NOX therapy merits evaluation to prevent the potentially serious cardiovascular complications of WBS, as well as in other cardiovascular disorders mediated by similar pathogenic mechanism.

  1. Fetal–maternal interface impedance parallels local NADPH oxidase related superoxide production

    Directory of Open Access Journals (Sweden)

    L. Guedes-Martins

    2015-08-01

    The study provides evidence favoring that placental bed NOX activity parallels UtA PI enhancement and suggests that an excess in oxidation underlies the development of pregnancy disorders coursing with enhanced UtA impedance.

  2. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus.

    Science.gov (United States)

    Hamed, Saher; Brenner, Benjamin; Aharon, Anat; Daoud, Deeb; Roguin, Ariel

    2009-10-30

    The function of endothelial progenitor cells (EPCs), which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO) and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD), the enzyme that neutralizes superoxide anion (O2-). Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. EPCs from diabetic patients generated more O2-, had higher NAD(P)H oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  3. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress

    Directory of Open Access Journals (Sweden)

    Xiaohui eLi

    2015-06-01

    Full Text Available NADPH oxidases (also known as respiratory burst oxidase homologues, Rbohs are the enzymes that catalyze the generation of reactive oxygen species (ROS in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing (VIGS-based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of each of other SlRbohs did not affect the resistance. The SlRbohB-silenced plants accumulated more ROS and attenuated expression of defense genes after infection of B. cinerea than the nonsilenced plants. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI. Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI and drought tolerance in tomato.

  4. The inhibition of superoxide production in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2003-05-01

    A substantial body of research exists to support the production of growth hormone by cells of the immune system. However, the function and mechanism of action of lymphocyte-derived growth hormone remain largely unelucidated. Since, it has been found that exogenous growth hormone (GH) primes neutrophils for the production of reactive oxygen intermediates (ROI) and in particular superoxide (O2-), we investigated the role of GH on the production of O2- in T cells. Furthermore, we examined whether endogenous and exogenous GH act similarly. Our studies show that overexpression of GH in EL4, a T-cell lymphoma cell line, results in a decrease in the production of O2- compared to control cells, as detected using the fluorescent dye, dihydroethidium. O2- production in control cells was not affected by treatment with inhibitors of xanthine oxidase or a non-specific NADPH-oxidase inhibitor. However, treatment with diallyl sulfide, an inhibitor of cytochrome P450 2E1 mimicked the reduction in O2- production seen in cells overexpressing GH. Although no significant change could be detected in CYP2E1 protein levels, CYP2E1 activity was found to be greater in control EL4 than in cells overexpressing GH. Both the decrease in O2- production and the lower CYP2E1 activity in GH overexpressing cells could be abrogated by treatment with N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase. The overexpression of GH protects cells from apoptosis induced by isoniazid, a CYP2E1 inducer, suggesting a role for nitric oxide as a mediator in the regulation of xenobiotic metabolism and apoptosis-protection by lymphocyte GH.

  5. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Rao, M.V.; Paliyath, G.; Ormrod, D.P.

    1996-01-01

    Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O 3 ) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O 3 -induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O 3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O 3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O 3 , enhanced the activation oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O 3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O 3 , UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. 10 figs., 4 tabs

  6. Immobilization of xanthine oxidase on a polyaniline silicone support.

    Science.gov (United States)

    Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B

    1996-03-01

    A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.

  7. Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells.

    Science.gov (United States)

    Tesoriere, L; Attanzio, A; Allegra, M; Gentile, C; Livrea, M A

    2014-02-01

    Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1β, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1β brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-κB, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5-25 μM), and IL-1β prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1β also prevented the IL-1β-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-κB was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level.

  8. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II

  9. 3',4'-Dihydroxyflavonol reduces superoxide and improves nitric oxide function in diabetic rat mesenteric arteries.

    Directory of Open Access Journals (Sweden)

    Chen-Huei Leo

    Full Text Available 3',4'-Dihydroxyflavonol (DiOHF is an effective antioxidant that acutely preserves nitric oxide (NO activity in the presence of elevated reactive oxygen species (ROS. We hypothesized that DiOHF treatment (7 days, 1 mg/kg per day s.c. would improve relaxation in mesenteric arteries from diabetic rats where endothelial dysfunction is associated with elevated oxidant stress.In mesenteric arteries from diabetic rats there was an increase in ROS, measured by L-012 and 2',7'-dichlorodihydrofluorescein diacetate fluorescence. NADPH oxidase-derived superoxide levels, assayed by lucigenin chemiluminescence, were also significantly increased in diabetic mesenteric arteries (diabetes, 4892±946 counts/mg versus normal 2486±344 counts/mg, n = 7-10, p<0.01 associated with an increase in Nox2 expression but DiOHF (2094±300 counts/mg, n = 10, p<0.001 reversed that effect. Acetylcholine (ACh-induced relaxation of mesenteric arteries was assessed using wire myography (pEC(50 = 7.94±0.13 n = 12. Diabetes significantly reduced the sensitivity to ACh and treatment with DiOHF prevented endothelial dysfunction (pEC(50, diabetic 6.86±0.12 versus diabetic+DiOHF, 7.49±0.13, n = 11, p<0.01. The contribution of NO versus endothelium-derived hyperpolarizing factor (EDHF to ACh-induced relaxation was assessed by evaluating responses in the presence of TRAM-34+apamin+iberiotoxin or N-nitro-L-arginine+ODQ respectively. Diabetes impaired the contribution of both NO (maximum relaxation, R(max diabetic 24±7 versus normal, 68±10, n = 9-10, p<0.01 and EDHF (pEC(50, diabetic 6.63±0.15 versus normal, 7.14±0.12, n = 10-11, p<0.01 to endothelium-dependent relaxation. DiOHF treatment did not significantly affect the EDHF contribution but enhanced NO-mediated relaxation (R(max 69±6, n = 11, p<0.01. Western blotting demonstrated that diabetes also decreased expression and increased uncoupling of endothelial NO synthase (eNOS. Treatment of the

  10. Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Bo Young Jeong

    Full Text Available Contrast-induced acute kidney injury (CIAKI is a leading cause of acute kidney injury following radiographic procedures. Intrarenal oxidative stress plays a critical role in CIAKI. Nicotinamide adenine dinucleotide 3-phosphate (NADPH oxidases (Noxs are important sources of reactive oxygen species (ROS. Among the various types of Noxs, Nox4 is expressed predominantly in the kidney in rodents. Here, we evaluated the role of Nox4 and benefit of Nox4 inhibition on CIAKI using in vivo and in vitro models. HK-2 cells were treated with iohexol, with or without Nox4 knockdown, or the most specific Nox1/4 inhibitor (GKT137831. Effects of Nox4 inhibition on CIAKI mice were examined. Expression of Nox4 in HK-2 cells was significantly increased following iohexol exposure. Silencing of Nox4 rescued the production of ROS, downregulated pro-inflammatory markers (particularly phospho-p38 implicated in CIAKI, and reduced Bax and caspase 3/7 activity, which resulted in increased cellular survival in iohexol-treated HK-2 cells. Pretreatment with GKT137831 replicated these effects by decreasing levels of phospho-p38. In a CIAKI mouse model, even though the improvement of plasma blood urea nitrogen was unclear, pretreatment with GKT137831 resulted in preserved structure, reduced expression of 8-hydroxy-2'-deoxyguanosine (8OHdG and kidney injury molecule-1 (KIM-1, and reduced number of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. These results suggest Nox4 as a key source of reactive oxygen species responsible for CIAKI and provide a novel potential option for prevention of CIAKI.

  11. SUPEROXIDE-DEPENDENT IRON UPTAKE: A NEW ROLE FOR ANION EXCHANGE PROTEIN 2

    Science.gov (United States)

    Lung cells import iron across the plasma membrane as ferrous (Fe2+) ion by incompletely understood mechanisms. We tested the hypothesis that human bronchial epithelial (HBE) cells import non-transferrin-bound iron (NTBI) using superoxide-dependent ferri-reductase activity involvi...

  12. Two-stage gene regulation of the superoxide stress response soxRS system in Escherichia coli.

    Science.gov (United States)

    Nunoshiba, T

    1996-01-01

    All organisms have adapted to environmental changes by acquiring various functions controlled by gene regulation. In bacteria, a number of specific responses have been found to confer cell survival in various nutrient-limited conditions, and under physiological stresses such as high or low temperature, extreme pH, radiation, and oxidation (for review, see Neidhardt et al., 1987). In this article, I introduce an Escherichia coli (E. coli) global response induced by superoxide stress, the soxRS regulon. The functions controlled by this system consist of a wide variety of enzymes such as manganese-containing SOD (Mn-SOD); glucose 6-phosphate dehydrogenase (G6PD), the DNA repair enzyme endonuclease IV, fumarase C, NADPH:ferredoxin oxidoreductase, and aconitase. This response is positively regulated by a two-stage control system in which SoxR iron-sulfur protein senses exposure to superoxide and nitric oxide, and then activates transcription of the soxS gene, whose product stimulates the expression of the regulon genes. Our recent finding indicates that soxS transcription is initiated in a manner dependent on the rpoS gene encoding RNA polymerase sigma factor, theta s, in response to entering the stationary phase of growth. With this information, mechanisms for prokaryotic coordinating gene expression in response to superoxide stress and in stationary phase are discussed.

  13. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Stavros Selemidis

    Full Text Available Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4 PFU influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y mice resulted in significantly greater: loss of bodyweight (Day 3; BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+ and CD4(+ T lymphocytes, and of Tregs were similar between WT and Nox1(-/y mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear

  14. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity.

    Science.gov (United States)

    Rodriguez-Mateos, Ana; Rendeiro, Catarina; Bergillos-Meca, Triana; Tabatabaee, Setareh; George, Trevor W; Heiss, Christian; Spencer, Jeremy Pe

    2013-11-01

    There are very limited data regarding the effects of blueberry flavonoid intake on vascular function in healthy humans. We investigated the impact of blueberry flavonoid intake on endothelial function in healthy men and assessed potential mechanisms of action by the assessment of circulating metabolites and neutrophil NADPH oxidase activity. Two randomized, controlled, double-blind, crossover human-intervention trials were conducted with 21 healthy men. Initially, the impact of blueberry flavonoid intake on flow-mediated dilation (FMD) and polyphenol absorption and metabolism was assessed at baseline and 1, 2, 4, and 6 h after consumption of blueberry containing 766, 1278, and 1791 mg total blueberry polyphenols or a macronutrient- and micronutrient-matched control drink (0 mg total blueberry polyphenols). Second, an intake-dependence study was conducted (from baseline to 1 h) with 319, 637, 766, 1278, and 1791 mg total blueberry polyphenols and a control. We observed a biphasic time-dependent increase in FMD, with significant increases at 1-2 and 6 h after consumption of blueberry polyphenols. No significant intake-dependence was observed between 766 and 1791 mg. However, at 1 h after consumption, FMD increased dose dependently to ≤766 mg total blueberry polyphenol intake, after which FMD plateaued. Increases in FMD were closely linked to increases in circulating metabolites and by decreases in neutrophil NADPH oxidase activity at 1-2 and 6 h. Blueberry intake acutely improves vascular function in healthy men in a time- and intake-dependent manner. These benefits may be mechanistically linked to the actions of circulating phenolic metabolites on neutrophil NADPH oxidase activity. This trial was registered at clinicaltrials.gov as NCT01292954 and NCT01829542.

  15. Cellular antioxidant effects of atorvastatin in vitro and in vivo.

    Science.gov (United States)

    Wassmann, Sven; Laufs, Ulrich; Müller, Kirsten; Konkol, Christian; Ahlbory, Katja; Bäumer, Anselm T; Linz, Wolfgang; Böhm, Michael; Nickenig, Georg

    2002-02-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) may exert direct effects on vascular cells and beneficially influence endothelial dysfunction. Because reactive oxygen species (ROS) may lead to vascular damage and dysfunction, we investigated the effect of atorvastatin on ROS production and the underlying mechanisms in vitro and in vivo. Cultured rat aortic vascular smooth muscle cells were incubated with 10 micromol/L atorvastatin. Angiotensin II-induced and epidermal growth factor-induced ROS production were significantly reduced by atorvastatin (dichlorofluorescein fluorescence laser microscopy). Atorvastatin downregulated mRNA expression of the NAD(P)H oxidase subunit nox1, whereas p22phox mRNA expression was not significantly altered (reverse transcription-polymerase chain reaction, Northern analysis). Membrane translocation of rac1 GTPase, which is required for the activation of NAD(P)H oxidase, was inhibited by atorvastatin (Western blot). mRNA expression of superoxide dismutase isoforms and glutathione peroxidase was not modified by atorvastatin, whereas catalase expression was upregulated at mRNA and protein levels, resulting in an increased enzymatic activity. Effects of atorvastatin on ROS production and nox1, rac1, and catalase expression were inhibited by L-mevalonate but not by 25-hydroxycholesterol. In addition, spontaneously hypertensive rats were treated with atorvastatin for 30 days. ROS production in aortic segments was significantly reduced in statin-treated rats (lucigenin chemiluminescence). Treatment with atorvastatin reduced vascular mRNA expression of p22phox and nox1 and increased aortic catalase expression. mRNA expression of superoxide dismutases, glutathione peroxidase, and NAD(P)H oxidase subunits gp91phox, p40phox, p47phox, and p67phox remained unchanged. Translocation of rac1 from the cytosol to the cell membrane was also reduced in vivo. Thus, atorvastatin exerts cellular antioxidant effects in cultured rat

  16. Time course investigation of PPARα- and Kupffer cell-dependent effects of WY-14,643 in mouse liver using microarray gene expression

    International Nuclear Information System (INIS)

    Woods, Courtney G.; Kosyk, Oksana; Bradford, Blair U.; Ross, Pamela K.; Burns, Amanda M.; Cunningham, Michael L.; Qu Pingping; Ibrahim, Joseph G.; Rusyn, Ivan

    2007-01-01

    Administration of peroxisome proliferators to rodents causes proliferation of peroxisomes, induction of β-oxidation enzymes, hepatocellular hypertrophy and hyperplasia, with chronic exposure ultimately leading to hepatocellular carcinomas. Many responses associated with peroxisome proliferators are nuclear receptor-mediated events involving peroxisome proliferators-activated receptor alpha (PPARα). A role for nuclear receptor-independent events has also been shown, with evidence of Kupffer cell-mediated free radical production, presumably through NAPDH oxidase, induction of redox-sensitive transcription factors involved in cytokine production and cytokine-mediated cell replication following acute treatment with peroxisome proliferators in rodents. Recent studies have demonstrated, by using p47 phox -null mice which are deficient in NADPH oxidase, that this enzyme is not related to the phenotypic events caused by prolonged administration of peroxisome proliferators. In an effort to determine the timing of the transition from Kupffer cell-to PPARα-dependent modulation of peroxisome proliferator effects, gene expression was assessed in liver from Pparα-null, p47 phox -null and corresponding wild-type mice following treatment with 4-chloro-6-(2,3-xylidino)-pyrimidynylthioacetic acid (WY-14,643) for 8 h, 24 h, 72 h, 1 week or 4 weeks. WY-14,643-induced gene expression in p47 phox -null mouse liver differed substantially from wild-type mice at acute doses and striking differences in baseline expression of immune related genes were evident. Pathway mapping of genes that respond to WY-14,643 in a time- and dose-dependent manner demonstrates suppression of immune response, cell death and signal transduction and promotion of lipid metabolism, cell cycle and DNA repair. Furthermore, these pathways were largely dependent on PPARα, not NADPH oxidase demonstrating a temporal shift in response to peroxisome proliferators. Overall, this study shows that NADPH oxidase-dependent

  17. Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation.

    Science.gov (United States)

    de Freitas-Silva, Larisse; Rodríguez-Ruiz, Marta; Houmani, Hayet; da Silva, Luzimar Campos; Palma, José M; Corpas, Francisco J

    2017-11-01

    Glyphosate is a broad-spectrum systemic herbicide used worldwide. In susceptible plants, glyphosate affects the shikimate pathway and reduces aromatic amino acid synthesis. Using Arabidopsis seedlings grown in the presence of 20μM glyphosate, we analyzed H 2 O 2 , ascorbate, glutathione (GSH) and protein oxidation content as well as antioxidant catalase, superoxide dismutase (SOD) and ascorbate-glutathione cycle enzyme activity. We also examined the principal NADPH-generating system components, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH). Glyphosate caused a drastic reduction in growth parameters and an increase in protein oxidation. The herbicide also resulted in an overall increase in GSH content, antioxidant enzyme activity (catalase and all enzymatic components of the ascorbate-glutathione cycle) in addition to the two oxidative phase enzymes, G6PDH and 6PGDH, in the pentose phosphate pathway involved in NADPH generation. In this study, we provide new evidence on the participation of G6PDH and 6PGDH in the response to oxidative stress induced by glyphosate in Arabidopsis, in which peroxisomal enzymes, such as catalase and glycolate oxidase, are positively affected. We suggest that the NADPH provided by the oxidative phase of the pentose phosphate pathway (OxPPP) should serve to maintain glutathione reductase (GR) activity, thus preserving and regenerating the intracellular GSH pool under glyphosate-induced stress. It is particularly remarkable that the 6PGDH activity was unaffected by pro-oxidant and nitrating molecules such as H 2 0 2 , nitric oxide or peroxynitrite. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    International Nuclear Information System (INIS)

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    The NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra was expressed, purified, and crystallized and X-ray diffraction data of this crystal were collected to 2.2 Å resolution. (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P4 1 2 1 2, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%

  19. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Brenner Benjamin

    2009-10-01

    Full Text Available Abstract Background The function of endothelial progenitor cells (EPCs, which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD, the enzyme that neutralizes superoxide anion (O2-. Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. Methods The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. Results EPCs from diabetic patients generated more O2-, had higher NAD(PH oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Conclusion Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  20. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.

    Directory of Open Access Journals (Sweden)

    Chynna N Broxton

    Full Text Available In eukaryotes, the Cu/Zn superoxide dismutase (SOD1 is a major cytosolic cuproprotein with a small fraction residing in the mitochondrial intermembrane space (IMS to protect against respiratory superoxide. Curiously, the opportunistic human fungal pathogen Candida albicans is predicted to express two cytosolic SODs including Cu/Zn containing SOD1 and manganese containing SOD3. As part of a copper starvation response, C. albicans represses SOD1 and induces the non-copper alternative SOD3. While both SOD1 and SOD3 are predicted to exist in the same cytosolic compartment, their potential role in mitochondrial oxidative stress had yet to be investigated. We show here that under copper replete conditions, a fraction of the Cu/Zn containing SOD1 localizes to the mitochondrial IMS to guard against mitochondrial superoxide. However in copper starved cells, localization of the manganese containing SOD3 is restricted to the cytosol leaving the mitochondrial IMS devoid of SOD. We observe that during copper starvation, an alternative oxidase (AOX form of respiration is induced that is not coupled to ATP synthesis but maintains mitochondrial superoxide at low levels even in the absence of IMS SOD. Surprisingly, the copper-dependent cytochrome c oxidase (COX form of respiration remains high with copper starvation. We provide evidence that repression of SOD1 during copper limitation serves to spare copper for COX and maintain COX respiration. Overall, the complex copper starvation response of C. albicans involving SOD1, SOD3 and AOX minimizes mitochondrial oxidative damage whilst maximizing COX respiration essential for fungal pathogenesis.

  1. Superoxide scavenging activity of pirfenidone-iron complex

    International Nuclear Information System (INIS)

    Mitani, Yoshihiro; Sato, Keizo; Muramoto, Yosuke; Karakawa, Tomohiro; Kitamado, Masataka; Iwanaga, Tatsuya; Nabeshima, Tetsuji; Maruyama, Kumiko; Nakagawa, Kazuko; Ishida, Kazuhiko; Sasamoto, Kazumi

    2008-01-01

    Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide (O 2 ·- ) scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of O 2 ·- produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount of O 2 ·- released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the O 2 ·- scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis

  2. Defects in Nicotinamide-adenine Dinucleotide Phosphate Oxidase Genes NOX1 and DUOX2 in Very Early Onset Inflammatory Bowel DiseaseSummary

    Directory of Open Access Journals (Sweden)

    Patti Hayes

    2015-09-01

    Full Text Available Background & Aims: Defects in intestinal innate defense systems predispose patients to inflammatory bowel disease (IBD. Reactive oxygen species (ROS generated by nicotinamide-adenine dinucleotide phosphate (NADPH oxidases in the mucosal barrier maintain gut homeostasis and defend against pathogenic attack. We hypothesized that molecular genetic defects in intestinal NADPH oxidases might be present in children with IBD. Methods: After targeted exome sequencing of epithelial NADPH oxidases NOX1 and DUOX2 on 59 children with very early onset inflammatory bowel disease (VEOIBD, the identified mutations were validated using Sanger Sequencing. A structural analysis of NOX1 and DUOX2 variants was performed by homology in silico modeling. The functional characterization included ROS generation in model cell lines and in in vivo transduced murine crypts, protein expression, intracellular localization, and cell-based infection studies with the enteric pathogens Campylobacter jejuni and enteropathogenic Escherichia coli. Results: We identified missense mutations in NOX1 (c.988G>A, p.Pro330Ser; c.967G>A, p.Asp360Asn and DUOX2 (c.4474G>A, p.Arg1211Cys; c.3631C>T, p.Arg1492Cys in 5 of 209 VEOIBD patients. The NOX1 p.Asp360Asn variant was replicated in a male Ashkenazi Jewish ulcerative colitis cohort. Patients with both NOX1 and DUOX2 variants showed abnormal Paneth cell metaplasia. All NOX1 and DUOX2 variants showed reduced ROS production compared with wild-type enzymes. Despite appropriate cellular localization and comparable pathogen-stimulated translocation of altered oxidases, cells harboring NOX1 or DUOX2 variants had defective host resistance to infection with C. jejuni. Conclusions: This study identifies the first inactivating missense variants in NOX1 and DUOX2 associated with VEOIBD. Defective ROS production from intestinal epithelial cells constitutes a risk factor for developing VEOIBD. Keywords: Inflammatory Bowel Disease, NADPH Oxidase

  3. Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available 2-Cys peroxiredoxins (Prxs play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C of thioredoxin reductase (TrxR in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D, which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD simulations on AtNTRC and AtNTRA-(Trx-D proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D because of following reasons: i unstable and unfavorable interaction of the linker region, ii shifted Trx domain, and iii different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

  4. Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase.

    Science.gov (United States)

    Gandara, Ana Caroline Paiva; Torres, André; Bahia, Ana Cristina; Oliveira, Pedro L; Schama, Renata

    2017-03-29

    NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropod genes. In arthropods, only NOX5 and DUOX genes have been found and a gene called NOXm was found in mosquitoes but its origin and function has not been examined. In this study, we analyzed the evolution of this gene family in arthropods. A thorough search of genomes and transcriptomes was performed enabling us to browse most branches of arthropod phylogeny. We have found that the subfamilies NOX5 and DUOX are present in all arthropod groups. We also show that a NOX gene, closely related to NOX4 and previously found only in mosquitoes (NOXm), can also be found in other taxonomic groups, leading us to rename it as NOX4-art. Although the accessory protein p22-phox, essential for NOX1-4 activation, was not found in any of the arthropods studied, NOX4-art of Aedes aegypti encodes an active protein that produces H 2 O 2 . Although NOX4-art has been lost in a number of arthropod lineages, it has all the domains and many signature residues and motifs necessary for ROS production and, when silenced, H 2 O 2 production is considerably diminished in A. aegypti cells. Combining all bioinformatic analyses and laboratory work we have reached interesting conclusions regarding arthropod NOX gene family evolution. NOX5 and DUOX are present in all arthropod lineages but it seems that a NOX2-like gene was lost in the ancestral lineage leading to Ecdysozoa. The NOX4-art gene originated from a NOX4-like ancestor and is functional. Although no p22-phox was observed in arthropods, there was no evidence of neo-functionalization and this gene probably produces H 2 O 2 as in other metazoan NOX4 genes. Although functional and present in the genomes of many

  5. Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species.

    Science.gov (United States)

    Pietrowski, Eweline; Bender, Bianca; Huppert, Jula; White, Robin; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2011-01-01

    T cells are known for their contribution to the inflammatory element of atherosclerosis. Recently, it has been demonstrated that the Th17 derived cytokine IL-17 is involved in the pro-inflammatory response of vascular smooth muscle cells (VSMC). The aim of the present study was to examine whether reactive oxygen species (ROS) might be involved in this context. The effect of IL-17A on ROS generation was examined using the fluorescent dye 2'7'-dichlorodihydrofluorescein (H(2)DCF) in primary murine VSMC. IL-17A induced an increase in H(2)DCF fluorescence in VSMC, and this effect was blocked by the NAD(P)H-oxidase inhibitor apocynin and siRNA targeting Nox2. The p38-MAPK inhibitors SB203580 and SB202190 dose-dependently reduced the IL-17A induced ROS production. The IL-17A induced release of the pro-inflammatory cytokines IL-6, G-CSF, GM-CSF and MCP-1 from VSMC, as detected by the Luminex technology, was completely abolished by NAD(P)H-oxidase inhibition. Taken together, our data indicate that IL-17A causes the NAD(P)H-oxidase dependent generation of ROS leading to a pro-inflammatory activation of VSMC. Copyright © 2010 S. Karger AG, Basel.

  6. Involvement of both protein kinase C and G proteins in superoxide production after IgE triggering in guinea pig eosinophils

    Directory of Open Access Journals (Sweden)

    Toshiya Aizawa

    1997-01-01

    Full Text Available To study the function and mechanism of eosinophils via the low affinity IgE receptor (FceRII, we examined the production of 02 metabolites by measuring the luminol-dependent chemiluminescence (LDCL response and the generation of cysteinyl leukotrienes. Eosinophils obtained from guinea pig peritoneal fluid sensitized with horse serum were purified. Luminol-dependent chemiluminescence was induced by stimulation with monoclonal anti-CD23 antibody, but not by mouse serum (controls. The mean (±SEM value of LDCL was 20.6±1.3X103 c.p.m. This reaction consisted of an initial rapid phase and a propagation phase and ended within lOmin. Guinea pig eosinophils were histochemically stained with monoclonal anti-CD23 antibody. The major product generated in the LDCL response was superoxide, as determined by the measurement of superoxide by cytochrome c reduction and the complete inhibitory effect of superoxide dismutase on the LDCL response. Pretreatment with either pertussis toxin or cholera toxin inhibited the LDCL reaction. Depletion of bivalent ions by EDTA inhibited this response and the protein kinase C inhibitor D-sphingosin inhibited both 1-oleoyl-2-acetyl-glycerol-induced and FcϵRII-mediated LDCL. These findings suggest that the NADPH-protein kinase C pathway may be involved in the FceRII-mediated LDCL response in guinea pig eosinophils.

  7. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor.

    Science.gov (United States)

    Han, Jingyan; Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-01

    Reactive oxygen species (ROS) superoxide anion (O(2)()) and hydrogen peroxide (H(2)O(2)) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PECAM-1) specifically bind to endothelium, quench the corresponding ROS, and alleviate vascular oxidative stress and inflammation. In the present work, we studied the effects of anti-PECAM/catalase and anti-PECAM/SOD conjugates on the abnormal permeability manifested by transendothelial electrical resistance decline, increased fluorescein isothiocyanate-dextran influx, and redistribution of vascular endothelial-cadherin in human umbilical vein endothelial cell (HUVEC) monolayers. Anti-PECAM/catalase protected HUVEC monolayers against H(2)O(2)-induced endothelial barrier dysfunction. Polyethylene glycol-conjugated catalase exerted orders of magnitude lower endothelial uptake and no protective effect, similarly to IgG/catalase. Anti-PECAM/catalase, but not anti-PECAM/SOD, alleviated endothelial hyperpermeability caused by exposure to hypoxanthine/xanthine oxidase, implicating primarily H(2)O(2) in the disruption of the endothelial barrier in this model. Thrombin-induced endothelial permeability was not affected by treatment with anti-PECAM/AOEs or the NADPH oxidase inhibitor apocynin or overexpression of AOEs, indicating that the endogenous ROS play no key role in thrombin-mediated endothelial barrier dysfunction. In contrast, anti-PECAM/SOD, but not anti-PECAM/catalase, inhibited a vascular endothelial growth factor (VEGF)-induced increase in endothelial permeability, identifying a key role of endogenous O(2)() in the VEGF-mediated regulation of endothelial barrier function. Therefore, AOEs targeted to endothelial cells provide versatile molecular tools for testing the roles of

  8. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles

    DEFF Research Database (Denmark)

    Howitt, Lauren; Kuo, Ivana Y; Ellis, Anthie

    2013-01-01

    arteries in vitro and skeletal muscle arterioles in vivo to study the contribution of L-type (1 µmol/L nifedipine) and T-type (1 µmol/L mibefradil, 3 µmol/L NNC 55-0396) calcium channels to vascular tone, following acute or chronic inhibition of nitric oxide. Acute inhibition with l-NAME (10 µmol...... was reversed by acute scavenging of superoxide with tempol (1 mmol/L), or inhibition of NADPH oxidase with apocynin (500 µmol/L) or DPI (5 µmol/L). CONCLUSION: We conclude that nitric oxide deficit produces a significant increase in the contribution of Cav3.1 and Cav3.2 T-type calcium channels to vascular tone......, by regulating the bioavailability of reactive oxygen species produced by NADPH oxidase. Our data provide evidence for a novel causal link between nitric oxide deficit, oxidative stress, and T-type calcium channel function....

  9. Arachidonic acid triggers an oxidative burst in leukocytes

    Directory of Open Access Journals (Sweden)

    Pompeia C.

    2003-01-01

    Full Text Available The change in cellular reducing potential, most likely reflecting an oxidative burst, was investigated in arachidonic acid- (AA stimulated leukocytes. The cells studied included the human leukemia cell lines HL-60 (undifferentiated and differentiated into macrophage-like and polymorphonuclear-like cells, Jurkat and Raji, and thymocytes and macrophages from rat primary cultures. The oxidative burst was assessed by nitroblue tetrazolium reduction. AA increased the oxidative burst until an optimum AA concentration was reached and the burst decreased thereafter. In the leukemia cell lines, optimum concentration ranged from 200 to 400 µM (up to 16-fold, whereas in rat cells it varied from 10 to 20 µM. Initial rates of superoxide generation were high, decreasing steadily and ceasing about 2 h post-treatment. The continuous presence of AA was not needed to stimulate superoxide generation. It seems that the NADPH oxidase system participates in AA-stimulated superoxide production in these cells since the oxidative burst was stimulated by NADPH and inhibited by N-ethylmaleimide, diphenyleneiodonium and superoxide dismutase. Some of the effects of AA on the oxidative burst may be due to its detergent action. There apparently was no contribution of other superoxide-generating systems such as xanthine-xanthine oxidase, cytochromes P-450 and mitochondrial electron transport chain, as assessed by the use of inhibitors. Eicosanoids and nitric oxide also do not seem to interfere with the AA-stimulated oxidative burst since there was no systematic effect of cyclooxygenase, lipoxygenase or nitric oxide synthase inhibitors, but lipid peroxides may play a role, as indicated by the inhibition of nitroblue tetrazolium reduction promoted by tocopherol.

  10. Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles

    Directory of Open Access Journals (Sweden)

    Siu-Lung eChan

    2013-06-01

    Full Text Available Angiotensin II is an important determinant of inward remodeling in cerebral arterioles. Many of the vascular effects of angiotensin II are mediated by reactive oxygen species generated from homologues of NADPH oxidase with Nox2 predominating in small arteries and arterioles. Therefore, we tested the hypothesis that superoxide generated by Nox2 plays a role in angiotensin II-induced cerebral arteriolar remodeling. We examined Nox2-deficient and wild-type mice in which a pressor or a non-pressor dose of angiotensin II (1000 or 200 ng/kg/day or saline was infused for 4 weeks via osmotic minipumps. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area (by histology and superoxide level (by hydroethidine staining of cerebral arterioles were determined ex vivo. The pressor, but not the non-pressor, dose of angiotensin II significantly increased systolic arterial pressure in both wild-type and Nox2-deficient mice. Both doses of angiotensin II increased superoxide levels and significantly reduced external diameter in maximally dilated cerebral arterioles in wild-type mice. Increased superoxide and inward remodeling were prevented in Nox2-deficient mice. Moreover, only the pressor dose of AngII increased cross-sectional area of arteriolar wall in wild-type mice and was prevented in Nox2-deficient mice. In conclusion, superoxide derived from Nox2-containing NADPH oxidase plays an important role in angiotensin II-mediated inward remodeling in cerebral arterioles. This effect appears to be independent of pressure and different from that of hypertrophy.

  11. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  12. NoxO1 Controls Proliferation of Colon Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Franziska Moll

    2018-05-01

    Full Text Available AimReactive oxygen species (ROS produced by enzymes of the NADPH oxidase family serve as second messengers for cellular signaling. Processes such as differentiation and proliferation are regulated by NADPH oxidases. In the intestine, due to the exceedingly fast and constant renewal of the epithelium both processes have to be highly controlled and balanced. Nox1 is the major NADPH oxidase expressed in the gut, and its function is regulated by cytosolic subunits such as NoxO1. We hypothesize that the NoxO1-controlled activity of Nox1 contributes to a proper epithelial homeostasis and renewal in the gut.ResultsNoxO1 is highly expressed in the colon. Knockout of NoxO1 reduces the production of superoxide in colon crypts and is not subsidized by an elevated expression of its homolog p47phox. Knockout of NoxO1 increases the proliferative capacity and prevents apoptosis of colon epithelial cells. In mouse models of dextran sulfate sodium (DSS-induced colitis and azoxymethane/DSS induced colon cancer, NoxO1 has a protective role and may influence the population of natural killer cells.ConclusionNoxO1 affects colon epithelium homeostasis and prevents inflammation.

  13. NOX4-dependent Hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation.

    Science.gov (United States)

    Sánchez-Gómez, Francisco J; Calvo, Enrique; Bretón-Romero, Rosa; Fierro-Fernández, Marta; Anilkumar, Narayana; Shah, Ajay M; Schröder, Katrin; Brandes, Ralf P; Vázquez, Jesús; Lamas, Santiago

    2015-12-01

    Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    Science.gov (United States)

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  15. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.

    Science.gov (United States)

    Shirey, Carolyn; Badieyan, Somayesadat; Sobrado, Pablo

    2013-11-08

    SidA (siderophore A) is a flavin-dependent N-hydroxylating monooxygenase that is essential for virulence in Aspergillus fumigatus. SidA catalyzes the NADPH- and oxygen-dependent formation of N(5)-hydroxyornithine. In this reaction, NADPH reduces the flavin, and the resulting NADP(+) is the last product to be released. The presence of NADP(+) is essential for activity, as it is required for stabilization of the C4a-hydroperoxyflavin, which is the hydroxylating species. As part of our efforts to determine the molecular details of the role of NADP(H) in catalysis, we targeted Ser-257 for site-directed mutagenesis and performed extensive characterization of the S257A enzyme. Using a combination of steady-state and stopped-flow kinetic experiments, substrate analogs, and primary kinetic isotope effects, we show that the interaction between Ser-257 and NADP(H) is essential for stabilization of the C4a-hydroperoxyflavin. Molecular dynamics simulation results suggest that Ser-257 functions as a pivot point, allowing the nicotinamide of NADP(+) to slide into position for stabilization of the C4a-hydroperoxyflavin.

  16. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-α dependent mechanisms.

    Science.gov (United States)

    Bruder-Nascimento, Thiago; Kennard, Simone; Antonova, Galina; Mintz, James D; Bence, Kendra K; Belin de Chantemèle, Eric J

    2016-06-01

    Protein tyrosine phosphatase 1b (Ptp1b) is a negative regulator of leptin and insulin-signalling pathways. Its targeted deletion in proopiomelanocortin (POMC) neurons protects mice from obesity and diabetes by increasing energy expenditure. Inflammation accompanies increased energy expenditure. Therefore, the present study aimed to determine whether POMC-Ptp1b deletion increases energy expenditure via an inflammatory process, which would impair endothelial function. We characterized the metabolic and cardiovascular phenotypes of Ptp1b+/+ and POMC-Ptp1b-/- mice. Clamp studies revealed that POMC-Ptp1b deletion reduced body fat and increased energy expenditure as evidenced by a decrease in feed efficiency and an increase in oxygen consumption and respiratory exchange ratio. POMC-Ptp1b deletion induced a 2.5-fold increase in plasma tumour necrosis factor α (TNF-α) levels and elevated body temperature. Vascular studies revealed an endothelial dysfunction in POMC-Ptp1b-/- mice. Nitric oxide synthase inhibition [N-nitro-L-arginine methyl ester (L-NAME)] reduced relaxation to a similar extent in Ptp1b+/+ and POMC-Ptp1b-/- mice. POMC-Ptp1b deletion decreased ROS-scavenging enzymes [superoxide dismutases (SODs)] whereas it increased ROS-generating enzymes [NADPH oxidases (NOXs)] and cyclooxygenase-2 (COX-1) expression, in aorta. ROS scavenging or NADPH oxidase inhibition only partially improved relaxation whereas COX-2 inhibition and thromboxane-A2 (TXA2) antagonism fully restored relaxation in POMC-Ptp1b-/- mice Chronic treatment with the soluble TNF-α receptor etanercept decreased body temperature, restored endothelial function and reestablished aortic COX-2, NOXs and SOD expression to their baseline levels in POMC-Ptp1b-/- mice. However, etanercept promoted body weight gain and decreased energy expenditure in POMC-Ptp1b-/- mice. POMC-Ptp1b deletion increases plasma TNF-α levels, which contribute to body weight regulation via increased energy expenditure and impair

  17. β-Adrenergic receptors desensitization is not involved in exercise-induced cardiac fatigue: NADPH oxidase-induced oxidative stress as a new trigger.

    Science.gov (United States)

    Vitiello, Damien; Boissière, Julien; Doucende, Grégory; Gayrard, Sandrine; Polge, Anne; Faure, Patrice; Goux, Aurélie; Tanguy, Stéphane; Obert, Philippe; Reboul, Cyril; Nottin, Stéphane

    2011-11-01

    Prolonged strenuous exercise (PSE) induces transient left ventricular (LV) dysfunction. Previous studies suggest that β-adrenergic pathway desensitization could be involved in this phenomenon, but it remains to be confirmed. Moreover, other underlying mechanisms involving oxidative stress have been recently proposed. The present study aimed to evaluate the involvement of both the β-adrenergic pathway and NADPH oxidase (Nox) enzyme-induced oxidative stress in myocardial dysfunction in rats following PSE. Rats were divided into 4 groups: controls (Ctrl), 4-h exercised on treadmill (PSE), and 2 groups in which Nox enzyme was inhibited with apocynin treatment (Ctrl APO and PSE APO, respectively). We evaluated cardiac function in vivo and ex vivo during basal conditions and isoproterenol stress. GSH/GSSG ratio, cardiac troponin I (cTnI) release, and lipid peroxidation (MDA) were evaluated. PSE induced a decrease in LV developed pressure, intrinsic myocardial contractility, and relaxation associated with an increase in plasma cTnI release. Our in vivo and ex vivo results demonstrated no differences in myocardial response to isoproterenol and of effective dose 50 between control and PSE rats. Interestingly, the LV dysfunction was reversed by apocynin treatment. Moreover, apocynin prevented cellular oxidation [GSH/GSSG ratio: PSE APO rats vs. PSE rats in arbitrary units (au): 1.98 ± 0.07 vs. 1.35 ± 0.10; P stress from the Nox enzyme.

  18. Histochemical characterization, distribution and morphometric analysis of NADPH diaphorase neurons in the spinal cord of the agouti

    Directory of Open Access Journals (Sweden)

    Marco Aurelio M Freire

    2008-05-01

    Full Text Available We evaluated the neuropil distribution of the enzymes NADPH diaphorase (NADPH-d and cytochrome oxidase (CO in the spinal cord of the agouti, a medium-sized diurnal rodent, together with the distribution pattern and morphometrical characteristics of NADPH-d reactive neurons across different spinal segments. Neuropil labeling pattern was remarkably similar for both enzymes in coronal sections: reactivity was higher in regions involved with pain processing. We found two distinct types of NADPH-d reactive neurons in the agouti’s spinal cord: type I neurons had large, heavily stained cell bodies while type II neurons displayed relatively small and poorly stained somata. We concentrated our analysis on type I neurons. These were found mainly in the dorsal horn and around the central canal of every spinal segment, with a few scattered neurons located in the ventral horn of both cervical and lumbar regions. Overall, type I neurons were more numerous in the cervical region. Type I neurons were also found in the white matter, particularly in the ventral funiculum. Morphometrical analysis revealed that type I neurons located in the cervical region have dendritic trees that are more complex than those located in both lumbar and thoracic regions. In addition, NADPH-d cells located in the ventral horn had a larger cell body, especially in lumbar segments. The resulting pattern of cell body and neuropil distribution is in accordance with proposed schemes of segregation of function in the mammalian spinal cord.

  19. Psoralea corylifolia L. Attenuates Nonalcoholic Steatohepatitis in Juvenile Mouse

    Directory of Open Access Journals (Sweden)

    Lishan Zhou

    2017-11-01

    Full Text Available Psoralea corylifolia L. (PC is a traditional Chinese herb used to treat yang deficiency of the spleen and kidney in pediatric disease. Recent studies have shown its liver protection and anti-oxidative effects. The aim of this study was to explore the effect and mechanism of PC on nonalcoholic steatohepatitis in juvenile mice. The juvenile mouse model of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH was established by being fed a high-fat diet in maternal-offspring manner. PC granules were prepared and the quality was assessed. The main components were identified by high performance liquid chromatography. Then, different dosages of PC were administered for 6 weeks. Homeostatic model assessment of insulin resistance, plasma liver enzymes, hepatic morphology, hepatic superoxide anion, and triglyceride/total cholesterol levels were examined. The changes of nuclear factor-κB (NF-κB activity phosphatidylinositol 3 kinase (PI3K/protein kinase B (Akt and protein kinase C-α (PKC-α/nicotinamide-adenine dinucleotide phosphate (NADPH oxidase signaling pathways in hepatic tissues were also determined. Our data demonstrated that PC significantly improved liver dysfunction, liver triglyceride/total cholesterol accumulation and insulin resistance in juvenile NAFLD/NASH mice. PC also alleviated hepatic steatosis, inflammatory cell infiltration, and fibroplasia in the portal area. Additionally, PC inhibited the activation of NF-κB and the mRNA expression of inflammatory factors while enhancing PI3K/Akt signaling in hepatic tissues. PC could also reduce hepatic superoxide anion levels, and NADPH oxidase activity as well as p47phox protein expression and PKCα activation in hepatic tissues. The results suggest that PC is effective in the treatment of NASH in juvenile mice. The mechanism may be related to the attenuation of hepatic oxidative stress through the PKC-α/NADPH oxidase signaling pathway.

  20. Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions.

    Science.gov (United States)

    Balajthy, Zoltán; Csomós, Krisztián; Vámosi, György; Szántó, Attila; Lanotte, Michel; Fésüs, László

    2006-09-15

    Promyelocytic NB4 leukemia cells undergo differentiation to granulocytes following retinoic acid treatment. Here we report that tissue transglutaminase (TG2), a protein cross-linking enzyme, was induced, then partially translocated into the nucleus, and became strongly associated with the chromatin during the differentiation process. The transglutaminase-catalyzed cross-link content of both the cytosolic and the nuclear protein fractions increased while NB4 cells underwent cellular maturation. Inhibition of cross-linking activity of TG2 by monodansylcadaverin in these cells led to diminished nitroblue tetrazolium (NBT) positivity, production of less superoxide anion, and decreased expression of GP91PHOX, the membrane-associated subunit of NADPH oxidase. Neutrophils isolated from TG2(-/-) mice showed diminished NBT reduction capacity, reduced superoxide anion formation, and down-regulation of the gp91phox subunit of NADPH oxidase, compared with wild-type cells. It was also observed that TG2(-/-) mice exhibited increased neutrophil phagocytic activity, but had attenuated neutrophil chemotaxis and impaired neutrophil extravasation with higher neutrophil counts in their circulation during yeast extract-induced peritonitis. These results clearly suggest that TG2 may modulate the expression of genes related to neutrophil functions and is involved in several intracellular and extracellular functions of extravasating neutrophil.

  1. Small GTPases and Stress Responses of vvran1 in the Straw Mushroom Volvariella volvacea

    Directory of Open Access Journals (Sweden)

    Jun-Jie Yan

    2016-09-01

    Full Text Available Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H2O2 stress, and could be repressed by diphenyleneiodonium chloride (DPI, a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD inhibitor diethy dithiocarbamate (DDC, could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O2− generation indicated that vvran1 could be one of the candidate genes in the downstream of O2− mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses.

  2. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.

    Science.gov (United States)

    Chia, Karin K M; Liu, Chia-Chi; Hamilton, Elisha J; Garcia, Alvaro; Fry, Natasha A; Hannam, William; Figtree, Gemma A; Rasmussen, Helge H

    2015-08-15

    Protein kinase C can activate NADPH oxidase and induce glutathionylation of the β1-Na(+)-K(+) pump subunit, inhibiting activity of the catalytic α-subunit. To examine if signaling of nitric oxide-induced soluble guanylyl cyclase (sGC)/cGMP/protein kinase G can cause Na(+)-K(+) pump stimulation by counteracting PKC/NADPH oxidase-dependent inhibition, cardiac myocytes were exposed to ANG II to activate NADPH oxidase and inhibit Na(+)-K(+) pump current (Ip). Coexposure to 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) to stimulate sGC prevented the decrease of Ip. Prevention of the decrease was abolished by inhibition of protein phosphatases (PP) 2A but not by inhibition of PP1, and it was reproduced by an activator of PP2A. Consistent with a reciprocal relationship between β1-Na(+)-K(+) pump subunit glutathionylation and pump activity, YC-1 decreased ANG II-induced β1-subunit glutathionylation. The decrease induced by YC-1 was abolished by a PP2A inhibitor. YC-1 decreased phosphorylation of the cytosolic p47(phox) NADPH oxidase subunit and its coimmunoprecipitation with the membranous p22(phox) subunit, and it decreased O2 (·-)-sensitive dihydroethidium fluorescence of myocytes. Addition of recombinant PP2A to myocyte lysate decreased phosphorylation of p47(phox) indicating the subunit could be a substrate for PP2A. The effects of YC-1 to decrease coimmunoprecipitation of p22(phox) and p47(phox) NADPH oxidase subunits and decrease β1-Na(+)-K(+) pump subunit glutathionylation were reproduced by activation of nitric oxide-dependent receptor signaling. We conclude that sGC activation in cardiac myocytes causes a PP2A-dependent decrease in NADPH oxidase activity and a decrease in β1 pump subunit glutathionylation. This could account for pump stimulation with neurohormonal oxidative stress expected in vivo. Copyright © 2015 the American Physiological Society.

  3. Tocotrienol rich tocomin attenuates oxidative stress and improves endothelium-dependent relaxation in aortae from rats fed a high-fat western diet

    Directory of Open Access Journals (Sweden)

    Saher F Ali

    2016-10-01

    Full Text Available We have previously reported that tocomin, a mixture high in tocotrienol content and also containing tocopherol, acutely preserves endothelial function in the presence of oxidative stress. In this study we investigated whether tocomin treatment would preserve endothelial function in aortae isolated from rats fed a high fat diet known to cause oxidative stress. Wistar hooded rats were fed a western diet (WD, 21% fat or control rat chow (SD, 6% fat for 12 weeks. Tocomin (40 mg/kg/day sc or its vehicle (peanut oil was administered for the last 4 weeks of the feeding regime. Aortae from WD rats showed an impairment of endothelium-dependent relaxation that was associated with an increased expression of the NADPH oxidase Nox2 subunit and an increase in the vascular generation of superoxide measured using L-012 chemiluminescence. The increase in vascular oxidative stress was accompanied by a decrease in basal NO release and impairment of the contribution of NO to ACh-induced relaxation. The impaired relaxation is likely contributed to by a decreased expression of eNOS, calmodulin and phosphorylated Akt and an increase in caveolin-Tocotrienol rich tocomin, which prevented the diet-induced changes in vascular function, reduced vascular superoxide production and abolished the diet-induced changes in eNOS and other protein expression. Using selective inhibitors of nitric oxide synthase (NOS, soluble guanylate cyclase (sGC and calcium activated potassium (KCa channels we demonstrated that tocomin increased NO mediated relaxation, without affecting the contribution of endothelium-dependent hyperpolarization type relaxation to the endothelium-dependent relaxation. The beneficial actions of tocomin in this diet-induced model of obesity suggests that it may have potential to be used as a therapeutic agent to prevent vascular disease in obesity.

  4. Resistance of Saccharomyces cerevisiae to High Concentrations of Furfural Is Based on NADPH-Dependent Reduction by at Least Two Oxireductases ▿ †

    Science.gov (United States)

    Heer, Dominik; Heine, Daniel; Sauer, Uwe

    2009-01-01

    Biofuels derived from lignocellulosic biomass hold promises for a sustainable fuel economy, but several problems hamper their economical feasibility. One important problem is the presence of toxic compounds in processed lignocellulosic hydrolysates, with furfural as a key toxin. While Saccharomyces cerevisiae has some intrinsic ability to reduce furfural to the less-toxic furfuryl alcohol, higher resistance is necessary for process conditions. By comparing an evolved, furfural-resistant strain and its parent in microaerobic, glucose-limited chemostats at increasing furfural challenge, we elucidate key mechanism and the molecular basis of both natural and high-level furfural resistance. At lower concentrations of furfural, NADH-dependent oxireductases are the main defense mechanism. At furfural concentrations above 15 mM, however, 13C-flux and global array-based transcript analysis demonstrated that the NADPH-generating flux through the pentose phosphate pathway increases and that NADPH-dependent oxireductases become the major resistance mechanism. The transcript analysis further revealed that iron transmembrane transport is upregulated in response to furfural. While these responses occur in both strains, high-level resistance in the evolved strain was based on strong induction of ADH7, the uncharacterized open reading frame (ORF) YKL071W, and four further, likely NADPH-dependent, oxireductases. By overexpressing the ADH7 gene and the ORF YKL071W, we inversely engineered significantly increased furfural resistance in the parent strain, thereby demonstrating that these two enzymes are key elements of the resistance phenotype. PMID:19854918

  5. Rapid Diagnostic Device for Subclinical Mastitis Based on Electrochemical Detection of Superoxide Produced from Neutrophils in Fresh Milk

    Science.gov (United States)

    Okada, Kohei; Fukuda, Junji; Suzuki, Hiroaki

    Electrochemical microdevices were fabricated to identify mastitic cows based on the increased number of neutrophils in raw milk. Because neutrophils produce superoxide (O2·-), the amount of O2·- can be used as an early indicator for subclinical mastitis. In the microdevices, O2·- was detected on a gold electrode using superoxide dismutase immobilized via a self-assembled monolayer of cysteine. In a preliminary test using xanthine oxidase to produce O2·-, one of the devices detected the production and rapid extinction of O2·-. When neutrophils obtained from a mastitic cow were concentrated by centrifugation and introduced into the device, a current increase distinctly different from the background was observed. Furthermore, a micropillar structure was fabricated on the gold electrode to trap and collect neutrophils, thereby facilitating the concentration of these cells around the electrode. The measured current clearly depended on the number of neutrophils in raw milk samples, demonstrating the applicability of the device for rapid diagnosis of subclinical mastitis.

  6. Apocynin prevents vascular effects caused by chronic exposure to low concentrations of mercury.

    Directory of Open Access Journals (Sweden)

    Danize A Rizzetti

    Full Text Available UNLABELLED: Mercury increases the risk of cardiovascular disease and oxidative stress and alters vascular reactivity. This metal elicits endothelial dysfunction causing decreased NO bioavailability via increased oxidative stress and contractile prostanoid production. NADPH oxidase is the major source of reactive oxygen species (ROS in the vasculature. Our aim was to investigate whether treatment with apocynin, an NADPH oxidase inhibitor, prevents the vascular effects caused by chronic intoxication with low concentrations of mercury. Three-month-old male Wistar rats were treated for 30 days with a intramuscular injections (i.m. of saline; b HgCl(2 (i.m. 1(st dose: 4.6 µg/kg, subsequent doses: 0.07 µg/kg/day; c Apocynin (1.5 mM in drinking water plus saline i.m.; and d Apocynin plus HgCl(2. The mercury treatment resulted in 1 an increased aortic vasoconstrictor response to phenylephrine and reduced endothelium-dependent responses to acetylcholine; 2 the increased involvement of ROS and vasoconstrictor prostanoids in response to phenylephrine, whereas the endothelial NO modulation of such responses was reduced; and 3 the reduced activity of aortic superoxide dismutase (SOD and glutathione peroxidase (GPx and increased plasma malondialdehyde (MDA levels. Treatment with apocynin partially prevented the increased phenylephrine responses and reduced the endothelial dysfunction elicited by mercury treatment. In addition, apocynin treatment increased the NO modulation of vasoconstrictor responses and aortic SOD activity and reduced plasma MDA levels without affecting the increased participation of vasoconstrictor prostanoids observed in aortic segments from mercury-treated rats. CONCLUSIONS: Mercury increases the vasoconstrictor response to phenylephrine by reducing NO bioavailability and increasing the involvement of ROS and constrictor prostanoids. Apocynin protects the vessel from the deleterious effects caused by NADPH oxidase, but not from those

  7. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart.

    Science.gov (United States)

    Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L

    2015-09-15

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.

  8. Induction of Apoptosis by Superoxide Anion and the Protective Effects of Selenium and Vitamin E

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective The purpose of this study is to investigate the effect of superoxide anion on the apoptosis of cultured fibroblasts and the protective role of selenium and Vitamin E. Methods Cultured fibroblasts (NIH3T3), with or without selenium or vitamin E in the medium, were treated by superoxide anion produced by xanthine/xanthine oxidase reaction system and changes in cell structure and DNA were observed microscopically and electrophoretically. Results Apoptosis was observed when superoxide anion at a concentration of 5 nmol/L or 10 nmol/L had acted on the fibroblasts for 5-10 h. Selenium and Vitamin E in the medium inhibited the apoptosis significantly when their concentrations reached 1.15 mol/L and 2.3 mol/L respectively. Conclusion Selenium and vitamin E have protective effect against the apoptosis induced by superoxide anion. The effect of selenium is more remarkable than that of vitamin E.

  9. Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation.

    Science.gov (United States)

    Kaneko, Chihiro; Ogura, Jiro; Sasaki, Shunichi; Okamoto, Keisuke; Kobayashi, Masaki; Kuwayama, Kaori; Narumi, Katsuya; Iseki, Ken

    2017-03-01

    A high intake of fructose increases the risk for hyperuricemia. It has been reported that long-term fructose consumption suppressed renal uric acid excretion and increased serum uric acid level. However, the effect of single administration of fructose on excretion of uric acid has not been clarified. We used male Wistar rats, which were orally administered fructose (5g/kg). Those rats were used in each experiment at 12h after administration. Single administration of fructose suppressed the function of ileal uric acid excretion and had no effect on the function of renal uric acid excretion. Breast cancer resistance protein (BCRP) predominantly contributes to intestinal excretion of uric acid as an active homodimer. Single administration of fructose decreased BCRP homodimer level in the ileum. Moreover, diphenyleneiodonium (DPI), an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), recovered the suppression of the function of ileal uric acid excretion and the Bcrp homodimer level in the ileum of rats that received single administration of fructose. Single administration of fructose decreases in BCRP homodimer level, resulting in the suppression the function of ileal uric acid excretion. The suppression of the function of ileal uric acid excretion by single administration of fructose is caused by the activation of Nox. The results of our study provide a new insight into the mechanism of fructose-induced hyperuricemia. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ellagic Acid Prevents L-NAME-Induced Hypertension via Restoration of eNOS and p47phox Expression in Rats

    Directory of Open Access Journals (Sweden)

    Thewarid Berkban

    2015-06-01

    Full Text Available The effect of ellagic acid on oxidative stress and hypertension induced by Nω-Nitro-l-arginine methyl ester hydrochloride (L-NAME was investigated. Male Sprague-Dawley rats were administrated with L-NAME (40 mg/kg/day for five weeks. L-NAME induced high systolic blood pressure (SBP and increased heart rate (HR, hindlimb vascular resistance (HVR and oxidative stress. Concurrent treatment with ellagic acid (7.5 or 15 mg/kg prevented these alterations. Co-treatment with ellagic acid was associated with up-regulation of endothelial nitric oxide synthase (eNOS protein production and alleviation of oxidative stress as indicated by decreased superoxide production in the vascular tissue, reduced plasma malondialdehyde levels, reduced NADPH oxidase subunit p47phox expression and increased plasma nitrate/nitrite levels. Our results indicate that ellagic acid attenuates hypertension by reducing NADPH oxidase subunit p47phox expression, which prevents oxidative stress and restores NO bioavailability.

  11. NADPH-dependent glutamate dehydrogenase in Penicillium chrysogenum is involved in regulation of beta-lactam production

    DEFF Research Database (Denmark)

    Thykær, Jette; Kildegaard, Kanchana Rueksomtawin; Noorman, H.

    2008-01-01

    was detected in either of the Delta gdhA strains. Supplementation with glutamate restored growth but no beta-lactam production was detected for the constructed strains. Cultures with high ammonium concentrations (repressing conditions) and with proline as nitrogen source (de-repressed conditions) showed......The interactions between the ammonium assimilatory pathways and beta-lactam production were investigated by disruption of the NADPH-dependent glutamate dehydrogenase gene (gdhA) in two industrial beta-lactam-producing strains of Penicillium chrysogenum. The strains used were an adipoyl-7-ADCA...... continued beta-lactam production for the reference strains whereas the Delta gdhA strains remained non-productive under all conditions. By overexpressing the NAD-dependent glutamate dehydrogenase, the specific growth rate could be restored, but still no beta-lactam production was detected. The results...

  12. The Cytochrome bd Oxidase of Porphyromonas gingivalis Contributes to Oxidative Stress Resistance and Dioxygen Tolerance.

    Directory of Open Access Journals (Sweden)

    Julia Leclerc

    Full Text Available Porphyromonas gingivalis is an etiologic agent of periodontal disease in humans. The disease is associated with the formation of a mixed oral biofilm which is exposed to oxygen and environmental stress, such as oxidative stress. To investigate possible roles for cytochrome bd oxidase in the growth and persistence of this anaerobic bacterium inside the oral biofilm, mutant strains deficient in cytochrome bd oxidase activity were characterized. This study demonstrated that the cytochrome bd oxidase of Porphyromonas gingivalis, encoded by cydAB, was able to catalyse O2 consumption and was involved in peroxide and superoxide resistance, and dioxygen tolerance.

  13. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression.

    Science.gov (United States)

    Jhou, Bo-Yi; Song, Tuzz-Ying; Lee, Inn; Hu, Miao-Lin; Yang, Nae-Cherng

    2017-08-16

    NADPH oxidase 4 (NOX4), with the sole function to produce reactive oxygen species (ROS), can be a molecular target for disrupting cancer metastasis. Several studies have indicated that lycopene exhibited anti-metastatic actions in vitro and in vivo. However, the role of NOX4 in the anti-metastatic action of lycopene remains unknown. Herein, we first confirmed the anti-metastatic effect of lycopene (0.1-5 μM) on human liver adenocarcinoma SK-Hep-1 cells. We showed that lycopene significantly inhibited NOX4 protein expression, with the strongest inhibition of 64.3 ± 10.2% (P lycopene. Lycopene also significantly inhibited NOX4 mRNA expression, NOX activity, and intracellular ROS levels in SK-Hep-1 cells. We then determined the effects of lycopene on transforming growth factor β (TGF-β)-induced metastasis. We found that TGF-β (5 ng/mL) significantly increased migration, invasion, and adhesion activity, the intracellular ROS level, matrix metalloproteinase 9 (MMP-9) and MMP-2 activities, the level of NOX4 protein expression, and NOX activity. All these TGF-β-induced effects were antagonized by the incubation of SK-Hep-1 cells with lycopene (2.5 μM). Using transient transfection of siRNA against NOX4, we found that the downregulation of NOX4 could mimic lycopene by inhibiting cell migration and the activities of MMP-9 and MMP-2 during the incubation with or without TGF-β on SK-Hep-1 cells. The results demonstrate that the downregulation of NOX4 plays a crucial role in the anti-metastatic action of lycopene in SK-Hep-1 cells.

  14. Oxygen-dependent radiosensitivity of Escherichia coli and mitigation in lethality by superoxide dismutase

    International Nuclear Information System (INIS)

    Niwa, Taeko; Yamaguchi, Hikoyuki; Yano, Keiji

    1978-01-01

    Oxygen-dependent radiosensitivity of Escherichia coli W3623 his - was confirmed. Regarding cellular superoxide dismutase (SOD), cells grown oxically gained higher activity than those anoxically, however, the reinforced enzyme level could not compensate the oxygen effect, i.e., the enhanced lethal effect of oxic γ-irradiation. Rather, the enhancement of oxygen effect was found in cells grown oxically compared with those anoxically. Oxygen enhanced lethality was mitigated to the extent by the amount of added SOD into the cell suspension to be irradiated. The results supported a proposal that superoxide anion, O 2 - , is involved in the oxygen effect, with the most likely site of the damage in the outer structure of cell but not in the cell matrix. Reverse oxygen effect could be found with lambda phage DNA in transfecting ability. Added SOD protected phage DNA somewhat in oxic irradiation. While considerable protections were found in anoxic one with the added SOD even autoclaved but their function was still unknown. (auth.)

  15. Mechanism of mercuric chloride resistance in microorganisms. II. NADPH-dependent reduction of mercuric chloride and vaporization of mercury from mercuric chloride by a multiple drug resistant strain of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Komura, I; Funaba, T; Izaki, K

    1971-01-01

    The activity to vaporize a /sup 203/Hg compound from /sup 203/HgCl/sub 2/ was demonstrated in crude cell-free extracts of a strain of Escherichia coli W2252, which had acquired the multiple drug resistance. NADPH was essential for the vaporization, while NADH had only a slight stimulating effect and NADP/sup +/ had no effect. The oxidation of NADPH dependent on HgCl/sub 2/ was also demonstrated in the crude extracts, but the HgCl/sub 2/-dependent NADH oxidation could be demonstrated only when a partially purified enzyme preparation was used. The rate of NADH oxidation was much slower than that of NADPH oxidation. It was concluded that NADPH, and to a lesser extent NADH, act as electron donors for the enzymatic reduction of HgCl/sub 2/ and the vaporization occurs after this reduction. This reduction and subsequent vaporization seem to provide a mechanism of resistance to HgCl/sub 2/ in E. coli strains having the multiple drug resistance. 15 references, 4 figures, 4 tables.

  16. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    Science.gov (United States)

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase.

  17. Perturbation of human coronary artery endothelial cell redox state and NADPH generation by methylglyoxal.

    Directory of Open Access Journals (Sweden)

    Philip E Morgan

    Full Text Available Diabetes is associated with elevated plasma glucose, increased reactive aldehyde formation, oxidative damage, and glycation/glycoxidation of biomolecules. Cellular detoxification of, or protection against, such modifications commonly requires NADPH-dependent reducing equivalents (e.g. GSH. We hypothesised that reactive aldehydes may modulate cellular redox status via the inhibition of NADPH-generating enzymes, resulting in decreased thiol and NADPH levels. Primary human coronary artery endothelial cells (HCAEC were incubated with high glucose (25 mM, 24 h, 37°C, or methylglyoxal (MGO, glyoxal, or glycolaldehyde (100-500 µM, 1 h, 37°C, before quantification of intracellular thiols and NADPH-generating enzyme activities. Exposure to MGO, but not the other species examined, significantly (P<0.05 decreased total thiols (∼35%, further experiments with MGO showed significant losses of GSH (∼40% and NADPH (∼10%; these changes did not result in an immediate loss of cell viability. Significantly decreased (∼10% NADPH-producing enzyme activity was observed for HCAEC when glucose-6-phosphate or 2-deoxyglucose-6-phosphate were used as substrates. Cell lysate experiments showed significant MGO-dose dependent inhibition of glucose-6-phosphate-dependent enzymes and isocitrate dehydrogenase, but not malic enzyme. Analysis of intact cell or lysate proteins showed that arginine-derived hydroimidazolones were the predominant advanced glycation end-product (AGE formed; lower levels of N(ε-(carboxyethyllysine (CEL and N(ε-(carboxymethyllysine (CML were also detected. These data support a novel mechanism by which MGO exposure results in changes in redox status in human coronary artery endothelial cells, via inhibition of NADPH-generating enzymes, with resultant changes in reduced protein thiol and GSH levels. These changes may contribute to the endothelial cell dysfunction observed in diabetes-associated atherosclerosis.

  18. Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Eun-Mi Noh

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3 metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.

  19. NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, P.

    2004-01-01

    Two aldose (xylose) reductases (ARI and ARII) from Fusarium oxysporum were purified and characterized. The native ARI was a monomer with M-r 41000, pI 5.2 and showed a 52-fold preference for NADPH over NADH, while ARII was homodimeric with a subunit of M-r 37000, pI 3.6 and a 60-fold preference...

  20. Silencing of NADPH-Dependent Oxidoreductase Genes (yqhD and dkgA) in Furfural-Resistant Ethanologenic Escherichia coli▿

    Science.gov (United States)

    Miller, E. N.; Jarboe, L. R.; Yomano, L. P.; York, S. W.; Shanmugam, K. T.; Ingram, L. O.

    2009-01-01

    Low concentrations of furfural are formed as a side product during the dilute acid hydrolysis of hemicellulose. Growth is inhibited by exposure to furfural but resumes after the complete reduction of furfural to the less toxic furfuryl alcohol. Growth-based selection was used to isolate a furfural-resistant mutant of ethanologenic Escherichia coli LY180, designated strain EMFR9. Based on mRNA expression levels in the parent and mutant in response to furfural challenge, genes encoding 12 oxidoreductases were found to vary by more than twofold (eight were higher in EMFR9; four were higher in the parent). All 12 genes were cloned. When expressed from plasmids, none of the eight genes in the first group increased furfural tolerance in the parent (LY180). Expression of three of the silenced genes (yqhD, dkgA, and yqfA) in EMFR9 was found to decrease furfural tolerance compared to that in the parent. Purified enzymes encoded by yqhD and dkgA were shown to have NADPH-dependent furfural reductase activity. Both exhibited low Km values for NADPH (8 μM and 23 μM, respectively), similar to those of biosynthetic reactions. Furfural reductase activity was not associated with yqfA. Deleting yqhD and dkgA in the parent (LY180) increased furfural tolerance, but not to the same extent observed in the mutant EMFR9. Together, these results suggest that the process of reducing furfural by using an enzyme with a low Km for NADPH rather than a direct inhibitory action is the primary cause for growth inhibition by low concentrations of furfural. PMID:19429550

  1. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations.

    Science.gov (United States)

    Fraser, D A; Hessvik, N P; Nikolić, N; Aas, V; Hanssen, K F; Bøhn, S K; Thoresen, G H; Rustan, A C

    2012-07-01

    The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measured using real-time polymerase chain reaction (qPCR) and microarray technology. Benfotiamine significantly increased glucose oxidation under normoglycemic (35 and 49% increase at 100 and 200 μM benfotiamine, respectively) as well as hyperglycemic conditions (70% increase at 200 μM benfotiamine). Benfotiamine also increased glucose uptake. In comparison, thiamine (200 μM) increased overall glucose metabolism but did not change glucose oxidation. In contrast to glucose, mitochondrial lipid oxidation and overall lipid metabolism were unchanged by benfotiamine. The expression of NADPH oxidase 4 (NOX4) was significantly downregulated by benfotiamine treatment under both normo- and hyperglycemic conditions. Gene set enrichment analysis (GSEA) showed that befotiamine increased peroxisomal lipid oxidation and organelle (mitochondrial) membrane function. In conclusion, benfotiamine increases mitochondrial glucose oxidation in myotubes and downregulates NOX4 expression. These findings may be of relevance to type 2 diabetes where reversal of reduced glucose oxidation and mitochondrial capacity is a desirable goal.

  3. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants.

    Science.gov (United States)

    Echtay, Karim S; Murphy, Michael P; Smith, Robin A J; Talbot, Darren A; Brand, Martin D

    2002-12-06

    Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. Here we provide evidence for the first mechanism and show that superoxide activates UCP2 in rat kidney mitochondria from the matrix side of the mitochondrial inner membrane: (i) Exogenous superoxide inhibited matrix aconitase, showing that external superoxide entered the matrix. (ii) Superoxide-induced uncoupling was abolished by low concentrations of the mitochondrially targeted antioxidants 10-(6'-ubiquinonyl)decyltriphenylphosphonium (mitoQ) or 2-[2-(triphenylphosphonio)ethyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol bromide (mitoVit E), which are ubiquinone (Q) or tocopherol derivatives targeted to the matrix by covalent attachment to triphenylphosphonium cation. However, superoxide-induced uncoupling was not affected by similar concentrations of the nontargeted antioxidants Q(o), Q(1), decylubiquinone, vitamin E, or 6-hydroxy-2,5,7,8-tetramethylchroman 2-carboxylic acid (TROLOX) or of the mitochondrially targeted but redox-inactive analogs decyltriphenylphosphonium or 4-chlorobutyltriphenylphosphonium. Thus matrix superoxide appears to be necessary for activation of UCP2 by exogenous superoxide. (iii) When the reduced to oxidized ratio of mitoQ accumulated by mitochondria was increased by inhibiting cytochrome oxidase, it induced nucleotide-sensitive uncoupling that was not inhibited by external superoxide dismutase. Under these conditions quinols are known to produce superoxide, and because mitoQ is localized within the mitochondrial matrix this suggests that production of superoxide in the matrix was sufficient to activate UCP2. Furthermore, the superoxide

  4. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    International Nuclear Information System (INIS)

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2012-01-01

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A 2 and protein kinase C-α, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-α and cPLA 2 -α in this pathway. -- Highlights: ► Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. ► The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. ► NADPH oxidase lies downstream of cPLA 2 -α and PKC-α in this pathway. ► ROS generation is essential for the stimulation of macrophage proliferation by C1P.

  5. Effect of GLP-1 on the expression of NADPH oxidase subunits in the kidney of type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Jin-jin LIU

    2013-09-01

    Full Text Available Objective To observe the effect of exenatide, a glucagon-like peptide-1 (GLP-1 receptor agonist, on the expression of NADPH oxidase subunits NOX4 and p22phox and connective tissue growth factor (CTGF in the kidney of streptozotocin (STZ-induced type 1 diabetic rats, and explore the protective effects and mechanisms of exenatide on the kidney of diabetic rats. Methods Thirty male Sprague-Dawley (SD rats were divided into control group (group A, n=7 and diabetic model group (n=23. Type 1 diabetic model was reproduced by intraperitoneal injection of streptozotocin. It was successful in 19 rats. Diabetic rats were randomly divided into diabetic control group (group B, n=10 and diabetic with treatment of exenatide group (group C, n=9. Rats in group C were injected subcutaneously with exenatide in dose of 5μg/kg twice daily. Rats in group A and B were given equivalent volume of normal saline by subcutaneous injection. All rats were sacrificed after eight weeks. The mRNA expression of renal p22phox and NOX4 were detected by real-time fluorescence quantitative PCR. The protein expression of CTGF was detected by immunohistochemical staining. Results The levels of blood glucose, lipids, creatinine, and urea nitrogen, the albumin excretion rate, kidney index, the mRNA expressions of renal NOX4 and p22phox, and the protein expression of renal CTGF were significantly increased in group B compared with that in group A (P0.05. Conclusion Exenatide can decrease the expressions of renal NOX4, p22phox and CTGF, decline the index of urinary protein, and alleviate the kidney hypertrophy in type 1 diabetic rats, implying that exenatide exerted a protective effect on the kidney.

  6. Decreased neural precursor cell pool in NADPH oxidase 2-deficiency: From mouse brain to neural differentiation of patient derived iPSC

    Directory of Open Access Journals (Sweden)

    Zeynab Nayernia

    2017-10-01

    Full Text Available There is emerging evidence for the involvement of reactive oxygen species (ROS in the regulation of stem cells and cellular differentiation. Absence of the ROS-generating NADPH oxidase NOX2 in chronic granulomatous disease (CGD patients, predominantly manifests as immune deficiency, but has also been associated with decreased cognition. Here, we investigate the role of NOX enzymes in neuronal homeostasis in adult mouse brain and in neural cells derived from human induced pluripotent stem cells (iPSC. High levels of NOX2 were found in mouse adult neurogenic regions. In NOX2-deficient mice, neurogenic regions showed diminished redox modifications, as well as decrease in neuroprecursor numbers and in expression of genes involved in neural differentiation including NES, BDNF and OTX2. iPSC from healthy subjects and patients with CGD were used to study the role of NOX2 in human in vitro neuronal development. Expression of NOX2 was low in undifferentiated iPSC, upregulated upon neural induction, and disappeared during neuronal differentiation. In human neurospheres, NOX2 protein and ROS generation were polarized within the inner cell layer of rosette structures. NOX2 deficiency in CGD-iPSCs resulted in an abnormal neural induction in vitro, as revealed by a reduced expression of neuroprogenitor markers (NES, BDNF, OTX2, NRSF/REST, and a decreased generation of mature neurons. Vector-mediated NOX2 expression in NOX2-deficient iPSCs rescued neurogenesis. Taken together, our study provides novel evidence for a regulatory role of NOX2 during early stages of neurogenesis in mouse and human.

  7. Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Erin L. Foresman

    2013-01-01

    Full Text Available Superoxide (O2•− contributes to the development of cardiovascular disease. Generation of O2•− occurs in both the intracellular and extracellular compartments. We hypothesized that the gene transfer of cytosolic superoxide dismutase (SOD1 or extracellular SOD (SOD3 to blood vessels would differentially protect against O2•−-mediated endothelial-dependent dysfunction. Aortic ring segments from New Zealand rabbits were incubated with adenovirus (Ad containing the gene for Escherichia coli β-galactosidase, SOD1, or SOD3. Activity assays confirmed functional overexpression of both SOD3 and SOD1 isoforms in aorta 24 h following gene transfer. Histochemical staining for β-galactosidase showed gene transfer occurred in the endothelium and adventitia. Next, vessels were prepared for measurement of isometric tension in Kreb's buffer containing xanthine. After precontraction with phenylephrine, xanthine oxidase impaired relaxation to the endothelium-dependent dilator acetylcholine (ACh, max relaxation 33±4% with XO vs. 64±3% without XO, p<0.05, whereas relaxation to the endothelium-independent dilator sodium nitroprusside was unaffected. In the presence of XO, maximal relaxation to ACh was improved in vessels incubated with AdSOD3 (55±2%, p<0.05 vs. control but not AdSOD1 (34±4%. We conclude that adenoviral-mediated gene transfer of SOD3, but not SOD1, protects the aorta from xanthine/XO-mediated endothelial dysfunction. These data provide important insight into the location and enzymatic source of O2•− production in vascular disease.

  8. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R. [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Redondo, Santiago [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Peçanha, Franck [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); Martín, Angela [Departamento de Bioquímica, Fisiología y Genética Molecular, Universidad Rey Juan Carlos, 28922, Alcorcón (Spain); Fortuño, Ana [Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008, Pamplona (Spain); Cachofeiro, Victoria [Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Tejerina, Teresa [Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040, Madrid (Spain); Salaices, Mercedes, E-mail: mercedes.salaices@uam.es [Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid (Spain); and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  9. Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.

    Science.gov (United States)

    Figtree, Gemma A; Liu, Chia-Chi; Bibert, Stephanie; Hamilton, Elisha J; Garcia, Alvaro; White, Caroline N; Chia, Karin K M; Cornelius, Flemming; Geering, Kaethi; Rasmussen, Helge H

    2009-07-17

    Angiotensin II (Ang II) inhibits the cardiac sarcolemmal Na(+)-K(+) pump via protein kinase (PK)C-dependent activation of NADPH oxidase. We examined whether this is mediated by oxidative modification of the pump subunits. We detected glutathionylation of beta(1), but not alpha(1), subunits in rabbit ventricular myocytes at baseline. beta(1) Subunit glutathionylation was increased by peroxynitrite (ONOO(-)), paraquat, or activation of NADPH oxidase by Ang II. Increased glutathionylation was associated with decreased alpha(1)/beta(1) subunit coimmunoprecipitation. Glutathionylation was reversed after addition of superoxide dismutase. Glutaredoxin 1, which catalyzes deglutathionylation, coimmunoprecipitated with beta(1) subunit and, when included in patch pipette solutions, abolished paraquat-induced inhibition of myocyte Na(+)-K(+) pump current (I(p)). Cysteine (Cys46) of the beta(1) subunit was the likely candidate for glutathionylation. We expressed Na(+)-K(+) pump alpha(1) subunits with wild-type or Cys46-mutated beta(1) subunits in Xenopus oocytes. ONOO(-) induced glutathionylation of beta(1) subunit and a decrease in Na(+)-K(+) pump turnover number. This was eliminated by mutation of Cys46. ONOO(-) also induced glutathionylation of the Na(+)-K(+) ATPase beta(1) subunit from pig kidney. This was associated with a approximately 2-fold decrease in the rate-limiting E(2)-->E(1) conformational change of the pump, as determined by RH421 fluorescence. We propose that kinase-dependent regulation of the Na(+)-K(+) pump occurs via glutathionylation of its beta(1) subunit at Cys46. These findings have implications for pathophysiological conditions characterized by neurohormonal dysregulation, myocardial oxidative stress and raised myocyte Na(+) levels.

  10. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts.

    Science.gov (United States)

    Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M

    2011-08-01

    Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.

  11. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases

    Directory of Open Access Journals (Sweden)

    Tom A. Ewing

    2018-01-01

    Full Text Available Vanillyl alcohol oxidase (VAO and eugenol oxidase (EUGO are flavin-dependent enzymes that catalyse the oxidation of para-substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para-phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol and a EUGO variant (V436I with increased activity towards chavicol (4-allylphenol and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para-phenol oxidases, facilitating the enzyme engineering of known para-phenol oxidases and the evaluation of the substrate specificity of novel para-phenol oxidases.

  12. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases.

    Science.gov (United States)

    Ewing, Tom A; van Noord, Aster; Paul, Caroline E; van Berkel, Willem J H

    2018-01-14

    Vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO) are flavin-dependent enzymes that catalyse the oxidation of para -substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para -phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q) with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) and a EUGO variant (V436I) with increased activity towards chavicol (4-allylphenol) and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para -phenol oxidases, facilitating the enzyme engineering of known para- phenol oxidases and the evaluation of the substrate specificity of novel para -phenol oxidases.

  13. Role of the NAD(P)H quinone oxidoreductase NQR and the cytochrome b AIR12 in controlling superoxide generation at the plasma membrane.

    Science.gov (United States)

    Biniek, Catherine; Heyno, Eiri; Kruk, Jerzy; Sparla, Francesca; Trost, Paolo; Krieger-Liszkay, Anja

    2017-04-01

    The quinone reductase NQR and the b-type cytochrome AIR12 of the plasma membrane are important for the control of reactive oxygen species in the apoplast. AIR12 and NQR are two proteins attached to the plant plasma membrane which may be important for generating and controlling levels of reactive oxygen species in the apoplast. AIR12 (Auxin Induced in Root culture) is a single gene of Arabidopsis that codes for a mono-heme cytochrome b. The NADPH quinone oxidoreductase NQR is a two-electron-transferring flavoenzyme that contributes to the generation of O 2 •- in isolated plasma membranes. A. thaliana double knockout plants of both NQR and AIR12 generated more O 2 •- and germinated faster than the single mutant affected in AIR12. To test whether NQR and AIR12 are able to interact functionally, recombinant purified proteins were added to plasma membranes isolated from soybean hypocotyls. In vitro NADH-dependent O 2 •- production at the plasma membrane in the presence of NQR was reduced upon addition of AIR12. Electron donation from semi-reduced menadione to AIR12 was shown to take place. Biochemical analysis showed that purified plasma membrane from soybean hypocotyls or roots contained phylloquinone and menaquinone-4 as redox carriers. This is the first report on the occurrence of menaquinone-4 in eukaryotic photosynthetic organisms. We propose that NQR and AIR12 interact via the quinone, allowing an electron transfer from cytosolic NAD(P)H to apoplastic monodehydroascorbate and control thereby the level of reactive oxygen production and the redox state of the apoplast.

  14. Qian Yang Yu Yin Granule-containing serum inhibits angiotensin II-induced proliferation, reactive oxygen species production, and inflammation in human mesangial cells via an NADPH oxidase 4-dependent pathway.

    Science.gov (United States)

    Ding, Kang; Wang, Yan; Jiang, Weimin; Zhang, Yu; Yin, Hongping; Fang, Zhuyuan

    2015-03-25

    Qian Yang Yu Yin Granule (QYYYG), a traditional Chinese herbal medicine, has been indicated for renal damage in hypertension for decades in China, but little remains known regarding its underlying molecular mechanism. Therefore, we performed the current study in order to investigate the underlying molecular mechanism of QYYYG in the treatment of hypertensive renal damage. We hypothesize that QYYYG relieves hypertensive renal injury through an angiotensin II (Ang II)-nicotinamide adenine dinucleotide phosphate (NAPDH)-oxidase (NOX)-reactive oxygen species (ROS) pathway. In this study, we investigated the effects of QYYYG-containing serum (QYGS) in human mesangial cells (HMCs) against Ang II-induced cell proliferation, ROS production, and inflammation through the seropharmacological method. We found that QYGS could inhibit cell proliferation in Ang II-treated HMCs. In addition, QYGS considerably suppressed production of ROS, decreased mRNA and protein expression of NAPDH-oxidase 4 (NOX4), p22 (phox) , and activated Ras-related C3 botulinum toxin substrate 1 (GTP-Rac1); as well as counteracted the up-regulation of inflammatory markers including tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB) p65, and interleukin 6 (IL-6). These effects were further confirmed in HMCs transfected with specific small interfering RNA (siRNA) targeting NOX4. Taken together, these results suggest that a NOX4-dependent pathway plays an important role in regulating the inhibitory effect of QYGS. Our findings provide new insights into the molecular mechanisms of QYYYG and their role in the treatment of hypertensive nephropathy.

  15. The in vitro NADPH-dependent inhibition by CCl4 of the ATP-dependent calcium uptake of hepatic microsomes from male rats. Studies on the mechanism of the inactivation of the hepatic microsomal calcium pump by the CCl3 radical

    International Nuclear Information System (INIS)

    Srivastava, S.P.; Chen, N.Q.; Holtzman, J.L.

    1990-01-01

    The hepatotoxicity of CCl4 is mediated through its initial reduction by cytochrome P-450 to the CCl3 radical. This radical then damages important metabolic systems such as the ATP-dependent microsomal Ca2+ pump. Previous studies from our laboratory on isolated microsomes have shown that NADPH in the absence of toxic agents inhibits this pump. We have now found in in vitro incubations that CCl4 (0.5-2.5 mM) enhanced the NADPH-dependent inhibition of Ca2+ uptake from 28% without CCl4 to a maximum of 68%. These concentrations are in the range found in the livers and blood of lethally intoxicated animals and are toxic to cultured hepatocytes. The inhibition of Ca2+ uptake was due both to a decrease in the Ca2(+)-dependent ATPase and to an enhanced release of Ca2+ from the microsomes. The NADPH-dependent CCl4 inhibition was greater under N2 and was totally prevented by CO. GSH (1-10 mM) added during the incubation with CCl4 prevented the inhibition. This protection was also seen when the incubations were performed under nitrogen. When samples were preincubated with CCl4, the CCl4 metabolism was stopped, and then the Ca2+ uptake was determined; GSH reversed the CCl4 inhibition of Ca2+ uptake. This reversal showed saturation kinetics for GSH with two Km values of 0.315 and 93 microM when both the preincubation and the Ca2+ uptake were performed under air, and 0.512 and 31 microM when both were performed under nitrogen. Cysteine did not prevent the NADPH-dependent CCl4 inhibition of Ca2+ uptake. CCl4 increased lipid peroxidation in air, but no lipid peroxidation was seen under nitrogen. Lipid peroxidation was only modestly reversed by GSH. GSH did not remove 14C bound to samples preincubated with the 14CCl4

  16. Purification, crystallization and preliminary X-ray analysis of l-sorbose reductase from Gluconobacter frateurii complexed with l-sorbose or NADPH

    International Nuclear Information System (INIS)

    Kubota, Keiko; Nagata, Koji; Miyazono, Ken-ichi; Toyama, Hirohide; Matsushita, Kazunobu; Tanokura, Masaru

    2009-01-01

    NADPH-dependent l-sorbose reductase from G. frateurii (SR) was expressed, purified and crystallized with l-sorbose or NADPH using the sitting-drop vapour-diffusion method. Crystals of the SR–l-sorbose complex and SR–NADPH complex diffracted X-rays to 2.38 and 1.90 Å resolution, respectively. NADPH-dependent l-sorbose reductase (SR) from Gluconobacter frateurii was expressed in Escherichia coli, purified and crystallized with l-sorbose or NADPH using the sitting-drop vapour-diffusion method at 293 K. Crystals of the SR–l-sorbose complex and the SR–NADPH complex were obtained using reservoir solutions containing PEG 2000 or PEG 400 as precipitants and diffracted X-rays to 2.38 and 1.90 Å resolution, respectively. The crystal of the SR–l-sorbose complex belonged to space group C222 1 , with unit-cell parameters a = 124.2, b = 124.1, c = 60.8 Å. The crystal of the SR–NADPH complex belonged to space group P2 1 , with unit-cell parameters a = 124.3, b = 61.0, c = 124.5 Å, β = 89.99°. The crystals contained two and eight molecules, respectively, in the asymmetric unit

  17. Functional Analysis of the Trichoderma harzianum nox1 Gene, Encoding an NADPH Oxidase, Relates Production of Reactive Oxygen Species to Specific Biocontrol Activity against Pythium ultimum▿†

    Science.gov (United States)

    Montero-Barrientos, M.; Hermosa, R.; Cardoza, R. E.; Gutiérrez, S.; Monte, E.

    2011-01-01

    The synthesis of reactive oxygen species (ROS) is one of the first events following pathogenic interactions in eukaryotic cells, and NADPH oxidases are involved in the formation of such ROS. The nox1 gene of Trichoderma harzianum was cloned, and its role in antagonism against phytopathogens was analyzed in nox1-overexpressed transformants. The increased levels of nox1 expression in these transformants were accompanied by an increase in ROS production during their direct confrontation with Pythium ultimum. The transformants displayed an increased hydrolytic pattern, as determined by comparing protease, cellulase, and chitinase activities with those for the wild type. In confrontation assays against P. ultimum the nox1-overexpressed transformants were more effective than the wild type, but not in assays against Botrytis cinerea or Rhizoctonia solani. A transcriptomic analysis using a Trichoderma high-density oligonucleotide (HDO) microarray also showed that, compared to gene expression for the interaction of wild-type T. harzianum and P. ultimum, genes related to protease, cellulase, and chitinase activities were differentially upregulated in the interaction of a nox1-overexpressed transformant with this pathogen. Our results show that nox1 is involved in T. harzianum ROS production and antagonism against P. ultimum. PMID:21421791

  18. High-sugar intake does not exacerbate metabolic abnormalities or cardiac dysfunction in genetic cardiomyopathy.

    Science.gov (United States)

    Hecker, Peter A; Galvao, Tatiana F; O'Shea, Karen M; Brown, Bethany H; Henderson, Reney; Riggle, Heather; Gupte, Sachin A; Stanley, William C

    2012-05-01

    A high-sugar intake increases heart disease risk in humans. In animals, sugar intake accelerates heart failure development by increased reactive oxygen species (ROS). Glucose-6-phosphate dehydrogenase (G6PD) can fuel ROS production by providing reduced nicotinamide adenine dinucleotide phosphate (NADPH) for superoxide generation by NADPH oxidase. Conversely, G6PD also facilitates ROS scavenging using the glutathione pathway. We hypothesized that a high-sugar intake would increase flux through G6PD to increase myocardial NADPH and ROS and accelerate cardiac dysfunction and death. Six-week-old TO-2 hamsters, a non-hypertensive model of genetic cardiomyopathy caused by a δ-sarcoglycan mutation, were fed a long-term diet of high starch or high sugar (57% of energy from sucrose plus fructose). After 24 wk, the δ-sarcoglycan-deficient animals displayed expected decreases in survival and cardiac function associated with cardiomyopathy (ejection fraction: control 68.7 ± 4.5%, TO-2 starch 46.1 ± 3.7%, P sugar 58.0 ± 4.2%, NS, versus TO-2 starch or control; median survival: TO-2 starch 278 d, TO-2 sugar 318 d, P = 0.133). Although the high-sugar intake was expected to exacerbate cardiomyopathy, surprisingly, there was no further decrease in ejection fraction or survival with high sugar compared with starch in cardiomyopathic animals. Cardiomyopathic animals had systemic and cardiac metabolic abnormalities (increased serum lipids and glucose and decreased myocardial oxidative enzymes) that were unaffected by diet. The high-sugar intake increased myocardial superoxide, but NADPH and lipid peroxidation were unaffected. A sugar-enriched diet did not exacerbate ventricular function, metabolic abnormalities, or survival in heart failure despite an increase in superoxide production. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Molecular cloning and functional characterization of NADPH-dependent cytochrome P450 reductase from the green microalga Botryococcus braunii, B race.

    Science.gov (United States)

    Tsou, Chung-Yau; Matsunaga, Shigeki; Okada, Shigeru

    2018-01-01

    The green microalga Botryococcus braunii of the B race accumulates various lipophilic compounds containing a 10,11-oxidosqualene epoxide moiety in addition to large amounts of triterpene hydrocarbons. While 2,3-squalene epoxidases have already been isolated and characterized from the alga, the enzyme that catalyzes the 10,11-epoxidation of squalene has remained elusive. In order to obtain a molecular tool to explore a 10,11-squalene epoxidase, cDNA cloning of an NADPH-dependent cytochrome P450 reductase (CPR) that is required by both squalene epoxidases and cytochrome P450 enzymes was carried out. The isolated cDNA contained an open reading frame (1998 bp) that encoded for a protein with 665 amino acid residues with a predicted molecular weight of 71.46 kDa and a theoretical pI of 5.49. Analysis of the deduced amino acid sequence revealed the presence of conserved motifs, including FMN, FAD, and NADPH binding domains, which are typical of other CPRs and necessary for enzyme activity. By truncation of the N-terminal transmembrane anchor and addition of a 6× His-tag, BbCPR was heterologously produced in Escherichia coli and purified by Ni-NTA affinity chromatography. The purified recombinant enzyme showed optimal reducing activity of cytochrome c at around a neutral pH at a temperature range of 30-37°C. For steady state kinetic parameters, the recombinant enzyme had a k m for cytochrome c and NADPH of 11.7±1.6 and 9.4±1.4 μM, and a k cat for cytochrome c and NADPH of 2.78±0.09 and 3.66±0.11 μmol/min/mg protein, respectively. This is the first study to perform the functional characterization of a CPR from eukaryotic microalgae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. High-Dose Polymerized Hemoglobin Fails to Alleviate Cardiac Ischemia/Reperfusion Injury due to Induction of Oxidative Damage in Coronary Artery.

    Science.gov (United States)

    Yang, Qian; Wu, Wei; Li, Qian; Chen, Chan; Zhou, Ronghua; Qiu, Yanhua; Luo, Ming; Tan, Zhaoxia; Li, Shen; Chen, Gang; Zhou, Wentao; Liu, Jiaxin; Yang, Chengmin; Liu, Jin; Li, Tao

    2015-01-01

    Objective. Ischemia/reperfusion (I/R) injury is an unavoidable event for patients in cardiac surgery under cardiopulmonary bypass (CPB). This study was designed to investigate whether glutaraldehyde-polymerized human placenta hemoglobin (PolyPHb), a hemoglobin-based oxygen carrier (HBOC), can protect heart against CPB-induced I/R injury or not and to elucidate the underlying mechanism. Methods and Results. A standard dog CPB model with 2-hour cardiac arrest and 2-hour reperfusion was established. The results demonstrated that a low-dose PolyPHb (0.1%, w/v) provided a significant protection on the I/R heart, whereas the high-dose PolyPHb (3%, w/v) did not exhibit cardioprotective effect, as evidenced by the impaired cardiac function, decreased myocardial oxygen utilization, and elevated enzymes release and pathological changes. Further study indicated that exposure of isolated coronary arteries or human umbilical vein endothelial cells (HUVECs) to a high-dose PolyPHb caused impaired endothelium-dependent relaxation, which was companied with increased reactive oxygen species (ROS) production, reduced superoxide dismutase (SOD) activity, and elevated malonaldehyde (MDA) formation. Consistent with the increased oxidative stress, the NAD(P)H oxidase activity and subunits expression, including gp91(phox), p47(phox), p67(phox), and Nox1, were greatly upregulated. Conclusion. The high-dose PolyPHb fails to protect heart from CPB-induced I/R injury, which was due to overproduction of NAD(P)H oxidase-induced ROS and resultant endothelial dysfunction.

  1. High-Dose Polymerized Hemoglobin Fails to Alleviate Cardiac Ischemia/Reperfusion Injury due to Induction of Oxidative Damage in Coronary Artery

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2015-01-01

    Full Text Available Objective. Ischemia/reperfusion (I/R injury is an unavoidable event for patients in cardiac surgery under cardiopulmonary bypass (CPB. This study was designed to investigate whether glutaraldehyde-polymerized human placenta hemoglobin (PolyPHb, a hemoglobin-based oxygen carrier (HBOC, can protect heart against CPB-induced I/R injury or not and to elucidate the underlying mechanism. Methods and Results. A standard dog CPB model with 2-hour cardiac arrest and 2-hour reperfusion was established. The results demonstrated that a low-dose PolyPHb (0.1%, w/v provided a significant protection on the I/R heart, whereas the high-dose PolyPHb (3%, w/v did not exhibit cardioprotective effect, as evidenced by the impaired cardiac function, decreased myocardial oxygen utilization, and elevated enzymes release and pathological changes. Further study indicated that exposure of isolated coronary arteries or human umbilical vein endothelial cells (HUVECs to a high-dose PolyPHb caused impaired endothelium-dependent relaxation, which was companied with increased reactive oxygen species (ROS production, reduced superoxide dismutase (SOD activity, and elevated malonaldehyde (MDA formation. Consistent with the increased oxidative stress, the NAD(PH oxidase activity and subunits expression, including gp91phox, p47phox, p67phox, and Nox1, were greatly upregulated. Conclusion. The high-dose PolyPHb fails to protect heart from CPB-induced I/R injury, which was due to overproduction of NAD(PH oxidase-induced ROS and resultant endothelial dysfunction.

  2. The Role of Mitochondrial NADPH-Dependent Isocitrate Dehydrogenase in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Katarína Smolková

    2012-01-01

    Full Text Available Isocitrate dehydrogenase 2 (IDH2 is located in the mitochondrial matrix. IDH2 acts in the forward Krebs cycle as an NADP+-consuming enzyme, providing NADPH for maintenance of the reduced glutathione and peroxiredoxin systems and for self-maintenance by reactivation of cystine-inactivated IDH2 by glutaredoxin 2. In highly respiring cells, the resulting NAD+ accumulation then induces sirtuin-3-mediated activating IDH2 deacetylation, thus increasing its protective function. Reductive carboxylation of 2-oxoglutarate by IDH2 (in the reverse Krebs cycle direction, which consumes NADPH, may follow glutaminolysis of glutamine to 2-oxoglutarate in cancer cells. When the reverse aconitase reaction and citrate efflux are added, this overall “anoxic” glutaminolysis mode may help highly malignant tumors survive aglycemia during hypoxia. Intermittent glycolysis would hypothetically be required to provide ATP. When oxidative phosphorylation is dormant, this mode causes substantial oxidative stress. Arg172 mutants of human IDH2—frequently found with similar mutants of cytosolic IDH1 in grade 2 and 3 gliomas, secondary glioblastomas, and acute myeloid leukemia—catalyze reductive carboxylation of 2-oxoglutarate and reduction to D-2-hydroxyglutarate, which strengthens the neoplastic phenotype by competitive inhibition of histone demethylation and 5-methylcytosine hydroxylation, leading to genome-wide histone and DNA methylation alternations. D-2-hydroxyglutarate also interferes with proline hydroxylation and thus may stabilize hypoxia-induced factor α.

  3. Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions

    Science.gov (United States)

    Zhang, Feng; Shi, Jing-Shan; Zhou, Hui; Wilson, Belinda; Hong, Jau-Shyong

    2010-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by a progressive loss of dopamine (DA) neurons in the substantia nigra. Accumulating evidence indicates that inhibition of microglia-mediated neuroinflammation may become a reliable protective strategy for PD. Resveratrol, a nonflavonoid polyphenol naturally found in red wine and grapes, has been known to possess antioxidant, anticancer, and anti-inflammatory properties. Although recent studies have shown that resveratrol provided neuroprotective effects against ischemia, seizure, and neurodegenerative disorders, the mechanisms underlying its beneficial effects on dopaminergic neurodegeneration are poorly defined. In this study, rat primary midbrain neuron-glia cultures were used to elucidate the molecular mechanisms underlying resveratrol-mediated neuroprotection. The results clearly demonstrated that resveratrol protected DA neurons against lipopolysaccharide (LPS)-induced neurotoxicity in concentration- and time-dependent manners through the inhibition of microglial activation and the subsequent reduction of proinflammatory factor release. Mechanistically, resveratrol-mediated neuroprotection was attributed to the inhibition of NADPH oxidase. This conclusion is supported by the following observations. First, resveratrol reduced NADPH oxidase-mediated generation of reactive oxygen species. Second, LPS-induced translocation of NADPH oxidase cytosolic subunit p47 to the cell membrane was significantly attenuated by resveratrol. Third and most importantly, resveratrol failed to exhibit neuroprotection in cultures from NADPH oxidase-deficient mice. Furthermore, this neuroprotection was also related to an attenuation of the activation of mitogen-activated protein kinases and nuclear factor-κB signaling pathways in microglia. These findings suggest that resveratrol exerts neuroprotection against LPS-induced dopaminergic neurodegeneration, and NADPH oxidase may be a major player

  4. Mediated effect of ultrasound treated Diclofenac on mussel hemocytes: First evidence for the involvement of respiratory burst enzymes in the induction of DCF-mediated unspecific mode of action.

    Science.gov (United States)

    Toufexi, Eirini; Dailianis, Stefanos; Vlastos, Dimitris; Manariotis, Ioannis D

    2016-06-01

    The present study investigates the toxic behavior of diclofenac (DCF) before and after its ultrasound (US) treatment, as well as the involvement of intracellular target molecules, such as NADPH oxidase and NO synthase, in the DCF-induced adverse effects on hemocytes of mussel Mytilus galloprovincialis. In this context, appropriate volumes (350 and 500mL) of DCF solutions (at concentrations of 2, 2.5, 5 and 10mgL(-1)) were treated under different ultrasound operating conditions (frequency at 582 and 862kHz, electric power density at 133 and 167W) for assessing US method efficiency. In parallel, DCF and US DCF-mediated cytotoxic (in terms of cell viability measured with the use of neutral red uptake/NRU method), oxidative (in terms of superoxide anions/(.)O2(-), nitric oxides such as NO2(-) and lipid peroxidation products, such as malondialdehyde/MDA content) and genotoxic (DNA damage measured by the use of Comet assay method) effects were investigated in hemocytes exposed for 1h to 5, 10 and 100ngL(-1) and 1, 10 and 20μgL(-1) of DCF. The involvement of NADPH oxidase and NO synthase to the DCF-induced toxicity was further investigated by the use of 10μΜ L-NAME, a NO synthase inhibitor and 10μΜ DPI, a NADPH oxidase inhibitor. According to the results, 350mL of 2mgL(-1) DCF showed higher degradation (>50%) under 167W electric power density and frequency at 862kHz for 120min, compared to degradation in all other cases, followed by a significant elimination of its toxicity. Specifically, US DCF-treated hemocytes showed a significant attenuation of DCF-mediated cytotoxic, oxidative and genotoxic effects, which appeared to be caused by NADPH oxidase and NO synthase activation, since their inhibition was followed by a significant elimination of (.)O2(-) and NO2(-) generation and the concomitant oxidative damage within cells. The results of the present study showed for the first time that unspecific mode of action of DCF, associated with the induction of NADPH oxidase

  5. NADPH-dependent D-aldose reductases and xylose fermentation in Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Christakopoulos, P.

    2004-01-01

    for NADPH over NADH. In this study, the influence of aeration and the response to the addition of electron acceptors on xylose fermentation by F. oxysporum were also studied. The batch cultivation of F. oxysporum on xylose was performed under aerobic, anaerobic and oxygen-limited conditions in stirred tank...... conditions (0.3 vvm). When the artificial electron acceptor acetoin was added to an anaerobic batch fermentation of xylose by F. oxysporum, the ethanol yield increased while xylitol excretion was also decreased....

  6. Crystal structure of conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 complexed with NADPH.

    Science.gov (United States)

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2013-11-01

    Conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 is a member of the aldo-keto reductase (AKR) superfamily and reduces ketopantoyl lactone to d-pantoyl lactone in a NADPH-dependent and stereospecific manner. We determined the crystal structure of CPR-C1.NADPH complex at 2.20 Å resolution. CPR-C1 adopted a triose-phosphate isomerase (TIM) barrel fold at the core of the structure in which Thr25 and Lys26 of the GXGTX motif bind uniquely to the adenosine 2'-phosphate group of NADPH. This finding provides a novel structural basis for NADPH binding of the AKR superfamily. Copyright © 2013 Wiley Periodicals, Inc.

  7. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hyun; Jang, Hae-Dong, E-mail: haedong@hnu.kr

    2015-02-15

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen species (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and

  8. Gastric mucosal injury in the rat. Role of iron and xanthine oxidase

    International Nuclear Information System (INIS)

    Smith, S.M.; Grisham, M.B.; Manci, E.A.; Granger, D.N.; Kvietys, P.R.

    1987-01-01

    Recent studies have implicated oxygen free radicals in ischemia-reperfusion injury to the gastric mucosa. The aims of the present study were to test the hypothesis that the enzyme xanthine oxidase is the source of the oxygen radicals in the ischemic stomach and determine the importance of the iron-catalyzed Haber-Weiss reaction in generating the cytotoxic oxygen radicals. Gastric mucosal clearance of 51 Cr-labeled red blood cells was measured during a 30-min control period, a 30-min ischemic period (hemorrhage to 25 mmHg arterial pressure), and a 60-80-min reperfusion period (reinfusion of shed blood). In untreated (control) rats, a dramatic rise (100-fold) in the leakage of 51 Cr-labeled red blood cells into the gastric lumen was observed only during the reperfusion period. After the reperfusion period, gastric mucosal damage was further assessed using gross lesion area and histology. Rats were placed on a sodium tungstate diet (to inactivate xanthine oxidase), or treated with either deferoxamine (an iron chelating agent) or superoxide dismutase (a superoxide scavenger). All three interventions substantially reduced 51 Cr-labeled red blood cell clearance and gross lesion area relative to untreated rats. However, tissue injury assessed histologically was similar in both treated and untreated animals. The results of this study support the hypothesis that oxygen free radicals mediate the hemorrhagic shock-induced extravasation of red blood cells. The data also indicate that xanthine oxidase is the source of the oxy-radicals and that the iron-catalyzed Haber-Weiss reaction is largely responsible for hydroxyl radical generation in this model

  9. Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae

    OpenAIRE

    Faccio Greta; Kruus Kristiina; Buchert Johanna; Saloheimo Markku

    2010-01-01

    Abstract Background Sulfhydryl oxidases are flavin-dependent enzymes that catalyse the formation of de novo disulfide bonds from free thiol groups, with the reduction of molecular oxygen to hydrogen peroxide. Sulfhydryl oxidases have been investigated in the food industry to remove the burnt flavour of ultraheat-treated milk and are currently studied as potential crosslinking enzymes, aiming at strengthening wheat dough and improving the overall bread quality. Results In the present study, po...

  10. Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Faccio Greta

    2010-08-01

    Full Text Available Abstract Background Sulfhydryl oxidases are flavin-dependent enzymes that catalyse the formation of de novo disulfide bonds from free thiol groups, with the reduction of molecular oxygen to hydrogen peroxide. Sulfhydryl oxidases have been investigated in the food industry to remove the burnt flavour of ultraheat-treated milk and are currently studied as potential crosslinking enzymes, aiming at strengthening wheat dough and improving the overall bread quality. Results In the present study, potential sulfhydryl oxidases were identified in the publicly available fungal genome sequences and their sequence characteristics were studied. A representative sulfhydryl oxidase from Aspergillus oryzae, AoSOX1, was expressed in the fungus Trichoderma reesei. AoSOX1 was produced in relatively good yields and was purified and biochemically characterised. The enzyme catalysed the oxidation of thiol-containing compounds like glutathione, D/L-cysteine, beta-mercaptoethanol and DTT. The enzyme had a melting temperature of 57°C, a pH optimum of 7.5 and its enzymatic activity was completely inhibited in the presence of 1 mM ZnSO4. Conclusions Eighteen potentially secreted sulfhydryl oxidases were detected in the publicly available fungal genomes analysed and a novel proline-tryptophan dipeptide in the characteristic motif CXXC, where X is any amino acid, was found. A representative protein, AoSOX1 from A. oryzae, was produced in T. reesei in an active form and had the characteristics of sulfhydryl oxidases. Further testing of the activity on thiol groups within larger peptides and on protein level will be needed to assess the application potential of this enzyme.

  11. Secreted fungal sulfhydryl oxidases: sequence analysis and characterisation of a representative flavin-dependent enzyme from Aspergillus oryzae.

    Science.gov (United States)

    Faccio, Greta; Kruus, Kristiina; Buchert, Johanna; Saloheimo, Markku

    2010-08-20

    Sulfhydryl oxidases are flavin-dependent enzymes that catalyse the formation of de novo disulfide bonds from free thiol groups, with the reduction of molecular oxygen to hydrogen peroxide. Sulfhydryl oxidases have been investigated in the food industry to remove the burnt flavour of ultraheat-treated milk and are currently studied as potential crosslinking enzymes, aiming at strengthening wheat dough and improving the overall bread quality. In the present study, potential sulfhydryl oxidases were identified in the publicly available fungal genome sequences and their sequence characteristics were studied. A representative sulfhydryl oxidase from Aspergillus oryzae, AoSOX1, was expressed in the fungus Trichoderma reesei. AoSOX1 was produced in relatively good yields and was purified and biochemically characterised. The enzyme catalysed the oxidation of thiol-containing compounds like glutathione, D/L-cysteine, beta-mercaptoethanol and DTT. The enzyme had a melting temperature of 57°C, a pH optimum of 7.5 and its enzymatic activity was completely inhibited in the presence of 1 mM ZnSO4. Eighteen potentially secreted sulfhydryl oxidases were detected in the publicly available fungal genomes analysed and a novel proline-tryptophan dipeptide in the characteristic motif CXXC, where X is any amino acid, was found. A representative protein, AoSOX1 from A. oryzae, was produced in T. reesei in an active form and had the characteristics of sulfhydryl oxidases. Further testing of the activity on thiol groups within larger peptides and on protein level will be needed to assess the application potential of this enzyme.

  12. Tocotrienol Rich Palm Oil Extract Is More Effective Than Pure Tocotrienols at Improving Endothelium-Dependent Relaxation in the Presence of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Saher F. Ali

    2015-01-01

    Full Text Available Oxidative endothelial dysfunction is a critical initiator of vascular disease. Vitamin E is an effective antioxidant but attempts to use it to treat vascular disorders have been disappointing. This study investigated whether tocotrienols, the less abundant components of vitamin E compared to tocopherols, might be more effective at preserving endothelial function. Superoxide generated by hypoxanthine/xanthine oxidase or rat aorta was measured using lucigenin-enhanced chemiluminescence. The effect of α-tocopherol, α-, δ-, and γ-tocotrienols and a tocotrienol rich palm oil extract (tocomin on levels of superoxide was assessed. Endothelial function in rat aorta was assessed in the presence of the auto-oxidant pyrogallol. Whilst all of the compounds displayed antioxidant activity, the tocotrienols were more effective when superoxide was produced by hypoxanthine/xanthine oxidase whereas tocomin and α-tocopherol were more effective in the isolated aorta. Tocomin and α-tocopherol restored endothelial function in the presence of oxidant stress but α-, δ-, and γ-tocotrienols were ineffective. The protective effect of tocomin was replicated when the tocotrienols were present with, but not without, α-tocopherol. Tocotrienol rich tocomin is more effective than α-tocopherol at reducing oxidative stress and restoring endothelium-dependent relaxation in rat aortae and although α-, δ-, and γ-tocotrienols effectively scavenged superoxide, they did not improve endothelial function.

  13. Tocotrienol Rich Palm Oil Extract Is More Effective Than Pure Tocotrienols at Improving Endothelium-Dependent Relaxation in the Presence of Oxidative Stress

    Science.gov (United States)

    Ali, Saher F.; Woodman, Owen L.

    2015-01-01

    Oxidative endothelial dysfunction is a critical initiator of vascular disease. Vitamin E is an effective antioxidant but attempts to use it to treat vascular disorders have been disappointing. This study investigated whether tocotrienols, the less abundant components of vitamin E compared to tocopherols, might be more effective at preserving endothelial function. Superoxide generated by hypoxanthine/xanthine oxidase or rat aorta was measured using lucigenin-enhanced chemiluminescence. The effect of α-tocopherol, α-, δ-, and γ-tocotrienols and a tocotrienol rich palm oil extract (tocomin) on levels of superoxide was assessed. Endothelial function in rat aorta was assessed in the presence of the auto-oxidant pyrogallol. Whilst all of the compounds displayed antioxidant activity, the tocotrienols were more effective when superoxide was produced by hypoxanthine/xanthine oxidase whereas tocomin and α-tocopherol were more effective in the isolated aorta. Tocomin and α-tocopherol restored endothelial function in the presence of oxidant stress but α-, δ-, and γ-tocotrienols were ineffective. The protective effect of tocomin was replicated when the tocotrienols were present with, but not without, α-tocopherol. Tocotrienol rich tocomin is more effective than α-tocopherol at reducing oxidative stress and restoring endothelium-dependent relaxation in rat aortae and although α-, δ-, and γ-tocotrienols effectively scavenged superoxide, they did not improve endothelial function. PMID:26075031

  14. Catalases are NAD(PH-dependent tellurite reductases.

    Directory of Open Access Journals (Sweden)

    Iván L Calderón

    2006-12-01

    Full Text Available Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(PH is not required for their dismutase activity. Although NAD(PH protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(PH-dependent reduction of soluble tellurite ion (TeO(3(2- to the less toxic, insoluble metal, tellurium (Te(o, in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical.

  15. Characterization of vanadate-dependent NADH oxidation activity and isolation of yeast DNA which complements a class 1 vanadate resistance mutation

    International Nuclear Information System (INIS)

    Minasi, L.E.

    1989-01-01

    A vanadate-dependent NADH oxidation activity has been characterized in plasma membranes from the yeast S cerevisiae. NADH oxidation activity was maximally stimulated at pH 5.0 in phosphate buffer. NADH oxidation was not dependent on the concentration of plasma membranes. The vanadate-dependent NADH oxidation activity was abolished under anaerobic conditions and the concomitant uptake of oxygen occurred during NADH oxidation. The activity was inhibited by superoxide dismutase and stimulated by the presence of paraquat. These results indicate that the vanadate stimulation of NADH oxidation in yeast plasma membranes occurs as a result of the vanadate-dependent oxidation of NADH by superoxide, generated by a plasma membrane NADH oxidase. 51 V-NMR results indicated that a phosphate-vanadate anhydride was the stimulatory species in pH 5.0 and pH 7.0 phosphate buffer. Yeast DNA has been isolated which complements a class 1 vanadate resistance mutation

  16. Short-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature.

    Science.gov (United States)

    Robinson, Austin T; Fancher, Ibra S; Sudhahar, Varadarajan; Bian, Jing Tan; Cook, Marc D; Mahmoud, Abeer M; Ali, Mohamed M; Ushio-Fukai, Masuko; Brown, Michael D; Fukai, Tohru; Phillips, Shane A

    2017-05-01

    High blood pressure has been shown to elicit impaired dilation in the vasculature. The purpose of this investigation was to elucidate the mechanisms through which high pressure may elicit vascular dysfunction and determine the mechanisms through which regular aerobic exercise protects arteries against high pressure. Male C57BL/6J mice were subjected to 2 wk of voluntary running (~6 km/day) for comparison with sedentary controls. Hindlimb adipose resistance arteries were dissected from mice for measurements of flow-induced dilation (FID; with or without high intraluminal pressure exposure) or protein expression of NADPH oxidase II (NOX II) and superoxide dismutase (SOD). Microvascular endothelial cells were subjected to high physiological laminar shear stress (20 dyn/cm 2 ) or static condition and treated with ANG II + pharmacological inhibitors. Cells were analyzed for the detection of ROS or collected for Western blot determination of NOX II and SOD. Resistance arteries from exercised mice demonstrated preserved FID after high pressure exposure, whereas FID was impaired in control mouse arteries. Inhibition of ANG II or NOX II restored impaired FID in control mouse arteries. High pressure increased superoxide levels in control mouse arteries but not in exercise mouse arteries, which exhibited greater ability to convert superoxide to H 2 O 2 Arteries from exercised mice exhibited less NOX II protein expression, more SOD isoform expression, and less sensitivity to ANG II. Endothelial cells subjected to laminar shear stress exhibited less NOX II subunit expression. In conclusion, aerobic exercise prevents high pressure-induced vascular dysfunction through an improved redox environment in the adipose microvasculature. NEW & NOTEWORTHY We describe potential mechanisms contributing to aerobic exercise-conferred protection against high intravascular pressure. Subcutaneous adipose microvessels from exercise mice express less NADPH oxidase (NOX) II and more superoxide

  17. Frontline Science: HMGB1 induces neutrophil dysfunction in experimental sepsis and in patients who survive septic shock.

    Science.gov (United States)

    Grégoire, Murielle; Tadié, Jean-Marc; Uhel, Fabrice; Gacouin, Arnaud; Piau, Caroline; Bone, Nathaniel; Le Tulzo, Yves; Abraham, Edward; Tarte, Karin; Zmijewski, Jaroslaw W

    2017-06-01

    Sepsis is accompanied by the initial activation of proinflammatory pathways and long-lasting immunosuppression that appears to contribute to late-occurring mortality. Although high-mobility group box 1 (HMGB1) is involved in many aspects of inflammation, its role in sepsis-induced immune suppression remains unclear. In this study, we examined HMGB1's contribution to neutrophil NADPH oxidase activity dysfunction and associated neutrophil-dependent bacterial clearance in mice subjected to sepsis and in patients who survive septic shock. Using a murine model of polymicrobial septic peritonitis, we demonstrated that treatment with anti-HMGB1 Ab significantly diminished sepsis-induced dysfunction of neutrophil NADPH oxidase activity. In a subsequent set of experiments, we found that blocking HMGB1 preserved the ability of neutrophils from patients recovering from septic shock to activate NADPH oxidase. Taken together, our data suggest that HMGB1 accumulation in the late phase of sepsis plays a specific role in the development of postsepsis immunosuppression and specifically affects neutrophil-dependent antibacterial defense mechanisms. Thus, blocking HMGB1 may be a promising therapeutic intervention to diminish the adverse effects of sepsis-induced immunosuppression. © Society for Leukocyte Biology.

  18. Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH

    Energy Technology Data Exchange (ETDEWEB)

    Blacker, Thomas S., E-mail: t.blacker@ucl.ac.uk [Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London WC1E 6BT (United Kingdom); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT (United Kingdom); Marsh, Richard J., E-mail: richard.marsh@ucl.ac.uk [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Duchen, Michael R., E-mail: m.duchen@ucl.ac.uk [Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT (United Kingdom); Bain, Angus J., E-mail: a.bain@ucl.ac.uk [Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London WC1E 6BT (United Kingdom); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2013-08-30

    Highlights: ► NADH and NADPH have a high rate of non-radiative excited state decay. ► Conformational relaxation is shown to be a significant non-radiative pathway. ► The Kramers equation describes the barrier crossing dynamics of the relaxation. ► Conformational restriction upon enzyme binding will alter NAD(P)H lifetimes. - Abstract: In live tissue, alterations in metabolism induce changes in the fluorescence decay of the biological coenzyme NAD(P)H, the mechanism of which is not well understood. In this work, the fluorescence and anisotropy decay dynamics of NADH and NADPH were investigated as a function of viscosity in a range of water–glycerol solutions. The viscosity dependence of the non-radiative decay is well described by Kramers and Kramers–Hubbard models of activated barrier crossing over a wide viscosity range. Our combined lifetime and anisotropy analysis indicates common mechanisms of non-radiative relaxation in the two emitting states (conformations) of both molecules. The low frequencies associated with barrier crossing suggest that non-radiative decay is mediated by small scale motion (e.g. puckering) of the nicotinamide ring. Variations in the fluorescence lifetimes of NADH and NADPH when bound to different enzymes may therefore be attributed to differing levels of conformational restriction upon binding.

  19. Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells.

    Science.gov (United States)

    Kumar, Sanjay; Stokes, James; Singh, Udai P; Scissum-Gunn, Karyn; Singh, Rajesh; Manne, Upender; Mishra, Manoj K

    2017-10-01

    Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.

  20. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.

    Science.gov (United States)

    Lee, Won-Heong; Chin, Young-Wook; Han, Nam Soo; Kim, Myoung-Dong; Seo, Jin-Ho

    2011-08-01

    Biosynthesis of guanosine 5'-diphosphate-L-fucose (GDP-L-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP(+)-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-L-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-L-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-L-fucose production. However, GDP-L-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-L-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-L-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-L-fucose concentration of 235.2 ± 3.3 mg l(-1), corresponding to a 21% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-L-fucose production in recombinant E. coli.

  1. Studying neuroprotective effect of Atorvastatin as a small molecule drug on high glucose-induced neurotoxicity in undifferentiated PC12 cells: role of NADPH oxidase.

    Science.gov (United States)

    Rayegan, Samira; Dehpour, Ahmad Reza; Sharifi, Ali Mohammad

    2017-02-01

    Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.

  2. A Manganese Superoxide Dismutase (SOD2 Gene Polymorphism in Insulin-Dependent Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Flemming Pociot

    1993-01-01

    Full Text Available Interleukin I (lL-I is selectively cytotoxic to the insulin producing beta cell of pancreatic islets. This effect may be due to IL-I induced generation of reactive oxygen species and nitric oxide. Since beta cells contain low amounts of the superoxide radical scavenger enzyme manganese superoxide dismutase (MnSOD, this may leave beta cells more susceptible to IL-I than other cell types. Genetic variation in the MnSOD locus could reflect differences in scavenger potential. We, therefore, studied possible restriction fragment length polymorphisms (RFLPs of this locus in patients with insulin-dependent diabetes mellitus (100M (n= 154 and control individuals (n=178, Taql revealed a double diallelic RFLP in patients as well as in controls. No overall difference in allelic or genotype frequencies were observed between 100M patients and control individuals (p=0.11 and no significant association of any particular RFLP pattern with 100M was found. Structurally polymorphic MnSOD protein variants with altered activities have been reported. If genetic variation results in MnSOD variants with reduced activities, the MnSOD locus may still be a candidate gene for 100M susceptibility. Whether the RFLPs reported in this study reflects differences in gene expression level, protein level and/or specific activity of the protein is yet to be studied.

  3. Ginsenoside Re protects against phencyclidine-induced behavioral changes and mitochondrial dysfunction via interactive modulation of glutathione peroxidase-1 and NADPH oxidase in the dorsolateral cortex of mice.

    Science.gov (United States)

    Tran, The-Vinh; Shin, Eun-Joo; Dang, Duy-Khanh; Ko, Sung Kwon; Jeong, Ji Hoon; Nah, Seung-Yeol; Jang, Choon-Gon; Lee, Yu Jeung; Toriumi, Kazuya; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2017-12-01

    We investigated whether ginsenoside Re (Re) modulates phencyclidine (PCP)-induced sociability deficits and recognition memory impairments to extend our recent finding. We examined the role of GPx-1 gene in the pharmacological activity of Re against mitochondrial dysfunction induced by PCP in the dorsolateral cortex of mice. Since mitochondrial oxidative stress activates NADPH oxidase (PHOX), we applied PHOX inhibitor apocynin for evaluating interactive modulation between GPx-1 and PHOX against PCP neurotoxicity. Sociability deficits and recognition memory impairments induced by PCP were more pronounced in GPx-1 knockout (KO) than in wild type (WT) mice. PCP-induced mitochondrial oxidative stress, mitochondrial dysfunction, and membrane translocation of p47phox were more evident in GPx-1 KO than in WT. Re treatment significantly attenuated PCP-induced neurotoxic changes. Re also significantly attenuated PCP-induced sociability deficits and recognition memory impairments. The attenuation by Re was comparable to that by apocynin. The attenuation was more obvious in GPx-1 KO than in WT. Importantly, apocynin did not show any additional positive effects on the neuroprotective activity of Re, indicating that PHOX is a molecular target for therapeutic activity of Re. Our results suggest that Re requires interactive modulation between GPx activity and PHOX (p47phox) to exhibit neuroprotective potentials against PCP insult. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Protection against Ischemia-Induced Oxidative Stress Conferred by Vagal Stimulation in the Rat Heart: Involvement of the AMPK-PKC Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Jin Zang

    2012-11-01

    Full Text Available Reactive oxygen species (ROS production is an important mechanism in myocardial ischemia and nicotinamide adenine dinucleotide phosphate (NADPH oxidase is one of major sources of ROS in the heart. Previous studies showed that vagus nerve stimulation (VNS is beneficial in treating ischemic heart diseases. However, the effect of VNS on ROS production remains elusive. In this study, we investigated the role of VNS onischemia-induced ROS production. Our results demonstrated that VNS alleviated the myocardial injury, attenuated the cardiac dysfunction, reserved the antioxidant enzyme activity and inhibited the formation of ROS as evidenced by the decreased NADPH oxidase (Nox activity and superoxide fluorescence intensity as well as the expression of p67phox, Rac1 and nitrotyrosine. Furthermore, VNS resulted in the phosphorylation and activation of adenosine monophosphate activated protein kinase (AMPK, which in turn led to an inactivation of Nox by protein kinase C (PKC; however, the phenomena were repressed by the administration of a muscarinic antagonist atropine. Taken together, these data indicate that VNS decreases ROS via AMPK-PKC-Nox pathway; this may have potential importance for the treatment of ischemic heart diseases.

  5. Calcineurin Aβ regulates NADPH oxidase (Nox) expression and activity via nuclear factor of activated T cells (NFAT) in response to high glucose.

    Science.gov (United States)

    Williams, Clintoria R; Gooch, Jennifer L

    2014-02-21

    Hypertrophy is an adaptive response that enables organs to appropriately meet increased functional demands. Previously, we reported that calcineurin (Cn) is required for glomerular and whole kidney hypertrophy in diabetic rodents (Gooch, J. L., Barnes, J. L., Garcia, S., and Abboud, H. E. (2003). Calcineurin is activated in diabetes and is required for glomerular hypertrophy and ECM accumulation. Am. J. Physiol. Renal Physiol. 284, F144-F154; Reddy, R. N., Knotts, T. L., Roberts, B. R., Molkentin, J. D., Price, S. R., and Gooch, J. L. (2011). Calcineurin Aβ is required for hypertrophy but not matrix expansion in the diabetic kidney. J. Cell Mol. Med. 15, 414-422). Because studies have also implicated the reactive oxygen species-generating enzymes NADPH oxidases (Nox) in diabetic kidney responses, we tested the hypothesis that Nox and Cn cooperate in a common signaling pathway. First, we examined the role of the two main isoforms of Cn in hypertrophic signaling. Using primary kidney cells lacking a catalytic subunit of Cn (CnAα(-/-) or CnAβ(-/-)), we found that high glucose selectively activates CnAβ, whereas CnAα is constitutively active. Furthermore, CnAβ but not CnAα mediates hypertrophy. Next, we found that chronic reactive oxygen species generation in response to high glucose is attenuated in CnAβ(-/-) cells, suggesting that Cn is upstream of Nox. Consistent with this, loss of CnAβ reduces basal expression and blocks high glucose induction of Nox2 and Nox4. Inhibition of nuclear factor of activated T cells (NFAT), a CnAβ-regulated transcription factor, decreases Nox2 and Nox4 expression, whereas NFAT overexpression increases Nox2 and Nox4, indicating that the CnAβ/NFAT pathway modulates Nox. These data reveal that the CnAβ/NFAT pathway regulates Nox and plays an important role in high glucose-mediated hypertrophic responses in the kidney.

  6. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein

    Science.gov (United States)

    Chen, Huizhong; Hopper, Sherryll L.; Cerniglia, Carl E.

    2018-01-01

    Azo dyes are a predominant class of colourants used in tattooing, cosmetics, foods and consumer products. A gene encoding NADPH-flavin azoreductase (Azo1) from the skin bacterium Staphylococcus aureus ATCC 25923 was identified and overexpressed in Escherichia coli. RT-PCR results demonstrated that the azo1 gene was constitutively expressed at the mRNA level in S. aureus. Azo1 was found to be a tetramer with a native molecular mass of 85 kDa containing four non-covalently bound FMN. Azo1 requires NADPH, but not NADH, as an electron donor for its activity. The enzyme was resolved to dimeric apoprotein by removing the flavin prosthetic groups using hydrophobic-interaction chromatography. The dimeric apoprotein was reconstituted on-column and in free stage with FMN, resulting in the formation of a fully functional native-like tetrameric enzyme. The enzyme cleaved the model azo dye 2-[4-(dimethylamino)phenylazo]benzoic acid (Methyl Red) into N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. The apparent Km values for NADPH and Methyl Red substrates were 0·;074 and 0·057 mM, respectively. The apparent Vmax was 0·4 µM min−1 (mg protein)−1. Azo1 was also able to metabolize Orange II, Amaranth, Ponceau BS and Ponceau S azo dyes. Azo1 represents the first azoreductase to be identified and characterized from human skin microflora. PMID:15870453

  7. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK.

    Science.gov (United States)

    Martínez-Revelles, Sonia; García-Redondo, Ana B; Avendaño, María S; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R; Fortuño, Ana; Touyz, Rhian M; Martínez-González, Jose; Salaices, Mercedes; Rodríguez, Cristina; Briones, Ana M

    2017-09-01

    Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H 2 O 2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H 2 O 2 and O 2 .- levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H 2 O 2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27

  8. Mixed function oxidase dependent biotransformation of polychlorinated biphenyls by different species of fish from the North Sea

    DEFF Research Database (Denmark)

    Mehrtens, G.; Laturnus, F.

    1999-01-01

    Mixed function oxidase (MFO) dependent biotransformation of polychlorinated biphenyls (PCBs) was measured in three different fish species from the North Sea. Liver microsomes of plaice (Pleuronectes platessa), dab (Limanda limanda) and cod (Gadus morhua) were isolated and incubated with different....... Biotransformations were also species dependent. The flatfish dab and plaice exhibited higher metabolic rates than cod (C) 1999 Elsevier Science Ltd. All rights reserved....

  9. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    International Nuclear Information System (INIS)

    Deng Xiaopeng; Xia Yan; Hu Wei; Zhang Hongxiao; Shen Zhenguo

    2010-01-01

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H 2 O 2 ) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 μM significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H 2 O 2 and superoxide anion (O 2 · - ), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN 3 as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 μM NAC decreased the contents of TBARS and production of H 2 O 2 and O 2 · - , but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  10. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    Science.gov (United States)

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  11. Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.

    Science.gov (United States)

    Kukiełka, E; Cederbaum, A I

    1995-04-15

    Rifamycin SV is an antibiotic anti-bacterial agent used in the treatment of tuberculosis. This drug can autoxidize, especially in the presence of metals, and generate reactive oxygen species. A previous study indicated that rifamycin SV can increase NADH-dependent microsomal production of reactive oxygen species. The current study evaluated the ability of rifamycin SV to interact with iron and increase microsomal production of hydroxyl radical, as detected by conversion of supercoiled plasmid DNA into the relaxed open circular state. The plasmid used was pBluescript II KS(-), and the forms of DNA were separated by agarose-gel electrophoresis. Incubation of rat liver microsomes with plasmid plus NADH plus ferric-ATP caused DNA strand cleavage. The addition of rifamycin SV produced a time- and concentration-dependent increase in DNA-strand cleavage. No stimulation by rifamycin SV occurred in the absence of microsomes, NADH or ferric-ATP. Stimulation occurred with other ferric complexes besides ferric-ATP, e.g. ferric-histidine, ferric-citrate, ferric-EDTA, and ferric-(NH4)2SO4. Rifamycin SV did not significantly increase the high rates of DNA strand cleavage found with NADPH as the microsomal reductant. The stimulation of NADH-dependent microsomal DNA strand cleavage was completely blocked by catalase, superoxide dismutase, GSH and a variety of hydroxyl-radical-scavenging agents, but not by anti-oxidants that prevent microsomal lipid peroxidation. Redox cycling agents, such as menadione and paraquat, in contrast with rifamycin SV, stimulated the NADPH-dependent reaction; menadione and rifamycin SV were superior to paraquat in stimulating the NADH-dependent reaction. These results indicate that rifamycin SV can, in the presence of an iron catalyst, increase microsomal production of reactive oxygen species which can cause DNA-strand cleavage. In contrast with other redox cycling agents, the stimulation by rifamycin SV is more pronounced with NADH than with NADPH as the

  12. Crystallization and preliminary X-ray analysis of the NADPH-dependent 3-quinuclidinone reductase from Rhodotorula rubra

    Science.gov (United States)

    Takeshita, Daijiro; Kataoka, Michihiko; Miyakawa, Takuya; Miyazono, Ken-ichi; Uzura, Atsuko; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2009-01-01

    (R)-3-Quinuclidinol is a useful compound that is applicable to the synthesis of various pharmaceuticals. The NADPH-dependent carbonyl reductase 3-­quinuclidinone reductase from Rhodotorula rubra catalyzes the stereospecific reduction of 3-quinuclidinone to (R)-3-quinuclidinol and is expected to be utilized in industrial production of this alcohol. 3-Quinuclidinone reductase from R. rubra was expressed in Escherichia coli and purified using Ni-affinity and ion-exchange column chromatography. Crystals of the protein were obtained by the sitting-drop vapour-diffusion method using PEG 8000 as the precipitant. The crystals belonged to space group P41212, with unit-cell parameters a = b = 91.3, c = 265.4 Å, and diffracted X-rays to 2.2 Å resolution. The asymmetric unit contained four molecules of the protein and the solvent content was 48.4%. PMID:19478454

  13. Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation

    Czech Academy of Sciences Publication Activity Database

    Ježek, J.; Engstová, Hana; Ježek, Petr

    2017-01-01

    Roč. 1858, č. 9 (2017), s. 750-762 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GA17-01813S Institutional support: RVO:67985823 Keywords : mitochondria-targeted antioxidant SkQ1 * mitochondrial Complex I superoxide formation * mitochondrial Complex III superoxide formation * HepG2 cell s * NAD(P)H fluorescence lifetime imaging microscopy Subject RIV: ED - Physiology OBOR OECD: Cell biology Impact factor: 4.932, year: 2016

  14. Reactive oxygen species produced by NADPH oxidase and mitochondrial dysfunction in lung after an acute exposure to Residual Oil Fly Ashes

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, Natalia D.; Marchini, Timoteo; Vanasco, Virginia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Tasat, Deborah R. [CESyMA, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); Alvarez, Silvia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Evelson, Pablo, E-mail: pevelson@ffyb.uba.ar [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina)

    2013-07-01

    Reactive O{sub 2} species production triggered by particulate matter (PM) exposure is able to initiate oxidative damage mechanisms, which are postulated as responsible for increased morbidity along with the aggravation of respiratory diseases. The aim of this work was to quantitatively analyse the major sources of reactive O{sub 2} species involved in lung O{sub 2} metabolism after an acute exposure to Residual Oil Fly Ashes (ROFAs). Mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight), and lung samples were analysed 1 h after instillation. Tissue O{sub 2} consumption and NADPH oxidase (Nox) activity were evaluated in tissue homogenates. Mitochondrial respiration, respiratory chain complexes activity, H{sub 2}O{sub 2} and ATP production rates, mitochondrial membrane potential and oxidative damage markers were assessed in isolated mitochondria. ROFA exposure was found to be associated with 61% increased tissue O{sub 2} consumption, a 30% increase in Nox activity, a 33% increased state 3 mitochondrial O{sub 2} consumption and a mitochondrial complex II activity increased by 25%. During mitochondrial active respiration, mitochondrial depolarization and a 53% decreased ATP production rate were observed. Neither changes in H{sub 2}O{sub 2} production rate, nor oxidative damage in isolated mitochondria were observed after the instillation. After an acute ROFA exposure, increased tissue O{sub 2} consumption may account for an augmented Nox activity, causing an increased O{sub 2}{sup ·−} production. The mitochondrial function modifications found may prevent oxidative damage within the organelle. These findings provide new insights to the understanding of the mechanisms involving reactive O{sub 2} species production in the lung triggered by ROFA exposure. - Highlights: • Exposure to ROFA alters the oxidative metabolism in mice lung. • The augmented Nox activity contributes to the high tissue O{sub 2} consumption. • Exposure to ROFA

  15. Resolving Contributions of Oxygen-Consuming and ROS-Generating Enzymes at the Synapse

    Directory of Open Access Journals (Sweden)

    Engy A. Abdel-Rahman

    2016-01-01

    Full Text Available Disruption of cellular redox homeostasis is implicated in a wide variety of pathologic conditions and aging. A fundamental factor that dictates such balance is the ratio between mitochondria-mediated complete oxygen reduction into water and incomplete reduction into superoxide radical by mitochondria and NADPH oxidase (NOX enzymatic activity. Here we determined mitochondrial as well as NOX-dependent rates of oxygen consumption in parallel with H2O2 generation in freshly isolated synaptosomes using high resolution respirometry combined with fluorescence or electrochemical sensory. Our results indicate that although synaptic mitochondria exhibit substantially higher respiratory activities (8–82-fold greater than NOX oxygen consumption depending on mitochondrial respiratory state, NADPH-dependent oxygen consumption is associated with greater H2O2 production (6-7-fold higher NOX-H2O2. We also show that, in terms of the consumed oxygen, while synaptic mitochondria “leaked” 0.71%±0.12 H2O2 during NAD+-linked resting, 0.21%±0.04 during NAD+-linked active respiration, and 0.07%±0.02 during FAD+-linked active respiration, NOX converted 38%±13 of O2 into H2O2. Our results indicate that NOX rather than mitochondria is the major source of synaptic H2O2. The present approach may assist in the identification of redox-modulating synaptic factors that underlie a variety of physiological and pathological processes in neurons.

  16. Class IA phosphoinositide 3-kinase β and δ regulate neutrophil oxidase activation in response to Aspergillus fumigatus hyphae.

    Science.gov (United States)

    Boyle, Keith B; Gyori, David; Sindrilaru, Anca; Scharffetter-Kochanek, Karin; Taylor, Philip R; Mócsai, Attila; Stephens, Len R; Hawkins, Phillip T

    2011-03-01

    An effective immune response to the ubiquitous fungus Aspergillus fumigatus is dependent upon production of reactive oxygen species (ROS) by the NADPH oxidase. This is evidenced by the acute sensitivity of oxidase-deficient humans and mice to invasive aspergillosis. Neutrophils are recruited to the lungs shortly postinfection and respond by phagocytosing conidia and mediating extracellular killing of germinated hyphae in a ROS-dependent manner. However, the signaling mechanisms regulating the generation of ROS in response to hyphae are poorly understood. PI3Ks are important regulators of numerous cellular processes, with much recent work describing unique roles for the different class I PI3K isoforms. We showed by live-cell imaging that the lipid products of class I PI3Ks accumulated at the hyphal-bound neutrophil plasma membrane. Further, we used pharmacological and genetic approaches to demonstrate essential, but overlapping, roles for PI3Kβ and PI3Kδ in the ROS and spreading responses of murine neutrophils to Aspergillus hyphae. Hyphal-induced ROS responses were substantially inhibited by deletion of the common β2-integrin subunit CD18, with only a minor, redundant role for Dectin-1. However, addition of soluble algal glucans plus the genetic deletion of CD18 were required to significantly inhibit activation of the PI3K-effector protein kinase B. Hyphal ROS responses were also totally dependent on the presence of Syk, but not its ITAM-containing adaptor proteins FcRγ or DAP12, and the Vav family of Rac-guanine nucleotide exchange factors. These results start to define the signaling network controlling neutrophil ROS responses to A. fumigatus hyphae.

  17. Seizures and paroxysmal events: symptoms pointing to the diagnosis of pyridoxine-dependent epilepsy and pyridoxine phosphate oxidase deficiency

    NARCIS (Netherlands)

    Schmitt, B.; Baumgartner, M.; Mills, P.B.; Clayton, P.T.; Jakobs, C.; Keller, E.; Wohlrab, G.

    2010-01-01

    Aim: We report on seizures, paroxysmal events, and electroencephalogram (EEG) findings in four female infants with pyridoxine-dependent epilepsy (PDE) and in one female with pyridoxine phosphate oxidase deficiency (PNPO). Method: Videos and EEGs were analysed and compared with videos of seizures and

  18. Tetraspanin is required for generation of reactive oxygen species by the dual oxidase system in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hiroki Moribe

    2012-09-01

    Full Text Available Reactive oxygen species (ROS are toxic but essential molecules responsible for host defense and cellular signaling. Conserved NADPH oxidase (NOX family enzymes direct the regulated production of ROS. Hydrogen peroxide (H(2O(2 generated by dual oxidases (DUOXs, a member of the NOX family, is crucial for innate mucosal immunity. In addition, H(2O(2 is required for cellular signaling mediated by protein modifications, such as the thyroid hormone biosynthetic pathway in mammals. In contrast to other NOX isozymes, the regulatory mechanisms of DUOX activity are less understood. Using Caenorhabditis elegans as a model, we demonstrate that the tetraspanin protein is required for induction of the DUOX signaling pathway in conjunction with the dual oxidase maturation factor (DUOXA. In the current study, we show that genetic mutation of DUOX (bli-3, DUOXA (doxa-1, and peroxidase (mlt-7 in C. elegans causes the same defects as a tetraspanin tsp-15 mutant, represented by exoskeletal deficiencies due to the failure of tyrosine cross-linking of collagen. The deficiency in the tsp-15 mutant was restored by co-expression of bli-3 and doxa-1, indicating the involvement of tsp-15 in the generation of ROS. H(2O(2 generation by BLI-3 was completely dependent on TSP-15 when reconstituted in mammalian cells. We also demonstrated that TSP-15, BLI-3, and DOXA-1 form complexes in vitro and in vivo. Cell-fusion-based analysis suggested that association with TSP-15 at the cell surface is crucial for BLI-3 activation to release H(2O(2. This study provides the first evidence for an essential role of tetraspanin in ROS generation.

  19. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.

    Science.gov (United States)

    Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu

    2016-12-01

    The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Evidence for the production of 4-hydroxycinnamyl alcohols from 4-allylphenols.

    Science.gov (United States)

    Fraaije, M W; Veeger, C; van Berkel, W J

    1995-11-15

    The substrate specificity of the flavoprotein vanillyl-alcohol oxidase from Penicillium simplicissimum was investigated. Vanillyl-alcohol oxidase catalyzes besides the oxidation of 4-hydroxybenzyl alcohols, the oxidative deamination of 4-hydroxybenzylamines and the oxidative demethylation of 4-(methoxymethyl)phenols. During the conversion of vanillylamine to vanillin, a transient intermediate, most probably vanillylimine, is observed. Vanillyl-alcohol oxidase weakly interacts with 4-hydroxyphenylglycols and a series of catecholamines. These compounds are converted to the corresponding ketones. Both enantiomers of (nor)epinephrine are substrates for vanillyl-alcohol oxidase, but the R isomer is preferred. Vanillyl-alcohol oxidase is most active with chavicol and eugenol. These 4-allylphenols are converted to coumaryl alcohol and coniferyl alcohol, respectively. Isotopic labeling experiments show that the oxygen atom inserted at the C gamma atom of the side chain is derived from water. The 4-hydroxycinnamyl alcohol products and the substrate analog isoeugenol are competitive inhibitors of vanillyl alcohol oxidation. The binding of isoeugenol to the oxidized enzyme perturbs the optical spectrum of protein-bound FAD. pH-dependent binding studies suggest that vanillyl-alcohol oxidase preferentially binds the phenolate form of isoeugenol (pKa < 6, 25 degrees C). From this and the high pH optimum for turnover, a hydride transfer mechanism involving a p-quinone methide intermediate is proposed for the vanillyl-alcohol-oxidase-catalyzed conversion of 4-allylphenols.

  1. Physiological role of glucose-6-phosphate dehydrogenase in cold acclimation of strawberry (Fragaria × ananassa)

    Science.gov (United States)

    Zhang, Yong; Yu, Dingqun; Luo, Ya; Wang, Xiaorong; Chen, Qing; Sun, Bo; Wang, Yan; Liu, Zejing; Tang, Haoru

    2018-04-01

    In recent years, there has been an increasing interest in study of new resistance mechanism in fruit trees. All these regard the climate change and subsequent fruit production. Glucose-6-phosphate dehydrogenase (G6PDH) catalyzes the first and rate-limiting step of the oxidative pentose phosphate pathway (OPPP), and the expression of this enzyme is related to different biotic and abiotic stresses. Under accumulation of low temperature stress, the significant increase in G6PDH activity was found to be closely correlated to the levels of antioxidant enzymes, malondialdehyde (MDA) contents, sugar contents as well as changes of superoxide (O2•-). It is suggested that the enhancement of cold resistance of strawberry, which induced by cold acclimation, related to the significant increase in G6PDH activity. On one hand, G6PDH activates NADPH oxidase to generate reactive oxygen species (ROS); on the other hand, it may be involved in the activation of antioxidant enzymes, and accelerates many other important NADPH-dependent enzymatic reactions. Then further result in the elevation of membrane stability and cold resistance of strawberry. Interestingly, even though the plants were placed again under a temperature of 25°C for 1 d, the higher cold resistance, enzyme activities and soluble sugar content acquired.

  2. Chloroplast NADPH-Dependent Thioredoxin Reductase from Chlorella vulgaris Alleviates Environmental Stresses in Yeast Together with 2-Cys Peroxiredoxin

    Science.gov (United States)

    Machida, Takeshi; Ishibashi, Akiko; Kirino, Ai; Sato, Jun-ichi; Kawasaki, Shinji; Niimura, Youichi; Honjoh, Ken-ichi; Miyamoto, Takahisa

    2012-01-01

    Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances. PMID:23029353

  3. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    Science.gov (United States)

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiaopeng; Xia Yan; Hu Wei [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Zhang Hongxiao, E-mail: hxzhang@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Shen Zhenguo, E-mail: zgshen@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China)

    2010-08-15

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 {mu}M significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H{sub 2}O{sub 2} and superoxide anion (O{sub 2}{center_dot}{sup -}), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN{sub 3} as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 {mu}M NAC decreased the contents of TBARS and production of H{sub 2}O{sub 2} and O{sub 2}{center_dot}{sup -}, but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  5. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation.

    Science.gov (United States)

    Wang, Haibo; Han, Xiaokun; Wittchen, Erika S; Hartnett, M Elizabeth

    2016-01-01

    Inflammation, oxidative stress, and angiogenesis have been proposed to interact in age-related macular degeneration. It has been postulated that external stimuli that cause oxidative stress can increase production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial (RPE) cells. In this study, we tested the hypothesis that the inflammatory cytokine, tumor necrosis factor alpha (TNF-α), contributed to choroidal neovascularization (CNV) by upregulating VEGF in RPE through intracellular reactive oxygen species (ROS)-dependent signaling and sought to understand the mechanisms involved. In a murine laser-induced CNV model, 7 days after laser treatment and intravitreal neutralizing mouse TNF-α antibody or isotype immunoglobulin G (IgG) control, the following measurements were made: 1) TNF-α protein and VEGF protein in RPE/choroids with western blot, 2) CNV volume in RPE/choroidal flatmounts, and 3) semiquantification of oxidized phospholipids stained with E06 antibody within CNV with immunohistochemistry (IHC). In cultured human RPE cells treated with TNF-α or PBS control, 1) ROS generation was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence assay, and 2) NOX4 protein and VEGF protein or mRNA were measured with western blot or quantitative real-time PCR in cells pretreated with apocynin or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) inhibitor, VAS 2870, or transfected with p22phox siRNA, and each was compared to its appropriate control. Western blots of phosphorylated p65 (p-p65), total p65 and β-actin, and quantitative real-time PCR of VEGF mRNA were measured in human RPE cells treated with TNF-α and pretreatment with the nuclear factor kappa B inhibitor, Bay 11-7082 or control. Western blots of β-catenin, VEGF, and p22phox and coimmunoprecipitation of β-catenin and T-cell transcriptional factor were performed in human RPE cells treated with TNF-α following pretreatment with

  6. ROS mediated selection for increased NADPH availability in Escherichia coli.

    Science.gov (United States)

    Reynolds, Thomas S; Courtney, Colleen M; Erickson, Keesha E; Wolfe, Lisa M; Chatterjee, Anushree; Nagpal, Prashant; Gill, Ryan T

    2017-11-01

    The economical production of chemicals and fuels by microbial processes remains an intense area of interest in biotechnology. A key limitation in such efforts concerns the availability of key co-factors, in this case NADPH, required for target pathways. Many of the strategies pursued for increasing NADPH availability in Escherichia coli involve manipulations to the central metabolism, which can create redox imbalances and overall growth defects. In this study we used a reactive oxygen species based selection to search for novel methods of increasing NADPH availability. We report a loss of function mutation in the gene hdfR appears to increase NADPH availability in E. coli. Additionally, we show this excess NADPH can be used to improve the production of 3HP in E. coli. © 2017 Wiley Periodicals, Inc.

  7. The Role of Aldehyde Oxidase and Xanthine Oxidase in the Biotransformation of a Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5

    Science.gov (United States)

    Morrison, Ryan D.; Blobaum, Anna L.; Byers, Frank W.; Santomango, Tammy S.; Bridges, Thomas M.; Stec, Donald; Brewer, Katrina A.; Sanchez-Ponce, Raymundo; Corlew, Melany M.; Rush, Roger; Felts, Andrew S.; Manka, Jason; Bates, Brittney S.; Venable, Daryl F.; Rodriguez, Alice L.; Jones, Carrie K.; Niswender, Colleen M.; Conn, P. Jeffrey; Lindsley, Craig W.; Emmitte, Kyle A.

    2012-01-01

    Negative allosteric modulation (NAM) of metabotropic glutamate receptor subtype 5 (mGlu5) represents a therapeutic strategy for the treatment of childhood developmental disorders, such as fragile X syndrome and autism. VU0409106 emerged as a lead compound within a biaryl ether series, displaying potent and selective inhibition of mGlu5. Despite its high clearance and short half-life, VU0409106 demonstrated efficacy in rodent models of anxiety after extravascular administration. However, lack of a consistent correlation in rat between in vitro hepatic clearance and in vivo plasma clearance for the biaryl ether series prompted an investigation into the biotransformation of VU0409106 using hepatic subcellular fractions. An in vitro appraisal in rat, monkey, and human liver S9 fractions indicated that the principal pathway was NADPH-independent oxidation to metabolite M1 (+16 Da). Both raloxifene (aldehyde oxidase inhibitor) and allopurinol (xanthine oxidase inhibitor) attenuated the formation of M1, thus implicating the contribution of both molybdenum hydroxylases in the biotransformation of VU0409106. The use of 18O-labeled water in the S9 experiments confirmed the hydroxylase mechanism proposed, because 18O was incorporated into M1 (+18 Da) as well as in a secondary metabolite (M2; +36 Da), the formation of which was exclusively xanthine oxidase-mediated. This unusual dual and sequential hydroxylase metabolism was confirmed in liver S9 and hepatocytes of multiple species and correlated with in vivo data because M1 and M2 were the principal metabolites detected in rats administered VU0409106. An in vitro-in vivo correlation of predicted hepatic and plasma clearance was subsequently established for VU0409106 in rats and nonhuman primates. PMID:22711749

  8. Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons.

    Science.gov (United States)

    Ghosh, Debolina; Levault, Kelsey R; Brewer, Gregory J

    2014-08-01

    Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg-AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg-AD neurons. We also observed an age-dependent loss of gene expression of key redox-dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age-related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age-related declines in NAD(P)H. Our data indicate that in aging and more so in AD-like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. Consumption of NADPH for 2-HG Synthesis Increases Pentose Phosphate Pathway Flux and Sensitizes Cells to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Susan J. Gelman

    2018-01-01

    Full Text Available Summary: Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1 occur in multiple types of human cancer. Here, we show that these mutations significantly disrupt NADPH homeostasis by consuming NADPH for 2-hydroxyglutarate (2-HG synthesis. Cells respond to 2-HG synthesis, but not exogenous administration of 2-HG, by increasing pentose phosphate pathway (PPP flux. We show that 2-HG production competes with reductive biosynthesis and the buffering of oxidative stress, processes that also require NADPH. IDH1 mutants have a decreased capacity to synthesize palmitate and an increased sensitivity to oxidative stress. Our results demonstrate that, even when NADPH is limiting, IDH1 mutants continue to synthesize 2-HG at the expense of other NADPH-requiring pathways that are essential for cell viability. Thus, rather than attempting to decrease 2-HG synthesis in the clinic, the consumption of NADPH by mutant IDH1 may be exploited as a metabolic weakness that sensitizes tumor cells to ionizing radiation, a commonly used anti-cancer therapy. : Using liquid chromatography/mass spectrometry (LC/MS and stable isotope tracing, Gelman et al. find that 2-HG production in cells with IDH1 mutations leads to increased pentose phosphate pathway activity to generate NADPH. Production of 2-HG competes with other NADPH-dependent pathways and sensitizes cells to redox stress. Keywords: 2-hydroxyglutarate, cancer metabolism, LC/MS, metabolomcis, pentose phosphate pathway, redox regulation

  10. Data on human neutrophil activation induced by pepducins with amino acid sequences derived from β2AR and CXCR4

    Directory of Open Access Journals (Sweden)

    André Holdfeldt

    2016-09-01

    Full Text Available The data described here is related to the research article titled (Gabl et al., 2016 [1]. Pepducins with peptide sequence derived from one of the intracellular domains of a given G-protein coupled receptor (GPCR can either activate or inhibit cell functions. Here we include data on human neutrophil function induced by pepducins derived from β2AR (ICL3-8 and CXCR4 (ATI-2341, respectively. ICL3-8 exerts neither direct activating effect on the NADPH-oxidase as measured by superoxide release nor inhibitory effect on FPR signaling. ATI-2341 dose-dependently triggers neutrophil activation and these cells were subsequently desensitized in their response to FPR2 specific agonists F2Pal10 and WKYMVM. Moreover, the ATI-2341 response is inhibited by PBP10 and the peptidomimetic Pam-(Lys-betaNSpe6-NH2 (both are FPR2 specific inhibitors, but not to the FPR1 specific inhibitor cyclosporine H.

  11. Myeloperoxidase-Dependent LDL Modifications in Bloodstream Are Mainly Predicted by Angiotensin II, Adiponectin, and Myeloperoxidase Activity: A Cross-Sectional Study in Men

    Directory of Open Access Journals (Sweden)

    Karim Zouaoui Boudjeltia

    2013-01-01

    Full Text Available The present paradigm of atherogenesis proposes that low density lipoproteins (LDLs are trapped in subendothelial space of the vascular wall where they are oxidized. Previously, we showed that oxidation is not restricted to the subendothelial location. Myeloperoxidase (MPO, an enzyme secreted by neutrophils and macrophages, can modify LDL (Mox-LDL at the surface of endothelial cells. In addition we observed that the activation of the endothelial cells by angiotensin II amplifies this process. We suggested that induction of the NADPH oxidase complex was a major step in the oxidative process. Based on these data, we asked whether there was an independent association, in 121 patients, between NADPH oxidase modulators, such as angiotensin II, adiponectin, and levels of circulating Mox-LDL. Our observations suggest that the combination of blood angiotensin II, MPO activity, and adiponectin explains, at least partially, serum Mox-LDL levels.

  12. Variations in creatine kinase activity and reactive oxygen species levels are involved in capacitation of bovine spermatozoa.

    Science.gov (United States)

    Córdoba, M; Pintos, L; Beconi, M T

    2008-12-01

    The generation of reactive oxygen species (ROS) is associated with some factors such as oxidative substrate sources, mitochondrial function and NAD(P)H oxidase activity. In bovine spermatozoa, heparin capacitation produces a respiratory burst sensitive to diphenyleneiodonium (DPI). Creatine kinase (CK) is related to extramitochondrial ATP disponibility. Our purpose was to determine the variation in ROS level and its relation with NAD(P)H oxidase sensitive to DPI and CK participation, as factors involved in redox state and energy generation in capacitation. The chlortetracycline technique was used to evaluate capacitation. CK activity and ROS level were measured by spectrophotometry and spectrofluorometry respectively. The capacitation percentage was increased by heparin or quercetin treatment (P level as control (238.62 +/- 23.47 arbitrary units per 10(8) spermatozoa) (P > 0.05). CK activity decreased by 50% with heparin or quercetin (P level variations were observed in heparin- or quercetin-treated samples (P bovine spermatozoa, capacitation requires equilibrium between oxidative damage susceptibility and ROS levels. CK activity is associated with redox state variation and energy sources. In conclusion, capacitation induction depends on NADPH oxidase and the shuttle creatine-creatine phosphate, both sensitive to DPI.

  13. Swell activated chloride channel function in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Michael D. [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom); Ahluwalia, Jatinder, E-mail: j.ahluwalia@uel.ac.uk [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom)

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  14. Crystallization and preliminary X-ray analysis of 5-keto-d-gluconate reductase from Gluconobacter suboxydans IFO12528 complexed with 5-keto-d-gluconate and NADPH

    International Nuclear Information System (INIS)

    Kubota, Keiko; Miyazono, Ken-ichi; Nagata, Koji; Toyama, Hirohide; Matsushita, Kazunobu; Tanokura, Masaru

    2010-01-01

    NADPH-dependent 5-keto-d-gluconate reductase from G. suboxydans IFO12528 (5KGR) was expressed, purified and crystallized with 5-keto-d-gluconate and NADPH using the sitting-drop vapour-diffusion method. Crystals of the 5KGR–NADPH complex and of the 5KGR–NADPH–5-keto-d-gluconate complex diffracted X-rays to 1.75 and 2.26 Å resolution, respectively. NADPH-dependent 5-keto-d-gluconate reductase from Gluconobacter suboxydans IFO12528 (5KGR) catalyzes oxidoreduction between 5-keto-d-gluconate and d-gluconate with high specificity. 5KGR was expressed in Escherichia coli, purified and crystallized with 5-keto-d-gluconate and NADPH using the sitting-drop vapour-diffusion method at 288 K. A crystal of the 5KGR–NADPH complex was obtained using reservoir solution containing PEG 4000 as a precipitant and diffracted X-rays to 1.75 Å resolution. The crystal of the complex belonged to space group P4 2 2 1 2, with unit-cell parameters a = b = 128.6, c = 62.9 Å. A crystal of the 5KGR–NADPH–5-keto-d-gluconate complex was prepared by soaking the 5KGR–NADPH complex crystal in reservoir solution supplemented with 100 mM 5-keto-d-gluconate and 10 mM NADPH for 20 min and diffracted X-rays to 2.26 Å resolution. The crystal of the ternary complex belonged to space group P4 2 2 1 2, with unit-cell parameters a = b = 128.7, c = 62.5 Å. Both crystals contained two molecules in the asymmetric unit

  15. Chronic Granulomatous Disease: The European Experience

    NARCIS (Netherlands)

    van den Berg, J. Merlijn; van Koppen, Elsbeth; Ahlin, Anders; Belohradsky, Bernd H.; Bernatowska, Ewa; Corbeel, Lucien; Español, Teresa; Fischer, Alain; Kurenko-Deptuch, Magdalena; Mouy, Richard; Petropoulou, Theoni; Roesler, Joachim; Seger, Reinhard; Stasia, Marie-José; Valerius, Niels H.; Weening, Ron S.; Wolach, Baruch; Roos, Dirk; Kuijpers, Taco W.

    2009-01-01

    CGD is an immunodeficiency caused by deletions or mutations in genes that encode subunits of the leukocyte NADPH oxidase complex. Normally, assembly of the NADPH oxidase complex in phagosomes of certain phagocytic cells leads to a "respiratory burst'', essential for the clearance of phagocytosed

  16. Chronic granulomatous disease: the European experience

    NARCIS (Netherlands)

    van den Berg, J.M.; van Koppen, E.; Åhlin, A.; Belohradsky, B.H.; Bernatowska, E.; Corbeel, L.; Español, T.; Fischer, A.; Kurenko-Deptuch, M.; Mouy, R.; Petropoulou, T.; Roesler, J.; Seger, R.; Stasia, M.J.; Valerius, N.H.; Weening, R.S.; Wolach, B.; Roos, D.; Kuijpers, T.W.

    2009-01-01

    CGD is an immunodeficiency caused by deletions or mutations in genes that encode subunits of the leukocyte NADPH oxidase complex. Normally, assembly of the NADPH oxidase complex in phagosomes of certain phagocytic cells leads to a "respiratory burst'', essential for the clearance of phagocytosed

  17. Regulation of the cellular content of the organic osmolyte taurine in mammalian cells

    DEFF Research Database (Denmark)

    Lambert, Ian H.

    2004-01-01

    regulatory volume decrease, iPLA2, cPLA2, leukotriene D4, reactive oxygen species, NADPH oxidase, protein tyrosine phosphatase, lysophosphatidyl choline......regulatory volume decrease, iPLA2, cPLA2, leukotriene D4, reactive oxygen species, NADPH oxidase, protein tyrosine phosphatase, lysophosphatidyl choline...

  18. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy.

    Science.gov (United States)

    Elmasry, Khaled; Ibrahim, Ahmed S; Saleh, Heba; Elsherbiny, Nehal; Elshafey, Sally; Hussein, Khaled A; Al-Shabrawey, Mohamed

    2018-05-01

    Our earlier studies have established the role of 12/15-lipoxygenase (LO) in mediating the inflammatory reaction in diabetic retinopathy. However, the exact mechanism is still unclear. The goal of the current study was to identify the potential role of endoplasmic reticulum (ER) stress as a major cellular stress response in the 12/15-LO-induced retinal changes in diabetic retinopathy. We used in vivo and in vitro approaches. For in vivo studies, experimental diabetes was induced in wild-type (WT) mice and 12/15-Lo (also known as Alox15) knockout mice (12/15-Lo -/- ); ER stress was then evaluated after 12-14 weeks of diabetes. We also tested the effect of intravitreal injection of 12-hydroxyeicosatetraenoic acid (HETE) on retinal ER stress in WT mice and in mice lacking the catalytic subunit of NADPH oxidase, encoded by Nox2 (also known as Cybb) (Nox2 -/- mice). In vitro studies were performed using human retinal endothelial cells (HRECs) treated with 15-HETE (0.1 μmol/l) or vehicle, with or without ER stress or NADPH oxidase inhibitors. This was followed by evaluation of ER stress response, NADPH oxidase expression/activity and the levels of phosphorylated vascular endothelial growth factor receptor-2 (p-VEGFR2) by western blotting and immunoprecipitation assays. Moreover, real-time imaging of intracellular calcium (Ca 2+ ) release in HRECs treated with or without 15-HETE was performed using confocal microscopy. Deletion of 12/15-Lo significantly attenuated diabetes-induced ER stress in mouse retina. In vitro, 15-HETE upregulated ER stress markers such as phosphorylated RNA-dependent protein kinase-like ER-regulated kinase (p-PERK), activating transcription factor 6 (ATF6) and protein disulfide isomerase (PDI) in HRECs. Inhibition of ER stress reduced 15-HETE-induced-leucocyte adhesion, VEGFR2 phosphorylation and NADPH oxidase expression/activity. However, inhibition of NADPH oxidase or deletion of Nox2 had no effect on ER stress induced by the 12/15-LO

  19. Manganese superoxide dismutase (MnSOD catalyzes NO-dependent tyrosine residue nitration

    Directory of Open Access Journals (Sweden)

    SRDJAN STOJANOVIC

    2005-04-01

    Full Text Available The peroxynitrite-induced nitration of manganese superoxide dismutase (MnSOD tyrosine residue, which causes enzyme inactivation, is well established. This led to suggestions that MnSOD nitration and inactivation in vivo, detected in various diseases associated with oxidative stress and overproduction of nitric monoxide (NO, conditions which favor peroxynitrite formation, is also caused by peroxynitrite. However, our previous in vitro study demonstrated that exposure of MnSOD to NO led to NO conversion into nitrosonium (NO+ and nitroxyl (NO– species, which caused enzyme modifications and inactivation. Here it is reported that MnSOD is tyrosine nitrated upon exposure to NO, as well as that MnSOD nitration contributes to inactivation of the enzyme. Collectively, these observations provide a compelling argument supporting the generation of nitrating species in MnSOD exposed to NO and shed a new light on MnSOD tyrosine nitration and inactivation in vivo. This may represent a novel mechanism by which MnSOD protects cell from deleterious effects associated with overproduction of NO. However, extensive MnSOD modification and inactivation associated with prolonged exposure to NO will amplify the toxic effects caused by increased cell superoxide and NO levels.

  20. Structure of conjugated polyketone reductase from Candida parapsilosis IFO 0708 reveals conformational changes for substrate recognition upon NADPH binding.

    Science.gov (United States)

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Nagai, Takahiro; Kitamura, Nahoko; Urano, Nobuyuki; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708, identified as a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ketopantoyl lactone reductase, belongs to the aldo-keto reductase superfamily. This enzyme reduces ketopantoyl lactone to D-pantoyl lactone in a strictly stereospecific manner. To elucidate the structural basis of the substrate specificity, we determined the crystal structures of the apo CPR-C2 and CPR-C2/NADPH complex at 1.70 and 1.80 Å resolutions, respectively. CPR-C2 adopted a triose-phosphate isomerase barrel fold at the core of the structure. Binding with the cofactor NADPH induced conformational changes in which Thr27 and Lys28 moved 15 and 5.0 Å, respectively, in the close vicinity of the adenosine 2'-phosphate group of NADPH to form hydrogen bonds. Based on the comparison of the CPR-C2/NADPH structure with 3-α-hydroxysteroid dehydrogenase and mutation analyses, we constructed substrate binding models with ketopantoyl lactone, which provided insight into the substrate specificity by the cofactor-induced structure. The results will be useful for the rational design of CPR-C2 mutants targeted for use in the industrial manufacture of ketopantoyl lactone.

  1. Temperature dependence of the activity of polyphenol peroxidases and polyphenol oxidases in modern and buried soils

    Science.gov (United States)

    Yakushev, A. V.; Kuznetsova, I. N.; Blagodatskaya, E. V.; Blagodatsky, S. A.

    2014-05-01

    Under conditions of the global climate warming, the changes in the reserves of soil humus depend on the temperature sensitivities of polyphenol peroxidases (PPPOs) and polyphenol oxidases (PPOs). They play an important role in lignin decomposition, mineralization, and humus formation. The temperature dependence of the potential enzyme activity in modern and buried soils has been studied during incubation at 10 or 20°C. The experimental results indicate that it depends on the availability of the substrate and the presence of oxygen. The activity of PPOs during incubation in the absence of oxygen for two months decreases by 2-2.5 times, which is balanced by an increase in the activity of PPPOs by 2-3 times. The increase in the incubation temperature to 20°C and the addition of glucose accelerates this transition due to the more abrupt decrease in the activity of PPOs. The preincubation of the soil with glucose doubles the activity of PPPOs but has no significant effect on the activity of PPOs. The different effects of temperature on two groups of the studied oxidases and the possibility of substituting enzymes by those of another type under changing aeration conditions should be taken into consideration in predicting the effect of the climate warming on the mineralization of the soil organic matter. The absence of statistically significant differences in the enzymatic activity between the buried and modern soil horizons indicates the retention by the buried soil of some of its properties (soil memory) and the rapid restoration of high enzymatic activity during the preincubation.

  2. Pulse Radiolysis Studies of Temperature Dependent Electron Transfers among Redox Centers in ba(3)-Cytochrome c Oxidase from Thermus thermophilus

    DEFF Research Database (Denmark)

    Farver, Ole; Wherland, Scot; Antholine, William E

    2010-01-01

    The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu(A)(r) site to the low-spin heme-(a)b(o) site, i.e., Cu(A)(r) + heme-a(b)(o) ......The functioning of cytochrome c oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu(A)(r) site to the low-spin heme-(a)b(o) site, i.e., Cu(A)(r) + heme...... in cytochrome ba(3) had no effect on the rate of this reaction whereas the II-Met160Leu Cu(A)-mutation was slower by an amount corresponding to a decreased driving force of ∼0.06 eV. The structures support the presence of a common, electron-conducting "wire" between Cu(A) and heme-a(b). The transfer...

  3. Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii.

    OpenAIRE

    Akporiaye, E T; Baca, O G

    1983-01-01

    Coxiella burnetii was examined for superoxide anion (O2-) production and superoxide dismutase and catalase activities. The organism generated O2- at pH 4.5 but not at pH 7.4. The rickettsia displayed superoxide dismutase activity distinguishable from that of the host cell (L-929 mouse fibroblast). Catalase activity was maximal at pH 7.0 and diminished at pH 4.5. These enzymes may account, in part, for the ability of this obligate intracellular parasite to survive within phagocytes.

  4. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    Science.gov (United States)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  5. Superoxide radicals mediate heptatoxicity induced by the heat shock protein 90 inhibitors benzoquinone ansamycins

    International Nuclear Information System (INIS)

    Goldstein, S.

    2011-01-01

    Complete text of publication follows. Geldanamycin (GM). a benzoquinone ansamycin antibiotic, is a natural product inhibitor of the heat shock protein 90 (Hsp90) with potent and broad anticancer properties. However, its progression to clinical trials was halted due to unacceptable levels of hepatotoxicity. Consequently, numerous less toxic analogs differing only in their 17-substituent have been synthesized including 17-AAG and the water soluble 17-DMAG (Alvespimycin), which have recently entered clinical trials. The different hepatotoxicity induced by GM and its analogs may reflect the redox active properties of the quinone moiety (Q) and possibly the extent of superoxide radical formation, which may stimulate cellular oxidative injury. Q ·- + Q 2 ↔ O 2 ·- + Q. Eq. 1 is established rapidly, and its actual position is governed by E 7 (Q/Q ·- ) and E 7 (O 2 /O 2 ·- ) and the relative concentrations of Q and O 2 . Using pulse radiolysis, E 7 (Q/Q ·- ) for 17-DMAG has been determined vs. O 2 , 1,4-naphthoquinone or menadione to be -194 ± 6 mV, which is somewhat lower than E 7 (O 2 /O 2 ·- ) = -180 mV (1 M O 2 ). Eq. 1 is well to the left in the case of 1,4-benzoquinone and substitution into the ring by electron-donating or -withdrawing groups reduces or increases, respectively, E 7 (Q/Q ·- ) in a predictable manner, e.g. linearly related to the Hammett sigma value of the substituents. Hence, E 7 (Q/Q ·- ) should follow the order GM 2 is more readily reduced to O 2 ·- by GM. It is demonstrated that O 2 ·- can be efficiently trapped by Tempol during the reduction of GM, 17-AAG and 17-DMAG by NADPH catalyzed by NADPH-cytochrome P450 reductase, and that O 2 ·- formation rate, which reflects the rate of NADPH oxidation, follows the order 17-DMAG > GM > 17-AAG. In the absence of O 2 ·- scavengers, the rate of NADPH oxidation follows the order 17-DMAG > 17-AAG > GM. The order of the drug cytotoxicity toward rat primary hepatocytes, as determined by their

  6. Effect of superoxide anion scavenger on rat hearts with chronic intermittent hypoxia.

    Science.gov (United States)

    Pai, Peiying; Lai, Ching Jung; Lin, Ching-Yuang; Liou, Yi-Fan; Huang, Chih-Yang; Lee, Shin-Da

    2016-04-15

    Only very limited information regarding the protective effects of the superoxide anion scavenger on chronic intermittent hypoxia-induced cardiac apoptosis is available. The purpose of this study is to evaluate the effects of the superoxide anion scavenger on cardiac apoptotic and prosurvival pathways in rats with sleep apnea. Forty-two Sprague-Dawley rats were divided into three groups, rats with normoxic exposure (Control, 21% O2, 1 mo), rats with chronic intermittent hypoxia exposure (Hypoxia, 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo), and rats with pretreatment of the superoxide anion scavenger and chronic intermittent hypoxia exposure (Hypoxia-O2 (-)-Scavenger, MnTMPyP pentachloride, 1 mg/kg ip per day; 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo) at 5-6 mo of age. After 1 mo, the protein levels and apoptotic cells of excised hearts from three groups were measured by Western blotting and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay. The superoxide anion scavenger decreased hypoxia-induced myocardial architecture abnormalities, left ventricular hypertrophy, and TUNEL-positive apoptosis. The superoxide anion scavenger decreased hypoxia-induced Fas ligand, Fas death receptors, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas-dependent apoptotic pathway) as well as Bad, activated caspase-9 and activated caspase-3 (mitochondria-dependent apoptotic pathway), endonuclease G (EndoG), apoptosis-inducing factor (AIF), and TUNEL-positive apoptosis. The superoxide anion scavenger increased IGF-1, IGF-1R, p-PI3k, p-Akt, p-Bad, Bcl-2, and Bcl-xL (survival pathway). Our findings imply that the superoxide anion scavenger might prevent cardiac Fas-mediated and mitochondrial-mediated apoptosis and enhance the IGF-1-related survival pathway in chronic intermittent hypoxia. The superoxide anion scavenger may prevent chronic sleep apnea-enhanced cardiac apoptotic pathways and enhances

  7. Peculiarities of antioxidant system and iron metabolism in organism during development of tumor resistance to cisplatin.

    Science.gov (United States)

    Chekhun, V F; Lozovska, Y V; Burlaka, A P; Lukyanova, N Y; Todor, I N; Naleskina, L A

    2014-09-01

    To study in vivo the peculiarities of changes of iron metabolism and antioxidant system in dynamics of growth of Guerin carcinoma with different sensitivity to cisplatin. In order to evaluate the content of metallothionein-1 (MT-1) in tumor homogenates and blood serum of rats with cisplatin-sensitive and cisplatin-resistant Guerin carcinoma the immunoenzyme method was used. The evaluation of ceruloplasmin activity, content of "free iron" complexes, superoxide and NO-generating acti-vity of NADPH-oxidase and iNOS activity in neutrophils, blood serum and tumor homogenates was measured by EPR-spectro-scopy. Maximal accumulation of MT-1 in blood serum and tumor, more pronounced in resistant strain, at the border of latent and exponential phase of growth has been shown that is the evidence of protective role of this protein in the respect to the generation of free radical compounds. It has been determined that in animals with cisplatin-resistant strain of Guerin carcinoma, increase of "free iron" complexes is more apparent both on the level of tumor and organism on the background on increase of CP/TR ratio that is the consequence of organism antioxidant protection system disorder. Mentioned changes in metabolism of iron with its accumulation in tumor and further reprogramming of mitochondria metabolism and activity of NADPH-oxidase for non-transformed cells are favorable conditions for the formation of oxidative phenotype of tumor.

  8. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice.

    Science.gov (United States)

    Feng, Bin; Meng, Ran; Huang, Bin; Shen, Shanmei; Bi, Yan; Zhu, Dalong

    2016-01-01

    Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30 mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.

  9. Mitochondrial type II NAD(PH dehydrogenases in fungal cell death

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-03-01

    Full Text Available During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(PH dehydrogenases (also called alternative NAD(PH dehydrogenases are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(PH dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(PH dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF-family.

  10. Vitamin E--a selective inhibitor of the NADPH oxidoreductase enzyme system in human granulocytes

    International Nuclear Information System (INIS)

    Butterick, C.J.; Baehner, R.L.; Boxer, L.A.; Jersild, R.A. Jr.

    1983-01-01

    The cellular sites of H 2 O 2 formation in phagocytizing granulocytes have been identified with cerium chloride. A precipitate was visible in phagosomes and on plasma membranes from intact normal cells in the presence of either 0.71 mM NADH or NADPH. X-ray microanalysis permitted identification of cerium deposition within the phagosomes even in the absence of reduced pyridine nucleotides. Catalase ablated the formation of the reaction product. Intact granulocytes obtained from subjects receiving 1600 units of vitamin E daily for 2 weeks exhibited reaction product in the presence of NADH but not NADPH. Intact cells from subjects treated with vitamin E demonstrated diminished numbers of phagocytic vesicles containing reaction product. During phagocytosis the granulocytes treated with vitamin E consumed oxygen but exhibited significantly reduced rates of hydrogen-peroxide-dependent glucose-1- 14 C oxidation to 14 CO 2 . Isolated phagocytic vesicles obtained from granulocytes after ingestion of opsonized lipopolysaccharide-paraffin oil droplets contained reaction product when exposed to 0.71 mM NADPH. No reaction product was evident at 0.71 mM NADH but was evident at 2.0 mM NADH. Isolated phagocytic vesicles from the granulocytes of subjects receiving vitamin E exhibited reaction product only in the presence of NADH. These observations suggest that vitamin E interferes with the electron transport chain apparently required for the oxidation of NADPH to form H 2 O 2 in the phagocytizing granulocyte

  11. A study on superoxide dismutase activity of some model compounds.

    Science.gov (United States)

    Liao, Z; Liu, W; Liu, J; Jiang, Y; Shi, J; Liu, C

    1994-08-15

    The synthesis and characteristics of a binuclear ligand N,N,N',N'-tetrakis (2'-benzimidazolyl methyl)-1,4-diethylene amino glycol ether (EGTB) and its series of coordination compounds containing copper(II), iron(III), and manganese(II) with and without exogenous bridging ligand which was imidazolate ion (Im-), bipyridine (bpy), or 1,10-phenanthroline (phen) are reported. Depending on the redox potentials by cyclic voltammetry, the coordination compounds can act as catalysts for the dismutation of superoxide radicals (O2-). The detection of the rate constant of the reaction of superoxide ion with nitroblue tetrazolium (NBT) which is inhibited by superoxide dismutase (SOD) and its model compounds of the EGTB system has been performed by a modified illumination method. The rate constants kQ of the catalytic dismutation have been obtained.

  12. The angiotensin-(1-7/Mas axis counteracts angiotensin II-dependent and –independent pro-inflammatory signaling in human vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Laura A Villalobos

    2016-12-01

    Full Text Available Background and aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7 is a member of the renin-angiotensin system (RAS that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7 to counteract human aortic smooth muscle cell (HASMC inflammation triggered by RAS-dependent and –independent stimuli, such as Ang II or interleukin (IL-1.Methods and Results: In cultured HASMC, the expression of iNOS and the release of nitric oxide were stimulated by both Ang II and IL-1, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7 in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7, suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and NF-B. Indeed, Ang-(1-7 markedly inhibited the activation of the NADPH oxidase and subsequently of NF-B, as determined by lucigenin-derived chemiluminiscence and electromobility shift assay, respectively.Conclusion: Ang-(1-7 can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

  13. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.

    Science.gov (United States)

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A; Hamilton, Elisha J; Figtree, Gemma A; Rasmussen, Helge H

    2015-09-01

    Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes. Copyright © 2015 the American Physiological Society.

  14. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Clark, Andrea J; Coury, Emma L; Meilhac, Alexandra M; Petty, Howard R

    2016-01-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO 3 /Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO 3 /Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO 3 /Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer. (paper)

  15. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    Science.gov (United States)

    Clark, Andrea J.; Coury, Emma L.; Meilhac, Alexandra M.; Petty, Howard R.

    2016-02-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  16. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    International Nuclear Information System (INIS)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-01-01

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O 2 # sm b ullet# - ) not through its dismutation, but via reduction to hydrogen peroxide (H 2 O 2 ) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR Gi ) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T final ) with Fe 3+ ligated to glutamate or hydroxide depending on pH (apparent pK a = 8.7). Although showing negligible SOD activity, reduced SOR Gi reacts with O 2 # sm b ullet# - with a pH-independent second-order rate constant k 1 = 1.0 x 10 9 M -1 s -1 and yields the ferric-(hydro)peroxo intermediate T 1 ; this in turn rapidly decays to the T final state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR Gi is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  17. The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms

    Directory of Open Access Journals (Sweden)

    Andrew eRose

    2012-04-01

    Full Text Available Superoxide, the one-electron reduced form of dioxygen, is produced in the extracellular milieu of aquatic microbes through a range of abiotic chemical processes and also by microbes themselves. Due to its ability to promote both oxidative and reductive reactions, superoxide may have a profound impact on the redox state of iron, potentially influencing iron solubility, complex speciation and bioavailability. The interplay between iron, superoxide and oxygen may also produce a cascade of other highly reactive transients in oxygenated natural waters. For microbes, the overall effect of reactions between superoxide and iron may be deleterious or beneficial, depending on the organism and its chemical environment. Here I critically discuss recent advances in understanding: (i sources of extracellular superoxide in natural waters, with a particular emphasis on microbial generation; (ii the chemistry of reactions between superoxide and iron; and (iii the influence of these processes on iron bioavailability and microbial iron nutrition.

  18. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    International Nuclear Information System (INIS)

    Lespade, Laure

    2016-01-01

    Highlights: • Ab initio molecular dynamics is performed to describe the reaction of quercetin and superoxide. • The reaction occurs near the sites 4′ and 7 when the system contains sufficiently water molecules. • The difference of reactivity of superoxide compared to commonly used radicals as DPPH · or ABTS ·+ is explained. - Abstract: Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car–Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  19. The necrotroph Botrytis cinerea induces a non-host type II resistance mechanism in Pinus pinaster suspension-cultured cells.

    Science.gov (United States)

    Azevedo, Herlânder; Lino-Neto, Teresa; Tavares, Rui Manuel

    2008-03-01

    Models of non-host resistance have failed to account for the pathogenicity of necrotrophic agents. During the interaction of Pinus pinaster (maritime pine) with the non-host necrotrophic pathogen Botrytis cinerea, the generation and scavenging of reactive oxygen species (ROS) and the induction of the hypersensitive response (HR) were analyzed. Elicitation of maritime pine suspended cells with B. cinerea spores resulted in the biphasic induction of ROS. The phase I oxidative burst was dependent on calcium influx, while the phase II oxidative burst also depended on NADPH oxidase, protein kinase activity, and de novo transcription and protein synthesis. A decline was observed in catalase (CAT) and superoxide dismutase (SOD) activity, together with the down-regulation of Fe-Sod1, chlCu, Zn-Sod1 and csApx1, suggesting a coordinated response towards a decrease in the ROS-scavenging capacity of maritime pine cells during challenge. Following the second oxidative burst, programmed cell death events characteristic of the HR were observed. The results suggest the ROS-mediated and cell-breach-independent activation of Type II non-host resistance during the P. pinaster-B. cinerea interaction.

  20. Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon.

    Science.gov (United States)

    Sharick, Joe T; Favreau, Peter F; Gillette, Amani A; Sdao, Sophia M; Merrins, Matthew J; Skala, Melissa C

    2018-04-03

    While NAD(P)H fluorescence lifetime imaging (FLIM) can detect changes in flux through the TCA cycle and electron transport chain (ETC), it remains unclear whether NAD(P)H FLIM is sensitive to other potential fates of glucose. Glucose carbon can be diverted from mitochondria by the pentose phosphate pathway (via glucose 6-phosphate dehydrogenase, G6PDH), lactate production (via lactate dehydrogenase, LDH), and rejection of carbon from the TCA cycle (via pyruvate dehydrogenase kinase, PDK), all of which can be upregulated in cancer cells. Here, we demonstrate that multiphoton NAD(P)H FLIM can be used to quantify the relative concentrations of recombinant LDH and malate dehydrogenase (MDH) in solution. In multiple epithelial cell lines, NAD(P)H FLIM was also sensitive to inhibition of LDH and PDK, as well as the directionality of LDH in cells forced to use pyruvate versus lactate as fuel sources. Among the parameters measurable by FLIM, only the lifetime of protein-bound NAD(P)H (τ 2 ) was sensitive to these changes, in contrast to the optical redox ratio, mean NAD(P)H lifetime, free NAD(P)H lifetime, or the relative amount of free and protein-bound NAD(P)H. NAD(P)H τ 2 offers the ability to non-invasively quantify diversions of carbon away from the TCA cycle/ETC, which may support mechanisms of drug resistance.

  1. Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751(SL mice.

    Directory of Open Access Journals (Sweden)

    Melinda E Lull

    Full Text Available NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer's Disease (AD. Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM, to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and London mutations (hAPP(751(SL.Four month old hAPP(751(SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg apocynin by gavage for four months.Only hAPP(751(SL mice treated with apocynin showed reduced plaque size and a reduction in the number of cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments tested (saline, DM, and apocynin demonstrated low levels of TNFα, protein nitration, lipid peroxidation, and NADPH oxidase activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751(SL mice at 8 months of age that was not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate Aβ-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect learning and memory tasks or synaptic density in hAPP(751(SL mice. To discern how apocynin was affecting plaque levels (plaque load and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on beta-amyloid (Aβ phagocytosis, microglial proliferation, or microglial survival.Together, this study suggests that while hAPP(751(SL mice show increases in microglial number and plaque load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque size and microglial number, suggesting that apocynin may have additional

  2. HV1 acts as a sodium sensor and promotes superoxide production in medullary thick ascending limb of Dahl salt-sensitive rats.

    Science.gov (United States)

    Jin, Chunhua; Sun, Jingping; Stilphen, Carly A; Smith, Susan M E; Ocasio, Hiram; Bermingham, Brent; Darji, Sandip; Guha, Avirup; Patel, Roshan; Geurts, Aron M; Jacob, Howard J; Lambert, Nevin A; O'Connor, Paul M

    2014-09-01

    We previously characterized a H(+) transport pathway in medullary thick ascending limb nephron segments that when activated stimulated the production of superoxide by nicotinamide adenine dinucleotide phosphate oxidase. Importantly, the activity of this pathway was greater in Dahl salt-sensitive rats than salt-resistant (SS.13(BN)) rats, and superoxide production was enhanced in low Na(+) media. The goal of this study was to determine the molecular identity of this pathway and its relationship to Na(+). We hypothesized that the voltage-gated proton channel, HV1, was the source of superoxide-stimulating H(+) currents. To test this hypothesis, we developed HV1(-/-) null mutant rats on the Dahl salt-sensitive rat genetic background using zinc-finger nuclease gene targeting. HV1 could be detected in medullary thick limb from wild-type rats. Intracellular acidification using an NH4Cl prepulse in 0 sodium/BaCl2 containing media resulted in superoxide production in thick limb from wild-type but not HV1(-/-) rats (Pthick limb and peritoneal macrophages only when HV1 was present. When fed a high-salt diet, blood pressure, outer medullary renal injury (tubular casts), and oxidative stress (4-hydroxynonenal staining) were significantly reduced in HV1(-/-) rats compared with wild-type Dahl salt-sensitive rats. We conclude that HV1 is expressed in medullary thick ascending limb and promotes superoxide production in this segment when intracellular Na(+) is low. HV1 contributes to the development of hypertension and renal disease in Dahl salt-sensitive rats. © 2014 American Heart Association, Inc.

  3. Potential Superoxide Anion Radical Scavenging Activity of Doum Palm ( Hyphaene thebaica L. Leaves Extract

    Directory of Open Access Journals (Sweden)

    Mohamed M. Al-Azizi

    2008-08-01

    Full Text Available The antioxidant activity of the aqueous ethanolic extract of Doum leaves, Hyphaene thebaica L. (Palmae, was studied. Data obtained showed that the extract scavenged superoxide anion radicals ( IC 50=1602 µg/ml in a dose dependant manner using xanthine/hypoxanthine oxidase assay. Four major flvonoidal compounds were identified by LC/SEI as; Quercetin glucoside , Kaempferol rhamnoglucoside, Dimethyoxyquercetin rhamnoglucoside . While , further in-depth phytochemical investigation of this extract lead to the isolation and identification of fourteen compounds ;their structures were elucidated based upon the interpretation of their spectral data(UV, 1H, 13C NMR and ESI/MS as; 8-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (vitexin 1, 6-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (iso-vitexin 2, quercetin 3-O-β- 4C 1-D-glucopyranoside 3, gallic acid 4, quercetin 7-O-β- 4C 1-D-glucoside 5, luteolin 7-O-β- 4C 1-D-glucoside 6, tricin 5 O-β- 4C 1-D-glucoside 7, 7, 3` dimethoxy quercetin 3-O-[6''-O-α-L-rhamnopyranosyl]-β-D-gluco-pyranoside (Rhamnazin 3-O-rutinoside 8, kaempferol-3-O-[6''-O-α- L-rhamnopyranosyl]-β- D-glucopyranoside (nicotiflorin 9, apigenin 10, luteolin 11, tricin 12, quercetin 13 and kaempferol 14

  4. Differential Effects of Superoxide Dismutase Mimetics after Mechanical Overload of Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Mitchell C. Coleman

    2017-11-01

    Full Text Available Post-traumatic osteoarthritis can develop as a result of the initial mechanical impact causing the injury and also as a result of chronic changes in mechanical loading of the joint. Aberrant mechanical loading initiates excessive production of reactive oxygen species, oxidative damage, and stress that appears to damage mitochondria in the surviving chondrocytes. To probe the benefits of increasing superoxide removal with small molecular weight superoxide dismutase mimetics under severe loads, we applied both impact and overload injury scenarios to bovine osteochondral explants using characterized mechanical platforms with and without GC4403, MnTE-2-PyP, and MnTnBuOE-2-PyP. In impact scenarios, each of these mimetics provides some dose-dependent protection from cell death and loss of mitochondrial content while in repeated overloading scenarios only MnTnBuOE-2-PyP provided a clear benefit to chondrocytes. These results support the hypothesis that superoxide is generated in excess after impact injuries and suggest that superoxide production within the lipid compartment may be a critical mediator of responses to chronic overload. This is an important nuance distinguishing roles of superoxide, and thus superoxide dismutases, in mediating damage to cellular machinery in hyper-acute impact scenarios compared to chronic scenarios.

  5. Phospholipid alterations in cardiac sarcoplasmic reticulum induced by xanthine oxidase: contamination of commercial preparations of xanthine oxidase by phospholipase A2

    International Nuclear Information System (INIS)

    Gamache, D.A.; Kornberg, L.J.; Bartolf, M.; Franson, R.C.

    1986-01-01

    Incubation of cardiac sarcoplasmic reticulum with xanthine oxidase alone at pH 7.0 resulted in a loss of lipid phosphorus that was potentiated by the addition of xanthine. Using autoclaved E.coli with 1- 14 C-oleate in the 2-acyl position of membrane phospholipids, the authors demonstrate that many, but not all, commercial preparations of xanthine oxidase contain significant phospholipase A 2 (PLA 2 ) activity (64.3-545.6 nmols/min/mg). The PLA 2 was maximally active in the neutral-alkaline pH range, was Ca 2+ -dependent, and was unaffected by the addition of xanthine. PLA 2 activity was totally inhibited by 1mM EDTA whereas radical production by optimal concentrations of xanthine/xanthine oxidase (X/XO) was unaffected by EDTA. Chromatographically purified xanthine oxidase (Sigma Grade III) contained high levels of PLA 2 activity (64.3 nmols/min/mg) compared to endogenous levels of neutral-active, Ca 2+ -dependent PLA 2 measured in various tissue homogenates (≤ 0.5 nmols/ min/mg). Because X/XO mixtures are used extensively to study oxygen free radical-induced cell injury and membrane phospholipid alterations, the presence of a potent extracellular PLA 2 may have influenced previously published reports, and such studies should be interpreted cautiously

  6. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    International Nuclear Information System (INIS)

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-01-01

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from 125 I-PEG-catalase or 125 I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species

  7. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed; Thomas, Ludivine; Gehring, Chris; Marondedze, Claudius

    2017-01-01

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as 'response to stress' and 'transport' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  8. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed

    2017-08-21

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as \\'response to stress\\' and \\'transport\\' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  9. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase

    International Nuclear Information System (INIS)

    Liu, Tingting; Niu, Xiangheng; Shi, Libo; Zhu, Xiang; Zhao, Hongli; Lana, Minbo

    2015-01-01

    Graphical abstract: Prussian Blue (PB) cubes supported on nitrogen-doped graphene sheets (NGS) were synthesized using a simple and scalable method, and the utilization of the PB-NGS hybrid as an efficient superoxide dismutase mimic in the electrochemical sensing of O 2 ·− was demonstrated. - Highlights: • Facile and scalable synthesis of Prussian Blue cubes supported on nitrogen-doped graphene; • Nitrogen-doped graphene supported Prussian Blue as an efficient biomimetic superoxide dismutase for the electrocatalytic sensing of superoxide anion; • Good sensitivity, excellent selectivity and attractive long-term stability for superoxide anion sensing. - Abstract: Considering the double-sided roles of superoxide anion radical, monitoring of its track in living systems is attracting increasing academic and practical interest. Here we synthesized Prussian Blue (PB) cubes that were supported on nitrogen-doped graphene sheets (NGS) using a facile and scalable method, and explored their potential utilization in the electrochemical sensing of superoxide anion. As an efficient superoxide dismutase mimic, direct electron transfer of the prepared PB-NGS hybrid immobilized on a screen-printed gold electrode was harvested in physiological media. With the bifunctional activities, the synthetic mimic could catalyze the dismutation of superoxide anion via the redox cycle of active iron. By capturing the electro-reduction amperometric responses of superoxide anion radical to hydrogen peroxide in the cathodic polarization, highly sensitive determination (a sensitivity of as high as 0.32 μA cm −2 μM −1 ) of the target was achieved, with no interference from common coexisting species including ascorbic acid, dopamine, and uric acid observed. Compared to natural superoxide dismutases, the artificial enzyme mimic exhibited favorable activity stability, indicating its promising applications in the in vivo long-term monitoring of superoxide anion

  10. Ultra-fast HPM detectors improve NAD(P)H FLIM

    Science.gov (United States)

    Becker, Wolfgang; Wetzker, Cornelia; Benda, Aleš

    2018-02-01

    Metabolic imaging by NAD(P)H FLIM requires the decay functions in the individual pixels to be resolved into the decay components of bound and unbound NAD(P)H. Metabolic information is contained in the lifetime and relative amplitudes of the components. The separation of the decay components and the accuracy of the amplitudes and lifetimes improves substantially by using ultra-fast HPM-100-06 and HPM-100-07 hybrid detectors. The IRF width in combination with the Becker & Hickl SPC-150N and SPC-150NX TCSPC modules is less than 20 ps. An IRF this fast does not interfere with the fluorescence decay. The usual deconvolution process in the data analysis then virtually becomes a simple curve fitting, and the parameters of the NAD(P)H decay components are obtained at unprecedented accuracy.

  11. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    Energy Technology Data Exchange (ETDEWEB)

    Lespade, Laure, E-mail: l.lespade@ism.u-bordeaux1.fr

    2016-08-22

    Highlights: • Ab initio molecular dynamics is performed to describe the reaction of quercetin and superoxide. • The reaction occurs near the sites 4′ and 7 when the system contains sufficiently water molecules. • The difference of reactivity of superoxide compared to commonly used radicals as DPPH{sup ·} or ABTS{sup ·+} is explained. - Abstract: Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car–Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  12. Modulation of IgE-dependent COX-2 gene expression by reactive oxygen species in human neutrophils.

    Science.gov (United States)

    Vega, Antonio; Chacón, Pedro; Alba, Gonzalo; El Bekay, Rajaa; Martín-Nieto, José; Sobrino, Francisco

    2006-07-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of its COX-2 isoform is responsible for the increased PG release, taking place under inflammatory conditions, and also, is thought to be involved in allergic and inflammatory diseases. In the present work, we demonstrate that COX-2 expression becomes highly induced by anti-immunoglobulin E (IgE) antibodies and by antigens in human neutrophils from allergic patients. This induction was detected at mRNA and protein levels and was accompanied by a concomitant PGE(2) and thromboxane A(2) release. We also show evidence that inhibitors of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, such as 4-(2-aminoethyl)benzenesulphonyl fluoride and 4-hydroxy-3-methoxyaceto-phenone, completely cancelled anti-IgE-induced COX-2 protein up-regulation, suggesting that this process is mediated by reactive oxygen species (ROS) derived from NADPH oxidase activity. Moreover, the mitogen-activated protein kinases (MAPKs), p38 and extracellular signal-regulated kinase, and also, the transcription factor, nuclear factor (NF)-kappaB, are involved in the up-regulation of COX-2 expression, as specific chemical inhibitors of these two kinases, such as SB203580 and PD098059, and of the NF-kappaB pathway, such as N(alpha)-benzyloxycarbonyl-l-leucyl-l-leucyl-l-leucinal, abolished IgE-dependent COX-2 induction. Evidence is also presented, using Fe(2)(+)/Cu(2)(+) ions, that hydroxyl radicals generated from hydrogen peroxide through Fenton reactions could constitute candidate modulators able to directly trigger anti-IgE-elicited COX-2 expression through MAPK and NF-kappaB pathways. Present results underscore a new role for ROS as second messengers in the modulation of COX-2 expression by human neutrophils in allergic conditions.

  13. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    Science.gov (United States)

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  14. Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Monisha Banerjee

    2014-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM, by definition is a heterogeneous, multifactorial, polygenic syndrome which results from insulin receptor dysfunction. It is an outcome of oxidative stress caused by interactions of reactive metabolites (RMs interactions with lipids, proteins and other mechanisms of human body. Production of RMs mainly superoxide (O2·− has been found in a variety of predominating cellular enzyme systems including NAD(PH oxidase, xanthine oxidase (XO, cyclooxygenase (COX, uncoupled endothelial nitric oxide synthase (eNOS and myeloperoxidase (MPO. The four main RM related molecular mechanisms are: increased polyol pathway flux; increased advanced glycation end-product (AGE formation; activation of protein kinase C (PKC isoforms and increased hexosamine pathway flux which have been implicated in glucose-mediated vascular damage. Superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST, nitric oxide synthase (NOS are antioxidant enzymes involved in scavenging RMs in normal individuals. Functional polymorphisms of these antioxidant enzymes have been reported to be involved in pathogenesis of T2DM individuals. The low levels of antioxidant enzymes or their non-functionality results in excessive RMs which initiate stress related pathways thereby leading to insulin resistance and T2DM. An attempt has been made to review the role of RMs and antioxidant enzymes in oxidative stress resulting in T2DM.

  15. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus.

    Directory of Open Access Journals (Sweden)

    Marcela de Souza Santos

    2017-06-01

    Full Text Available The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS production using the Type III Secretion System 2 (T3SS2 effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.

  16. Redox signaling during hypoxia in mammalian cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Smith

    2017-10-01

    Full Text Available Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS such as hydrogen peroxide (H2O2 occurs through the reversible oxidation of cysteine thiol groups, resulting in structural modifications that can change protein function profoundly. Mitochondria are an important source of ROS generation, and studies reveal that superoxide generation by the electron transport chain increases during hypoxia. Other sources of ROS, such as the NAD(PH oxidases, may also generate oxidant signals in hypoxia. This review considers the growing body of work indicating that increased ROS signals during hypoxia are responsible for regulating the activation of protective mechanisms in diverse cell types.

  17. Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages.

    Science.gov (United States)

    Datta, Debika; Khatri, Preeti; Banerjee, Chaitali; Singh, Ambika; Meena, Ramavatar; Saha, Dhira Rani; Raman, Rajagopal; Rajamani, Paulraj; Mitra, Abhijit; Mazumder, Shibnath

    2016-01-01

    Mycobacterium fortuitum causes 'mycobacteriosis' in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM.

  18. RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo.

    Science.gov (United States)

    Nam, Woo Suk; Park, Kwon Moo; Park, Jeen-Woo

    2012-08-01

    A metabolic abnormality in lipid biosynthesis is frequently associated with obesity and hyperlipidemia. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) is an essential reducing equivalent for numerous enzymes required in fat and cholesterol biosynthesis. Cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) has been proposed as a key enzyme for supplying cytosolic NADPH. We report here that knockdown of IDPc expression by Ribonucleic acid (RNA) interference (RNAi) inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes and mice. Attenuated IDPc expression by IDPc small interfering RNA (siRNA) resulted in a reduction of differentiation and triglyceride level and adipogenic protein expression as well as suppression of glucose uptake in cultured adipocytes. In addition, the attenuation of Nox activity and Reactive oxygen species (ROS) generation accompanied with knockdown of IDPc was associated with inhibition of adipogenesis and lipogenesis. The loss of body weight and the reduction of triglyceride level were also observed in diet-induced obese mice transduced with IDPc short-hairpin (shRNA). Taken together, the inhibiting effect of RNAi targeting IDPc on adipogenesis and lipid biosynthesis is considered to be of therapeutic value in the treatment and prevention of obesity and obesity-associated metabolic syndrome. © 2012 Elsevier B.V. All rights reserved.

  19. Participation of superoxide generating system, superoxide dismutase and vitamin E in the radiation hazards

    International Nuclear Information System (INIS)

    Aono, Kaname; Yamamoto, Michio; Iida, Sosuke; Utsumi, Kozo

    1978-01-01

    In relation to the mechanism by which hemolysis was induced in radiated human erythrocytes in vitro, several inducements of membrane lipid peroxidation and protective effects of vitamin E (V.E) and superoxide dismutase (SOD) were investigated. (1) K + -release from erythrocytes was accelerated by radiation prior to hemolysis. These accelerated hemolysis and K + -release were protected remarkably by V.E and evidently by SOD. (2) Mitochondrial Fe 2+ induced and Fe 3+ -superoxide generating system -- ADP induced lipid peroxidation, and microsomal superoxide generating system -- induced lipid peroxidation were also protected by V.E and SOD. (3) Radiation of x-ray or 60 Co γ-ray accelerated lipid peroxidation of liver homogenate, microsome and liposome. Some of these accelerated lipid peroxidations were protected effectively by V.E and SOD. These results suggest that superoxide and/or OH generation by radiation induces of membrane lipid peroxidation, which leads deterioration of membrane resulting in the change of ion permeability and then hemolysis. (author)

  20. The suppression of manganese superoxide dismutase decreased the survival of human glioblastoma multiforme T98G cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2017-05-01

    Full Text Available Background: Glioblastoma multiforme (GBM is a primary malignant brain tumor which has poor prognosis. High incidence of oxidative stress-based therapy resistance could be related to the high antioxidant status of GBM cells. Our previous study has reported that manganese superoxide dismutase (MnSOD antioxidant expression was significantly higher in high grade glioma than in low grade. The aim of this study was to analyze the impact of MnSOD suppression toward GBM cell survival.Methods: This study is an experimental study using human glioblastoma multiforme T98G cell line. Suppression of MnSOD expression was performed using in vitro transfection MnSOD-siRNA. The MnSOD expression was analyzed by measuring the mRNA using real time RT-PCR, protein using ELISA technique, and specific activity of enzyme using inhibition of xantine oxidase. Concentration of reactive oxygen species (ROS intracellular was determined by measuring superoxide radical and hydrogen peroxide. Cell survival was analyzed by measuring viability, proliferation, and cell apoptosis.Results: In vitro transfection of MnSOD-siRNA suppressed the mRNA, protein, and specific activity of MnSOD. This treatment significantly increased the concentration of superoxide radical; however, it did not influence the concentration of hydrogen peroxide. Moreover, viability MnSOD-suppressing cell significantly decreased, accompanied by increase of cell apoptosis without affecting cell proliferation.Conclusion: The suppression of MnSOD expression leads to decrease glioblastoma multiforme cell survival, which was associated to the increase of cell apoptotic.

  1. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    International Nuclear Information System (INIS)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2012-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K 3 ) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of ATP

  2. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  3. Myeloid-specific deletion of NOX2 prevents the metabolic and neurologic consequences of high fat diet.

    Directory of Open Access Journals (Sweden)

    Jennifer K Pepping

    Full Text Available High fat diet-induced obesity is associated with inflammatory and oxidative signaling in macrophages that likely participates in metabolic and physiologic impairment. One key factor that could drive pathologic changes in macrophages is the pro-inflammatory, pro-oxidant enzyme NADPH oxidase. However, NADPH oxidase is a pleiotropic enzyme with both pathologic and physiologic functions, ruling out indiscriminant NADPH oxidase inhibition as a viable therapy. To determine if targeted inhibition of monocyte/macrophage NADPH oxidase could mitigate obesity pathology, we generated mice that lack the NADPH oxidase catalytic subunit NOX2 in myeloid lineage cells. C57Bl/6 control (NOX2-FL and myeloid-deficient NOX2 (mNOX2-KO mice were given high fat diet for 16 weeks, and subject to comprehensive metabolic, behavioral, and biochemical analyses. Data show that mNOX2-KO mice had lower body weight, delayed adiposity, attenuated visceral inflammation, and decreased macrophage infiltration and cell injury in visceral adipose relative to control NOX2-FL mice. Moreover, the effects of high fat diet on glucose regulation and circulating lipids were attenuated in mNOX2-KO mice. Finally, memory was impaired and markers of brain injury increased in NOX2-FL, but not mNOX2-KO mice. Collectively, these data indicate that NOX2 signaling in macrophages participates in the pathogenesis of obesity, and reinforce a key role for macrophage inflammation in diet-induced metabolic and neurologic decline. Development of macrophage/immune-specific NOX-based therapies could thus potentially be used to preserve metabolic and neurologic function in the context of obesity.

  4. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells

    Directory of Open Access Journals (Sweden)

    Laila R.B. Santos

    2017-06-01

    Full Text Available Objective: The glucose stimulation of insulin secretion (GSIS by pancreatic β-cells critically depends on increased production of metabolic coupling factors, including NADPH. Nicotinamide nucleotide transhydrogenase (NNT typically produces NADPH at the expense of NADH and ΔpH in energized mitochondria. Its spontaneous inactivation in C57BL/6J mice was previously shown to alter ATP production, Ca2+ influx, and GSIS, thereby leading to glucose intolerance. Here, we tested the role of NNT in the glucose regulation of mitochondrial NADPH and glutathione redox state and reinvestigated its role in GSIS coupling events in mouse pancreatic islets. Methods: Islets were isolated from female C57BL/6J mice (J-islets, which lack functional NNT, and genetically close C57BL/6N mice (N-islets. Wild-type mouse NNT was expressed in J-islets by adenoviral infection. Mitochondrial and cytosolic glutathione oxidation was measured with glutaredoxin 1-fused roGFP2 probes targeted or not to the mitochondrial matrix. NADPH and NADH redox state was measured biochemically. Insulin secretion and upstream coupling events were measured under dynamic or static conditions by standard procedures. Results: NNT is largely responsible for the acute glucose-induced rise in islet NADPH/NADP+ ratio and decrease in mitochondrial glutathione oxidation, with a small impact on cytosolic glutathione. However, contrary to current views on NNT in β-cells, these effects resulted from a glucose-dependent reduction in NADPH consumption by NNT reverse mode of operation, rather than from a stimulation of its forward mode of operation. Accordingly, the lack of NNT in J-islets decreased their sensitivity to exogenous H2O2 at non-stimulating glucose. Surprisingly, the lack of NNT did not alter the glucose-stimulation of Ca2+ influx and upstream mitochondrial events, but it markedly reduced both phases of GSIS by altering Ca2+-induced exocytosis and its metabolic amplification. Conclusion: These

  5. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis☆

    Science.gov (United States)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2013-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K3) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ~12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. PMID:22575170

  6. Similar Transition States Mediate the Q-cycle and Superoxide Production by the Cytochrome bc1 Complex

    International Nuclear Information System (INIS)

    Forquer, Isaac P.; Covian, Raul; Bowman, Michael K.; Trumpower, Bernard; Kramer, David M.

    2006-01-01

    The cytochrome bc complexes found in mitochondria, chloroplasts and many bacteria catalyze a critical reaction in their respective electron transport chains. The quinol oxidase (Qo) site in this complex oxidizes a hydroquinone (quinol), reducing two one-electron carriers, a low-potential cytochrome b heme and a ''Rieske'' iron-sulfur cluster. The overall electron transfer reactions are coupled to transmembrane translocation of protons via a ''Q-cycle'' mechanism, which generates proton motive force for ATP synthesis. Since semiquinone intermediates of quinol oxidation are generally highly reactive, one of the key questions in this field is: how does the Qo site oxidize quinol without the production of deleterious side reactions including superoxide production? We attempt to test three possible general models to account for this behavior: (1) The Qo site semiquinone (or quinol:imidazolate complex) is unstable and thus occurs at a very low steady-state concentration, limiting O2 reduction; (2) the Qo site semiquinone is highly stabilized making it unreactive towards oxygen; and (3) the Qo site catalyzes a quantum mechanically-coupled two-electron/two proton transfer without a semiquinone intermediate. Enthalpies of activation were found to be almost identical between the uninhibited Q-cycle and superoxide production in the presence of Antimycin A in wild type. This behavior was also preserved in a series of mutants with altered driving forces for quinol oxidation. Overall, the data supports models where the rate-limiting step for both Q-cycle and superoxide production are essentially identical, consistent with model 1 but requiring modifications to models 2 and 3

  7. Molecular mechanism of voltage sensing in voltage-gated proton channels

    Science.gov (United States)

    Rebolledo, Santiago; Perez, Marta E.

    2013-01-01

    Voltage-gated proton (Hv) channels play an essential role in phagocytic cells by generating a hyperpolarizing proton current that electrically compensates for the depolarizing current generated by the NADPH oxidase during the respiratory burst, thereby ensuring a sustained production of reactive oxygen species by the NADPH oxidase in phagocytes to neutralize engulfed bacteria. Despite the importance of the voltage-dependent Hv current, it is at present unclear which residues in Hv channels are responsible for the voltage activation. Here we show that individual neutralizations of three charged residues in the fourth transmembrane domain, S4, all reduce the voltage dependence of activation. In addition, we show that the middle S4 charged residue moves from a position accessible from the cytosolic solution to a position accessible from the extracellular solution, suggesting that this residue moves across most of the membrane electric field during voltage activation of Hv channels. Our results show for the first time that the charge movement of these three S4 charges accounts for almost all of the measured gating charge in Hv channels. PMID:23401575

  8. Oxidative defence reactions in sunflower roots induced by methyl-jasmonate and methyl-salicylate and their relation with calcium signalling.

    Science.gov (United States)

    Garrido, Inmaculada; Espinosa, Francisco; Alvarez-Tinaut, M Carmen

    2009-10-01

    Ca(2+) plays a critical role as second messenger in the signal-response coupling of plant defence responses, and methyl-jasmonate and methyl-salicylate are important components of signal transduction cascades activating plant defences. When intact axenic non-induced seedling roots of sunflower were treated with different Ca(2+) concentrations up to 1 mM, there was no significant increase in O(2)(*-) generation or DMAB-MBTH peroxidase (extracellular, ECPOX) activities in the apoplast, probably because these roots had enough Ca(2+) in their exo- and endocellular reservoirs. Both activities were strongly inhibited by the RBOH-NADPH oxidase inhibitor DPI and by the Ca(2+) surrogate antagonist La(3+), but the voltage-dependent Ca(2+) channel blocker verapamil was only inhibitory at concentrations higher than those active on animal L-type Ca(2+) channels. Concentrations >5 mM EGTA (chelating Ca(2+) in the apoplast) and Li(+) (inhibiting PI cycle dependent endogenous Ca(2+) fluxes) also inhibited both activities. W7, inhibitor of binding of Ca-CaM to its target protein, enhanced both activities, but the inactive analogue W5 showed a similar effect. Our data suggest that Ca(2+) from exocellular and, to a lesser extent, from endocellular stores is involved in oxidative activities, and that RBOH-NADPH oxidase is the main system supporting them. Ca(2+) activation of the PM cytosolic side of RBOH-NADPH oxidase is probably the key to Ca(2+) involvement in these processes. Roots induced by MeJA or MeSA showed significant enhancement of both oxidative activities, as corresponding to the oxidative burst evoked by the two phytohormones in the root apoplast. But while ECPOX activity showed a response to the effectors similar to that described above for non-induced roots, O(2)(*-) generation activity in the apoplast of induced roots was insensitive to EGTA, verapamil and Li(+), the inhibitors of exogenous and endogenous Ca(2+) fluxes; only DPI and La(3+) were inhibitory. As

  9. Oral administration of L-arginine in patients with angina or following myocardial infarction may be protective by increasing plasma superoxide dismutase and total thiols with reduction in serum cholesterol and xanthine oxidase

    Science.gov (United States)

    Tripathi, Pratima; Chandra, M

    2009-01-01

    Administration of L-arginine has been shown to control ischemic injury by producing nitric oxide which dilates the vessels and thus maintains proper blood flow to the myocardium. In the present study attempt has been made to determine whether oral administration of L-arginine has any effect on oxidant/antioxidant homeostasis in ischemic myocardial patients [represented by the patients of acute angina (AA) and acute myocardial infarction (MI)]. L-arginine has antioxidant and antiapoptotic properties, decreases endothelin-1 expression and improves endothelial function, thereby controlling oxidative injury caused during myocardial ischemic syndrome. Effect of L-arginine administration on the status of free radical scavenging enzymes, pro-oxidant enzyme and antioxidants viz. total thiols, carbonyl content and plasma ascorbic acid levels in the patients has been evaluated. We have observed that L-arginine administration (three grams per day for 15 days) resulted in increased activity of free radical scavenging enzyme superoxide dismutase (SOD) and increase in the levels of total thiols (T-SH) and ascorbic acid with concomitant decrease in lipid per-oxidation, carbonyl content, serum cholesterol and the activity of proxidant enzyme, xanthine oxidase (XO). These findings suggest that the supplementation of L-arginine along with regular therapy may be beneficial to the patients of ischemic myocardial syndromes. PMID:20716909

  10. Oral Administration of L-Arginine in Patients With Angina or Following Myocardial Infarction May Be Protective By Increasing Plasma Superoxide Dismutase and Total Thiols With Reduction in Serum Cholesterol and Xanthine Oxidase

    Directory of Open Access Journals (Sweden)

    Pratima Tripathi

    2009-01-01

    Full Text Available Administration of L-arginine has been shown to control ischemic injury by producing nitric oxide which dilates the vessels and thus maintains proper blood flow to the myocardium. In the present study attempt has been made to determine whether oral administration of L-arginine has any effect on oxidant/antioxidant homeostasis in ischemic myocardial patients [represented by the patients of acute angina (AA and acute myocardial infarction (MI]. L-arginine has antioxidant and antiapoptotic properties, decreases endothelin-1 expression and improves endothelial function, thereby controlling oxidative injury caused during myocardial ischemic syndrome. Effect of L-arginine administration on the status of free radical scavenging enzymes, pro-oxidant enzyme and antioxidants viz. total thiols, carbonyl content and plasma ascorbic acid levels in the patients has been evaluated. We have observed that L-arginine administration (three grams per day for 15 days resulted in increased activity of free radical scavenging enzyme superoxide dismutase (SOD and increase in the levels of total thiols (T-SH and ascorbic acid with concomitant decrease in lipid per-oxidation, carbonyl content, serum cholesterol and the activity of proxidant enzyme, xanthine oxidase (XO. These findings suggest that the supplementation of L-arginine along with regular therapy may be beneficial to the patients of ischemic myocardial syndromes.

  11. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria.

    Science.gov (United States)

    Zhou, Jie; Zhang, Fuliang; Meng, Hengkai; Zhang, Yanping; Li, Yin

    2016-11-01

    Increasing photosynthetic efficiency is crucial to increasing biomass production to meet the growing demands for food and energy. Previous theoretical arithmetic analysis suggests that the light reactions and dark reactions are imperfectly coupled due to shortage of ATP supply, or accumulation of NADPH. Here we hypothesized that solely increasing NADPH consumption might improve the coupling of light reactions and dark reactions, thereby increasing the photosynthetic efficiency and biomass production. To test this hypothesis, an NADPH consumption pathway was constructed in cyanobacterium Synechocystis sp. PCC 6803. The resulting extra NADPH-consuming mutant grew much faster and achieved a higher biomass concentration. Analyses of photosynthesis characteristics showed the activities of photosystem II and photosystem I and the light saturation point of the NADPH-consuming mutant all significantly increased. Thus, we demonstrated that introducing extra NADPH consumption ability is a promising strategy to increase photosynthetic efficiency and to enable utilization of high-intensity lights. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells.

    Science.gov (United States)

    Song, Jin-Ho; Yeh, Jay Z

    2012-05-10

    Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Pancreatic Beta-Cell Purification by Altering FAD and NAD(PH Metabolism

    Directory of Open Access Journals (Sweden)

    P. de Vos

    2008-07-01

    Full Text Available Isolation of primary beta cells from other cells within in the pancreatic islets is of importance for many fields of islet research. However, up to now, no satisfactory method has been developed that gained high numbers of viable beta cells, without considerable alpha-cell contamination. In this study, we investigated whether rat beta cells can be isolated from nonbeta endocrine cells by manipulating the flavin adenine dinucleotide (FAD and nicotinamide-adenine dinucleotide phosphate (NAD(PH autofluorescence. Beta cells were isolated from dispersed islets by flow cytometry, based on their high FAD and NAD(PH fluorescence. To improve beta cell yield and purity, the cellular FAD and NAD(PH contents were altered by preincubation in culture media containing varying amounts of D-glucose and amino acids. Manipulation of the cellular FAD and NAD(PH fluorescence improves beta cell yield and purity after sorting. This method is also a fast and reliable method to measure beta cell functional viability. A conceivable application is assessing beta cell viability before transplantation.

  14. Engineering an NADPH/NADPRedox Biosensor in Yeast

    DEFF Research Database (Denmark)

    Zhang, Jie; Sonnenschein, Nikolaus; Pihl, Thomas Peter Boye

    2016-01-01

    Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biote......Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science...... in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP+ ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon...... NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP+ ratios from mixed cell populations. We show...

  15. Innervation of the sheep pineal gland by nonsympathetic nerve fibers containing NADPH-diaphorase activity

    DEFF Research Database (Denmark)

    López-Figueroa, Manuel O.; Ravault, Jean-Paul; Cozzi, Bruno

    1997-01-01

    Neuroanatomy, NADPH-diaphorase, nitric oxide, innervation, superior cervical ganglionectomy, neuropeptide Y.......Neuroanatomy, NADPH-diaphorase, nitric oxide, innervation, superior cervical ganglionectomy, neuropeptide Y....

  16. The mechanism of action of lymphokines. IX. The enzymatic basis of hydrogen peroxide production by lymphokine-activated macrophages.

    Science.gov (United States)

    Freund, M; Pick, E

    1986-08-15

    The purpose of this study was to elucidate the biochemical basis of the enhanced hydrogen peroxide (H2O2) production by guinea pig peritoneal macrophages (MP) cultured in lymphokine (LK)-containing medium. The markedly augmented H2O2 generation by these cells, demonstrable by the horseradish peroxidase (HRP)-catalyzed oxidation of phenol red, is distinguished by its lack of dependence on a second stimulus. We demonstrate that H2O2 production is truly spontaneous and is not caused by a stimulant present among the H2O2 assay reagents. The principal candidate for such a role was HRP type II (a mixture of five isoenzymes) that was reported to be capable of eliciting an oxidative burst in MP. Four distinct HRP isoenzymes that were found incapable of provoking an oxidative response were nevertheless adequate for demonstrating H2O2 production by LK-activated MP. Blocking the MP receptor for mannose by the addition of mannan to the assay system resulted in enhanced detection of H2O2 by low concentrations of HRP type II and by three out of four HRP isoenzymes. Treatment of MP with LK-containing medium for 72 hr did not result in a significant change in the activity of cellular superoxide dismutase (SOD) compared with MP cultured for the same length of time in control medium. By using the specific inhibitor of copper, zinc-containing SOD, sodium diethyldithiocarbamate (DDC), and the universal SOD inhibitor, sodium nitroprusside, we found that the predominant enzyme in guinea pig peritoneal MP is probably manganese-containing SOD. Incubation of LK-activated MP with nitroprusside resulted in almost total inhibition of H2O2 production and a simultaneous switch to superoxide (O2-) liberation. Similar exposure to DDC had no effect. These data indicate that H2O2 produced by LK-activated MP is derived exclusively by enzymatic dismutation of O2- mediated by a manganese-containing SOD. The increase in spontaneous H2O2 production induced by LK is therefore secondary to augmented O2

  17. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    Science.gov (United States)

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  18. Circadian and Metabolic Perspectives in the Role Played by NADPH in Cancer

    Directory of Open Access Journals (Sweden)

    Isabel Méndez

    2018-03-01

    Full Text Available Physiological activity in healthy conditions requires a coordinated interaction between the molecular circadian clock and the network of biochemical pathways. An important metabolic parameter in the interface between these two entities is the redox state. Among the redox coenzymes that regulate the fluxes of enzymatic reactions is the NADP+/NADPH pair. Indeed, the main biosynthetic pathways need NADPH to serve as an electron donor for cellular anabolic transformations. The existence of a metabolic circadian clock is well established, and it was first identified in mammalian red blood cells. The metabolic circadian clock is independent of transcriptional activity and is sustained by the enzymatic complex peroxiredoxin/thioredoxin/NADPH. This complex shows 24-h redox fluctuations metabolizing H2O2 in various tissues and species (fungi, insects, and mammals. Although this NADPH-sensitive metabolic clock is autonomous in erythrocytes that lack a nucleus, it functions in concert with the transcriptional circadian clock in other cell types to accomplish the task of timing cellular physiology. During carcinogenesis, circadian alterations influence cell cycle onset and promote tumoral growth. These alterations also deregulate cellular energetics through a process known as aerobic glycolysis, or the Warburg effect. The Warburg effect is a typical response of cancer cells in which the metabolism turns into glycolysis even in the presence of functional mitochondria. This alteration has been interpreted as a cellular strategy to increase biomass during cancer, and one of its main factors is the availability of NADPH. This minireview explores the potential role of NADPH as a circadian and cancer-promoting metabolite.

  19. Changes in pH and NADPH regulate the DNA binding activity of neuronal PAS domain protein 2, a mammalian circadian transcription factor.

    Science.gov (United States)

    Yoshii, Katsuhiro; Tajima, Fumihisa; Ishijima, Sumio; Sagami, Ikuko

    2015-01-20

    Neuronal PAS domain protein 2 (NPAS2) is a core clock transcription factor that forms a heterodimer with BMAL1 to bind the E-box in the promoter of clock genes and is regulated by various environmental stimuli such as heme, carbon monoxide, and NAD(P)H. In this study, we investigated the effects of pH and NADPH on the DNA binding activity of NPAS2. In an electrophoretic mobility shift (EMS) assay, the pH of the reaction mixture affected the DNA binding activity of the NPAS2/BMAL1 heterodimer but not that of the BMAL1/BMAL1 homodimer. A change in pH from 7.0 to 7.5 resulted in a 1.7-fold increase in activity in the absence of NADPH, and NADPH additively enhanced the activity up to 2.7-fold at pH 7.5. The experiments using truncated mutants revealed that N-terminal amino acids 1-61 of NPAS2 were sufficient to sense the change in both pH and NADPH. We further analyzed the kinetics of formation and DNA binding of the NPAS2/BMAL1 heterodimer at various pH values. In the absence of NADPH, a change in pH from 6.5 to 8.0 decreased the KD(app) value of the E-box from 125 to 22 nM, with an 8-fold increase in the maximal level of DNA binding for the NPAS2/BMAL1 heterodimer. The addition of NADPH resulted in a further decrease in KD(app) to 9 nM at pH 8.0. Furthermore, NPAS2-dependent transcriptional activity in a luciferase assay using NIH3T3 cells also increased with the pH of the culture medium. These results suggest that NPAS2 has a role as a pH and metabolite sensor in regulating circadian rhythms.

  20. NADPH-diaphorase expression in the Meibomian glands of rat palpebra in postnatal development

    Directory of Open Access Journals (Sweden)

    D. Kluchova

    2010-11-01

    Full Text Available In the current study, we aimed at investigating the presence of nitric oxide synthase (NOS positive nerve fibers in rat meibomian glands (MGs at various stages of development. There is good evidence to suggest that nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d is a surrogate for neuronal nitric oxide synthase (NOS. Sections of the central, upper eyelids of Wistar rats were processed histochemically for NADPH-d to investigate the presence and distribution of NOS-positive nerve fibers at the following time points: day 1 and weeks 1, 2 and 3 post partum, and in adult controls. At day 1, MG acini were lightly stained and located at a distance from the mucosal border. Vessels were accompanied by intensely stained NADPH-d positive nerve fibers. At the week 1 time point, both the vessels and the NADPH-d positive fibers were still present, but less numerous. MGs were now closer to the mucosa, so that the submucosa was thinner. The acini were mostly pale but occasionally darker. At week 3, there were fewer blood vessels in both the submucosa and within the septa. Darker acini were more common than lightly stained acini. NADPH-d positive dots were observed in the vicinity of the MGs. At the week 3 time point, MGs were adjacent to the mucosal border and stained more intensely than at earlier times; almost all acini were stained. The microscopic appearances were almost identical with those of adult palpebra. Submucosal and septal blood vessels and NADPH-d positive nerve fibers were less numerous. NADPH-d histochemical staining confirmed differences in the density of stained nerve fibers at different developmental stages. The greatest density of NADPH-d -positive nerve fibers occurred in 1-day-old rats whereas they were less numerous in adult rat eyelids. Nerves innervating MGs utilize nitric oxide (NO as a neurotransmitter mostly in early developmental stages and this need thereafter decreases and stabilizes at 3 weeks postnatally.

  1. Safflor yellow B suppresses angiotensin II-mediated human umbilical vein cell injury via regulation of Bcl-2/p22phox expression

    International Nuclear Information System (INIS)

    Wang, Chaoyun; He, Yanhao; Yang, Ming; Sun, Hongliu; Zhang, Shuping; Wang, Chunhua

    2013-01-01

    Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels of target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22 phox , increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22 phox . • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression

  2. Inhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, tempol

    International Nuclear Information System (INIS)

    Mitchell, J.B.; DeGraff, W.; Kaufman, D.; Krishna, M.C.; Samuni, A.; Finkelstein, E.; Ahn, M.S.; Hahn, S.M.; Gamson, J.; Russo, A.

    1991-01-01

    Stable nitroxide radicals have been previously shown to function as superoxide dismutase (SOD)2 mimics and to protect mammalian cells against superoxide and hydrogen peroxide-mediated oxidative stress. These unique characteristics suggested that nitroxides, such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), might protect mammalian cells against ionizing radiation. Treating Chinese hamster cells under aerobic conditions with 5, 10, 50, and 100 mM Tempol 10 min prior to X-rays resulted in radiation protection factors of 1.25, 1.30, 2.1, and 2.5, respectively. However, the reduced form of Tempol afforded no protection. Tempol treatment under hypoxic conditions did not provide radioprotection. Aerobic X-ray protection by Tempol could not be attributed to the induction of intracellular hypoxia, increase in intracellular glutathione, or induction of intracellular SOD mRNA. Tempol thus represents a new class of non-thiol-containing radiation protectors, which may be useful in elucidating the mechanism(s) of radiation-induced cellular damage and may have broad applications in protecting against oxidative stress

  3. Contribution of the NADH-oxidase (Nox) to the aerobic life of Lactobacillus sanfranciscensis DSM20451T.

    Science.gov (United States)

    Jänsch, André; Freiding, Simone; Behr, Jürgen; Vogel, Rudi F

    2011-02-01

    Lactobacillus sanfranciscensis is the key bacterium in traditional sourdough fermentation. The molecular background of its oxygen tolerance was investigated by comparison of wild type and NADH-oxidase (Nox) knock out mutants. The nox gene of L. sanfranciscensis DSM20451(T) coding for a NADH-oxidase (Nox) was inactivated by single crossover integration to yield strain L. sanfranciscensis DSM20451Δnox. By inactivation of the native NADH-oxidase gene, it was ensured that besides fructose, O(2) can react as an electron acceptor. In aerated cultures the mutant strain was only able to grow in MRS media supplemented with fructose as electron acceptor, whereas the wild type strain showed a fructose independent growth response. The use of oxygen as an external electron acceptor enables L. sanfranciscensis to shift from acetyl-phosphate into the acetate branch and gain an additionally ATP, while the reduced cofactors were regenerated by Nox-activity. In aerated cultures the wild type strain formed a fermentation ratio of lactate to acetate of 1.09 in MRS supplemented with fructose after 24 h of fermentation, while the mutant strain formed a fermentation ratio of 3.05. Additionally, L. sanfranciscensis showed manganese-dependent growth response in aerated cultures, the final OD and growth velocity was increased in media supplemented with manganese. The expression of two predicted Mn(2+)/Fe(2+) transporters MntH1 and MntH2 in L. sanfranciscensis DSM20451(T) was verified by amplification of a 318 bp fragment of MntH1 and a 239 bp fragment of MntH2 from cDNA library obtained from aerobically, exponentially growing cells of L. sanfranciscensis DSM20451(T) in MRS. Moreover, the mutant strain DSM20451Δnox was more sensitive to the superoxide generating agent paraquat and showed inhibition of growth on diamide-treated MRS-plates without fructose supplementation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency.

    Science.gov (United States)

    Guerriero, Réjean M; Patel, Archana A; Walsh, Brian; Baumer, Fiona M; Shah, Ankoor S; Peters, Jurriaan M; Rodan, Lance H; Agrawal, Pankaj B; Pearl, Phillip L; Takeoka, Masanori

    2017-11-01

    Pyridoxine is converted to its biologically active form pyridoxal-5-phosphate (P5P) by the enzyme pyridox(am)ine 5'-phosphate oxidase and serves as a cofactor in nearly 200 reactions in the central nervous system. Pyridox(am)ine 5'-phosphate oxidase deficiency leads to P5P dependent epilepsy, typically a neonatal- or infantile-onset epileptic encephalopathy treatable with P5P or in some cases, pyridoxine. Following identification of retinopathy in a patient with pyridox(am)ine 5'-phosphate oxidase deficiency that was reversible with P5P therapy, we describe the systemic manifestations of pyridox(am)ine 5'-phosphate oxidase deficiency. A series of six patients with homozygous mutations of PNPO, the gene coding pyridox(am)ine 5'-phosphate oxidase, were evaluated in our center over the course of two years for phenotyping of neurological and systemic manifestations. Five of six were born prematurely, three had anemia and failure to thrive, and two had elevated alkaline phosphatase. A movement disorder was observed in two children, and a reversible retinopathy was observed in the most severely affected infant. All patients had neonatal-onset epilepsy and were on a continuum of developmental delay to profound encephalopathy. Electroencephalographic features included background slowing and disorganization, absent sleep features, and multifocal and generalized epileptiform discharges. All the affected probands carried a homozygous PNPO mutation (c.674 G>T, c.686 G>A and c.352G>A). In addition to the well-described epileptic encephalopathy, pyridox(am)ine 5'-phosphate oxidase deficiency causes a range of neurological and systemic manifestations. A movement disorder, developmental delay, and encephalopathy, as well as retinopathy, anemia, and failure to thrive add to the broadening clinical spectrum of P5P dependent epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dynamic single-cell NAD(P)H measurement reveals oscillatory metabolism throughout the E. coli cell division cycle.

    Science.gov (United States)

    Zhang, Zheng; Milias-Argeitis, Andreas; Heinemann, Matthias

    2018-02-01

    Recent work has shown that metabolism between individual bacterial cells in an otherwise isogenetic population can be different. To investigate such heterogeneity, experimental methods to zoom into the metabolism of individual cells are required. To this end, the autofluoresence of the redox cofactors NADH and NADPH offers great potential for single-cell dynamic NAD(P)H measurements. However, NAD(P)H excitation requires UV light, which can cause cell damage. In this work, we developed a method for time-lapse NAD(P)H imaging in single E. coli cells. Our method combines a setup with reduced background emission, UV-enhanced microscopy equipment and optimized exposure settings, overall generating acceptable NAD(P)H signals from single cells, with minimal negative effect on cell growth. Through different experiments, in which we perturb E. coli's redox metabolism, we demonstrated that the acquired fluorescence signal indeed corresponds to NAD(P)H. Using this new method, for the first time, we report that intracellular NAD(P)H levels oscillate along the bacterial cell division cycle. The developed method for dynamic measurement of NAD(P)H in single bacterial cells will be an important tool to zoom into metabolism of individual cells.

  6. Putting together a plasma membrane NADH oxidase: a tale of three laboratories.

    Science.gov (United States)

    Löw, Hans; Crane, Frederick L; Morré, D James

    2012-11-01

    The observation that high cellular concentrations of NADH were associated with low adenylate cyclase activity led to a search for the mechanism of the effect. Since cyclase is in the plasma membrane, we considered the membrane might have a site for NADH action, and that NADH might be oxidized at that site. A test for NADH oxidase showed very low activity, which could be increased by adding growth factors. The plasma membrane oxidase was not inhibited by inhibitors of mitochondrial NADH oxidase such as cyanide, rotenone or antimycin. Stimulation of the plasma membrane oxidase by iso-proterenol or triiodothyronine was different from lack of stimulation in endoplasmic reticulum. After 25 years of research, three components of a trans membrane NADH oxidase have been discovered. Flavoprotein NADH coenzyme Q reductases (NADH cytochrome b reductase) on the inside, coenzyme Q in the middle, and a coenzyme Q oxidase on the outside as a terminal oxidase. The external oxidase segment is a copper protein with unique properties in timekeeping, protein disulfide isomerase and endogenous NADH oxidase activity, which affords a mechanism for control of cell growth by the overall NADH oxidase and the remarkable inhibition of oxidase activity and growth of cancer cells by a wide range of anti-tumor drugs. A second trans plasma membrane electron transport system has been found in voltage dependent anion channel (VDAC), which has NADH ferricyanide reductase activity. This activity must be considered in relation to ferricyanide stimulation of growth and increased VDAC antibodies in patients with autism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Flow- and acetylcholine-induced dilation in small arteries from rats with renovascular hypertension - effect of tempol treatment

    DEFF Research Database (Denmark)

    Christensen, Frank Holden; Stankevicius, Edgaras; Hansen, Thomas

    2007-01-01

    -treated animals, while only the relaxation was improved by the NO donor, S-nitroso-N-acetylpenicillamine (SNAP). In conclusion renovascular hypertension selectively inhibits flow-induced NO-mediated vasodilatation, while EDHF-type vasodilatation remains unaffected, suggesting that high blood pressure leads...... blood pressure and tempol treatment. Simultaneous measurements of NO-concentration and relaxation were performed in isolated coronary arteries from the same animals. As compared to vehicle-treated rats, both acetylcholine-induced relaxation and NO-concentration increased in arteries from tempol......-induced dilatation remained normal. Measured by dihydroethidium staining there was an increased amount of superoxide in arteries from vehicle-treated rats, but not from tempol-treated rats. Expression by immunoblotting of endothelial NO synthase and the NAD(P)H oxidase subunit p47phox remained unaffected by high...

  8. Superoxide radical formation, superoxide dismutase and glutathione reductase activity in the brain of irradiated rats

    International Nuclear Information System (INIS)

    Stanimirovic, D.; Ivanovic, L.; Simovic, M.; Cernak, I.; Savic, J.

    1989-01-01

    In the forebrain cortex, basal ganglia and hippocampus of irradiated rats (whole body, X-ray, 9 Gy), nitroblue-tetrazolium (NBT) reduction was measured as a probe of superoxide radical formation 1 hr, 6 hrs, 24 hrs and 72 hrs after irradiation. Increased superoxide radical formation was found in parallel with increase of superoxide dismutase (SOD) activity and marked decrease of glutathione reductase (GR) activity which is the most pronounced in basal ganglia. The results indicate that in the postradiation period disproportion among free radical production and capacity of brain antioxidative system occurs. This disbalance is more expressed in the brain regions known as selective vulnerable (basal ganglia, hippocampus). (author). 10 refs.; 2 tabs

  9. Amine oxidases as important agents of pathological processes of rhabdomyolysis in rats.

    Science.gov (United States)

    Gudkova, O O; Latyshko, N V; Shandrenko, S G

    2016-01-01

    In this study we have tested an idea on the important role of amine oxidases (semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase) as an additional source of oxidative/carbonyl stress under glycerol-induced rhabdomyolysis, since the enhanced formation of reactive oxygen species and reactive carbonyl species in a variety of tissues is linked to various diseases. In our experiments we used the sensitive fluorescent method devised for estimation of amine oxidases activity in the rat kidney and thymus as targeted organs under rhabdomyolysis. We have found in vivo the multiple rises in activity of semicarbazide-sensitive amine oxidase, diamine oxidase, polyamine oxidase (2-4.5 times) in the corresponding cell fractions, whole cells or their lysates at the 3-6th day after glycerol injection. Aberrant antioxidant activities depended on rhabdomyolysis stage and had organ specificity. Additional treatment of animals with metal chelator ‘Unithiol’ adjusted only the activity of antioxidant enzymes but not amine oxidases in both organs. Furthermore the in vitro experiment showed that Fenton reaction (hydrogen peroxide in the presence of iron) products alone had no effect on semicarbazide-sensitive amine oxidase activity in rat liver cell fraction whereas supplementation with methylglyoxal resulted in its significant 2.5-fold enhancement. Combined action of the both agents had additive effect on semicarbazide-sensitive amine oxidase activity. We can assume that biogenic amine and polyamine catabolism by amine oxidases is upregulated by oxidative and carbonyl stress factors directly under rhabdomyolysis progression, and the increase in catabolic products concentration contributes to tissue damage in glycerol-induced acute renal failure and apoptosis stimulation in thymus.

  10. Chemioxyexcitation (delta pO2/ROS)-dependent release of IL-1 beta, IL-6 and TNF-alpha: evidence of cytokines as oxygen-sensitive mediators in the alveolar epithelium.

    Science.gov (United States)

    Haddad, J J; Safieh-Garabedian, B; Saadé, N E; Kanaan, S A; Land, S C

    2001-02-07

    The signalling mechanisms in oxidative stress mediated by cytokines in the perinatal alveolar epithelium are not well known. In an in vitro model of fetal alveolar type II epithelial cells, we investigated the profile of cytokines in response to ascending Deltap O(2)regimen (oxyexcitation). The peak of TNF-alpha (4 h) preceded IL-1beta and IL-6 (6-9 h), indicating a positive feedback autocrine loop confirmed by exogenous rmTNF-alpha. Reactive oxygen species (ROS) induced a dose-dependent release of cytokines, an effect specifically obliterated by selective antioxidants of the hydroxyl radical (*OH) and superoxide anion (O(2)-). Actinomycin and cycloheximide blocked the induced production of cytokines, implicating transcriptional and translational control. Whilst the dismutating enzymes superoxide dismutase (SOD) and catalase were ineffective in reducing ROS-induced cytokines, MnP, a cell-permeating SOD mimetic, abrogated xanthine/xanthine oxidase-dependent cytokine release. Desferrioxamine mesylate, which inhibits the iron-catalysed generation of *OH via the Fenton reaction, exhibited a mild effect on the release of cytokines. Dynamic variation in alveolar p O(2)constitutes a potential signalling mechanism within the perinatal lung allowing upregulation of cytokines in an ROS-dependent manner. Copyright 2001 Academic Press.

  11. Nox-2-mediated phenotype loss of hippocampal parvalbumin interneurons might contribute to postoperative cognitive decline in aging mice

    Directory of Open Access Journals (Sweden)

    lili qiu

    2016-10-01

    Full Text Available Postoperative cognitive decline (POCD is a common complication following anesthesia and surgery, especially in elderly patients; however, the precise mechanisms of POCD remain unclear. Here, we investigated whether nicotinamide adenine dinucleotide phosphate (NADPH oxidase mediated-abnormalities in parvalbumin (PV interneurons play an important role in the pathophysiology of POCD. The animal model was established using isoflurane anesthesia and exploratory laparotomy in sixteen-month-old male C57BL/6 mice. For interventional experiments, mice were chronically treated with the NADPH oxidase inhibitor apocynin (APO. Open field and fear conditioning behavioral tests were performed on day 6 and 7 post-surgery, respectively. In a separate experiment, brain tissue was harvested and subjected to biochemical analysis. Primary hippocampal neurons challenged with lipopolysaccharide in vitro were used to investigate the mechanisms underlying the oxidative stress-induced abnormalities in PV interneurons. Our results showed that anesthesia and surgery induced significant hippocampus-dependent memory impairment, which was accompanied by PV interneuron phenotype loss and increased expression of interleukin-1β, markers of oxidative stress, and NADPH oxidase 2 (Nox2 in the hippocampus. In addition, lipopolysaccharide exposure increased Nox2 level and decreased the expression of PV and the number of excitatory synapses onto PV interneurons in the primary hippocampal neurons. Notably, treatment with APO reversed these abnormalities. Our study suggests that Nox2-derived ROS production triggers, at least in part, anesthesia- and surgery-induced hippocampal PV interneuron phenotype loss and consequent cognitive impairment in aging mice.

  12. Intermittent Hypoxia Affects the Spontaneous Differentiation In Vitro of Human Neutrophils into Long-Lived Giant Phagocytes

    Directory of Open Access Journals (Sweden)

    Larissa Dyugovskaya

    2016-01-01

    Full Text Available Previously we identified, for the first time, a new small-size subset of neutrophil-derived giant phagocytes (Gϕ which spontaneously develop in vitro without additional growth factors or cytokines. Gϕ are CD66b+/CD63+/MPO+/LC3B+ and are characterized by extended lifespan, large phagolysosomes, active phagocytosis, and reactive oxygen species (ROS production, and autophagy largely controls their formation. Hypoxia, and particularly hypoxia/reoxygenation, is a prominent feature of many pathological processes. Herein we investigated Gϕ formation by applying various hypoxic conditions. Chronic intermittent hypoxia (IH (29 cycles/day for 5 days completely abolished Gϕ formation, while acute IH had dose-dependent effects. Exposure to 24 h (56 IH cycles decreased their size, yield, phagocytic ability, autophagy, mitophagy, and gp91-phox/p22-phox expression, whereas under 24 h sustained hypoxia (SH the size and expression of LC3B and gp91-phox/p22-phox resembled Gϕ formed in normoxia. Diphenyl iodide (DPI, a NADPH oxidase inhibitor, as well as the PI3K/Akt and autophagy inhibitor LY294002 abolished Gϕ formation at all oxygen conditions. However, the potent antioxidant, N-acetylcysteine (NAC abrogated the effects of IH by inducing large CD66b+/LC3B+ Gϕ and increased both NADPH oxidase expression and phagocytosis. These findings suggest that NADPH oxidase, autophagy, and the PI3K/Akt pathway are involved in Gϕ development.

  13. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    Science.gov (United States)

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Evolution of NADPH-cytochrome P450 oxidoreductases (POR) in Apiales - POR 1 is missing

    DEFF Research Database (Denmark)

    Andersen, Trine Bundgaard; Hansen, Niels Bjørn; Laursen, Tomas

    2016-01-01

    The NADPH-dependent cytochrome P450 oxidoreductase (POR) is the obligate electron donor to eukaryotic microsomal cytochromes P450 enzymes. The number of PORs within plant species is limited to one to four isoforms, with the most common being two PORs per plant. These enzymes provide electrons to ...... (available from the SRA at NCBI). All three genes were shown to be functional upon reconstitution into nanodiscs, confirming that none of the isoforms are pseudogenes....

  15. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    International Nuclear Information System (INIS)

    Wang, Xianwei; Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L.

    2012-01-01

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22 phox , p47 phox , p67 phox , NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H 2 O 2 . Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast growth and collagen

  16. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianwei, E-mail: XWang2@UAMS.edu; Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L., E-mail: MehtaJL@UAMS.edu

    2012-03-15

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac

  17. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.

    Science.gov (United States)

    Galougahi, Keyvan Karimi; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A S; Hamilton, Elisha J; Rasmussen, Helge H; Figtree, Gemma A

    2013-06-15

    The widely reported stimulation of the cardiac Na(+)-K(+) pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na(+) levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits and reduced myocardial O2(•-)-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na(+)-K(+) pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na(+) in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure.

  18. Rac-1 as a new therapeutic target in cerebro- and cardio-vascular diseases.

    Science.gov (United States)

    Carrizzo, Albino; Forte, Maurizio; Lembo, Maria; Formisano, Luigi; Puca, Annibale A; Vecchione, Carmine

    2014-01-01

    Growing evidence indicates that overproduction of reactive oxygen species (ROS) plays a prominent role in the development of cardio- and cerebro-vascular diseases. Among the mechanisms identified to produce oxidative stress in the vascular wall, those mediated by membrane-bound NAD(P)H oxidases represent a major one. NAD(P)H oxidases are a family of enzymes that generate ROS both in phagocytic and non-phagocytic cell types. Vascular NAD(P)H oxidase contains the membrane-bound subunits Nox1, Nox2 (gp91phox), Nox4 and p22phox, the catalytic site of the oxidase, and the cytosolic components p47phox and p67phox. Rac1 (Ras-related C3 botulinum toxin substrate1) is a small GTPase essential for the assembly and activation of NADPH oxidase. Several molecular and cellular studies have reported the involvement of Rac1 in different cardiovascular pathologies, such as vascular smooth muscle proliferation, cardiomyocyte hypertrophy, endothelial cell shape change, atherosclerosis and endothelial dysfunction in hypertension. In addition, increased activation of NADPH oxidase by Rac1 has been reported in animals and humans after myocardial infarction and heart failure. The Rac1/NADPH pathway has also been found involved in different pathologies of the cerebral district, such as ischemic stroke, cognitive impairment, subaracnoid hemorrhage and neuronal oxidative damage typical of several neurodegenerative disorders. In addition, thrombotic events are an important step in the onset of cardio- and cerebrovascular diseases. Rac1 has been found involved also in platelet activation, inducing actin polymerization and lamellipodia formation, which are necessary steps for platelet aggregation. Taken together, the evidence candidates Rac1 as a new pharmacological target of cardiovascular and cerebrovascular diseases. Although the involvement of Rac1 in the beneficial pleiotropic effects of drugs such as statins is well known, and the onset of numerous side effects has raised concern for the

  19. Young and Especially Senescent Endothelial Microvesicles Produce NADPH: The Fuel for Their Antioxidant Machinery

    Directory of Open Access Journals (Sweden)

    Guillermo Bodega

    2018-01-01

    Full Text Available In a previous study, we demonstrated that endothelial microvesicles (eMVs have a well-developed enzymatic team involved in reactive oxygen species detoxification. In the present paper, we demonstrate that eMVs can synthesize the reducing power (NAD(PH that nourishes this enzymatic team, especially those eMVs derived from senescent human umbilical vein endothelial cells. Moreover, we have demonstrated that the molecules that nourish the enzymatic machinery involved in NAD(PH synthesis are blood plasma metabolites: lactate, pyruvate, glucose, glycerol, and branched-chain amino acids. Drastic biochemical changes are observed in senescent eMVs to optimize the synthesis of reducing power. Mitochondrial activity is diminished and the glycolytic pathway is modified to increase the activity of the pentose phosphate pathway. Different dehydrogenases involved in NADPH synthesis are also increased. Functional experiments have demonstrated that eMVs can synthesize NADPH. In addition, the existence of NADPH in eMVs was confirmed by mass spectrometry. Multiphoton confocal microscopy images corroborate the synthesis of reducing power in eMVs. In conclusion, our present and previous results demonstrate that eMVs can act as autonomous reactive oxygen species scavengers: they use blood metabolites to synthesize the NADPH that fuels their antioxidant machinery. Moreover, senescent eMVs have a stronger reactive oxygen species scavenging capacity than young eMVs.

  20. Metabolic regulation of manganese superoxide dismutase expression via essential amino acid deprivation.

    Science.gov (United States)

    Aiken, Kimberly J; Bickford, Justin S; Kilberg, Michael S; Nick, Harry S

    2008-04-18

    Organisms respond to available nutrient levels by rapidly adjusting metabolic flux, in part through changes in gene expression. A consequence of adaptations in metabolic rate is the production of mitochondria-derived reactive oxygen species. Therefore, we hypothesized that nutrient sensing could regulate the synthesis of the primary defense of the cell against superoxide radicals, manganese superoxide dismutase. Our data establish a novel nutrient-sensing pathway for manganese superoxide dismutase expression mediated through essential amino acid depletion concurrent with an increase in cellular viability. Most relevantly, our results are divergent from current mechanisms governing amino acid-dependent gene regulation. This pathway requires the presence of glutamine, signaling via the tricarboxylic acid cycle/electron transport chain, an intact mitochondrial membrane potential, and the activity of both the MEK/ERK and mammalian target of rapamycin kinases. Our results provide evidence for convergence of metabolic cues with nutrient control of antioxidant gene regulation, revealing a potential signaling strategy that impacts free radical-mediated mutations with implications in cancer and aging.

  1. Protein kinase-dependent oxidative regulation of the cardiac Na+–K+ pump: evidence from in vivo and in vitro modulation of cell signalling

    Science.gov (United States)

    Galougahi, Keyvan Karimi; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A S; Hamilton, Elisha J; Rasmussen, Helge H; Figtree, Gemma A

    2013-01-01

    The widely reported stimulation of the cardiac Na+–K+ pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na+ levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47phox and membranous p22phox NADPH oxidase subunits and reduced myocardial O2•−-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na+–K+ pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na+ in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure. PMID:23587884

  2. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1

    International Nuclear Information System (INIS)

    Bolloskis, Michael P.; Carvalho, Fabiana P.; Loo, George

    2016-01-01

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases. - Highlights: • PEITC increased HO-1 expression in HCT116 cells. • PEITC-induced HO-1 upregulation was impaired in iron-depleted HCT116 cells. • Impairment of PEITC-induced HO-1 upregulation was

  3. Neurodegenerative evidence in mice brains with cecal ligation and puncture-induced sepsis: preventive effect of the free radical scavenger edaravone.

    Directory of Open Access Journals (Sweden)

    Hiroki Yokoo

    Full Text Available Sepsis is a major clinical challenge and septic encephalopathy is its nasty complication. The pathogenesis and underlying mechanisms of septic encephalopathy are not well understood. This study sought to fully characterize sepsis-associated biochemical and histopathological changes in brains of mice after cecal ligation and puncture, regarded as a highly clinically relevant animal model of polymicrobial sepsis. Real-time PCR analysis showed that gene expression levels of proinflammatory cytokines, including tumor necrosis factor-α and interleukin-1β, were significantly up-regulated in brain tissues from septic mice, but to a much lesser extent when compared with those in peripheral tissues such as lungs. Blood-brain barrier (BBB permeability was significantly increased in septic mice, as determined by the measurement of sodium fluorescein and Evans blue content. Sepsis resulted in increases in NADPH oxidase activity and expression of p47(phox and p67(phox and up-regulation of inducible nitric oxide (NO synthase in brains, indicating that superoxide, produced by NADPH oxidase, reacts with NO to form peroxynitrite, that maybe lead to the loss of BBB integrity. Light and electron microscopic examination of septic mouse brain showed serious neuronal degeneration, as indicated by hyperchromatic, shrunken, pyknotic, and electron-dense neurons. These histopathological changes were prevented by treatment with the free radical scavenger edaravone. Together, these results suggest that sepsis can lead to rapid neurodegenerative changes in brains via free radical species production and possibly subsequent injury to the BBB. We may also provide a potentially useful therapeutic tool for treating septic encephalopathy.

  4. Minocycline Rescues from Zinc-Induced Nigrostriatal Dopaminergic Neurodegeneration: Biochemical and Molecular Interventions.

    Science.gov (United States)

    Kumar, Vinod; Singh, Brajesh Kumar; Chauhan, Amit Kumar; Singh, Deepali; Patel, Devendra Kumar; Singh, Chetna

    2016-07-01

    Accumulation of zinc (Zn) in dopaminergic neurons is implicated in Parkinson's disease (PD), and microglial activation plays a critical role in toxin-induced Parkinsonism. Oxidative stress is accused in Zn-induced dopaminergic neurodegeneration; however, its connection with microglial activation is still not known. This study was undertaken to elucidate the role and underlying mechanism of microglial activation in Zn-induced nigrostriatal dopaminergic neurodegeneration. Male Wistar rats were treated intraperitoneally with/without zinc sulphate (20 mg/kg) in the presence/absence of minocycline (30 mg/kg), a microglial activation inhibitor, for 2-12 weeks. While neurobehavioral and biochemical indexes of PD and number of dopaminergic neurons were reduced, the number of microglial cells was increased in the substantia nigra of the Zn-exposed animals. Similarly, Zn elevated lipid peroxidation (LPO) and activities of superoxide dismutase (SOD) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; however, catalase activity was reduced. Besides, Zn increased an association of NADPH oxidase subunit p67(phox) with membrane, cytochrome c release from the mitochondria and cleavage of pro-caspase 3. Zn attenuated the expression of tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT-2) while augmented the expression of dopamine transporter (DAT) and heme oxygenase-1 (HO-1). Minocycline alleviated Zn-induced behavioural impairments, loss of TH-positive neurons, activated microglial cells and biochemical indexes and modulated the expression of studied genes/proteins towards normalcy. The results demonstrate that minocycline reduces the number of activated microglial cells and oxidative stress, which rescue from Zn-induced changes in the expression of monoamine transporter and nigrostriatal dopaminergic neurodegeneration.

  5. Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Sanjana Dayal

    Full Text Available There is an emerging consensus that hyperhomocysteinemia is an independent risk factor for cerebral vascular disease and that homocysteine-lowering therapy protects from ischemic stroke. However, the mechanisms by which hyperhomocysteinemia produces abnormalities of cerebral vascular structure and function remain largely undefined. Our objective in this study was to define the mechanistic role of superoxide in hyperhomocysteinemia-induced cerebral vascular dysfunction and hypertrophy. Unlike previous studies, our experimental design included a genetic approach to alter superoxide levels by using superoxide dismutase 1 (SOD1-deficient mice fed a high methionine/low folate diet to produce hyperhomocysteinemia. In wild-type mice, the hyperhomocysteinemic diet caused elevated superoxide levels and impaired responses to endothelium-dependent vasodilators in cerebral arterioles, and SOD1 deficiency compounded the severity of these effects. The cross-sectional area of the pial arteriolar wall was markedly increased in mice with SOD1 deficiency, and the hyperhomocysteinemic diet sensitized SOD1-deficient mice to this hypertrophic effect. Analysis of individual components of the vascular wall demonstrated a significant increase in the content of smooth muscle and elastin. We conclude that superoxide is a key driver of both cerebral vascular hypertrophy and vasomotor dysfunction in this model of dietary hyperhomocysteinemia. These findings provide insight into the mechanisms by which hyperhomocysteinemia promotes cerebral vascular disease and ischemic stroke.

  6. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis.

    Science.gov (United States)

    Parhad, Swapnil S; Jaiswal, Deepa; Ray, Krishanu; Mazumdar, Shyamalava

    2016-03-25

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in l-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. NADPH- Diaphorase positive cardiac neurons in the atria of mice. A morphoquantitative study

    Directory of Open Access Journals (Sweden)

    Castelucci Patrícia

    2006-02-01

    Full Text Available Abstract Background The present study was conducted to determine the location, the morphology and distribution of NADPH-diaphorase positive neurons in the cardiac nerve plexus of the atria of mice (ASn. This plexus lies over the muscular layer of the atria, dorsal to the muscle itself, in the connective tissue of the subepicardium. NADPH- diaphorase staining was performed on whole-mount preparations of the atria mice. For descriptive purposes, all data are presented as means ± SEM. Results The majority of the NADPH-diaphorase positive neurons were observed in the ganglia of the plexus. A few single neurons were also observed. The number of NADPH-d positive neurons was 57 ± 4 (ranging from 39 to 79 neurons. The ganglion neurons were located in 3 distinct groups: (1 in the region situated cranial to the pulmonary veins, (2 caudally to the pulmonary veins, and (3 in the atrial groove. The largest group of neurons was located cranially to the pulmonary veins (66.7%. Three morphological types of NADPH-diaphorase neurons could be distinguished on the basis of their shape: unipolar cells, bipolar cells and cells with three processes (multipolar cells. The unipolar neurons predominated (78.9%, whereas the multipolar were encountered less frequently (5,3%. The sizes (area of maximal cell profile of the neurons ranged from about 90 μm2to about 220 μm2. Morphometrically, the three types of neurons were similar and there were no significant differences in their sizes. The total number of cardiac neurons (obtained by staining the neurons with NADH-diaphorase method was 530 ± 23. Therefore, the NADPH-diaphorase positive neurons of the heart represent 10% of the number of cardiac neurons stained by NADH. Conclusion The obtained data have shown that the NADPH-d positive neurons in the cardiac plexus of the atria of mice are morphologically different, and therefore, it is possible that the function of the neurons may also be different.

  8. Mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli: pH and deuterium isotope effects with NADPH as the variable substrate

    International Nuclear Information System (INIS)

    Morrison, J.F.; Stone, S.R.

    1988-01-01

    The variations with pH of the kinetic parameters and primary deuterium isotope effects for the reaction of NADPH with dihydrofolate reductase from Escherichia coli have been determined. The aims of the investigations were to elucidate the chemical mechanism of the reaction and to obtain information about the location of the rate-limiting steps. The V and V/K/sub NADPH/ profiles indicate that a single ionizing group at the active center of the enzyme must be protonated for catalysis, whereas the K/sub i/ profiles show that the binding of NADPH to the free enzyme and of ATP-ribose to the enzyme-dihydrofolate complex is pH independent. From the results of deuterium isotope effects on V/K/sub NADPH/, it is concluded that NADPH behaves as a sticky substrate. It is this stickiness that raises artificially the intrinsic pK value of 6.4 for the Asp-27 residue of the enzyme-dihydrofolate complex to an observed value of 8.9. Thus, the binary enzyme complex is largely protonated at neutral pH. The elevation of the intrinsic pK value of 6.4 for the ternary enzyme-NADPH-dihydrofolate complex to 8.5 is not due to the kinetic effects of substrates. Rather, it is the consequence of the lower, pH-independent rate of product release and the faster pH-dependent catalytic step. The data for deuterium isotope and deuterium solvent isotope effects are consistent with the postulate that, for the reduction of dihydrofolate to tetrahydrofolate, protonation precedes hydride transfer. A scheme is proposed for the indirect transfer of a proton from the enzyme to dihydrofolate

  9. Advanced glycation end products delay corneal epithelial wound healing through reactive oxygen species generation.

    Science.gov (United States)

    Shi, Long; Chen, Hongmei; Yu, Xiaoming; Wu, Xinyi

    2013-11-01

    Delayed healing of corneal epithelial wounds is a serious complication in diabetes. Advanced glycation end products (AGEs) are intimately associated with the diabetic complications and are deleterious to the wound healing process. However, the effect of AGEs on corneal epithelial wound healing has not yet been evaluated. In the present study, we investigated the effect of AGE-modified bovine serum albumin (BSA) on corneal epithelial wound healing and its underlying mechanisms. Our data showed that AGE-BSA significantly increased the generation of intracellular ROS in telomerase-immortalized human corneal epithelial cells. However, the generation of intracellular ROS was completely inhibited by antioxidant N-acetylcysteine (NAC), anti-receptor of AGEs (RAGE) antibodies, or the inhibitor of NADPH oxidase. Moreover, AGE-BSA increased NADPH oxidase activity and protein expression of NADPH oxidase subunits, p22phox and Nox4, but anti-RAGE antibodies eliminated these effects. Furthermore, prevention of intracellular ROS generation using NAC or anti-RAGE antibodies rescued AGE-BSA-delayed epithelial wound healing in porcine corneal organ culture. In conclusion, our results demonstrated that AGE-BSA impaired corneal epithelial wound healing ex vivo. AGE-BSA increased intracellular ROS generation through NADPH oxidase activation, which accounted for the delayed corneal epithelial wound healing. These results may provide better insights for understanding the mechanism of delayed healing of corneal epithelial wounds in diabetes.

  10. NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage.

    Science.gov (United States)

    Casas, Ana I; Geuss, Eva; Kleikers, Pamela W M; Mencl, Stine; Herrmann, Alexander M; Buendia, Izaskun; Egea, Javier; Meuth, Sven G; Lopez, Manuela G; Kleinschnitz, Christoph; Schmidt, Harald H H W

    2017-11-14

    Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke. Copyright © 2017 the Author(s). Published by PNAS.

  11. SERPINA3K plays antioxidant roles in cultured pterygial epithelial cells through regulating ROS system.

    Directory of Open Access Journals (Sweden)

    Chengpeng Zhu

    Full Text Available We recently demonstrated that SERPINA3K, a serine proteinase inhibitor, has antioxidant activity in the cornea. Here we investigated the antioxidant effects of SERPINA3K on the pterygial, which is partially caused by oxidative stress in pathogenesis. The head part of primary pterygial tissue was dissected and then cultured in keratinocyte serum-free defined medium (KSFM. The cultured pterygial epithelial cells (PECs were treated with SERPINA3K. The cell proliferation and migration of PECs were measured and analyzed. Western blot and quantitative real-time polymerase chain reaction (PCR assay were performed. It showed that SERPINA3K significantly suppressed the cell proliferation of PECs in a concentration-dependent manner, compared with cultured human conjunctival epithelial cells. SERPINA3K also inhibited the cell migration of PECs. Towards its underlying mechanism, SERPINA3K had antioxidant activities on the PECs by significantly inhibiting NADPH oxidase 4 (NOX4, which is an important enzyme of ROS generation, and by elevating the levels of key antioxidant factors of ROS: such as NAD(PH dehydrogenase (quinone 1 (NQO1, NF-E2-related factor-2 (NRF2 and superoxide dismutases (SOD2. Meanwhile, SERPINA3K down-regulated the key effectors of Wnt signaling pathway: β-catenin, nonphospho-β-catenin, and low-density lipoprotein receptor-related protein 6 (LRP6. We provided novel evidence that SERPINA3K had inhibitory effects on pterygium and SERPINA3K played antioxidant role via regulating the ROS system and antioxidants.

  12. [The distribution of NADPH-diaphorase and neuronal no synthase in rat medulla oblongata nuclei].

    Science.gov (United States)

    Chertok, V M; Kotsuba, A E

    2013-01-01

    The distribution of nitroxide ergic neurons in the medulla oblongata nuclei in Wistar rats (n = 8) was studied histochemically (NADPH-diaphorase) and using immunohistochemistry with an antiserum against neuronal form of nitric oxide synthase (nNOS). NADPH-diaphorase activity was found in large and small neurons of the sensory, autonomic and motor nuclei. The latter were especially rich in the cells demonstrating the activity of the enzyme. Unlike NADPH-diaphorase, nNOS in the corresponding nuclei was always detected in the fewer number of neurons, predominantly of small sizes. The sensory nuclei (nucleus of solitary tract, reticular parvocellular and lateral nuclei, spinal nucleus of the trigeminal nerve) contained 1.5-3 times more nNOS neurons than in motor nuclei. In some nuclei (nucleus ambiguus, hypoglossal nerve nucleus), containing numerous NADPH-diaphorase-positive neurons, immunoreactive cells were particularly rare.

  13. Glucose oxidase variants with improved properities

    OpenAIRE

    Fischer, Rainer; Ostafe, Raluca; Prodanovic, Radivoje

    2014-01-01

    Source: WO14173822A3 [EN] The technology provided herein relates to novel variants of microbial glucose oxidase with improved properties, more specifically to polypeptides having glucose oxidase activity as their major enzymatic activity; to nucleic acid molecules encoding said glucose oxidases; vectors and host cells containing the nucleic acids and methods for producing the glucose oxidase; compositions comprising said glucose oxidase; methods for the preparation and production of such enzy...

  14. Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles.

    Directory of Open Access Journals (Sweden)

    Jolanta Floryszak-Wieczorek

    Full Text Available Our research provides new insights into how the low and steady-state levels of nitric oxide (NO and reactive oxygen species (ROS in potato leaves are altered after the challenge with the hemibiotroph Phytophthora infestans or the necrotroph Botrytis cinerea, with the subsequent rapid and invader-dependent modification of defense responses with opposite effects. Mainly in the avirulent (avr P. infestans-potato system, NO well balanced with the superoxide level was tuned with a battery of SA-dependent defense genes, leading to the establishment of the hypersensitive response (HR successfully arresting the pathogen. Relatively high levels of S-nitrosoglutathione and S-nitrosothiols concentrated in the main vein of potato leaves indicated the mobile function of these compounds as a reservoir of NO bioactivity. In contrast, low-level production of NO and ROS during virulent (vr P. infestans-potato interactions might be crucial in the delayed up-regulation of PR-1 and PR-3 genes and compromised resistance to the hemibiotrophic pathogen. In turn, B. cinerea triggered huge NO overproduction and governed inhibition of superoxide production by blunting NADPH oxidase. Nevertheless, a relatively high level of H2O2 was found owing to the germin-like activity in cooperation with NO-mediated HR-like cell death in potato genotypes favorable to the necrotrophic pathogen. Moreover, B. cinerea not only provoked cell death, but also modulated the host redox milieu by boosting protein nitration, which attenuated SA production but not SA-dependent defense gene expression. Finally, based on obtained data the organismal cost of having machinery for HR in plant resistance to biotrophs is also discussed, while emphasizing new efforts to identify other components of the NO/ROS cell death pathway and improve plant protection against pathogens of different lifestyles.

  15. Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90-231 Neurotoxic Effects in Cerebellar Granule Neurons.

    Science.gov (United States)

    Thellung, Stefano; Gatta, Elena; Pellistri, Francesca; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Robello, Mauro; Florio, Tullio

    2017-10-01

    Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90-231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrP Sc ). PrP90-231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca ++ ] i increase. Indeed, while in "pure" cerebellar granule neuron cultures, PrP90-231 causes a delayed intracellular Ca ++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca ++ ] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca ++ ] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca ++ ] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE 2 release from glial cells. Thus, Ca ++ homeostasis alteration, directly induced by PrP90-231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90-231 neurotoxicity, whereas NMDA blockade by D(-)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90-231 neurotoxicity. These data indicate that amyloidogenic peptides

  16. Lysyl Oxidase and the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Tong-Hong Wang

    2016-12-01

    Full Text Available The lysyl oxidase (LOX family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM. Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.

  17. Activation of neuronal nitric oxide synthase in cerebellum of chronic hepatic encephalopathy rats is associated with up-regulation of NADPH-producing pathway.

    Science.gov (United States)

    Singh, Santosh; Trigun, Surendra K

    2010-09-01

    Cerebellum-associated functions get affected during mild hepatic encephalopathy (MHE) in patients with chronic liver failure (CLF). Involvement of nitrosative and antioxidant factors in the pathogenesis of chronic hepatic encephalopathy is an evolving concept and needs to be defined in a true CLF animal model. This article describes profiles of NADPH-dependent neuronal nitric oxide synthase (nNOS) and those of glutathione peroxidase and glutathione reductase (GR) vis-a-vis regulation of NADPH-producing pathway in the cerebellum of CLF rats induced by administration of thioacetamide (100 mg kg⁻¹ b.w., i.p.) up to 10 days and confirming MHE on Morris water maze tests. Significant increases in the expression of nNOS protein and nitric oxide (NOx) level coincided with a similar increment in NADPH-diaphorase activity in the cerebellum of CLF rats. Glutathione peroxidase and GR utilize NADPH to regenerate reduced glutathione (GSH) in the cells. Both these enzymes and GSH level were found to be static and thus suggested efficient turnover of GSH in the cerebellum of MHE rats. Relative levels of glucose-6-phosphate dehydrogenase (G6PD) vs. phosphofructokinase 2 (PFK2) determine the rate of pentose phosphate pathway (PPP) responsible to synthesize NADPH. The cerebellum of CLF rats showed overactivation of G6PD with a significant decline in the expression of PFK2 and thus suggested activation of PPP in the cerebellum during MHE. It is concluded that concordant activations of PPP and nNOS in cerebellum of MHE rats could be associated with the implication of NOx in the pathogenesis of MHE.

  18. Endogenous mechanisms of reactive oxygen species (ROS generation

    Directory of Open Access Journals (Sweden)

    Agata Sarniak

    2016-11-01

    Full Text Available The main cellular source of reactive oxygen species (ROS is mitochondrial respiratory chain and active NADPH responsible for “respiratory burst” of phagocytes. Whatsmore ROS are produced in endoplasmic reticulum, peroxisomes, with the participation of xanthine and endothelial oxidase and during autoxidation process of small molecules. Mitochondrial respiratory chain is the main cellular source of ROS. It is considered that in aerobic organisms ROS are mainly formed during normal oxygen metabolism, as byproducts of oxidative phosphorylation, during the synthesis of ATP. The intermembranous phagocyte enzyme – activated NADPH oxidase, responsible for the “respiratory burst” of phagocytes, which is another source of ROS, plays an important role in defense of organism against infections.The aim of this article is to resume actuall knowledge about structure and function of the mitochondrial electron transport chain in which ROS are the byproducts and about NADPH oxidase as well as the function of each of its components in the “respiratory burst” of phagocytes.

  19. The Study of NADPH-Dependent Flavoenzyme-Catalyzed Reduction of Benzo[1,2-c]1,2,5-oxadiazole N-Oxides (Benzofuroxans

    Directory of Open Access Journals (Sweden)

    Jonas Šarlauskas

    2014-12-01

    Full Text Available The enzymatic reactivity of a series of benzo[1,2-c]1,2,5-oxadiazole N-oxides (benzofuroxans; BFXs towards mammalian single-electron transferring NADPH:cytochrome P-450 reductase (P-450R and two-electron (hydride transferring NAD(PH:quinone oxidoreductase (NQO1 was examined in this work. Since the =N+ (→OO− moiety of furoxan fragments of BFXs bears some similarity to the aromatic nitro-group, the reactivity of BFXs was compared to that of nitro-aromatic compounds (NACs whose reduction mechanisms by these and other related flavoenzymes have been extensively investigated. The reduction of BFXs by both P-450R and NQO1 was accompanied by O2 uptake, which was much lower than the NADPH oxidation rate; except for annelated BFXs, whose reduction was followed by the production of peroxide. In order to analyze the possible quantitative structure-activity relationships (QSARs of the enzymatic reactivity of the compounds, their electron-accepting potency and other reactivity indices were assessed by quantum mechanical methods. In P-450R-catalyzed reactions, both BFXs and NACs showed the same reactivity dependence on their electron-accepting potency which might be consistent with an “outer sphere” electron transfer mechanism. In NQO1-catalyzed two-electron (hydride transferring reactions, BFXs acted as more efficient substrates than NACs, and the reduction efficacy of BFXs by NQO1 was in general higher than by single-electron transferring P-450R. In NQO1-catalyzed reactions, QSARs obtained showed that the reduction efficacy of BFXs, as well as that of NACs, was determined by their electron-accepting potency and could be influenced by their binding mode in the active center of NQO1 and by their global softness as their electronic characteristic. The reductive conversion of benzofuroxan by both flavoenzymes yielded the same reduction product of benzofuroxan, 2,3-diaminophenazine, with the formation of o-benzoquinone dioxime as a putative primary

  20. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c

    Directory of Open Access Journals (Sweden)

    Alejandro K. Samhan-Arias

    2018-05-01

    Full Text Available In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b5 reductase was measured. Complex formation between both proteins suggests that cytochrome b5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death.