WorldWideScience

Sample records for nad nami ne

  1. NAMI

    Science.gov (United States)

    ... South Carolina South Dakota Tennessee Texas Utah Vermont Virgin Islands Virginia Washington West Virginia Wisconsin Wyoming CALL ... Connection NAMI Ending the Silence NAMI Family Support Group NAMI Family-to-Family NAMI Homefront NAMI In ...

  2. "Me kohal on sinine taevas ..." = "Nebo sineje nad nami ..." : [luuletused] / Anne Lasikov ; tlk. Gennadi Krasnikov

    Index Scriptorium Estoniae

    Lasikov, Anne

    2003-01-01

    Sisu: "Me kohal on sinine taevas ..." = "Nebo sinee nad nami ..." ; "Siin valsirütme keerutasid jalad..." = "Kogda-to ritmõ valsa zdes kruzhili nogi ..." ; Sügisetuju = Osenneje nastroenije ; Ma tahan tagasi ; Kevad ; Suve algus ; Ood Narva-Jõesuule ; "V golovu lezjot vsjakaja drjan..." ; "Kogda vsbessilas avtorutshka..." ; "Ja ukrala tvoi vzgljad..." ; Zatshem mne radost tehh notshei? ; Vzgljad ; Tshernushka o sudbe ; "Zatshem võ, tshaiki, tak kritshite... " ; Nasledstvo ; Ja skisla.

  3. Collisional redistribution of the Na-D lines in a Ne, Xe filled vapour cell and depolarization in a flame

    International Nuclear Information System (INIS)

    Nieuwesteeg, K.J.B.M.

    1986-01-01

    1. Measurements of collisionally perturbed, 'complete' spectral profiles, i.e. core plus line wings of the Na-D lines, at the highest possible temperature in a fluorescence cell are reported. Both the shape of the profiles obtained in these experiments and the temperature dependence give information about the internuclear forces. Neon and xenon are chosen as perturbing atoms in order to extend and test potential shapes that have emerged from earlier beam experiments. 2. Possible ways are discussed of accurately calculating the cross sections of all elastic and inelastic processes in a Na- noble-gas system for any likely shape of the potentials involved. The main purpose of this discussion is to test these potentials by comparing the calculated cross sections with experimental data. Also a detailed comparison is made of the measured far-wing profile and the quasi-static profile calculated using these potentials. 3. In order to assess the validity of the approximations made in the theoretical model that was used for calculating the fluorescence-excitation profiles, the predictions of this model are compared with measurements of the polarization and the intensity ratio of the collision-induced Na-D fluorescence and Rayleigh scattering in an N 2 -diluted flame at 1 atm pressure. Using the Utrecht High-resolution Fourier Interferometer in the visible range, the Rayleigh peak and the collision-induced fluorescence were separated for the first time at laser detunings within the absorption line width. (Auth.)

  4. NAD+ in Aging

    DEFF Research Database (Denmark)

    Fang, Evandro F.; Lautrup, Sofie; Hou, Yujun

    2017-01-01

    The coenzyme NAD+ is critical in cellular bioenergetics and adaptive stress responses. Its depletion has emerged as a fundamental feature of aging that may predispose to a wide range of chronic diseases. Maintenance of NAD+ levels is important for cells with high energy demands and for proficient...... neuronal function. NAD+ depletion is detected in major neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, cardiovascular disease and muscle atrophy. Emerging evidence suggests that NAD+ decrements occur in various tissues during aging, and that physiological and pharmacological...... interventions bolstering cellular NAD+ levels might retard aspects of aging and forestall some age-related diseases. Here, we discuss aspects of NAD+ biosynthesis, together with putative mechanisms of NAD+ action against aging, including recent preclinical and clinical trials. Recent discoveries have...

  5. Oxidation of NAD dimers by horseradish peroxidase.

    OpenAIRE

    Avigliano, L; Carelli, V; Casini, A; Finazzi-Agrò, A; Liberatore, F

    1985-01-01

    Horseradish peroxidase catalyses the oxidation of NAD dimers, (NAD)2, to NAD+ in accordance with a reaction that is pH-dependent and requires 1 mol of O2 per 2 mol of (NAD)2. Horseradish peroxidase also catalyses the peroxidation of (NAD)2 to NAD+. In contrast, bacterial NADH peroxidase does not catalyse the peroxidation or the oxidation of (NAD)2. A free-radical mechanism is proposed for both horseradish-peroxidase-catalysed oxidation and peroxidation of (NAD)2.

  6. Whole-Body Counter(WBC) and food radiocesium contamination surveys in Namie, Fukushima Prefecture.

    Science.gov (United States)

    Hosokawa, Yoichiro; Nomura, Kazuki; Tsushima, Eiki; Kudo, Kohsei; Noto, Yuka; Nishizawa, Yoshiko

    2017-01-01

    This study examined the internal Cs exposure of residents and the Cs present in food products produced in Namie. Whole-body counter (WBC) was used for the measurement of internal exposure per each whole body of examinees. The food products which appeared to be used for consumption, were brought by residents and commercially available food items were excluded. Most of them were wild plants or food items produced by residents. Four years of data from April 2012 to March 2013 (fiscal 2012) and April 2015 to March 2016 (Fiscal 2015) were analyzed and studied. The average radioactivity measured by WBC was approximately 5 Bq for Cs-134, and 20 Bq for Cs-137 and the average committed effective dose was approximately 1 μSv. The average for the residents with detectable radioactivity was 25 μSv, and the human health effects are considered to be extremely low risk. However, the radioactivity of the affected individuals showed a higher value than the theoretical attenuation rate. The majority (83.2%) of individuals exhibiting radioactivity were over 50 years old. The number of food products brought in for detection decreased as the study period progressed, but the number of food products with radioactivity had increased. While the items with a higher detection rate of radioactivity included fruits such as citron and persimmon, shiitake mushrooms exhibited the highest radioactivity. Moreover, the radioactivity of seven items in these 10 items decreased from fiscal 2012 to fiscal 2015. Mushrooms had high radioactivity and were produced over a wide area. We suggest that the elderly try to enjoy life and eat wild plants in moderation while inspecting food products. Therefore, we will continue to work in raising awareness of radiation and its potential presence in food products and thus the continuing necessity of monitoring radioactivity in food in the future.

  7. Whole-Body Counter(WBC and food radiocesium contamination surveys in Namie, Fukushima Prefecture.

    Directory of Open Access Journals (Sweden)

    Yoichiro Hosokawa

    Full Text Available This study examined the internal Cs exposure of residents and the Cs present in food products produced in Namie. Whole-body counter (WBC was used for the measurement of internal exposure per each whole body of examinees.The food products which appeared to be used for consumption, were brought by residents and commercially available food items were excluded. Most of them were wild plants or food items produced by residents. Four years of data from April 2012 to March 2013 (fiscal 2012 and April 2015 to March 2016 (Fiscal 2015 were analyzed and studied.The average radioactivity measured by WBC was approximately 5 Bq for Cs-134, and 20 Bq for Cs-137 and the average committed effective dose was approximately 1 μSv. The average for the residents with detectable radioactivity was 25 μSv, and the human health effects are considered to be extremely low risk. However, the radioactivity of the affected individuals showed a higher value than the theoretical attenuation rate. The majority (83.2% of individuals exhibiting radioactivity were over 50 years old. The number of food products brought in for detection decreased as the study period progressed, but the number of food products with radioactivity had increased. While the items with a higher detection rate of radioactivity included fruits such as citron and persimmon, shiitake mushrooms exhibited the highest radioactivity. Moreover, the radioactivity of seven items in these 10 items decreased from fiscal 2012 to fiscal 2015. Mushrooms had high radioactivity and were produced over a wide area.We suggest that the elderly try to enjoy life and eat wild plants in moderation while inspecting food products. Therefore, we will continue to work in raising awareness of radiation and its potential presence in food products and thus the continuing necessity of monitoring radioactivity in food in the future.

  8. Analysis of chromosome translocation in the residents of Namie Town after the accident of Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoshida, Mitsuaki A.; Nakata, Akifumi; Miura, Tomisato; Nishimura, Miya; Takamagi, Shizuka; Kasai, Kosuke; Konno, Norio; Yoshida, Ryoko; Sekine, Shunji

    2014-01-01

    The dose estimation by behavior survey of the residents carried out by Fukushima Prefecture after the accident reported that there are no residents who were exposed by over 1 mSv radiation. However, a lot of the parents are worrying about the health condition of their children in future. Our Hirosaki University accepted the request of the local government of this Namie-Town in Fukushima which wants to know whether children were exposed by radiological substances or not and started the inspection about the contamination and exposure level and dose estimation at an accident using chromosomal translocation analysis for 855 out of 3700 children whose age was under 18 years old at the time of accident. In order to estimate radiation dose using chromosome aberration in the accidents, there are four kinds of cytogenetic method; dicentric assay, a translocation assay, the PCC-ring assay and micronucleus test. A dicentric assay is used for the dose estimation in acute and external exposure cases, the chromosomal translocation method for dose assessment in chronic and old exposure and the PCC method for high dose exposure, respectively. In the case of the residents in Namie-Town, since about one year and ten months had already passed after the accident when implementation of this inspection was determined, the chromosomal translocation method was applied for the dose estimation of the initial exposure level. The main purpose of this translocation analysis using their own cells is to take away affairs of the residents including parents and children and also to reduce the uneasiness which is not wiped away by the health check due to a behavioral survey. In this inspection, after the contents and process of this analysis were explained in the Tsushima, Namie-Town temporarily constructed clinic, 3∼4 ml of whole 5 blood were taken from each children whose parents agreed with this analysis. The lymphocytic cells are isolated from the whole blood using CPT (Cell Preparation Tube

  9. Essential role of Bordetella NadC in a quinolinate salvage pathway for NAD biosynthesis.

    Science.gov (United States)

    Brickman, Timothy J; Suhadolc, Ryan J; McKelvey, Pamela J; Armstrong, Sandra K

    2017-02-01

    Nicotinamide adenine dinucleotide (NAD) is produced via de novo biosynthesis pathways and by salvage or recycling routes. The classical Bordetella bacterial species are known to be auxotrophic for nicotinamide or nicotinic acid. This study confirmed that Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis have the recycling/salvage pathway genes pncA and pncB, for use of nicotinamide or nicotinic acid, respectively, for NAD synthesis. Although these Bordetellae lack the nadA and nadB genes needed for de novo NAD biosynthesis, remarkably, they have one de novo pathway gene, nadC, encoding quinolinate phosphoribosyltransferase. Genomic analyses of taxonomically related Bordetella and Achromobacter species also indicated the presence of an 'orphan' nadC and the absence of nadA and nadB. When supplied as the sole NAD precursor, quinolinate promoted B. bronchiseptica growth, and the ability to use it required nadC. Co-expression of Bordetella nadC with the nadB and nadA genes of Paraburkholderia phytofirmans allowed B. bronchiseptica to grow in the absence of supplied pyridines, indicative of de novo NAD synthesis and functional confirmation of Bordetella NadC activity. Expression of nadC in B. bronchiseptica was influenced by nicotinic acid and by a NadQ family transcriptional repressor, indicating that these organisms prioritize their use of pyridines for NAD biosynthesis. © 2016 John Wiley & Sons Ltd.

  10. NAD+-Dependent Deacetylase Hst1p Controls Biosynthesis and Cellular NAD+ Levels in Saccharomyces cerevisiae

    OpenAIRE

    Bedalov, Antonio; Hirao, Maki; Posakony, Jeffrey; Nelson, Melisa; Simon, Julian A.

    2003-01-01

    Nicotine adenine dinucleotide (NAD+) performs key roles in electron transport reactions, as a substrate for poly(ADP-ribose) polymerase and NAD+-dependent protein deacetylases. In the latter two processes, NAD+ is consumed and converted to ADP-ribose and nicotinamide. NAD+ levels can be maintained by regeneration of NAD+ from nicotinamide via a salvage pathway or by de novo synthesis of NAD+ from tryptophan. Both pathways are conserved from yeast to humans. We describe a critical role of the ...

  11. Permeability of Rickettsia prowazekii to NAD

    International Nuclear Information System (INIS)

    Atkinson, W.H.; Winkler, H.H.

    1989-01-01

    Rickettsia prowazekii accumulated radioactivity from [adenine-2,8-3H]NAD but not from [nicotinamide-4-3H]NAD, which demonstrated that NAD was not taken up intact. Extracellular NAD was hydrolyzed by rickettsiae with the products of hydrolysis, nicotinamide mononucleotide and AMP, appearing in the incubation medium in a time- and temperature-dependent manner. The particulate (membrane) fraction contained 90% of this NAD pyrophosphatase activity. Rickettsiae which had accumulated radiolabel after incubation with [adenine-2,8-3H]NAD were extracted, and the intracellular composition was analyzed by chromatography. The cells contained labeled AMP, ADP, ATP, and NAD. The NAD-derived intracellular AMP was transported via a pathway distinct from and in addition to the previously described AMP translocase. Exogenous AMP (1 mM) inhibited uptake of radioactivity from [adenine-2,8-3H]NAD and hydrolysis of extracellular NAD. AMP increased the percentage of intracellular radiolabel present as NAD. Nicotinamide mononucleotide was not taken up by the rickettsiae, did not inhibit hydrolysis of extracellular NAD, and was not a good inhibitor of the uptake of radiolabel from [adenine-2,8-3H]NAD. Neither AMP nor ATP (both of which are transported) could support the synthesis of intracellular NAD. The presence of intracellular [adenine-2,8-3H]NAD within an organism in which intact NAD could not be transported suggested the resynthesis from AMP of [adenine-2,8-3H]NAD at the locus of NAD hydrolysis and translocation

  12. VT NAD83 USGS Quadrangle Boundaries - polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Generated from exact latitude-longitude coordinates and projected from Geographic coordinates (Lat/Long) NAD83 into State Plane Meters NAD83. The...

  13. Exploring the therapeutic space around NAD(+)

    NARCIS (Netherlands)

    Houtkooper, Riekelt H.; Auwerx, Johan

    2012-01-01

    NAD(+) is a central metabolite in the cell. Changes in NAD(+) abundance and the activity of NAD(+)-dependent enzymes, such as the sirtuins, are at the core of metabolic/mitochondrial diseases, such as obesity and diabetes, and of cancer and neurodegeneration. Here, we discuss how maintaining or

  14. In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae.

    Science.gov (United States)

    Laskoski, Kerly; Santos, Adrian R S; Bonatto, Ana C; Pedrosa, Fábio O; Souza, Emanuel M; Huergo, Luciano F

    2016-05-01

    Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor.

  15. Gennadi Meleshko predstavil film "Poljot nad vremenjem"

    Index Scriptorium Estoniae

    2007-01-01

    Teleajakirjanike Gennadi ja Jelena Meleshko dokumentaalfilmi "Lend aja kohal" ("Poljot nad vremenem") esitleti 21. novembril Eesti Rahvusraamatukogus. Tervitusega esines ka riigikogu liigr Peeter Tulviste

  16. Identification of NAD interacting residues in proteins

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2010-03-01

    Full Text Available Abstract Background Small molecular cofactors or ligands play a crucial role in the proper functioning of cells. Accurate annotation of their target proteins and binding sites is required for the complete understanding of reaction mechanisms. Nicotinamide adenine dinucleotide (NAD+ or NAD is one of the most commonly used organic cofactors in living cells, which plays a critical role in cellular metabolism, storage and regulatory processes. In the past, several NAD binding proteins (NADBP have been reported in the literature, which are responsible for a wide-range of activities in the cell. Attempts have been made to derive a rule for the binding of NAD+ to its target proteins. However, so far an efficient model could not be derived due to the time consuming process of structure determination, and limitations of similarity based approaches. Thus a sequence and non-similarity based method is needed to characterize the NAD binding sites to help in the annotation. In this study attempts have been made to predict NAD binding proteins and their interacting residues (NIRs from amino acid sequence using bioinformatics tools. Results We extracted 1556 proteins chains from 555 NAD binding proteins whose structure is available in Protein Data Bank. Then we removed all redundant protein chains and finally obtained 195 non-redundant NAD binding protein chains, where no two chains have more than 40% sequence identity. In this study all models were developed and evaluated using five-fold cross validation technique on the above dataset of 195 NAD binding proteins. While certain type of residues are preferred (e.g. Gly, Tyr, Thr, His in NAD interaction, residues like Ala, Glu, Leu, Lys are not preferred. A support vector machine (SVM based method has been developed using various window lengths of amino acid sequence for predicting NAD interacting residues and obtained maximum Matthew's correlation coefficient (MCC 0.47 with accuracy 74.13% at window length 17

  17. Determining the Extremes of the Cellular NAD(H) Level by Using an Escherichia coli NAD+-Auxotrophic Mutant ▿

    Science.gov (United States)

    Zhou, Yongjin; Wang, Lei; Yang, Fan; Lin, Xinping; Zhang, Sufang; Zhao, Zongbao K.

    2011-01-01

    NAD (NAD+) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD+ level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD+ auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. coli mutant YJE001, which had a deletion of the nadC gene responsible for NAD+ de novo biosynthesis, and we showed NTT4 conferred on the mutant strain better growth in the presence of exogenous NAD+. We then constructed the NAD+-auxotrophic mutant YJE003 by disrupting the essential gene nadE, which is responsible for the last step of NAD+ biosynthesis in cells harboring the ntt4 gene. The minimal NAD+ level was determined in M9 medium in proliferating YJE003 cells that were preloaded with NAD+, while the maximal NAD(H) level was determined by exposing the cells to high concentrations of exogenous NAD(H). Compared with supplementation of NADH, cells grew faster and had a higher intracellular NAD(H) level when NAD+ was fed. The intracellular NAD(H) level increased with the increase of exogenous NAD+ concentration, until it reached a plateau. Thus, a minimal NAD(H) level of 0.039 mM and a maximum of 8.49 mM were determined, which were 0.044× and 9.6× those of wild-type cells, respectively. Finally, the potential application of this strategy in biotechnology is briefly discussed. PMID:21742902

  18. "Ne kreshtshenogo, ne otpetogo..." : [luuletused] / Marina Petrova

    Index Scriptorium Estoniae

    Petrova, Marina

    2001-01-01

    Sisu: "Ne kreshtshenogo, ne otpetogo..." ; "Inogo mesta vstretshi v mire net..." ; "Moi put lezhit tsherez Moskvu..." ; "Osvoboditelnaja ossen - ..." ; Pjuhtitskim aistam ; "Vesjolõje svetshi kanona..." ; Vjuga ; Materi Bozhijei Pjuhtitskoi ; "Pustõnja moja, pustõnja..." ; "Odinnadtsat let v mojo serdtse gljadjat kupola..."

  19. NAD+ : A key metabolic regulator with great therapeutic potential.

    Science.gov (United States)

    Sultani, G; Samsudeen, A F; Osborne, B; Turner, N

    2017-10-01

    Nicotinamide adenine dinucleotide (NAD + ) is a ubiquitous metabolite that serves an essential role in the catabolism of nutrients. Recently, there has been a surge of interest in NAD + biology, with the recognition that NAD + influences many biological processes beyond metabolism, including transcription, signalling and cell survival. There are a multitude of pathways involved in the synthesis and breakdown of NAD + , and alterations in NAD + homeostasis have emerged as a common feature of a range of disease states. Here, we provide an overview of NAD + metabolism and summarise progress on the development of NAD + -related therapeutics. © 2017 British Society for Neuroendocrinology.

  20. Restoring NAD(+) Levels with NAD(+) Intermediates, the Second Law of Thermodynamics and Aging Delay.

    Science.gov (United States)

    Poljsak, Borut; Milisav, Irina

    2018-04-26

    The hypothesis regarding the role of increased nicotinamide adenine dinucleotide (NAD+) levels with reference to the fundamental concepts of ageing and entropy is presented. Considering the second law of thermodynamics, NAD+ seems the appropriate candidate for reversing many aging-associated pathologies. NAD+ is presented as an essential compound that enables organisms to stay highly organized and well-maintained, with a lower entropy state.

  1. Determining the Extremes of the Cellular NAD(H) Level by Using an Escherichia coli NAD+-Auxotrophic Mutant ▿

    OpenAIRE

    Zhou, Yongjin; Wang, Lei; Yang, Fan; Lin, Xinping; Zhang, Sufang; Zhao, Zongbao K.

    2011-01-01

    NAD (NAD+) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD+ level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD+ auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. co...

  2. NAD-Dependent DNA-Binding Activity of the Bifunctional NadR Regulator of Salmonella typhimurium

    OpenAIRE

    Penfound, Thomas; Foster, John W.

    1999-01-01

    NadR is a 45-kDa bifunctional regulator protein. In vivo genetic studies indicate that NadR represses three genes involved in the biosynthesis of NAD. It also participates with an integral membrane protein (PnuC) in the import of nicotinamide mononucleotide, an NAD precursor. NadR was overexpressed and purified as a His-tagged fusion in order to study its DNA-binding properties. The protein bound to DNA fragments containing NAD box consensus sequences. NAD proved to be the relevant in vivo co...

  3. United States Stateplane Zones - NAD27

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — U.S. State Plane Zones (NAD 1927) represents the State Plane Coordinate System (SPCS) Zones for the 1927 North American Datum within United States.

  4. United States Stateplane Zones - NAD83

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — U.S. State Plane Zones (NAD 1983) represents the State Plane Coordinate System (SPCS) Zones for the 1983 North American Datum within United States.

  5. VT NAD83 Orthophoto Boundaries - corner points

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) RF 5000 NAD83 orthophoto edge lines (4000 x 4000 meter grid cells) were generated automatically from the known corner locations (generated by Gary...

  6. VT NAD83 Orthophoto Boundaries - polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) RF 5000 NAD83 orthophoto edge lines (4000 x 4000 meter grid cells) were generated automatically from the known corner locations (generated by Gary...

  7. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences

    Science.gov (United States)

    Zhu, Xiao-Hong; Lu, Ming; Lee, Byeong-Yeul; Ugurbil, Kamil; Chen, Wei

    2015-01-01

    NAD is an essential metabolite that exists in NAD+ or NADH form in all living cells. Despite its critical roles in regulating mitochondrial energy production through the NAD+/NADH redox state and modulating cellular signaling processes through the activity of the NAD+-dependent enzymes, the method for quantifying intracellular NAD contents and redox state is limited to a few in vitro or ex vivo assays, which are not suitable for studying a living brain or organ. Here, we present a magnetic resonance (MR) -based in vivo NAD assay that uses the high-field MR scanner and is capable of noninvasively assessing NAD+ and NADH contents and the NAD+/NADH redox state in intact human brain. The results of this study provide the first insight, to our knowledge, into the cellular NAD concentrations and redox state in the brains of healthy volunteers. Furthermore, an age-dependent increase of intracellular NADH and age-dependent reductions in NAD+, total NAD contents, and NAD+/NADH redox potential of the healthy human brain were revealed in this study. The overall findings not only provide direct evidence of declined mitochondrial functions and altered NAD homeostasis that accompany the normal aging process but also, elucidate the merits and potentials of this new NAD assay for noninvasively studying the intracellular NAD metabolism and redox state in normal and diseased human brain or other organs in situ. PMID:25730862

  8. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  9. Assimilation of NAD(+) precursors in Candida glabrata.

    Science.gov (United States)

    Ma, Biao; Pan, Shih-Jung; Zupancic, Margaret L; Cormack, Brendan P

    2007-10-01

    The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD(+)) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD(+). C. glabrata salvage pathways defined in this article allow NAD(+) to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NA is salvaged through a functional Preiss-Handler pathway. NAM is first converted to NA by nicotinamidase and then salvaged by the Preiss-Handler pathway. Salvage of NR in C. glabrata occurs via two routes. The first, in which NR is phosphorylated by the NR kinase Nrk1, is independent of the Preiss-Handler pathway. The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD(+) via the nicotinamidase Pnc1 and the Preiss-Handler pathway. Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD(+) sources during disseminated infection.

  10. Modeling of NAD+ analogues in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Beijer, N.A.; Buck, H.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1990-01-01

    So far, the interactions of nicotinamide adenine dinucleotide (NAD+) derivatives with dehydrogenases are not very well understood. This hampers the introduction of NAD+ analogues with improved characteristics concerning industrial application. We have developed an AMBER molecular mechanics model in

  11. VT NAD83 USGS Quadrangle Boundaries - corner points

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Generated from exact latitude-longitude coordinates and projected from Geographic coordinates (Lat/Long) NAD83 into State Plane Meters NAD83. The...

  12. Nads FSK Modem, LEA 74-2248

    International Nuclear Information System (INIS)

    Johnson, K.R.

    1976-01-01

    The Nads FSK Modem is a compact unit designed to operate in conjunction with EIA standard interfacing and the data terminal equipment of the 1200 Baud digital communications network of the Nevada Automated Diagnostics System (NADS). The modem is constructed in a Nuclear Instrumentation Module System (NIMS) module for compatability with the NADS system. The modulator section of the modem accepts serial, digital signals at 1200 Baud which may be either standard TTL levels or bipolar signals meeting either the EIA RS-232C or RS-232B standards. The output of the modulator is a Frequency-Shift Keyed (FSK) signal having frequencies of 2.2 kHz for Mark and 1.2 kHz for Space. The demodulator section accepts the above FSK signal as input, and outputs serial, digital signals at 1200 Baud at either TTL or EIA RS-232C levels. Specifications and operation and calibration instructions are given

  13. NAD Deficiency, Congenital Malformations, and Niacin Supplementation.

    Science.gov (United States)

    Shi, Hongjun; Enriquez, Annabelle; Rapadas, Melissa; Martin, Ella M M A; Wang, Roni; Moreau, Julie; Lim, Chai K; Szot, Justin O; Ip, Eddie; Hughes, James N; Sugimoto, Kotaro; Humphreys, David T; McInerney-Leo, Aideen M; Leo, Paul J; Maghzal, Ghassan J; Halliday, Jake; Smith, Janine; Colley, Alison; Mark, Paul R; Collins, Felicity; Sillence, David O; Winlaw, David S; Ho, Joshua W K; Guillemin, Gilles J; Brown, Matthew A; Kikuchi, Kazu; Thomas, Paul Q; Stocker, Roland; Giannoulatou, Eleni; Chapman, Gavin; Duncan, Emma L; Sparrow, Duncan B; Dunwoodie, Sally L

    2017-08-10

    Congenital malformations can be manifested as combinations of phenotypes that co-occur more often than expected by chance. In many such cases, it has proved difficult to identify a genetic cause. We sought the genetic cause of cardiac, vertebral, and renal defects, among others, in unrelated patients. We used genomic sequencing to identify potentially pathogenic gene variants in families in which a person had multiple congenital malformations. We tested the function of the variant by using assays of in vitro enzyme activity and by quantifying metabolites in patient plasma. We engineered mouse models with similar variants using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system. Variants were identified in two genes that encode enzymes of the kynurenine pathway, 3-hydroxyanthranilic acid 3,4-dioxygenase (HAAO) and kynureninase (KYNU). Three patients carried homozygous variants predicting loss-of-function changes in the HAAO or KYNU proteins (HAAO p.D162*, HAAO p.W186*, or KYNU p.V57Efs*21). Another patient carried heterozygous KYNU variants (p.Y156* and p.F349Kfs*4). The mutant enzymes had greatly reduced activity in vitro. Nicotinamide adenine dinucleotide (NAD) is synthesized de novo from tryptophan through the kynurenine pathway. The patients had reduced levels of circulating NAD. Defects similar to those in the patients developed in the embryos of Haao-null or Kynu-null mice owing to NAD deficiency. In null mice, the prevention of NAD deficiency during gestation averted defects. Disruption of NAD synthesis caused a deficiency of NAD and congenital malformations in humans and mice. Niacin supplementation during gestation prevented the malformations in mice. (Funded by the National Health and Medical Research Council of Australia and others.).

  14. Impaired NAD+ Metabolism in Neuronal Dysfunction in Critical Conditions

    Directory of Open Access Journals (Sweden)

    A. V Salmina

    2008-01-01

    Full Text Available The present views of the pathogenesis of neuronal dysfunction in critical conditions are analyzed, by taking into account of impairments of cellular NAD+ metabolism, the activity of NAD+-converting enzymes, including ADP-ribosyl cyclase/CD38, the possibilities of developing new neuroprotective strategies. Key words: neuronal dysfunction, ADP-rybosyl cyclase/CD38, NAD+, critical condition.

  15. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi

    Directory of Open Access Journals (Sweden)

    Peter M. Dracatos

    2016-09-01

    Full Text Available Nicotiana alata defensins 1 and 2 (NaD1 and NaD2 are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An O-mannosyltransferase (pmt knockout (KO mutants (An∆pmtA, An∆pmtB, and An∆pmtC. An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol signalling knockout mutants from the cell wall integrity (CWI and high osmolarity glycerol (HOG mitogen-activated protein kinase (MAPK pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2.

  16. The evolutionary portrait of metazoan NAD salvage.

    Directory of Open Access Journals (Sweden)

    João Carneiro

    Full Text Available Nicotinamide Adenine Dinucleotide (NAD levels are essential for cellular homeostasis and survival. Main sources of intracellular NAD are the salvage pathways from nicotinamide, where Nicotinamide phosphoribosyltransferases (NAMPTs and Nicotinamidases (PNCs have a key role. NAMPTs and PNCs are important in aging, infection and disease conditions such as diabetes and cancer. These enzymes have been considered redundant since either one or the other exists in each individual genome. The co-occurrence of NAMPT and PNC was only recently detected in invertebrates though no structural or functional characterization exists for them. Here, using expression and evolutionary analysis combined with homology modeling and protein-ligand docking, we show that both genes are expressed simultaneously in key species of major invertebrate branches and emphasize sequence and structural conservation patterns in metazoan NAMPT and PNC homologues. The results anticipate that NAMPTs and PNCs are simultaneously active, raising the possibility that NAD salvage pathways are not redundant as both are maintained to fulfill the requirement for NAD production in some species.

  17. The evolutionary portrait of metazoan NAD salvage.

    Science.gov (United States)

    Carneiro, João; Duarte-Pereira, Sara; Azevedo, Luísa; Castro, L Filipe C; Aguiar, Paulo; Moreira, Irina S; Amorim, António; Silva, Raquel M

    2013-01-01

    Nicotinamide Adenine Dinucleotide (NAD) levels are essential for cellular homeostasis and survival. Main sources of intracellular NAD are the salvage pathways from nicotinamide, where Nicotinamide phosphoribosyltransferases (NAMPTs) and Nicotinamidases (PNCs) have a key role. NAMPTs and PNCs are important in aging, infection and disease conditions such as diabetes and cancer. These enzymes have been considered redundant since either one or the other exists in each individual genome. The co-occurrence of NAMPT and PNC was only recently detected in invertebrates though no structural or functional characterization exists for them. Here, using expression and evolutionary analysis combined with homology modeling and protein-ligand docking, we show that both genes are expressed simultaneously in key species of major invertebrate branches and emphasize sequence and structural conservation patterns in metazoan NAMPT and PNC homologues. The results anticipate that NAMPTs and PNCs are simultaneously active, raising the possibility that NAD salvage pathways are not redundant as both are maintained to fulfill the requirement for NAD production in some species.

  18. Identification of a repressor gene involved in the regulation of NAD de novo biosynthesis in Salmonella typhimurium.

    OpenAIRE

    Zhu, N; Olivera, B M; Roth, J R

    1988-01-01

    Mutations at the nadI locus affect expression of the first two genes of NAD synthesis, nadA and nadB, which are unlinked. Genetic data imply that the regulatory effects of nadI mutations are not due to indirect consequences of physiological alterations. Two types of mutations map in the nadI region. Common null mutations (nadI) show constitutive high-level expression of the nadB and nadA genes. Rare nadIs mutations cause constitutive low-level expression of nadB and nadA. Some nadIs mutations...

  19. The Peroxisomal NAD Carrier from Arabidopsis Imports NAD in Exchange with AMP.

    Science.gov (United States)

    van Roermund, Carlo W T; Schroers, Martin G; Wiese, Jan; Facchinelli, Fabio; Kurz, Samantha; Wilkinson, Sabrina; Charton, Lennart; Wanders, Ronald J A; Waterham, Hans R; Weber, Andreas P M; Link, Nicole

    2016-07-01

    Cofactors such as NAD, AMP, and Coenzyme A (CoA) are essential for a diverse set of reactions and pathways in the cell. Specific carrier proteins are required to distribute these cofactors to different cell compartments, including peroxisomes. We previously identified a peroxisomal transport protein in Arabidopsis (Arabidopsis thaliana) called the peroxisomal NAD carrier (PXN). When assayed in vitro, this carrier exhibits versatile transport functions, e.g. catalyzing the import of NAD or CoA, the exchange of NAD/NADH, and the export of CoA. These observations raise the question about the physiological function of PXN in plants. Here, we used Saccharomyces cerevisiae to address this question. First, we confirmed that PXN, when expressed in yeast, is active and targeted to yeast peroxisomes. Secondl, detailed uptake analyses revealed that the CoA transport function of PXN can be excluded under physiological conditions due to its low affinity for this substrate. Third, we expressed PXN in diverse mutant yeast strains and investigated the suppression of the mutant phenotypes. These studies provided strong evidences that PXN was not able to function as a CoA transporter or a redox shuttle by mediating a NAD/NADH exchange, but instead catalyzed the import of NAD into peroxisomes against AMP in intact yeast cells. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. The NAD+/PARP1/SIRT1 Axis in Aging.

    Science.gov (United States)

    Mendelsohn, Andrew R; Larrick, James W

    2017-06-01

    NAD+ levels decline with age in diverse animals from Caenorhabditis elegans to mice. Raising NAD+ levels by dietary supplementation with NAD+ precursors, nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN), improves mitochondrial function and muscle and neural and melanocyte stem cell function in mice, as well as increases murine life span. Decreased NAD+ levels with age reduce SIRT1 function and reduce the mitochondrial unfolded protein response, which can be overcome by NR supplementation. Decreased NAD+ levels cause NAD+-binding protein DBC1 to form a complex with PARP1, inhibiting poly(adenosine diphosphate-ribose) polymerase (PARP) catalytic activity. Old mice have increased amounts of DBC1-PARP1 complexes, lower PARP activity, increased DNA damage, and reduced nonhomologous end joining and homologous recombination repair. DBC1-PARP1 complexes in old mice can be broken by increasing NAD+ levels through treatment with NMN, reducing DNA damage and restoring PARP activity to youthful levels. The mechanism of declining NAD+ levels and its fundamental importance to aging are yet to be elucidated. There is a correlation of PARP activity with mammalian life span that suggests that NAD+/SIRT1/PARP1 may be more significant than the modest effects on life span observed for NR supplementation in old mice. The NAD+/PARP1/SIRT1 axis may link NAD+ levels and DNA damage with the apparent epigenomic DNA methylation clocks that have been described.

  1. Exploring NAD+ metabolism in host-pathogen interactions.

    Science.gov (United States)

    Mesquita, Inês; Varela, Patrícia; Belinha, Ana; Gaifem, Joana; Laforge, Mireille; Vergnes, Baptiste; Estaquier, Jérôme; Silvestre, Ricardo

    2016-03-01

    Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.

  2. The human NAD metabolome: Functions, metabolism and compartmentalization

    Science.gov (United States)

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229

  3. The dynamic regulation of NAD metabolism in mitochondria

    Science.gov (United States)

    Stein, Liana Roberts; Imai, Shin-ichiro

    2012-01-01

    Mitochondria are intracellular powerhouses that produce ATP and carry out diverse functions for cellular energy metabolism. While the maintenance of an optimal NAD/NADH ratio is essential for mitochondrial function, it has recently become apparent that the maintenance of the mitochondrial NAD pool also has critical importance. The biosynthesis, transport, and catabolism of NAD and its key intermediates play an important role in the regulation of NAD-consuming mediators, such as sirtuins, poly-ADP-ribose polymerases, and CD38/157 ectoenzymes, in intra- and extracellular compartments. Mitochondrial NAD biosynthesis is also modulated in response to nutritional and environmental stimuli. In this article, we discuss this dynamic regulation of NAD metabolism in mitochondria to shed light on the intimate connection between NAD and mitochondrial function. PMID:22819213

  4. NAD+ in Aging: Molecular Mechanisms and Translational Implications.

    Science.gov (United States)

    Fang, Evandro F; Lautrup, Sofie; Hou, Yujun; Demarest, Tyler G; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2017-10-01

    The coenzyme NAD + is critical in cellular bioenergetics and adaptive stress responses. Its depletion has emerged as a fundamental feature of aging that may predispose to a wide range of chronic diseases. Maintenance of NAD + levels is important for cells with high energy demands and for proficient neuronal function. NAD + depletion is detected in major neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, cardiovascular disease and muscle atrophy. Emerging evidence suggests that NAD + decrements occur in various tissues during aging, and that physiological and pharmacological interventions bolstering cellular NAD + levels might retard aspects of aging and forestall some age-related diseases. Here, we discuss aspects of NAD + biosynthesis, together with putative mechanisms of NAD + action against aging, including recent preclinical and clinical trials. Published by Elsevier Ltd.

  5. NAD Acts as an Integral Regulator of Multiple Defense Layers.

    Science.gov (United States)

    Pétriacq, Pierre; Ton, Jurriaan; Patrit, Oriane; Tcherkez, Guillaume; Gakière, Bertrand

    2016-11-01

    Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Dynamics of NAD-metabolism: everything but constant.

    Science.gov (United States)

    Opitz, Christiane A; Heiland, Ines

    2015-12-01

    NAD, as well as its phosphorylated form, NADP, are best known as electron carriers and co-substrates of various redox reactions. As such they participate in approximately one quarter of all reactions listed in the reaction database KEGG. In metabolic pathway analysis, the total amount of NAD is usually assumed to be constant. That means that changes in the redox state might be considered, but concentration changes of the NAD moiety are usually neglected. However, a growing number of NAD-consuming reactions have been identified, showing that this assumption does not hold true in general. NAD-consuming reactions are common characteristics of NAD(+)-dependent signalling pathways and include mono- and poly-ADP-ribosylation of proteins, NAD(+)-dependent deacetylation by sirtuins and the formation of messenger molecules such as cyclic ADP-ribose (cADPR) and nicotinic acid (NA)-ADP (NAADP). NAD-consuming reactions are thus involved in major signalling and gene regulation pathways such as DNA-repair or regulation of enzymes central in metabolism. All known NAD(+)-dependent signalling processes include the release of nicotinamide (Nam). Thus cellular NAD pools need to be constantly replenished, mostly by recycling Nam to NAD(+). This process is, among others, regulated by the circadian clock, causing complex dynamic changes in NAD concentration. As disturbances in NAD homoeostasis are associated with a large number of diseases ranging from cancer to diabetes, it is important to better understand the dynamics of NAD metabolism to develop efficient pharmacological invention strategies to target this pathway. © 2015 Authors; published by Portland Press Limited.

  7. NAD+ salvage pathway in cancer metabolism and therapy.

    Science.gov (United States)

    Kennedy, Barry E; Sharif, Tanveer; Martell, Emma; Dai, Cathleen; Kim, Youra; Lee, Patrick W K; Gujar, Shashi A

    2016-12-01

    Nicotinamide adenine dinucleotide (NAD + ) is an essential coenzyme for various physiological processes including energy metabolism, DNA repair, cell growth, and cell death. Many of these pathways are typically dysregulated in cancer cells, making NAD + an intriguing target for cancer therapeutics. NAD + is mainly synthesized by the NAD + salvage pathway in cancer cells, and not surprisingly, the pharmacological targeting of the NAD + salvage pathway causes cancer cell cytotoxicity in vitro and in vivo. Several studies have described the precise consequences of NAD + depletion on cancer biology, and have demonstrated that NAD+ depletion results in depletion of energy levels through lowered rates of glycolysis, reduced citric acid cycle activity, and decreased oxidative phosphorylation. Additionally, depletion of NAD + causes sensitization of cancer cells to oxidative damage by disruption of the anti-oxidant defense system, decreased cell proliferation, and initiation of cell death through manipulation of cell signaling pathways (e.g., SIRT1 and p53). Recently, studies have explored the effect of well-known cancer therapeutics in combination with pharmacological depletion of NAD + levels, and found in many cases a synergistic effect on cancer cell cytotoxicity. In this context, we will discuss the effects of NAD + salvage pathway inhibition on cancer cell biology and provide insight on this pathway as a novel anti-cancer therapeutic target. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. NADS - Nuclear and Atomic Data System

    International Nuclear Information System (INIS)

    McKinley, Michael S.; Beck, Bret; McNabb, Dennis

    2005-01-01

    We have developed NADS (Nuclear and Atomic Data System), a web-based graphical interface for viewing pointwise and grouped cross sections and distributions. Our implementation is a client / server model. The client is a Java applet that displays the graphical interface, which has interactive 2-D, 3-D, and 4-D plots and tables. The server, which can serve and perform computations of the data, has been implemented in Python using the FUDGE package developed by Bret Beck at LLNL. Computational capabilities include algebraic manipulation of nuclear evaluated data in databases such as LLNL's ENDL-99, ENDF/B-V, and ENDF/B-VI, as well as user data. Processed data used in LLNL's transport codes are accessible as well. NADS is available from http://nuclear.llnl.gov/

  9. Nrt1 and Tna1-independent export of NAD+ precursor vitamins promotes NAD+ homeostasis and allows engineering of vitamin production.

    Directory of Open Access Journals (Sweden)

    Peter Belenky

    2011-05-01

    Full Text Available NAD(+ is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+ consuming enzymes. NAD(+ biosynthesis is required for two different regimens that extend lifespan in yeast. NAD(+ is synthesized from tryptophan and the three vitamin precursors of NAD(+: nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD(+ precursors increases intracellular NAD(+ levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD(+ metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD(+ metabolism by balancing import and export of NAD(+ precursor vitamins.

  10. NAD+ biosynthesis, aging, and disease [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Sean Johnson

    2018-02-01

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ biosynthesis and its regulation have recently been attracting markedly increasing interest. Aging is marked by a systemic decrease in NAD+ across multiple tissues. The dysfunction of NAD+ biosynthesis plays a critical role in the pathophysiologies of multiple diseases, including age-associated metabolic disorders, neurodegenerative diseases, and mental disorders. As downstream effectors, NAD+-dependent enzymes, such as sirtuins, are involved in the progression of such disorders. These recent studies implicate NAD+ biosynthesis as a potential target for preventing and treating age-associated diseases. Indeed, new studies have demonstrated the therapeutic potential of supplementing NAD+ intermediates, such as nicotinamide mononucleotide and nicotinamide riboside, providing a proof of concept for the development of an effective anti-aging intervention.

  11. Modulating NAD+ metabolism, from bench to bedside.

    Science.gov (United States)

    Katsyuba, Elena; Auwerx, Johan

    2017-09-15

    Discovered in the beginning of the 20 th century, nicotinamide adenine dinucleotide (NAD + ) has evolved from a simple oxidoreductase cofactor to being an essential cosubstrate for a wide range of regulatory proteins that include the sirtuin family of NAD + -dependent protein deacylases, widely recognized regulators of metabolic function and longevity. Altered NAD + metabolism is associated with aging and many pathological conditions, such as metabolic diseases and disorders of the muscular and neuronal systems. Conversely, increased NAD + levels have shown to be beneficial in a broad spectrum of diseases. Here, we review the fundamental aspects of NAD + biochemistry and metabolism and discuss how boosting NAD + content can help ameliorate mitochondrial homeostasis and as such improve healthspan and lifespan. © 2017 The Authors.

  12. Photoionization of Ne8+

    Science.gov (United States)

    Pindzola, M. S.; Abdel-Naby, Sh. A.; Robicheaux, F.; Colgan, J.

    2014-05-01

    Single and double photoionization cross sections for Ne8+ are calculated using a non-perturbative fully relativistic time-dependent close-coupling method. A Bessel function expansion is used to include both dipole and quadrupole effects in the radiation field interaction and the repulsive interaction between electrons includes both the Coulomb and Gaunt interactions. The fully correlated ground state of Ne8+ is obtained by solving a time-independent inhomogeneous set of close-coupled equations. Propagation of the time-dependent close-coupled equations yields single and double photoionization cross sections for Ne8+ at energies easily accessible at advanced free electron laser facilities. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.

  13. Mechanistic Links Between PARP, NAD, and Brain Inflammation After TBI

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-2-0091 TITLE: Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI PRINCIPAL INVESTIGATOR...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI 5b. GRANT...efficacy of veliparib and NAD as agents for suppressing inflammation and improving outcomes after traumatic brain injury. The animal models include

  14. Struktuur en interaktie analyse van NAD+ en NAD+ analoga in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Beijer, N.A.

    1988-01-01

    Dit verslag beschrijft een studie naar de relatie tussen struktuur en funktie voor het co-enzym NAn+ en zijn analoga in de aktieve holte van het enzym Horse Liver Alcohol Dehydrogenase (LADH). De rol van NAD+ in enzymgekatalyseerde oxidatie-reduktie reakties is die van het bewerkstelligen van een

  15. The Peroxisomal NAD Carrier from Arabidopsis Imports NAD in Exchange with AMP

    NARCIS (Netherlands)

    van Roermund, Carlo W. T.; Schroers, Martin G.; Wiese, Jan; Facchinelli, Fabio; Kurz, Samantha; Wilkinson, Sabrina; Charton, Lennart; Wanders, Ronald J. A.; Waterham, Hans R.; Weber, Andreas P. M.; Link, Nicole

    2016-01-01

    Cofactors such as NAD, AMP, and Coenzyme A (CoA) are essential for a diverse set of reactions and pathways in the cell. Specific carrier proteins are required to distribute these cofactors to different cell compartments, including peroxisomes. We previously identified a peroxisomal transport protein

  16. Nad avantjuristom godõ ne vlastnõ / Boris Tuch

    Index Scriptorium Estoniae

    Tuch, Boris, 1946-

    2008-01-01

    Steven Spielbergi neljas Indiana Jones'i film Harrison Fordiga nimiosas "Indiana Jones ja kristallpealuu kuningriik" ("Indiana Jones and the Kingdom of the Crystal Skull") : Ameerika Ühendriigid 2008

  17. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  18. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues.

    Directory of Open Access Journals (Sweden)

    Valerio Mori

    Full Text Available NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the "amidated" and "deamidated" routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT, which in mammals comprises three distinct isozymes, and NAD synthetase (NADS. First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes'rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme's substrate NaAD (nicotinic acid adenine dinucleotide. In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease.

  19. Detection of cerebral NAD+ in humans at 7T.

    Science.gov (United States)

    de Graaf, Robin A; De Feyter, Henk M; Brown, Peter B; Nixon, Terence W; Rothman, Douglas L; Behar, Kevin L

    2017-09-01

    To develop 1 H-based MR detection of nicotinamide adenine dinucleotide (NAD + ) in the human brain at 7T and validate the 1 H results with NAD + detection based on 31 P-MRS. 1 H-MR detection of NAD + was achieved with a one-dimensional double-spin-echo method on a slice parallel to the surface coil transceiver. Perturbation of the water resonance was avoided through the use of frequency-selective excitation. 31 P-MR detection of NAD + was performed with an unlocalized pulse-acquire sequence. Both 1 H- and 31 P-MRS allowed the detection of NAD + signals on every subject in 16 min. Spectral fitting provided an NAD + concentration of 107 ± 28 μM for 1 H-MRS and 367 ± 78 μM and 312 ± 65 μM for 31 P-MRS when uridine diphosphate glucose (UDPG) was excluded and included, respectively, as an overlapping signal. NAD + detection by 1 H-MRS is a simple method that comes at the price of reduced NMR visibility. NAD + detection by 31 P-MRS has near-complete NMR visibility, but it is complicated by spectral overlap with NADH and UDPG. Overall, the 1 H- and 31 P-MR methods both provide exciting opportunities to study NAD + metabolism on human brain in vivo. © 2016 International Society for Magnetic Resonance in Medicine. Magn Reson Med 78:828-835, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Flight controller design of unmanned airplane for radiation monitoring system via structured robust controller design using multiple model approach. Radiation monitoring flight in Namie-machi in Fukushima prefecture

    International Nuclear Information System (INIS)

    Sato, Masayuki; Muraoka, Koji; Hozumi, Koki; Sanada, Yukihisa; Yamada, Tsutomu; Torii, Tatsuo

    2015-01-01

    Due to the tragic accident of radioactive contaminant spread from Fukushima Dai-ichi nuclear power plant, the necessity of unmanned systems for radiation monitoring has been increasing. This paper concerns the flight controller design of an unmanned airplane which has been developed for radiation monitoring around the power plant. The flight controller consists of conventional control elements, i.e. Stability/Control Augmentation System (S/CAS) with PI controllers and guidance loops with PID controllers. The gains in these controllers are designed by minimizing appropriately defined cost functions for several possible models and disturbances to produce structured robust flight controllers. (This method is called as 'multiple model approach'.) Control performance of our flight controller was evaluated through flight tests and a primitive flight of radiation monitoring in Namie-machi in Fukushima prefecture was conducted in Jan. 2014. Flight results are included in this paper. (author)

  1. The Leishmania nicotinamidase is essential for NAD(+) production and parasite proliferation

    OpenAIRE

    Gazanion, Elodie; Garcia, Deborah; Silvestre, R.; Gérard, C.; Guichou, J. F.; Labesse, G.; Seveno, Martial; Cordeiro-Da-Silva, A.; Ouaissi, A.; Sereno, Denis; Vergnes, Baptiste

    2011-01-01

    NAD(+) is a central cofactor that plays important roles in cellular metabolism and energy production in all living cells. Genomics-based reconstruction of NAD(+) metabolism revealed that Leishmania protozoan parasites are NAD(+) auxotrophs. Consequently, these parasites require assimilating NAD(+) precursors (nicotinamide, nicotinic acid, nicotinamide riboside) from their host environment to synthesize NAD(+) by a salvage pathway. Nicotinamidase is a key enzyme of this salvage pathway that ca...

  2. Novel pathway of NAD metabolism in Aspergillus niger

    International Nuclear Information System (INIS)

    Kuwahara, Masaaki

    1977-01-01

    New steps of NAD metabolism were shown in Aspergillus niger. Radioactive nicotinic acid and nicotinamide were incorporated into nicotinamide ribose diphosphate ribose (NAmRDPR), which had been isolated from the culture filtrate. The enzyme preparation of the mold degraded NAmRDPR to form nicotinamide mononucleotide and nicotinic acid under the neutral and alkaline conditions. In the acid extracts of the mycelia grown on the radioactive precursors, high level of radioactivity was detected on NAD. The experimental results showed that the Preiss-Handler pathway and the NAD cycling system function in the NAD biosynthesis in A. niger. A part of the radioactive precursors was also incorporated into nicotinic acid ribonucleoside, which was thought to be formed from nicotinic acid mononucleotide. (auth.)

  3. Anticancer agent CHS-828 inhibits cellular synthesis of NAD

    DEFF Research Database (Denmark)

    Olesen, U.H.; Christensen, M.K.; Bjorkling, F.

    2008-01-01

    Malignant cells display increased demands for energy production and DNA repair. Nicotinamide adenine dinucleotide (NAD) is required for both processes and is also continuously degraded by cellular enzymes. Nicotinamide phosphoribosyltransferase (Nampt) is a crucial factor in the resynthesis of NAD......, and thus in cancer cell survival. Here, we establish the cytotoxic mechanism of action of the small molecule inhibitor CHS-828 to result from impaired synthesis of NAD. Initially, we detected cross-resistance in cells between CHS-828 and a known inhibitor of Nampt, FK866, a compound of a structurally...... different class. We then showed that nicotinamide protects against CHS-828-mediated cytotoxicity. Finally, we observed that treatment with CHS-828 depletes cellular NAD levels in sensitive cancer cells. In conclusion, these results strongly suggest that, like FK866, CHS-828 kills cancer cells by depleting...

  4. Vibrio Phage KVP40 Encodes a Functional NAD+ Salvage Pathway.

    Science.gov (United States)

    Lee, Jae Yun; Li, Zhiqun; Miller, Eric S

    2017-05-01

    The genome of T4-type Vibrio bacteriophage KVP40 has five genes predicted to encode proteins of pyridine nucleotide metabolism, of which two, nadV and natV , would suffice for an NAD + salvage pathway. NadV is an apparent nicotinamide phosphoribosyltransferase (NAmPRTase), and NatV is an apparent bifunctional nicotinamide mononucleotide adenylyltransferase (NMNATase) and nicotinamide-adenine dinucleotide pyrophosphatase (Nudix hydrolase). Genes encoding the predicted salvage pathway were cloned and expressed in Escherichia coli , the proteins were purified, and their enzymatic properties were examined. KVP40 NadV NAmPRTase is active in vitro , and a clone complements a Salmonella mutant defective in both the bacterial de novo and salvage pathways. Similar to other NAmPRTases, the KVP40 enzyme displayed ATPase activity indicative of energy coupling in the reaction mechanism. The NatV NMNATase activity was measured in a coupled reaction system demonstrating NAD + biosynthesis from nicotinamide, phosphoribosyl pyrophosphate, and ATP. The NatV Nudix hydrolase domain was also shown to be active, with preferred substrates of ADP-ribose, NAD + , and NADH. Expression analysis using reverse transcription-quantitative PCR (qRT-PCR) and enzyme assays of infected Vibrio parahaemolyticus cells demonstrated nadV and natV transcription during the early and delayed-early periods of infection when other KVP40 genes of nucleotide precursor metabolism are expressed. The distribution and phylogeny of NadV and NatV proteins among several large double-stranded DNA (dsDNA) myophages, and also those from some very large siphophages, suggest broad relevance of pyridine nucleotide scavenging in virus-infected cells. NAD + biosynthesis presents another important metabolic resource control point by large, rapidly replicating dsDNA bacteriophages. IMPORTANCE T4-type bacteriophages enhance DNA precursor synthesis through reductive reactions that use NADH/NADPH as the electron donor and NAD

  5. Roles of Nicotinamide Adenine Dinucleotide (NAD+ in Biological Systems

    Directory of Open Access Journals (Sweden)

    Palmiro Poltronieri

    2018-01-01

    Full Text Available NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organism homeostasis. NAD+ is a coenzyme in redox reactions, a donor of adenosine diphosphate-ribose (ADPr moieties in ADP-ribosylation reactions, a substrate for sirtuins, a group of histone deacetylase enzymes that use NAD+ to remove acetyl groups from proteins; NAD+ is also a precursor of cyclic ADP-ribose, a second messenger in Ca++ release and signaling, and of diadenosine tetraphosphate (Ap4A and oligoadenylates (oligo2′-5′A, two immune response activating compounds. In the biological systems considered in this review, NAD+ is mostly consumed in ADP-ribose (ADPr transfer reactions. In this review the roles of these chemical products are discussed in biological systems, such as in animals, plants, fungi and bacteria. In the review, two types of ADP-ribosylating enzymes are introduced as well as the pathways to restore the NAD+ pools in these systems.

  6. Porcine CD38 exhibits prominent secondary NAD(+) cyclase activity.

    Science.gov (United States)

    Ting, Kai Yiu; Leung, Christina F P; Graeff, Richard M; Lee, Hon Cheung; Hao, Quan; Kotaka, Masayo

    2016-03-01

    Cyclic ADP-ribose (cADPR) mobilizes intracellular Ca(2+) stores and activates Ca(2+) influx to regulate a wide range of physiological processes. It is one of the products produced from the catalysis of NAD(+) by the multifunctional CD38/ADP-ribosyl cyclase superfamily. After elimination of the nicotinamide ring by the enzyme, the reaction intermediate of NAD(+) can either be hydrolyzed to form linear ADPR or cyclized to form cADPR. We have previously shown that human CD38 exhibits a higher preference towards the hydrolysis of NAD(+) to form linear ADPR while Aplysia ADP-ribosyl cyclase prefers cyclizing NAD(+) to form cADPR. In this study, we characterized the enzymatic properties of porcine CD38 and revealed that it has a prominent secondary NAD(+) cyclase activity producing cADPR. We also determined the X-ray crystallographic structures of porcine CD38 and were able to observe conformational flexibility at the base of the active site of the enzyme which allow the NAD(+) reaction intermediate to adopt conformations resulting in both hydrolysis and cyclization forming linear ADPR and cADPR respectively. © 2016 The Protein Society.

  7. NAD+/NADH and skeletal muscle mitochondrial adaptations to exercise

    Science.gov (United States)

    White, Amanda T.

    2012-01-01

    The pyridine nucleotides, NAD+ and NADH, are coenzymes that provide oxidoreductive power for the generation of ATP by mitochondria. In skeletal muscle, exercise perturbs the levels of NAD+, NADH, and consequently, the NAD+/NADH ratio, and initial research in this area focused on the contribution of redox control to ATP production. More recently, numerous signaling pathways that are sensitive to perturbations in NAD+(H) have come to the fore, as has an appreciation for the potential importance of compartmentation of NAD+(H) metabolism and its subsequent effects on various signaling pathways. These pathways, which include the sirtuin (SIRT) proteins SIRT1 and SIRT3, the poly(ADP-ribose) polymerase (PARP) proteins PARP1 and PARP2, and COOH-terminal binding protein (CtBP), are of particular interest because they potentially link changes in cellular redox state to both immediate, metabolic-related changes and transcriptional adaptations to exercise. In this review, we discuss what is known, and not known, about the contribution of NAD+(H) metabolism and these aforementioned proteins to mitochondrial adaptations to acute and chronic endurance exercise. PMID:22436696

  8. NAMPT and NAMPT-controlled NAD Metabolism in Vascular Repair.

    Science.gov (United States)

    Wang, Pei; Li, Wen-Lin; Liu, Jian-Min; Miao, Chao-Yu

    2016-06-01

    Vascular repair plays important roles in postischemic remodeling and rehabilitation in cardiovascular and cerebrovascular disease, such as stroke and myocardial infarction. Nicotinamide adenine dinucleotide (NAD), a well-known coenzyme involved in electron transport chain for generation of adenosine triphosphate, has emerged as an important controller regulating various biological signaling pathways. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for NAD biosynthesis in mammals. NAMPT may also act in a nonenzymatic manner, presumably mediated by unknown receptor(s). Rapidly accumulating data in the past decade show that NAMPT and NAMPT-controlled NAD metabolism regulate fundamental biological functions in endothelial cells, vascular smooth muscle cells, and endothelial progenitor cells. The NAD-consuming proteins, including sirtuins, poly-ADP-ribose polymerases (PARPs), and CD38, may contribute to the regulatory effects of NAMPT-NAD axis in these cells and vascular repair. This review discusses the current data regarding NAMPT and NAMPT-controlled NAD metabolism in vascular repair and the clinical potential translational application of NAMPT-related products in treatment of cardiovascular and cerebrovascular disease.

  9. Expression, purification, crystallization and preliminary X-ray analysis of NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver

    International Nuclear Information System (INIS)

    Yoneda, Kazunari; Fukuda, Yudai; Shibata, Takeshi; Araki, Tomohiro; Nikki, Takahiro; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2012-01-01

    An NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver was successfully isolated and crystallized. An NAD(P)H-dependent carbonyl reductase specifically expressed in thyroidectomized chicken fatty liver was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 300 as the precipitant. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 104.26, b = 81.32, c = 77.27 Å, β = 119.43°, and diffracted to 1.86 Å resolution on beamline NE3A at the Photon Factory. The overall R merge was 5.4% and the data completeness was 99.4%

  10. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle.

    Science.gov (United States)

    Frederick, David W; Loro, Emanuele; Liu, Ling; Davila, Antonio; Chellappa, Karthikeyani; Silverman, Ian M; Quinn, William J; Gosai, Sager J; Tichy, Elisia D; Davis, James G; Mourkioti, Foteini; Gregory, Brian D; Dellinger, Ryan W; Redpath, Philip; Migaud, Marie E; Nakamaru-Ogiso, Eiko; Rabinowitz, Joshua D; Khurana, Tejvir S; Baur, Joseph A

    2016-08-09

    NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically depleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells*

    Science.gov (United States)

    VanLinden, Magali R.; Dölle, Christian; Pettersen, Ina K. N.; Kulikova, Veronika A.; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E.; Palmieri, Ferdinando; Nikiforov, Andrey A.; Tronstad, Karl Johan; Ziegler, Mathias

    2015-01-01

    The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD+ biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD+ in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD+ content, we have expressed plant and yeast mitochondrial NAD+ carriers in human cells and observed a profound increase in mitochondrial NAD+. None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD+ content. Surprisingly, constitutive redistribution of NAD+ from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD+ transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD+ levels. These results suggest that a mitochondrial NAD+ transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD+ synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. PMID:26432643

  12. Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells.

    Science.gov (United States)

    VanLinden, Magali R; Dölle, Christian; Pettersen, Ina K N; Kulikova, Veronika A; Niere, Marc; Agrimi, Gennaro; Dyrstad, Sissel E; Palmieri, Ferdinando; Nikiforov, Andrey A; Tronstad, Karl Johan; Ziegler, Mathias

    2015-11-13

    The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD(+) biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD(+) in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD(+) content, we have expressed plant and yeast mitochondrial NAD(+) carriers in human cells and observed a profound increase in mitochondrial NAD(+). None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD(+) content. Surprisingly, constitutive redistribution of NAD(+) from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD(+) transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD(+) levels. These results suggest that a mitochondrial NAD(+) transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD(+) synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Increased Rate of NAD Metabolism Shortens Plant Longevity by Accelerating Developmental Senescence in Arabidopsis.

    Science.gov (United States)

    Hashida, Shin-Nosuke; Itami, Taketo; Takahara, Kentaro; Hirabayashi, Takayuki; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2016-11-01

    NAD is a well-known co-enzyme that mediates hundreds of redox reactions and is the basis of various processes regulating cell responses to different environmental and developmental cues. The regulatory mechanism that determines the amount of cellular NAD and the rate of NAD metabolism remains unclear. We created Arabidopsis thaliana plants overexpressing the NAD synthase (NADS) gene that participates in the final step of NAD biosynthesis. NADS overexpression enhanced the activity of NAD biosynthesis but not the amounts of NAD + , NADH, NADP + or NADPH. However, the amounts of some intermediates were elevated, suggesting that NAD metabolism increased. The NAD redox state was greatly facilitated by an imbalance between NAD generation and degradation in response to bolting. Metabolite profiling and transcriptional analysis revealed that the drastic modulation of NAD redox homeostasis increased tricarboxylic acid flux, causing the ectopic generation of reactive oxygen species. Vascular bundles suffered from oxidative stress, leading to a malfunction in amino acid and organic acid transportation that caused early wilting of the flower stalk and shortened plant longevity, probably due to malnutrition. We concluded that the mechanism regulating the balance between NAD synthesis and degradation is important in the systemic plant response to developmental cues during the growth-phase transition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Nii nad tapsidki meie Ferdinandi / Hannes Rumm

    Index Scriptorium Estoniae

    Rumm, Hannes, 1968-

    2007-01-01

    Allar Jõks ei jätka õiguskantslerina. Ilmunud ka Virumaa Teataja 20. dets. 2007, lk. 11 ; Järva Teataja 20. dets. 2007, lk. 2 ; Sakala 21. dets. 2007, lk. 2 ; Põhjarannik 20. dets. 2007, lk. 2 ; Vooremaa 20. dets. 2007, lk. 2 ; Lääne Elu 20. dets. 2007, lk. 2 ; Nädaline 20. dets. 2007, lk. 4 ; Hiiu Leht 28. dets. 2007, lk. 2 ; Pärnu Postimees 9. jaan. 2008, lk. 15 ; Nädalaleht 21. dets. 2007, lk. 4

  15. Effect of X-rays and u.v.-light on the levels of NAD(P), NAD(P)H and hydroxyproline in Pinus silvestris pollen

    International Nuclear Information System (INIS)

    Zelles, L.

    1978-01-01

    Pollen grains of Pinus Silvestris were irradiated with stimulating and inhibiting doses of X-rays and u.v.-light and the levels of NAD(P), NAD(P)H and hydroxyproline determined during tube growth. Pollen grains irradiated with stimulating doses of X-rays and u.v.-light developed longer tubes, while grains irradiated with inhibiting doses of X-rays and u.v.-light developed shorter tubes than the unirradiated controls. After 32 hr of incubation, the levels of NAD(P), NAD(P)H and hydroxyproline were at their lowest compared with unirradiated pollen. In samples with stimulating doses of irradiation NAD(P) reached its maximum earlier than in samples with inhibiting irradiation. The ratio between the concentrations of NAD(P) and NAD(P)H in the irradiated samples was higher than in the unirradiated control. The hydroxyproline content was higher in irradiated than in unirradiated pollen. (author)

  16. KM3NeT

    CERN Multimedia

    KM3NeT is a large scale next-generation neutrino telescope located in the deep waters of the Mediterranean Sea, optimized for the discovery of galactic neutrino sources emitting in the TeV energy region.

  17. TARGETED, LCMS-BASED METABOLOMICS FOR QUANTITATIVE MEASUREMENT OF NAD+ METABOLITES

    Directory of Open Access Journals (Sweden)

    Samuel AJ Trammell

    2013-01-01

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is a coenzyme for hydride transfer reactions and a substrate for sirtuins and other NAD+-consuming enzymes. The abundance of NAD+, NAD+ biosynthetic intermediates, and related nucleotides reflects the metabolic state of cells and tissues. High performance liquid chromatography (HPLC followed by ultraviolet-visible (UV-Vis spectroscopic analysis of NAD+ metabolites does not offer the specificity and sensitivity necessary for robust quantification of complex samples. Thus, we developed a targeted, quantitative assay of the NAD+ metabolome with the use of HPLC coupled to mass spectrometry. Here we discuss NAD+ metabolism as well as the technical challenges required for reliable quantification of the NAD+ metabolites. The new method incorporates new separations and improves upon a previously published method that suffered from the problem of ionization suppression for particular compounds.

  18. Enhancing NAD+ salvage metabolism is neuroprotective in a PINK1 model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Susann Lehmann

    2017-02-01

    Full Text Available Familial forms of Parkinson's disease (PD caused by mutations in PINK1 are linked to mitochondrial impairment. Defective mitochondria are also found in Drosophila models of PD with pink1 mutations. The co-enzyme nicotinamide adenine dinucleotide (NAD+ is essential for both generating energy in mitochondria and nuclear DNA repair through NAD+-consuming poly(ADP-ribose polymerases (PARPs. We found alterations in NAD+ salvage metabolism in Drosophila pink1 mutants and showed that a diet supplemented with the NAD+ precursor nicotinamide rescued mitochondrial defects and protected neurons from degeneration. Additionally, a mutation of Parp improved mitochondrial function and was neuroprotective in the pink1 mutants. We conclude that enhancing the availability of NAD+ by either the use of a diet supplemented with NAD+ precursors or the inhibition of NAD+-dependent enzymes, such as PARPs, which compete with mitochondria for NAD+, is a viable approach to preventing neurotoxicity associated with mitochondrial defects.

  19. Genetically encoded probes for NAD+/NADH monitoring.

    Science.gov (United States)

    Bilan, Dmitry S; Belousov, Vsevolod V

    2016-11-01

    NAD + and NADH participate in many metabolic reactions. The NAD + /NADH ratio is an important parameter reflecting the general metabolic and redox state of different types of cells. For a long time, in situ and in vivo NAD + /NADH monitoring has been hampered by the lack of suitable tools. The recent development of genetically encoded indicators based on fluorescent proteins linked to specific nucleotide-binding domains has already helped to address this monitoring problem. In this review, we will focus on four available indicators: Peredox, Frex family probes, RexYFP and SoNar. Each indicator has advantages and limitations. We will also discuss the most important points that should be considered when selecting a suitable indicator for certain experimental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy

    Science.gov (United States)

    Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.

    2012-01-01

    Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin

  1. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  2. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Huawen Lin

    2010-09-01

    Full Text Available The essential coenzyme nicotinamide adenine dinucleotide (NAD+ plays important roles in metabolic reactions and cell regulation in all organisms. Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+. Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis, as in plants, or nicotinamide, as in mammals (salvage synthesis. The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO, quinolinate synthetase (QS, quinolate phosphoribosyltransferase (QPT, nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT, and NAD+ synthetase (NS. Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants. We rescued the mutant phenotype by the introduction of BAC DNA (nic2-1 and nic13-1 or plasmids with cloned genes (nic1-1 and nic15-1 into the mutants. NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT constitute the nicotinamide-dependent salvage pathway. A mutation in NAMPT (npt1-1 has no obvious growth defect and is not nicotinamide-dependent. However, double mutant strains with the npt1-1 mutation and any of the nic mutations are inviable. When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+. A homolog of the human SIRT6-like gene, SRT2, is upregulated in the NS mutant, which shows a longer vegetative life span than wild-type cells. Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity.

  3. NAD+ metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus

    Science.gov (United States)

    Cantó, Carles; Menzies, Keir; Auwerx, Johan

    2015-01-01

    NAD+ has emerged as a vital cofactor that can rewire metabolism, activate sirtuins and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD+ metabolism revived interest in NAD+ boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD+ metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited. PMID:26118927

  4. NAD+ Deficits in Age-Related Diseases and Cancer.

    Science.gov (United States)

    Garrido, Amanda; Djouder, Nabil

    2017-08-01

    The phenomenon of aging has gained widespread attention in recent times. Although significant advances have been made to better understand aging and its related pathologies including cancer, there is not yet a clear mechanism explaining why diseases and cancer are inherent parts of the aging process. Finding a unifying equation that could bridge aging and its related diseases would allow therapeutic development and solve an immense human health problem to live longer and better. In this review, we discuss NAD + reduction as the central mechanism that may connect aging to its related pathologies and cancer. NAD + boosters would ensure and ameliorate health quality during aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A Method to Identify Nucleolus-Associated Chromatin Domains (NADs).

    Science.gov (United States)

    Carpentier, Marie-Christine; Picart-Picolo, Ariadna; Pontvianne, Frédéric

    2018-01-01

    The nuclear context needs to be taken into consideration to better understand the mechanisms shaping the epigenome and its organization, and therefore its impact on gene expression. For example, in Arabidopsis, heterochromatin is preferentially localized at the nuclear and the nucleolar periphery. Although chromatin domains associating with the nuclear periphery remain to be identified in plant cells, Nucleolus Associated chromatin Domains (NADs) can be identified thanks to a protocol allowing the isolation of pure nucleoli. We describe here the protocol enabling the identification of NADs in Arabidopsis. Providing the transfer of a nucleolus marker as described here in other crop species, this protocol is broadly applicable.

  6. POTENŢIALUL MORFOLOGIC AL MICROREGIUNII TĂŞNAD

    Directory of Open Access Journals (Sweden)

    Viorel GLIGOR

    2010-11-01

    Full Text Available Morphological potential of the Tăşnad Microregion. This study gave special attention to analyzing the relationship between typology prevail relief (defined as part morphological and morphometric, processes associated modeling (with emphasis on current processes and land use. This has been developed quantitative and qualitative assessments, which revealed various types of surfaces share the defining parameters of Tăşnad Microregion and morphodynamic potential relief. Linking these elements with features biopedological fund, hydro-climatic local conditions and degree of anthropogenic intervention, allowed the identification of dysfunctional situations conditional expression riscogene processes and morphological evaluation of pretability optimal exploitation and use of land.

  7. The reported human NADsyn2 is ammonia-dependent NAD synthetase from a pseudomonad.

    Science.gov (United States)

    Bieganowski, Pawel; Brenner, Charles

    2003-08-29

    Nicotinamide-adenine dinucleotide (NAD+) synthetases catalyze the last step in NAD+ metabolism in the de novo, import, and salvage pathways that originate from tryptophan (or aspartic acid), nicotinic acid, and nicotinamide, respectively, and converge on nicotinic acid mononucleotide. NAD+ synthetase converts nicotinic acid adenine dinucleotide to NAD+ via an adenylylated intermediate. All of the known eukaryotic NAD+ synthetases are glutamine-dependent, hydrolyzing glutamine to glutamic acid to provide the attacking ammonia. In the prokaryotic world, some NAD+ synthetases are glutamine-dependent, whereas others can only use ammonia. Earlier, we noted a perfect correlation between presence of a domain related to nitrilase and glutamine dependence and then proved in the accompanying paper (Bieganowski, P., Pace, H. C., and Brenner, C. (2003) J. Biol. Chem. 278, 33049-33055) that the nitrilase-related domain is an essential, obligate intramolecular, thiol-dependent glutamine amidotransferase in the yeast NAD+ synthetase, Qns1. Independently, human NAD+ synthetase was cloned and shown to depend on Cys-175 for glutamine-dependent but not ammonia-dependent NAD+ synthetase activity. Additionally, it was claimed that a 275 amino acid open reading frame putatively amplified from human glioma cell line LN229 encodes a human ammonia-dependent NAD+ synthetase and this was speculated largely to mediate NAD+ synthesis in human muscle tissues. Here we establish that the so-called NADsyn2 is simply ammonia-dependent NAD+ synthetase from Pseudomonas, which is encoded on an operon with nicotinic acid phosphoribosyltransferase and, in some Pseudomonads, with nicotinamidase.

  8. The NAD/NARB System: Advertising Self-Regulation at Work.

    Science.gov (United States)

    Hays, Robert

    Self-regulation, as defined by the National Advertising Division/National Advertising Review Board (NAD/NARB), is a process whereby the advertising industry regulates itself and turns to the federal government only if the system fails. The NAD/NARB system involves a two-step process: complaints are initially handled by the NAD and then are either…

  9. Simultaneous measurement of NAD metabolome in aged mice tissue using liquid chromatography tandem-mass spectrometry.

    Science.gov (United States)

    Yaku, Keisuke; Okabe, Keisuke; Nakagawa, Takashi

    2018-06-01

    Nicotinamide adenine dinucleotide (NAD) is a major co-factor that mediates multiple biological processes including redox reaction and gene expression. Recently, NAD metabolism has received considerable attention because administration of NAD precursors exhibited beneficial effects against aging-related metabolic disorders in animals. Although numerous studies have reported that NAD levels decline with aging in multiple animal tissues, the pathway and kinetics of NAD metabolism in aged organs are not completely understood. To determine the NAD metabolism upon aging, we developed targeted metabolomics based on an LC/MS/MS system. Our method is simple and applicable to crude biological samples, including culture cells and animal tissues. Unlike a conventional enzymatic cycling assay, our approach can determine NAD and NADH (reduced form of NAD) by performing a single sample preparation. Further, we validated our method using biological samples and investigated the alteration of the NAD metabolome during aging. Consistent with previous reports, the NAD levels in the liver and skeletal muscle decreased with aging. Further, we detected a significant increase in nicotinamide mononucleotide and nicotinamide riboside in the kidney upon aging. The LC/MS/MS-based NAD metabolomics that we have developed is extensively applicable to biomedical studies, and the results will present innovative ideas for the aging studies, especially for that of NAD metabolism. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Changes in NAD content of liver mitochondria from γ-irradiated chick embryos and chickens

    International Nuclear Information System (INIS)

    Dryanovskij, P.G.; Todorov, B.N.

    1977-01-01

    NAD content of liver mitochondria from chick embryos and chickens has been shown to decrease after irradiation with a dose of 1000 rad. The changes are better pronounced in the content of NAD than in that of NADH. The dynamics of changes in NAD and NADH contents are dependent on the embryo's age

  11. NE2561 and NE2611A - are they different?

    International Nuclear Information System (INIS)

    Huntley, R.; Boas, J.; Kotler, L.; Webb, D.; Stucki, G.

    2000-01-01

    Full text: Evidence is mounting that the nominally identical ionization chamber types NE2561 and NE2611A have significantly different energy dependences. This is revealed by comparing the radiation quality correction factors k q . The factor k q is the ratio of the absorbed dose to water calibration factors (for a particular type of ionization chamber) at radiation quality Q to that for 60 Co. k q values for NE2561 and NE2611A chambers have been compared for various kV and MV X-ray beams at several standards laboratories. Measurements at ARPANSA (Australia) on six NE2561 and five NE2611A show a consistent difference in k q of 1-2% for 16 and 19 MV X-rays. Work at OFMET (Switzerland) has shown similar differences at 6 and 18 MV. No such differences are seen at NPL (UK) - this inconsistency is currently ascribed to differences in the radiation beams. Consistent differences of up to 3% between these two chamber types have been observed at both ARPANSA and NRC (Canada) at the BIPM medium energy X-ray intercomparison qualities between 50 kV and 250 kV. We conclude that the two types of chamber should not be regarded as identical. ARPANSA and several other laboratories in Europe and North America will shortly participate in a Euromet project to be coordinated by OFMET, to investigate high energy X-ray beam quality specifiers. This project will provide additional data that may lead to a better understanding of this anomaly. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  12. Physics at DAΦNE

    International Nuclear Information System (INIS)

    Franzini, P.J.

    1995-01-01

    In this talk, I will give a brief description of the φ factory DAΦNE at Frascati, explaining why a φ factory is an interesting place to do new physics, and then discuss the physics that can be done at DAΦNE. I will concentrate on CP violation as it can be studied at DAΦNE. This is, after all, the raison d'etre of DAΦNE. I start with a brief general introduction to CP violation in the KK system, and the distinction between mass-mixing CP violation (ε) and intrinsic CP violation (ε'/ε). After presenting a summary of ε'/ε measurements up to now, and briefly discussing the theory of ε'/ε (the so-called 'penguins'), I will cover the particularities of measuring ε'/ε at a φ factory, such as tagging and interferometry. Finally, I will say a few words about searching for CP violation in modes where it has never before been seen. I will end my talk with a list of other physics topics at DAΦNE, and rare decay branching ratio limits that can be achieved there, just to give a flavor of what else can be done. (author) 8 figs., 2 tabs., 22 refs

  13. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    Directory of Open Access Journals (Sweden)

    Mayumi Yamato

    2016-08-01

    Full Text Available Continuous energy conversion is controlled by reduction–oxidation (redox processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD+/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD+/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity.

  14. Over-expression of NAD kinase in Corynebacterium crenatum and ...

    African Journals Online (AJOL)

    in Corynebacterium crenatum SYPA5-5 and to study its impact in presence of high (HOS) ... Results: In HOS condition, NAD+ kinase activity increased by 116 %, while ... (NADPH), an important co-enzyme during ... Polymerase, TaKaRa) using C. crenatum .... were washed with cold 100 mM PBS (pH 7.5) ..... Catalase and.

  15. In vitro metabolic engineering for the salvage synthesis of NAD(.).

    Science.gov (United States)

    Honda, Kohsuke; Hara, Naoya; Cheng, Maria; Nakamura, Anna; Mandai, Komako; Okano, Kenji; Ohtake, Hisao

    2016-05-01

    Excellent thermal and operational stabilities of thermophilic enzymes can greatly increase the applicability of biocatalysis in various industrial fields. However, thermophilic enzymes are generally incompatible with thermo-labile substrates, products, and cofactors, since they show the maximal activities at high temperatures. Despite their pivotal roles in a wide range of enzymatic redox reactions, NAD(P)(+) and NAD(P)H exhibit relatively low stabilities at high temperatures, tending to be a major obstacle in the long-term operation of biocatalytic chemical manufacturing with thermophilic enzymes. In this study, we constructed an in vitro artificial metabolic pathway for the salvage synthesis of NAD(+) from its degradation products by the combination of eight thermophilic enzymes. The enzymes were heterologously produced in recombinant Escherichia coli and the heat-treated crude extracts of the recombinant cells were directly used as enzyme solutions. When incubated with experimentally optimized concentrations of the enzymes at 60°C, the NAD(+) concentration could be kept almost constant for 15h. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. The NAD(+) precursor nicotinamide riboside decreases exercise performance in rats.

    Science.gov (United States)

    Kourtzidis, Ioannis A; Stoupas, Andreas T; Gioris, Ioannis S; Veskoukis, Aristidis S; Margaritelis, Nikos V; Tsantarliotou, Maria; Taitzoglou, Ioannis; Vrabas, Ioannis S; Paschalis, Vassilis; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD(+)) and its phosphorylated form (NADP(+)) are key molecules in ubiquitous bioenergetic and cellular signaling pathways, regulating cellular metabolism and homeostasis. Thus, supplementation with NAD(+) and NADP(+) precursors emerged as a promising strategy to gain many and multifaceted health benefits. In this proof-of-concept study, we sought to investigate whether chronic nicotinamide riboside administration (an NAD(+) precursor) affects exercise performance. Eighteen Wistar rats were equally divided in two groups that received either saline vehicle or nicotinamide riboside at a dose of 300 mg/kg body weight/day for 21 days via gavage. At the end of the 21-day administration protocol, both groups performed an incremental swimming performance test. The nicotinamide riboside group showed a tendency towards worse physical performance by 35 % compared to the control group at the final 10 % load (94 ± 53 s for the nicotinamide riboside group and 145 ± 59 s for the control group; P = 0.071). Our results do not confirm the previously reported ergogenic effect of nicotinamide riboside. The potentially negative effect of nicotinamide riboside administration on physical performance may be attributed to the pleiotropic metabolic and redox properties of NAD(+) and NADP(+).

  17. Dunnione ameliorates cisplatin ototoxicity through modulation of NAD(+) metabolism.

    Science.gov (United States)

    Kim, Hyung-Jin; Pandit, Arpana; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2016-03-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that cisplatin-induced ototoxicity is related to oxidative stress and DNA damage. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of energy metabolism and cellular homeostasis. Here, we demonstrate that the levels and activities of sirtuin-1 (SIRT1) are suppressed by the reduction of intracellular NAD(+) levels in cisplatin-mediated ototoxicity. We provide evidence that the decreases in SIRT1 activity and expression facilitated by increasing poly(ADP-ribose) polymerase-1 (PARP-1) activation and microRNA-34a levels through cisplatin-mediated p53 activation aggravate the associated ototoxicity. Furthermore, we show that the induction of cellular NAD(+) levels using dunnione, which targets intracellular NQO1, prevents the toxic effects of cisplatin through the regulation of PARP-1 and SIRT1 activity. These results suggest that direct modulation of cellular NAD(+) levels by pharmacological agents could be a promising therapeutic approach for protection from cisplatin-induced ototoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD+ depletion

    Science.gov (United States)

    Sasaki, Yo; Nakagawa, Takashi; Mao, Xianrong; DiAntonio, Aaron; Milbrandt, Jeffrey

    2016-01-01

    Overexpression of the NAD+ biosynthetic enzyme NMNAT1 leads to preservation of injured axons. While increased NAD+ or decreased NMN levels are thought to be critical to this process, the mechanism(s) of this axon protection remain obscure. Using steady-state and flux analysis of NAD+ metabolites in healthy and injured mouse dorsal root ganglion axons, we find that rather than altering NAD+ synthesis, NMNAT1 instead blocks the injury-induced, SARM1-dependent NAD+ consumption that is central to axon degeneration. DOI: http://dx.doi.org/10.7554/eLife.19749.001 PMID:27735788

  19. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment

    Science.gov (United States)

    Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Hubbs, Christopher; Fallahi, Mohammad; Rumbaugh, Gavin; Brantley, Alicia F.

    2015-01-01

    The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer’s, Parkinson’s and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD+) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD+ followed by decreased ATP production, and are completely rescued by treatment with NAD+ or its precursor nicotinamide because of restoration of physiological NAD+ levels. Toxic prion protein-induced NAD+ depletion results from PARP1-independent excessive protein ADP-ribosylations. In vivo, toxic prion protein-induced degeneration of hippocampal neurons is prevented dose-dependently by intracerebral injection of NAD+. Intranasal NAD+ treatment of prion-infected sick mice significantly improves activity and delays motor impairment. Our study reveals NAD+ starvation as a novel mechanism of autophagy activation and neurodegeneration induced by a misfolded amyloidogenic protein. We propose the development of NAD+ replenishment strategies for neuroprotection in prion diseases and possibly other protein misfolding neurodegenerative diseases. PMID:25678560

  20. Pharmacological Inhibitors of NAD Biosynthesis as Potential An ticancer Agents.

    Science.gov (United States)

    Lucas, Stephanie; Soave, Claire; Nabil, Ghazal; Ahmed, Zainab Sabry Othman; Chen, Guohua; El-Banna, Hossny Awad; Dou, Q Ping; Wang, Jian

    2017-01-01

    Alteration of cellular metabolism is a hallmark of cancer, which underlies exciting opportunities to develop effective, anti-cancer therapeutics through inhibition of cancer metabolism. Nicotinamide Adenine Dinucleotide (NAD+), an essential coenzyme of energy metabolism and a signaling molecule linking cellular energy status to a spectrum of molecular regulation, has been shown to be in high demand in a variety of cancer cells. Depletion of NAD+ by inhibition of its key biosynthetic enzymes has become an attractive strategy to target cancer. The main objective of this article is to review the recent patents which develop and implicate the chemical inhibitors of the key NAD+ biosynthetic enzymes for cancer treatment. We first discuss the biological principles of NAD+ metabolism in normal and malignant cells, with a focus on the feasibility of selectively targeting cancer cells by pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT) and indoleamine/tryptophan 2,3-dioxygenases (IDO/TDO), the rate-limiting salvage and de novo NAD+ biosynthetic enzymes, respectively. We then analyze a series of recent patents on development and optimization of chemical scaffolds for inhibiting NAMPT or IDO/TDO enzymes as potential anticancer drugs. Conclusion and Results: We have reviewed 16 relevant patents published since 2015, and summarized the chemical properties, mechanisms of action and proposed applications of the patented compounds. Without a better understanding of the properties of these compounds, their utility for further optimization and clinical use is unknown. For the compounds that have been tested using cell and mouse models of cancer, results look promising and clinical trials are currently ongoing to see if these results translate to improved cancer treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. ETIČNE DILEME PODJETNIKA

    OpenAIRE

    Cvek, Tadej

    2010-01-01

    Etika in morala se skozi čas nenehno spreminjata in nekatere stvari, ki so danes nedovoljene, so bile še pred kratkim dovoljene in obratno. Razlog za to so predvsem družbene in kulturne spremembe, ki vodijo do drugačnih pogledov na stvari in okolico. Skladno z razvojem etike in morale, se razvijajo tudi nove etične teorije, ki še ne dosegajo starejših teorij a vendarle pridobivajo na pomembnosti in kdo ve, mogoče jih bodo kdaj v prihodnosti tudi presegle. Za MNP je pomembno, da razlikuje...

  2. Increasing NAD Synthesis in Muscle via Nicotinamide Phosphoribosyltransferase Is Not Sufficient to Promote Oxidative Metabolism*

    Science.gov (United States)

    Frederick, David W.; Davis, James G.; Dávila, Antonio; Agarwal, Beamon; Michan, Shaday; Puchowicz, Michelle A.; Nakamaru-Ogiso, Eiko; Baur, Joseph A.

    2015-01-01

    The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle. PMID:25411251

  3. Metabolic control by sirtuins and other enzymes that sense NAD(+), NADH, or their ratio

    DEFF Research Database (Denmark)

    Anderson, Kristin A; Madsen, Andreas S; Olsen, Christian A

    2017-01-01

    NAD(+) is a dinucleotide cofactor with the potential to accept electrons in a variety of cellular reduction-oxidation (redox) reactions. In its reduced form, NADH is a ubiquitous cellular electron donor. NAD(+), NADH, and the NAD(+)/NADH ratio have long been known to control the activity of several...... oxidoreductase enzymes. More recently, enzymes outside those participating directly in redox control have been identified that sense these dinucleotides, including the sirtuin family of NAD(+)-dependent protein deacylases. In this review, we highlight examples of non-redox enzymes that are controlled by NAD......(+), NADH, or NAD(+)/NADH. In particular, we focus on the sirtuin family and assess the current evidence that the sirtuin enzymes sense these dinucleotides and discuss the biological conditions under which this might occur; we conclude that sirtuins sense NAD(+), but neither NADH nor the ratio. Finally, we...

  4. NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents

    Science.gov (United States)

    Harkcom, William T.; Ghosh, Ananda K.; Sung, Matthew S.; Matov, Alexandre; Brown, Kevin D.; Giannakakou, Paraskevi; Jaffrey, Samie R.

    2014-01-01

    Nicotinamide adenine dinucleotide (NAD+) is an endogenous enzyme cofactor and cosubstrate that has effects on diverse cellular and physiologic processes, including reactive oxygen species generation, mitochondrial function, apoptosis, and axonal degeneration. A major goal is to identify the NAD+-regulated cellular pathways that may mediate these effects. Here we show that the dynamic assembly and disassembly of microtubules is markedly altered by NAD+. Furthermore, we show that the disassembly of microtubule polymers elicited by microtubule depolymerizing agents is blocked by increasing intracellular NAD+ levels. We find that these effects of NAD+ are mediated by the activation of the mitochondrial sirtuin sirtuin-3 (SIRT3). Overexpression of SIRT3 prevents microtubule disassembly and apoptosis elicited by antimicrotubule agents and knockdown of SIRT3 prevents the protective effects of NAD+ on microtubule polymers. Taken together, these data demonstrate that NAD+ and SIRT3 regulate microtubule polymerization and the efficacy of antimicrotubule agents. PMID:24889606

  5. Kinetic and modelling studies of NAD+ and poly(ethylene glycol)-bound NAD+ in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Vanhommerig, S.A.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1996-01-01

    Poly(ethylene glycol)-bound nicotinamide adenine dinucleotide (PEG-NAD+) has been successfully employed in the continuous production of L-amino acids from the corresponding alpha-keto acids by stereospecific reductive amination. Like many other dehydrogenases also horse liver alcohol dehydrogenase

  6. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-01-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different

  7. NAD Acts as an Integral Regulator of Multiple Defense Layers1[OPEN

    Science.gov (United States)

    Patrit, Oriane; Tcherkez, Guillaume; Gakière, Bertrand

    2016-01-01

    Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea. Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens. PMID:27621425

  8. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-11-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates

  9. Hairpin stabilized fluorescent silver nanoclusters for quantitative detection of NAD+ and monitoring NAD+/NADH based enzymatic reactions.

    Science.gov (United States)

    Jain, Priyamvada; Chakma, Babina; Patra, Sanjukta; Goswami, Pranab

    2017-03-01

    A set of 90 mer long ssDNA candidates, with different degrees of cytosine (C-levels) (% and clusters) was analyzed for their function as suitable Ag-nanocluster (AgNC) nucleation scaffolds. The sequence (P4) with highest C-level (42.2%) emerged as the only candidate supporting the nucleation process as evident from its intense fluorescence peak at λ 660 nm . Shorter DNA subsets derived from P4 with only stable hairpin structures could support the AgNC formation. The secondary hairpin structures were confirmed by PAGE, and CD studies. The number of base pairs in the stem region also contributes to the stability of the hairpins. A shorter 29 mer sequence (Sub 3) (ΔG = -1.3 kcal/mol) with 3-bp in the stem of a 7-mer loop conferred highly stable AgNC. NAD + strongly quenched the fluorescence of Sub 3-AgNC in a concentration dependent manner. Time resolved photoluminescence studies revealed the quenching involves a combined static and dynamic interaction where the binding constant and number of binding sites for NAD + were 0.201 L mol -1 and 3.6, respectively. A dynamic NAD + detection range of 50-500 μM with a limit of detection of 22.3 μM was discerned. The NAD + mediated quenching of AgNC was not interfered by NADH, NADP + , monovalent and divalent ions, or serum samples. The method was also used to follow alcohol dehydrogenase and lactate dehydrogenase catalyzed physiological reactions in a turn-on and turn-off assay, respectively. The proposed method with ssDNA-AgNC could therefore be extended to monitor other NAD + /NADH based enzyme catalyzed reactions in a turn-on/turn-off approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The potential regulatory roles of NAD(+) and its metabolism in autophagy.

    Science.gov (United States)

    Zhang, Dong-Xia; Zhang, Jia-Ping; Hu, Jiong-Yu; Huang, Yue-Sheng

    2016-04-01

    (Macro)autophagy mediates the bulk degradation of defective organelles, long-lived proteins and protein aggregates in lysosomes and plays a critical role in cellular and tissue homeostasis. Defective autophagy processes have been found to contribute to a variety of metabolic diseases. However, the regulatory mechanisms of autophagy are not fully understood. Increasing data indicate that nicotinamide adenine nucleotide (NAD(+)) homeostasis correlates intimately with autophagy. NAD(+) is a ubiquitous coenzyme that functions primarily as an electron carrier of oxidoreductase in multiple redox reactions. Both NAD(+) homeostasis and its metabolism are thought to play critical roles in regulating autophagy. In this review, we discuss how the regulation of NAD(+) and its metabolism can influence autophagy. We focus on the regulation of NAD(+)/NADH homeostasis and the effects of NAD(+) consumption by poly(ADP-ribose) (PAR) polymerase-1 (PARP-1), NAD(+)-dependent deacetylation by sirtuins and NAD(+) metabolites on autophagy processes and the underlying mechanisms. Future studies should provide more direct evidence for the regulation of autophagy processes by NAD(+). A better understanding of the critical roles of NAD(+) and its metabolites on autophagy will shed light on the complexity of autophagy regulation, which is essential for the discovery of new therapeutic tools for autophagy-related diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Role of NAD+ and mitochondrial sirtuins in cardiac and renal diseases.

    Science.gov (United States)

    Hershberger, Kathleen A; Martin, Angelical S; Hirschey, Matthew D

    2017-04-01

    The coenzyme nicotinamide adenine dinucleotide (NAD + ) has key roles in the regulation of redox status and energy metabolism. NAD + depletion is emerging as a major contributor to the pathogenesis of cardiac and renal diseases and NAD + repletion strategies have shown therapeutic potential as a means to restore healthy metabolism and physiological function. The pleotropic roles of NAD + enable several possible avenues by which repletion of this coenzyme could have therapeutic efficacy. In particular, NAD + functions as a co-substrate in deacylation reactions carried out by the sirtuin family of enzymes. These NAD + -dependent deacylases control several aspects of metabolism and a wealth of data suggests that boosting sirtuin activity via NAD + supplementation might be a promising therapy for cardiac and renal pathologies. This Review summarizes the role of NAD + metabolism in the heart and kidney, and highlights the mitochondrial sirtuins as mediators of some of the beneficial effects of NAD + -boosting therapies in preclinical animal models. We surmise that modulating the NAD + -sirtuin axis is a clinically relevant approach to develop new therapies for cardiac and renal diseases.

  12. Uridine monophosphate synthetase enables eukaryotic de novo NAD+ biosynthesis from quinolinic acid.

    Science.gov (United States)

    McReynolds, Melanie R; Wang, Wenqing; Holleran, Lauren M; Hanna-Rose, Wendy

    2017-07-07

    NAD + biosynthesis is an attractive and promising therapeutic target for influencing health span and obesity-related phenotypes as well as tumor growth. Full and effective use of this target for therapeutic benefit requires a complete understanding of NAD + biosynthetic pathways. Here, we report a previously unrecognized role for a conserved phosphoribosyltransferase in NAD + biosynthesis. Because a required quinolinic acid phosphoribosyltransferase (QPRTase) is not encoded in its genome, Caenorhabditis elegans are reported to lack a de novo NAD + biosynthetic pathway. However, all the genes of the kynurenine pathway required for quinolinic acid (QA) production from tryptophan are present. Thus, we investigated the presence of de novo NAD + biosynthesis in this organism. By combining isotope-tracing and genetic experiments, we have demonstrated the presence of an intact de novo biosynthesis pathway for NAD + from tryptophan via QA, highlighting the functional conservation of this important biosynthetic activity. Supplementation with kynurenine pathway intermediates also boosted NAD + levels and partially reversed NAD + -dependent phenotypes caused by mutation of pnc-1 , which encodes a nicotinamidase required for NAD + salvage biosynthesis, demonstrating contribution of de novo synthesis to NAD + homeostasis. By investigating candidate phosphoribosyltransferase genes in the genome, we determined that the conserved uridine monophosphate phosphoribosyltransferase (UMPS), which acts in pyrimidine biosynthesis, is required for NAD + biosynthesis in place of the missing QPRTase. We suggest that similar underground metabolic activity of UMPS may function in other organisms. This mechanism for NAD + biosynthesis creates novel possibilities for manipulating NAD + biosynthetic pathways, which is key for the future of therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. NAD-content and metabolism in the mouse embryo and developing brain

    International Nuclear Information System (INIS)

    Beuningen, M. van; Streffer, C.; Beuningen, D. van

    1986-01-01

    Biochemical studies have shown that NAD is not only the coenzyme of dehydrogenase but also the substrate of poly-(ADPR)-synthetase which is involved in processes of cell proliferation and differentiation. The NAD and protein content was determined in the total embryo and in the CNS 9 to 13 days p.c. The embryos were X-irradiated 9 days p.c. The NAD content increased in the total mouse embryo during the early organogenesis. At the later period a decrease of the NAD content per mg protein was observed. This latter effect was apparently due to an increase of the NAD glycohydrolase activity. This enzyme degrades NAD. A similar development was observed in the developing mouse brain. However, the maximal NAD content per mg protein occurred on day 10 p.c. One of the enzyme activities, which are responsible for NAD synthesis, NMN-pyrophosphorylase, also increased in the brain at the same time. After the injection of C 14-nicotinamide, a precursor of NAD, it was observed that the radioactivity mainly appeared in nicotinamide and NAD. With progressing embryological development less nicotinamide was taken up by the embryonic tissue. When the embryos were X-irradiated on day 9 p.c. with 1.8 Gy the increase of NAD was considerably reduced during the next days, so that also the NAD level per mg protein was reduced. Also the NAD biosynthesis apparently decreased. This was shown again by the reduced NMN-pyrophosphorylase activity. The dose dependance of these effects was studied in the dose range 0.48-1.8 Gy. Two days p.r. most of the radiation effects were normalized again and at later periods even an overshoot of the enzyme activity was observed. The possible relevance of these effects for cell proliferation will be discussed. (orig.)

  14. Badania nad komunikacją międzykulturową

    DEFF Research Database (Denmark)

    Wilczewski, Michał; Søderberg, Anne-Marie

    2017-01-01

    jako badanie narracyjne. Proponujemy, by podejście narracyjne zostało wykorzystane w badaniach nad komunikacją międzykulturową, gdyż oferuje narzędzia dające dostęp do sposobów, w jakie uczestnicy komunikacji opowiadają o swoich międzykulturowych doświadczeniach, do refleksji na ich temat, więc metoda...

  15. Nicotinamide riboside kinase structures reveal new pathways to NAD+.

    Directory of Open Access Journals (Sweden)

    Wolfram Tempel

    2007-10-01

    Full Text Available The eukaryotic nicotinamide riboside kinase (Nrk pathway, which is induced in response to nerve damage and promotes replicative life span in yeast, converts nicotinamide riboside to nicotinamide adenine dinucleotide (NAD+ by phosphorylation and adenylylation. Crystal structures of human Nrk1 bound to nucleoside and nucleotide substrates and products revealed an enzyme structurally similar to Rossmann fold metabolite kinases and allowed the identification of active site residues, which were shown to be essential for human Nrk1 and Nrk2 activity in vivo. Although the structures account for the 500-fold discrimination between nicotinamide riboside and pyrimidine nucleosides, no enzyme feature was identified to recognize the distinctive carboxamide group of nicotinamide riboside. Indeed, nicotinic acid riboside is a specific substrate of human Nrk enzymes and is utilized in yeast in a novel biosynthetic pathway that depends on Nrk and NAD+ synthetase. Additionally, nicotinic acid riboside is utilized in vivo by Urh1, Pnp1, and Preiss-Handler salvage. Thus, crystal structures of Nrk1 led to the identification of new pathways to NAD+.

  16. Emissive Synthetic Cofactors: An Isomorphic, Isofunctional, and Responsive NAD+ Analogue.

    Science.gov (United States)

    Rovira, Alexander R; Fin, Andrea; Tor, Yitzhak

    2017-11-08

    The synthesis, photophysics, and biochemical utility of a fluorescent NAD + analogue based on an isothiazolo[4,3-d]pyrimidine core (N tz AD + ) are described. Enzymatic reactions, photophysically monitored in real time, show N tz AD + and N tz ADH to be substrates for yeast alcohol dehydrogenase and lactate dehydrogenase, respectively, with reaction rates comparable to that of the native cofactors. A drop in fluorescence is seen as N tz AD + is converted to N tz ADH, reflecting a complementary photophysical behavior to that of the native NAD + /NADH. N tz AD + and N tz ADH serve as substrates for NADase, which selectively cleaves the nicotinamide's glycosidic bond yielding tz ADP-ribose. N tz AD + also serves as a substrate for ribosyl transferases, including human adenosine ribosyl transferase 5 (ART5) and Cholera toxin subunit A (CTA), which hydrolyze the nicotinamide and transfer tz ADP-ribose to an arginine analogue, respectively. These reactions can be monitored by fluorescence spectroscopy, in stark contrast to the corresponding processes with the nonemissive NAD + .

  17. In vivo (31) P MRS assessment of intracellular NAD metabolites and NAD(+) /NADH redox state in human brain at 4 T.

    Science.gov (United States)

    Lu, Ming; Zhu, Xiao-Hong; Chen, Wei

    2016-07-01

    NAD(+) and NADH play key roles in cellular respiration. Intracellular redox state defined by the NAD(+) /NADH ratio (RX) reflects the cellular metabolic and physiopathological status. By taking advantage of high/ultrahigh magnetic field strengths, we have recently established a novel in vivo (31) P MRS-based NAD assay for noninvasive and quantitative measurements of intracellular NAD concentrations and redox state in animal and human brains at 16.4 T, 9.4 T and 7 T. To explore its potential for clinical application, in this study we investigated the feasibility of assessing the NAD metabolism and redox state in human brain at a lower field of 4 T by incorporating the (1) H-decoupling technique with the in vivo (31) P NAD assay. The use of (1) H decoupling significantly narrowed the linewidths of NAD and α-ATP resonances, resulting in higher sensitivity and better spectral resolution as compared with the (1) H-coupled (31) P spectrum. These improvements made it possible to reliably quantify cerebral NAD concentrations and RX, consistent with previously reported results obtained from similar age human subjects at 7 T. In summary, this work demonstrates the capability and utility of the (1) H-decoupled (31) P MRS-based NAD assay at lower field strength; thus, it opens new opportunities for studying intracellular NAD metabolism and redox state in human brain at clinical settings. This conclusion is supported by the simulation results, indicating that similar performance and reliability as observed at 4T can be achieved at 3 T with the same signal-to-noise ratio. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.

    Science.gov (United States)

    Wang, Xueying; Zhou, Yongjin J; Wang, Lei; Liu, Wujun; Liu, Yuxue; Peng, Chang; Zhao, Zongbao K

    2017-07-01

    NAD and its reduced form NADH function as essential redox cofactors and have major roles in determining cellular metabolic features. NAD can be synthesized through the deamidated and amidated pathways, for which the key reaction involves adenylylation of nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), respectively. In Escherichia coli , NAD de novo biosynthesis depends on the protein NadD-catalyzed adenylylation of NaMN to nicotinic acid adenine dinucleotide (NaAD), followed by NAD synthase-catalyzed amidation. In this study, we engineered NadD to favor NMN for improved amidated pathway activity. We designed NadD mutant libraries, screened by a malic enzyme-coupled colorimetric assay, and identified two variants, 11B4 (Y84V/Y118D) and 16D8 (A86W/Y118N), with a high preference for NMN. Whereas in the presence of NMN both variants were capable of enabling the viability of cells of E. coli BW25113-derived NAD-auxotrophic strain YJE003, for which the last step of the deamidated pathway is blocked, the 16D8 expression strain could grow without exogenous NMN and accumulated a higher cellular NAD(H) level than BW25113 in the stationary phase. These mutants established fully active amidated NAD biosynthesis and offered a new opportunity to manipulate NAD metabolism for biocatalysis and metabolic engineering. IMPORTANCE Adenylylation of nicotinic acid mononucleotide (NaMN) and adenylylation of nicotinamide mononucleotide (NMN), respectively, are the key steps in the deamidated and amidated pathways for NAD biosynthesis. In most organisms, canonical NAD biosynthesis follows the deamidated pathway. Here we engineered Escherichia coli NaMN adenylyltransferase to favor NMN and expressed the mutant enzyme in an NAD-auxotrophic E. coli strain that has the last step of the deamidated pathway blocked. The engineered strain survived in M9 medium, which indicated the implementation of a functional amidated pathway for NAD biosynthesis. These results enrich

  19. Production of the Ne Auger electrons by Ne/sup +/ bombardment of Mg and Al surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, J; Pepper, S V [National Aeronautics and Space Administration, Cleveland, Ohio (USA). Lewis Research Center

    1976-07-01

    The authors have bombarded Mg and Al surfaces with Ne/sup +/ ions and in this letter present evidence for the production of an inner shell vacancy in the Ne by the asymmetric Ne-Mg and Ne-Al collision. In addition, autoionization states of neutral Ne have been observed. These states are to be distinguished from the more usual case in Auger electron spectroscopy of de-excitation of an ion with a core vacancy.

  20. Biosynthesis of NAD from nicotinic acid and nicotinamide by resting cells of Arthrobacter globiformis

    International Nuclear Information System (INIS)

    Kuwahara, Masaaki

    1978-01-01

    Isotopically labeled nicotinic acid and nicotinamide were incorporated into the metabolites of nicotinic acid-dependent pathway (Preiss-Handler pathway) of the NAD biosynthesis by resting cells of Arthrobacter globiformis. Azaserine and adenosine markedly stimulated the accumulation of NAD in the cells. Radioactive nicotinic acid and nicotinamide were also incorporated into an unknown compound when the cells were incubated in the presence of azaserine. Cell-free extract of the organism showed the NAD synthetase activity, which required ammonium ion and ATP for the amidation of deamido-NAD. Adenosine inhibited the enzyme activity. The organism possessed nicotinamidase, suggesting deamidation is the first step in the biosynthesis of NAD from nicotinamide. The activity was inhibited by NAD, NADP and NMN. (auth.)

  1. NAD+ : A big player in cardiac and skeletal muscle remodeling and aging.

    Science.gov (United States)

    Chaturvedi, Pankaj; Tyagi, Suresh C

    2018-03-01

    In the past decade, NAD+ has gained importance for its beneficial effects as antioxidant and anti-aging molecule. A paper in science by Zhang et al. () has described that NAD+ when replenished, ameliorates muscle dystrophy in mice by improving mitochondrial function. NAD+ was also demonstrated by the authors to improve the life span of mice. Cox et al. () demonstrated the cardiac effects of NAD+ which mitigated chronic heart failure via mitochondrial redox state mechanism. Cox et al. () also demonstrated that NAD+ is provided in the drinking water, it improves cardiac relaxation in volume overload model of heart failure. Although NAD+ has a profound anti-aging and anti-oxidant effects, its effect on humans and use as a dietary supplement needs more exploration. © 2017 Wiley Periodicals, Inc.

  2. Dual emission fluorescent silver nanoclusters for sensitive detection of the biological coenzyme NAD+/NADH.

    Science.gov (United States)

    Yuan, Yufeng; Huang, Kehan; Chang, Mengfang; Qin, Cuifang; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Xu, Jianhua

    2016-02-01

    Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD(+) (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD(+) concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD(+) and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD(+) levels from 100 to 4000 μM, as well as label NAD(+)/NADH (reduced form of NAD) ratios in the range of 1-50. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy.

    Science.gov (United States)

    Yamaguchi, Shintaro; Yoshino, Jun

    2017-05-01

    Nicotinamide adenine dinucleotide (NAD + ) biosynthetic pathway, mediated by nicotinamide phosphoribosyltransferase (NAMPT), a key NAD + biosynthetic enzyme, plays a pivotal role in controlling many biological processes, such as metabolism, circadian rhythm, inflammation, and aging. Over the past decade, NAMPT-mediated NAD + biosynthesis, together with its key downstream mediator, namely the NAD + -dependent protein deacetylase SIRT1, has been demonstrated to regulate glucose and lipid metabolism in a tissue-dependent manner. These discoveries have provided novel mechanistic and therapeutic insights into obesity and its metabolic complications, such as insulin resistance, an important risk factor for developing type 2 diabetes and cardiovascular disease. This review will focus on the importance of adipose tissue NAMPT-mediated NAD + biosynthesis and SIRT1 in the pathophysiology of obesity and insulin resistance. We will also critically explore translational and clinical aspects of adipose tissue NAD + biology. © 2017 WILEY Periodicals, Inc.

  4. The change of intracellular NAD level at the process of fusarium sambucinum growth and development

    International Nuclear Information System (INIS)

    Gulyamova, T.G.; Ehshtukhtarova, M.Kh.; Umarova, G.D.; Kerbalaeva, A.M.; Khalmuradov, A.G.

    1996-01-01

    Alterations of intracellular NAD(Nicotinamide-Adenine Dinucleotide) level have been studied in the process of growth and development of Fusanium sambucinum, selected earlier as a potential NAD producer. It was established that essential fluctuations of NAD concentration are dependent on growth phase, morphological cell type and DNA biosynthesis, that allowed to propose a real linkage between coenzyme pool and replicative activity of cells. (author). 7 refs., 2 figs

  5. Protein-bound NAD(P)H Lifetime is Sensitive to Multiple Fates of Glucose Carbon.

    Science.gov (United States)

    Sharick, Joe T; Favreau, Peter F; Gillette, Amani A; Sdao, Sophia M; Merrins, Matthew J; Skala, Melissa C

    2018-04-03

    While NAD(P)H fluorescence lifetime imaging (FLIM) can detect changes in flux through the TCA cycle and electron transport chain (ETC), it remains unclear whether NAD(P)H FLIM is sensitive to other potential fates of glucose. Glucose carbon can be diverted from mitochondria by the pentose phosphate pathway (via glucose 6-phosphate dehydrogenase, G6PDH), lactate production (via lactate dehydrogenase, LDH), and rejection of carbon from the TCA cycle (via pyruvate dehydrogenase kinase, PDK), all of which can be upregulated in cancer cells. Here, we demonstrate that multiphoton NAD(P)H FLIM can be used to quantify the relative concentrations of recombinant LDH and malate dehydrogenase (MDH) in solution. In multiple epithelial cell lines, NAD(P)H FLIM was also sensitive to inhibition of LDH and PDK, as well as the directionality of LDH in cells forced to use pyruvate versus lactate as fuel sources. Among the parameters measurable by FLIM, only the lifetime of protein-bound NAD(P)H (τ 2 ) was sensitive to these changes, in contrast to the optical redox ratio, mean NAD(P)H lifetime, free NAD(P)H lifetime, or the relative amount of free and protein-bound NAD(P)H. NAD(P)H τ 2 offers the ability to non-invasively quantify diversions of carbon away from the TCA cycle/ETC, which may support mechanisms of drug resistance.

  6. Depletion of NAD pool contributes to impairment of endothelial progenitor cell mobilization in diabetes.

    Science.gov (United States)

    Wang, Pei; Yang, Xi; Zhang, Zheng; Song, Jie; Guan, Yun-Feng; Zou, Da-Jin; Miao, Chao-Yu

    2016-06-01

    The impaired mobilization of endothelial progenitor cells (EPCs) from bone marrow (BM) critically contributes to the diabetes-associated vascular complications. Here, we investigated the relationship between the nicotinamide phosphoribosyltransferase (NAMPT)-controlled nicotinamide adenine dinucleotide (NAD) metabolism and the impaired mobilization of BM-derived EPCs in diabetic condition. The NAMPT-NAD pool in BM and BM-derived EPCs in wild-type (WT) and diabetic db/db mice was determined. Nicotinamide, a natural substrate for NAD biosynthesis, was administrated for 2weeks in db/db mice to examine the influence of enhancing NAD pool on BM and blood EPCs number. The modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein in BM were measured using immunoblotting. The EPCs intracellular NAMPT level and NAD concentration, as well as the blood EPCs number, were compared between 9 healthy people and 16 patients with type 2 diabetes mellitus (T2DM). The T2DM patients were treated with nicotinamide for two weeks and then the blood EPCs number was determined. Moreover, the association between blood EPCs numbers and EPCs intracellular NAD(+)/NAMPT protein levels in 21 healthy individuals was determined. We found that NAD concentration and NAMPT expression in BM and BM-derived EPCs of db/db mice were significantly lower than those in WT mice BM. Enhancing NAD pool not only increased the EPCs intracellular NAD concentration and blood EPCs number, but also improved post-ischemic wound healing and blood reperfusion in db/db mice with hind-limb ischemia model. Enhancing NAD pool rescued the impaired modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein levels in db/db mice BM upon hind-limb ischemia. In addition, enhancing NAD pool significantly inhibited PARP and caspase-3 activates in db/db mice BM. The intracellular NAMPT-NAD pool was positively associated with blood

  7. NAMPT-mediated salvage synthesis of NAD+ controls morphofunctional changes of macrophages.

    Directory of Open Access Journals (Sweden)

    Gerda Venter

    Full Text Available Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H (i.e. NAD+ and NADH and NADP(H (i.e. NADP+ and NADPH play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT, found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+'s cytosolic role in the regulation of morphofunctional characteristics of macrophages.

  8. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats.

    Directory of Open Access Journals (Sweden)

    Nady Braidy

    2011-04-01

    Full Text Available The cofactor nicotinamide adenine dinucleotide (NAD+ has emerged as a key regulator of metabolism, stress resistance and longevity. Apart from its role as an important redox carrier, NAD+ also serves as the sole substrate for NAD-dependent enzymes, including poly(ADP-ribose polymerase (PARP, an important DNA nick sensor, and NAD-dependent histone deacetylases, Sirtuins which play an important role in a wide variety of processes, including senescence, apoptosis, differentiation, and aging. We examined the effect of aging on intracellular NAD+ metabolism in the whole heart, lung, liver and kidney of female wistar rats. Our results are the first to show a significant decline in intracellular NAD+ levels and NAD:NADH ratio in all organs by middle age (i.e.12 months compared to young (i.e. 3 month old rats. These changes in [NAD(H] occurred in parallel with an increase in lipid peroxidation and protein carbonyls (o- and m- tyrosine formation and decline in total antioxidant capacity in these organs. An age dependent increase in DNA damage (phosphorylated H2AX was also observed in these same organs. Decreased Sirt1 activity and increased acetylated p53 were observed in organ tissues in parallel with the drop in NAD+ and moderate over-expression of Sirt1 protein. Reduced mitochondrial activity of complex I-IV was also observed in aging animals, impacting both redox status and ATP production. The strong positive correlation observed between DNA damage associated NAD+ depletion and Sirt1 activity suggests that adequate NAD+ concentrations may be an important longevity assurance factor.

  9. Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing.

    Science.gov (United States)

    Zhou, Can-Can; Yang, Xi; Hua, Xia; Liu, Jian; Fan, Mao-Bing; Li, Guo-Qiang; Song, Jie; Xu, Tian-Ying; Li, Zhi-Yong; Guan, Yun-Feng; Wang, Pei; Miao, Chao-Yu

    2016-08-01

    Ageing is an important risk factor of non-alcoholic fatty liver disease (NAFLD). Here, we investigated whether the deficiency of nicotinamide adenine dinucleotide (NAD(+) ), a ubiquitous coenzyme, links ageing with NAFLD. Hepatic concentrations of NAD(+) , protein levels of nicotinamide phosphoribosyltransferase (NAMPT) and several other critical enzymes regulating NAD(+) biosynthesis, were compared in middle-aged and aged mice or patients. The influences of NAD(+) decline on the steatosis and steatohepatitis were evaluated in wild-type and H247A dominant-negative, enzymically-inactive NAMPT transgenic mice (DN-NAMPT) given normal or high-fat diet (HFD). Hepatic NAD(+) level decreased in aged mice and humans. NAMPT-controlled NAD(+) salvage, but not de novo biosynthesis pathway, was compromised in liver of elderly mice and humans. Given normal chow, middle-age DN-NAMPT mice displayed systemic NAD(+) reduction and had moderate NAFLD phenotypes, including lipid accumulation, enhanced oxidative stress, triggered inflammation and impaired insulin sensitivity in liver. All these NAFLD phenotypes, especially release of pro-inflammatory factors, Kupffer cell accumulation, monocytes infiltration, NLRP3 inflammasome pathway and hepatic fibrosis (Masson's staining and α-SMA staining), deteriorated further under HFD challenge. Oral administration of nicotinamide riboside, a natural NAD(+) precursor, completely corrected these NAFLD phenotypes induced by NAD(+) deficiency alone or HFD, whereas adenovirus-mediated SIRT1 overexpression only partially rescued these phenotypes. These results provide the first evidence that ageing-associated NAD(+) deficiency is a critical risk factor for NAFLD, and suggest that supplementation with NAD(+) substrates may be a promising therapeutic strategy to prevent and treat NAFLD. © 2016 The British Pharmacological Society.

  10. Hepatic NAD+ deficiency as a therapeutic target for non‐alcoholic fatty liver disease in ageing

    Science.gov (United States)

    Zhou, Can‐Can; Yang, Xi; Hua, Xia; Liu, Jian; Fan, Mao‐Bing; Li, Guo‐Qiang; Song, Jie; Xu, Tian‐Ying; Li, Zhi‐Yong; Guan, Yun‐Feng

    2016-01-01

    Abstract Background and Purpose Ageing is an important risk factor of non‐alcoholic fatty liver disease (NAFLD). Here, we investigated whether the deficiency of nicotinamide adenine dinucleotide (NAD+), a ubiquitous coenzyme, links ageing with NAFLD. Experimental Approach Hepatic concentrations of NAD+, protein levels of nicotinamide phosphoribosyltransferase (NAMPT) and several other critical enzymes regulating NAD+ biosynthesis, were compared in middle‐aged and aged mice or patients. The influences of NAD+ decline on the steatosis and steatohepatitis were evaluated in wild‐type and H247A dominant‐negative, enzymically‐inactive NAMPT transgenic mice (DN‐NAMPT) given normal or high‐fat diet (HFD). Key Results Hepatic NAD+ level decreased in aged mice and humans. NAMPT‐controlled NAD+ salvage, but not de novo biosynthesis pathway, was compromised in liver of elderly mice and humans. Given normal chow, middle‐age DN‐NAMPT mice displayed systemic NAD+ reduction and had moderate NAFLD phenotypes, including lipid accumulation, enhanced oxidative stress, triggered inflammation and impaired insulin sensitivity in liver. All these NAFLD phenotypes, especially release of pro‐inflammatory factors, Kupffer cell accumulation, monocytes infiltration, NLRP3 inflammasome pathway and hepatic fibrosis (Masson's staining and α‐SMA staining), deteriorated further under HFD challenge. Oral administration of nicotinamide riboside, a natural NAD+ precursor, completely corrected these NAFLD phenotypes induced by NAD+ deficiency alone or HFD, whereas adenovirus‐mediated SIRT1 overexpression only partially rescued these phenotypes. Conclusions and Implications These results provide the first evidence that ageing‐associated NAD+ deficiency is a critical risk factor for NAFLD, and suggest that supplementation with NAD+ substrates may be a promising therapeutic strategy to prevent and treat NAFLD. PMID:27174364

  11. Monitoring of mercury concentration in atmosphere in Usti nad Labem

    International Nuclear Information System (INIS)

    Synek, V.; Baloch, T.; Otcenasek, J.; Kremlova, S.; Subrt, P.

    2007-01-01

    This study elaborates the observation of mercury pollution of the atmosphere in the city of Usti nad Labem. The biggest source of the polluting mercury in Usti nad Labem is the chlor-alkali production in the factory of Spolchemie Inc. The method of mercury determination applied is based on capturing the mercury contented in a volume of the air on an amalgamator and measuring the mercury by an atomic absorption spectrometer (Perkin -Elmer 4100ZL) equipped with a special adapter after a thermal release of the mercury from the amalgamator. The basic characteristics of this method were evaluated; e.g. the limit of detection and limit of determination are, respectively, 0.43 and 1.4 ng/m 3 , the relative expanded uncertainty is 28 %. The work gives results of long-term (1998-2006) observations in a few localities in Usti nad Labem situated in various distances from the mercury source (e.g. means of 28.6 and 14.1 ng/m3 were obtained, respectively, in places 350 and 700 m far from the electrolysis plant) and also in a different city (Duchcov). The cases with a higher mercury concentration are very frequent so the sets of the obtained results have lognormal distributions. This study statistically compares the total level and variability of the mercury concentrations in the time series. It also investigates their trends, correlations between them and meteorological influences upon the levels of mercury concentration in the air. The effect of the mercury emission from the chlor-alkali plant is dominant. It as the only factor determines when the cases with a high mercury concentration in the atmosphere occur. (author)

  12. Catalases are NAD(PH-dependent tellurite reductases.

    Directory of Open Access Journals (Sweden)

    Iván L Calderón

    2006-12-01

    Full Text Available Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(PH is not required for their dismutase activity. Although NAD(PH protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(PH-dependent reduction of soluble tellurite ion (TeO(3(2- to the less toxic, insoluble metal, tellurium (Te(o, in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical.

  13. Neutrino Interactions in MicroBooNE

    OpenAIRE

    Del Tutto, Marco

    2017-01-01

    MicroBooNE is a liquid-argon-based neutrino experiment, which began collecting data in Fermilab's Booster neutrino beam in October 2015. Physics goals of the experiment include probing the source of the anomalous excess of electron-like events in MiniBooNE. In addition to this, MicroBooNE is carrying out an extensive cross section physics program that will help to probe current theories on neutrino-nucleon interactions and nuclear effects. These proceedings summarise the status of MicroBooNE'...

  14. The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation.

    Science.gov (United States)

    Gazanion, E; Garcia, D; Silvestre, R; Gérard, C; Guichou, J F; Labesse, G; Seveno, M; Cordeiro-Da-Silva, A; Ouaissi, A; Sereno, D; Vergnes, B

    2011-10-01

    NAD+ is a central cofactor that plays important roles in cellular metabolism and energy production in all living cells. Genomics-based reconstruction of NAD+ metabolism revealed that Leishmania protozoan parasites are NAD+ auxotrophs. Consequently, these parasites require assimilating NAD+ precursors (nicotinamide, nicotinic acid, nicotinamide riboside) from their host environment to synthesize NAD+ by a salvage pathway. Nicotinamidase is a key enzyme of this salvage pathway that catalyses conversion of nicotinamide (NAm) to nicotinic acid (Na), and that is absent in higher eukaryotes. We present here the biochemical and functional characterizations of the Leishmania infantum nicotinamidase (LiPNC1). Generation of Lipnc1 null mutants leads to a decrease in NAD+ content, associated with a metabolic shutdown-like phenotype with an extensive lag phase of growth. Both phenotypes could be rescued by an add-back construct or by addition of exogenous Na. In addition, Lipnc1 null mutants were unable to establish a sustained infection in a murine experimental model. Altogether, these results illustrate that NAD+ homeostasis is a fundamental component of Leishmania biology and virulence, and that NAm constitutes its main NAD+ source in the mammalian host. The crystal structure of LiPNC1 we solved allows now the design of rational inhibitors against this new promising therapeutic target. © 2011 Blackwell Publishing Ltd.

  15. Studies of lysine cyclodeaminase from Streptomyces pristinaespiralis: Insights into the complex transition NAD+ state.

    Science.gov (United States)

    Ying, Hanxiao; Wang, Jing; Shi, Ting; Zhao, Yilei; Wang, Xin; Ouyang, Pingkai; Chen, Kequan

    2018-01-01

    Lysine cyclodeaminase (LCD) catalyzes the piperidine ring formation in macrolide-pipecolate natural products metabolic pathways from a lysine substrate through a combination of cyclization and deamination. This enzyme belongs to a unique enzyme class, which uses NAD + as the catalytic prosthetic group instead of as the co-substrate. To understand the molecular details of NAD + functions in lysine cyclodeaminase, we have determined four ternary crystal structure complexes of LCD-NAD + with pipecolic acid (LCD-PA), lysine (LCD-LYS), and an intermediate (LCD-INT) as ligands at 2.26-, 2.00-, 2.17- and 1.80 Å resolutions, respectively. By combining computational studies, a NAD + -mediated "gate keeper" function involving NAD + /NADH and Arg49 that control the binding and entry of the ligand lysine was revealed, confirming the critical roles of NAD + in the substrate access process. Further, in the gate opening form, a substrate delivery tunnel between ε-carboxyl moiety of Glu264 and the α-carboxyl moiety of Asp236 was observed through a comparison of four structure complexes. The LCD structure details including NAD + -mediated "gate keeper" and substrate tunnel may assist in the exploration the NAD + function in this unique enzyme class, and in regulation of macrolide-pipecolate natural product synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Adaptive changes in NAD+ metabolism in ultraviolet light-irradiated murine lymphoma cells

    International Nuclear Information System (INIS)

    Kleczkowska, H.E.; Szumiel, I.; Althaus, F.R.

    1990-01-01

    We have determined the ability of UV254nm-irradiated murine lymphoma cells to adapt their NAD+ metabolism to the increased NAD+ consumption for the poly ADP-ribosylation of chromatin proteins. Two murine lymphoma sublines with differential UV-sensitivity and poly(ADP-ribose) turnover were used as a model system. The first subline, designated LY-R is UV254nm-sensitive and tumorigenic in DBA/2 mice. The second subline, LY-S is UV254nm-resistant and nontumorigenic. Following treatment of these cells with 2 mM benzamide, an inhibitor of the NAD(+)-utilizing enzyme poly(ADP-ribose) polymerase, NAD+ levels slowly increased up to about 160% of control levels after 3 hours. When benzamide was added to these cultures 20 min after UV254nm irradiation, a dramatic transient increase of NAD+ levels was observed within 4 min in LY-R cells and more moderately in LY-S cells. At later times after UV254nm irradiation, the NAD+ levels increased in both sublines reaching up to 200% of the concentrations prior to benzamide treatment. These results demonstrate an adaptative response of NAD+ metabolism to UV254nm irradiation. In parallel, we observed a differential repartitioning of ADP-ribosyl residues between the NAD+ and poly(ADP-ribose) pools of LY-R and LY-S cells that correlates with the differential UV sensitivity of these cells

  17. Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations

    DEFF Research Database (Denmark)

    Rehn, Gustav; Pedersen, Asbjørn Toftgaard; Woodley, John

    2016-01-01

    alcohol dehydrogenases. However, their effective use requires an effective regeneration of the oxidized nicotinamide cofactor (NAD(P)+), which is critical for the economic feasibility of the process. NAD(P)H oxidase is an enzyme class of particular interest for this cofactor regeneration since it enables...

  18. 33 CFR 110.168 - Hampton Roads, Virginia and adjacent waters (Datum: NAD 83).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Hampton Roads, Virginia and adjacent waters (Datum: NAD 83). 110.168 Section 110.168 Navigation and Navigable Waters COAST GUARD..., Virginia and adjacent waters (Datum: NAD 83). (a) Anchorage Grounds—(1) Anchorage A [Naval Anchorage]. The...

  19. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity

    Science.gov (United States)

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-01-01

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075

  20. Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation.

    Science.gov (United States)

    Hsu, Chia George; Burkholder, Thomas J

    2016-12-01

    The balance of ATP production and consumption is reflected in adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD) content and has been associated with phenotypic plasticity in striated muscle. Some studies have suggested that AMPK-dependent plasticity may be an indirect consequence of increased NAD synthesis and SIRT1 activity. The primary goal of this study was to assess the interaction of AMP- and NAD-dependent signaling in adaptation of C2C12 myotubes. Changes in myotube developmental and metabolic gene expression were compared following incubation with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and nicotinamide mononucleotide (NMN) to activate AMPK- and NAD-related signaling. AICAR showed no effect on NAD pool or nampt expression but significantly reduced histone H3 acetylation and GLUT1, cytochrome C oxidase subunit 2 (COX2), and MYH3 expression. In contrast, NMN supplementation for 24 h increased NAD pool by 45 % but did not reduce histone H3 acetylation nor promote mitochondrial gene expression. The combination of AMP and NAD signaling did not induce further metabolic adaptation, but NMN ameliorated AICAR-induced myotube reduction. We interpret these results as indication that AMP and NAD contribute to C2C12 differentiation and metabolic adaptation independently.

  1. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio.

    Science.gov (United States)

    Anderson, Kristin A; Madsen, Andreas S; Olsen, Christian A; Hirschey, Matthew D

    2017-12-01

    NAD + is a dinucleotide cofactor with the potential to accept electrons in a variety of cellular reduction-oxidation (redox) reactions. In its reduced form, NADH is a ubiquitous cellular electron donor. NAD + , NADH, and the NAD + /NADH ratio have long been known to control the activity of several oxidoreductase enzymes. More recently, enzymes outside those participating directly in redox control have been identified that sense these dinucleotides, including the sirtuin family of NAD + -dependent protein deacylases. In this review, we highlight examples of non-redox enzymes that are controlled by NAD + , NADH, or NAD + /NADH. In particular, we focus on the sirtuin family and assess the current evidence that the sirtuin enzymes sense these dinucleotides and discuss the biological conditions under which this might occur; we conclude that sirtuins sense NAD + , but neither NADH nor the ratio. Finally, we identify future studies that might be informative to further interrogate physiological and pathophysiological changes in NAD + and NADH, as well as enzymes like sirtuins that sense and respond to redox changes in the cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Secret Life of NAD(+): An Old Metabolite Controlling New Metabolic Signaling Pathways

    NARCIS (Netherlands)

    Houtkooper, Riekelt H.; Cantó, Carles; Wanders, Ronald J.; Auwerx, Johan

    2010-01-01

    A century after the identification of a coenzymatic activity for NAD(+), NAD(+) metabolism has come into the spotlight again due to the potential therapeutic relevance of a set of enzymes whose activity is tightly regulated by the balance between the oxidized and reduced forms of this metabolite. In

  3. 33 CFR 110.235 - Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). 110.235 Section 110.235 Navigation and Navigable Waters COAST... Pacific Ocean (Mamala Bay), Honolulu Harbor, Hawaii (Datum: NAD 83). (a) The anchorage grounds—(1...

  4. 78 FR 36571 - North American Datum of 1983 (NAD 83) Outer Continental Shelf (OCS) Provisional Official...

    Science.gov (United States)

    2013-06-18

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [MMAA104000] North American Datum of 1983 (NAD 83) Outer Continental Shelf (OCS) Provisional Official Protraction Diagram (OPDs) AGENCY... OPDs. SUMMARY: Notice is hereby given that effective with this publication two NAD 83-based OCS...

  5. NAD and the aging process: Role in life, death and everything in between.

    Science.gov (United States)

    Chini, Claudia C S; Tarragó, Mariana G; Chini, Eduardo N

    2017-11-05

    Life as we know it cannot exist without the nucleotide nicotinamide adenine dinucleotide (NAD). From the simplest organism, such as bacteria, to the most complex multicellular organisms, NAD is a key cellular component. NAD is extremely abundant in most living cells and has traditionally been described to be a cofactor in electron transfer during oxidation-reduction reactions. In addition to participating in these reactions, NAD has also been shown to play a key role in cell signaling, regulating several pathways from intracellular calcium transients to the epigenetic status of chromatin. Thus, NAD is a molecule that provides an important link between signaling and metabolism, and serves as a key molecule in cellular metabolic sensoring pathways. Importantly, it has now been clearly demonstrated that cellular NAD levels decline during chronological aging. This decline appears to play a crucial role in the development of metabolic dysfunction and age-related diseases. In this review we will discuss the molecular mechanisms responsible for the decrease in NAD levels during aging. Since other reviews on this subject have been recently published, we will concentrate on presenting a critical appraisal of the current status of the literature and will highlight some controversial topics in the field. In particular, we will discuss the potential role of the NADase CD38 as a driver of age-related NAD decline. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Deficiency of the Mitochondrial NAD Kinase Causes Stress-Induced Hepatic Steatosis in Mice

    NARCIS (Netherlands)

    Zhang, Kezhong; Kim, Hyunbae; Fu, Zhiyao; Qiu, Yining; Yang, Zhao; Wang, Jiemei; Zhang, Deqiang; Tong, Xin; Yin, Lei; Li, Jing; Wu, Jianmei; Qi, Nathan R.; Houten, Sander M.; Zhang, Ren

    2018-01-01

    The mitochondrial nicotinamide adenine dinucleotide (NAD) kinase (NADK2, also called MNADK) catalyzes phosphorylation of NAD to yield NADP. Little is known about the functions of mitochondrial NADP and MNADK in liver physiology and pathology. We investigated the effects of reduced mitochondrial NADP

  7. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Al-Saryi, Nadal A.; Al-Hejjaj, Murtakab Y.; van Roermund, Carlo W. T.; Hulmes, Georgia E.; Ekal, Lakhan; Payton, Chantell; Wanders, Ronald J. A.; Hettema, Ewald H.

    2017-01-01

    In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid beta-oxidation. During this process, NAD(+) is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD(+) by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the

  8. Lucij Anej Seneka: O previdnosti (Zakaj dobre ljudi doletijo nesreče, čeprav obstaja Previdnost (prevod

    Directory of Open Access Journals (Sweden)

    Dragica Fabjan

    2004-12-01

    Full Text Available Vprašal si me, Lucilij, kako to, da se dobrim ljudem pripeti toliko hudega, če pa svetu vlada Previdnost. O tem bi bilo primerneje govoriti v posebni razpravi, kjer bi skušal dokazati, da ves svet vodi božja Previdnost in da Bog bdi nad nami. Tebi pa je ljubše, če iz celote iztrgam le delček in ovržem en sam ugovor, ne da bi se dotaknil spornega vprašanja. Zato bom zagovarjal ravnanje bogov, kar ni tako težko.

  9. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging.

    Science.gov (United States)

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD + (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD + to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD + concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD + Thus, NAD + directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. Copyright © 2017, American Association for the Advancement of Science.

  10. NADS: A Web Applet for Manipulation and Graphical Viewing of Nuclear Data

    International Nuclear Information System (INIS)

    McKinley, M S; Beck, B R; McNabb, D P

    2004-01-01

    We have developed a program called NADS (Nuclear and Atomic Data System) which provides a web-based, user-friendly interface for viewing nuclear data. NADS uses a client/server model. The client is a Java applet that runs in a web browser. The server is a Python code that delivers pointwise data to the applet per user request and then plots the data. The data is also stored in tables for viewing and modifying. NADS can display 2-D, 3-D and 4-D (time sliced) data in a powerful, user-friendly environment. Currently, evaluated nuclear data are available from ENDF/B-V, ENDF/B-VI, JENDL, JEF and Lawrence Livermore National Laboratory's ENDL databases. LLNL's ENDL database has data for neutron, gamma and charged particles as projectiles. In addition to displaying and saving data, NADS has the capability to perform computations with the data. NADS is accessible over the Internet at http://nuclear.llnl.gov/

  11. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity

    NARCIS (Netherlands)

    Cantó, Carles; Houtkooper, Riekelt H.; Pirinen, Eija; Youn, Dou Y.; Oosterveer, Maaike H.; Cen, Yana; Fernandez-Marcos, Pablo J.; Yamamoto, Hiroyasu; Andreux, Pénélope A.; Cettour-Rose, Philippe; Gademann, Karl; Rinsch, Chris; Schoonjans, Kristina; Sauve, Anthony A.; Auwerx, Johan

    2012-01-01

    As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+)

  12. Intracellular Redox State Revealed by In Vivo 31P MRS Measurement of NAD+ and NADH Contents in Brains

    Science.gov (United States)

    Lu, Ming; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei

    2015-01-01

    Purpose Nicotinamide adenine dinucleotide (NAD), in oxidized (NAD+) or reduced (NADH) form, plays key roles in cellular metabolism. Intracellular NAD+/NADH ratio represents the cellular redox state; however, it is difficult to measure in vivo. We report here a novel in vivo 31P MRS method for noninvasive measurement of intracellular NAD concentrations and NAD+/NADH ratio in the brain. Methods It uses a theoretical model to describe the NAD spectral patterns at a given field for quantification. Standard NAD solutions and independent cat brain measurements at 9.4 T and 16.4 T were used to evaluate this method. We also measured T1 values of brain NAD. Results Model simulation and studies of solutions and brains indicate that the proposed method can quantify submillimolar NAD concentrations with reasonable accuracy if adequate 31P MRS signal-to-noise ratio and linewidth were obtained. The NAD concentrations and NAD+/NADH ratio of cat brains measured at 16.4 T and 9.4 T were consistent despite the significantly different T1 values and NAD spectra patterns at two fields. Conclusion This newly established 31P MRS method makes it possible for the first time to noninvasively study the intracellular redox state and its roles in brain functions and diseases, and it can potentially be applied to other organs. PMID:23843330

  13. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  14. NAMPT-Mediated Salvage Synthesis of NAD+ Controls Morphofunctional Changes of Macrophages

    Science.gov (United States)

    Venter, Gerda; Oerlemans, Frank T. J. J.; Willemse, Marieke; Wijers, Mietske; Fransen, Jack A. M.; Wieringa, Bé

    2014-01-01

    Functional morphodynamic behavior of differentiated macrophages is strongly controlled by actin cytoskeleton rearrangements, a process in which also metabolic cofactors ATP and NAD(H) (i.e. NAD+ and NADH) and NADP(H) (i.e. NADP+ and NADPH) play an essential role. Whereas the link to intracellular ATP availability has been studied extensively, much less is known about the relationship between actin cytoskeleton dynamics and intracellular redox state and NAD+-supply. Here, we focus on the role of nicotinamide phosphoribosyltransferase (NAMPT), found in extracellular form as a cytokine and growth factor, and in intracellular form as one of the key enzymes for the production of NAD+ in macrophages. Inhibition of NAD+ salvage synthesis by the NAMPT-specific drug FK866 caused a decrease in cytosolic NAD+ levels in RAW 264.7 and Maf-DKO macrophages and led to significant downregulation of the glycolytic flux without directly affecting cell viability, proliferation, ATP production capacity or mitochondrial respiratory activity. Concomitant with these differential metabolic changes, the capacity for phagocytic ingestion of particles and also substrate adhesion of macrophages were altered. Depletion of cytoplasmic NAD+ induced cell-morphological changes and impaired early adhesion in phagocytosis of zymosan particles as well as spreading performance. Restoration of NAD+ levels by NAD+, NMN, or NADP+ supplementation reversed the inhibitory effects of FK866. We conclude that direct coupling to local, actin-based, cytoskeletal dynamics is an important aspect of NAD+’s cytosolic role in the regulation of morphofunctional characteristics of macrophages. PMID:24824795

  15. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.

    Science.gov (United States)

    Lee, Chi Fung; Chavez, Juan D; Garcia-Menendez, Lorena; Choi, Yongseon; Roe, Nathan D; Chiao, Ying Ann; Edgar, John S; Goo, Young Ah; Goodlett, David R; Bruce, James E; Tian, Rong

    2016-09-20

    Impairments of mitochondrial function in the heart are linked intricately to the development of heart failure, but there is no therapy for mitochondrial dysfunction. We assessed the reduced/oxidized ratio of nicotinamide adenine dinucleotide (NADH/NAD(+) ratio) and protein acetylation in the failing heart. Proteome and acetylome analyses were followed by docking calculation, mutagenesis, and mitochondrial calcium uptake assays to determine the functional role of specific acetylation sites. The therapeutic effects of normalizing mitochondrial protein acetylation by expanding the NAD(+) pool also were tested. Increased NADH/NAD(+) and protein hyperacetylation, previously observed in genetic models of defective mitochondrial function, also are present in human failing hearts as well as in mouse hearts with pathologic hypertrophy. Elevation of NAD(+) levels by stimulating the NAD(+) salvage pathway suppressed mitochondrial protein hyperacetylation and cardiac hypertrophy, and improved cardiac function in responses to stresses. Acetylome analysis identified a subpopulation of mitochondrial proteins that was sensitive to changes in the NADH/NAD(+) ratio. Hyperacetylation of mitochondrial malate-aspartate shuttle proteins impaired the transport and oxidation of cytosolic NADH in the mitochondria, resulting in altered cytosolic redox state and energy deficiency. Furthermore, acetylation of oligomycin-sensitive conferring protein at lysine-70 in adenosine triphosphate synthase complex promoted its interaction with cyclophilin D, and sensitized the opening of mitochondrial permeability transition pore. Both could be alleviated by normalizing the NAD(+) redox balance either genetically or pharmacologically. We show that mitochondrial protein hyperacetylation due to NAD(+) redox imbalance contributes to the pathologic remodeling of the heart via 2 distinct mechanisms. Our preclinical data demonstrate a clear benefit of normalizing NADH/NAD(+) imbalance in the failing hearts

  16. Sources and implications of NADH/NAD+ redox imbalance in diabetes and its complications

    Directory of Open Access Journals (Sweden)

    Wu J

    2016-05-01

    Full Text Available Jinzi Wu,1Zhen Jin,1Hong Zheng,1,2Liang-Jun Yan1 1Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA; 2Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China Abstract: NAD+ is a fundamental molecule in metabolism and redox signaling. In diabetes and its complications, the balance between NADH and NAD+ can be severely perturbed. On one hand, NADH is overproduced due to influx of hyperglycemia to the glycolytic and Krebs cycle pathways and activation of the polyol pathway. On the other hand, NAD+ can be diminished or depleted by overactivation of poly ADP ribose polymerase that uses NAD+ as its substrate. Moreover, sirtuins, another class of enzymes that also use NAD+ as their substrate for catalyzing protein deacetylation reactions, can also affect cellular content of NAD+. Impairment of NAD+ regeneration enzymes such as lactate dehydrogenase in erythrocytes and complex I in mitochondria can also contribute to NADH accumulation and NAD+ deficiency. The consequence of NADH/NAD+ redox imbalance is initially reductive stress that eventually leads to oxidative stress and oxidative damage to macromolecules, including DNA, lipids, and proteins. Accordingly, redox imbalance-triggered oxidative damage has been thought to be a major factor contributing to the development of diabetes and its complications. Future studies on restoring NADH/NAD+ redox balance could provide further insights into design of novel antidiabetic strategies. Keywords: mitochondria, complex I, reactive oxygen species, polyol pathway, poly ADP ribosylation, sirtuins, oxidative stress, oxidative damage

  17. Znečištění ovzduší v Praze, Teplicích a v Prachaticích v uplynulých 15 letech. Porovnání dat a úvaha nad změnami a trendy

    Czech Academy of Sciences Publication Activity Database

    Beneš, I.; Skorkovský, J.; Novák, J.; Šrám, Radim

    5-6, - (2010), s. 18-23 ISSN 1211-0337 R&D Projects: GA MŽP(CZ) SP/1B3/8/08; GA MŽP(CZ) SP/1B3/50/07 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * sulfur dioxide * carbon monoxide Subject RIV: DN - Health Impact of the Environment Quality

  18. MiniBooNE Oscillation Results

    International Nuclear Information System (INIS)

    Djurcic, Zelimir

    2009-01-01

    These proceedings summarize the MiniBooNE ν μ → ν e results, describe the first (bar ν) μ → (bar ν) e result, and current analysis effort with the NuMI neutrinos detected in the miniBooNE detector

  19. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis.

    Science.gov (United States)

    Wang, Guodong; Pichersky, Eran

    2007-03-01

    Nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which is derived from NAD, have important roles as a redox carriers in metabolism. A combination of de novo and salvage pathways contribute to the biosynthesis of NAD in all organisms. The pathways and enzymes of the NAD salvage pathway in yeast and animals, which diverge at nicotinamide, have been extensively studied. Yeast cells convert nicotinamide to nicotinic acid, while mammals lack the enzyme nicotinamidase and instead convert nicotinamide to nicotinamide mononucleotide. Here we show that Arabidopsis thaliana gene At2g22570 encodes a nicotinamidase, which is expressed in all tissues, with the highest levels observed in roots and stems. The 244-residue protein, designated AtNIC1, converts nicotinamide to nicotinic acid and has a Km value of 118 +/- 17 microM and a Kcat value of 0.93 +/- 0.13 sec(-1). Plants homozygous for a null AtNIC1 allele, nic1-1, have lower levels of NAD and NADP under normal growth conditions, indicating that AtNIC1 participates in a yeast-type NAD salvage pathway. Mutant plants also exhibit hypersensitivity to treatments of abscisic acid and NaCl, which is correlated with their inability to increase the cellular levels of NAD(H) under these growth conditions, as occurs in wild-type plants. We also show that the growth of the roots of wild-type but not nic1-1 mutant plants is inhibited and distorted by nicotinamide.

  20. Tributyltin induces mitochondrial fission through NAD-IDH dependent mitofusin degradation in human embryonic carcinoma cells.

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Nakano, Mizuho; Sekino, Yuko; Kanda, Yasunari

    2015-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT acts at the nanomolar level through genomic pathways via the peroxisome proliferator activated receptor (PPAR)/retinoid X receptor (RXR). We recently reported that TBT inhibits cell growth and the ATP content in the human embryonic carcinoma cell line NT2/D1 via a non-genomic pathway involving NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which metabolizes isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we evaluated the effects of TBT on mitochondrial NAD-IDH and energy production. Staining with MitoTracker revealed that nanomolar TBT levels induced mitochondrial fragmentation. TBT also degraded the mitochondrial fusion proteins, mitofusins 1 and 2. Interestingly, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. Incubation with an α-ketoglutarate analogue partially recovered TBT-induced mitochondrial dysfunction, supporting the involvement of NAD-IDH. Our data suggest that nanomolar TBT levels impair mitochondrial quality control via NAD-IDH in NT2/D1 cells. Thus, mitochondrial function in embryonic cells could be used to assess cytotoxicity associated with metal exposure.

  1. Structure of a NAD kinase from Thermotoga maritima at 2.3 Å resolution

    International Nuclear Information System (INIS)

    Oganesyan, Vaheh; Huang, Candice; Adams, Paul D.; Jancarik, Jaru; Yokota, Hisao A.; Kim, Rosalind; Kim, Sung-Hou

    2005-01-01

    The expression, purification, crystallization, and structure determination of NAD-kinase from T. maritima are reported. Similarity to other NAD-kinases as well as homo-oligomrization state of the enzyme from T. maritima are discussed. NAD kinase is the only known enzyme that catalyzes the formation of NADP, a coenzyme involved in most anabolic reactions and in the antioxidant defense system. Despite its importance, very little is known regarding the mechanism of catalysis and only recently have several NAD kinase structures been deposited in the PDB. Here, an independent investigation of the crystal structure of inorganic polyphosphate/ATP-NAD kinase, PPNK-THEMA, a protein from Thermotoga maritima, is reported at a resolution of 2.3 Å. The crystal structure was solved using single-wavelength anomalous diffraction (SAD) data collected at the Se absorption-peak wavelength in a state in which no cofactors or substrates were bound. It revealed that the 258-amino-acid protein is folded into two distinct domains, similar to recently reported NAD kinases. The N-terminal α/β-domain spans the first 100 amino acids and the last 30 amino acids of the polypeptide and has several topological matches in the PDB, whereas the other domain, which spans the middle 130 residues, adopts a unique β-sandwich architecture and only appreciably matches the recently deposited PDB structures of NAD kinases

  2. Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer.

    Science.gov (United States)

    Ju, Huai-Qiang; Zhuang, Zhuo-Nan; Li, Hao; Tian, Tian; Lu, Yun-Xin; Fan, Xiao-Qiang; Zhou, Hai-Jun; Mo, Hai-Yu; Sheng, Hui; Chiao, Paul J; Xu, Rui-Hua

    2016-08-28

    Nicotinamide adenine dinucleotide (NAD) is a crucial cofactor for the redox reactions in the metabolic pathways of cancer cells that have elevated aerobic glycolysis (Warburg effect). Cancer cells are reported to rely on NAD recycling and inhibition of the NAD salvage pathway causes metabolic collapse and cell death. However, the underlying regulatory mechanisms and clinical implications for the NAD salvage pathway in pancreatic ductal adenocarcinoma (PDAC) remain unclear. This study showed that the expression of Nampt, the rate-limiting enzyme of the NAD salvage pathway, was significantly increased in PDAC cells and PDAC tissues. Additionally, inhibition of Nampt impaired tumor growth in vitro and tumorigenesis in vivo, which was accompanied by a decreased cellular NAD level and glycolytic activity. Mechanistically, the Nampt expression was independent of Kras and p16 status, but it was directly regulated by miR-206, which was inversely correlated with the expression of Nampt in PDAC tissues. Importantly, pharmacological inhibition of Nampt by its inhibitor, FK866, significantly enhanced the antitumor activity of gemcitabine in PDAC cells and in orthotopic xenograft mouse models. In conclusion, the present study revealed a novel regulatory mechanism for Nampt in PDAC and suggested that Nampt inhibition may override gemcitabine resistance by decreasing the NAD level and suppressing glycolytic activity, warranting further clinical investigation for pancreatic cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, J.T.; Mende-Mueller, L.M.; Rappuoli, R.; Collier, R.J. (Medical College of Wisconsin, Milwaukee (USA))

    1989-11-01

    UV irradiation was shown to induce efficient transfer of radiolabel from nicotinamide-labeled NAD to a recombinant protein (C180 peptide) containing the catalytic region of the S-1 subunit of pertussis toxin. Incorporation of label from (3H-nicotinamide)NAD was efficient (0.5 to 0.6 mol/mol of protein) relative to incorporation from (32P-adenylate)NAD (0.2 mol/mol of protein). Label from (3H-nicotinamide)NAD was specifically associated with Glu-129. Replacement of Glu-129 with glycine or aspartic acid made the protein refractory to photolabeling with (3H-nicotinamide)NAD, whereas replacement of a nearby glutamic acid, Glu-139, with serine did not. Photolabeling of the C180 peptide with NAD is similar to that observed with diphtheria toxin and exotoxin A of Pseudomonas aeruginosa, in which the nicotinamide portion of NAD is transferred to Glu-148 and Glu-553, respectively, in the two toxins. These results implicate Glu-129 of the S-1 subunit as an active-site residue and a potentially important site for genetic modification of pertussis toxin for development of an acellular vaccine against Bordetella pertussis.

  4. Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD

    International Nuclear Information System (INIS)

    Barbieri, J.T.; Mende-Mueller, L.M.; Rappuoli, R.; Collier, R.J.

    1989-01-01

    UV irradiation was shown to induce efficient transfer of radiolabel from nicotinamide-labeled NAD to a recombinant protein (C180 peptide) containing the catalytic region of the S-1 subunit of pertussis toxin. Incorporation of label from [3H-nicotinamide]NAD was efficient (0.5 to 0.6 mol/mol of protein) relative to incorporation from [32P-adenylate]NAD (0.2 mol/mol of protein). Label from [3H-nicotinamide]NAD was specifically associated with Glu-129. Replacement of Glu-129 with glycine or aspartic acid made the protein refractory to photolabeling with [3H-nicotinamide]NAD, whereas replacement of a nearby glutamic acid, Glu-139, with serine did not. Photolabeling of the C180 peptide with NAD is similar to that observed with diphtheria toxin and exotoxin A of Pseudomonas aeruginosa, in which the nicotinamide portion of NAD is transferred to Glu-148 and Glu-553, respectively, in the two toxins. These results implicate Glu-129 of the S-1 subunit as an active-site residue and a potentially important site for genetic modification of pertussis toxin for development of an acellular vaccine against Bordetella pertussis

  5. NAD+-Carrying Mesoporous Silica Nanoparticles Can Prevent Oxidative Stress-Induced Energy Failures of Both Rodent Astrocytes and PC12 Cells

    Science.gov (United States)

    Chen, Heyu; Wang, Yao; Zhang, Jixi; Ma, Yingxin; Wang, Caixia; Zhou, Ying; Gu, Hongchen; Ying, Weihai

    2013-01-01

    Aim To test the hypothesis that NAD+-carrying mesoporous silica nanoparticles (M-MSNs@NAD+) can effectively deliver NAD+ into cells to produce cytoprotective effects. Methods & Materials NAD+ was incorporated into M-MSNs. Primary rat astrocyte cultures and PC12 cells were treated with H2O2, followed by post-treatment with M-MSNs@NAD+. After various durations of the post-treatment, intracellular NAD+ levels, intracellular ATP levels and lactate dehydrogenase (LDH) release were determined. Results & Discussion M-MSNs can be effectively loaded with NAD+. The M-MSNs@NAD+ can significantly attenuate H2O2-induced NAD+ and ATP decreases in both astrocyte cultures and PC12 cells. M-MSNs@NAD+ can also partially prevent the H2O2-induced LDH release from both astrocyte cultures and PC12 cells. In contrast, the NAD+ that is spontaneously released from the M-MSNs@NAD+ is insufficient to prevent the H2O2-induced damage. Conclusions Our study has suggested the first approach that can effectively deliver NAD+ into cells, which provides an important basis both for elucidating the roles of intracellular NAD+ in biological functions and for therapeutic applications of NAD+. Our study has also provided the first direct evidence demonstrating a key role of NAD+ depletion in oxidative stress-induced ATP decreases. PMID:24040179

  6. Muscle type-specific responses to NAD+ salvage biosynthesis promote muscle function in Caenorhabditis elegans.

    Science.gov (United States)

    Vrablik, Tracy L; Wang, Wenqing; Upadhyay, Awani; Hanna-Rose, Wendy

    2011-01-15

    Salvage biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) from nicotinamide (NAM) lowers NAM levels and replenishes the critical molecule NAD(+) after it is hydrolyzed. This pathway is emerging as a regulator of multiple biological processes. Here we probe the contribution of the NAM-NAD(+) salvage pathway to muscle development and function using Caenorhabditis elegans. C. elegans males with mutations in the nicotinamidase pnc-1, which catalyzes the first step of this NAD(+) salvage pathway, cannot mate due to a spicule muscle defect. Multiple muscle types are impaired in the hermaphrodites, including body wall muscles, pharyngeal muscles and vulval muscles. An active NAD(+) salvage pathway is required for optimal function of each muscle cell type. However, we found surprising muscle-cell-type specificity in terms of both the timing and relative sensitivity to perturbation of NAD(+) production or NAM levels. Active NAD(+) biosynthesis during development is critical for function of the male spicule protractor muscles during adulthood, but these muscles can surprisingly do without salvage biosynthesis in adulthood under the conditions examined. The body wall muscles require ongoing NAD(+) salvage biosynthesis both during development and adulthood for maximum function. The vulval muscles do not function in the presence of elevated NAM concentrations, but NAM supplementation is only slightly deleterious to body wall muscles during development or upon acute application in adults. Thus, the pathway plays distinct roles in different tissues. As NAM-NAD(+) biosynthesis also impacts muscle differentiation in vertebrates, we propose that similar complexities may be found among vertebrate muscle cell types. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Elongator Plays a Positive Role in Exogenous NAD-Induced Defense Responses in Arabidopsis.

    Science.gov (United States)

    An, Chuanfu; Ding, Yezhang; Zhang, Xudong; Wang, Chenggang; Mou, Zhonglin

    2016-05-01

    Extracellular NAD is emerging as an important signal molecule in animal cells, but its role in plants has not been well-established. Although it has been shown that exogenous NAD(+) activates defense responses in Arabidopsis, components in the exogenous NAD(+)-activated defense pathway remain to be fully discovered. In a genetic screen for mutants insensitive to exogenous NAD(+) (ien), we isolated a mutant named ien2. Map-based cloning revealed that IEN2 encodes ELONGATA3 (ELO3)/AtELP3, a subunit of the Arabidopsis Elongator complex, which functions in multiple biological processes, including histone modification, DNA (de)methylation, and transfer RNA modification. Mutations in the ELO3/AtELP3 gene compromise exogenous NAD(+)-induced expression of pathogenesis-related (PR) genes and resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326, and transgenic expression of the coding region of ELO3/AtELP3 in elo3/Atelp3 restores NAD(+) responsiveness to the mutant plants, demonstrating that ELO3/AtELP3 is required for exogenous NAD(+)-induced defense responses. Furthermore, mutations in genes encoding the other five Arabidopsis Elongator subunits (ELO2/AtELP1, AtELP2, ELO1/AtELP4, AtELP5, and AtELP6) also compromise exogenous NAD(+)-induced PR gene expression and resistance to P. syringae pv. maculicola ES4326. These results indicate that the Elongator complex functions as a whole in exogenous NAD(+)-activated defense signaling in Arabidopsis.

  8. NAD(+) Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair

    DEFF Research Database (Denmark)

    Fang, Evandro Fei; Kassahun, Henok; Croteau, Deborah L

    2016-01-01

    and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD(+), and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD(+) reduce the severity of A-T neuropathology, normalize neuromuscular...... function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD(+) also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial...

  9. The MiniBooNE detector

    International Nuclear Information System (INIS)

    Aguilar-Arevalo, A.A.; Anderson, C.E.; Bartoszek, L.M.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; Curioni, A.; Djurcic, Z.; Finley, D.A.; Fleming, B.T.; Ford, R.; Garcia, F.G.; Garvey, G.T.; Green, C.; Green, J.A.

    2009-01-01

    The MiniBooNE neutrino detector was designed and built to look for ν μ →ν e oscillations in the (sin 2 2θ,Δm 2 ) parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and baseline that were an order of magnitude larger than those of LSND so that the backgrounds and systematic errors would be completely different. This paper provides a detailed description of the design, function, and performance of the MiniBooNE detector.

  10. The NeXus data format

    OpenAIRE

    Könnecke, Mark; Akeroyd, Frederick A.; Osborn, Raymond; Peterson, Peter F.; Richter, Tobias; Suzuki, Jiro; Watts, Benjamin; Wintersberger, Eugen; Wuttke, Joachim; Bernstein, Herbert J.; Brewster, Aaron S.; Campbell, Stuart I.; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe

    2015-01-01

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamlin...

  11. The MiniBooNE Detector

    OpenAIRE

    MiniBooNE Collaboration

    2008-01-01

    The MiniBooNE neutrino detector was designed and built to look for muon-neutrino to electron-neutrino oscillations in the mixing parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and baseline that were an order of magnitude larger than those of LSND so that the backgrounds and systematic errors would be completely different. This paper provides a detailed description of the design, function, and performance of the MiniBooNE detector.

  12. The NeXus data format.

    Science.gov (United States)

    Könnecke, Mark; Akeroyd, Frederick A; Bernstein, Herbert J; Brewster, Aaron S; Campbell, Stuart I; Clausen, Björn; Cottrell, Stephen; Hoffmann, Jens Uwe; Jemian, Pete R; Männicke, David; Osborn, Raymond; Peterson, Peter F; Richter, Tobias; Suzuki, Jiro; Watts, Benjamin; Wintersberger, Eugen; Wuttke, Joachim

    2015-02-01

    NeXus is an effort by an international group of scientists to define a common data exchange and archival format for neutron, X-ray and muon experiments. NeXus is built on top of the scientific data format HDF5 and adds domain-specific rules for organizing data within HDF5 files, in addition to a dictionary of well defined domain-specific field names. The NeXus data format has two purposes. First, it defines a format that can serve as a container for all relevant data associated with a beamline. This is a very important use case. Second, it defines standards in the form of application definitions for the exchange of data between applications. NeXus provides structures for raw experimental data as well as for processed data.

  13. UCB-NE-107 user's manual

    International Nuclear Information System (INIS)

    Lee, W.W.L.

    1989-03-01

    The purpose of this manual is to provide users of UCB-NE-107 with the information necessary to use UCB-NE-107 effectively. UCB-NE-107 is a computer code for calculating the fractional rate of readily soluble radionuclides that are released from nuclear waste emplaced in water-saturated porous media. Waste placed in such environments will gradually dissolve. For many species such as actinides and rare earths, the process of dissolution is governed by the exterior flow field, and the chemical reaction rate or leaching rate. However, for readily soluble species such as 135 Cs, 137 Cs, and 129 I, it has been observed that their dissolution rates are rapid. UCB-NE-107 is a code for calculating the release rate at the waste/rock interface, to check compliance with the US Nuclear Regulatory Commission's (USNRC) subsystem performance objective. It is an implementation of the analytic solution given below. 5 refs., 2 figs

  14. Physics Motivations of SciBooNE

    International Nuclear Information System (INIS)

    Hiraide, K.

    2007-01-01

    SciBooNE is a new experiment for measuring neutrino-nucleus cross sections around one GeV region, which is important for the interpretaion of neutrino oscillation experiments. Physics motivations of the experiment are described here

  15. US Coast Guard Stations in Louisiana, Geographic NAD83, USCG [coast_guard_stations_USCG_1997

    Data.gov (United States)

    Louisiana Geographic Information Center — This is is a point dataset for the locations and attributes of eight US Coast Guard stations in Louisiana. The attributes include name, address, latitude (NAD27),...

  16. Theophylline prevents NAD+ depletion via PARP-1 inhibition in human pulmonary epithelial cells

    International Nuclear Information System (INIS)

    Moonen, Harald J.J.; Geraets, Liesbeth; Vaarhorst, Anika; Bast, Aalt; Wouters, Emiel F.M.; Hageman, Geja J.

    2005-01-01

    Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD + , resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD + pool, and of NAD + -dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD + levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies

  17. Mutations that Allow SIR2 Orthologs to Function in a NAD+-Depleted Environment.

    Science.gov (United States)

    Ondracek, Caitlin R; Frappier, Vincent; Ringel, Alison E; Wolberger, Cynthia; Guarente, Leonard

    2017-03-07

    Sirtuin enzymes depend on NAD + to catalyze protein deacetylation. Therefore, the lowering of NAD + during aging leads to decreased sirtuin activity and may speed up aging processes in laboratory animals and humans. In this study, we used a genetic screen to identify two mutations in the catalytic domain of yeast Sir2 that allow the enzyme to function in an NAD + -depleted environment. These mutant enzymes give rise to a significant increase of yeast replicative lifespan and increase deacetylation by the Sir2 ortholog, SIRT1, in mammalian cells. Our data suggest that these mutations increase the stability of the conserved catalytic sirtuin domain, thereby increasing the catalytic efficiency of the mutant enzymes. Our approach to identifying sirtuin mutants that permit function in NAD + -limited environments may inform the design of small molecules that can maintain sirtuin activity in aging organisms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. NAD+ protects against EAE by regulating CD4+ T-cell differentiation

    Science.gov (United States)

    Tullius, Stefan G.; Biefer, Hector Rodriguez Cetina; Li, Suyan; Trachtenberg, Alexander J.; Edtinger, Karoline; Quante, Markus; Krenzien, Felix; Uehara, Hirofumi; Yang, Xiaoyong; Kissick, Haydn T.; Kuo, Winston P.; Ghiran, Ionita; de la Fuente, Miguel A.; Arredouani, Mohamed S.; Camacho, Virginia; Tigges, John C.; Toxavidis, Vasilis; El Fatimy, Rachid; Smith, Brian D.; Vasudevan, Anju; ElKhal, Abdallah

    2014-01-01

    CD4+ T cells are involved in the development of autoimmunity, including multiple sclerosis (MS). Here we show that nicotinamide adenine dinucleotide (NAD+) blocks experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing immune homeostasis through CD4+IFNγ+IL-10+ T cells and reverses disease progression by restoring tissue integrity via remyelination and neuroregeneration. We show that NAD+ regulates CD4+ T-cell differentiation through tryptophan hydroxylase-1 (Tph1), independently of well-established transcription factors. In the presence of NAD+, the frequency of T-bet−/− CD4+IFNγ+ T cells was twofold higher than wild-type CD4+ T cells cultured in conventional T helper 1 polarizing conditions. Our findings unravel a new pathway orchestrating CD4+ T-cell differentiation and demonstrate that NAD+ may serve as a powerful therapeutic agent for the treatment of autoimmune and other diseases. PMID:25290058

  19. The ultraviolet sensitivity of Cockayne syndrome cells is not a consequence of reduced cellular NAD content

    International Nuclear Information System (INIS)

    Mayne, L.V.; Broughton, B.C.; Lehmann, A.R.

    1984-01-01

    Cells from individuals with Cockayne syndrome (CS) are hypersensitive to the lethal effects of ultraviolet light (uv) and show a number of abnormal biochemical responses following uv-irradiation. Fujiwara et al. recently reported that the NAD contents of CS fibroblasts were lower than those of normal fibroblasts, and that addition of NAD to the cellular growth medium rectified most of the abnormal responses of CS cells to uv-irradiation. In our experiments, however, the cellular NAD contents of normal and CS fibroblasts were similar, and addition of NAD to the growth medium had no effect on the hypersensitivity of CS cells to uv-irradiation, nor did it restore the inability of CS cells to recover normal rates of DNA or RNA synthesis following uv-irradiation

  20. Intracellular NAD(H) levels control motility and invasion of glioma cells.

    NARCIS (Netherlands)

    Horssen, R. van; Willemse, M.P.; Haeger, A.; Attanasio, F.; Guneri, T.; Schwab, A.; Stock, C.M.; Buccione, R.; Fransen, J.A.M.; Wieringa, B.

    2013-01-01

    Oncogenic transformation involves reprogramming of cell metabolism, whereby steady-state levels of intracellular NAD(+) and NADH can undergo dramatic changes while ATP concentration is generally well maintained. Altered expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting

  1. Mitochondrial type II NAD(PH dehydrogenases in fungal cell death

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2015-03-01

    Full Text Available During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(PH dehydrogenases (also called alternative NAD(PH dehydrogenases are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(PH dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(PH dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF-family.

  2. Isotope partitioning for NAD-malic enzyme from Ascaris suum confirms a steady-state random kinetic mechanism

    International Nuclear Information System (INIS)

    Chen, C.Y.; Harris, B.G.; Cook, P.F.

    1988-01-01

    Isotope partitioning studies beginning with E-[ 14 C]NAD, E-[ 14 C] malate, E-[ 14 C] NAD-Mg 2+ , and E-Mg-[ 14 C]malate suggest a steady-state random mechanism for the NAD-malic enzyme. Isotope trapping beginning with E-[ 14 C]NAD and with varying concentrations of Mg 2+ and malate in the chase solution indicates that Mg 2+ is added in rapid equilibrium and must be added prior to malate for productive ternary complex formation. Equal percentage trapping from E-[ 14 C]NAD-Mg and E-Mg-[ 14 C] malate indicates the mechanism is steady-state random with equal off-rates for NAD and malate from E-NAD-Mg-malate. The off-rates for both do not change significantly in the ternary E-Mg-malate and E-NAD-Mg complexes, nor does the off-rate change for NAD from E-NAD. No trapping of malate was obtained from E-[ 14 C] malate, suggesting that this complex is nonproductive. A quantitative analysis of the data allows an estimation of values for a number of the rate constants along the reaction pathway

  3. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation.

    Science.gov (United States)

    Ryu, Dongryeol; Zhang, Hongbo; Ropelle, Eduardo R; Sorrentino, Vincenzo; Mázala, Davi A G; Mouchiroud, Laurent; Marshall, Philip L; Campbell, Matthew D; Ali, Amir Safi; Knowels, Gary M; Bellemin, Stéphanie; Iyer, Shama R; Wang, Xu; Gariani, Karim; Sauve, Anthony A; Cantó, Carles; Conley, Kevin E; Walter, Ludivine; Lovering, Richard M; Chin, Eva R; Jasmin, Bernard J; Marcinek, David J; Menzies, Keir J; Auwerx, Johan

    2016-10-19

    Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD + ) synthesis, consistent with a potential role for the essential cofactor NAD + in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene's muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5'-diphosphate (ADP)-ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD + and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD + levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD + biosynthesis. Replenishing NAD + stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr -/- mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD + repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD + may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures. Copyright © 2016, American Association for the Advancement of Science.

  4. Mitochondrial NAD(PH in vivo: identifying natural indicators of oxidative phosphorylation in the 31P magnetic resonance spectrum.

    Directory of Open Access Journals (Sweden)

    Kevin eConley

    2016-03-01

    Full Text Available Natural indicators provide intrinsic probes of metabolism, biogenesis and oxidative protection. Nicotinamide adenine dinucleotide metabolites (NAD(P are one class of indicators that have roles as co-factors in oxidative phosphorylation, glycolysis and anti-oxidant protection, as well as signaling in the mitochondrial biogenesis pathway. These many roles are made possible by the distinct redox states (NAD(P+ and NAD(PH, which are compartmentalized between cell and mitochondria. Here we provide evidence for detection of NAD(P+ and NAD(PH in separate mitochondrial and cell pools in vivo in human tissue by phosphorus magnetic resonance spectroscopy (31P MRS. These NAD(P pools are identified by chemical standards (NAD+, NADP+ and NADH and by physiological tests. A unique resonance reflecting mitochondrial NAD(PH is revealed by the changes elicited by elevation of mitochondrial oxidation. The decline of NAD(PH with oxidation is matched by a stoichiometric rise in the NAD(P+ peak. This unique resonance also provides a measure of the improvement in mitochondrial oxidation that parallels the greater phosphorylation found after exercise training in these elderly subjects. The implication is that the dynamics of the mitochondrial NAD(PH peak provides an intrinsic probe of the reversal of mitochondrial dysfunction in elderly muscle. Thus non-invasive detection of NAD(P+ and NAD(PH in cell vs. mitochondria yield natural indicators of redox compartmentalization and sensitive intrinsic probes of the improvement of mitochondrial function with an intervention in human tissues in vivo. These natural indicators hold the promise of providing mechanistic insight into metabolism and mitochondrial function in vivo in a range of tissues in health, disease and with treatment.

  5. Novel concept of enzyme selective nicotinamide adenine dinucleotide (NAD)-modified inhibitors based on enzyme taxonomy from the diphosphate conformation of NAD.

    Science.gov (United States)

    Fujii, Mikio; Kitagawa, Yasuyuki; Iida, Shui; Kato, Keisuke; Ono, Machiko

    2015-11-15

    The dihedral angle θ of the diphosphate part of NAD(P) were investigated to distinguish the differences in the binding-conformation of NAD(P) to enzymes and to create an enzyme taxonomy. Furthermore, new inhibitors with fixed dihedral angles showed that enzymes could recognize the differences in the dihedral angle θ. We suggest the taxonomy and the dihedral angle θ are important values for chemists to consider when designing inhibitors and drugs that target enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Demizu, Yosuke; Kurihara, Masaaki; Sekino, Yuko; Kanda, Yasunari

    2014-08-01

    Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.

  7. ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhodospirillum rubrum in vitro

    International Nuclear Information System (INIS)

    Woehle, D.L.; Lueddecke, B.A.; Ludden, P.W.

    1990-01-01

    Glutamine synthetase from the photosynthetic bacterium Rhodospirillum rubrum is the target of both ATP- and NAD-dependent modification. Incubation of R. rubrum cell supernatant with [α- 32 P]NAD results in the labeling of glutamine synthetase and two other unidentified proteins. Dinitrogenase reductase ADP-ribosyltransferase does not appear to be responsible for the modification of glutamine synthetase or the unidentified proteins. The [α- 32 P]ATP- and [α- 32 P] NAD-dependent modifications of R. rubrum glutamine synthetase appear to be exclusive and the two forms of modified glutamine synthetase are separable on two-dimensional gels. Loss of enzymatic activity by glutamine synthetase did not correlate with [α- 32 P]NAD labeling. This is in contrast to inactivation by nonphysiological ADP-ribosylation of other glutamine synthetases by an NAD:arginine ADP-ribosyltransferase from turkey erythrocytes. A 32 P-labeled protein spot comigrates with the NAD-treated glutamine synthetase spot when glutamine synthetase purified from H 3 32 PO 4 -grown cells is analyzed on two-dimensional gels. The adenylylation site of R. rubrum glutamine synthetase has been determined to be Leu-(Asp)-Tyr-Leu-Pro-Pro-Glu-Glu-Leu-Met; the tyrosine residue is the site of modification

  8. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen

    International Nuclear Information System (INIS)

    Pasqualini, Stefania; Tedeschini, Emma; Frenguelli, Giuseppe; Wopfner, Nicole; Ferreira, Fatima; D'Amato, Gennaro; Ederli, Luisa

    2011-01-01

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O 3 ) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O 3 fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O 3 fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O 3 , determined from the mRNA levels of the major allergens. We conclude that O 3 can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. - Highlights: → O 3 reduces the viability of ragweed pollen. → ROS and allergens of ragweed pollen were not affected by O 3 exposure. → O 3 enhances the activity of the ROS-generating enzyme NAD(P)H oxidase. → O 3 increases ragweed pollen allergenicity through NAD(P)H-oxidase stimulation. - This study focuses on the effects of the atmospheric pollutant ozone on ROS content and NAD(P)H oxidase activity of ragweed pollen grains.

  9. MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD+ consumption.

    Science.gov (United States)

    Posavec Marjanović, Melanija; Hurtado-Bagès, Sarah; Lassi, Maximilian; Valero, Vanesa; Malinverni, Roberto; Delage, Hélène; Navarro, Miriam; Corujo, David; Guberovic, Iva; Douet, Julien; Gama-Perez, Pau; Garcia-Roves, Pablo M; Ahel, Ivan; Ladurner, Andreas G; Yanes, Oscar; Bouvet, Philippe; Suelves, Mònica; Teperino, Raffaele; Pospisilik, J Andrew; Buschbeck, Marcus

    2017-11-01

    Histone variants are structural components of eukaryotic chromatin that can replace replication-coupled histones in the nucleosome. The histone variant macroH2A1.1 contains a macrodomain capable of binding NAD + -derived metabolites. Here we report that macroH2A1.1 is rapidly induced during myogenic differentiation through a switch in alternative splicing, and that myotubes that lack macroH2A1.1 have a defect in mitochondrial respiratory capacity. We found that the metabolite-binding macrodomain was essential for sustained optimal mitochondrial function but dispensable for gene regulation. Through direct binding, macroH2A1.1 inhibits basal poly-ADP ribose polymerase 1 (PARP-1) activity and thus reduces nuclear NAD + consumption. The resultant accumulation of the NAD + precursor NMN allows for maintenance of mitochondrial NAD + pools that are critical for respiration. Our data indicate that macroH2A1.1-containing chromatin regulates mitochondrial respiration by limiting nuclear NAD + consumption and establishing a buffer of NAD + precursors in differentiated cells.

  10. NAMPT-Mediated NAD(+) Biosynthesis Is Essential for Vision In Mice.

    Science.gov (United States)

    Lin, Jonathan B; Kubota, Shunsuke; Ban, Norimitsu; Yoshida, Mitsukuni; Santeford, Andrea; Sene, Abdoulaye; Nakamura, Rei; Zapata, Nicole; Kubota, Miyuki; Tsubota, Kazuo; Yoshino, Jun; Imai, Shin-Ichiro; Apte, Rajendra S

    2016-09-27

    Photoreceptor death is the endpoint of many blinding diseases. Identifying unifying pathogenic mechanisms in these diseases may offer global approaches for facilitating photoreceptor survival. We found that rod or cone photoreceptor-specific deletion of nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the major NAD(+) biosynthetic pathway beginning with nicotinamide, caused retinal degeneration. In both cases, we could rescue vision with nicotinamide mononucleotide (NMN). Significantly, retinal NAD(+) deficiency was an early feature of multiple mouse models of retinal dysfunction, including light-induced degeneration, streptozotocin-induced diabetic retinopathy, and age-associated dysfunction. Mechanistically, NAD(+) deficiency caused metabolic dysfunction and consequent photoreceptor death. We further demonstrate that the NAD(+)-dependent mitochondrial deacylases SIRT3 and SIRT5 play important roles in retinal homeostasis and that NAD(+) deficiency causes SIRT3 dysfunction. These findings demonstrate that NAD(+) biosynthesis is essential for vision, provide a foundation for future work to further clarify the mechanisms involved, and identify a unifying therapeutic target for diverse blinding diseases. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. One-electron transfer reactions of the couple NAD./NADH

    International Nuclear Information System (INIS)

    Grodkowski, J.; Neta, P.; Carlson, B.W.; Miller, L.

    1983-01-01

    One-electron transfer reactions involving nicotinamide-adenine dinucleotide in its oxidized and reducd forms (NAD./NADH) were studied by pulse radiolysis in aqueous solutions. One-electron oxidation of NADH by various phenoxyl radicals and phenothiazine cation radicals was found to take place with rate constants in the range of 10 5 to 10 8 M -1 s -1 , depending on the redox potential of the oxidizing species. In all cases, NAD. is formed quantitatively with no indication for the existence of the protonated form (NADH + .). The spectrum of NAD., as well as the rates of oxidation of NADH by phenoxyl and by (chlorpromazine) + . were independent of pH between pH 4.5 and 13.5. Reaction of deuterated NADH indicated only a small kinetic isotope effect. All these findings point to an electron transfer mechanism. On the other hand, attempts to observe the reverse electron transfer, i.e., one-electron reduction of NAD. to NADH by radicals such as semiquinones, showed that k was less than 10 4 to 10 5 M -1 s -1 , so that it was unobservable. Consequently, it was not possible to achieve equilibrium conditions which would have permitted the direct measurement of the redox potential for NAD./NADH. One-electron reduction of NAD. appears to be an unlikely process. 1 table

  12. Nicotinamide dependence of uropathogenic Escherichia coli UTI89 and application of nadB as a neutral insertion site.

    Science.gov (United States)

    Li, Zhaoli; Bouckaert, Julie; Deboeck, Francine; De Greve, Henri; Hernalsteens, Jean-Pierre

    2012-03-01

    NAD and NADP are ubiquitous in the metabolism of Escherichia coli K-12. NAD auxotrophy can be rendered by mutation in any of the three genes nadB, nadA and nadC. The nadB and nadA genes were defined as antivirulence loci in Shigella spp., as a mutation (mainly in nadB) disrupting the synthesis of quinolinate is required for virulence. Uropathogenic E. coli (UPEC) isolates from acute cystitis patients, exhibiting nicotinamide auxotrophy, were of serotype O18 : K1 : H7. E. coli UTI89, the model uropathogenic and O18 : K1 : H7 strain, requires nicotinamide or quinolinate for growth. A mutation in the nadB gene, encoding L-aspartate oxidase, was shown to be responsible for the nicotinamide requirement of UTI89. This was further confirmed by complementation of UTI89 with a recombinant plasmid harbouring the nadB gene of E. coli K-12. An Ala28Val point mutant of the recombinant plasmid failed to support the growth of UTI89 in minimal medium. This proves that the Ala28Val mutation in the NadB gene of UTI89 completely impedes de novo synthesis of nicotinamide. In spontaneous prototrophic revertants of UTI89, the nadB gene has a Val28Ala mutation. Both analyses implicate that the nicotinamide auxotrophy of UTI89 is caused by a single Ala28Val mutation in NadB. We showed that the same mutation is also present in other NAD auxotrophic E. coli O18 strains. No significant differences were observed between the virulence of isogenic NAD auxotrophic and prototrophic strains in the murine ascending urinary tract infection model. Considering these data, we applied the nadB locus as a neutral site for DNA insertions in the bacterial chromosome. We successfully restored the parental phenotype of a fimH mutant by inserting fimH, with a synthetic em7 promoter, into the nadB gene. This neutral insertion site is of significance for further research on the pathogenicity of UPEC.

  13. Kynurenine Pathway Metabolism is Involved in the Maintenance of the Intracellular NAD Concentration in Human Primary Astrocytes

    Directory of Open Access Journals (Sweden)

    Ross Grant

    2010-01-01

    Full Text Available Efficient synthesis of NAD + is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s by which cells of the central nervous system produce NAD + . The aim of this study was to investigate the relationship, between tryptophan degradation via the kynurenine pathway (KP and de novo NAD + synthesis in human astrocytes, a major cell type within the brain. In this study we observed that inhibition of single enzymes of the KP resulted in significant decreases in NAD + levels in astroglial cells after a 24 hr period. We also observed that astrocytes cultured in media deficient in tryptophan, nicotinic acid and nicotinamide resulted in a 50% decrease in NAD + levels after 24 hrs. This decrease in NAD + was partially restored by supplementation of the culture media with either tryptophan or kynurenine, or nicotinic acid or with supply of the salvage pathway precursor nicotinamide.

  14. Kynurenine Pathway Metabolism is Involved in the Maintenance of the Intracellular NAD+ Concentration in Human Primary Astrocytes

    Science.gov (United States)

    Grant, Ross; Nguyen, Susan; Guillemin, Gilles

    2010-01-01

    Efficient synthesis of NAD+ is critical to maintaining cell viability in all organs of the body. However, little is known of the pathway(s) by which cells of the central nervous system produce NAD+. The aim of this study was to investigate the relationship, between tryptophan degradation via the kynurenine pathway (KP) and de novo NAD+ synthesis in human astrocytes, a major cell type within the brain. In this study we observed that inhibition of single enzymes of the KP resulted in significant decreases in NAD+ levels in astroglial cells after a 24 hr period. We also observed that astrocytes cultured in media deficient in tryptophan, nicotinic acid and nicotinamide resulted in a 50% decrease in NAD+ levels after 24 hrs. This decrease in NAD+ was partially restored by supplementation of the culture media with either tryptophan or kynurenine, or nicotinic acid or with supply of the salvage pathway precursor nicotinamide. PMID:22084595

  15. Phosphoribosyl diphosphate synthetase-independent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1996-01-01

    Phosphoribosyl diphosphate-lacking (Δprs) mutant strains of Escherichia coli require NAD, guanosine, uridine, histidine, and tryptophan for growth. NAD is required by phosphoribosyl diphosphate-lacking mutants because of lack of one of the substrates for the quinolinate phosphoribosyltransferase...... reaction, an enzyme of the NAD de novo pathway. Several NAD-independent mutants of a host from which prs had been deleted were isolated; all of them were shown to have lesions in the pstSCAB-phoU operon, in which mutations lead to derepression of the Pho regulon. In addition NAD-independent growth...... was dependent on a functional quinolinate phosphoribosyltransferase. The prs suppressor mutations led to the synthesis of a new phosphoryl compound that may act as a precursor for a new NAD biosynthetic pathway. This compound may be synthesized by the product of an unknown phosphate starvation-inducible gene...

  16. Regulation of NAD(P)H:quininone oxidoreductase by glucocorticoids

    International Nuclear Information System (INIS)

    Pinaire, J.A.; Xiao, G.-H.; Falkner, K.C.; Prough, R.A.

    2004-01-01

    Previous studies in neonatal and adolescent rats as well as adrenalectomized rats have demonstrated that glucocorticoids regulate the expression of the rat NAD(P)H:quinone oxidoreductase gene (QOR). We used primary cultures of rat adult hepatocytes to document that added glucorticoids repress both the basal and 1,2-benzanthracene-induced expression of QOR mRNA by 65-70%. QOR enzyme activity and protein were concomitantly suppressed as well. The monotonic concentration response for repression of QOR gene products up to 100 μM DEX concentration demonstrated that the glucocorticoid receptor (GR) was most likely involved in this process. The lack of effect at higher concentration rules out a role for the Pregnane X receptor in this regulation by DEX. In addition, the anti-glucorticoid RU38486 blocked this negative regulation and the protein synthesis inhibitor cycloheximide had no effect on this repression process. Similar results of GR dependence were observed using a luciferase reporter construct containing the 5'-flanking region of the human QOR gene using HepG2 cells. Collectively, these results demonstrate that GR must directly participate in the negative regulation of QOR gene expression by dexamethasone and other glucocorticoids in vivo

  17. Cross section analyses in MiniBooNE and SciBooNE experiments

    OpenAIRE

    Katori, Teppei

    2013-01-01

    The MiniBooNE experiment (2002-2012) and the SciBooNE experiment (2007-2008) are modern high statistics neutrino experiments, and they developed many new ideas in neutrino cross section analyses. In this note, I discuss selected topics of these analyses.

  18. MicroBooNE: The Search For The MiniBooNE Low Energy Excess

    Energy Technology Data Exchange (ETDEWEB)

    Kaleko, David [Columbia Univ., New York, NY (United States)

    2017-01-01

    This thesis describes work towards the search for a low energy excess in MicroBooNE. What MicroBooNE is, what the low energy excess is, and how one searches for the latter in the former will be described in detail.

  19. The NAD+ metabolism of Leishmania, notably the enzyme nicotinamidase involved in NAD+ salvage, offers prospects for development of anti-parasite chemotherapy.

    Science.gov (United States)

    Michels, Paul A M; Avilán, Luisana

    2011-10-01

    NAD+ plays multiple, essential roles in the cell. As a cofactor in many redox reactions it is key in the cellular energy metabolism and as a substrate it participates in many reactions leading to a variety of covalent modifications of enzymes with major roles in regulation of expression and metabolism. Cells may have the ability to produce this metabolite either via alternative de novo synthesis pathways and/or by different salvage pathways. In this issue of Molecular Microbiology, Gazanion et al. (2011) demonstrate that Leishmania species can only rely on the salvage of NAD+ building blocks. One of the enzymes involved, nicotinamidase, is absent from human cells. The enzyme is important for growth of Leishmania infantum and essential for establishing an infection. The crystal structure of the parasite protein has been solved and shows prospects for design of inhibitors to be used as leads for development of new drugs. Indeed, NAD+ metabolism is currently being considered as a promising drug target in various diseases and the vulnerability of Leishmania for interference of this metabolism has been proved in previous work by the same group, by showing that administration of NAD+ precursors has detrimental effect on the pathogenic, amastigote stage of this parasite. © 2011 Blackwell Publishing Ltd.

  20. NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity

    Directory of Open Access Journals (Sweden)

    Song Peng

    2010-02-01

    Full Text Available Abstract Background NAD+ is a coenzyme for hydride transfer enzymes and a substrate for sirtuins and other NAD+-dependent ADPribose transfer enzymes. In wild-type Saccharomyces cerevisiae, calorie restriction accomplished by glucose limitation extends replicative lifespan in a manner that depends on Sir2 and the NAD+ salvage enzymes, nicotinic acid phosphoribosyl transferase and nicotinamidase. Though alterations in the NAD+ to nicotinamide ratio and the NAD+ to NADH ratio are anticipated by models to account for the effects of calorie restriction, the nature of a putative change in NAD+ metabolism requires analytical definition and quantification of the key metabolites. Results Hydrophilic interaction chromatography followed by tandem electrospray mass spectrometry were used to identify the 12 compounds that constitute the core NAD+ metabolome and 6 related nucleosides and nucleotides. Whereas yeast extract and nicotinic acid increase net NAD+ synthesis in a manner that can account for extended lifespan, glucose restriction does not alter NAD+ or nicotinamide levels in ways that would increase Sir2 activity. Conclusions The results constrain the possible mechanisms by which calorie restriction may regulate Sir2 and suggest that provision of vitamins and calorie restriction extend lifespan by different mechanisms.

  1. Comparative Metabolomic Profiling Reveals That Dysregulated Glycolysis Stemming from Lack of Salvage NAD+ Biosynthesis Impairs Reproductive Development in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Wenqing; McReynolds, Melanie R; Goncalves, Jimmy F; Shu, Muya; Dhondt, Ineke; Braeckman, Bart P; Lange, Stephanie E; Kho, Kelvin; Detwiler, Ariana C; Pacella, Marisa J; Hanna-Rose, Wendy

    2015-10-23

    Temporal developmental progression is highly coordinated in Caenorhabditis elegans. However, loss of nicotinamidase PNC-1 activity slows reproductive development, uncoupling it from its typical progression relative to the soma. Using LC/MS we demonstrate that pnc-1 mutants do not salvage the nicotinamide released by NAD(+) consumers to resynthesize NAD(+), resulting in a reduction in global NAD(+) bioavailability. We manipulate NAD(+) levels to demonstrate that a minor deficit in NAD(+) availability is incompatible with a normal pace of gonad development. The NAD(+) deficit compromises NAD(+) consumer activity, but we surprisingly found no functional link between consumer activity and reproductive development. As a result we turned to a comparative metabolomics approach to identify the cause of the developmental phenotype. We reveal widespread metabolic perturbations, and using complementary pharmacological and genetic approaches, we demonstrate that a glycolytic block accounts for the slow pace of reproductive development. Interestingly, mitochondria are protected from both the deficiency in NAD(+) biosynthesis and the effects of reduced glycolytic output. We suggest that compensatory metabolic processes that maintain mitochondrial activity in the absence of efficient glycolysis are incompatible with the requirements for reproductive development, which requires high levels of cell division. In addition to demonstrating metabolic requirements for reproductive development, this work also has implications for understanding the mechanisms behind therapeutic interventions that target NAD(+) salvage biosynthesis for the purposes of inhibiting tumor growth. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Comparative Metabolomic Profiling Reveals That Dysregulated Glycolysis Stemming from Lack of Salvage NAD+ Biosynthesis Impairs Reproductive Development in Caenorhabditis elegans*

    Science.gov (United States)

    Wang, Wenqing; McReynolds, Melanie R.; Goncalves, Jimmy F.; Shu, Muya; Dhondt, Ineke; Braeckman, Bart P.; Lange, Stephanie E.; Kho, Kelvin; Detwiler, Ariana C.; Pacella, Marisa J.; Hanna-Rose, Wendy

    2015-01-01

    Temporal developmental progression is highly coordinated in Caenorhabditis elegans. However, loss of nicotinamidase PNC-1 activity slows reproductive development, uncoupling it from its typical progression relative to the soma. Using LC/MS we demonstrate that pnc-1 mutants do not salvage the nicotinamide released by NAD+ consumers to resynthesize NAD+, resulting in a reduction in global NAD+ bioavailability. We manipulate NAD+ levels to demonstrate that a minor deficit in NAD+ availability is incompatible with a normal pace of gonad development. The NAD+ deficit compromises NAD+ consumer activity, but we surprisingly found no functional link between consumer activity and reproductive development. As a result we turned to a comparative metabolomics approach to identify the cause of the developmental phenotype. We reveal widespread metabolic perturbations, and using complementary pharmacological and genetic approaches, we demonstrate that a glycolytic block accounts for the slow pace of reproductive development. Interestingly, mitochondria are protected from both the deficiency in NAD+ biosynthesis and the effects of reduced glycolytic output. We suggest that compensatory metabolic processes that maintain mitochondrial activity in the absence of efficient glycolysis are incompatible with the requirements for reproductive development, which requires high levels of cell division. In addition to demonstrating metabolic requirements for reproductive development, this work also has implications for understanding the mechanisms behind therapeutic interventions that target NAD+ salvage biosynthesis for the purposes of inhibiting tumor growth. PMID:26350462

  3. Formation of nicotinamide ribose diphosphate ribose, a new metabolite of the NAD pathway, by growing mycelium of Aspergillus niger

    International Nuclear Information System (INIS)

    Kuwahara, Masaaki

    1976-01-01

    A new step of NAD metabolism was shown in Aspergillus niger. Radioactive nicotinic acid and nicotinamide were incorporated into nicotinamide ribose diphosphate ribose (NAm-RDPR), which had been isolated from the culture filtrate. Its content in the culture medium increased with an increase of culture time, and this compound was proved to be a terminal metabolite in the NAD pathway. The experimental results also showed that the Preiss-Handler pathway and the NAD cycling system function in the NAD biosynthesis in A. niger. A part of the radioactive precursors was also incorporated into an unknown compound. (auth.)

  4. Ketone-Based Metabolic Therapy: Is Increased NAD+ a Primary Mechanism?

    Directory of Open Access Journals (Sweden)

    Marwa Elamin

    2017-11-01

    Full Text Available The ketogenic diet’s (KD anticonvulsant effects have been well-documented for nearly a century, including in randomized controlled trials. Some patients become seizure-free and some remain so after diet cessation. Many recent studies have explored its expanded therapeutic potential in diverse neurological disorders, yet no mechanism(s of action have been established. The diet’s high fat, low carbohydrate composition reduces glucose utilization and promotes the production of ketone bodies. Ketone bodies are a more efficient energy source than glucose and improve mitochondrial function and biogenesis. Cellular energy production depends on the metabolic coenzyme nicotinamide adenine dinucleotide (NAD, a marker for mitochondrial and cellular health. Furthermore, NAD activates downstream signaling pathways (such as the sirtuin enzymes associated with major benefits such as longevity and reduced inflammation; thus, increasing NAD is a coveted therapeutic endpoint. Based on differential NAD+ utilization during glucose- vs. ketone body-based acetyl-CoA generation for entry into the tricarboxylic cycle, we propose that a KD will increase the NAD+/NADH ratio. When rats were fed ad libitum KD, significant increases in hippocampal NAD+/NADH ratio and blood ketone bodies were detected already at 2 days and remained elevated at 3 weeks, indicating an early and persistent metabolic shift. Based on diverse published literature and these initial data we suggest that increased NAD during ketolytic metabolism may be a primary mechanism behind the beneficial effects of this metabolic therapy in a variety of brain disorders and in promoting health and longevity.

  5. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Science.gov (United States)

    Xiao, Yang; Kwong, Mandy; Daemen, Anneleen; Belvin, Marcia; Liang, Xiaorong; Hatzivassiliou, Georgia; O'Brien, Thomas

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD) is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334), one that shows intermediate sensitivity (NCI-H441), and one that is insensitive (LC-KJ). Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP) and had lower reactive oxygen species (ROS) levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  6. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    Full Text Available Nicotinamide adenine dinucleotide (NAD is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM to nicotinamide mononucleotide (NMN, the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334, one that shows intermediate sensitivity (NCI-H441, and one that is insensitive (LC-KJ. Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP and had lower reactive oxygen species (ROS levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  7. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    Science.gov (United States)

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Single sample extraction and HPLC processing for quantification of NAD and NADH levels in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Sporty, J; Kabir, M M; Turteltaub, K; Ognibene, T; Lin, S; Bench, G

    2008-01-10

    A robust redox extraction protocol for quantitative and reproducible metabolite isolation and recovery has been developed for simultaneous measurement of nicotinamide adenine dinucleotide (NAD) and its reduced form, NADH, from Saccharomyces cerevisiae. Following culture in liquid media, approximately 10{sup 8} yeast cells were harvested by centrifugation and then lysed under non-oxidizing conditions by bead blasting in ice-cold, nitrogen-saturated 50-mM ammonium acetate. To enable protein denaturation, ice cold nitrogen-saturated CH{sub 3}CN + 50-mM ammonium acetate (3:1; v:v) was added to the cell lysates. After sample centrifugation to pellet precipitated proteins, organic solvent removal was performed on supernatants by chloroform extraction. The remaining aqueous phase was dried and resuspended in 50-mM ammonium acetate. NAD and NADH were separated by HPLC and quantified using UV-VIS absorbance detection. Applicability of this procedure for quantifying NAD and NADH levels was evaluated by culturing yeast under normal (2% glucose) and calorie restricted (0.5% glucose) conditions. NAD and NADH contents are similar to previously reported levels in yeast obtained using enzymatic assays performed separately on acid (for NAD) and alkali (for NADH) extracts. Results demonstrate that it is possible to perform a single preparation to reliably and robustly quantitate both NAD and NADH contents in the same sample. Robustness of the protocol suggests it will be (1) applicable to quantification of these metabolites in mammalian and bacterial cell cultures; and (2) amenable to isotope labeling strategies to determine the relative contribution of specific metabolic pathways to total NAD and NADH levels in cell cultures.

  9. Reaction cross section for Ne isotopes

    International Nuclear Information System (INIS)

    Panda, R.N.; Sahu, B.K.; Patra, S.K.

    2012-01-01

    In the present contribution, first the bulk properties are calculated, such as binding energy (BE), root mean square charge radius r ch , matter radius r m and quadrupole deformation parameter β 2 for 18-32 Ne isotopes in the Relativistic mean field (RMF) and effective field theory motivated RMF (E-RMF) formalisms . Then the total nuclear reaction cross section σR is analyzes for the scattering of 20 Ne and 28-32 Ne from a 12 C target at 240 MeV/nucleon by using the RMF model. Thus the objective of the present study is to calculate the bulk properties as well as a systematic analysis of σR over a range of neutron rich nuclei in the frame work of Glauber model

  10. NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Onkar Sharma

    2016-03-01

    Full Text Available A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase. When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO, and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells.

  11. Regulation of hydrogen production by Enterobacter aerogenes by external NADH and NAD{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chong; Ma, Kun; Xing, Xin-Hui [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-02-15

    Experiments involving the addition of external nicotinamide adenine dinucleotide, reduced form (NADH) or nicotinamide adenine dinucleotide (NAD{sup +}) have been designed to examine how the hydrogen in Enterobacter aerogenes is liberated by NADH or NAD{sup +}. The addition of external NADH or NAD{sup +} was found to regulate hydrogen production by E. aerogenes in resting cells, batch cultures, and chemostat cultures. Particularly in chemostat cultivation, with the external addition of NADH, hydrogen production via the NADH pathway was decreased, while that via the formate pathway was increased; in the end, the overall hydrogen p was decreased. The addition of NAD{sup +}, on the other hand, gave the opposite results. The membrane-bound hydrogenase was found to play a central role in regulating hydrogen production. The occurrence of NADH oxidation (NAD{sup +} reduction) on the cell membrane resulted in an electron flow across the membrane; this changed the oxidation state and metabolic pattern of the cells, which eventually affected the hydrogen evolution. (author)

  12. An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma.

    Science.gov (United States)

    Gujar, Amit D; Le, Son; Mao, Diane D; Dadey, David Y A; Turski, Alice; Sasaki, Yo; Aum, Diane; Luo, Jingqin; Dahiya, Sonika; Yuan, Liya; Rich, Keith M; Milbrandt, Jeffrey; Hallahan, Dennis E; Yano, Hiroko; Tran, David D; Kim, Albert H

    2016-12-20

    Accumulating evidence suggests cancer cells exhibit a dependency on metabolic pathways regulated by nicotinamide adenine dinucleotide (NAD + ). Nevertheless, how the regulation of this metabolic cofactor interfaces with signal transduction networks remains poorly understood in glioblastoma. Here, we report nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD + synthesis, is highly expressed in glioblastoma tumors and patient-derived glioblastoma stem-like cells (GSCs). High NAMPT expression in tumors correlates with decreased patient survival. Pharmacological and genetic inhibition of NAMPT decreased NAD + levels and GSC self-renewal capacity, and NAMPT knockdown inhibited the in vivo tumorigenicity of GSCs. Regulatory network analysis of RNA sequencing data using GSCs treated with NAMPT inhibitor identified transcription factor E2F2 as the center of a transcriptional hub in the NAD + -dependent network. Accordingly, we demonstrate E2F2 is required for GSC self-renewal. Downstream, E2F2 drives the transcription of members of the inhibitor of differentiation (ID) helix-loop-helix gene family. Finally, we find NAMPT mediates GSC radiation resistance. The identification of a NAMPT-E2F2-ID axis establishes a link between NAD + metabolism and a self-renewal transcriptional program in glioblastoma, with therapeutic implications for this formidable cancer.

  13. Investigation of the NADH/NAD+ ratio in Ralstonia eutropha using the fluorescence reporter protein Peredox.

    Science.gov (United States)

    Tejwani, Vijay; Schmitt, Franz-Josef; Wilkening, Svea; Zebger, Ingo; Horch, Marius; Lenz, Oliver; Friedrich, Thomas

    2017-01-01

    Ralstonia eutropha is a hydrogen-oxidizing ("Knallgas") bacterium that can easily switch between heterotrophic and autotrophic metabolism to thrive in aerobic and anaerobic environments. Its versatile metabolism makes R. eutropha an attractive host for biotechnological applications, including H 2 -driven production of biodegradable polymers and hydrocarbons. H 2 oxidation by R. eutropha takes place in the presence of O 2 and is mediated by four hydrogenases, which represent ideal model systems for both biohydrogen production and H 2 utilization. The so-called soluble hydrogenase (SH) couples reversibly H 2 oxidation with the reduction of NAD + to NADH and has already been applied successfully in vitro and in vivo for cofactor regeneration. Thus, the interaction of the SH with the cellular NADH/NAD + pool is of major interest. In this work, we applied the fluorescent biosensor Peredox to measure the [NADH]:[NAD + ] ratio in R. eutropha cells under different metabolic conditions. The results suggest that the sensor operates close to saturation level, indicating a rather high [NADH]:[NAD + ] ratio in aerobically grown R. eutropha cells. Furthermore, we demonstrate that multicomponent analysis of spectrally-resolved fluorescence lifetime data of the Peredox sensor response to different [NADH]:[NAD + ] ratios represents a novel and sensitive tool to determine the redox state of cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Upregulation of mitochondrial NAD+ levels impairs the clonogenicity of SSEA1+ glioblastoma tumor-initiating cells.

    Science.gov (United States)

    Son, Myung Jin; Ryu, Jae-Sung; Kim, Jae Yun; Kwon, Youjeong; Chung, Kyung-Sook; Mun, Seon Ju; Cho, Yee Sook

    2017-06-09

    Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD + ) metabolism. However, the functional role of NAD + metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD + levels affect the characteristics of glioma-driven SSEA1 + TICs, including clonogenic growth potential. An increase in the mitochondrial NAD + levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD + levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors.

  15. Isonicotinamide Enhances Sir2 Protein-mediated Silencing and Longevity in Yeast by Raising Intracellular NAD+ Concentration*

    Science.gov (United States)

    McClure, Julie M.; Wierman, Margaret B.; Maqani, Nazif; Smith, Jeffrey S.

    2012-01-01

    Sirtuins are an evolutionarily conserved family of NAD+-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD+ concentration through the combined action of NAD+ biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD+ precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD+ salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD+ concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD+. The INAM-induced increase in NAD+ was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD+ salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD+. We also provide evidence suggesting that INAM influences the expression of multiple NAD+ biosynthesis and salvage pathways to promote homeostasis during stationary phase. PMID:22539348

  16. Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration.

    Science.gov (United States)

    McClure, Julie M; Wierman, Margaret B; Maqani, Nazif; Smith, Jeffrey S

    2012-06-15

    Sirtuins are an evolutionarily conserved family of NAD(+)-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD(+) concentration through the combined action of NAD(+) biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD(+) precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD(+) salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD(+) concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD(+). The INAM-induced increase in NAD(+) was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD(+) salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD(+). We also provide evidence suggesting that INAM influences the expression of multiple NAD(+) biosynthesis and salvage pathways to promote homeostasis during stationary phase.

  17. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    Science.gov (United States)

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  18. Neutron spectrometer using NE218 liquid scintillator

    International Nuclear Information System (INIS)

    Dance, J.B.; Francois, P.E.

    1976-01-01

    A neutron spectrometer has been constructed using NE218 liquid scintillator. Discrimination against electron-gamma events was obtained usng a charge-comparison pulse shape discrimination system. The resolution obtained was about 0.25 MeV F.W.H.M. at 2.0 MeV

  19. Ne beam-Kr target interaction

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, V E; Kostin, V V; Vorob` ev, V S [Russian Academy of Sciences, Moscow (Russian Federation). High Energy Density Research Center; Kulish, M I; Mintsev, V B [Russian Academy of Sciences, Chernogolovka (Russian Federation). Inst. of Chemical Physics; Hoffman, [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1997-12-31

    Energetic heavy ions of Ne - crystal Kr target interaction is investigated both experimentally and with the help of a 2-D computer code. The dynamics of the target matter heating, expansion, and destruction are described. A new equation of state for Kr was obtained and tested within a wide range of parameters. (author). 2 figs., 10 refs.

  20. The DAΦNE cryogenic system

    International Nuclear Information System (INIS)

    Modena, M.

    1997-12-01

    The DAΦNE Project utilises superconductivity technology for a total of six superconducting magnets: the two Experiment magnets (KLOE and FINUDA) and the four Compensator Solenoid magnets needed to compensate the magnetic effect of the Experiment magnets on the electron and positron beams. This effect, on beams of 510 MeV (nominal DAΦNE Energy), is expected to be relevant, especially with the aim of achieving a very high luminosity, which is the main target of the Project. The KLOE superconducting magnet has two possible working positions: the first in the DAΦNE Hall, when the Experiment will be in operation, and the second one in the KLOE Assembly Hall. This second position is the first to be utilised for the KLOE magnet Acceptance Test and magnetic field mapping, prior to the mounting of all the experimental apparatus inside the magnet. This note intends to present the DAΦNE Cryogenic System and how the authors have converged to the definition of a common Cryogenic System compatible with all the six superconducting magnets

  1. NAD+ Is a Food Component That Promotes Exit from Dauer Diapause in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mykola Mylenko

    Full Text Available The free-living soil nematode Caenorhabditis elegans adapts its development to the availability of food. When food is scarce and population density is high, worms enter a developmentally arrested non-feeding diapause stage specialized for long-term survival called the dauer larva. When food becomes available, they exit from the dauer stage, resume growth and reproduction. It has been postulated that compound(s present in food, referred to as the "food signal", promote exit from the dauer stage. In this study, we have identified NAD+ as a component of bacterial extract that promotes dauer exit. NAD+, when dissolved in alkaline medium, causes opening of the mouth and ingestion of food. We also show that to initiate exit from the dauer stage in response to NAD+ worms require production of serotonin. Thus, C. elegans can use redox cofactors produced by dietary organisms to sense food.

  2. Ultra-fast HPM detectors improve NAD(P)H FLIM

    Science.gov (United States)

    Becker, Wolfgang; Wetzker, Cornelia; Benda, Aleš

    2018-02-01

    Metabolic imaging by NAD(P)H FLIM requires the decay functions in the individual pixels to be resolved into the decay components of bound and unbound NAD(P)H. Metabolic information is contained in the lifetime and relative amplitudes of the components. The separation of the decay components and the accuracy of the amplitudes and lifetimes improves substantially by using ultra-fast HPM-100-06 and HPM-100-07 hybrid detectors. The IRF width in combination with the Becker & Hickl SPC-150N and SPC-150NX TCSPC modules is less than 20 ps. An IRF this fast does not interfere with the fluorescence decay. The usual deconvolution process in the data analysis then virtually becomes a simple curve fitting, and the parameters of the NAD(P)H decay components are obtained at unprecedented accuracy.

  3. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH

    DEFF Research Database (Denmark)

    Madsen, Andreas Stahl; Andersen, Christian; Daoud, Mohammad Mahdi

    2016-01-01

    Protein lysine posttranslational modification by an increasing number of different acyl groups is becoming appreciated as a regulatory mechanism in cellular biology. Sirtuins are class III histone deacylases that use NAD+ as a co-substrate during amide bond hydrolysis. Several studies have...... described the sirtuins as sensors of the NAD+/NADH ratio, but it has not been formally tested for all the mammalian sirtuins in vitro. To address this problem, we first synthesized a wide variety of peptide-based probes, which were used to identify the range of hydrolytic activities of human sirtuins...... to be prone to hydrolytic cleavage by SIRT1-3 and SIRT6, supporting recent findings. We then tested the ability of NADH, ADP-ribose, and nicotinamide to inhibit these NAD+-dependent deacylase activities of the sirtuins. In the commonly used 7-amino-4-methylcoumarin-coupled fluorescence-based assay...

  4. Rotational barriers of 1,3-substitute pyridines and benzenes as models for the NAD+/NADH coenzyme

    NARCIS (Netherlands)

    Vanhommerig, S.A.M.; Meier, R.J.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1994-01-01

    The NAD+/NADH coenzyme is involved in many enzyme-catalysed oxidation-reduction reactions. In order to obtain better insight in the catalytic mechanism of NAD+/NADH dependent dehydrogenases, conformational studies of 1,3-substituted pyridines and benzenes were carried out, using ab initio,

  5. Identification of a Novel Pathway of Transforming Growth Factor-β1 Regulation by Extracellular NAD+ in Mouse Macrophages

    Science.gov (United States)

    Zamora, Ruben; Azhar, Nabil; Namas, Rajaie; Metukuri, Mallikarjuna R.; Clermont, Thierry; Gladstone, Chase; Namas, Rami A.; Hermus, Linda; Megas, Cristina; Constantine, Gregory; Billiar, Timothy R.; Fink, Mitchell P.; Vodovotz, Yoram

    2012-01-01

    Extracellular β-nicotinamide adenine dinucleotide (NAD+) is anti-inflammatory. We hypothesized that NAD+ would modulate the anti-inflammatory cytokine Transforming Growth Factor (TGF)-β1. Indeed, NAD+ led to increases in both active and latent cell-associated TGF-β1 in RAW 264.7 mouse macrophages as well as in primary peritoneal macrophages isolated from both C3H/HeJ (TLR4-mutant) and C3H/HeOuJ (wild-type controls for C3H/HeJ) mice. NAD+ acts partially via cyclic ADP-ribose (cADPR) and subsequent release of Ca2+. Treatment of macrophages with the cADPR analog 3-deaza-cADPR or Ca2+ ionophores recapitulated the effects of NAD+ on TGF-β1, whereas the cADPR antagonist 8-Br-cADPR, Ca2+ chelation, and antagonism of L-type Ca2+ channels suppressed these effects. The time and dose effects of NAD+ on TGF-β1 were complex and could be modeled both statistically and mathematically. Model-predicted levels of TGF-β1 protein and mRNA were largely confirmed experimentally but also suggested the presence of other mechanisms of regulation of TGF-β1 by NAD+. Thus, in vitro and in silico evidence points to NAD+ as a novel modulator of TGF-β1. PMID:22829588

  6. Rev1 contributes to proper mitochondrial function via the PARP-NAD(+)-SIRT1-PGC1 alpha axis

    DEFF Research Database (Denmark)

    Fakouri, Nima Borhan; Durhuus, Jon Ambaek; Regnell, Christine Elisabeth

    2017-01-01

    (ADP) ribose polymerase 1 (PARP1) activity, low endogenous NAD+, low expression of SIRT1 and PGC1α and low adenosine monophosphate (AMP)-activated kinase (AMPK) activity. We conclude that replication stress via Rev1-deficiency contributes to metabolic stress caused by compromized mitochondrial function via...... the PARP-NAD+-SIRT1-PGC1α axis....

  7. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young [Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwon, Kang-Beom [Department of Oriental Medical Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwak, Tae Hwan [PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon 305-500 (Korea, Republic of); Choe, Seong-Kyu; Park, Raekil [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine after cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.

  8. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Stefania, E-mail: spas@unipg.it [Department of Applied Biology, University of Perugia, Perugia (Italy); Tedeschini, Emma; Frenguelli, Giuseppe [Department of Applied Biology, University of Perugia, Perugia (Italy); Wopfner, Nicole; Ferreira, Fatima [Department of Molecular Biology, CD Laboratory for Allergy Diagnosis and Therapy, University of Salzburg, Salzburg (Austria); D' Amato, Gennaro [Division of Respiratory and Allergic Diseases, ' A. Cardarelli' High Speciality Hospital, Naples (Italy); Ederli, Luisa [Department of Applied Biology, University of Perugia, Perugia (Italy)

    2011-10-15

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O{sub 3}) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O{sub 3} fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O{sub 3} fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O{sub 3}, determined from the mRNA levels of the major allergens. We conclude that O{sub 3} can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. - Highlights: > O{sub 3} reduces the viability of ragweed pollen. > ROS and allergens of ragweed pollen were not affected by O{sub 3} exposure. > O{sub 3} enhances the activity of the ROS-generating enzyme NAD(P)H oxidase. > O{sub 3} increases ragweed pollen allergenicity through NAD(P)H-oxidase stimulation. - This study focuses on the effects of the atmospheric pollutant ozone on ROS content and NAD(P)H oxidase activity of ragweed pollen grains.

  9. Nivation forms and processes in unconsolidated sediments, NE Greenland

    DEFF Research Database (Denmark)

    Christiansen, Hanne Hvidtfeldt

    1998-01-01

    Nivation, Nivation Hollow, Nival Backwall Faliure, Active layer Interflow, Pronival alluvial fans, NE Greenland......Nivation, Nivation Hollow, Nival Backwall Faliure, Active layer Interflow, Pronival alluvial fans, NE Greenland...

  10. Metabolism Dealing with Thermal Degradation of NAD+ in the Hyperthermophilic Archaeon Thermococcus kodakarensis.

    Science.gov (United States)

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2017-10-01

    NAD + is an important cofactor for enzymatic oxidation reactions in all living organisms, including (hyper)thermophiles. However, NAD + is susceptible to thermal degradation at high temperatures. It can thus be expected that (hyper)thermophiles harbor mechanisms that maintain in vivo NAD + concentrations and possibly remove and/or reuse undesirable degradation products of NAD + Here we confirmed that at 85°C, thermal degradation of NAD + results mostly in the generation of nicotinamide and ADP-ribose, the latter known to display toxicity by spontaneously linking to proteins. The hyperthermophilic archaeon Thermococcus kodakarensis possesses a putative ADP-ribose pyrophosphatase (ADPR-PPase) encoded by the TK2284 gene. ADPR-PPase hydrolyzes ADP-ribose to ribose 5-phosphate (R5P) and AMP. The purified recombinant TK2284 protein exhibited activity toward ADP-ribose as well as ADP-glucose. Kinetic analyses revealed a much higher catalytic efficiency toward ADP-ribose, suggesting that ADP-ribose was the physiological substrate. To gain insight into the physiological function of TK2284, a TK2284 gene disruption strain was constructed and examined. Incubation of NAD + in the cell extract of the mutant strain at 85°C resulted in higher ADP-ribose accumulation and lower AMP production compared with those in experiments with the host strain cell extract. The mutant strain also exhibited lower cell yield and specific growth rates in a synthetic amino acid medium compared with those of the host strain. The results obtained here suggest that the ADPR-PPase in T. kodakarensis is responsible for the cleavage of ADP-ribose to R5P and AMP, providing a means to utilize the otherwise dead-end product of NAD + breakdown. IMPORTANCE Hyperthermophilic microorganisms living under high temperature conditions should have mechanisms that deal with the degradation of thermolabile molecules. NAD + is an important cofactor for enzymatic oxidation reactions and is susceptible to thermal

  11. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction

    DEFF Research Database (Denmark)

    Fang, Evandro Fei; Scheibye-Knudsen, Morten; Brace, Lear E

    2014-01-01

    with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD(+)-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP-1. This phenotype is rescued by PARP-1 inhibition...... or by supplementation with NAD(+) precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration...

  12. Rozmowa z Nadą Prlją

    Directory of Open Access Journals (Sweden)

    Zofia Waślicka

    2014-06-01

    Full Text Available An interview with Nada Prlja  Nada Prlja is an artist who works in the public space and tackles the issues of social inequalities and exclusion. During the 7th Berlin Biennale for Contemporary Art, she built a Peace Wall across Friedrichstrasse and thus she blocked the passage between the northern part of the street, which is a tourist attraction, and where expensive shops and restaurants are located; and its southern part, which is inhabited mainly by immigrants, who live in council flats. Nada Prjla tried to visualise the symbolic divide between the rich and the poor part of the street by putting the wall up, whose name alludes to the peace walls that split Protestants and Catholics in Northern Ireland.   Rozmowa z Nadą Prlją Nada Prlja to artystka działająca w przestrzeni publicznej, podejmująca kwestie nierówności społecznych i wykluczenia. W ramach 7. Berlińskiego Biennale Sztuki Współczesnej w 2012 roku Prlja zbudowała Peace Wall (‘Mur Pokoju’ w poprzek jezdni na Friedrichstrasse w Berlinie. Zablokowała w ten sposób ruch między turystyczną, północną częścią tej ulicy z eleganckimi restauracjami i sklepami a jej południową częścią, gdzie znajduje się zamieszkane głównie przez imigrantów osiedle budynków socjalnych. Nada Prlja postanowiła uwidocznić tę symboliczną granicę między bogatą a biedną częścią ulicy i ustawiła tam mur. Jego nazwa nawiązuje do „murów pokoju” (peace walls oddzielających od siebie protestantów i katolików w Irlandii Północnej.

  13. More to NAD+ than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis.

    Science.gov (United States)

    Gakière, Bertrand; Fernie, Alisdair R; Pétriacq, Pierre

    2018-01-05

    Since its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD + ) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD + metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Perturbations of NAD+ salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle

    DEFF Research Database (Denmark)

    Andersen, Marianne Agerholm; Dall, Morten; Jensen, Benjamin Anderschou Holbech

    2018-01-01

    Nicotinamide adenine dinucleotide (NAD+) can be synthesized by nicotinamide phosphoribosyltransferase (NAMPT). We aimed to determine the role of NAMPT for maintaining NAD+ levels, mitochondrial function, and metabolic homeostasis in skeletal muscle cells. We generated stable Nampt knockdown (sh......Nampt KD) C2C12 cells using a shRNA lentiviral approach. Moreover, we applied gene electrotransfer to express cre recombinase in tibialis anterior muscle of floxed Nampt mice. In shNampt KD C2C12 myoblasts, Nampt and NAD+ levels were reduced by 70% and 50%, respectively, and maximal respiratory capacity...... was reduced by 25%. Moreover, anaerobic glycolytic flux increased by 55% and 2-deoxyglucose uptake increased by 25% in shNampt KD cells. Treatment with the NAD+ precursor nicotinamide riboside restored NAD+ levels in shNampt cells and increased maximal respiratory capacity by 18% and 32% in control and sh...

  15. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.

    Science.gov (United States)

    Camacho-Pereira, Juliana; Tarragó, Mariana G; Chini, Claudia C S; Nin, Veronica; Escande, Carlos; Warner, Gina M; Puranik, Amrutesh S; Schoon, Renee A; Reid, Joel M; Galina, Antonio; Chini, Eduardo N

    2016-06-14

    Nicotinamide adenine dinucleotide (NAD) levels decrease during aging and are involved in age-related metabolic decline. To date, the mechanism responsible for the age-related reduction in NAD has not been elucidated. Here we demonstrate that expression and activity of the NADase CD38 increase with aging and that CD38 is required for the age-related NAD decline and mitochondrial dysfunction via a pathway mediated at least in part by regulation of SIRT3 activity. We also identified CD38 as the main enzyme involved in the degradation of the NAD precursor nicotinamide mononucleotide (NMN) in vivo, indicating that CD38 has a key role in the modulation of NAD-replacement therapy for aging and metabolic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Lääne-Virumaa TOP 100 aastal 2000

    Index Scriptorium Estoniae

    2001-01-01

    Lääne-Virumaa edukamad ettevõtted; Lääne-Virumaa käibe TOP 100; Käibe kasvu TOP 20; Käibe languse TOP 10; Kasumi TOP 20; Kasumi kasvu TOP 20; Rentabluse TOP 20; ROA TOP 20; Kasumi languse TOP 10; Kahjumi TOP 10; Lääne-Virumaa käibelt suuremate ettevõtete finantsandmed. Lääne-Virumaa ettevõtete üldandmed

  17. Current Status of the MiniBooNE Experiment

    OpenAIRE

    Ray, H.; collaboration, for the MiniBooNE

    2004-01-01

    MiniBooNE is an experiment designed to refute or confirm the LSND anti-nu_mu -> anti-nu_e oscillation result. MiniBooNE will look for oscillations of nu_mu -> nu_e in a closed-box appearance analysis. MiniBooNE began collecting data in 2002, and is expected to continue data taking through 2005. Current MiniBooNE results are presented.

  18. Yrast and high spin states in 22Ne

    International Nuclear Information System (INIS)

    Szanto, E.M.; Toledo, A.S. de

    1982-08-01

    High spin states in 22 Ne have been investigated by the reactions 11 B( 13 C,d) 22 Ne and 13 C( 11 B,d) 22 Ne up to E* approximately=19 MeV. Yrast states were observed at 11.02 MeV (8 + ) and 15.46 MeV (10 + ) excitation energy. A backbending in 22 Ne is observed around spin 8 + . The location of high spin states I [pt

  19. Collision-induced intramultiplet mixing for the Ne**[(2p)5(3p)] + He or Ne system

    International Nuclear Information System (INIS)

    Manders, M.P.I.

    1988-01-01

    For the Ne**-He case, experimental data are confronted with quantum mechanical calculations. Quantum mechanical coupled-channel calculations using model potentials as input are presented, followed by a semiclassical approach which provides more physical insight. Experimental results are presented for the Ne**-Ne system with a discussion of the general principles involved in symmetrization. 184 refs.; 93 figs.; 19 tabs

  20. UCB-NE-101 user's manual

    International Nuclear Information System (INIS)

    Lee, W.W.L.

    1989-02-01

    The purpose of this manual is to provide users of UCB-NE-101 with the information necessary to use UCB-NE-101 effectively. UCB-NE-101 calculates the concentration of solubility-limited species as a function of space and time and its mass flux rates from a waste sphere buried in a nuclear waste repository in water-saturated rock. The waste is surrounded by one type of rock, and some distance away, there is another type of rock. The inner layer of rock can be a backfill around a nuclear waste package and the outer layer the natural rock. The mass flux calculated is at the interface of the two layers. The species concentration calculated is in the inner layer. A constant concentration of the species, usually the solubility, is specified at the waste sphere/inner layer interface. Dissolution and transport is governed by the solubility of the species, and diffusion in the porous media. 1 ref., 1 fig

  1. Pancreatic Beta-Cell Purification by Altering FAD and NAD(PH Metabolism

    Directory of Open Access Journals (Sweden)

    P. de Vos

    2008-07-01

    Full Text Available Isolation of primary beta cells from other cells within in the pancreatic islets is of importance for many fields of islet research. However, up to now, no satisfactory method has been developed that gained high numbers of viable beta cells, without considerable alpha-cell contamination. In this study, we investigated whether rat beta cells can be isolated from nonbeta endocrine cells by manipulating the flavin adenine dinucleotide (FAD and nicotinamide-adenine dinucleotide phosphate (NAD(PH autofluorescence. Beta cells were isolated from dispersed islets by flow cytometry, based on their high FAD and NAD(PH fluorescence. To improve beta cell yield and purity, the cellular FAD and NAD(PH contents were altered by preincubation in culture media containing varying amounts of D-glucose and amino acids. Manipulation of the cellular FAD and NAD(PH fluorescence improves beta cell yield and purity after sorting. This method is also a fast and reliable method to measure beta cell functional viability. A conceivable application is assessing beta cell viability before transplantation.

  2. A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD(+) regeneration.

    Science.gov (United States)

    Wang, Jizhong; Yang, Chengli; Chen, Xing; Bao, Bingxin; Zhang, Xuan; Li, Dali; Du, Xingfan; Shi, Ruofu; Yang, Junfang; Zhu, Ronghui

    2016-08-01

    To find an efficient and cheap system for NAD(+) regeneration A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 μM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD(+) regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD(+) was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C CONCLUSION: The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD(+) regeneration.

  3. Restoration of Mitochondrial NAD+ Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells.

    Science.gov (United States)

    Son, Myung Jin; Kwon, Youjeong; Son, Taekwon; Cho, Yee Sook

    2016-12-01

    The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD + levels appear to be susceptible to aging. In aged cells, mitochondrial NAD + levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD + levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD + levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851. © 2016 AlphaMed Press.

  4. Homogeneous nucleation rates of nitric acid dihydrate (NAD at simulated stratospheric conditions – Part II: Modelling

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available Activation energies ΔGact for the nucleation of nitric acid dihydrate (NAD in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for ΔGact=A×(T ln SNAD−2+B is fitted to the experimental data with A=2.5×106 kcal K2 mol−1 and B=11.2−0.1(T−192 kcal mol−1. A and B were chosen to also achieve good agreement with literature data of ΔGact. The parameter A implies, for the temperature and composition range of our analysis, a mean interface tension σsl=51 cal mol−1 cm−2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001 and surface-based (Tabazadeh et al., 2002 nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments.

  5. NAD(+) metabolism: A therapeutic target for age-related metabolic disease

    NARCIS (Netherlands)

    Mouchiroud, Laurent; Houtkooper, Riekelt H.; Auwerx, Johan

    2013-01-01

    Abstract Nicotinamide adenine dinucleotide (NAD) is a central metabolic cofactor by virtue of its redox capacity, and as such regulates a wealth of metabolic transformations. However, the identification of the longevity protein silent regulator 2 (Sir2), the founding member of the sirtuin protein

  6. Prezentace zříceniny hradu Kamýku nad Vltavou

    Czech Academy of Sciences Publication Activity Database

    Durdík, Tomáš; Girsa, V.; Hanzl, M.

    2010-01-01

    Roč. 70, č. 3 (2010), 175-178,231,233-234 ISSN 1210-5538 R&D Projects: GA MK DB06P01OPP004 Institutional research plan: CEZ:AV0Z80020508 Keywords : castle * castellology * Bohemia * Kamýk nad Vltavou * medieval archaeology * architecture * monument care * presentation Subject RIV: AC - Archeology, Anthropology, Ethnology

  7. Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices.

    Science.gov (United States)

    Masia, Ricard; McCarty, William J; Lahmann, Carolina; Luther, Jay; Chung, Raymond T; Yarmush, Martin L; Yellen, Gary

    2018-01-01

    Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD + ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD + ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD + ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD + ratio, and this increase is mitigated by the presence of NAD + -generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD + ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD + ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real

  8. Performance Analysis of Different NeQuick Ionospheric Model Parameters

    Directory of Open Access Journals (Sweden)

    WANG Ningbo

    2017-04-01

    Full Text Available Galileo adopts NeQuick model for single-frequency ionospheric delay corrections. For the standard operation of Galileo, NeQuick model is driven by the effective ionization level parameter Az instead of the solar activity level index, and the three broadcast ionospheric coefficients are determined by a second-polynomial through fitting the Az values estimated from globally distributed Galileo Sensor Stations (GSS. In this study, the processing strategies for the estimation of NeQuick ionospheric coefficients are discussed and the characteristics of the NeQuick coefficients are also analyzed. The accuracy of Global Position System (GPS broadcast Klobuchar, original NeQuick2 and fitted NeQuickC as well as Galileo broadcast NeQuickG models is evaluated over the continental and oceanic regions, respectively, in comparison with the ionospheric total electron content (TEC provided by global ionospheric maps (GIM, GPS test stations and JASON-2 altimeter. The results show that NeQuickG can mitigate ionospheric delay by 54.2%~65.8% on a global scale, and NeQuickC can correct for 71.1%~74.2% of the ionospheric delay. NeQuick2 performs at the same level with NeQuickG, which is a bit better than that of GPS broadcast Klobuchar model.

  9. Sterile Neutrino Searches in MiniBooNE and MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Ignarra, Christina M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-01

    Tension among recent short baseline neutrino experiments has pointed toward the possible need for the addition of one or more sterile (non-interacting) neutrino states into the existing neutrino oscillation framework. This thesis first presents the motivation for sterile neutrino models by describing the short-baseline anomalies that can be addressed with them. This is followed by a discussion of the phenomenology of these models. The MiniBooNE experiment and results are then described in detail, particularly the most recent antineutrino analysis. This will be followed by a discussion of global fits to world data, including the anomalous data sets. Lastly, future experiments will be addressed, especially focusing on the MicroBooNE experiment and light collection studies. In particular, understanding the degradation source of TPB, designing the TPB-coated plates for MicroBooNE and developing lightguide collection systems will be discussed. We find an excess of events in the MiniBooNE antineutrino mode results consistent with the LSND anomaly, but one that has a different energy dependence than the low-energy excess reported in neutrino mode. This disagreement creates tension within global fits which include up to three sterile neutrinos. The low-energy excess will be addressed by the MicroBooNE experiment, which is expected to start taking data in early 2015. Tension among existing experiments calls for additional, more decisive future experiments.

  10. Sterile Neutrino Searches in MiniBooNE and MicroBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Ignarra, Christina M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-09-01

    Tension among recent short baseline neutrino experiments has pointed toward the possible need for the addition of one or more sterile (non-interacting) neutrino states into the existing neutrino oscillation framework. This thesis fi rst presents the motivation for sterile neutrino models by describing the short-baseline anomalies that can be addressed with them. This is followed by a discussion of the phenomenology of these models. The MiniBooNE experiment and results are then described in detail, particularly the most recent antineutrino analysis. This will be followed by a discussion of global fits to world data, including the anomalous data sets. Lastly, future experiments will be addressed, especially focusing on the MicroBooNE experiment and light collection studies. In particular, understanding the degradation source of TPB, designing the TPB-coated plates for MicroBooNE and developing lightguide collection systems will be discussed. We find an excess of events in the MiniBooNE antineutrino mode results consistent with the LSND anomaly, but one that has a di fferent energy dependence than the low-energy excess reported in neutrino mode. This disagreement creates tension within global fi ts which include up to three sterile neutrinos. The low-energy excess will be addressed by the MicroBooNE experiment, which is expected to start taking data in early 2015. Tension among existing experiments calls for additional, more decisive future experiments.

  11. Nicotinamidase modulation of NAD+ biosynthesis and nicotinamide levels separately affect reproductive development and cell survival in C. elegans.

    Science.gov (United States)

    Vrablik, Tracy L; Huang, Li; Lange, Stephanie E; Hanna-Rose, Wendy

    2009-11-01

    Nicotinamide adenine dinucleotide (NAD(+)) is a central molecule in cellular metabolism and an obligate co-substrate for NAD(+)-consuming enzymes, which regulate key biological processes such as longevity and stress responses. Although NAD(+) biosynthesis has been intensely studied, little analysis has been done in developmental models. We have uncovered novel developmental roles for a nicotinamidase (PNC), the first enzyme in the NAD(+) salvage pathway of invertebrates. Mutations in the Caenorhabditis elegans nicotinamidase PNC-1 cause developmental and functional defects in the reproductive system; the development of the gonad is delayed, four uterine cells die by necrosis and the mutant animals are egg-laying defective. The temporal delay in gonad development results from depletion of the salvage pathway product NAD(+), whereas the uv1 cell necrosis and egg-laying defects result from accumulation of the substrate nicotinamide. Thus, regulation of both substrate and product level is key to the biological activity of PNC-1. We also find that diet probably affects the levels of these metabolites, as it affects phenotypes. Finally, we identified a secreted isoform of PNC-1 and confirmed its extracellular localization and functional activity in vivo. We demonstrate that nicotinamide phosphoribosyltransferase (Nampt), the equivalent enzyme in nicotinamide recycling to NAD(+) in vertebrates, can functionally substitute for PNC-1. As Nampt is also secreted, we postulate an evolutionarily conserved extracellular role for NAD(+) biosynthetic enzymes during development and physiology.

  12. Tributyltin induces G2/M cell cycle arrest via NAD(+)-dependent isocitrate dehydrogenase in human embryonic carcinoma cells.

    Science.gov (United States)

    Asanagi, Miki; Yamada, Shigeru; Hirata, Naoya; Itagaki, Hiroshi; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2016-04-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine-disrupting chemicals (EDCs). We have recently reported that TBT induces growth arrest in the human embryonic carcinoma cell line NT2/D1 at nanomolar levels by inhibiting NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the irreversible conversion of isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we examined whether TBT at nanomolar levels affects cell cycle progression in NT2/D1 cells. Propidium iodide staining revealed that TBT reduced the ratio of cells in the G1 phase and increased the ratio of cells in the G2/M phase. TBT also reduced cell division cycle 25C (cdc25C) and cyclin B1, which are key regulators of G2/M progression. Furthermore, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. The G2/M arrest induced by TBT was abolished by NAD-IDHα knockdown. Treatment with a cell-permeable α-ketoglutarate analogue recovered the effect of TBT, suggesting the involvement of NAD-IDH. Taken together, our data suggest that TBT at nanomolar levels induced G2/M cell cycle arrest via NAD-IDH in NT2/D1 cells. Thus, cell cycle analysis in embryonic cells could be used to assess cytotoxicity associated with nanomolar level exposure of EDCs.

  13. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia.

    Science.gov (United States)

    Park, Ji H; Long, Aaron; Owens, Katrina; Kristian, Tibor

    2016-11-01

    Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor for multiple cellular metabolic reactions and has a central role in energy production. Brain ischemia depletes NAD(+) pools leading to bioenergetics failure and cell death. Nicotinamide mononucleotide (NMN) is utilized by the NAD(+) salvage pathway enzyme, nicotinamide adenylyltransferase (Nmnat) to generate NAD(+). Therefore, we examined whether NMN could protect against ischemic brain damage. Mice were subjected to transient forebrain ischemia and treated with NMN or vehicle at the start of reperfusion or 30min after the ischemic insult. At 2, 4, and 24h of recovery, the proteins poly-ADP-ribosylation (PAR), hippocampal NAD(+) levels, and expression levels of NAD(+) salvage pathway enzymes were determined. Furthermore, animal's neurologic outcome and hippocampal CA1 neuronal death was assessed after six days of reperfusion. NMN (62.5mg/kg) dramatically ameliorated the hippocampal CA1 injury and significantly improved the neurological outcome. Additionally, the post-ischemic NMN treatment prevented the increase in PAR formation and NAD(+) catabolism. Since the NMN administration did not affect animal's temperature, blood gases or regional cerebral blood flow during recovery, the protective effect was not a result of altered reperfusion conditions. These data suggest that administration of NMN at a proper dosage has a strong protective effect against ischemic brain injury. Published by Elsevier Inc.

  14. The NAD+ precursor nicotinic acid improves genomic integrity in human peripheral blood mononuclear cells after X-irradiation.

    Science.gov (United States)

    Weidele, Kathrin; Beneke, Sascha; Bürkle, Alexander

    2017-04-01

    NAD + is an essential cofactor for enzymes catalyzing redox-reactions as well as an electron carrier in energy metabolism. Aside from this, NAD + consuming enzymes like poly(ADP-ribose) polymerases and sirtuins are important regulators involved in chromatin-restructuring processes during repair and epigenetics/transcriptional adaption. In order to replenish cellular NAD + levels after cleavage, synthesis starts from precursors such as nicotinamide, nicotinamide riboside or nicotinic acid to match the need for this essential molecule. In the present study, we investigated the impact of supplementation with nicotinic acid on resting and proliferating human mononuclear blood cells with a focus on DNA damage and repair processes. We observed that nicotinic acid supplementation increased NAD + levels as well as DNA repair efficiency and enhanced genomic stability evaluated by micronucleus test after x-ray treatment. Interestingly, resting cells displayed lower basal levels of DNA breaks compared to proliferating cells, but break-induction rates were identical. Despite similar levels of p53 protein upregulation after irradiation, higher NAD + concentrations led to reduced acetylation of this protein, suggesting enhanced SIRT1 activity. Our data reveal that even in normal primary human cells cellular NAD + levels may be limiting under conditions of genotoxic stress and that boosting the NAD + system with nicotinic acid can improve genomic stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD+ biosynthesis pathway and NAMPT mutation.

    Science.gov (United States)

    Guo, Jun; Lam, Lloyd T; Longenecker, Kenton L; Bui, Mai H; Idler, Kenneth B; Glaser, Keith B; Wilsbacher, Julie L; Tse, Chris; Pappano, William N; Huang, Tzu-Hsuan

    2017-09-23

    Cancer cells have an unusually high requirement for the central and intermediary metabolite nicotinamide adenine dinucleotide (NAD + ), and NAD + depletion ultimately results in cell death. The rate limiting step within the NAD + salvage pathway required for converting nicotinamide to NAD + is catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). Targeting NAMPT has been investigated as an anti-cancer strategy, and several highly selective small molecule inhibitors have been found to potently inhibit NAMPT in cancer cells, resulting in NAD + depletion and cytotoxicity. To identify mechanisms that could cause resistance to NAMPT inhibitor treatment, we generated a human fibrosarcoma cell line refractory to the highly potent and selective NAMPT small molecule inhibitor, GMX1778. We uncovered novel and unexpected mechanisms of resistance including significantly increased expression of quinolinate phosphoribosyl transferase (QPRT), a key enzyme in the de novo NAD + synthesis pathway. Additionally, exome sequencing of the NAMPT gene in the resistant cells identified a single heterozygous point mutation that was not present in the parental cell line. The combination of upregulation of the NAD + de novo synthesis pathway through QPRT over-expression and NAMPT mutation confers resistance to GMX1778, but the cells are only partially resistant to next-generation NAMPT inhibitors. The resistance mechanisms uncovered herein provide a potential avenue to continue exploration of next generation NAMPT inhibitors to treat neoplasms in the clinic. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Dynamic single-cell NAD(P)H measurement reveals oscillatory metabolism throughout the E. coli cell division cycle.

    Science.gov (United States)

    Zhang, Zheng; Milias-Argeitis, Andreas; Heinemann, Matthias

    2018-02-01

    Recent work has shown that metabolism between individual bacterial cells in an otherwise isogenetic population can be different. To investigate such heterogeneity, experimental methods to zoom into the metabolism of individual cells are required. To this end, the autofluoresence of the redox cofactors NADH and NADPH offers great potential for single-cell dynamic NAD(P)H measurements. However, NAD(P)H excitation requires UV light, which can cause cell damage. In this work, we developed a method for time-lapse NAD(P)H imaging in single E. coli cells. Our method combines a setup with reduced background emission, UV-enhanced microscopy equipment and optimized exposure settings, overall generating acceptable NAD(P)H signals from single cells, with minimal negative effect on cell growth. Through different experiments, in which we perturb E. coli's redox metabolism, we demonstrated that the acquired fluorescence signal indeed corresponds to NAD(P)H. Using this new method, for the first time, we report that intracellular NAD(P)H levels oscillate along the bacterial cell division cycle. The developed method for dynamic measurement of NAD(P)H in single bacterial cells will be an important tool to zoom into metabolism of individual cells.

  17. NAMPT-mediated NAD+ biosynthesis is indispensable for adipose tissue plasticity and development of obesity

    Directory of Open Access Journals (Sweden)

    Karen Nørgaard Nielsen

    2018-05-01

    Full Text Available Objective: The ability of adipose tissue to expand and contract in response to fluctuations in nutrient availability is essential for the maintenance of whole-body metabolic homeostasis. Given the nutrient scarcity that mammals faced for millions of years, programs involved in this adipose plasticity were likely evolved to be highly efficient in promoting lipid storage. Ironically, this previously advantageous feature may now represent a metabolic liability given the caloric excess of modern society. We speculate that nicotinamide adenine dinucleotide (NAD+ biosynthesis exemplifies this concept. Indeed NAD+/NADH metabolism in fat tissue has been previously linked with obesity, yet whether it plays a causal role in diet-induced adiposity is unknown. Here we investigated how the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT supports adipose plasticity and the pathological progression to obesity. Methods: We utilized a newly generated Nampt loss-of-function model to investigate the tissue-specific and systemic metabolic consequences of adipose NAD+ deficiency. Energy expenditure, glycemic control, tissue structure, and gene expression were assessed in the contexts of a high dietary fat burden as well as the transition back to normal chow diet. Results: Fat-specific Nampt knockout (FANKO mice were completely resistant to high fat diet (HFD-induced obesity. This was driven in part by reduced food intake. Furthermore, HFD-fed FANKO mice were unable to undergo healthy expansion of adipose tissue mass, and adipose depots were rendered fibrotic with markedly reduced mitochondrial respiratory capacity. Yet, surprisingly, HFD-fed FANKO mice exhibited improved glucose tolerance compared to control littermates. Removing the HFD burden largely reversed adipose fibrosis and dysfunction in FANKO animals whereas the improved glucose tolerance persisted. Conclusions: These findings indicate that adipose NAMPT plays an essential role in

  18. Splitter magnets for DAΦNE project

    International Nuclear Information System (INIS)

    Sanelli, C.; Hsieh, H.

    1992-01-01

    A 510 MeV electron positron colliding beam facility is under design and construction. The project consists of two storage rings, accumulator, electron/positron linac and transfer lines. The design of the splitter magnets which separate the circulating beams immediately after passing through the DAΦNE interaction point is presented. The results of 2-D and 3-D magnetic calculations is presented, and the electrical and mechanical design of the magnet are described. A 1/3 length prototype of this magnet is under construction. (R.P.) 2 refs.; 8 figs.; 2 tabs

  19. Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation.

    Science.gov (United States)

    Su, Liqiu; Shen, Yanbing; Zhang, Wenkai; Gao, Tian; Shang, Zhihua; Wang, Min

    2017-10-30

    Cofactor engineering is involved in the modification of enzymes related to nicotinamide adenine dinucleotides (NADH and NAD + ) metabolism, which results in a significantly altered spectrum of metabolic products. Cofactor engineering plays an important role in metabolic engineering but is rarely reported in the sterols biotransformation process owing to its use of multi-catabolic enzymes, which promote multiple consecutive reactions. Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are important steroid medicine intermediates that are obtained via the nucleus oxidation and the side chain degradation of phytosterols by Mycobacterium. Given that the biotransformation from phytosterols to AD (D) is supposed to be a NAD + -dependent process, this work utilized cofactor engineering in Mycobacterium neoaurum and investigated the effect on cofactor and phytosterols metabolism. Through the addition of the coenzyme precursor of nicotinic acid in the phytosterols fermentation system, the intracellular NAD + /NADH ratio and the AD (D) production of M. neoaurum TCCC 11978 (MNR M3) were higher than in the control. Moreover, the NADH: flavin oxidoreductase was identified and was supposed to exert a positive effect on cofactor regulation and phytosterols metabolism pathways via comparative proteomic profiling of MNR cultured with and without phytosterols. In addition, the NADH: flavin oxidoreductase and a water-forming NADH oxidase from Lactobacillus brevis, were successfully overexpressed and heterologously expressed in MNR M3 to improve the intracellular ratio of NAD + /NADH. After 96 h of cultivation, the expression of these two enzymes in MNR M3 resulted in the decrease in intracellular NADH level (by 51 and 67%, respectively) and the increase in NAD + /NADH ratio (by 113 and 192%, respectively). Phytosterols bioconversion revealed that the conversion ratio of engineered stains was ultimately improved by 58 and 147%, respectively. The highest AD (D

  20. Hyperthermophilic Archaeon Thermococcus kodakarensis Utilizes a Four-Step Pathway for NAD+ Salvage through Nicotinamide Deamination.

    Science.gov (United States)

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2018-06-01

    Many organisms possess pathways that regenerate NAD + from its degradation products, and two pathways are known to salvage NAD + from nicotinamide (Nm). One is a four-step pathway that proceeds through deamination of Nm to nicotinic acid (Na) by Nm deamidase and phosphoribosylation to nicotinic acid mononucleotide (NaMN), followed by adenylylation and amidation. Another is a two-step pathway that does not involve deamination and directly proceeds with the phosphoribosylation of Nm to nicotinamide mononucleotide (NMN), followed by adenylylation. Judging from genome sequence data, the hyperthermophilic archaeon Thermococcus kodakarensis is supposed to utilize the four-step pathway, but the fact that the adenylyltransferase encoded by TK0067 recognizes both NMN and NaMN also raises the possibility of a two-step salvage mechanism. Here, we examined the substrate specificity of the recombinant TK1676 protein, annotated as nicotinic acid phosphoribosyltransferase. The TK1676 protein displayed significant activity toward Na and phosphoribosyl pyrophosphate (PRPP) and only trace activity with Nm and PRPP. We further performed genetic analyses on TK0218 (quinolinic acid phosphoribosyltransferase) and TK1650 (Nm deamidase), involved in de novo biosynthesis and four-step salvage of NAD + , respectively. The ΔTK0218 mutant cells displayed growth defects in a minimal synthetic medium, but growth was fully restored with the addition of Na or Nm. The ΔTK0218 ΔTK1650 mutant cells did not display growth in the minimal medium, and growth was restored with the addition of Na but not Nm. The enzymatic and genetic analyses strongly suggest that NAD + salvage in T. kodakarensis requires deamination of Nm and proceeds through the four-step pathway. IMPORTANCE Hyperthermophiles must constantly deal with increased degradation rates of their biomolecules due to their high growth temperatures. Here, we identified the pathway that regenerates NAD + from nicotinamide (Nm) in the

  1. 1:100,000 Grid of Louisiana, Geographic NAD83, LOSCO (1999)[quad100K_LOSCO_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a polygon dataset depicting the bounds of a regular 100K (60 minutes east-west by 30 minutes north-south) grid in geographic coordinates, NAD83, for the...

  2. CtBP1/BARS Gly172 → Glu mutant structure: Impairing NAD(H)-binding and dimerization

    International Nuclear Information System (INIS)

    Nardini, Marco; Valente, Carmen; Ricagno, Stefano; Luini, Alberto; Corda, Daniela; Bolognesi, Martino

    2009-01-01

    C-terminal binding proteins (CtBPs) are multi-functional proteins involved in nuclear transcriptional co-repression, Golgi membrane fission, and synaptic ribbon formation. Binding of NAD(H) to CtBPs promotes dimerization. CtBP dimers act as a scaffold for multimeric protein complex formation, thus bridging transcriptional repressors and their targets in the nucleus. Based on size-exclusion chromatography experiments and on the crystal structure of the NAD(H)-free G172E CtBP mutant, we show here that absence of NAD(H) induces flexibility/backbone conformational changes at the dimerization interface and at the CtBP interdomain region. The results presented shed first light on the correlation between NAD(H)-binding and functional CtBP dimerization.

  3. Effect of NAD on binding and liberation of 14C-GABA in administration of the convulsion producing drug

    International Nuclear Information System (INIS)

    Fomenko, A.I.; Stepanenko, S.P.; Parkhomets, P.K.; Donchenko, G.V.

    1993-01-01

    Administration of corazole into animals led to a decrease in content of NAD and gamma-aminobutyric acid (GABA) in brain. Under these conditions, binding of 14 C-GABA was increased and its liberation was inhibited in the synaptosomes of the brain cortex. Additional administration of incotinamide, accompanied by considerable increase in content of NAD and GABA, caused a decrease in accumulation of exogenous GABA in the synaptosomes and removed the effects produced by the convulsant agent. Kinetics of 14 C-GABA binding in the presence of NAD demonstrated that the more effective inhibition of the binding occurred in the animals treated with the convulsant drug. NAD appears to affect the GABA-ergic transmission at the postsynaptic level

  4. Investigation of the Ionization Mechanism of NAD+/NADH-Modified Gold Electrodes in ToF-SIMS Analysis.

    Science.gov (United States)

    Hua, Xin; Zhao, Li-Jun; Long, Yi-Tao

    2018-06-04

    Analysis of nicotinamide adenine dinucleotide (NAD + /NADH)-modified electrodes is important for in vitro monitoring of key biological processes. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to analyze NAD + /NADH-modified gold electrodes. Interestingly, no obvious characteristic peaks of nicotinamide fragment could be observed in the mass spectra of NAD + /NADH in their neutral sodium pyrophosphate form. However, after acidification, the characteristic peaks for both NAD + and NADH were detected. This was due to the suppression effect of inner pyrophosphoric salts in both neutral molecules. Besides, it was proved that the suppression by inner salt was intramolecular. No obvious suppression was found between neighboring molecules. These results demonstrated the suppression effect of inner salts in ToF-SIMS analysis, providing useful evidence for the study of ToF-SIMS ionization mechanism of organic molecule-modified electrodes. Graphical Abstract ᅟ.

  5. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli.

    Science.gov (United States)

    Song, Hun-Suk; Jeon, Jong-Min; Kim, Hyun-Joong; Bhatia, Shashi Kant; Sathiyanarayanan, Ganesan; Kim, Junyoung; Won Hong, Ju; Gi Hong, Yoon; Young Choi, Kwon; Kim, Yun-Gon; Kim, Wooseong; Yang, Yung-Hun

    2017-12-01

    To reduce the furfural toxicity for biochemical production in E. coli, a new strategy was successfully applied by supplying NAD(P)H through the nicotine amide salvage pathway. To alleviate the toxicity, nicotinamide salvage pathway genes were overexpressed in recombinant, isobutanol-producing E. coli. Gene expression of pncB and nadE respectively showed increased tolerance to furfural among these pathways. The combined expression of pncB and nadE was the most effective in increasing the tolerance of the cells to toxic aldehydes. By comparing noxE- and fdh-harbouring strains, the form of NADH, rather than NAD + , was the major effector of furfural tolerance. Overall, this study is the application of the salvage pathway to isobutanol production in the presence of furfural, and this system seems to be applicable to alleviate furfural toxicity in the production of other biochemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Metastable He (n=2) - Ne potential interaction calculation

    International Nuclear Information System (INIS)

    Rahal, H.

    1983-10-01

    Diabatic potential terms corresponding to He (2 1 S)-Ne and He (2 3 S)-Ne interactions are calculated. These potentials reproduce the experimental results thermal metastable atom elastic scattering on Ne target. A model which reduces the interaction to a one-electron problem is proposed: the He excited electron. Its interaction with the He + center is reproduced by a ''l'' dependent potential model with a 1/2 behaviour at short range. The electron interaction facing the Ne is described by a l-dependent pseudopotential reproducing with accuracy the electron elastic scattering on a Ne atom. The importance of the corrective term related to the Ne polarizations by the electron and the He + ion is showed in this work. In the modelling problems, the accuracy cannot be better than 0.1 MeV [fr

  7. Investigations of the metabolism of NAD in embryonic neural tissue of mice after irradiation with X-rays

    International Nuclear Information System (INIS)

    Beuningen, M. van.

    1974-01-01

    Female mice of an institutes own inbred strain were killed on the 9th-13th day of pregnancy and the embryos were removed by caesarian section. The NAD content and protein content in the embryonic neural tissue of the mice increase the most from the 10th to 11th day. There is a relationship between NAD quantity and increase in size measured by the protein content. The enzymal activity of the NMN pyrophosphorylase runs parallel to the NAD rise and fall except for on the 11th day on which the enzyme increases further. The NAD biosynthesis from nicotinamide measured by the incorporation of 14-C nicotinamide in the NAD rises from the 10th to the 13th day. If one refers the incorporation to the protein content, however, the NAD synthesis falls from the 10th day onwards. An increase of the NAD content in the embryonic brain by the addition of nicotinamide in a high dose was not possible on the 10th and 12th day, whereas a clear increase was registered in the mother animal liver. Following an X-radiation with 200 R on the 9th day, the NAD content/brain dropped on the 11th day to its lowest point and had reached its normal value again on the 13th day, contrary to the protein content which only decreases on the 11th day. If one refers the NAD content, however, to protein quantity, then this only falls on the 10th day and rises on the 11th day almost to the normal value and has reached the latter by the 12th day. The NMN pyrophosphorylase activity falls on the 10th and 11th day, has its normal value on the 12th day and exceeds it on the 13th day. If one refers the enzyme activity to protein content, then it drops on the 10th day, reaches its lowest value on the 11th day, has its normal value on the 12th day and shoots above it on the 13th day. On the 10th day, the NAD content falls only after an X-ray with 200 R given on the 9th day, whereas the protein content remains constant. The NAD content does not change in the region of 50 to 150 R. (orig./LH) [de

  8. L'hydrogène Hydrogen

    Directory of Open Access Journals (Sweden)

    Balaceanu J. C.

    2006-11-01

    Full Text Available La crise pétrolière et le bouleversement du classement économique des énergies primaires qu'elle entraîne conjuguent leurs effets avec ceux d'une sensibilisation de l'opinion au respect de l'environnement pour favoriser l'avènement industriel d'innovations scientifiques et techniques dont l'intervention n'était prévisible que dans un avenir de plusieurs décennies. Le développement de l'énergie électrique nucléaire, qui actuellement s'impose économiquement, implique, pour élargir la pénétration de cette forme d'énergie à toutes les utilisations, une énergie chimique relais permettant un stockage et une régulation de la production; l'hydro- gène obtenu par électrolyse de l'eau semble pouvoir constituer ce combustible relais dans un délai raisonnable en tenant compte des contraintes de pollution. La chaleur nucléaire soulève a fortiori des problèmes identiques, elle peut théoriquement par dissociation thermique étagée de l'eau liquide fournir de l'hydrogène avec des rendements très satisfaisants, mais les problèmes de principe et de technologie posés par la mise en opération d'une suite de transformations chimiques et de séparations impliquant des composés particulièrement réactifs sont ardus et leur inventaire même n'est pas achevé. L'hydrogène, nouveau combustible polyvalent d'une industrie gazière perpétuelle, semble pouvoir bénéficier également, au niveau de son utilisation disséminée, de techniques nouvelles : stockages solides, turbines à hauts rendements, piles à combustible, qui ouvrent le marché de la traction et le marché électrique des installations isolées. Agent de réduction réactif et puissant, l'hydrogène peut également se substituer aux réducteurs conventionnels en métallurgie et donner une dimension nouvelle à l'hydrogénométallurgie par voie sèche ou par voie humide. Mais plus encore la mise en valeur économique des combustibles fossiles abondants . charbon, schistes

  9. Irène Jacob visits CERN

    CERN Document Server

    CERN Bulletin

    2010-01-01

    French actress Irène Jacob, the daughter of physicist Maurice Jacob, visited the ATLAS and CMS control rooms on Monday 17 May together with Italian theatre actor-director Pippo Delbono, in search of inspiration for a short film. The film will be screened at the “nuit des particules” event accompanying this year’s ICHEP.   Pippo Delbono et Irène Jacob discussing their project. “La nuit des particules” (night of the particles) is an event open to the general public that is being organised for the evening of Tuesday, 27 July, to accompany the 35th International Conference on High Energy Physics (ICHEP). ICHEP is a major highlight in every physicist’s calendar, and this year’s edition is being held in Paris from 22 to 28 July. The short film will be screened during the evening, which will include a lecture and a show at the legendary Parisian cinema Le Grand Rex, with a colossal seating capacity of 2 700 spe...

  10. Prospects for Antineutrino Running at MiniBooNE

    OpenAIRE

    Wascko, M. O.

    2006-01-01

    MiniBooNE began running in antineutrino mode on 19 January, 2006. We describe the sensitivity of MiniBooNE to LSND-like nuebar oscillations and outline a program of antineutrino cross-section measurements necessary for the next generation of neutrino oscillation experiments. We describe three independent methods of constraining wrong-sign (neutrino) backgrounds in an antineutrino beam, and their application to the MiniBooNE antineutrino analyses.

  11. "Ne opravilsja jeshtsho posle grippa..." : [luuletused] / Aleksei Koroljov

    Index Scriptorium Estoniae

    Koroljov, Aleksei

    2001-01-01

    Autor endast lk. 44. Sisu: "Ne opravilsja jeshtsho posle grippa..." ; "Tak plohho mne, kak ne bõlo davno..." ; "Vokrug tebja, kak satellit..." ; "Hotja i ne ossobenno ona..." ; Iz dnevnika ; Zdravõi smõsl ; "V ushko igolnoje prodenu..." ; "Zhenshtshine prostitelnõ nedostatki..." ; "Balagurja, taratorja..." "Kogda bõ sprava - rai..." ; 23-i skorõi ; "Velmozhi v rogozhe iz blazhi i drozhi..."

  12. Bioelectrocatalytic NAD+/NADH inter-conversion: transformation of an enzymatic fuel cell into an enzymatic redox flow battery.

    Science.gov (United States)

    Quah, Timothy; Milton, Ross D; Abdellaoui, Sofiene; Minteer, Shelley D

    2017-07-25

    Diaphorase and a benzylpropylviologen redox polymer were combined to create a bioelectrode that can both oxidize NADH and reduce NAD + . We demonstrate how bioelectrocatalytic NAD + /NADH inter-conversion can transform a glucose/O 2 enzymatic fuel cell (EFC) with an open circuit potential (OCP) of 1.1 V into an enzymatic redox flow battery (ERFB), which can be rapidly recharged by operation as an EFC.

  13. Imaging the NADH:NAD+ Homeostasis for Understanding the Metabolic Response of Mycobacterium to Physiologically Relevant Stresses.

    Science.gov (United States)

    Bhat, Shabir A; Iqbal, Iram K; Kumar, Ashwani

    2016-01-01

    The NADH:NAD + ratio is the primary indicator of the metabolic state of bacteria. NAD(H) homeostasis is critical for Mycobacterium tuberculosis (Mtb) survival and is thus considered an important drug target, but the spatio-temporal measurements of NAD(H) remain a challenge. Genetically encoded fluorescent biosensors of the NADH:NAD + ratios were recently described, paving the way for investigations of the metabolic state of pathogens during infection. Here we have adapted the genetically encoded biosensor Peredox for measurement of the metabolic state of Mtb in vitro and during infection of macrophage cells. Using Peredox, here we show that inhibition of the electron transport chain, disruption of the membrane potential and proton gradient, exposure to reactive oxygen species and treatment with antimycobacterial drugs led to the accumulation of NADH in mycobacterial cells. We have further demonstrated that Mtb residing in macrophages displays higher NADH:NAD + ratios, that may indicate a metabolic stress faced by the intracellular Mtb. We also demonstrate that the Mtb residing in macrophages display a metabolic heterogeneity, which may perhaps explain the tolerance displayed by intracellular Mtb. Next we studied the effect of immunological modulation by interferon gamma on metabolism of intracellular Mtb, since macrophage activation is known to restrict mycobacterial growth. We observed that activation of resting macrophages with interferon-gamma results in higher NADH:NAD + levels in resident Mtb cells. We have further demonstrated that exposure of Isoniazid, Bedaquiline, Rifampicin, and O-floxacin results in higher NADH:NAD + ratios in the Mtb residing in macrophages. However, intracellular Mtb displays lower NADH:NAD + ratio upon exposure to clofazimine. In summary, we have generated reporter strains capable of measuring the metabolic state of Mtb cells in vitro and in vivo with spatio-temporal resolution. We believe that this tool will facilitate further

  14. Study of 19F and 19Ne mirror nuclei

    International Nuclear Information System (INIS)

    Lebrun, Claude.

    1976-01-01

    The electromagnetic properties of the mirror nuclei 19 F and 19 Ne were studied using the 18 O(d,nγ) 19 F, 17 O( 3 He,nγ) 19 Ne and 19 F(p,nγ) 19 Ne reactions. Lifetimes of 8 levels in 19 F and 11 levels in 19 Ne have been measured using the Doppler shift attenuation method. Weak and strong components of M 1 , E 1 and E 2 transition strengths are compared with shell model predictions. M 1 and E 2 transition strengths of conjugated nuclei (A=18 to A=34) are compiled and compared with wide configuration space shell models [fr

  15. The state of the NeXus data format

    International Nuclear Information System (INIS)

    Koennecke, Mark

    2006-01-01

    NeXus is an effort by an international group of scientists to define a common data exchange format for neutron, muon and X-ray scattering. NeXus has six levels: a physical file format, a file structure, rules for storing individual data items in a file, a dictionary of names, instrument definitions and an application programming interface (API) to NeXus files. The authors will present the large steps forward which have been made both with instrument definitions and the NeXus-API

  16. Calcium inhibition of the NAD+-linked isocitrate dehydrogenase from blowfly flight muscle mitochondria.

    Science.gov (United States)

    Bulos, B A; Thomas, B J; Sacktor, B

    1984-08-25

    Free Ca2+ was shown to inhibit the NAD+-isocitrate dehydrogenase from blowfly flight muscle mitochondria. Inhibition by free Ca2+ concentrations of 40 microM or greater was found in the absence or presence of ADP and citrate, two known activators of the enzyme. Calcium decreased the affinity of the enzyme for its substrate, the magnesium DL-isocitrate chelate; no change in the apparent V of the reaction was observed. Calcium was inhibitory when activity was measured in the presence of fixed concentrations of magnesium DL-isocitrate chelate in the presence of several fixed concentrations of either free isocitrate3-, an activator, or free Mg2+, an inhibitor of the enzyme. That NAD+-isocitrate dehydrogenase from blowfly flight muscle mitochondria was not activated by micromolar free Ca2+ is consistent with the view that calcium does not play a role in regulating the flux through the tricarboxylate cycle in this species.

  17. Flow-through 3D biofuel cell anode for NAD{sup +}-dependent enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Rosalba A.; Lau, Carolin; Garcia, Kristen E. [Department of Chemical and Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, NM 87131 (United States); Atanassov, Plamen, E-mail: plamen@unm.ed [Department of Chemical and Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, NM 87131 (United States)

    2011-02-01

    NAD{sup +}-dependent enzymes require the presence of catalysts for cofactor regeneration in order to be employed in enzymatic biofuel cells. Poly-(methylene green) catalysts have proven to help the oxidation reaction of NADH allowing for the use of such enzymes in electrocatalytic oxidation reactions. In this paper we present the development of 3D anode based on NAD{sup +}-dependent malate dehydrogenase. The 3D material chosen was reticulated vitreous carbon (RVC) which was modified with poly-(MG) for NADH oxidation and it also accommodated the porous immobilization matrix for MDH consisting of MWCNTs embedded in chitosan; allowing for mass transport of the substrate to the electrode. Scanning electron microscopy was used in order to characterize the poly-(MG)-modified RVC, and electrochemical evaluation of the anode was performed.

  18. Flow-through 3D biofuel cell anode for NAD+-dependent enzymes

    International Nuclear Information System (INIS)

    Rincon, Rosalba A.; Lau, Carolin; Garcia, Kristen E.; Atanassov, Plamen

    2011-01-01

    NAD + -dependent enzymes require the presence of catalysts for cofactor regeneration in order to be employed in enzymatic biofuel cells. Poly-(methylene green) catalysts have proven to help the oxidation reaction of NADH allowing for the use of such enzymes in electrocatalytic oxidation reactions. In this paper we present the development of 3D anode based on NAD + -dependent malate dehydrogenase. The 3D material chosen was reticulated vitreous carbon (RVC) which was modified with poly-(MG) for NADH oxidation and it also accommodated the porous immobilization matrix for MDH consisting of MWCNTs embedded in chitosan; allowing for mass transport of the substrate to the electrode. Scanning electron microscopy was used in order to characterize the poly-(MG)-modified RVC, and electrochemical evaluation of the anode was performed.

  19. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    Science.gov (United States)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  20. High-Throughput Screening of Coenzyme Preference Change of Thermophilic 6-Phosphogluconate Dehydrogenase from NADP(+) to NAD(.).

    Science.gov (United States)

    Huang, Rui; Chen, Hui; Zhong, Chao; Kim, Jae Eung; Zhang, Yi-Heng Percival

    2016-09-02

    Coenzyme engineering that changes NAD(P) selectivity of redox enzymes is an important tool in metabolic engineering, synthetic biology, and biocatalysis. Here we developed a high throughput screening method to identify mutants of 6-phosphogluconate dehydrogenase (6PGDH) from a thermophilic bacterium Moorella thermoacetica with reversed coenzyme selectivity from NADP(+) to NAD(+). Colonies of a 6PGDH mutant library growing on the agar plates were treated by heat to minimize the background noise, that is, the deactivation of intracellular dehydrogenases, degradation of inherent NAD(P)H, and disruption of cell membrane. The melted agarose solution containing a redox dye tetranitroblue tetrazolium (TNBT), phenazine methosulfate (PMS), NAD(+), and 6-phosphogluconate was carefully poured on colonies, forming a second semi-solid layer. More active 6PGDH mutants were examined via an enzyme-linked TNBT-PMS colorimetric assay. Positive mutants were recovered by direct extraction of plasmid from dead cell colonies followed by plasmid transformation into E. coli TOP10. By utilizing this double-layer screening method, six positive mutants were obtained from two-round saturation mutagenesis. The best mutant 6PGDH A30D/R31I/T32I exhibited a 4,278-fold reversal of coenzyme selectivity from NADP(+) to NAD(+). This screening method could be widely used to detect numerous redox enzymes, particularly for thermophilic ones, which can generate NAD(P)H reacted with the redox dye TNBT.

  1. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process.

    Science.gov (United States)

    van der Weerden, Nicole L; Hancock, Robert E W; Anderson, Marilyn A

    2010-11-26

    The antifungal activity of the plant defensin NaD1 involves specific interaction with the fungal cell wall, followed by permeabilization of the plasma membrane and entry of NaD1 into the cytoplasm. Prior to this study, the role of membrane permeabilization in the activity of NaD1, as well as the relevance of cell wall binding, had not been investigated. To address this, the permeabilization of Fusarium oxysporum f. sp. vasinfectum hyphae by NaD1 was investigated and compared with that by other antimicrobial peptides, including the cecropin-melittin hybrid peptide CP-29, the bovine peptide BMAP-28, and the human peptide LL-37, which are believed to act largely through membrane disruption. NaD1 appeared to permeabilize cells via a novel mechanism that required the presence of the fungal cell wall. NaD1 and Bac2A, a linear variant of the bovine peptide bactenecin, were able to enter the cytoplasm of treated hyphae, indicating that cell death is accelerated by interaction with intracellular targets.

  2. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1.

    Science.gov (United States)

    Yang, Wei; Kang, Xiaomin; Qin, Na; Li, Feng; Jin, Xinxin; Ma, Zhengmin; Qian, Zhuang; Wu, Shufang

    2017-10-01

    Intra-articular injection of glucocorticoids is used to relieve pain and inflammation in osteoarthritis patients, which is occasionally accompanied with the serious side effects of glucocorticoids in collagen-producing tissue. Melatonin is the major hormone released from the pineal gland and its beneficial effects on cartilage has been suggested. In the present study, we investigated the protective role of melatonin on matrix degeneration in chondrocytes induced by dexamethasone (Dex). The chondrocytes isolated from mice knee joint were treated with Dex, melatonin, EX527 and siRNA targeted for SIRT6, respectively. Dex treatment induced the loss of the extracellular matrix, NAD + /NADH ratio and NADPH concentration in chondrocytes. Melatonin alone have no effect on the quantity of proteoglycans and collagen type IIa1, however, the pretreatment of melatonin reversed the negative effects induced by Dex. Meanwhile, the significant decrease in NAD + /NADH ratio and NADPH concentration in Dex group were up-regulated by pretreatment of melatonin. Furthermore, it was revealed that inhibition of SIRT1 blocked the protective effects of melatonin. The enhancement of NAD + -dependent SIRT1 activity contributes to the chondroprotecfive effects of melatonin, which has a great benefit to prevent dexamethasone-induced chondrocytes impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen.

    Science.gov (United States)

    Pasqualini, Stefania; Tedeschini, Emma; Frenguelli, Giuseppe; Wopfner, Nicole; Ferreira, Fatima; D'Amato, Gennaro; Ederli, Luisa

    2011-10-01

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O(3)) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O(3) fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O(3) fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O(3), determined from the mRNA levels of the major allergens. We conclude that O(3) can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. NAD+ Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair.

    Science.gov (United States)

    Fang, Evandro Fei; Kassahun, Henok; Croteau, Deborah L; Scheibye-Knudsen, Morten; Marosi, Krisztina; Lu, Huiming; Shamanna, Raghavendra A; Kalyanasundaram, Sumana; Bollineni, Ravi Chand; Wilson, Mark A; Iser, Wendy B; Wollman, Bradley N; Morevati, Marya; Li, Jun; Kerr, Jesse S; Lu, Qiping; Waltz, Tyler B; Tian, Jane; Sinclair, David A; Mattson, Mark P; Nilsen, Hilde; Bohr, Vilhelm A

    2016-10-11

    Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD + , and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD + reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD + also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions. Published by Elsevier Inc.

  5. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.

    Science.gov (United States)

    Titov, Denis V; Cracan, Valentin; Goodman, Russell P; Peng, Jun; Grabarek, Zenon; Mootha, Vamsi K

    2016-04-08

    A decline in electron transport chain (ETC) activity is associated with many human diseases. Although diminished mitochondrial adenosine triphosphate production is recognized as a source of pathology, the contribution of the associated reduction in the ratio of the amount of oxidized nicotinamide adenine dinucleotide (NAD(+)) to that of its reduced form (NADH) is less clear. We used a water-forming NADH oxidase from Lactobacillus brevis (LbNOX) as a genetic tool for inducing a compartment-specific increase of the NAD(+)/NADH ratio in human cells. We used LbNOX to demonstrate the dependence of key metabolic fluxes, gluconeogenesis, and signaling on the cytosolic or mitochondrial NAD(+)/NADH ratios. Expression of LbNOX in the cytosol or mitochondria ameliorated proliferative and metabolic defects caused by an impaired ETC. The results underscore the role of reductive stress in mitochondrial pathogenesis and demonstrate the utility of targeted LbNOX for direct, compartment-specific manipulation of redox state. Copyright © 2016, American Association for the Advancement of Science.

  6. ARTD1/PARP1 Negatively Regulates Glycolysis by Inhibiting Hexokinase 1 Independent of NAD+ Depletion

    Directory of Open Access Journals (Sweden)

    Elise Fouquerel

    2014-09-01

    Full Text Available ARTD1 (PARP1 is a key enzyme involved in DNA repair through the synthesis of poly(ADP-ribose (PAR in response to strand breaks, and it plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD+ depletion and ATP loss; however, the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we compared the effects of ARTD1 activation and direct NAD+ depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD+ depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics-based PAR interactome after DNA damage and identified hexokinase 1 (HK1 as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing insight into the importance of nucleus-to-mitochondria communication via ARTD1 activation.

  7. Phase transition and angular momentum dependence of correlations in the rotational spectra of Ne20 and Ne22

    International Nuclear Information System (INIS)

    Satpathy, L.; Schmid, K.W.; Krewald, S.; Faessler, A.

    1974-01-01

    Multi-Configuration-Hartree-Fock (MCHF) calculations with angular momentum projection before the variation of the internal degree of freedom have been performed for the nuclei Ne 20 and Ne 22 . This procedure yields different correlated intrinsic states for the different members of a rotational band. Thus, the angular momentum dependence of correlations has been studied. Experimentally, the ground state spectra of Ne 20 and Ne 22 show properties similar to the phase transitions observed in some rare earth nuclei which have been well reproduced through the present calculations. The calculated spectra show a significant improvement compared to the ones obtained by variation before the angular momentum projection is effected. (author)

  8. Investigations of the radiosensitivity of enzymes of the NAD metabolism localized in the cell nucleus in the spleen of white mice

    International Nuclear Information System (INIS)

    Beisel, P.

    1975-01-01

    The radiosensitivity of enzymes of the NAD metabolism localized in the cell nuclei and of NAD glycohydrolase in the total homogenate of the spleen of white mice was investigated. At the same time the DNA and protein contents were determined. After whole-body irradiation with 510 R, the activity of NAD pyrophosphorylase and NAD glycohydrolase located in the cell nuclei is markedly lower as early as 3 hours after irradiation; this decrease is noticeable until the 10th day after irradiation. With regard to the dose dependence of the radiosensitivity at 6 and 24 hours after irradiation, it was found that NAD pyrophosphorylase and the NAD glycohydrolase localized in the cell nuclei were very radiosensitive even at doses [de

  9. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Karlsson, Magnus; Winther, Jakob R.

    2014-01-01

    Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyse substrate oxidation and as such it plays a key role in various biological processes such as aging, cell...... death and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labelled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining...... a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/ [lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD...

  10. DAΦNE magnet power supply system

    International Nuclear Information System (INIS)

    Ricci, R.; Sanelli, C.; Stecchi, A.

    1998-01-01

    The e + -e - , 1020 MeV at center of mass, Particle Accelerator Complex DAΦNE, consists of a linear accelerator (Linac), a damping ring (D.A.), nearly 180 m of transfer lines (T.L.) and two storage rings (S.R.), that intersect each other in two points (I.P.), for Φ particle production. The D.A., T.L. and S.R. magnets are powered by means of 462 power supplies, rating from 100 W to 1 MW. The very different output currents, from 10 A to 2300 A, and output voltages, from 8 V to 1300 V, imposed many different technical solution realized by the world industry. This paper describes the Power Supply System giving also a description of the different typologies, their characteristics and control systems. The paper reports also the power supply performances and gives information on their installation and first year operation period

  11. KN scattering at DA{Phi}NE?

    Energy Technology Data Exchange (ETDEWEB)

    Olin, A

    1995-06-01

    Existing measurements of the KN and K-bar N scattering lengths suffer from large uncertainties, particularly in the I=0 channel. The low energy kaons from {phi} decay available at DA{Phi}NE can be used to improve this situation. Three experimental approaches are discussed: a solid hydrogen target and silicon colorimeter surrounding the collision point. This would also use the magnet and tracking detectors of the FINUDA experiment; a hydrogen TPC is proposed as an active target in the magnetic field of the FINUDA magnet; the FINUDA detector with a CH{sub 2} target could be used to measure an important cross-section. (author). 14 refs., 1 tab., 5 figs.

  12. Martin Szekely : ne plus dessiner

    OpenAIRE

    Mokhtari, Sylvie

    2012-01-01

    Ce livret, publié à l’issue d’une exposition éponyme au Centre Pompidou en 2011-12, présente, sous la conduite de Françoise Guichon les « recherches » et les « projets industriels » du designer qui en 1996 avait déclaré « ne plus dessiner ». Un texte de Philippe-Alain Michaud explicite en deuxième partie de l’opuscule la rencontre de Martin Szekely avec l’artiste Mark Lewis qui réalisa un film à partir du miroir Soleil noir (2007) installé dans les salles de peinture hollandaise de la Nationa...

  13. Active Eruptions in the NE Lau Basin

    Science.gov (United States)

    Resing, J. A.; Embley, R. W.

    2009-12-01

    NE Lau Response Team: K Rubin, E Baker, J Lupton, M Lilley, T Shank, S Merle, R Dziak, T Collasius (Jason 2 Expedition Leader), N Buck, T Baumberger, D Butterfield, D Clague, D Conlin, J Cowen, R Davis, L Evans, J Huber, M Keith, N Keller, P Michael, E Podowski, A-L Reysenbach, K Roe, H Thomas, S Walker. During a May 2009 cruise to W Mata volcano in the NE Lau Basin, we made the first observations of an active eruption on the deep-sea floor. The cruise was organized after volcanic activity was detected at two sites (W Mata volcano and NE Lau Spreading Center, NELSC) during a Nov. 2008 NOAA-PMEL expedition. At that time, both sites had elevated H2 concentrations and volcaniclastic shards in the hydrothermal plumes. Moored hydrophone data since Jan 2009 indicate that the activity at W Mata has been continuous between these expeditions. Results of our cruise and other work suggest that the NE Lau Basin hosts an unusually high level of magmatic activity, making it an ideal location to study the effects of magmatic processes on hydrothermal activity and associated ecosystems. W Mata was visited with 5 ROV Jason 2 dives and 2 dives with the MBARI autonomous mapping vehicle in May 2009. It was actively erupting at the 1200 m deep summit during each, so a hydrophone was deployed locally to collect acoustic data. Ship and shore-based analysis of HD video, molten lava, rocks, sediments, hot spring waters, and micro- and macro biological specimens collected by Jason 2 have provided a wealth of data. The eruption itself was characterized by extrusion of red, molten lava, extensive degassing, formation of large magma bubbles, explosive pyroclast ejection, and the active extrusion of pillow lavas. The erupting magmas are boninite, a relatively rare magma type found only at convergent margins. The hydrothermal fluids are generally acidic and all diffuse fluids collected were microbially active, even those at pH 20 yrs the PMEL-Vents and NSF RIDGE programs have sought to observe

  14. Oleate ameliorates palmitate-induced reduction of NAMPT activity and NAD levels in primary human hepatocytes and hepatocarcinoma cells.

    Science.gov (United States)

    Penke, Melanie; Schuster, Susanne; Gorski, Theresa; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje

    2017-10-03

    Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide adenine dinucleotide (NAD) levels are crucial for liver function. The saturated fatty acid palmitate and the unsaturated fatty acid oleate are the main free fatty acids in adipose tissue and human diet. We asked how these fatty acids affect cell survival, NAMPT and NAD levels in HepG2 cells and primary human hepatocytes. HepG2 cells were stimulated with palmitate (0.5mM), oleate (1mM) or a combination of both (0.5mM/1mM) as well as nicotinamide mononucleotide (NMN) (0.5 mM) or the specific NAMPT inhibitor FK866 (10nM). Cell survival was measured by WST-1 assay and Annexin V/propidium iodide staining. NAD levels were determined by NAD/NADH Assay or HPLC. Protein and mRNA levels were analysed by Western blot analyses and qPCR, respectively. NAMPT enzyme activity was measured using radiolabelled 14 C-nicotinamide. Lipids were stained by Oil red O staining. Palmitate significantly reduced cell survival and induced apoptosis at physiological doses. NAMPT activity and NAD levels significantly declined after 48h of palmitate. In addition, NAMPT mRNA expression was enhanced which was associated with increased NAMPT release into the supernatant, while intracellular NAMPT protein levels remained stable. Oleate alone did not influence cell viability and NAMPT activity but ameliorated the negative impact of palmitate on cell survival, NAMPT activity and NAD levels, as well as the increased NAMPT mRNA expression and secretion. NMN was able to normalize intracellular NAD levels but did not ameliorate cell viability after co-stimulation with palmitate. FK866, a specific NAMPT inhibitor did not influence lipid accumulation after oleate-treatment. Palmitate targets NAMPT activity with a consequent cellular depletion of NAD. Oleate protects from palmitate-induced apoptosis and variation of NAMPT and NAD levels. Palmitate-induced cell stress leads to an increase of NAMPT mRNA and accumulation in the supernatant. However

  15. Mitochondrial nad2 gene is co-transcripted with CMS-associated orfB gene in cytoplasmic male-sterile stem mustard (Brassica juncea).

    Science.gov (United States)

    Yang, Jing-Hua; Zhang, Ming-Fang; Yu, Jing-Quan

    2009-02-01

    The transcriptional patterns of mitochondrial respiratory related genes were investigated in cytoplasmic male-sterile and fertile maintainer lines of stem mustard, Brassica juncea. There were numerous differences in nad2 (subunit 2 of NADH dehydrogenase) between stem mustard CMS and its maintainer line. One novel open reading frame, hereafter named orfB gene, was located at the downstream of mitochondrial nad2 gene in the CMS. The novel orfB gene had high similarity with YMF19 family protein, orfB in Raphanus sativus, Helianthus annuus, Nicotiana tabacum and Beta vulgaris, orfB-CMS in Daucus carota, atp8 gene in Arabidopsis thaliana, 5' flanking of orf224 in B. napus (nap CMS) and 5' flanking of orf220 gene in CMS Brassica juncea. Three copies probed by specific fragment (amplified by primers of nad2F and nad2R from CMS) were found in the CMS line following Southern blotting digested with HindIII, but only a single copy in its maintainer line. Meanwhile, two transcripts were shown in the CMS line following Northern blotting while only one transcript was detected in the maintainer line, which were probed by specific fragment (amplified by primers of nad2F and nad2R from CMS). Meanwhile, the expression of nad2 gene was reduced in CMS bud compared to that in its maintainer line. We thus suggested that nad2 gene may be co-transcripted with CMS-associated orfB gene in the CMS. In addition, the specific fragment that was amplified by primers of nad2F and nad2R just spanned partial sequences of nad2 gene and orfB gene. Such alterations in the nad2 gene would impact the activity of NADH dehydrogenase, and subsequently signaling, inducing the expression of nuclear genes involved in male sterility in this type of cytoplasmic male sterility.

  16. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1).

    Science.gov (United States)

    Harlan, Benjamin A; Pehar, Mariana; Sharma, Deep R; Beeson, Gyda; Beeson, Craig C; Vargas, Marcelo R

    2016-05-13

    Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. © 2016 by The American Society for Biochemistry and Molecular

  17. High-resolution crystal structures of the photoreceptor glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with three and four-bound NAD molecules

    Science.gov (United States)

    Baker, Bo Y; Shi, Wuxian; Wang, Benlian; Palczewski, Krzysztof

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of d-glyceraldehyde 3-phosphate (G3P) into 1,3-diphosphoglycerate (BGP) in the presence of the NAD cofactor. GAPDH is an important drug target because of its central role in glycolysis, and nonglycolytic processes such as nuclear RNA transport, DNA replication/repair, membrane fusion and cellular apoptosis. Recent studies found that GAPDH participates in the development of diabetic retinopathy and its progression after the cessation of hyperglycemia. Here, we report two structures for native bovine photoreceptor GAPDH as a homotetramer with differing occupancy by NAD, bGAPDH(NAD)4, and bGAPDH(NAD)3. The bGAPDH(NAD)4 was solved at 1.52 Å, the highest resolution for GAPDH. Structural comparison of the bGAPDH(NAD)4 and bGAPDH(NAD)3 models revealed novel details of conformational changes induced by cofactor binding, including a loop region (residues 54–56). Structure analysis of bGAPDH confirmed the importance of Phe34 in NAD binding, and demonstrated that Phe34 was stabilized in the presence of NAD but displayed greater mobility in its absence. The oxidative state of the active site Cys149 residue is regulated by NAD binding, because this residue was found oxidized in the absence of dinucleotide. The distance between Cys149 and His176 decreased upon NAD binding and Cys149 remained in a reduced state when NAD was bound. These findings provide an important structural step for understanding the mechanism of GAPDH activity in vision and its pathological role in retinopathies. PMID:25176140

  18. The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by γ-radiation and N-methyl-N-nitrosourea

    International Nuclear Information System (INIS)

    Skidmore, C.J.; Davies, M.I.; Goodwin, P.M.; Halldorsson, H.; Lewis, P.J.; Shall, S.; Zia'ee, A.

    1979-01-01

    Both N-methyl-N-nitrosourea and γ-radiation lower cellular NAD in mouse leukaemia cells (L1210) in a dose-dependent way. The minimum NAD level is reached 2 h after a brief exposure to N-methyl-N-nitrosourea, but within 15 min of γ-irradiation. The cells remain metabolically active; they are able to recover their control NAD levels and are impermeable to trypan blue. Several inhibitors of poly(ADP-ribose) polymerase inhibit the drop in cellular NAD caused by these two agents: 2 mM 5-methylnicotinamide, 1 mM theophylline or 1 mM theobromine inhibit the effect of N-methyl-N-nitrosourea on cellular NAD level; 200 μM thymidine, 500 μM 5-methylnicotinaminde, 500 μM thephylline and 500 μM theobromine prevent the lowering of cellular NAD by γ-irradiation. The extent to which the drop in cellular NAD is inhibited is dependent on both the concentration of cytotoxic agent and of polymerase inhibitor. Caffeine will inhibit the drop in NAD but only at 10 mM, while nicotonic acid is ineffictive even at this dose. The activity of poly(ADP-ribose) polymerase is permeabilized cells immediately after γ-radiation increases with dose up to 12 krad, giving a maximal 3.4-fold stimulation of the enzyme activity, whereas the degradation of NAD under conditions optimal for NAD glycohydrolase does not change. The activity of the polymerase shows a close temporal correlation with the NAD drop following both γ-radiation and N-methyl-N-nitrosourea. The enzyme activity is maximal when the NAD content. (orig./AJ) 891 AJ/orig.- 892 HIS [de

  19. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1)*

    Science.gov (United States)

    Harlan, Benjamin A.; Pehar, Mariana; Sharma, Deep R.; Beeson, Gyda; Beeson, Craig C.; Vargas, Marcelo R.

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD+-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1–7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD+ salvage pathway capable of resynthesizing NAD+ from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD+ levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD+ salvage pathway in astrocytes. Supplementation with the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD+ levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1–2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD+ content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD+ salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. PMID:27002158

  20. Stellar origin of the 22Ne excess in cosmic rays

    International Nuclear Information System (INIS)

    Casse, M.; Paul, J.A.

    1982-01-01

    The 22 Ne excess at the cosmic-ray source is discussed in terms of a 22 Ne-rich component injected and accelerated by carbon-rich Wolf-Rayet stars. The overabundance of 22 Ne relative to 20 Ne predicted at the surface of these stars is estimated to a factor approx.120 with respect to solar system abundances. In order to give rise to a 22 Ne excess of about 3 at the cosmic-ray sources as inferred from observations, the carbon-rich Wolf-Rayet contribution to the primary cosmic-ray flux is to be at maximum 1/60. This component would be energized by strong stellar winds producing quasi-standing shocks around the Wolf-Rayet stars

  1. One-neutron knockout from Ne24-28 isotopes

    CERN Document Server

    Rodriguez-Tajes, C; Caamano, M; Faestermann, T; Cortina-Gil, D; Zhukov, M; Simon, H; Nilsson, T; Borge, M J G; Alvarez-Pol, H; Winkler, M; Prochazka, A; Nociforo, C; Weick, H; Kanungo, R; Perez-Loureiro, D; Kurtukian, T; Suemmerer, K; Eppinger, K; Perea, A; Chatillon, A; Maierbeck, P; Benlliure, J; Pascual-Izarra, C; Gernhaeuser, R; Geissel, H; Aumann, T; Kruecken, R; Larsson, K; Tengblad, O; Benjamim, E; Jonson, B; Casarejos, E

    2010-01-01

    One-neutron knockout reactions of Ne24-28 in a beryllium target have been studied in the Fragment Separator (FRS), at GSI. The results include inclusive one-neutron knockout cross-sections as well as longitudinal-momentum distributions of the knockout fragments. The ground-state structure of the neutron-rich neon isotopes was obtained from an analysis of the measured momentum distributions. The results indicate that the two heaviest isotopes, Ne-27 and Ne-28, are dominated by a configuration in which a s(1/2) neutron is coupled to an excited state of the Ne-26 and Ne-27 core, respectively. (C) 2010 Elsevier B.V. All rights reserved.

  2. Status of the KM3NeT project

    International Nuclear Information System (INIS)

    Katz, U.F.

    2009-01-01

    KM3NeT is a future research infrastructure in the Mediterranean Sea, hosting a cubic-kilometre scale neutrino telescope and nodes for associated sciences such as marine biology, oceanology and geophysics. The status of the KM3NeT project and the progress made in the EU-funded Design Study is reviewed. Some physics studies indicating the sensitivity of the KM3NeT neutrino telescope are highlighted and selected major technical design options to be further pursued are described. Finally, the remaining steps towards construction of KM3NeT will be discussed. This document reflects the status of the KM3NeT Conceptual Design Report (CDR), which has been presented to the public for the first time at the VLVnT08 Workshop.

  3. PARP inhibitor rucaparib induces changes in NAD levels in cells and liver tissues as assessed by MRS.

    Science.gov (United States)

    Almeida, Gilberto S; Bawn, Carlo M; Galler, Martin; Wilson, Ian; Thomas, Huw D; Kyle, Suzanne; Curtin, Nicola J; Newell, David R; Maxwell, Ross J

    2017-09-01

    Poly(adenosine diphosphate ribose) polymerases (PARPs) are multifunctional proteins which play a role in many cellular processes. Namely, PARP1 and PARP2 have been shown to be involved in DNA repair, and therefore are valid targets in cancer treatment with PARP inhibitors, such as rucaparib, currently in clinical trials. Proton magnetic resonance spectroscopy ( 1 H-MRS) was used to study the impact of rucaparib in vitro and ex vivo in liver tissue from mice, via quantitative analysis of nicotinamide adenosine diphosphate (NAD + ) spectra, to assess the potential of MRS as a biomarker of the PARP inhibitor response. SW620 (colorectal) and A2780 (ovarian) cancer cell lines, and PARP1 wild-type (WT) and PARP1 knock-out (KO) mice, were treated with rucaparib, temozolomide (methylating agent) or a combination of both drugs. 1 H-MRS spectra were obtained from perchloric acid extracts of tumour cells and mouse liver. Both cell lines showed an increase in NAD + levels following PARP inhibitor treatment in comparison with temozolomide treatment. Liver extracts from PARP1 WT mice showed a significant increase in NAD + levels after rucaparib treatment compared with untreated mouse liver, and a significant decrease in NAD + levels in the temozolomide-treated group. The combination of rucaparib and temozolomide did not prevent the NAD + depletion caused by temozolomide treatment. The 1 H-MRS results show that NAD + levels can be used as a biomarker of PARP inhibitor and methylating agent treatments, and suggest that in vivo measurement of NAD + would be valuable. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Oscillatory behaviour of Rydberg state total cross sections in the collisions Ne+-He and He+-Ne

    International Nuclear Information System (INIS)

    Andresen, B.; Jensen, K.; Veje, E.

    1976-01-01

    The Ne + -He and He + -Ne collisions have been studied by means of optical spectrometry in the projectile energy range 10-150 keV. Very similar and regular oscillations in the Rydberg state total cross sections are found for HeI in both collisions and for singlet as well as triplet excitation. These oscillations are well described by the Rosenthal model. The HeI 4d sup(1,3)D states display two superimposed oscillations for center-of-mass collision energies above 6.4 keV. This is interpreted as the opening of a third exit channel, believed to be the HeI 4f sup(1,3)F. No, or very little structure is found in the Rydberg state total cross sections for HeII, NeI, NeII and NeIII levels. (Auth.)

  5. Bioinspired Design of Alcohol Dehydrogenase@nano TiO2 Microreactors for Sustainable Cycling of NAD+/NADH Coenzyme

    Directory of Open Access Journals (Sweden)

    Sen Lin

    2018-02-01

    Full Text Available The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO2 nanoparticles (NPs as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO2 NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD coenzyme between NADH and NAD+ was realized by enzymatic regeneration of NADH from NAD+ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD+ under visible light. This bioinspired ADH@TiO2 NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD+/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation.

  6. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    Science.gov (United States)

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. The structural requirements of organophosphorus insecticides (OPI) for reducing chicken embryo NAD(+) content in OPI-induced teratogenesis in chickens.

    Science.gov (United States)

    Seifert, Josef

    2016-05-01

    The objective of this study was to determine the structural requirements of organophosphorus insecticides (OPI) for reducing chicken embryo nicotinamide adenine dinucleotide (NAD(+)) content in OPI-induced teratogenesis and compare them with those needed for OPI inhibition of yolk sac membrane kynurenine formamidase (KFase), the proposed primary target for OPI teratogens in chicken embryos. The comparative molecular field analysis (COMFA) of three-dimensional quantitative structure-activity relationship (3D QSAR) revealed the electrostatic and steric fields as good predictors of OPI structural requirements to reduce NAD(+) content in chicken embryos. The dominant electrostatic interactions were localized at nitrogen-1, nitrogen-3, nitrogen of 2-amino substituent of the pyrimidinyl of pyrimidinyl phosphorothioates, and at the oxygen of crotonamide carbonyl in crotonamide phosphates. Bulkiness of the substituents at carbon-6 of the pyrimidinyls and/or N-substituents of crotonamides was the steric structural component that contributed to superiority of those OPI for reducing embryonic NAD(+) levels. Both electrostatic and steric requirements are similar to those defined in our previous study for OPI inhibition of chicken embryo yolk sac membrane KFase. The findings of this study provide another piece of evidence for the cause-and-effect relationship between yolk sac membrane KFase inhibition and reduced embryo NAD(+) content in NAD-associated OPI-induced teratogenesis in chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Scattering study of the Ne + NeH{sup +}(v{sub 0} = 0, j{sub 0} = 0) → NeH{sup +} + Ne reaction on an ab initio based analytical potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Koner, Debasish; Panda, Aditya N., E-mail: adi07@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Barrios, Lizandra; González-Lezana, Tomás, E-mail: t.gonzalez.lezana@csic.es [IFF-CSIC, Instituto de Física Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain)

    2016-01-21

    Initial state selected dynamics of the Ne + NeH{sup +}(v{sub 0} = 0, j{sub 0} = 0) → NeH{sup +} + Ne reaction is investigated by quantum and statistical quantum mechanical (SQM) methods on the ground electronic state. The three-body ab initio energies on a set of suitably chosen grid points have been computed at CCSD(T)/aug-cc-PVQZ level and analytically fitted. The fitting of the diatomic potentials, computed at the same level of theory, is performed by spline interpolation. A collinear [NeHNe]{sup +} structure lying 0.72 eV below the Ne + NeH{sup +} asymptote is found to be the most stable geometry for this system. Energies of low lying vibrational states have been computed for this stable complex. Reaction probabilities obtained from quantum calculations exhibit dense oscillatory structures, particularly in the low energy region and these get partially washed out in the integral cross section results. SQM predictions are devoid of oscillatory structures and remain close to 0.5 after the rise at the threshold thus giving a crude average description of the quantum probabilities. Statistical cross sections and rate constants are nevertheless in sufficiently good agreement with the quantum results to suggest an important role of a complex-forming dynamics for the title reaction.

  9. A Key Enzyme of the NAD+ Salvage Pathway in Thermus thermophilus: Characterization of Nicotinamidase and the Impact of Its Gene Deletion at High Temperatures.

    Science.gov (United States)

    Taniguchi, Hironori; Sungwallek, Sathidaphorn; Chotchuang, Phatcharin; Okano, Kenji; Honda, Kohsuke

    2017-09-01

    NAD (NAD + ) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD + from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD + de novo synthesis pathway. Herein, we report the importance of the NAD + salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD + salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide ( K m of 17 μM, k cat of 50 s -1 , k cat / K m of 3.0 × 10 3 s -1 · mM -1 ). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD + salvage pathway in T. thermophilus Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD + and NADH. IMPORTANCE NAD + and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD + decomposition is, in general, more rapid. This study emphasizes that NAD + instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures. Copyright © 2017 American Society for Microbiology.

  10. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD+ salvage from nicotinamide

    Science.gov (United States)

    2014-01-01

    Background In an effort to reconstitute the NAD+ synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD+de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD+de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD+ metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD+ biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD+ salvage pathway from nicotinamide. Results Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Conclusions Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD+ salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD+ salvage pathway might be significant in some bacteria lacking NAD+de novo and NAD+ salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD+. However, this speculation needs to be experimentally tested. PMID:24506841

  11. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    International Nuclear Information System (INIS)

    Fukuda, Jun; Tsujimura, Seiya; Kano, Kenji

    2008-01-01

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 μL was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change (ΔG o ') is negative; (2) α-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive ΔG o ' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of α-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total ΔG o ' value negative

  12. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  13. Mechanism of Sirt1 NAD+-dependent Protein Deacetylase Inhibition by Cysteine S-Nitrosation.

    Science.gov (United States)

    Kalous, Kelsey S; Wynia-Smith, Sarah L; Olp, Michael D; Smith, Brian C

    2016-12-02

    The sirtuin family of proteins catalyze the NAD + -dependent deacylation of acyl-lysine residues. Humans encode seven sirtuins (Sirt1-7), and recent studies have suggested that post-translational modification of Sirt1 by cysteine S-nitrosation correlates with increased acetylation of Sirt1 deacetylase substrates. However, the mechanism of Sirt1 inhibition by S-nitrosation was unknown. Here, we show that Sirt1 is transnitrosated and inhibited by the physiologically relevant nitrosothiol S-nitrosoglutathione. Steady-state kinetic analyses and binding assays were consistent with Sirt1 S-nitrosation inhibiting binding of both the NAD + and acetyl-lysine substrates. Sirt1 S-nitrosation correlated with Zn 2+ release from the conserved sirtuin Zn 2+ -tetrathiolate and a loss of α-helical structure without overall thermal destabilization of the enzyme. Molecular dynamics simulations suggested that Zn 2+ loss due to Sirt1 S-nitrosation results in repositioning of the tetrathiolate subdomain away from the rest of the catalytic domain, thereby disrupting the NAD + and acetyl-lysine-binding sites. Sirt1 S-nitrosation was reversed upon exposure to the thiol-based reducing agents, including physiologically relevant concentrations of the cellular reducing agent glutathione. Reversal of S-nitrosation resulted in full restoration of Sirt1 activity only in the presence of Zn 2+ , consistent with S-nitrosation of the Zn 2+ -tetrathiolate as the primary source of Sirt1 inhibition upon S-nitrosoglutathione treatment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Ziar nad Hronom will be heated by an underground heat plant

    International Nuclear Information System (INIS)

    Stiegel, J.

    1999-01-01

    The World Bank and the European Bank for Reconstruction and Development are concerned in co-participation in funding a project for utilising geothermal ground water in heating premises in Ziar nad Hronom. The project implementations costs will be running at U.S.$18 million, of which the two bank institutions would provide for a non-specified part in the form of credit. In heating residential houses, production and commercial infrastructure of Ziar nad Hronom, 72 thousand tonnes of coal are consumed annually to generate 810 TJ heat. By implementing the new project there will be over 100 TJ savings, with a new more efficient distribution hot water network and 39 reconstructed heat exchange station making for effective consumption of heat. The current heat plant will only serve as an auxiliary source under extremely chilly weather conditions with an expected coal consumption of at most 9 thousand tonnes. In addition to cost implications, the geothermal water heating will make a significant contribution through environmental impact. Ecologists calculated that by shutting down the solid fuel burning heat plant the air burden will be reduced by 59 thousand tonnes of carbon dioxide, 290 tonnes of sulfur dioxide, 48 tonnes of nitrogen oxide, 230 tonnes of dust and nearly 12 tonnes of ash. The implementer of the project scheduled to complete in 2001 is a subsidiary of the joint-stock company Zavod SNP - Geothermal, Ltd, Ziar nad Hronom. Aimed at geothermal water sampling in the depth of some 2,500 meters, a trial drill at Ziarska kotlina - site Varticka will last roughly till April 9 1999. The drilling set of Nafta Gbely erected on December 21, 1998 is technically capable of reaching the depth 2,800 meter, just in case that the geothermal water level is lower than the expected 2,500 m. In all In all Nafta Gbely staffs will carry out two production and two reinjection drills. (author)

  15. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: kkano@kais.kyoto-u.ac.jp

    2008-12-30

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 {mu}L was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change ({delta}G{sup o}') is negative; (2) {alpha}-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive {delta}G{sup o}' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of {alpha}-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total {delta}G{sup o}' value negative.

  16. Exclusive measurements of nuclear breakup reactions of 17Ne

    International Nuclear Information System (INIS)

    Wamers, F.; Marganiec, J.; Aksouh, F.; Aksyutina, Y.; Boretzky, K.; Chatillon, A.; Emling, H.; Geissel, H.; Heil, M.; Hoffmann, J.; Karagiannis, C.; Kiselev, O.A.; Kurz, N.; Larsson, K.; Litvinov, Y.A.; Nociforo, C.; Ott, W.; Simon, H.; Suemmerer, K.; Weick, H.; Alvarez-Pol, H.; Beceiro-Novo, S.; Cortina-Gil, D.; Rodriguez-Tajes, C.; Aumann, T.; Panin, V.; Bertulani, C.A.; Borge, M.J.G.; Galaviz, D.; Perea, A.; Tengblad, O.; Chartier, M.; Taylor, J.; Chulkov, L.V.; Egorova, I.A.; Ershova, O.; Langer, C.; Plag, R.; Reifarth, R.; Wimmer, C.; Forssen, C.; Johansson, H.; Jonson, B.; Nilsson, T.; Nyman, G.; Tengborn, E.; Zhukov, M.V.; Fraile, L.M.; Fynbo, H.; Riisager, K.; Grigorenko, L.V.; Hoffmann, D.H.; Richter, A.; Schrieder, G.; Karakoc, M.; Kratz, J.V.; Kulessa, R.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Mahata, K.; Muentz, C.; Stroth, J.; Parfenova, Y.L.; Paschalis, S.; Rossi, D.; Savran, D.; Shul'gina, N.B.

    2014-01-01

    We have studied one-proton-removal reactions of about 500 MeV/u 17 Ne beams on a carbon target at the R 3 B/LAND setup at GSI by detecting beam-like 15 O-p and determining their relative-energy distribution. We exclusively selected the removal of a 17 Ne halo proton, and the Glauber-model analysis of the 16 F momentum distribution resulted in an s 2 contribution in the 17 Ne ground state of about 40 %. (authors)

  17. Deportace do Niska nad Sanem a jejich místo v historii holocaustu

    OpenAIRE

    Borák, Mečislav

    2010-01-01

    The first mass transports of Jews in Nazi–occupied Europe pulled out from Moravská Ostrava, Vienna and Katowice. They headed for Nisko nad Sanem in the eastern part of occupied Poland where the Jews, under the supervision of the SS guards, were supposed to build a concentration camp. This enterprise was administered by Adolf Eichmann and it affected about five thousand Jews from Bohemia, Poland and Austria. The SS guards drove the majority of prisoners to the Soviet Union where they were impr...

  18. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX.

    Science.gov (United States)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD(+)-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  19. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    International Nuclear Information System (INIS)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-01-01

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD + -dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  20. Identification of a novel pathway of transforming growth factor-β1 regulation by extracellular NAD+ in mouse macrophages: in vitro and in silico studies.

    Science.gov (United States)

    Zamora, Ruben; Azhar, Nabil; Namas, Rajaie; Metukuri, Mallikarjuna R; Clermont, Thierry; Gladstone, Chase; Namas, Rami A; Hermus, Linda; Megas, Cristina; Constantine, Gregory; Billiar, Timothy R; Fink, Mitchell P; Vodovotz, Yoram

    2012-09-07

    Extracellular β-nicotinamide adenine dinucleotide (NAD(+)) is anti-inflammatory. We hypothesized that NAD(+) would modulate the anti-inflammatory cytokine Transforming Growth Factor (TGF)-β1. Indeed, NAD(+) led to increases in both active and latent cell-associated TGF-β1 in RAW 264.7 mouse macrophages as well as in primary peritoneal macrophages isolated from both C3H/HeJ (TLR4-mutant) and C3H/HeOuJ (wild-type controls for C3H/HeJ) mice. NAD(+) acts partially via cyclic ADP-ribose (cADPR) and subsequent release of Ca(2+). Treatment of macrophages with the cADPR analog 3-deaza-cADPR or Ca(2+) ionophores recapitulated the effects of NAD(+) on TGF-β1, whereas the cADPR antagonist 8-Br-cADPR, Ca(2+) chelation, and antagonism of L-type Ca(2+) channels suppressed these effects. The time and dose effects of NAD(+) on TGF-β1 were complex and could be modeled both statistically and mathematically. Model-predicted levels of TGF-β1 protein and mRNA were largely confirmed experimentally but also suggested the presence of other mechanisms of regulation of TGF-β1 by NAD(+). Thus, in vitro and in silico evidence points to NAD(+) as a novel modulator of TGF-β1.

  1. Biochemical characterisation of LigN, an NAD+-dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations

    DEFF Research Database (Denmark)

    Poidevin, L.; MacNeill, S. A.

    2006-01-01

    Background DNA ligases are required for DNA strand joining in all forms of cellular life. NAD+-dependent DNA ligases are found primarily in eubacteria but also in some eukaryotic viruses, bacteriophage and archaea. Among the archaeal NAD+-dependent DNA ligases is the LigN enzyme of the halophilic...

  2. Treatment with NAD(+) inhibited experimental autoimmune encephalomyelitis by activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice.

    Science.gov (United States)

    Wang, Jueqiong; Zhao, Congying; Kong, Peng; Sun, Huanhuan; Sun, Zhe; Bian, Guanyun; Sun, Yafei; Guo, Li

    2016-10-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays vital roles in mitochondrial functions, cellular energy metabolism and calcium homeostasis. In this study, we investigated the effect of NAD(+) administration for the treatment of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. EAE, a classical animal model of multiple sclerosis (MS), was induced by subcutaneous injection of myelin oligodendrocyteglycoprotein (MOG). The mice were treated with 250mg/kg (body weight) NAD(+) in PBS administered intraperitoneally once daily. We observed that NAD(+) treatment could lessen the severity of EAE. Additionally, NAD(+) treatment attenuated pathological injuries of EAE mice. We also found that the AMP-activated protein kinase (AMPK)/silent mating-type information regulation 2 homolog 1(SIRT1) pathway was activated in the NAD(+)-treated mice and NAD(+) treatment suppressed pro-inflammatory T cell responses. Our findings demonstrated that NAD(+) could be an effective and promising agent to treat multiple sclerosis and its effects on other autoimmune diseases should be explored. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Polymerase chain reaction amplification and cloning of immunogenic protein NAD-dependent beta hydroxybutyryl CoA dehydrogenase gene of Clostridium chauvoei

    Directory of Open Access Journals (Sweden)

    Saroj K. Dangi

    2014-10-01

    Full Text Available Aim: The present study was aimed at polymerase chain reaction (PCR amplification and cloning of NAD-dependent betahydroxybutyryl coenzyme A dehydrogenase (BHBD gene of Clostridium chauvoei. Materials and Methods: C. chauvoei was cultured and confirmed by 16-23S rDNA spacer region primers. The primers for nad-bhbd gene of C. chauvoei were designed to aid in cloning into pRham-N-His SUMO-Kan vector, and nad-bhbd gene was amplified by PCR. The amplified nad-bhbd gene was purified and cloned into pRham-N-His SUMO-Kan expression vector. The recombinant plasmid was transformed into E. cloni 10 G cells and the clone was confirmed by colony PCR using the pRham-SUMO-NAD-For and pRham-SUMO-NAD-Rev primers and also by sequencing. Results: PCR amplification of nad-bhbd gene yielded a product length of 844 base pairs which was cloned into pRham-NHis SUMO-Kan vector followed by transformation into E. cloni 10G chemically competent cells. The recombinant clones were characterized by colony PCR, sequencing, followed by basic local alignment search tool (BLAST analysis to confirm the insert. Conclusions: Immunogenic protein NAD- dependent BHBD of C. chauvoei was cloned and the recombinant clones were confirmed by colony PCR and sequencing analysis.

  4. Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38

    International Nuclear Information System (INIS)

    Aksoy, Pinar; Escande, Carlos; White, Thomas A.; Thompson, Michael; Soares, Sandra; Benech, Juan Claudio; Chini, Eduardo N.

    2006-01-01

    The SIRT 1 enzyme is a NAD dependent deacetylase implicated in ageing, cell protection, and energy metabolism in mammalian cells. How the endogenous activity of SIRT 1 is modulated is not known. The enzyme CD38 is a multifunctional enzyme capable of synthesis of the second messenger, cADPR, NAADP, and ADPR. However, the major enzymatic activity of CD38 is the hydrolysis of NAD. Of particular interest is the fact that CD38 is present on the inner nuclear membrane. Here, we investigate the modulation of the SIRT 1 activity by CD38. We propose that by modulating availability of NAD to the SIRT1 enzyme, CD38 may regulate SIRT1 enzymatic activity. We observed that in CD38 knockout mice, tissue levels of NAD are significantly increased. We also observed that incubation of purified recombinant SIRT1 enzyme with CD38 or nuclear extracts of wild-type mice led to a significant inhibition of its activity. In contrast, incubation of SIRT1 with cellular extract from CD38 knockout mice was without effect. Furthermore, the endogenous activity of SIRT1 was several time higher in nuclear extracts from CD38 knockout mice when compared to wild-type nuclear extracts. Finally, the in vivo deacetylation of the SIRT1 substrate P53 is increased in CD38 knockout mice tissue. Our data support the novel concept that nuclear CD38 is a major regulator of cellular/nuclear NAD level, and SIRT1 activity. These findings have strong implications for understanding the basic mechanisms that modulate intracellular NAD levels, energy homeostasis, as well as ageing and cellular protection modulated by the SIRT enzymes

  5. CD73 Protein as a Source of Extracellular Precursors for Sustained NAD+ Biosynthesis in FK866-treated Tumor Cells*

    Science.gov (United States)

    Grozio, Alessia; Sociali, Giovanna; Sturla, Laura; Caffa, Irene; Soncini, Debora; Salis, Annalisa; Raffaelli, Nadia; De Flora, Antonio; Nencioni, Alessio; Bruzzone, Santina

    2013-01-01

    NAD+ is mainly synthesized in human cells via the “salvage” pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the “salvage” pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD+ or NAD+ precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD+ precursors for NAD+ biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD+ biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors. PMID:23880765

  6. Electron-impact cross sections of Ne

    International Nuclear Information System (INIS)

    Tsurubuchi, S.; Arakawa, K.; Kinokuni, S.; Motohashi, K.

    2000-01-01

    Electron-impact absolute emission cross sections were measured for the 3p→3s transitions of Ne. Excitation functions of the 3s→2p first resonance lines were measured in the energy range from the threshold to 1000 eV by a polarization-free optical method and relative cross sections were normalized to the absolute values, (41.0±5.4)x10 -19 cm 2 for the 73.6 nm line and (7.1±1.0)x10 -19 cm 2 for the 74.4 nm line, which were determined at 500 eV. The integrated level-excitation cross sections of Suzuki et al for the 1s 2 and 1s 4 levels were combined with the corresponding 3p→3s cascade cross sections obtained in this paper to give absolute emission cross sections for the resonance lines. The level-excitation cross sections of the 1s 2 and 1s 4 states in Paschen notation were determined from the threshold to 1000 eV by subtracting 3p→3s cascade cross sections from the corresponding 3s→2p emission cross sections of the resonance lines. A large cascade contribution is found in the emission cross section of the resonance lines. It is 28.5% for the 73.6 nm line and 49.6% for the 74.4 nm line at 40 eV, and 17.0 and 61.8%, respectively, at 300 eV. (author)

  7. WE FRIENDS, Lääne-Eesti arengupartnerlus / Ingrit Kera

    Index Scriptorium Estoniae

    Kera, Ingrit

    2006-01-01

    Naised saavad osa hiidlaste kirjutatud europrojektist "We Friends", mille eesmärk on Lääne-Eesti madala konkurentsivõimega naiste ja lapsi üksi kasvatavate noorte emade tööhõivele kaasaaitamine

  8. Coulomb and nuclear excitations of narrow resonances in 17Ne

    Directory of Open Access Journals (Sweden)

    J. Marganiec

    2016-08-01

    Full Text Available New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  9. Complementarity and completed trials: reforming the Ne bis in idem ...

    African Journals Online (AJOL)

    Nnamdi Azikiwe University Journal of International Law and Jurisprudence ... This paper is concerned with the question whether article 20(3) of the Rome Statute is ... Rome Statute, Ne bis in idem, double jeopardy, International Criminal Court ...

  10. 77 FR 6481 - Television Broadcasting Services; Lincoln, NE

    Science.gov (United States)

    2012-02-08

    ...] Television Broadcasting Services; Lincoln, NE AGENCY: Federal Communications Commission. ACTION: Final rule... power television rulemaking petitions requesting channel substitutions in May 2011, it subsequently... CFR Part 73 Television. Federal Communications Commission. Barbara A. Kreisman, Chief, Video Division...

  11. The purification and steady-state kinetic behaviour of rabbit heart mitochondrial NAD(P)+ malic enzyme.

    OpenAIRE

    Davisson, V J; Schulz, A R

    1985-01-01

    The mitochondrial NAD(P)+ malic enzyme [EC 1.1.1.39, L-malate:NAD+ oxidoreductase (decarboxylating)] was purified from rabbit heart to a specific activity of 7 units (mumol/min)/mg at 23 degrees C. A study of the reductive carboxylation reaction indicates that this enzymic reaction is reversible. The rate of the reductive carboxylation reaction appears to be completely inhibited at an NADH concentration of 0.92 mM. A substrate saturation curve of this reaction with NADH as the varied substrat...

  12. ATP- and NAD+-dependent DNA ligases share an essential function in the halophilic archaeon Haloferax volcanii

    DEFF Research Database (Denmark)

    Zhao, A.; Gray, F. C; MacNeill, S. A.

    2006-01-01

    DNA ligases join the ends of DNA molecules during replication, repair and recombination. ATP-dependent ligases are found predominantly in the eukarya and archaea whereas NAD+-dependent DNA ligases are found only in the eubacteria and in entomopoxviruses. Using the genetically tractable halophile....... volcanii also encodes an NAD+-dependent DNA ligase family member, LigN, the first such enzyme to be identified in the archaea, and present phylogenetic analysis indicating that the gene encoding this protein has been acquired by lateral gene transfer (LGT) from eubacteria. As with LigA, we show that Lig...

  13. Effects of confinement on the Rydberg molecule NeH

    International Nuclear Information System (INIS)

    Lo, J M H; Klobukowski, M; Bielinska-Waz, D; Diercksen, G H F; Schreiner, E W S

    2005-01-01

    Ab initio potential energy curves of the Rydberg NeH molecule in the presence of cylindrical spatial confinement were computed by the method of multi-reference configuration interaction with extended basis sets. The influence of the applied potential to the structures and spectra of the ground and excited states of NeH was analysed in terms of perturbation theory. In addition, the phenomenon of field-induced ionization was discussed

  14. Investigation of 35S NE-78241 mobility in plants

    International Nuclear Information System (INIS)

    Enisz, J.; Orsos, S.

    1982-01-01

    The mobility of 35 S NE-78241 (N-iso-thiocyanato-methyl-2,6-dimethyl-chloracetanilide) in plants has been studied. The compound is not absorbed via the leaves from aqueous solutions. It shows active transport through the root-system. It is strongly bound to soil. In bean plant (Phaseolus vulgaris) inoculated with Uromyces appendiculatus 35 S NE-78241 is selectively enriched at the place of infection. (author)

  15. The MicroBooNE Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Bonnie [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2012-02-24

    MicroBooNE will build, operate, and extract physics from the first large liquid argon time projection chamber (LArTPC) that will be exposed to a high-intensity neutrino beam. With its unparalleled capabilities in tracking, vertexing, calorimetry, and particle identification, all with full electronic readout, MicroBooNE represents a major advance in detector technology for neutrino physics in the energy regime of most importance for elucidating oscillation phenomena.

  16. Status of the KM3NeT project

    International Nuclear Information System (INIS)

    Margiotta, A

    2014-01-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will be installed at three sites: KM3NeT-Fr, offshore Toulon, France, KM3NeT-It, offshore Portopalo di Capo Passero, Sicily (Italy) and KM3NeT-Gr, offshore Pylos, Peloponnese, Greece. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will search for Galactic and extra-Galactic sources of neutrinos, complementing IceCube in its field of view. The detector will have a modular structure and consists of six building blocks, each including about one hundred Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in France near Toulon and in Italy, near Capo Passero in Sicily. The technological solutions for KM3NeT and the expected performance of the detector are presented and discussed

  17. Comparison of electromagnetic and nuclear dissociation of 17Ne

    Science.gov (United States)

    Wamers, F.; Marganiec, J.; Aksouh, F.; Aksyutina, Yu.; Alvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffman, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lehr, C.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Riisager, K.; Rodriguez-Tajes, C.; Rossi, D.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.

    2018-03-01

    The Borromean drip-line nucleus 17Ne has been suggested to possess a two-proton halo structure in its ground state. In the astrophysical r p -process, where the two-proton capture reaction 15O(2 p ,γ )17Ne plays an important role, the calculated reaction rate differs by several orders of magnitude between different theoretical approaches. To add to the understanding of the 17Ne structure we have studied nuclear and electromagnetic dissociation. A 500 MeV/u 17Ne beam was directed toward lead, carbon, and polyethylene targets. Oxygen isotopes in the final state were measured in coincidence with one or two protons. Different reaction branches in the dissociation of 17Ne were disentangled. The relative populations of s and d states in 16F were determined for light and heavy targets. The differential cross section for electromagnetic dissociation (EMD) shows a continuous internal energy spectrum in the three-body system 15O+2 p . The 17Ne EMD data were compared to current theoretical models. None of them, however, yields satisfactory agreement with the experimental data presented here. These new data may facilitate future development of adequate models for description of the fragmentation process.

  18. Excavations of an Early Neolithic Site at Tăşnad, Romania

    Directory of Open Access Journals (Sweden)

    Ciprian Astaloș

    2013-10-01

    Full Text Available The town of Tăşnad, in north-west Romania, is situated at the western end of the Tăşnad Hills which rise to a height of up to 230m above sea-level; the site ‘Sere’ is situated south-west of the town near a thermal spa on the banks of the Cehal river, a tributary of the Ier. The Cehal valley opens towards the Ier and Someş plains which form the north-easternmost part of the Great Hungarian Plain, a marshy area until the large-scale drainage-works of the 19th and 20th centuries. Even today, the Cehal valley is quite swampy, especially at the confluence with the Ier. The Austrian military maps demonstrate large-scale forest-clearance during the last three centuries; at the end of the 18th century, the site itself was still forested. Several prehistoric sites from different periods are located on the first and second terraces of the Cehal, at altitudes of around 140m.

  19. Purification, kinetic behavior, and regulation of NAD(P)+ malic enzyme of tumor mitochondria.

    Science.gov (United States)

    Moreadith, R W; Lehninger, A L

    1984-05-25

    The purification and kinetic characterization of an NAD(P)+-malic enzyme from 22aH mouse hepatoma mitochondria are described. The enzyme was purified 328-fold with a final yield of 51% and specific activity of 38.1 units/mg of protein by employing DEAE-cellulose chromatography and an ATP affinity column. Sephadex G-200 chromatography yielded a native Mr = 240,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major subunit with Mr = 61,000, suggesting a tetrameric structure, and also showed that the preparation contained less than 10% polypeptide impurities. Use of the ATP affinity column required the presence of MnCl2 and fumarate (an allosteric activator) in the elution buffers. In the absence of fumarate, the Michaelis constants for malate, NAD+, and NADP+ were 3.6 mM, 55 microM, and 72 microM, respectively; in the presence of fumarate (2 mM), the constants were 0.34 mM, 9 microM, and 13 microM, respectively. ATP was shown to be an allosteric inhibitor, competitive with malate. However, the inhibition by ATP displayed hyperbolic competitive kinetics with a KI (ATP) of 80 microM (minus fumarate) and 0.5 mM (plus 2 mM fumarate). The allosteric properties of the enzyme are integrated into a rationale for its specific role in the pathways of malate and glutamate oxidation in tumor mitochondria.

  20. Embryo yolk sac membrane kynurenine formamidase of l-tryptophan to NAD+ pathway as a primary target for organophosphorus insecticides (OPI) in OPI-induced NAD-associated avian teratogenesis.

    Science.gov (United States)

    Seifert, Josef

    2017-10-01

    The objective of this study was to provide in ovo evidence for the proposed role of kynurenine formamidase of l-tryptophan to NAD + pathway in embryo yolk sac membranes as a primary target for organophosphorus insecticide (OPI) teratogens in OPI-induced NAD-associated avian teratogenesis. Slices prepared from yolk sac membranes or embryo livers of chicken eggs treated with the OPI dicrotophos and/or methyl parathion were incubated with l-tryptophan. Yolk sac membrane slices metabolized l-tryptophan in the pathway to NAD + before that function was established in livers. OPI interfered in ovo with the second step of l-tryptophan to NAD + biosynthesis by inhibiting kynurenine formamidase. Its inhibition due to the teratogen dicrotophos occurred in yolk sac membranes during the period of embryo highest susceptibility to OPI teratogens in contrast to delayed and lower inhibition caused by the nonteratogen methyl parathion. Both OPI affected liver kynurenine formamidase in a similar manner. The onsets of liver enzyme inhibition, however, were delayed by about two days and occurred at the time of the reduced embryo susceptibility to teratogens. The early disruption of l-tryptophan metabolism and higher inhibition of kynurenine formamidase in yolk sac membranes may be the factors that determine action of OPI as teratogens in chicken embryos. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comments on Auger electron production by Ne/sup +/ bombardment of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S V; Ferrante, J [National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center

    1979-09-01

    In this letter, the authors first report rather conclusive experimental evidence showing that the Ne Auger signal is due to asymmetric Ne-metal collisions and not symmetric Ne-Ne collisions. Next it is shown that the Ne Auger signal is in fact observable by Ne/sup +/ bombardment of Si and with signal strength comparable to that of the Si Auger signal for 3 keV incident ion energy. Finally, they comment on some trends in the relative amplitudes of the 21.9 and 25.1 eV Ne Auger signals as a function of incident ion energy and target species.

  2. Phenotypic and genetic characterization of NAD-dependent Pasteurellaceae from the respiratory tract of pigs and their possible pathogenetic importance

    DEFF Research Database (Denmark)

    Kielstein, P.; Wuthe, H.H.; Angen, Øystein

    2001-01-01

    . In the present study, 107 of these NAD-dependent isolates from the porcine respiratory tract, primarily from lungs with pathological changes, were investigated. On the basis of phenotypic criteria, such as haemolysis, urease, catalase, and indole formation as well as other fermentative activities, 50...

  3. Kuidas saab Tallinna Vee brittidelt tagasi osta, kui nad ei taha müüa? / Andres Reimer

    Index Scriptorium Estoniae

    Reimer, Andres

    2009-01-01

    Autori sõnul peavad tõsiselt võetavad analüütikud ja arvamusliidrid Tallinna Vee aktsiate linnale ostmist majanduslikult põhjendamata sammuks, mis tooks kaasa suure laenukoorma, mille lõpuks maksavad kinni tallinlased. Asjatundjate hinnangul ei paista Tallinna Vee omanikel olevat ühtegi põhjust, miks nad tahaksid firma aktsiaid müüa

  4. Millest nad kirjutavad ehk Näidendivõistluse tänavusügisene saak / Triin Sinissaar

    Index Scriptorium Estoniae

    Sinissaar, Triin

    2003-01-01

    I preemia: Urmas Lennuk, "Boob teab"ja Jaan Undusk, "Quevedo"; II preemia: Anu Allas, "Lendav rõdu ehk Nagu nad tahtsid" ja Raivo Kütt, "Papa" ("Sõtse ja venna"); III preemia Jakob Karu, "Asjade seis" ja Hans Nordberg, "aaron : juuni"; ergutuspreemia: Urmas Lennuk, "Kadunud kindapood", Urmas Vadi, "Kadunud kosmoses" ja Jaan Võõramaa, "Mamma"

  5. NAXE Mutations Disrupt the Cellular NAD(P)HX Repair System and Cause a Lethal Neurometabolic Disorder of Early Childhood.

    Science.gov (United States)

    Kremer, Laura S; Danhauser, Katharina; Herebian, Diran; Petkovic Ramadža, Danijela; Piekutowska-Abramczuk, Dorota; Seibt, Annette; Müller-Felber, Wolfgang; Haack, Tobias B; Płoski, Rafał; Lohmeier, Klaus; Schneider, Dominik; Klee, Dirk; Rokicki, Dariusz; Mayatepek, Ertan; Strom, Tim M; Meitinger, Thomas; Klopstock, Thomas; Pronicka, Ewa; Mayr, Johannes A; Baric, Ivo; Distelmaier, Felix; Prokisch, Holger

    2016-10-06

    To safeguard the cell from the accumulation of potentially harmful metabolic intermediates, specific repair mechanisms have evolved. APOA1BP, now renamed NAXE, encodes an epimerase essential in the cellular metabolite repair for NADHX and NADPHX. The enzyme catalyzes the epimerization of NAD(P)HX, thereby avoiding the accumulation of toxic metabolites. The clinical importance of the NAD(P)HX repair system has been unknown. Exome sequencing revealed pathogenic biallelic mutations in NAXE in children from four families with (sub-) acute-onset ataxia, cerebellar edema, spinal myelopathy, and skin lesions. Lactate was elevated in cerebrospinal fluid of all affected individuals. Disease onset was during the second year of life and clinical signs as well as episodes of deterioration were triggered by febrile infections. Disease course was rapidly progressive, leading to coma, global brain atrophy, and finally to death in all affected individuals. NAXE levels were undetectable in fibroblasts from affected individuals of two families. In these fibroblasts we measured highly elevated concentrations of the toxic metabolite cyclic-NADHX, confirming a deficiency of the mitochondrial NAD(P)HX repair system. Finally, NAD or nicotinic acid (vitamin B3) supplementation might have therapeutic implications for this fatal disorder. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Structure of d-3-hydroxybutyrate dehydrogenase prepared in the presence of the substrate d-3-hydroxybutyrate and NAD+

    International Nuclear Information System (INIS)

    Hoque, Md Mominul; Shimizu, Satoru; Juan, Ella Czarina Magat; Sato, Yoshiteru; Hossain, Md Tofazzal; Yamamoto, Tamotsu; Imamura, Shigeyuki; Suzuki, Kaoru; Amano, Hitoshi; Sekiguchi, Takeshi; Tsunoda, Masaru; Takénaka, Akio

    2009-01-01

    The crystal structure of A. faecalisd-3-hydroxybutyrate dehydrogenase prepared in the presence of d-3-hydroxybutyrate and NAD + reveals the substrate/product-binding geometry as the first example which suggests that the catalytic reaction occurs by shuttle movements of a hydrogen negative ion from the substrate to NAD + and from NADH to the product. d-3-Hydroxybutyrate dehydrogenase from Alcaligenes faecalis catalyzes the reversible conversion between d-3-hydroxybutyrate and acetoacetate. The enzyme was crystallized in the presence of the substrate d-3-hydroxybutyrate and the cofactor NAD + at the optimum pH for the catalytic reaction. The structure, which was solved by X-ray crystallography, is isomorphous to that of the complex with the substrate analogue acetate. The product as well as the substrate molecule are accommodated well in the catalytic site. Their binding geometries suggest that the reversible reactions occur by shuttle movements of a hydrogen negative ion from the C3 atom of the substrate to the C4 atom of NAD + and from the C4 atom of NADH to the C3 atom of the product. The reaction might be further coupled to the withdrawal of a proton from the hydroxyl group of the substrate by the ionized Tyr155 residue. These structural features strongly support the previously proposed reaction mechanism of d-3-hydroxybutyrate dehydrogenase, which was based on the acetate-bound complex structure

  7. Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health.

    Science.gov (United States)

    Jokinen, Riikka; Pirnes-Karhu, Sini; Pietiläinen, Kirsi H; Pirinen, Eija

    2017-08-01

    Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD + /NADH redox balance and NAD + is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD + homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD + pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Streptococcus mutans NADH oxidase lies at the intersection of overlapping regulons controlled by oxygen and NAD+ levels.

    Science.gov (United States)

    Baker, J L; Derr, A M; Karuppaiah, K; MacGilvray, M E; Kajfasz, J K; Faustoferri, R C; Rivera-Ramos, I; Bitoun, J P; Lemos, J A; Wen, Z T; Quivey, R G

    2014-06-01

    NADH oxidase (Nox, encoded by nox) is a flavin-containing enzyme used by the oral pathogen Streptococcus mutans to reduce diatomic oxygen to water while oxidizing NADH to NAD(+). The critical nature of Nox is 2-fold: it serves to regenerate NAD(+), a carbon cycle metabolite, and to reduce intracellular oxygen, preventing formation of destructive reactive oxygen species (ROS). As oxygen and NAD(+) have been shown to modulate the activity of the global transcription factors Spx and Rex, respectively, Nox is potentially poised at a critical junction of two stress regulons. In this study, microarray data showed that either addition of oxygen or loss of nox resulted in altered expression of genes involved in energy metabolism and transport and the upregulation of genes encoding ROS-metabolizing enzymes. Loss of nox also resulted in upregulation of several genes encoding transcription factors and signaling molecules, including the redox-sensing regulator gene rex. Characterization of the nox promoter revealed that nox was regulated by oxygen, through SpxA, and by Rex. These data suggest a regulatory loop in which the roles of nox in reduction of oxygen and regeneration of NAD(+) affect the activity levels of Spx and Rex, respectively, and their regulons, which control several genes, including nox, crucial to growth of S. mutans under conditions of oxidative stress. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. The differences between NAD-ME and NADP-ME subtypes of C4 photosynthesis: more than decarboxylating enzymes

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2016-10-01

    Full Text Available As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco. C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME and NADP-dependent malic enzyme (NADP-ME. The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.

  10. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).

    Science.gov (United States)

    Cook, R. M.; Lindsay, J. G.; Wilkins, M. B.; Nimmo, H. G.

    1995-01-01

    The role of NAD-malic enzyme (NAD-ME) in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoe) fedtschenkoi was investigated using preparations of intact and solubilized mitochondria from fully expanded leaves. Intact, coupled mitochondria isolated during the day or night did not differ in their ability to take up [14C]malic acid from the surrounding medium or to respire using malate or succinate as substrate. However, intact mitochondria isolated from plants during the day decarboxylated added malate to pyruvate significantly faster than mitochondria isolated from plants at night. NAD-ME activity in solubilized mitochondrial extracts showed hysteretic kinetics and was stimulated by a number of activators, including acetyl-coenzyme A, fructose-1,6-bisphosphate, and sulfate ions. In the absence of these effectors, reaction progress curves were nonlinear, with a pronounced acceleration phase. The lag period before a steady-state rate was reached in assays of mitochondrial extracts decreased during the photoperiod and increased slowly during the period of darkness. However, these changes in the kinetic properties of the enzyme could not account for the changes in the rate of decarboxylation of malate by intact mitochondria. Gel-filtration experiments showed that mitochondrial extracts contained three forms of NAD-ME with different molecular weights. The relative proportions of the three forms varied somewhat throughout the light/dark cycle, but this did not account for the changes in the kinetics behavior of the enzyme during the diurnal cycle. PMID:12228671

  11. NAD+ depletion or PAR polymer formation: which plays the role of executioner in ischaemic cell death?

    Science.gov (United States)

    Siegel, C; McCullough, L D

    2011-09-01

    Multiple cell death pathways are activated in cerebral ischaemia. Much of the initial injury, especially in the core of the infarct where cerebral blood flow is severely reduced, is necrotic and secondary to severe energy failure. However, there is considerable evidence that delayed cell death continues for several days, primarily in the penumbral region. As reperfusion therapies grow in number and effectiveness, restoration of blood flow early after injury may lead to a shift towards apoptosis. It is important to elucidate what are the key mediators of apoptotic cell death after stroke, as inhibition of apoptosis may have therapeutic implications. There are two well described pathways that lead to apoptotic cell death; the caspase pathway and the more recently described caspase-independent pathway triggered by poly-ADP-ribose polymers (PARP) activation. Caspase-induced cell death is initiated by release of mitochondrial cytochrome c, formation of the cytosolic apoptosome, and activation of endonucleases leading to a multitude of small randomly cleaved DNA fragments. In contrast caspase-independent cell death is secondary to activation of apoptosis inducing factor (AIF). Mitochondrial AIF translocates to the nucleus, where it induces peripheral chromatin condensation, as well as characteristic high-molecular-weight (50 kbp) DNA fragmentation. Although caspase-independent cell death has been recognized for some time and is known to contribute to ischaemic injury, the upstream triggering events leading to activation of this pathway remain unclear. The two major theories are that ischaemia leads to nicotinamide adenine dinucleotide (NAD+) depletion and subsequent energy failure, or alternatively that cell death is directly triggered by a pro-apoptotic factor produced by activation of the DNA repair enzyme PARP. PARP activation is robust in the ischaemic brain producing variable lengths of poly-ADP-ribose (PAR) polymers as byproducts of PARP activation. PAR polymers

  12. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner

    Science.gov (United States)

    Domonkos, Ágota; Kovács, Szilárd; Gombár, Anikó; Kiss, Ernő; Horváth, Beatrix; Kováts, Gyöngyi Z.; Farkas, Attila; Tóth, Mónika T.; Ayaydin, Ferhan; Bóka, Károly; Fodor, Lili; Endre, Gabriella; Kaló, Péter

    2017-01-01

    Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatula DNF2 (defective in nitrogen fixation 2) and NAD1 (nodules with activated defense 1) genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules. PMID:29240711

  13. Exogenous NAD(+) decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy.

    Science.gov (United States)

    Zhu, Ying; Zhao, Ke-Ke; Tong, Yao; Zhou, Ya-Li; Wang, Yi-Xiao; Zhao, Pei-Quan; Wang, Zhao-Yang

    2016-05-31

    Increased oxidative stress, which can lead to the retinal pigment epithelium (RPE) cell death by inducing ATP depletion and DNA repair, is believed to be a prominent pathology in age-related macular degeneration (AMD). In the present study, we showed that and 0.1 mM nicotinamide adenine dinucleotide (NAD(+)) administration significantly blocked RPE cell death induced by 300 μM H2O2. Further investigation showed that H2O2 resulted in increased intracellular ROS level, activation of PARP-1 and subsequently necrotic death of RPE cells. Exogenous NAD(+) administration significantly decreased intracellular and intranuclear ROS levels in H2O2-treated RPE cells. In addition, NAD(+) administration to H2O2-treated RPE cells inhibited the activation of PARP-1 and protected the RPE cells against necrotic death. Moreover, exogenous NAD(+) administration up-regulated autophagy in the H2O2-treated RPE cells. Inhibition of autophagy by LY294002 blocked the decrease of intracellular and intranuclear ROS level. Besides, inhibition of autophagy by LY294002 abolished the protection of exogenous NAD(+) against H2O2-induced cell necrotic death. Taken together, our findings indicate that that exogenous NAD(+) administration suppresses H2O2-induced oxidative stress and protects RPE cells against PARP-1 mediated necrotic death through the up-regulation of autophagy. The results suggest that exogenous NAD(+) administration might be potential value for the treatment of AMD.

  14. Exogenous NAD+ decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy

    Science.gov (United States)

    Zhu, Ying; Zhao, Ke-ke; Tong, Yao; Zhou, Ya-li; Wang, Yi-xiao; Zhao, Pei-quan; Wang, Zhao-yang

    2016-01-01

    Increased oxidative stress, which can lead to the retinal pigment epithelium (RPE) cell death by inducing ATP depletion and DNA repair, is believed to be a prominent pathology in age-related macular degeneration (AMD). In the present study, we showed that and 0.1 mM nicotinamide adenine dinucleotide (NAD+) administration significantly blocked RPE cell death induced by 300 μM H2O2. Further investigation showed that H2O2 resulted in increased intracellular ROS level, activation of PARP-1 and subsequently necrotic death of RPE cells. Exogenous NAD+ administration significantly decreased intracellular and intranuclear ROS levels in H2O2-treated RPE cells. In addition, NAD+ administration to H2O2-treated RPE cells inhibited the activation of PARP-1 and protected the RPE cells against necrotic death. Moreover, exogenous NAD+ administration up-regulated autophagy in the H2O2-treated RPE cells. Inhibition of autophagy by LY294002 blocked the decrease of intracellular and intranuclear ROS level. Besides, inhibition of autophagy by LY294002 abolished the protection of exogenous NAD+ against H2O2-induced cell necrotic death. Taken together, our findings indicate that that exogenous NAD+ administration suppresses H2O2-induced oxidative stress and protects RPE cells against PARP-1 mediated necrotic death through the up-regulation of autophagy. The results suggest that exogenous NAD+ administration might be potential value for the treatment of AMD. PMID:27240523

  15. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner

    Directory of Open Access Journals (Sweden)

    Ágota Domonkos

    2017-12-01

    Full Text Available Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatula DNF2 (defective in nitrogen fixation 2 and NAD1 (nodules with activated defense 1 genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules.

  16. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner.

    Science.gov (United States)

    Domonkos, Ágota; Kovács, Szilárd; Gombár, Anikó; Kiss, Ernő; Horváth, Beatrix; Kováts, Gyöngyi Z; Farkas, Attila; Tóth, Mónika T; Ayaydin, Ferhan; Bóka, Károly; Fodor, Lili; Ratet, Pascal; Kereszt, Attila; Endre, Gabriella; Kaló, Péter

    2017-12-14

    Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatula DNF2 (defective in nitrogen fixation 2) and NAD1 (nodules with activated defense 1) genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules.

  17. Determination of NAD+ and NADH level in a Single Cell Under H2O2 Stress by Capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wenjun [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A capillary electrophoresis (CE) method is developed to determine both NAD+ and NADH levels in a single cell, based on an enzymatic cycling reaction. The detection limit can reach down to 0.2 amol NAD+ and 1 amol NADH on a home-made CE-LIF setup. The method showed good reproducibility and specificity. After an intact cell was injected into the inlet of a capillary and lysed using a Tesla coil, intracellular NAD+ and NADH were separated, incubated with the cycling buffer, and quantified by the amount of fluorescent product generated. NADH and NAD+ levels of single cells of three cell lines and primary astrocyte culture were determined using this method. Comparing cellular NAD+ and NADH levels with and without exposure to oxidative stress induced by H2O2, it was found that H9c2 cells respond to the stress by reducing both cellular NAD+ and NADH levels, while astrocytes respond by increasing cellular NADH/NAD+ ratio.

  18. Flaking and blistering on He and Ne bombardments

    International Nuclear Information System (INIS)

    Kamada, K.; Naramoto, H.

    1979-01-01

    Large scale exfoliation formed by 300 keV He + bombardment of niobium without any preceding blistering is investigated, in comparison with the blistering due to 450 and 850 keV Ne + bombardments. In-situ observations of the erosion processes were performed in a scanning electron microscope connected to the Van de Graaff. Critical doses of 7.2 x 10 17 He + /cm 2 , 2.4 x 10 17 Ne + /cm 2 and 4.0 x 10 17 Ne + /cm 2 were obtained for the 300 keV He flaking, 450 keV Ne blistering and 850 keV Ne blistering, respectively. The He flaking was presumed to be due to brittle fashion peeling-off of the surface layer by the bending moment driven by the internal gas pressure. The blistering, on the other hand, was presumed to be the result of the ductile fashion spreading of the lenticular bubble in the sub-surface layer. The necessary pressure for the peeling-off of the cover was calculated, and was speculated to be able to work as the driving force for the flaking from its unexpectedly low values. Fractographies under the exfoliations were discussed for both flaking and blistering. (author)

  19. Catalytic Properties of the Isolated Diaphorase Fragment of the NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha

    Science.gov (United States)

    Lauterbach, Lars; Idris, Zulkifli; Vincent, Kylie A.; Lenz, Oliver

    2011-01-01

    The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 catalyzes the H2-driven reduction of NAD+, as well as reverse electron transfer from NADH to H+, in the presence of O2. It comprises six subunits, HoxHYFUI2, and incorporates a [NiFe] H+/H2 cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD+ reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD+/NADH couple. Michaelis-Menten constants of 56 µM and 197 µM were determined for NADH and NAD+, respectively. Catalysis in both directions is product inhibited with K I values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O2, however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed, meaning that the formation of reactive oxygen species (ROS) observed for the native SH can be attributed mainly to HoxFU. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis. PMID:22016788

  20. Surrogate analyte approach for quantitation of endogenous NAD(+) in human acidified blood samples using liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Liu, Liling; Cui, Zhiyi; Deng, Yuzhong; Dean, Brian; Hop, Cornelis E C A; Liang, Xiaorong

    2016-02-01

    A high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of NAD(+) in human whole blood using a surrogate analyte approach was developed and validated. Human whole blood was acidified using 0.5N perchloric acid at a ratio of 1:3 (v:v, blood:perchloric acid) during sample collection. 25μL of acidified blood was extracted using a protein precipitation method and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization mass spectrometry. (13)C5-NAD(+) was used as the surrogate analyte for authentic analyte, NAD(+). The standard curve ranging from 0.250 to 25.0μg/mL in acidified human blood for (13)C5-NAD(+) was fitted to a 1/x(2) weighted linear regression model. The LC-MS/MS response between surrogate analyte and authentic analyte at the same concentration was obtained before and after the batch run. This response factor was not applied when determining the NAD(+) concentration from the (13)C5-NAD(+) standard curve since the percent difference was less than 5%. The precision and accuracy of the LC-MS/MS assay based on the five analytical QC levels were well within the acceptance criteria from both FDA and EMA guidance for bioanalytical method validation. Average extraction recovery of (13)C5-NAD(+) was 94.6% across the curve range. Matrix factor was 0.99 for both high and low QC indicating minimal ion suppression or enhancement. The validated assay was used to measure the baseline level of NAD(+) in 29 male and 21 female human subjects. This assay was also used to study the circadian effect of endogenous level of NAD(+) in 10 human subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Increase in intracellular free/bound NAD[P]H as a cause of Cd-induced oxidative stress in the HepG2 cells

    International Nuclear Information System (INIS)

    Yang, M.S.; Li, D.; Lin, T.; Zheng, J.J.; Zheng, W.; Qu, J.Y.

    2008-01-01

    The present study shows the use of confocal autofluorescence spectroscopy coupled with the time-resolved fluorescence decay analysis to measure changes in FAD/NAD[P]H and free/bound NAD[P]H in HepG 2 cells at 0.5, 1.5, 3 and 4.5 h after exposure to cadmium chloride (Cd). These changes were compared to changes in GSSG/GSH and production of reactive oxygen radicals (ROS) production. The results demonstrated that both FAD/NAD[P]H and GSSG/GSH increased significantly upon exposure to Cd. The change in GSSG/GSH occurred as early as 1.5 h after treatment while the change in FAD/NAD[P]H did not occur until 3 h after exposure. Production of ROS was also increased at 1.5 h. The ratio of free/bound NAD[P]H was studied. It was demonstrated that free/bound NAD[P]H increased significantly as early as 0.5 h and remained elevated until 4.5 h after treatment with Cd. The present study provides novel data to show that changes in NAD[P]H metabolism precedes the increase in ROS production and cellular oxidative stress (increase GSSG/GSH, FAD/NAD[P]H). It is suggested that Cd causes a release of NAD[P]H, an important cofactor for electron transfer, from its normal protein binding sites. This may result in a disruption of the activity of the enzyme and proteins, and may lead to the subsequent toxic events

  2. Ca2+ dependence of gluconeogenesis stimulation by glucagon at different cytosolic NAD+-NADH redox potentials

    Directory of Open Access Journals (Sweden)

    Marques-da-Silva A.C.

    1997-01-01

    Full Text Available The influence of Ca2+ on hepatic gluconeogenesis was measured in the isolated perfused rat liver at different cytosolic NAD+-NADH potentials. Lactate and pyruvate were the gluconeogenic substrates and the cytosolic NAD+-NADH potentials were changed by varying the lactate to pyruvate ratios from 0.01 to 100. The following results were obtained: a gluconeogenesis from lactate plus pyruvate was not affected by Ca2+-free perfusion (no Ca2+ in the perfusion fluid combined with previous depletion of the intracellular pools; gluconeogenesis was also poorly dependent on the lactate to pyruvate ratios in the range of 0.1 to 100; only for a ratio equal to 0.01 was a significantly smaller gluconeogenic activity observed in comparison to the other ratios. b In the presence of Ca2+, the increase in oxygen uptake caused by the infusion of lactate plus pyruvate at a ratio equal to 10 was the most pronounced one; in Ca2+-free perfusion the increase in oxygen uptake caused by lactate plus pyruvate infusion tended to be higher for all lactate to pyruvate ratios; the most pronounced difference was observed for a lactate/pyruvate ratio equal to 1. c In the presence of Ca2+ the effects of glucagon on gluconeogenesis showed a positive correlation with the lactate to pyruvate ratios; for a ratio equal to 0.01 no stimulation occurred, but in the 0.1 to 100 range stimulation increased progressively, producing a clear parabolic dependence between the effects of glucagon and the lactate to pyruvate ratio. d In the absence of Ca2+ the relationship between the changes caused by glucagon in gluconeogenesis and the lactate to pyruvate ratio was substantially changed; the dependence curve was no longer parabolic but sigmoidal in shape with a plateau beginning at a lactate/pyruvate ratio equal to 1; there was inhibition at the lactate to pyruvate ratios of 0.01 and 0.1 and a constant stimulation starting with a ratio equal to 1; for the lactate to pyruvate ratios of 10 and 100

  3. Distribution of selected natural radionuclides in soil of the district Ziar nad Hronom

    International Nuclear Information System (INIS)

    Porubcanova, B.; Nikodemova, D.; Mojzes, A.

    2015-01-01

    Slovakia like a part of a difficult geological structure of the Western Carpathians is a typical place with a different field of radioactivity. The district Ziar nad Hronom belongs to regions which are characteristic by their high values of radioactivity in comparison with Slovakia. It is due to a geological background which is mostly compound from neovulcanites. In this area were measurement concentrations of uranium-238, thorium- 232 and potassium-40. Consequently, these values were shown by maps which reflect distribution of chosen radionuclides. Sequential research was focus on demographic processing. There turned out that in this area is increased number of deaths in particular due to malignancies. This fact can be affected by natural radionuclides which exist in this area. (authors)

  4. Two for the Price of One: A Neuroprotective Chaperone Kit within NAD Synthase Protein NMNAT2.

    Directory of Open Access Journals (Sweden)

    Angela Lavado-Roldán

    2016-07-01

    Full Text Available One of the most fascinating properties of the brain is the ability to function smoothly across decades of a lifespan. Neurons are nondividing mature cells specialized in fast electrical and chemical communication at synapses. Often, neurons and synapses operate at high levels of activity through sophisticated arborizations of long axons and dendrites that nevertheless stay healthy throughout years. On the other hand, aging and activity-dependent stress strike onto the protein machineries turning proteins unfolded and prone to form pathological aggregates associated with neurodegeneration. How do neurons protect from those insults and remain healthy for their whole life? Ali and colleagues now present a molecular mechanism by which the enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2 acts not only as a NAD synthase involved in axonal maintenance but as a molecular chaperone helping neurons to overcome protein unfolding and protein aggregation.

  5. Role of NAD, Oxidative Stress, and Tryptophan Metabolism in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Musthafa Mohamed Essa

    2013-01-01

    Full Text Available Autism spectrum disorder (ASD is a pervasive neuro-developmental disorder characterized by impaired social interaction, reduced/absent verbal and non-verbal communication, and repetitive behavior during early childhood. The etiology of this developmental disorder is poorly understood, and no biomarkers have been identified. Identification of novel biochemical markers related to autism would be advantageous for earlier clinical diagnosis and intervention. Studies suggest that oxidative stress-induced mechanisms and reduced antioxidant defense, mitochondrial dysfunction, and impaired energy metabolism (NAD + , NADH, ATP, pyruvate, and lactate, are major causes of ASD. This review provides renewed insight regarding current autism research related to oxidative stress, mitochondrial dysfunction, and altered tryptophan metabolism in ASD.

  6. Electron-transfer mediator for a NAD-glucose dehydrogenase-based glucose sensor.

    Science.gov (United States)

    Kim, Dong-Min; Kim, Min-yeong; Reddy, Sanapalli S; Cho, Jaegeol; Cho, Chul-ho; Jung, Suntae; Shim, Yoon-Bo

    2013-12-03

    A new electron-transfer mediator, 5-[2,5-di (thiophen-2-yl)-1H-pyrrol-1-yl]-1,10-phenanthroline iron(III) chloride (FePhenTPy) oriented to the nicotinamide adenine dinucleotide-dependent-glucose dehydrogenase (NAD-GDH) system was synthesized through a Paal-Knorr condensation reaction. The structure of the mediator was confirmed by Fourier-transform infrared spectroscopy, proton and carbon nucler magnetic resonance spectroscopy, and mass spectroscopy, and its electron-transfer characteristic for a glucose sensor was investigated using voltammetry and impedance spectroscopy. A disposable amperometric glucose sensor with NAD-GDH was constructed with FePhenTPy as an electron-transfer mediator on a screen printed carbon electrode (SPCE) and its performance was evaluated, where the addition of reduces graphene oxide (RGO) to the mediator showed the enhanced sensor performance. The experimental parameters to affect the analytical performance and the stability of the proposed glucose sensor were optimized, and the sensor exhibited a dynamic range between 30 mg/dL and 600 mg/dL with the detection limit of 12.02 ± 0.6 mg/dL. In the real sample experiments, the interference effects by acetaminophen, ascorbic acid, dopamine, uric acid, caffeine, and other monosaccharides (fructose, lactose, mannose, and xylose) were completely avoided through coating the sensor surface with the Nafion film containing lead(IV) acetate. The reliability of proposed glucose sensor was evaluated by the determination of glucose in artificial blood and human whole blood samples.

  7. Výzkum sportovního vyžití mládeže v Ústí nad Orlicí

    OpenAIRE

    Johanidesová, Šárka

    2012-01-01

    Title: Youth sports activities research in Ústí nad Orlicí Objecvive: The aim of study is to measure of usage of sports facilities by youth in Ústí nad Orlicí and their satisfaction with them. Subsequent interpretations of youth interests in sports. Methods: At theoretical part synthesis method will be used. The research itself will be based on quantitative method - interviewing. Respondents will be students of second grade of elementary schools and high schools in Ústí nad Orlicí. Results: A...

  8. On the recovery of the DNA-synthesis after X-irradiation in the spleen of mice and its modification by the NAD-metabolism

    International Nuclear Information System (INIS)

    Streffer, C.

    1974-01-01

    The incorporation of tritium-labelled thymidine into the DNA of mice spleen cells after whole body irradiation with X-rays was measured in order to study the decrease of DNA synthesis is decreased for several hours after irradiation with low doses. Recovery effects become operative after six hours. The radiation effect on the NAD metabolism, known to be related to DNA synthesis, was also investigated. The rate of NAD synthesis is influenced via the extremely radiosensitive metabolic process in the nucleus. Conversely, inhibition of DNA synthesis by injection of NAD enhances the recovery of DNA synthesis after irradiaton. (G.G.)

  9. DSA lifetime measurements in 21Ne at high recoil velocity

    International Nuclear Information System (INIS)

    Grawe, H.; Heidinger, F.; Kaendler, K.

    1977-01-01

    States in 21 Ne up to 5 MeV excitation energy have been populated using the inverted reaction 2 H( 20 Ne,pγ). The Doppler shift attenuation (DSA) analysis of the pγ coincidence spectra taken in a Ge(Li) detector at 45 0 and 135 0 and an annular silicon surface barrier detector near 0 0 yielded the lifetimes of 8 states in 21 Ne. Due to the large recoil of vi/c approximately equal to 4% three new lifetimes were determined for the short lived levels at 2.80, 4.68 and 4.73 MeV, namely 10 +- 4 fs, 16 +- 4 fs and 10 +- 4 fs, respectively. The results are compared with rotational and shell model calculations. (orig.) [de

  10. Enhanced diffusion of Zn in Al under Ne irradiation

    International Nuclear Information System (INIS)

    Myers, S.M.

    1975-01-01

    The diffusion rate of Zn in Al has been enhanced by factors approximately 10 2 --10 4 under 80 keV Ne irradiation at 130 0 C. Diffusion couples were formed by ion implantation of Zn, and the concentration profiles were determined by ion backscattering. The data are analyzed by numerically solving the coupled diffusion equations for vacancies, interstitials and atoms, and by scaling the profiles of vacancy and interstitial production rates from the theoretical profile of Ne energy into atomic processes. The enhanced diffusion rate is linear in flux, indicating that the mobile point defects annihilate predominantly at fixed sinks. The average distance to annihilation is approximately 700 A, except for the first approximately 500 A of the solid where it is much less. Free vacancies and interstitials are found to be created by the Ne at a smaller rate than the atomic displacement rate, suggesting a high annihilation probability within the parent damage cascade

  11. New low pressure (LP) turbines for NE Krsko

    International Nuclear Information System (INIS)

    Nemcic, K.; Novsak, M.

    2004-01-01

    During the evaluation of possible future maintenance strategies on steam turbine in very short period of time, engineering decision was made by NE Krsko in agreement with Owners to replace the existing two Low Pressure (LP) Turbines with new upgrading LP Turbines. This decision is presented with review of the various steam turbine problems as: SCC on turbine discs; blades cracking; erosion-corrosion with comparison of various maintenance options and efforts undertaken by the NE Krsko to improve performance of the original low pressure turbines. This paper presents the NEK approach to solve the possible future problems with steam turbine operation in NE Krsko as pro-active engineering and maintenance activities on the steam turbine. This paper also presents improvements involving retrofits, confined to the main steam turbine path, with major differences between original and new LP Turbines as beneficial replacement because of turbine MWe upgrading and return capital expenditures.(author)

  12. Strangeness in nuclear matter at DAΦNE

    International Nuclear Information System (INIS)

    Gianotti, P.

    1998-01-01

    The low energy kaons from the φ meson produced at DAΦNE offer a unique opportunity to study strangeness in nuclear matter. The interaction of kaons with hadronic matter can be investigated at DAΦNE using three main approaches: study of hypernuclei production and decay, kaons scattering on nucleons, kaonic atoms formation. These studies explore kaon-nucleon and hyperon-nucleon forces at very low energy, the nuclear shell model in presence of strangeness quantum number and eventual quarks deconfinement phenomena. The experiments devoted to study this physical program at DAΦNE are FINUDA and DEAR. The physics topics of both experiments are illustrated together with a detailed descriptions of the two detectors

  13. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries.

    Science.gov (United States)

    Simplicio, Janaina A; Hipólito, Ulisses Vilela; Vale, Gabriel Tavares do; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R

    2016-11-01

    The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase

  14. DAΦNE Control System status and performance

    International Nuclear Information System (INIS)

    Di Pirro, G.; Drago, A.; Mazzitelli, G.; Milardi, C.; Sannibale, F.; Stecchi, A.; Stella, A.

    1998-01-01

    The DAΦNE Control System allowed the step by step commissioning of the major subsystems as they were installed, proving to be modular and extensible. Recently the guidelines of the Control System evolution concerned the development of machine operational procedures and the integration of diagnostic tools. Particular attention has been reserved to the problem of saving and restoring element data sts as well as to the DAΦNE general data handling. A system overview including installation status, features, and operation results is presented

  15. Experimental ion mobility measurements in Ne-N2

    International Nuclear Information System (INIS)

    Cortez, A.F.V.; Encarnação, P.M.C.C.; Santos, F.P.; Borges, F.I.G.M.; Conde, C.A.N.; Veenhof, R.; Neves, P.N.B.

    2016-01-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors, such as the ALICE TPC or in the NEXT experiment. In the present work the method, experimental setup and results for the ion mobility measurements in Ne-N 2 mixtures are presented. The results for this mixture show the presence of two peaks for different gas ratios of Ne-N 2 , low reduced electric fields, E / N , 10–20 Td (2.4–4.8 kV·cm −1 ·bar −1 ), low pressures 6–8 Torr (8–10.6 mbar) and at room temperature.

  16. Evaluation of triggering schemes for KM3NeT

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, T., E-mail: Thomas.Seitz@physik.uni-erlangen.de [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Herold, B., E-mail: Bjoern.Herold@physik.uni-erlangen.de [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Shanidze, R., E-mail: shanidze@physik.uni-erlangen.de [Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2013-10-11

    The future neutrino telescope KM3NeT, to be built in the Mediterranean Sea, will be the largest of its kind. It will include nearly two hundred thousand photomultiplier tubes (PMT) mounted in multi-PMT digital optical modules (DOM). The dominant source of the PMT signals is decays of {sup 40}K and marine fauna bioluminescence. Selection of neutrino and muon events from this continuous optical background signals requires the implementation of fast and efficient triggers. Various schemes for the filtering of background data and the selection of neutrino and muon events were evaluated for the KM3NeT telescope using Monte Carlo simulations.

  17. A Low-Li Geochemical Province in the NE Atlantic

    DEFF Research Database (Denmark)

    Bailey, J. C.; Gwozdz, R.

    1978-01-01

    Lithium was analysed in 392 basalts and related igneous rocks from the North Atlantic Tertiary-Recent province using activation analysis and Čerenkov counting. Monotonous Li values of 5.5±2 ppm in NE Atlantic basalts define a low-Li geochemical province which has persisted for 60 million years...... basalt series. No whole-rock coherence is observed between Li and Mg, K, Rb or Ca. Mantle phlogopite is considered to play an insignificant rôle in controlling the Li levels of NE Atlantic basalts....

  18. Comparison of Ne and Ar seeded radiative divertor plasmas in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, T., E-mail: nakano.tomohide@jaea.go.jp

    2015-08-15

    In H-mode plasmas with Ne, Ar and a mixture of Ne and Ar injection, the divertor radiation power fractions amongst these impurities in addition to an intrinsic impurity, C, are investigated. In plasmas with the inner divertor plasma attached, carbon is the biggest radiator, whichever impurity, Ne, Ar or a mixture of Ar and Ne is injected. In contrast, in plasmas with the inner divertor plasma detached, Ne is the biggest radiator due to a significantly high recombination radiation from Ne VIII. Ar is always a minor contributor in plasmas with the inner divertor both attached and detached.

  19. Angular distributions of autoionization electrons from Ne(2p43s2) 1D in Li+-Ne collisions

    International Nuclear Information System (INIS)

    Oud, M.; Pas, S.F. te; Westerveld, W.B.; Niehaus, A.

    1993-01-01

    Angular distributions of autoionization electrons from Ne(2p 4 3s 2 ) 1 D due to Li + -Ne collisions measured in coincidence with the scattered projectile ions are presented. The measurements are performed at four different collision energies between 1.0 keV and 3.0 keV, and the complex population amplitudes for the excited 1 D state are determined. A nearly pure M = O sublevel population is found with respect to an axis coinciding with the direction of the angular distribution. The direction of the angular distribution is found to deviate from the final direction of the asymptotic internuclear axis. (author)

  20. Measurement of the response of the deuterated scintillators NE 232 and NE 230 to protons and deuterons

    International Nuclear Information System (INIS)

    Tornow, W.; Arnold, W.; Herdtweck, J.; Mertens, G.

    1986-01-01

    The response of the deuterated scintillators NE 232 and NE 230 to protons and deuterons has been measured via elastic neutron-proton and neutron-deuteron scattering using the two mixtures of C 6 H 12 /C 6 D 12 and C 6 H 6 /C 6 D 6 and ''pure'' scintillators. The energy range covered for protons and deuterons was about 1-16 MeV. The light output relation Lsub(p)(E)=(1/2)Lsub(d) (2E) has been observed. (orig.)

  1. Collective effects in {sup 17}F and {sup 19}Ne; Effets collectifs dans {sup 17}F et {sup 19}Ne

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, P; Leveque, A; Grjebine, T; Barloutaud, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The quadrupolar transition periods {sup 17}F1/2+ {yields} 5/2+ and {sup 19}Ne5/2+ {yields} 1/2+ have been measured, and are compatible with the model of a weak coupling between core and external nucleons. (author) [French] Les periodes des transitions quadrupolaires {sup 17}F1/2+ {yields} 5/2+ et {sup 19}Ne5/2+ {yields} 1/2+ ont ete mesurees et sont compatibles avec le modele d'un couplage faible entre coeur et nucleons exterieures. (auteur)

  2. Fabrication of Flexible Arrayed Lactate Biosensor Based on Immobilizing LDH-NAD+ on NiO Film Modified by GO and MBs

    Science.gov (United States)

    Yan, Siao-Jie; Liao, Yi-Hung; Lai, Chih-Hsien; Wu, You-Xiang; Wu, Cian-Yi; Chen, Hsiang-Yi; Huang, Hong-Yu; Wu, Tong-Yu

    2017-01-01

    We proposed the flexible arrayed lactate biosensor based on immobilizing l-lactate dehydrogenase (LDH) and nicotinamide adenine dinucleotide (NAD+) on nickel oxide (NiO) film, and which the average sensitivity could be enhanced by using graphene oxide (GO) and magnetic beads (MBs). By using GO and MBs, it exhibits excellent sensitivity (45.397 mV/mM) with a linearity of 0.992 in a range of 0.2 mM to 3 mM. According to the results of electrochemical impedance spectroscopy (EIS), the electron transfer resistance of LDH-NAD+-MBs/GPTS/GO/NiO film was smaller than those of LDH-NAD+/GPTS/GO/NiO film and LDH-NAD+/GPTS/NiO film, and it presented the outstanding electron transfer ability. After that, the limit of detection, anti-interference effect and bending test were also investigated. PMID:28704960

  3. Fabrication of Flexible Arrayed Lactate Biosensor Based on Immobilizing LDH-NAD+ on NiO Film Modified by GO and MBs

    Directory of Open Access Journals (Sweden)

    Jung-Chuan Chou

    2017-07-01

    Full Text Available We proposed the flexible arrayed lactate biosensor based on immobilizing l-lactate dehydrogenase (LDH and nicotinamide adenine dinucleotide ( NAD + on nickel oxide (NiO film, and which the average sensitivity could be enhanced by using graphene oxide (GO and magnetic beads (MBs. By using GO and MBs, it exhibits excellent sensitivity (45.397 mV/mM with a linearity of 0.992 in a range of 0.2 mM to 3 mM. According to the results of electrochemical impedance spectroscopy (EIS, the electron transfer resistance of LDH- NAD + -MBs/GPTS/GO/NiO film was smaller than those of LDH-NAD+/GPTS/GO/NiO film and LDH- NAD + /GPTS/NiO film, and it presented the outstanding electron transfer ability. After that, the limit of detection, anti-interference effect and bending test were also investigated.

  4. The role of complex formation between cytochrome c and nad in the manifestation of the protective effect of dinucleotide with respect to hemoprotein

    International Nuclear Information System (INIS)

    Artyukhov, V.G.; Loboda, T.

    1990-01-01

    UV-irradiation of free ferricytochrome solutions, pH 8, induces photorecovery of protein molecules. Hemoproteide photorecovery does not occur after irradiation of the ferricytochrome c/NAD mixture, pH 6 and 8: dinucleotide exerts a photoprotective effect with respect to ferricytochrome. This NAD effect is not observed afterexposure of the ferricytochrome c/NAD system, pH 4. With this pH value, each component of the above mixture is eluted from a gel-chromatogarphic column by its peak, whereas with pH 6 and 8, NAD and ferricytochrome c leave the column as one fraction. This indicates that the photoprotective effect of the coenzyme manifests itself upon formation of complex with hemoprotein

  5. The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD.

    Science.gov (United States)

    Nesci, Salvatore; Trombetti, Fabiana; Ventrella, Vittoria; Pirini, Maurizio; Pagliarani, Alessandra

    2018-01-26

    The mitochondrial F1FO-ATPase is uncompetitively inhibited by NAD+ only when the natural cofactor Mg2+ is replaced by Ca2+, a mode putatively involved in cell death. The Ca2+-dependent F1FO-ATPase is also inhibited when NAD+ concentration in mitochondria is raised by acetoacetate. The enzyme inhibition by NAD+ cannot be ascribed to any de-ac(et)ylation or ADP-ribosylation by sirtuines, as it is not reversed by nicotinamide. Moreover, the addition of acetyl-CoA or palmitate, which would favor the enzyme ac(et)ylation, does not affect the F1FO-ATPase activity. Consistently, NAD+ may play a new role, not associated with redox and non-redox enzymatic reactions, in the Ca2+-dependent regulation of the F1FO-ATPase activity.

  6. The role of exogenous electron carriers in NAD(P)-dependent dehydrogenase cytochemistry studied in vitro and with a model system of polyacrylamide films

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.

    1982-01-01

    The applicability of phenazine methosulfate, 1-methoxyphenazine methosulfate, menadione, and meldola blue as exogenous electron carriers for the cytochemical staining of nicotinamide adenine dinucleotide (phosphate) (NAD(P))-dependent dehydrogenases has been studied quantitatively with tetranitro BT

  7. Koliesko - studentský pracovní seminář při festivalu lidové kultury v Kokavě nad Rimavicou

    Czech Academy of Sciences Publication Activity Database

    Císaríková, Klára; Maňáková, M.

    2009-01-01

    Roč. 68, č. 2 (2009), 107-110 ISSN 1211-8117 Institutional research plan: CEZ:AV0Z90580513 Keywords : folk culture * Kokava nad Rimavicou * student´s workshop Subject RIV: AC - Archeology, Anthropology, Ethnology

  8. Ceux-ci ne sont pas : [luuletused] / Kalju Kruusa

    Index Scriptorium Estoniae

    Kruusa, Kalju, pseud., 1973-

    2003-01-01

    Sisu: Ceux-ci ne sont pas ; Köögivahet ; "Taara..." ; "Pakane pistab pisikesi ..." ; "Meri on kaet mattklaasiga ; Pydemise päivil ; "Toas muusika mängib ..." ; "Jäin juustu imetlema ; "Mu elu on mustikas ..." ; Hingepidetus ; ŁNo me gusta la cocina

  9. Hygiëne en infectiepreventie, constant voortschrijdende inzichten

    NARCIS (Netherlands)

    Crielaard, W.; Crielaard, L.

    2015-01-01

    Recent onderzoek heeft aangetoond dat het voor het orale microbioom niet altijd gunstig is om patiënten te behandelen met chloorhexidine. Daarnaast baart de groeiende groep bacteriën die resistent zijn tegen alle ontwikkelde antibiotica zorgen en kunnen 'te veel' hygiëne en infectiepreventie ook

  10. "Dlja menja ne sushtshestvujut kraski..." : [luuletused] / Georgi Kirillov

    Index Scriptorium Estoniae

    Kirillov, Georgi, 1952-2016

    2002-01-01

    Autorist lk. 187. Sisu: "Dlja menja ne sushtshestvujut kraski..." ; "Za molitvoi molitva..." ; "Zaklannõi prezhde veka Agnets..." ; "Ja zhdal tebja i tõ voshol..." ; "Nepodrazhajemoje solntse..." ; "Tshto obshtshego mezh mnoju i toboi..." ; "Pogruzhenije v odinotshestvo..." ; "Shag za shagom - k stupenjam svjatõm..." ; "Nedvizhnõ dveri sozertsanja..." ; "Vessenni vozduh..." ; "Jesli mozhno - bud miloserdnõm..."

  11. Stress tolerant plant species spread in the road-ne

    Czech Academy of Sciences Publication Activity Database

    Šerá, Božena

    2011-01-01

    Roč. 14, Vol.14 (2011), s. 45-46 ISSN 1644-7298 R&D Projects: GA MŠk OC10032 Institutional research plan: CEZ:AV0Z60870520 Keywords : weed * invasive * road-ne * salinity * Poaceae Subject RIV: AP - Urban, Regional and Transport Planning

  12. Half-life of the superallowed β+ emitter Ne18

    Science.gov (United States)

    Grinyer, G. F.; Smith, M. B.; Andreoiu, C.; Andreyev, A. N.; Ball, G. C.; Bricault, P.; Chakrawarthy, R. S.; Daoud, J. J.; Finlay, P.; Garrett, P. E.; Hackman, G.; Hyland, B.; Leslie, J. R.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Williams, S. J.; Zganjar, E. F.

    2007-08-01

    The half-life of Ne18 has been determined by detecting 1042-keV γ rays in the daughter F18 following the superallowed-Fermi β+ decay of samples implanted at the center of the 8πγ-ray spectrometer, a spherical array of 20 HPGe detectors. Radioactive Ne18 beams were produced on-line, mass-separated, and ionized using an electron-cyclotron-resonance ionization source at the ISAC facility at TRIUMF in Vancouver, Canada. This is the first high-precision half-life measurement of a superallowed Fermi β decay to utilize both a large-scale HPGe spectrometer and the isotope separation on-line technique. The half-life of Ne18, 1.6656 ± 0.0019 s, deduced following a 1.4σ correction for detector pulse pile-up, is four times more precise than the previous world average. As part of an investigation into potential systematic effects, the half-life of the heavier isotope Ne23 was determined to be 37.11 ± 0.06 s, a factor of 2 improvement over the previous precision.

  13. LabVIEW Data Acquisition for NE213 Neutron Detector

    International Nuclear Information System (INIS)

    Gangadharan, Dhevan

    2003-01-01

    A neutron spectroscopy system based on a NE213 liquid scintillation detector at the Stanford Linear Accelerator Center measures neutron energies from a few MeV up to 800 MeV. The neutrons are produced from the electron beam and target interactions. The NE 213 scintillator, coupled with a Photomultiplier Tube (PMT), detects and converts radiation into electric pulses for signal processing. Signals are processed through Nuclear Instrument Modules (NIM) and Computer Automated Measurement and Control (CAMAC) modules. The processed pulses are then fed into a CAMAC analog to digital converter module (ADC). The ADC classifies the incoming analog pulses into one of 2048 digital channels. Data acquisition (DAQ) software based on LabVIEW version 7.0 acquires and organizes data from the CAMAC ADC. The DAQ system presents a spectrum showing a relationship between pulse events and respective charge (digital channel number). Various photon sources, such as Co-60, Y-88, and AmBe-241, are used to calibrate the NE213 detector. For each source, a Compton edge and reference energy in MeVee is obtained, resulting in a calibration curve. This project is focused on the development of a DAQ system and control setup to collect and process information from a NE213 liquid scintillation detector. A manual is also created to document the process of the development and interpretation of the LabVIEW-based DAQ system

  14. Status of conversion of NE standards to national consensus standards

    International Nuclear Information System (INIS)

    Jennings, S.D.

    1990-06-01

    One major goal of the Nuclear Standards Program is to convert existing NE standards into national consensus standards (where possible). This means that an NE standard in the same subject area using the national consensus process. This report is a summary of the activities that have evolved to effect conversion of NE standards to national consensus standards, and the status of current conversion activities. In some cases, all requirements in an NE standard will not be incorporated into the published national consensus standard because these requirements may be considered too restrictive or too specific for broader application by the nuclear industry. If these requirements are considered necessary for nuclear reactor program applications, the program standard will be revised and issued as a supplement to the national consensus standard. The supplemental program standard will contain only those necessary requirements not reflected by the national consensus standard. Therefore, while complete conversion of program standards may not always be realized, the standards policy has been fully supported in attempting to make maximum use of the national consensus standard. 1 tab

  15. Hyurterianum (Asteraceae, Inuleae), a new species from NE Anatolia, Turkey

    DEFF Research Database (Denmark)

    Gemici, Y.; Tan, K.; Yidirim, H.

    2008-01-01

    Helichrysum yurterianum Y. Gemici, Kit Tan, H. Yildirim & M. Gemici (Asteraceae, Inuleae) is described and illustrated. It is a serpentine endemic restricted to the province of Erzincan in NE Anatolia, Turkey. Its affinities are with H. arenarium and H. noeanum, which both have a wider distribution...

  16. Teorijske i praktične osnove TIG postupka zavarivanja

    OpenAIRE

    Horvat, Marko; Kondić, Veljko; Brezovački, Dražen

    2014-01-01

    TIG/GTAW postupak zavarivanja je elektrolučni postupak zavarivanja netaljivom elektrodom u zaštitnoj atmosferi inertnih plinova ili smjesa plinova. U radu je prikazana kratka povijest i teorijske osnove postupka, prednosti i nedostaci te osvrt na praktične osnove primjene postupka.

  17. Recoil range distribution measurement in 20Ne + 181Ta reaction

    International Nuclear Information System (INIS)

    Tripathi, R.; Sudarshan, K.; Goswami, A.; Guin, R.; Reddy, A.V.R.

    2005-01-01

    In order to investigate linear momentum transfer in various transfer channels in 20 Ne + 181 Ta, recoil range distribution measurements have been carried out at E lab = 180 MeV, populating significant number of l-waves above l crit

  18. Deformation effects in the 20Ne+12C reaction

    International Nuclear Information System (INIS)

    Dey, A.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Mukhopadhyay, S.; Gupta, D.; Saha, R.; Bhattacharya, S.

    2004-01-01

    The present work has been performed with the aim to investigate the possible occurrence of highly deformed configurations of the 32 S di-nuclear systems which may be formed in the 20 Ne+ 12 C reaction by studying the properties of emitted light charged particles

  19. HeNe-laser light scattering by human dental enamel

    NARCIS (Netherlands)

    Zijp, [No Value; tenBosch, JJ; Groenhuis, RAJ

    1995-01-01

    Knowledge of the optical properties of tooth enamel and an understanding of the origin of these properties are necessary for the development of new optical methods for caries diagnosis and the measurement of tooth color. We measured the scattering intensity functions for HeNe-laser light of 80- to

  20. 76 FR 76337 - Television Broadcasting Services; Lincoln, NE

    Science.gov (United States)

    2011-12-07

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [MB Docket No. 11-192, RM-11646; DA 11-1924] Television Broadcasting Services; Lincoln, NE AGENCY: Federal Communications Commission. ACTION: Proposed... 73 Television, Television broadcasting. Federal Communications Commission Barbara A. Kreisman, Chief...

  1. 4-Pyridone-3-carboxamide-1-β-d-ribonucleoside Triphosphate (4PyTP, a Novel NAD+ Metabolite Accumulating in Erythrocytes of Uremic Children: A Biomarker for a Toxic NAD+ Analogue in Other Tissues?

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Carrey

    2011-06-01

    Full Text Available We have identified a novel nucleotide, 4-pyridone 3/5-carboxamide ribonucleoside triphosphate (4PyTP, which accumulates in human erythrocytes during renal failure. Using plasma and erythrocyte extracts obtained from children with chronic renal failure we show that the concentration of 4PyTP is increased, as well as other soluble NAD+ metabolites (nicotinamide, N1-methylnicotinamide and 4Py-riboside and the major nicotinamide metabolite N1-methyl-2-pyridone-5-carboxamide (2PY, with increasing degrees of renal failure. We noted that 2PY concentration was highest in the plasma of haemodialysis patients, while 4PyTP was highest in erythrocytes of children undergoing peritoneal dialysis: its concentration correlated closely with 4Py-riboside, an authentic precursor of 4PyTP, in the plasma. In the dialysis patients, GTP concentration was elevated: similar accumulation was noted previously, as a paradoxical effect in erythrocytes during treatment with immunosuppressants such as ribavirin and mycophenolate mofetil, which deplete GTP through inhibition of IMP dehydrogenase in nucleated cells such as lymphocytes. We predict that 4Py-riboside and 4Py-nucleotides bind to this enzyme and alter its activity. The enzymes that regenerate NAD+ from nicotinamide riboside also convert the drugs tiazofurin and benzamide riboside into NAD+ analogues that inhibit IMP dehydrogenase more effectively than the related ribosides: we therefore propose that the accumulation of 4PyTP in erythrocytes during renal failure is a marker for the accumulation of a related toxic NAD+ analogue that inhibits IMP dehydrogenase in other cells.

  2. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR and its effects on blood NAD+ levels in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Sophia E Airhart

    Full Text Available The co-primary objectives of this study were to determine the human pharmacokinetics (PK of oral NR and the effect of NR on whole blood nicotinamide adenine dinucleotide (NAD+ levels.Though mitochondrial dysfunction plays a critical role in the development and progression of heart failure, no mitochondria-targeted therapies have been translated into clinical practice. Recent murine studies have reported associations between imbalances in the NADH/NAD+ ratio with mitochondrial dysfunction in multiple tissues, including myocardium. Moreover, an NAD+ precursor, nicotinamide mononucleotide, improved cardiac function, while another NAD+ precursor, nicotinamide riboside (NR, improved mitochondrial function in muscle, liver and brown adipose. Thus, PK studies of NR in humans is critical for future clinical trials.In this non-randomized, open-label PK study of 8 healthy volunteers, 250 mg NR was orally administered on Days 1 and 2, then uptitrated to peak dose of 1000 mg twice daily on Days 7 and 8. On the morning of Day 9, subjects completed a 24-hour PK study after receiving 1000 mg NR at t = 0. Whole-blood levels of NR, clinical blood chemistry, and NAD+ levels were analyzed.Oral NR was well tolerated with no adverse events. Significant increases comparing baseline to mean concentrations at steady state (Cave,ss were observed for both NR (p = 0.03 and NAD+ (p = 0.001; the latter increased by 100%. Absolute changes from baseline to Day 9 in NR and NAD+ levels correlated highly (R2 = 0.72, p = 0.008.Because NR increases circulating NAD+ in humans, NR may have potential as a therapy in patients with mitochondrial dysfunction due to genetic and/or acquired diseases.

  3. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers.

    Science.gov (United States)

    Airhart, Sophia E; Shireman, Laura M; Risler, Linda J; Anderson, Gail D; Nagana Gowda, G A; Raftery, Daniel; Tian, Rong; Shen, Danny D; O'Brien, Kevin D

    2017-01-01

    The co-primary objectives of this study were to determine the human pharmacokinetics (PK) of oral NR and the effect of NR on whole blood nicotinamide adenine dinucleotide (NAD+) levels. Though mitochondrial dysfunction plays a critical role in the development and progression of heart failure, no mitochondria-targeted therapies have been translated into clinical practice. Recent murine studies have reported associations between imbalances in the NADH/NAD+ ratio with mitochondrial dysfunction in multiple tissues, including myocardium. Moreover, an NAD+ precursor, nicotinamide mononucleotide, improved cardiac function, while another NAD+ precursor, nicotinamide riboside (NR), improved mitochondrial function in muscle, liver and brown adipose. Thus, PK studies of NR in humans is critical for future clinical trials. In this non-randomized, open-label PK study of 8 healthy volunteers, 250 mg NR was orally administered on Days 1 and 2, then uptitrated to peak dose of 1000 mg twice daily on Days 7 and 8. On the morning of Day 9, subjects completed a 24-hour PK study after receiving 1000 mg NR at t = 0. Whole-blood levels of NR, clinical blood chemistry, and NAD+ levels were analyzed. Oral NR was well tolerated with no adverse events. Significant increases comparing baseline to mean concentrations at steady state (Cave,ss) were observed for both NR (p = 0.03) and NAD+ (p = 0.001); the latter increased by 100%. Absolute changes from baseline to Day 9 in NR and NAD+ levels correlated highly (R2 = 0.72, p = 0.008). Because NR increases circulating NAD+ in humans, NR may have potential as a therapy in patients with mitochondrial dysfunction due to genetic and/or acquired diseases.

  4. Wld(S reduces paraquat-induced cytotoxicity via SIRT1 in non-neuronal cells by attenuating the depletion of NAD.

    Directory of Open Access Journals (Sweden)

    Qiujing Yu

    Full Text Available Wld(S is a fusion protein with NAD synthesis activity, and has been reported to protect axonal and synaptic compartments of neurons from various mechanical, genetic and chemical insults. However, whether Wld(S can protect non-neuronal cells against toxic chemicals is largely unknown. Here we found that Wld(S significantly reduced the cytotoxicity of bipyridylium herbicides paraquat and diquat in mouse embryonic fibroblasts, but had no effect on the cytotoxicity induced by chromium (VI, hydrogen peroxide, etoposide, tunicamycin or brefeldin A. Wld(S also slowed down the death of mice induced by intraperitoneal injection of paraquat. Further studies demonstrated that Wld(S markedly attenuated mitochondrial injury including disruption of mitochondrial membrane potential, structural damage and decline of ATP induced by paraquat. Disruption of the NAD synthesis activity of Wld(S by an H112A or F116S point mutation resulted in loss of its protective function against paraquat-induced cell death. Furthermore, Wld(S delayed the decrease of intracellular NAD levels induced by paraquat. Similarly, treatment with NAD or its precursor nicotinamide mononucleotide attenuated paraquat-induced cytotoxicity and decline of ATP and NAD levels. In addition, we showed that SIRT1 was required for both exogenous NAD and Wld(S-mediated cellular protection against paraquat. These findings suggest that NAD and SIRT1 mediate the protective function of Wld(S against the cytotoxicity induced by paraquat, which provides new clues for the mechanisms underlying the protective function of Wld(S in both neuronal and non-neuronal cells, and implies that attenuation of NAD depletion may be effective to alleviate paraquat poisoning.

  5. Precision angle-resolved autoionization resonances in Ar and Ne

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N.; Langer, B.; Gorczyca, T.W. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others

    1997-04-01

    Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.

  6. Crystal structures of complexes of NAD+-dependent formate dehydrogenase from methylotrophic bacterium Pseudomonas sp. 101 with formate

    International Nuclear Information System (INIS)

    Filippova, E. V.; Polyakov, K. M.; Tikhonova, T. V.; Stekhanova, T. N.; Boiko, K. M.; Sadykhov, I. G.; Tishkov, V. I.; Popov, V. O.; Labru, N.

    2006-01-01

    Formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 catalyzes oxidation of formate to NI 2 with the coupled reduction of nicotinamide adenine dinucleotide (NAD + ). The three-dimensional structures of the apo form (the free enzyme) and the holo form (the ternary FDH-NAD + -azide complex) of FDH have been established earlier. In the present study, the structures of FDH complexes with formate are solved at 2.19 and 2.28 A resolution by the molecular replacement method and refined to the R factors of 22.3 and 20.5%, respectively. Both crystal structures contain four protein molecules per asymmetric unit. These molecules form two dimers identical to the dimer of the apo form of FDH. Two possible formatebinding sites are found in the active site of the FDH structure. In the complexes the sulfur atom of residue Cys354 exists in the oxidized state

  7. A Nampt inhibitor FK866 mimics vitamin B3 deficiency by causing senescence of human fibroblastic Hs68 cells via attenuation of NAD(+)-SIRT1 signaling.

    Science.gov (United States)

    Song, Tuzz-Ying; Yeh, Shu-Lan; Hu, Miao-Lin; Chen, Mei-Yau; Yang, Nae-Cherng

    2015-12-01

    Vitamin B3 (niacin) deficiency can cause pellagra with symptoms of dermatitis, diarrhea and dementia. However, it is unclear whether the vitamin B3 deficiency causes human aging. FK866 (a Nampt inhibitor) can reduce intracellular NAD(+) level and induce senescence of human Hs68 cells. However, the mechanisms underlying FK866-induced senescence of Hs68 cells are unclear. In this study, we used FK866 to mimic the effects of vitamin B3 deficiency to reduce the NAD(+) level and investigated the mechanisms of FK866-induced senescence of Hs68 cells. We hypothesized that FK866 induced the senescence of Hs68 cells via an attenuation of NAD(+)-silent information regulator T1 (SIRT1) signaling. We found that FK866 induced cell senescence and diminished cellular NAD(+) levels and SIRT1 activity (detected by acetylation of p53), and these effects were dramatically antagonized by co-treatment with nicotinic acid, nicotinamide, or NAD(+). In contrast, the protein expression of SIRT1, AMP-activated protein kinase, mammalian target of rapamycin, and nicotinamide phosphoribosyltransferase (Nampt) was not affected by FK866. In addition, the role of GSH in the FK866-induced cells senescence may be limited, as N-acetylcysteine did not antagonize FK866-induced cell senescence. These results suggest that FK866 induces cell senescence via attenuation of NAD(+)-SIRT1 signaling. The effects of vitamin B3 deficiency on human aging warrant further investigation.

  8. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Applylication of new type combined fragments: nrDNA ITS+ nad 1-intron 2 for identification of Dendrobium species of Fengdous].

    Science.gov (United States)

    Geng, Li-xia; Zheng, Rui; Ren, Jie; Niu, Zhi-tao; Sun, Yu-long; Xue, Qing-yun; Liu, Wei; Ding, Xiao-yu

    2015-08-01

    In this study, 17 kinds of Dendrobium species of Fengdous including 39 individuals were collected from 4 provinces. Mitochondrial gene sequences co I, nad 5, nad 1-intron 2 and chloroplast gene sequences rbcL, matK amd psbA-trnH were amplified from these materials, as well as nrDNA ITS. Furthermore, suitable sequences for identification of Dendrobium species of Fengdous were screened by K-2-P and P-distance. The results showed that during the mentioned 7 sequences, nrDNA ITS, nad 1-intron 2 and psbA-trnH which had a high degree of variability could be used to identify Dendrobium species of Fengdous. However, single fragment could not be used to distinguish D. moniliforme and D. huoshanense. Moreover, compared to other combined fragments, new type combined fragments nrDNA ITS+nad 1-intron 2 was more effective in identifying the original plants of Dendrobium species and could be used to identify D. huoshanense and D. moniliforme. Besides, according to the UPGMA tree constructed with nrDNA ITS+nad 1-intron 2, 3 inspected Dendrobium plants were identified as D. huoshanense, D. moniliforme and D. officinale, respectively. This study identified Dendrobium species of Fengdous by combined fragments nrDNA ITS+nad 1-intron 2 for the first time, which provided a more effective basis for identification of Dendrobium species. And this study will be helpful for regulating the market of Fengdous.

  10. Structure of the Francisella tularensis enoyl-acyl carrier protein reductase (FabI) in complex with NAD+ and triclosan

    International Nuclear Information System (INIS)

    Mehboob, Shahila; Truong, Kent; Santarsiero, Bernard D.; Johnson, Michael E.

    2010-01-01

    Structure of the ternary complex of F. tularensis enoyl-acyl carrier protein reductase reveals the structure of the substrate binding loop whose electron density was missing in an earlier structure, and demonstrates a shift in the position of the NAD + cofactor. Enoyl-acyl carrier protein reductase (FabI) catalyzes the last rate-limiting step in the elongation cycle of the fatty-acid biosynthesis pathway and has been validated as a potential antimicrobial drug target in Francisella tularensis. The development of new antibiotic therapies is important both to combat potential drug-resistant bioweapons and to address the broader societal problem of increasing antibiotic resistance among many pathogenic bacteria. The crystal structure of FabI from F. tularensis (FtuFabI) in complex with the inhibitor triclosan and the cofactor NAD + has been solved to a resolution of 2.1 Å. Triclosan is known to effectively inhibit FabI from different organisms. Precise characterization of the mode of triclosan binding is required to develop highly specific inhibitors. Comparison of our structure with the previously determined FtuFabI structure which is bound to only NAD + reveals the conformation of the substrate-binding loop, electron density for which was missing in the earlier structure, and demonstrates a shift in the conformation of the NAD + cofactor. This shift in the position of the phosphate groups allows more room in the active site for substrate or inhibitor to bind and be better accommodated. This information will be crucial for virtual screening studies to identify novel scaffolds for development into new active inhibitors

  11. PURIFICATION AND CHARACTERIZATION OF AN OXYGEN-LABILE, NAD-DEPENDENT ALCOHOL-DEHYDROGENASE FROM DESULFOVIBRIO-GIGAS

    NARCIS (Netherlands)

    HENSGENS, CMH; VONCK, J; VANBEEUMEN, J; VANBRUGGEN, EFJ; HANSEN, TA

    A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (K(m), 0.15 mM) and 1-propanol (K(m), 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the

  12. Contribution of alpha cluster exchange to elastic and inelastic 16O--20Ne scattering

    International Nuclear Information System (INIS)

    Stock, R.; Schneider, W.F.W.; Jahnke, U.; Hendrie, D.L.; Mahoney, J.; Maguire, C.F.; Scott, D.K.; Wolschin, G.

    1975-01-01

    The cluster structure of the ground state rotational band of 20 Ne was studied via the elastic and inelastic scattering of 50 MeV 20 Ne from 16 O. Angular distributions are compared with microscopic calculations

  13. Purification and Characterization of a Novel NAD(P)+-Farnesol Dehydrogenase from Polygonum minus Leaves.

    Science.gov (United States)

    Ahmad-Sohdi, Nor-Ain-Shahajar; Seman-Kamarulzaman, Ahmad-Faris; Mohamed-Hussein, Zeti-Azura; Hassan, Maizom

    2015-01-01

    Juvenile hormones have attracted attention as safe and selective targets for the design and development of environmentally friendly and biorational insecticides. In the juvenile hormone III biosynthetic pathway, the enzyme farnesol dehydrogenase catalyzes the oxidation of farnesol to farnesal. In this study, farnesol dehydrogenase was extracted from Polygonum minus leaves and purified 204-fold to apparent homogeneity by ion-exchange chromatography using DEAE-Toyopearl, SP-Toyopearl, and Super-Q Toyopearl, followed by three successive purifications by gel filtration chromatography on a TSK-gel GS3000SW. The enzyme is a heterodimer comprised of subunits with molecular masses of 65 kDa and 70 kDa. The optimum temperature and pH were 35°C and pH 9.5, respectively. Activity was inhibited by sulfhydryl reagents, metal-chelating agents and heavy metal ions. The enzyme utilized both NAD+ and NADP+ as coenzymes with Km values of 0.74 mM and 40 mM, respectively. Trans, trans-farnesol was the preferred substrate for the P. minus farnesol dehydrogenase. Geometrical isomers of trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol were also oxidized by the enzyme with lower activity. The Km values for trans, trans-farnesol, cis, trans-farnesol and cis, cis-farnesol appeared to be 0.17 mM, 0.33 mM and 0.42 mM, respectively. The amino acid sequences of 4 tryptic peptides of the enzyme were analyzed by MALDI-TOF/TOF-MS spectrometry, and showed no significant similarity to those of previously reported farnesol dehydrogenases. These results suggest that the purified enzyme is a novel NAD(P)+-dependent farnesol dehydrogenase. The purification and characterization established in the current study will serve as a basis to provide new information for recombinant production of the enzyme. Therefore, recombinant farnesol dehydrogenase may provide a useful molecular tool in manipulating juvenile hormone biosynthesis to generate transgenic plants for pest control.

  14. Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Pucci, Biagio; Rossi, Mosè; Raia, Carlo A

    2010-03-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh gene was heterologously overexpressed in Escherichia coli, and the protein (SaADH) was purified to homogeneity and characterized. SaADH is a tetrameric enzyme consisting of identical 28,978-Da subunits, each composed of 264 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 75 degrees C and a 30-min half-inactivation temperature of ~90 degrees C, and shows good tolerance to common organic solvents. SaADH has a strict requirement for NAD(H) as the coenzyme, and displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and alpha-keto esters, but is poorly active on aliphatic, cyclic and aromatic alcohols, and shows no activity on aldehydes. The enzyme catalyses the reduction of alpha-methyl and alpha-ethyl benzoylformate, and methyl o-chlorobenzoylformate with 100% conversion to methyl (S)-mandelate [17% enantiomeric excess (ee)], ethyl (R)-mandelate (50% ee), and methyl (R)-o-chloromandelate (72% ee), respectively, with an efficient in situ NADH-recycling system which involves glucose and a thermophilic glucose dehydrogenase. This study provides further evidence supporting the critical role of the D37 residue in discriminating NAD(H) from NAD(P)H in members of the SDR superfamily.

  15. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho [Univ. of Suwon, Hwaseong (Korea, Republic of); Lee, Young Chul [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2016-02-15

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites.

  16. Effects of γ radiation and hyperthermia on DNA repair synthesis and the level of NAD+ in cultured human mononuclear leukocytes

    International Nuclear Information System (INIS)

    Jonsson, G.G.; Eriksson, G.; Pero, R.W.

    1984-01-01

    DNA repair has been investigated, estimated by unscheduled DNA synthesis (UDS) and the cellular NAD + pool, after exposing human mononuclear leukocytes to hyperthermia and γ radiation separately and in combination. It was found that γ radiation induced a decline in UDS with increasing temperature through the temperature region studied (37-45 0 C). At 42.5 0 C the γ-ray-induced UDS was reduced to about 70% of that at 37 0 C. Following γ-ray damage the NAD + pool dropped to about 20% of control values. Without hyperthermic treatment the cells completely recovered to the original level within 5 hr. Moderate hyperthermia (42.5 0 C for 45 min) followed by γ-ray damage altered the kinetics so that even after 8 hr the NAD + pool had recovered to only 70% of the original level. After heat treatment at 44 0 C for 45 min prior to γ radiation the cells did not recover at all, presumably because of the cytotoxic effects from the combined treatment

  17. Overexpression of CYB5R3 and NQO1, two NAD+ -producing enzymes, mimics aspects of caloric restriction.

    Science.gov (United States)

    Diaz-Ruiz, Alberto; Lanasa, Michael; Garcia, Joseph; Mora, Hector; Fan, Frances; Martin-Montalvo, Alejandro; Di Francesco, Andrea; Calvo-Rubio, Miguel; Salvador-Pascual, Andrea; Aon, Miguel A; Fishbein, Kenneth W; Pearson, Kevin J; Villalba, Jose Manuel; Navas, Placido; Bernier, Michel; de Cabo, Rafael

    2018-04-28

    Calorie restriction (CR) is one of the most robust means to improve health and survival in model organisms. CR imposes a metabolic program that leads to increased stress resistance and delayed onset of chronic diseases, including cancer. In rodents, CR induces the upregulation of two NADH-dehydrogenases, namely NAD(P)H:quinone oxidoreductase 1 (Nqo1) and cytochrome b 5 reductase 3 (Cyb5r3), which provide electrons for energy metabolism. It has been proposed that this upregulation may be responsible for some of the beneficial effects of CR, and defects in their activity are linked to aging and several age-associated diseases. However, it is unclear whether changes in metabolic homeostasis solely through upregulation of these NADH-dehydrogenases have a positive impact on health and survival. We generated a mouse that overexpresses both metabolic enzymes leading to phenotypes that resemble aspects of CR including a modest increase in lifespan, greater physical performance, a decrease in chronic inflammation, and, importantly, protection against carcinogenesis, one of the main hallmarks of CR. Furthermore, these animals showed an enhancement of metabolic flexibility and a significant upregulation of the NAD + /sirtuin pathway. The results highlight the importance of these NAD + producers for the promotion of health and extended lifespan. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    International Nuclear Information System (INIS)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho; Lee, Young Chul

    2016-01-01

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites

  19. Measurements of Neutrino Charged Current Interactions at SciBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)], E-mail: nakajima@scphys.kyoto-u.ac.jp

    2009-08-15

    The SciBooNE experiment (FNAL-E954) is designed to measure neutrino-nucleous cross sections in the one GeV region. Additionally, SciBooNE serves as a near detector for MiniBooNE by measuring the neutrino flux. In this paper, we describe two analyses using neutrino charged current interactions at SciBooNE: a neutrino spectrum measurement and a search for charged current coherent pion production.

  20. Proton capture in the nuclei 21Ne and 22Ne and its influence on the solar hydrogen burning in the neon-sodium cyclus

    International Nuclear Information System (INIS)

    Goerres, J.

    1983-01-01

    The aim of this thesis was to remove the uncertainties in the reaction rates of 21 Ne(p,γ) 22 Na and 22 Ne(p,γ) 23 Na in order to can make founded statements about the hydrogen burning in the NeNa cyclus. After the description of the experimental arrangement the search for resonances in the reaction 21 Ne(p,γ) 22 Na below Esub(p)=355 keV is reported. While the theory of the direct radiation capture is discussed the experimental results of the search for this transitions in 21 Ne(p,γ) 22 Na respectively 22 Ne(p,γ) 23 Na are presented. The astrophysical aspects of the results of this thesis are discussed and summarizingly presented. (orig./HSI) [de

  1. Glucose impairs aspirin inhibition in platelets through a NAD(P)H oxidase signaling pathway.

    Science.gov (United States)

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2017-07-01

    Hyperglycemia has been suggested to play a role in the increased platelet resistance to antiplatelet therapy in patients with diabetes mellitus. Exposure to high glucose impairs platelet inhibition by aspirin. It has been found that antioxidant agents reduce the effect of glucose, confirming the involvement of reactive oxygen species (ROS) in the effect of glucose. The aim of the study was to examine the mechanism of ROS increase by high glucose in aspirin-treated platelets. Platelet aggregation was measured by the optical method, and the production of ROS was detected using luminol-dependent horseradish peroxidase-enhanced chemiluminescence. We found that glucose did not affect ADP-induced platelet aggregation. However, it reduced the effect of aspirin on platelet aggregation, which was accompanied by an increase in ROS generation. The inhibition of NAD(P)H oxidase (NOX) prevented the glucose effect and ROS generation. The same result was recorded after the inhibition of p38 mitogen-activated protein kinases (p38 MAPK), phospholipase A 2 (PLA 2 ) or 12-lipoxygenase (12-LOX). The inhibition of TxA 2 receptor did not decrease the effect of glucose indicating that the effect was not caused by activation of TxA 2 receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. NAD+-dependent HDAC inhibitor stimulates Monascus pigment production but inhibit citrinin.

    Science.gov (United States)

    Hu, Yan; Zhou, Youxiang; Mao, Zejing; Li, Huihui; Chen, Fusheng; Shao, Yanchun

    2017-08-23

    Monascus species are edible fungi due to the production of food colorant and other beneficial compounds. Hence, it has been an attractive thesis to improve their productivities. Increasing numbers of investigations revealed that regulating the activities of histone deacetylases can significantly perturb secondary metabolites (SM) production at a global level. In this study, dihydrocoumarin (DHC, an inhibitor of the Sirtuin family of NAD + -dependent deacetylases) was used to treat Monascus ruber for evaluating its effects on organism growth and SM production. The results revealed that the variation trends of colonial sizes, biomass and mycotoxin were in a dose-dependent manner. Generally, they decreased with the increased DHC concentrations in the designed range. But the variation trend of pigment was different. Comparison of SM profile, three new peaks occurred to the mycelia extractions from DHC-treated strain corresponding to molecular weights 402, 416 and 444, respectively. These three compounds were identified as Monasfluol B, Monascus azaphilone C and acetyl-monasfluol B (a new Monascus chemical pigment structure). In short, DHC can stimulate M. ruber strain to produce more pigment-like polyketides but inhibition of mycotoxin (citrinin).

  3. Regulation of Serine-Threonine Kinase Akt Activation by NAD+-Dependent Deacetylase SIRT7

    Directory of Open Access Journals (Sweden)

    Jia Yu

    2017-01-01

    Full Text Available The Akt pathway is a central regulator that promotes cell survival in response to extracellular signals. Depletion of SIRT7, an NAD+-dependent deacetylase that is the least-studied sirtuin, is known to significantly increase Akt activity in mice through unknown mechanisms. In this study, we demonstrate that SIRT7 depletion in breast cancer cells results in Akt hyper-phosphorylation and increases cell survival following genotoxic stress. Mechanistically, SIRT7 specifically interacts with and deacetylates FKBP51 at residue lysines 28 and 155 (K28 and K155, resulting in enhanced interactions among FKBP51, Akt, and PHLPP, as well as Akt dephosphorylation. Mutating both lysines to arginines abolishes the effect of SIRT7 on Akt activity through FKBP51 deacetylation. Finally, energy stress strengthens SIRT7-mediated effects on Akt dephosphorylation through FKBP51 and thus sensitizes cancer cells to cytotoxic agents. These results reveal a direct role of SIRT7 in Akt regulation and raise the possibility of using the glucose analog 2-deoxy-D-glucose (2DG as a chemo-sensitizing agent.

  4. NAD+ Supplementation Attenuates Methylmercury Dopaminergic and Mitochondrial Toxicity in Caenorhabditis Elegans

    Science.gov (United States)

    Caito, Samuel W.; Aschner, Michael

    2016-01-01

    Methylmercury (MeHg) is a neurotoxic contaminant of our fish supply that has been linked to dopaminergic (DAergic) dysfunction that characterizes Parkinson’s disease. We have previously shown that MeHg causes both morphological and behavioral changes in the Caenorhabditis elegans DAergic neurons that are associated with oxidative stress. We were therefore interested in whether the redox sensitive cofactor nicotinamide adenine dinucleotide (NAD+) may be affected by MeHg and whether supplementation of NAD + may prevent MeHg-induced toxicities. Worms treated with MeHg showed depletion in cellular NAD + levels, which was prevented by NAD + supplementation prior to MeHg treatment. NAD + supplementation also prevented DAergic neurodegeneration and deficits in DAergic-dependent behavior upon MeHg exposure. In a mutant worm line that cannot synthesize NAD + from nicotinamide, MeHg lethality and DAergic behavioral deficits were more sensitive to MeHg than wildtype worms, demonstrating the importance of NAD + in MeHg toxicity. In wildtype worms, NAD + supplementation provided protection from MeHg-induced oxidative stress and mitochondrial dysfunction. These data show the importance of NAD + levels in the response to MeHg exposure. NAD + supplementation may be beneficial for MeHg-induced toxicities and preventing cellular damage involved in Parkinson’s disease. PMID:26865665

  5. Crystal structures of type IIIH NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles

    International Nuclear Information System (INIS)

    Kumar, S.M.; Pampa, K.J.; Manjula, M.; Hemantha Kumar, G.; Kunishima, Naoki; Lokanath, N.K.

    2014-01-01

    Highlights: • Determined the crystal structures of PGDH from two thermophiles. • Monomer is composed of nucleotide binding domain and substrate binding domain. • Crystal structures of type III H PGDH. - Abstract: In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77 Å and 1.95 Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type III H and such PGDHs structures having this type are reported for the first time

  6. An Interbacterial NAD(P)+ Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, John C.; Quentin, Dennis; Sawai, Shin; LeRoux, Michele; Harding, Brittany N.; Ledvina, Hannah E.; Tran, Bao Q.; Robinson, Howard; Goo, Young Ah; Goodlett, David R.; Raunser, Stefan; Mougous, Joseph D.

    2015-10-08

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD+ and NADP+. Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.

  7. Land cover mapping after the tsunami event over Nanggroe Aceh Darussalam (NAD) province, Indonesia

    Science.gov (United States)

    Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Alias, A. N.; Mohd. Saleh, N.; Wong, C. J.; Surbakti, M. S.

    2008-03-01

    Remote sensing offers an important means of detecting and analyzing temporal changes occurring in our landscape. This research used remote sensing to quantify land use/land cover changes at the Nanggroe Aceh Darussalam (Nad) province, Indonesia on a regional scale. The objective of this paper is to assess the changed produced from the analysis of Landsat TM data. A Landsat TM image was used to develop land cover classification map for the 27 March 2005. Four supervised classifications techniques (Maximum Likelihood, Minimum Distance-to- Mean, Parallelepiped and Parallelepiped with Maximum Likelihood Classifier Tiebreaker classifier) were performed to the satellite image. Training sites and accuracy assessment were needed for supervised classification techniques. The training sites were established using polygons based on the colour image. High detection accuracy (>80%) and overall Kappa (>0.80) were achieved by the Parallelepiped with Maximum Likelihood Classifier Tiebreaker classifier in this study. This preliminary study has produced a promising result. This indicates that land cover mapping can be carried out using remote sensing classification method of the satellite digital imagery.

  8. Visual transactions and reinscriptions of identity in Nadín Ospina and Calimocho Styles

    Directory of Open Access Journals (Sweden)

    María Elena Lucero

    2013-07-01

    Full Text Available Relecting on identities in Latin America in the space of visual arts leads to an analytical revision not only of alternative versions of the cultural past, but also of the way in which transnationality has affected contemporary practices, especially through extended periods of exile, diaspora, migrations and displacements. One possible conceptual weapon would be the use of irony or parody. In this aspect, the Colombian artist Nadín Ospina synthesizes possible exchanges between symbolic productions of the Pre-Hispanic period, current fetishized merchandise, and certain imaginaries linked to the media. Projected from the place of sarcasm, Ospina materializes these fetish objects that allude to the exotic nickna megiven by Europe to American visuality andresets cultural difference to the extreme of potentializingit and putting it in lux. On the other hand, Calimocho Styles, the duo between the Mexicanartists Ruben Ortiz Torres and Eduardo Abaroa examines unstable and changing cultural identities that emerge from the continuous border crossing between Mexico and United States, inquiring into ambivalent strategies of generating cultural products and proposing contemporary ictions from iconic referents of mass consumption. In both cases, hybrid visual proposals are generated, which create a space for numerous inquiries and discussions on interculturality and its incidence in Latin America.

  9. (e, 2e) processes on Ne, Ar and Xe targets

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, G; Patidar, Vinod; Sud, K K, E-mail: g_vpurohit@yahoo.co, E-mail: ghanshyam.purohit@spsu.ac.i [Department of Physics, School of Engineering, Sir Padampat Singhania University, Bhatewar, Udaipur-313 601 (India)

    2010-06-01

    Recently, there have been several attempts to explain the features of triple differential cross section (TDCS) for the (e, 2e) processes on inert targets Ne, Ar and Xe but there are still certain discrepancies in theoretical results and measurements, which require more theoretical efforts to understand the collision dynamics of these targets. We present in this paper the results of our modified distorted wave Born approximation (DWBA) calculation of TDCS for the ionization of Ne (2p), Ar (3p) and Xe (5p) targets. We modify the standard DWBA formalism by including the correlation-polarization potential (which is function of electron density) and compare our computed results with the available experimental and theoretical data. We observe that the polarization potential is able to improve the agreement with experimental results.

  10. MicroBooNE and its Cross Section Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yun-Tse [SLAC

    2017-05-22

    MicroBooNE (the Micro Booster Neutrino Experiment) is a short-baseline neutrino experiment based on the technology of a liquid-argon time-projection chamber (LArTPC), and has recently completed its first year of data-taking in the Fermilab Booster Neutrino Beam. It aims to address the anomalous excess of events with an electromagnetic final state in MiniBooNE, to measure neutrino-argon interaction cross sections, and to provide relevant R\\&D for the future LArTPC experiments, such as DUNE. In these proceedings, we present the first reconstructed energy spectrum of Michel electrons from cosmic muon decays, the first kinematic distributions of the candidate muon tracks from $\

  11. Overview of DOE-NE Proliferation and Terrorism Risk Assessment

    International Nuclear Information System (INIS)

    Sadasivan, Pratap

    2012-01-01

    Research objectives are: (1) Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; (2) Develop improvements in the affordability of new reactors to enable nuclear energy; (3) Develop Sustainable Nuclear Fuel Cycles; and (4) Understand and minimize the risks of nuclear proliferation and terrorism. The goal is to enable the use of risk information to inform NE R and D program planning. The PTRA program supports DOE-NE's goal of using risk information to inform R and D program planning. The FY12 PTRA program is focused on terrorism risk. The program includes a mix of innovative methods that support the general practice of risk assessments, and selected applications.

  12. Neutral bremsstrahlung radiation of Ne, Ar and O

    International Nuclear Information System (INIS)

    Kung, R.T.V.; Chang, C.H.

    1976-01-01

    The neutral Bremsstrahlung cross-sections of Ne, Ar and atomic oxygen around the 3 and 10μ wavelength regions were measured in a high temperature plasma generated in a shock tube. The results were generally a factor of three higher than the theoretical values calculated by Geltman (Geltman, S., JQSRT vol.13, 601 (1973)). Agreement with the experimental results of Taylor and Caledonia (Taylor, R.L. and Caledonia, G., JQSRT vol.9, 657; 681, 1969) around 3μ was good except for the case of Ne. The cross-sections around 10μ are the first measurements in this wavelength region. Enhanced radiation due to atomic line emission on top of the Bremsstrahlung continuum, as predicted by Hyman (Hyman, H.A. and Von Rosenberg, C.W. Jr., JQSRT, vol.15, 919, 1975) was observed around 7.44μ. (author)

  13. Single electron capture in N^+ -(Ne, Kr, Xe) collisions

    Science.gov (United States)

    Reyes, Pedro G.; Castillo, Fermin; Martinez, Horacio

    2001-05-01

    Total cross sections for single electron capture of N^+ ions impinging on Ne, Kr and Xe were measured in the energy range of 1.5 to 5.0 keV. The electron capture cross sections for all the targets studied are found to be in excellent agreement with previous data in the low-energy range. The present data together with previous measurements give a general shape of the whole curve of single electron capture cross sections for the N^+ - Ne system. For the cases of N^+ - (Kr, Xe) systems, semiempirical calculation using the two-state approximation are in very good agreement with present cross sections data. Research supported by DGAPA IN-100392 and CONACyT 32175-E

  14. A digital intensity stabilization system for HeNe laser

    Science.gov (United States)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  15. Toward Solution of the MiniBooNE-LSND Anomalies

    International Nuclear Information System (INIS)

    Karagiorgi, G.

    2012-01-01

    The LSND experiment has observed an anomalous excess of ν ¯ e events in a ν ¯ μ beam which can be interpreted as two-neutrino ν ¯ μ →ν ¯ e oscillations at Δm 2 ∼1 eV 2 , suggesting new physics. The MiniBooNE experiment has ruled out the LSND two-neutrino oscillation interpretation by looking for corresponding flavor oscillations in a neutrino beam, and assuming CP and CPT conservation. However, it has observed an anomalous excess of ν e events at low energy, which, to date, remains unexplained. The two excess signatures are discussed within the context of light sterile neutrino oscillations, and are further confronted with the latest results from a MiniBooNE search for ν ¯ μ →ν ¯ e oscillations in an antineutrino beam. Alternative interpretations are also referenced, along with possible future experimental tests.

  16. Cluster structure of 20Ne and 40Ca

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka

    2004-01-01

    A d-constraint for calculating the wave functions of various kinds of configurations of cluster structure and optimizing the inside wave functions of the cluster was developed. The wave functions of various kinds of cluster structures were calculated by constraining and energy variation of the antisymmetrized molecular dynamics wave functions. The cluster structure of nucleus was reproduced by linear combination of the above wave functions by the generator coordinate method. By superposition of both wave functions calculated using d-constraint and β-constraint, K π =O 3 + rotation band of 20 Ne was reproduced. The excitation energies of 20 Ne were calculated. The result of calculation energies of α- 36 Ar structure of 40 Ca are higher values than expected them. Framework, AMD wave function, constraint, calculation results and discussions are stated. (S.Y.)

  17. 2He decay from excited states: the 18Ne case

    International Nuclear Information System (INIS)

    Raciti, G.; Sfienti, C.; De Napoli, M.; Rapisarda, E.; Cardella, G.; Giacoppo, F.

    2011-01-01

    Two-proton radioactivity studies have been performed on excited states of 18 Ne produced by 20 Ne fragmentation at the FRIBs facility of the Laboratori Nazionali del Sud. The study of the relative-momentum correlations of the two protons allowed to disentangle the diproton, democratic and sequential decay contributions to the 2p emission. In order to extend the study on two-proton decay to other light-masses nuclei, an upgrade of the FRIBs facility is planned. A new configuration of the Fragment Separator would be able to increase the acceptance of the beam line and therefore the yield of the produced radioactive beams. Also the present tagging setup will be modified in view of the gain intensity, in order to sustain the higher foreseen incoming rate. Status and perspectives of the facility will be presented. (author)

  18. Calibration of a NE213 detector for neutron spectroscopy

    International Nuclear Information System (INIS)

    Blazquez Martinez, J.; Butragueno Casado, J. L.

    1974-01-01

    This work describes the experimental way followed for getting the calibration of a NE213 detector with a beam of neutrons from the J.E.N. 2 MeV Van de Graaff and using at once pulse shape discrimination. Detector has been used for measuring the spectrum of the fast reactor CORAL-1. There is also included an experimental method in order to get with precision where the Compton edge is placed on the electron spectrum. (Author) 9 refs

  19. 2136-IJBCS-Article-Cesar Bassène

    African Journals Online (AJOL)

    hp

    ... la flore des champs. REFERENCES. Bâ AT, Noba K. 2001. Science et changements planétaires. Sécheresse. 12(3) : 149-155. Bassène C. 2014. La flore adventice dans les cultures de maïs (Zea mays L.) dans le sud du Bassin Arachidier : structure, nuisibilité et mise au point d'un itinéraire de désherbage. Thèse Unique.

  20. Investigation of the parity forbidden alpha decay of 20Ne

    International Nuclear Information System (INIS)

    Disque, M.

    1978-01-01

    In this thesis the alpha decay of excited states in 20 Ne is investigated. The excited neon states are formed by proton bombardment of 19 F at proton energie of 340 and 670 kev. The ratio E of the parity forbidden alpha decays leading to the ground state of 160 to the allowed decays is determined. The results are E = 7.4 x 10 -5 resonance at 340 kev, E = 4.2 x 10 -3 resonance at 670 kev. (FKS)

  1. LabVIEW DAQ for NE213 Neutron Detector

    International Nuclear Information System (INIS)

    Al-Adeeb, Mohammed

    2003-01-01

    A neutron spectroscopy system, based on a NE213 liquid scintillation detector, to be placed at the Stanford Linear Accelerator Center to measure neutron spectra from a few MeV up to 800 MeV, beyond shielding. The NE213 scintillator, coupled with a Photomultiplier Tube (PMT), detects and converts radiation into current for signal processing. Signals are processed through Nuclear Instrument Modules (NIM) and Computer Automated Measurement and Control (CAMAC) modules. CAMAC is a computer automated data acquisition and handling system. Pulses are properly prepared and fed into an analog to digital converter (ADC), a standard CAMAC module. The ADC classifies the incoming analog pulses into 1 of 2048 digital channels. Data acquisition (DAQ) software based on LabVIEW, version 7.0, acquires and organizes data from the CAMAC ADC. The DAQ system presents a spectrum showing a relationship between pulse events and respective charge (digital channel number). Various photon sources, such as Co-60, Y-88, and AmBe-241, are used to calibrate the NE213 detector. For each source, a Compton edge and reference energy [units of MeVee] is obtained. A complete calibration curve results (at a given applied voltage to the PMT and pre-amplification gain) when the Compton edge and reference energy for each source is plotted. This project is focused to development of a DAQ system and control setup to collect and process information from a NE213 liquid scintillation detector. A manual is created to document the process of the development and interpretation of the LabVIEW-based DAQ system. Future high-energy neutron measurements can be referenced and normalized according to this calibration curve

  2. Modeling Ne-21 NMR parameters for carbon nanosystems

    Czech Academy of Sciences Publication Activity Database

    Kupka, T.; Nieradka, M.; Kaminský, Jakub; Stobinski, L.

    2013-01-01

    Roč. 51, č. 10 (2013), s. 676-681 ISSN 0749-1581 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : Ne-21 NMR * GIAO NMR * molecular modeling * carbon nanostructures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.559, year: 2013

  3. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    DEFF Research Database (Denmark)

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and doub...... of the complexes, providing valuable results for future experimental investigations. Comparing our results to those previously available for other phosgene complexes, we suggest that the results for Cl2-phosgene should be revised....

  4. U,Th-21Ne dating and its applications

    International Nuclear Information System (INIS)

    Basu, Sudeshna; Murty, S.V.S.; Anil Kumar

    2003-01-01

    The potential of radiogenic and fissiogenic noble gas isotopes as dating tools has been well exploited. U, Th- 4 He , K- 40 Ar and U- fission Xe pairs as well as their variants like 39 Ar- 40 Ar and induced fission Xe- spontaneous fission Xe pairs have been extensively used as geochronological tools. A new dating method that utilizes the nucleogenic isotope 21 Ne and demonstrate its application for an apatite separate from a carbonatite is proposed

  5. Dielectronic satellites to the Ne-like yttrium resonance lines

    International Nuclear Information System (INIS)

    Osterheld, A.L.; Nilsen, J.; Khakhalin, S.Ya.; Faenov, A.Ya.; Pikuz, S.A.

    1996-01-01

    We present a detailed analysis of the spectrum of satellite transitions to the n=2-3 and n=2-4 Ne-like yttrium resonance lines. Satellite lines from the double excited 2s 2 2p 5 3l3l', 2s 2 2p 5 3l4l', 2s2p 6 3l3l' and 2s2p 6 3l4l' levels of Na-like Y as well as from 2s 2 2p 5 3l3l'3l '' and 2s2p 6 3l3l'3l '' levels of Mg-like Y were observed in spectra from a laser-produced plasma. The X-ray spectra were recorded with high spectral resolution λ/Δλ∼3500-5000 in the wavelength region of the n=2-3 Ne-like resonance lines and with λ/Δλ>1000 in the region of the n=2-4 Ne-like resonance lines. A total of more than 50 spectral features were identified, and their wavelengths were measured. A simple intensity model was developed, which agreed well with the measured spectra and assisted the line identification. The consistency of the model for different spectral regions demonstrates the potential of the Na-like and Mg-like satellite lines for diagnosing plasma conditions. (orig.)

  6. Atomic data and spectral line intensities for Ne III

    CERN Document Server

    Bhatia, A K; Landi, E

    2003-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s sup 2 2p sup 4 , 2s2p sup 5 , 2s sup 2 2p sup 3 3s, and 2s sup 2 2p sup 3 3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 15, 25, 35, and 45 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT sub e (K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10 sup 8 -10 sup 1 sup 4 cm sup - sup 3. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensi...

  7. Estimation of the effective population size (Ne) and its application in the management of small populations

    DEFF Research Database (Denmark)

    Jimenez Mena, Belen

    2016-01-01

    Effective population size (Ne) is an important concept to understand the evolution of a population. In conservation, Ne is used to assess the threat status of a population, evaluate its genetic viability in the future and set conservation priorities. An accurate estimation of Ne is thus essential....... The main objective of this thesis was to better understand how the estimation of Ne using molecular markers can be improved for use in conservation genetics. As a first step, we undertook a simulation study where three different methods to estimate Ne were investigated. We explored how well these three...... methods performed under different scenarios. This study showed that all three methods performed better when the number of unlinked loci used to make the estimation increased and the minimum number of loci need for an accurate estimation of Ne was 100 SNPs. A general assumption in the estimation of Ne...

  8. Calibration of a NE213 detector for neutron spectroscopy; Calibracion de un detector de NE213 para espectroscopia de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez Martinez, J; Butragueno Casado, J L

    1974-07-01

    This work describes the experimental way followed for getting the calibration of a NE213 detector with a beam of neutrons from the J.E.N. 2 MeV Van de Graaff and using at once pulse shape discrimination. Detector has been used for measuring the spectrum of the fast reactor CORAL-1. There is also included an experimental method in order to get with precision where the Compton edge is placed on the electron spectrum. (Author) 9 refs.

  9. Role of NAD(P)H:quinone oxidoreductase 1 in clofibrate-mediated hepatoprotection from acetaminophen

    International Nuclear Information System (INIS)

    Moffit, Jeffrey S.; Aleksunes, Lauren M.; Kardas, Michael J.; Slitt, Angela L.; Klaassen, Curtis D.; Manautou, Jose E.

    2007-01-01

    Mice pretreated with the peroxisome proliferator clofibrate (CFB) are resistant to acetaminophen (APAP) hepatotoxicity. Whereas the mechanism of protection is not entirely known, CFB decreases protein adducts formed by the reactive metabolite of APAP, N-acetyl-p-benzoquinone imine (NAPQI). NAD(P)H:quinone oxidoreductase 1 (NQO1) is an enzyme with antioxidant properties that is responsible for the reduction of cellular quinones. We hypothesized that CFB increases NQO1 activity, which in turn enhances the conversion of NAPQI back to the parent APAP. This could explain the decreases in APAP covalent binding and glutathione depletion produced by CFB without affecting APAP bioactivation to NAPQI. Administration of CFB (500 mg/kg, i.p.) to male CD-1 mice for 5 or 10 days increased NQO1 protein and activity levels. To evaluate the capacity of NQO1 to reduce NAPQI back to APAP, we utilized a microsomal activating system. Cytochrome P450 enzymes present in microsomes bioactivate APAP to NAPQI, which binds the electrophile trapping agent, N-acetyl cysteine (NAC). We analyzed the formation of APAP-NAC metabolite in the presence of human recombinant NQO1. Results indicate that NQO1 is capable of reducing NAPQI. The capacity of NQO1 to amelioriate APAP toxicity was then evaluated in primary hepatocytes. Primary hepatocytes isolated from mice dosed with CFB are resistant to APAP toxicity. These hepatocytes were also exposed to ES936, a high affinity, and irreversible inhibitor of NQO1 in the presence of APAP. Concentrations of ES936 that resulted in over 94% inhibition of NQO1 activity did not increase the susceptibility of hepatocytes from CFB treated mice to APAP. Whereas NQO1 is mechanistically capable of reducing NAPQI, CFB-mediated hepatoprotection does not appear to be dependent upon enhanced expression of NQO1

  10. How does a Poem Think? Czesław Miłosz Nad strumieniem

    Directory of Open Access Journals (Sweden)

    Joanna Zach

    2014-01-01

    Full Text Available The subject of the analysis is the poem by Czesław Miłosz from the volume To, entitled “Nad strumieniem”. The task the author embarked upon boils down to the answer to the question: how does a specific idea(its hidden mental message develop in this poem and what results from it for the idea as well as for the poem. The proposed reading takes place at three levels. Preliminary reconnaissance is made by naive reading consisting in the reconstruction of the situation portrayed in the poem, in the recreation of that which can be fund, so to say, on the “surface” of the poem. Next, the author launches these contexts which in Miłosz’s representation of the attitude of man towards nature allow one to notice balance and harmony, coming to terms with life and wisdom, which is based on distance and silence. At the third reading level, the author refers to the image crowning opus magnum by Charles Darwin, in which a similar situation—contemplation in the open nature—leads to the formulation of the answer to the question about the sense of “fight in nature, famine and death”. This answer is juxtaposed with the ending of Czesław Miłosz’s poem: „Wydaje mi się, że słyszę głos demiurga:/ Albo nieme skały jak w pierwszym dniu stworzenia,/ albo życie, którego warunkiem jest śmierć,/ i to upajające ciebie piękno”. („It seems to me that I hear the voice of demiurge:/ Either silent rocks as on the first day of creation, / or life, whose condition is death,/ and this beauty engulfing you”.

  11. Molecular evolutionary patterns of NAD+/Sirtuin aging signaling pathway across taxa.

    Directory of Open Access Journals (Sweden)

    Uma Gaur

    Full Text Available A deeper understanding of the conserved molecular mechanisms in different taxa have been made possible only because of the evolutionary conservation of crucial signaling pathways. In the present study, we explored the molecular evolutionary pattern of selection signatures in 51 species for 10 genes which are important components of NAD+/Sirtuin pathway and have already been directly linked to lifespan extension in worms and mice. Selection pressure analysis using PAML program revealed that MRPS5 and PPARGC1A were under significant constraints because of their functional significance. FOXO3a also displayed strong purifying selection. All three sirtuins, which were SIRT1, SIRT2 and SIRT6, displayed a great degree of conservation between taxa, which is consistent with the previous report. A significant evolutionary constraint is seen on the anti-oxidant gene, SOD3. As expected, TP53 gene was under significant selection pressure in mammals, owing to its major role in tumor progression. Poly-ADP-ribose polymerase (PARP genes displayed the most sites under positive selection. Further 3D structural analysis of PARP1 and PARP2 protein revealed that some of these positively selected sites caused a change in the electrostatic potential of the protein structure, which may allow a change in its interaction with other proteins and molecules ultimately leading to difference in the function. Although the functional significance of the positively selected sites could not be established in the variants databases, yet it will be interesting to see if these sites actually affect the function of PARP1 and PARP2.

  12. The current state of forests in the lower reaches of the Vah section Sala - Nove Mesto nad Vahom; Sucasny stav lesov dolneho toku Vahu v useku Sala - Nove Mesto nad Vahom

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamova, A [Slovenska akademia vied, Ustav krajinnej ekologie, P.O.Box 254, 81499 Bratislava (Slovakia)

    2009-04-22

    Area of interest lies in the central part of the Danube plain and extends along both sides of the river Vah. Naturally occurring habitats close to small-scale, and are considerable anthropicly contingent either directly (forestry) or indirectly (modified water regime). The contribution gives phyto-sociological characteristics of forests in the lower reaches of the Vah section Sala - Nove Mesto nad Vahom. We drew up the 21 phyto-sociological entries characterizing forest vegetation, which we classified into two associations Salici-Populetum, Fraxino Ulmetum-and community-Crataegus monogyna Populus nigra.

  13. neXtA5: accelerating annotation of articles via automated approaches in neXtProt.

    Science.gov (United States)

    Mottin, Luc; Gobeill, Julien; Pasche, Emilie; Michel, Pierre-André; Cusin, Isabelle; Gaudet, Pascale; Ruch, Patrick

    2016-01-01

    The rapid increase in the number of published articles poses a challenge for curated databases to remain up-to-date. To help the scientific community and database curators deal with this issue, we have developed an application, neXtA5, which prioritizes the literature for specific curation requirements. Our system, neXtA5, is a curation service composed of three main elements. The first component is a named-entity recognition module, which annotates MEDLINE over some predefined axes. This report focuses on three axes: Diseases, the Molecular Function and Biological Process sub-ontologies of the Gene Ontology (GO). The automatic annotations are then stored in a local database, BioMed, for each annotation axis. Additional entities such as species and chemical compounds are also identified. The second component is an existing search engine, which retrieves the most relevant MEDLINE records for any given query. The third component uses the content of BioMed to generate an axis-specific ranking, which takes into account the density of named-entities as stored in the Biomed database. The two ranked lists are ultimately merged using a linear combination, which has been specifically tuned to support the annotation of each axis. The fine-tuning of the coefficients is formally reported for each axis-driven search. Compared with PubMed, which is the system used by most curators, the improvement is the following: +231% for Diseases, +236% for Molecular Functions and +3153% for Biological Process when measuring the precision of the top-returned PMID (P0 or mean reciprocal rank). The current search methods significantly improve the search effectiveness of curators for three important curation axes. Further experiments are being performed to extend the curation types, in particular protein-protein interactions, which require specific relationship extraction capabilities. In parallel, user-friendly interfaces powered with a set of JSON web services are currently being

  14. Purification of a NAD(P) reductase-like protein from the thermogenic appendix of the Sauromatum guttatum inflorescence.

    Science.gov (United States)

    Skubatz, Hanna; Howald, William N

    2013-03-01

    A NAD(P) reductase-like protein with a molecular mass of 34.146 ± 34 Da was purified to homogeneity from the appendix of the inflorescence of the Sauromatum guttatum. On-line liquid chromatography/electrospray ionization-mass spectrometry was used to isolate and quantify the protein. For the identification of the protein, liquid chromatography/electrospray ionization-tandem mass spectrometry analysis of tryptic digests of the protein was carried out. The acquired mass spectra were used for database searching, which led to the identification of a single tryptic peptide. The 12 amino acid tryptic peptide (FLPSEFGNDVDR) was found to be identical to amino acid residues at the positions 108-120 of isoflavone reductase in the Arabidopsis genome. A BLAST search identified this sequence region as unique and specific to a class of NAD(P)-dependent reductases involved in phenylpropanoid biosynthesis. Edman degradation revealed that the protein was N-terminally blocked. The amount of the protein (termed RL, NAD(P) reductase-like protein) increased 60-fold from D-4 (4 days before inflorescence-opening, designated as D-day) to D-Day, and declined the following day, when heat-production ceased. When salicylic acid, the endogenous trigger of heat-production in the Sauromatum appendix, was applied to premature appendices, a fivefold decrease in the amount of RL was detected in the treated section relative to the non-treated section. About 40 % of RL was found in the cytoplasm. Another 30 % was detected in Percoll-purified mitochondria and the rest, about 30 % was associated with a low speed centrifugation pellet due to nuclei and amyloplast localization. RL was also found in other thermogenic plants and detected in Arabidopsis leaves. The function of RL in thermogenic and non-thermogenic plants requires further investigation.

  15. The current state of forests in the lower reaches of the Vah section Sala - Nove Mesto nad Vahom

    International Nuclear Information System (INIS)

    Abrahamova, A.

    2009-01-01

    Area of interest lies in the central part of the Danube plain and extends along both sides of the river Vah. Naturally occurring habitats close to small-scale, and are considerable anthropicly contingent either directly (forestry) or indirectly (modified water regime). The contribution gives phyto-sociological characteristics of forests in the lower reaches of the Vah section Sala - Nove Mesto nad Vahom. We drew up the 21 phyto-sociological entries characterizing forest vegetation, which we classified into two associations Salici-Populetum, Fraxino Ulmetum-and community-Crataegus monogyna Populus nigra.

  16. Dielectronic satellites to the Ne-like yttrium resonance lines

    Energy Technology Data Exchange (ETDEWEB)

    Osterheld, A.L. [Lawrence Livermore National Lab., CA (United States); Nilsen, J. [Lawrence Livermore National Lab., CA (United States); Khakhalin, S.Ya. [MISDC, VNIIFTRI, Mendeleevo (Russian Federation); Faenov, A.Ya. [MISDC, VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, S.A. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.

    1996-09-01

    We present a detailed analysis of the spectrum of satellite transitions to the n=2-3 and n=2-4 Ne-like yttrium resonance lines. Satellite lines from the double excited 2s{sup 2}2p{sup 5}3l3l`, 2s{sup 2}2p{sup 5}3l4l`, 2s2p{sup 6}3l3l` and 2s2p{sup 6}3l4l` levels of Na-like Y as well as from 2s{sup 2}2p{sup 5}3l3l`3l{sup ``} and 2s2p{sup 6}3l3l`3l{sup ``} levels of Mg-like Y were observed in spectra from a laser-produced plasma. The X-ray spectra were recorded with high spectral resolution {lambda}/{Delta}{lambda}{approx}3500-5000 in the wavelength region of the n=2-3 Ne-like resonance lines and with {lambda}/{Delta}{lambda}>1000 in the region of the n=2-4 Ne-like resonance lines. A total of more than 50 spectral features were identified, and their wavelengths were measured. A simple intensity model was developed, which agreed well with the measured spectra and assisted the line identification. The consistency of the model for different spectral regions demonstrates the potential of the Na-like and Mg-like satellite lines for diagnosing plasma conditions. (orig.).

  17. Determination by radioimmunoassay of the sum of oxidized and reduced forms of NAD and NADP in picomole quantities from the same acid extract

    International Nuclear Information System (INIS)

    Bredehorst, R.; Lengyel, H.; Hilz, H.

    1979-01-01

    The sum of the amounts of NAD + NADH was determined from the same acid tissue extract with the aid of a highly specific radioimmunoassay for 5'-AMP. NAD was converted to 5'-AMP via ADP-ribose by alkaline treatment while NADH was converted first to ADP-ribose by incubation of the acid extract at 25 0 C followed by alkaline conversion to 5'-AMP. Removal of phosphate groups in NADP and NADPH by treatment of the extracts with alkaline phosphates extended the procedure to the quantification of NADP(H). When combined with enzymic analyses of the oxidized coenzyme forms, NAD/NADH and NADP/NADPH ratios could also be obtained from the same extracts. The sensitivity of the test allows quantification of pyridine nucleotides in the range of 0.1-10 pmol. (orig.)

  18. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency

    DEFF Research Database (Denmark)

    Hou, Yujun; Lautrup, Sofie; Cordonnier, Stephanie

    2018-01-01

    including phosphorylated Tau (pTau) pathologies, synaptic dysfunction, neuronal death, and cognitive impairment. Here we report that 3xTgAD/Polβ+/− mice have a reduced cerebral NAD+/NADH ratio indicating impaired cerebral energy metabolism, which is normalized by nicotinamide riboside (NR) treatment. NR...... function in multiple behavioral tests and restored hippocampal synaptic plasticity in 3xTgAD mice and 3xTgAD/Polβ+/− mice. In general, the deficits between genotypes and the benefits of NR were greater in 3xTgAD/Polβ+/− mice than in 3xTgAD mice. Our findings suggest a pivotal role for cellular NAD......+ depletion upstream of neuroinflammation, pTau, DNA damage, synaptic dysfunction, and neuronal degeneration in AD. Interventions that bolster neuronal NAD+ levels therefore have therapeutic potential for AD....

  19. Neutron spectrometry with the NE-213 organic scintillator detector

    International Nuclear Information System (INIS)

    Silva, A.A. da.

    1980-12-01

    A neutron spectrometer with the NE-213 organic scintillator detector (5,08cm x 5,08cm) was mounted, tested, and calibrated at the Argonaut Reactor Laboratory of the Instituto de Engenharia Nuclear, to measure and study spectra of available fast neutron sources. The time zero-crossover technique was employed to discriminate the pulse of neutrons and gammas. The neutron spectrum from a 241 Am-Be source was determined experimentally in the range 1,0 MeV to 12,0 MeV and good agreement with other researchers was obtained. (Author) [pt

  20. Testing quantum mechanics at Da{phi}Ne

    Energy Technology Data Exchange (ETDEWEB)

    Di Domenica, A. [Rome Univ. 2 (Italy). Dipt. di Fisica

    1997-12-31

    After a brief introduction to EPR-paradox and Bell`s inequality, it is shown that a Bell-like inequality can be formulated for the neutral kaon system at a {Phi}-factory using the Pauli spin formalism, in our case called K-spin, and taking into account CP violation. Experimental methods to reveal tiny violations of this inequality by quantum mechanics are discussed. The statistical accuracy achievable at DA{Phi}NE, the Frascati {Phi}-factory, seems adequate to successfully perform such a test. (author) 13 refs.

  1. Testing quantum mechanics at DaφNe

    International Nuclear Information System (INIS)

    Di Domenica, A.

    1997-01-01

    After a brief introduction to EPR-paradox and Bell's inequality, it is shown that a Bell-like inequality can be formulated for the neutral kaon system at a Φ-factory using the Pauli spin formalism, in our case called K-spin, and taking into account CP violation. Experimental methods to reveal tiny violations of this inequality by quantum mechanics are discussed. The statistical accuracy achievable at DAΦNE, the Frascati Φ-factory, seems adequate to successfully perform such a test. (author)

  2. PLESNA VZGOJA IN RAZLIČNE GLASBENE ZVRSTI

    OpenAIRE

    Trstenjak, Simona

    2016-01-01

    Namen diplomskega dela Plesna vzgoja in različne glasbene zvrsti je s pomočjo teoretičnih izhodišč, ob opazovanju plesnega izražanja otrok, ugotoviti vpliv posamezne glasbene zvrsti na otroka pri plesni vzgoji. Diplomsko delo je sestavljeno iz dveh delov, teoretičnega in empiričnega. V teoretičnem delu smo predstavili teorijo plesne vzgoje v predšolskem obdobju, kjer smo podrobneje opisali sam pomen in vpliv plesne vzgoje na predšolskega otroka, vsebine, cilje in načela ter metode plesne vzgo...

  3. Installation and alignment of the DAΦNE accelerators

    International Nuclear Information System (INIS)

    Biscari, C.; Sgamma, F.

    1998-01-01

    Installation, alignment and survey of the magnetic elements and vacuum chambers of DAΦNE are described. The networks of the Damping Ring and two Main Rings are described, focusing the techniques chosen to obtain the required precision. A description of the mechanical measurements, coupled to the magnetic ones, to refer the magnetic axis of quadrupoles and sextupoles to their fiducial is underlined: emPHIasis is put on the strategy to couple precision with quickness. The results of first PHIase alignment job and its refinement are analyzed using the orbit measurement

  4. [p,q] {ne} i{Dirac_h}

    Energy Technology Data Exchange (ETDEWEB)

    Costella, J P

    1995-05-22

    In this short note, it is argued that [p, q] {ne} i{Dirac_h}, contrary to the oiginal claims of Born and Jordan, and Dirac. Rather, [p, q] is equal to something that is infinitesimally different from i{Dirac_h}. While this difference is usually harmless, it does provide the solution of the Born-Jordan `trace paradox` of [p, q]. More recently, subtleties of a very similar form have been found to be of fundamental importance in quantum field theory. 3 refs.

  5. The relational database system of KM3NeT

    Science.gov (United States)

    Albert, Arnauld; Bozza, Cristiano

    2016-04-01

    The KM3NeT Collaboration is building a new generation of neutrino telescopes in the Mediterranean Sea. For these telescopes, a relational database is designed and implemented for several purposes, such as the centralised management of accounts, the storage of all documentation about components and the status of the detector and information about slow control and calibration data. It also contains information useful during the construction and the data acquisition phases. Highlights in the database schema, storage and management are discussed along with design choices that have impact on performances. In most cases, the database is not accessed directly by applications, but via a custom designed Web application server.

  6. A transportable methane stabilized He-Ne laser

    Science.gov (United States)

    Akimoto, Yoshiaki

    1987-06-01

    The performance of a transportable methane stabilized He-Ne laser system, developed for a wavelength-optical frequency standard according to the 1983 Comite Consultatif pour la Definition du Metier, is discussed. An offset-locked laser system using a phase comparison technique is described which is used to evaluate the stabilized laser system. A frequency stability of 2.5 x 10 to the -12th tau exp -1/2, and a resettability of 1 x 10 to the -11th, are estimated for the stabilized laser system.

  7. Accurate Ne-heavier rare gas interatomic potentials

    International Nuclear Information System (INIS)

    Candori, R.; Pirani, F.; Vecchiocattivi, F.

    1983-01-01

    Accurate interatomic potential curves for Ne-heavier rare gas systems are obtained by a multiproperty analysis. The curves are given via a parametric function which consists of a modified Dunham expansion connected at long range with the van der Waals expansion. The experimental properties considered in the analysis are the differential scattering cross sections at two different collision energies, the integral cross sections in the glory energy range and the second virial coefficients. The transport properties are considered indirectly by using the potential energy values recently obtained by inversion of the transport coefficients. (author)

  8. European Energy Law Seminar 2005. Report of NeVER

    International Nuclear Information System (INIS)

    Oosterom, A.R.; Boumans, L.

    2005-01-01

    An overview is given of the lectures and presentations at the title seminar, which was held in Noordwijk aan Zee, Netherlands, 30-31 May 2005. The seminar was organized by the Dutch Association for Energy Law (NeVER), the Scandinavian Institute for Maritime Law of the University of Oslo, and the Groningen University. The subjects presented concerned recent developments with regard to the internal (European) energy market, LNG, developments in the North Sea area, supply security and quality in a competitive market, reorganization of the European market for natural gas in the light of the liberalization process and privatization of the energy sector [nl

  9. Mass distribution in 20Ne+232Th reaction

    International Nuclear Information System (INIS)

    Sodaye, Suparna; Tripathi, R.; Sudarshan, K.

    2011-01-01

    Mass distribution was measured in 20 Ne+ 232 Th reaction at E lab =145 MeV using recoil catcher technique followed by off-line gamma-ray spectrometry. Significant contribution from transfer fission was observed in the yield of comparatively neutron rich fission products. The variance of mass distribution for complete fusion fission, obtained by excluding neutron rich fission products, was observed to be consistent with the values reported in literature for similar reaction systems which showed a deviation from the systematics obtained using random neck rupture and liquid drop model. (author)

  10. Coulomb breakup of 31Ne using finite range DWBA

    International Nuclear Information System (INIS)

    Shubhchintak; Chatterjee, R.

    2013-01-01

    Coulomb breakup of nuclei away from the valley of stability have been one of the most successful probes to unravel their structure. However, it is only recently that one is venturing into medium mass nuclei like 23 O and 31 Ne. This is a very new and exciting development which has expanded the field of light exotic nuclei to the deformed medium mass region. In this contribution, an extension of the previously proposed theory of Coulomb breakup within the post-form finite range distorted wave Born approximation to include deformation of the projectile is reported

  11. Mise en scène ja kertova lavastus

    OpenAIRE

    Bruun, Ida

    2013-01-01

    Tämä opinnäytetyö tutkii mise en scèneä ja lavastuksen kerronnallista vaikutusta elokuvassa. Työ on toteutettu toiminnallisena ja koostuu kirjallisesta osasta ja teososasta. Teososa on vuonna 2012 ensi-iltansa saanut fiktiivinen lyhytelokuva Varjelus. Toimin elokuvassa lavastajana ja rekvisitöörinä. Kirjallinen osuus alkaa käsittelemällä mise en scènen, eli ’näyttämöllepanon’ määritelmää ja sen syntyä elokuvalliseksi konseptiksi. Työ etenee esittelemään ja tarkastelemaan käsitteen eri vis...

  12. Recent results from KLOE at DAΦNE

    International Nuclear Information System (INIS)

    Martini, M.; Ambrosino, F.; Antonelli, A.

    2009-01-01

    We report in the following, latest results from the KLOE detector at DAΦNE, the Frascati φ-factory. KLOE has collected 2.5 fb -1 of e + e - collisions at center of mass energy around the φ mass. We are completing the analyses of the 2001–2002 data sample of 450 pb -1 and we present selected results based on the complete data sample. KLOE results could be divided into two categories kaonic and hadronic physics. We present last results on both topics describing the impact of the KLOE physics. (author)

  13. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

    Science.gov (United States)

    Batchuluun, Battsetseg; Inoguchi, Toyoshi; Sonoda, Noriyuki; Sasaki, Shuji; Inoue, Tomoaki; Fujimura, Yoshinori; Miura, Daisuke; Takayanagi, Ryoichi

    2014-01-01

    Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. Production of reactive oxygen species (ROS), activation of protein kinase C (PKC) and NAD(P)H oxidase, and changes in signaling molecules in response to high glucose exposure were evaluated in human aortic endothelial cells with and without treatment of metformin and liraglutide, alone or in combination. PKC-NAD(P)H oxidase pathway was assessed by translocation of GFP-fused PKCβ2 isoform and GFP-fused p47phox, a regulatory subunit of NAD(P)H oxidase, in addition to endogenous PKC phosphorylation and NAD(P)H oxidase activity. High glucose-induced ROS overproduction was blunted by metformin or liraglutide treatment, with a further decrease by a combination of these drugs. Exposure to high glucose caused PKCβ2 translocation and a time-dependent phosphorylation of endogenous PKC but failed to induce its translocation and phosphorylation in the cells treated with metformin and liraglutide. Furthermore, both drugs inhibited p47phox translocation and NAD(P)H oxidase activation, and prevented the high glucose-induced changes in intracellulalr diacylglycerol (DAG) level and phosphorylation of AMP-activated protein kinase (AMPK). A combination of these drugs further enhanced all of these effects. Metformin and liraglutide ameliorate high glucose-induced oxidative stress by inhibiting PKC-NAD(P)H oxidase pathway. A combination of these two drugs provides augmented protective effects, suggesting the clinical usefulness in prevention of diabetic vascular complications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa).

    Science.gov (United States)

    Li, Xiao-Jie; Zhang, Ya-Feng; Hou, Mingming; Sun, Feng; Shen, Yun; Xiu, Zhi-Hui; Wang, Xiaomin; Chen, Zong-Liang; Sun, Samuel S M; Small, Ian; Tan, Bao-Cai

    2014-09-01

    RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development. Cloning of Smk1 indicates that it encodes an E-subclass pentatricopeptide repeat (PPR) protein that is targeted to mitochondria. Loss of SMK1 function abolishes the C → U editing at the nad7-836 site, leading to the retention of a proline codon that is edited to encode leucine in the wild type. The smk1 mutant showed dramatically reduced complex-I assembly and NADH dehydrogenase activity, and abnormal biogenesis of the mitochondria. Analysis of the ortholog in Oryza sativa (rice) reveals that rice SMK1 has a conserved function in C → U editing of the mitochondrial nad7-836 site. T-DNA knock-out mutants showed abnormal embryo and endosperm development, resulting in embryo or seedling lethality. The leucine at NAD7-279 is highly conserved from bacteria to flowering plants, and analysis of genome sequences from many plants revealed a molecular coevolution between the requirement for C → U editing at this site and the existence of an SMK1 homolog. These results demonstrate that Smk1 encodes a PPR-E protein that is required for nad7-836 editing, and this editing is critical to NAD7 function in complex-I assembly in mitochondria, and hence to embryo and endosperm development in maize and rice. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. Radiosynthesis and autoradiographic evaluation of [{sup 11}C]NAD-299, a radioligand for visualization of the 5-HT{sub 1A} receptor

    Energy Technology Data Exchange (ETDEWEB)

    Sandell, Johan E-mail: Johan.Sandell@psyk.ks.se; Halldin, Christer; Hall, Haakan; Thorberg, Seth-Olov; Werner, Tom; Sohn, Daniel; Sedvall, Goeran; Farde, Lars

    1999-02-01

    The selective 5-HT{sub 1A} receptor antagonist NAD-299 ([R]-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran- 5-carboxamide) was labeled with the positron emitting radionucldie carbon-11. The radioligand was synthesized from NAD-195 ([R]-3-N,N-dicyclobutylamino-8-fluoro-5-trifluoromethylsulfonyloxy-3, 4-dihydro-2H-1-benzopyran) in two radiochemical steps. A palladium-catalyzed reaction of NAD-195 and [{sup 11}C]cyanide was followed by hydrolysis of the carbon-11-labeled nitrile intermediate with basic hydrogen peroxide. The total radiochemical yield, based on [{sup 11}C]CO{sub 2} and corrected for decay, was 20-40%. The specific radioactivity was 24 GBq/{mu}mol (900 Ci/mmol) at end of synthesis, with a radiochemical purity better than 99% and a total synthesis time of 40-45 min. Autoradiographic examination of [{sup 11}C]NAD-299 binding in human brain postmortem demonstrated high binding in hippocampus, raphe nuclei, and neocortex. The binding in the hippocampus was higher than in the neocortex. Within the hippocampus, the densest binding was observed in the CA1 region. [{sup 11}C]NAD-299 binding was inhibited by addition of the 5-HT{sub 1A} receptor ligands WAY-100635, pindolol, ({+-})-8-OH-DPAT, 5-HT, and buspirone, leaving a low background of nonspecific binding. The results indicate that [{sup 11}C]NAD-299 binds specifically to 5-HT{sub 1A} receptors in the human brain in vitro and is a potential radioligand for positron emission tomography (PET) examination of 5-HT{sub 1A} receptors in vivo.

  16. Characterization of Frex as an NADH sensor for in vivo applications in the presence of NAD+ and at various pH values.

    Science.gov (United States)

    Wilkening, Svea; Schmitt, Franz-Josef; Horch, Marius; Zebger, Ingo; Lenz, Oliver; Friedrich, Thomas

    2017-09-01

    The fluorescent biosensor Frex, recently introduced as a sensitive tool to quantify the NADH concentration in living cells, was characterized by time-integrated and time-resolved fluorescence spectroscopy regarding its applicability for in vivo measurements. Based on the purified sensor protein, it is shown that the NADH dependence of Frex fluorescence can be described by a Hill function with a concentration of half-maximal sensor response of K D  ≈ 4 µM and a Hill coefficient of n ≈ 2. Increasing concentrations of NADH have moderate effects on the fluorescence lifetime of Frex, which changes by a factor of two from about 500 ps in the absence of NADH to 1 ns under fluorescence-saturating NADH concentrations. Therefore, the observed sevenfold rise of the fluorescence intensity is primarily ascribed to amplitude changes. Notably, the dynamic range of Frex sensitivity towards NADH highly depends on the NAD + concentration, while the apparent K D for NADH is only slightly affected. We found that NAD + has a strong inhibitory effect on the fluorescence response of Frex during NADH sensing, with an apparent NAD + dissociation constant of K I  ≈ 400 µM. This finding was supported by fluorescence lifetime measurements, which showed that the addition of NAD + hardly affects the fluorescence lifetime, but rather reduces the number of Frex molecules that are able to bind NADH. Furthermore, the fluorescence responses of Frex to NADH and NAD + depend critically on pH and temperature. Thus, for in vivo applications of Frex, temperature and pH need to be strictly controlled or considered during data acquisition and analysis. If all these constraints are properly met, Frex fluorescence intensity measurements can be employed to estimate the minimum NADH concentration present within the cell at sufficiently low NAD + concentrations below 100 µM.

  17. Radiosynthesis and autoradiographic evaluation of [11C]NAD-299, a radioligand for visualization of the 5-HT1A receptor

    International Nuclear Information System (INIS)

    Sandell, Johan; Halldin, Christer; Hall, Haakan; Thorberg, Seth-Olov; Werner, Tom; Sohn, Daniel; Sedvall, Goeran; Farde, Lars

    1999-01-01

    The selective 5-HT 1A receptor antagonist NAD-299 ([R]-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran- 5-carboxamide) was labeled with the positron emitting radionucldie carbon-11. The radioligand was synthesized from NAD-195 ([R]-3-N,N-dicyclobutylamino-8-fluoro-5-trifluoromethylsulfonyloxy-3, 4-dihydro-2H-1-benzopyran) in two radiochemical steps. A palladium-catalyzed reaction of NAD-195 and [ 11 C]cyanide was followed by hydrolysis of the carbon-11-labeled nitrile intermediate with basic hydrogen peroxide. The total radiochemical yield, based on [ 11 C]CO 2 and corrected for decay, was 20-40%. The specific radioactivity was 24 GBq/μmol (900 Ci/mmol) at end of synthesis, with a radiochemical purity better than 99% and a total synthesis time of 40-45 min. Autoradiographic examination of [ 11 C]NAD-299 binding in human brain postmortem demonstrated high binding in hippocampus, raphe nuclei, and neocortex. The binding in the hippocampus was higher than in the neocortex. Within the hippocampus, the densest binding was observed in the CA1 region. [ 11 C]NAD-299 binding was inhibited by addition of the 5-HT 1A receptor ligands WAY-100635, pindolol, (±)-8-OH-DPAT, 5-HT, and buspirone, leaving a low background of nonspecific binding. The results indicate that [ 11 C]NAD-299 binds specifically to 5-HT 1A receptors in the human brain in vitro and is a potential radioligand for positron emission tomography (PET) examination of 5-HT 1A receptors in vivo

  18. Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons.

    Science.gov (United States)

    Ghosh, Debolina; Levault, Kelsey R; Brewer, Gregory J

    2014-08-01

    Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg-AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg-AD neurons. We also observed an age-dependent loss of gene expression of key redox-dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age-related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age-related declines in NAD(P)H. Our data indicate that in aging and more so in AD-like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Naine kohtub Hundiga - püüne peal / Kaja Kann, Bush Hartshorn

    Index Scriptorium Estoniae

    Kann, Kaja, 1973-

    2006-01-01

    Kanuti Gildi saalis etendub 26.-28. veebr. Kaja Kanni ja Bush Hartshorni lavaduett "Naine ja Hunt". Autorid räägivad, kuidas nad käisid Pärnumaa laantes oma lavaloole õiget tunnetust otsimas. Lisatud andmed Bush Hartshorni kohta

  20. Marketingový plán Sporthotelu a přilehlých sportovišť v Kostelci nad Černými lesy

    OpenAIRE

    Fousek, Jiří

    2011-01-01

    Name Marketing plan of Sporthotel and the nearest sport facilities in Kostelec nad Černými lesy Short summary The main aim of my bachelor's thesis is to create a marketing plan for Sporthotel in Kostelec nad Černými lesy. The basis of my marketing plan will be situation analysis, which deals with availability of sports facilities, current offer for customers and quality of similar sports facilities in the neighbourhood. Marketing plan will include offer of services, promotional strategy and f...

  1. JST Thesaurus Headwords and Synonyms: NAD(P)H-オキシダーゼ [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term NAD(P)H-オキシダーゼ 名詞 一般 * * * * NAD(...P)Hオキシダーゼ NAD(P)Hオキシダーゼ エヌエイディー(ピー)エイチオキシダーゼ Thesaurus2015 200906089709028550 C LS38 UNKNOWN_2 NAD ( P ) H - オキシダーゼ

  2. JST Thesaurus Headwords and Synonyms: NAD(P)H OXYDASE [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term NAD(P)H OXYDASE 名詞 一般 * * * * NAD...(P)Hオキシダーゼ NAD(P)Hオキシダーゼ エヌエイディー(ピー)エイチオキシダーゼ Thesaurus2015 200906089709028550 C LS38 UNKNOWN_2 NAD ( P ) H OXYDASE

  3. JST Thesaurus Headwords and Synonyms: NAD(P)Hオキシダーゼ [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term NAD(P)Hオキシダーゼ 名詞 一般 * * * * NAD(P...)Hオキシダーゼ NAD(P)Hオキシダーゼ エヌエイディー(ピー)エイチオキシダーゼ Thesaurus2015 200906089709028550 C LS38 UNKNOWN_2 NAD ( P ) H オキシダーゼ

  4. JST Thesaurus Headwords and Synonyms: NAD(P)H‐OXYDASE [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term NAD(P)H‐OXYDASE 名詞 一般 * * * * NAD...(P)Hオキシダーゼ NAD(P)Hオキシダーゼ エヌエイディー(ピー)エイチオキシダーゼ Thesaurus2015 200906089709028550 C LS38 UNKNOWN_2 NAD ( P ) H ‐ OXYDASE

  5. JST Thesaurus Headwords and Synonyms: NAD(P)H-OXYDASE [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term NAD(P)H-OXYDASE 名詞 一般 * * * * NAD...(P)Hオキシダーゼ NAD(P)Hオキシダーゼ エヌエイディー(ピー)エイチオキシダーゼ Thesaurus2015 200906089709028550 C LS38 UNKNOWN_2 NAD ( P ) H - OXYDASE

  6. JST Thesaurus Headwords and Synonyms: NAD+ヌクレオシダーゼ [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term NAD+ヌクレオシダーゼ 名詞 一般 * * * * NADヌクレ...オシダーゼ NADヌクレオシダーゼ エヌエイディーヌクレオシダーゼ Thesaurus2015 200906060754826613 C LS38 UNKNOWN_2 NAD + ヌクレオシダーゼ

  7. An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode.

    Science.gov (United States)

    Mahadevan, Aishwarya; Fernando, Sandun

    2017-06-15

    An improved glycerol biosensor was developed via direct attachment of NAD + -glycerol dehydrogenase coenzyme-apoenzyme complex onto supporting gold electrodes, using novel inorganic iron (II) sulfide (FeS)-based single molecular wires. Sensing performance factors, i.e., sensitivity, a detection limit and response time of the FeS and conventional pyrroloquinoline quinone (PQQ)-based biosensor were evaluated by dynamic constant potential amperometry at 1.3V under non-buffered conditions. For glycerol concentrations ranging from 1 to 25mM, a 77% increase in sensitivity and a 53% decrease in detection limit were observed for the FeS-based biosensor when compared to the conventional PQQ-based counterpart. The electrochemical behavior of the FeS-based glycerol biosensor was analyzed at different concentrations of glycerol, accompanied by an investigation into the effects of applied potential and scan rate on the current response. Effects of enzyme stimulants ((NH 4 ) 2 SO 4 and MnCl 2 ·4H 2 O) concentrations and buffers/pH (potassium phosphate buffer pH 6-8, Tris buffer pH 8-10) on the current responses generated by the FeS-based glycerol biosensor were also studied. The optimal detection conditions were 0.03M (NH 4 ) 2 SO 4 and 0.3µm MnCl 2 ·4H 2 O in non-buffered aqueous electrolyte under stirring whereas under non-stirring, Tris buffer at pH 10 with 0.03M (NH 4 ) 2 SO 4 and 30µm MnCl 2 ·4H 2 O were found to be optimal detection conditions. Interference by glucose, fructose, ethanol, and acetic acid in glycerol detection was studied. The observations indicated a promising enhancement in glycerol detection using the novel FeS-based glycerol sensing electrode compared to the conventional PQQ-based one. These findings support the premise that FeS-based bioanodes are capable of biosensing glycerol successfully and may be applicable for other enzymatic biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Differential levels of metabolic activity in isolated versus confluent/partially confluent HeLa cells are analyzed by autofluorescent NAD(P)H using multi-photon FLIM microscopy

    Science.gov (United States)

    Chandler, Andrea; Chandler, Aaron; Wallrabe, Horst; Periasamy, Ammasi

    2017-02-01

    NAD(P)H is a known biomarker for cellular metabolism; a higher ratio of enzyme-bound NAD(P)H to free/unbound NAD(P)H indicates an increase in metabolic activity. Free NADH has a shorter fluorescence lifetime (τ1), the bound version (τ2) a longer lifetime. FLIM's unique capability to establish inter alia the relative fractions of τ1 (a1%) and τ2 (a2%) in each pixel, determines the level of metabolic activity. The relative abundances of bound NAD(P)H were analyzed for single cells, confluent and partially confluent cells within 3 Fields-of-View (FoVs). A gradient of increasing a 2% levels of bound NAD(P)H from single, partially confluent to confluent cells was observed.

  9. Separation of the 1+ /1- parity doublet in 20Ne

    Science.gov (United States)

    Beller, J.; Stumpf, C.; Scheck, M.; Pietralla, N.; Deleanu, D.; Filipescu, D. M.; Glodariu, T.; Haxton, W.; Idini, A.; Kelley, J. H.; Kwan, E.; Martinez-Pinedo, G.; Raut, R.; Romig, C.; Roth, R.; Rusev, G.; Savran, D.; Tonchev, A. P.; Tornow, W.; Wagner, J.; Weller, H. R.; Zamfir, N.-V.; Zweidinger, M.

    2015-02-01

    The (J , T) = (1 , 1) parity doublet in 20Ne at 11.26 MeV is a good candidate to study parity violation in nuclei. However, its energy splitting is known with insufficient accuracy for quantitative estimates of parity violating effects. To improve on this unsatisfactory situation, nuclear resonance fluorescence experiments using linearly and circularly polarized γ-ray beams were used to determine the energy difference of the parity doublet ΔE = E (1-) - E (1+) = - 3.2(± 0.7) stat(-1.2+0.6)sys keV and the ratio of their integrated cross sections Is,0(+) /Is,0(-) = 29(± 3) stat(-7+14)sys. Shell-model calculations predict a parity-violating matrix element having a value in the range 0.46-0.83 eV for the parity doublet. The small energy difference of the parity doublet makes 20Ne an excellent candidate to study parity violation in nuclear excitations.

  10. Beta-delayed particle decay of 17Ne

    International Nuclear Information System (INIS)

    Morton, A.C.; Chow, J.C.; King, J.D.; Boyd, R.N.; Bateman, N.P.T.; Buchmann, L.; D'Auria, J.M.; Davinson, T.; Dombsky, M.; Galster, W.; Gete, E.; Giesen, U.; Iliadis, C.; Jackson, K.P.; Powell, J.; Roy, G.; Shotter, A.

    2002-01-01

    The β-delayed particle decay of 17 Ne has been studied via proton-γ coincidences, time-of-flight measurements and the ''ratio-cut technique'', allowing cleanly-separated proton and α-particle spectra to be obtained. A complete set of proton and α branching ratios for the decay of 14 excited states in 17 F to the ground and excited states of 16 O and 13 N has been determined and branching ratios for the β decay of 17 Ne to these states have been deduced. From the branching ratios, f A t values and reduced Gamow-Teller matrix elements were calculated; no indication of isospin mixing in the isobaric analog state in 17 F was observed. From the measurement of proton-γ angular correlations, combined with the selection rules for an allowed β decay, we obtain J π =((1)/(2)) - for states at 8.436 and 9.450 MeV and ((3)/(2)) - for the state at 10.030 MeV in 17 F. Probabilities for the β-delayed pα decay to 12 C through the tails of the subthreshold 7.117 and 6.917 MeV states in 16 O have been calculated and the feasibility of using such decays to provide information about the rates for the E1 and E2 components of the 12 C(α,γ) 16 O reaction is discussed

  11. Response of zircon to electron and Ne+ irradiation

    International Nuclear Information System (INIS)

    Devanathan, R.; Weber, W.J.; Boatner, L.A.

    1997-01-01

    Zircon (ZrSiO 4 ) is an actinide host phase in vitreous ceramic nuclear waste forms and a potential host phase for the disposition of excess weapons plutonium. In the present work, the effects of 800 and 900 keV electron and 1 MeV Ne + irradiations on the structure of single crystals of ZrSiO 4 have been investigated. The microstructural evolution during the irradiations was studied in situ using a high-voltage electron microscope interfaced to an ion accelerator at Argonne National Laboratory. The results indicate that electron irradiation at 15 K cannot amorphize ZrSiO 4 even at fluences an order of magnitude higher than that required for amorphization by 1.5 MeV Kr + ions. However, the material is readily amorphized by 1 MeV Ne + irradiation at 15 K. The temperature dependence of this amorphization is discussed in light of previous studies of radiation damage in ZrSiO 4

  12. Absorbed dose to water comparison between NE 2561 and NE 2671 chambers using IAEA, HPA and NACP protocols for gamma ray beam

    International Nuclear Information System (INIS)

    Mohd Taufik Dolah; Noriah Mod Ali; Taiman Kadni

    2002-01-01

    The aim of this study to evaluate the performance of NE 2571 chamber in comparison with NE 2561 chamber in determination of the absorbed dose to water in gamma ray beam. In this study NE 2561 is taking as a reference standard chamber while NE 2571 as a working standard. Irradiation of chamber (alternately) was performed at a reference depth, 5 cm, inside the IAEA water phantom. Both chambers were exposed to 13 difference exposures of gamma rays. The values of absorbed dose to water were then determined using IAEA, HPA and NACP protocols. Deviations of absorbed dose determined by NE 2561 and NE 2571 were calculated for each protocol. result obtained in terms of [protocol, μ (mean deviation) ± σ s e (standard error)] were (IAEA, 1.12 ± 0.04], [HPA, 0.09 ± 0.04], and [NCP, 0.09 ± 0.04]. It can be concluded that NE 2571 shown acceptable performance as it is within acceptable limit ± 3%. (Author)

  13. Lääne-Virumaa ettevõtete TOP aastal 2004

    Index Scriptorium Estoniae

    2005-01-01

    Tabelid: Lääne-Virumaa ettevõtete TOP 50; Käibe TOP 35; Kasumi TOP 35; Lääne-Virumaa ettevõtete üld- ja finantsandmed; Käibe kasvu TOP 20; Kasumi kasvu TOP 20; Rentaabluse TOP 20; Omakapitali tootlikkuse TOP 20. Vt. samas: Viktor Sepp, Merike Lees. Lääne-Virumaal üllatavad uued tegijad

  14. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Singh, Vijai; Somvanshi, Pallavi

    2010-02-01

    DNA ligase is an important enzyme and it plays vital role in the replication and repair; also catalyzes nick joining between adjacent bases of DNA. The NAD(+) dependent DNA ligase is selectively present in eubacteria and few viruses; but missing in humans. Homology modeling was used to generate 3-D structure of NAD(+) dependent DNA ligase (LigA) of Mycobacterium tuberculosis using the known template (PDB: 2OWO). Furthermore, the stereochemical quality and torsion angle of 3-D structure was validated. Numerous effective drugs were selected and the active amino acid residue in LigA was targeted and virtual screening through molecular docking was done. In this analysis, four drugs Chloroquine, Hydroxychloroquine, Putrienscine and Adriamycin were found more potent in inhibition of M. tuberculosis through the robust binding affinity between protein-drug interactions in comparison with the other studied drugs. A phylogenetic tree was constructed and it was observed that homology of LigA in M. tuberculosis resembled with other Mycobacterium species. The conserved active amino acids of LigA may be useful to target these drugs. These findings could be used as the starting point of a rational design of novel antibacterial drugs and its analogs.

  15. Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA).

    Science.gov (United States)

    Zhu, Hui; Shuman, Stewart

    2005-04-01

    NAD+-dependent DNA ligase (LigA) is essential for bacterial growth and a potential target for antimicrobial drug discovery. Here we queried the role of 14 conserved amino acids of Escherichia coli LigA by alanine scanning and thereby identified five new residues within the nucleotidyltransferase domain as being essential for LigA function in vitro and in vivo. Structure activity relationships were determined by conservative mutagenesis for the Glu-173, Arg-200, Arg-208, and Arg-277 side chains, as well as four other essential side chains that had been identified previously (Lys-115, Asp-117, Asp-285, and Lys-314). In addition, we identified Lys-290 as important for LigA activity. Reference to the structure of Enterococcus faecalis LigA allowed us to discriminate three classes of essential/important side chains that: (i) contact NAD+ directly (Lys-115, Glu-173, Lys-290, and Lys-314); (ii) comprise the interface between the NMN-binding domain (domain Ia) and the nucleotidyltransferase domain or comprise part of a nick-binding site on the surface of the nucleotidyltransferase domain (Arg-200 and Arg-208); or (iii) stabilize the active site fold of the nucleotidyltransferase domain (Arg-277). Analysis of mutational effects on the isolated ligase adenylylation and phosphodiester formation reactions revealed different functions for essential side chains at different steps of the DNA ligase pathway, consistent with the proposal that the active site is serially remodeled as the reaction proceeds.

  16. Underwater acoustic positioning system for the SMO and KM3NeT - Italia projects

    Energy Technology Data Exchange (ETDEWEB)

    Viola, S.; Barbagallo, G.; Cacopardo, G.; Calí, C.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D' Amato, C.; D' Amato, V.; D' Amico, A.; De Luca, V.; Del Tevere, F.; Distefano, C.; Ferrera, F.; Gmerk, A.; Grasso, R.; Imbesi, M.; Larosa, G.; Lattuada, D. [INFN - Laboratori Nazionali del Sud, via Santa Sofia 62, 95125 Catania (Italy); and others

    2014-11-18

    In the underwater neutrino telescopes, the positions of the Cherenkov light sensors and their movements must be known with an accuracy of few tens of centimetres. In this work, the activities of the SMO and KM3NeT-Italia teams for the development of an acoustic positioning system for KM3NeT-Italia project are presented. The KM3NeT-Italia project foresees the construction, within two years, of 8 towers in the view of the several km{sup 3}-scale neutrino telescope KM3NeT.

  17. Underwater acoustic positioning system for the SMO and KM3NeT - Italia projects

    International Nuclear Information System (INIS)

    Viola, S.; Barbagallo, G.; Cacopardo, G.; Calí, C.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; D'Amato, V.; D'Amico, A.; De Luca, V.; Del Tevere, F.; Distefano, C.; Ferrera, F.; Gmerk, A.; Grasso, R.; Imbesi, M.; Larosa, G.; Lattuada, D.

    2014-01-01

    In the underwater neutrino telescopes, the positions of the Cherenkov light sensors and their movements must be known with an accuracy of few tens of centimetres. In this work, the activities of the SMO and KM3NeT-Italia teams for the development of an acoustic positioning system for KM3NeT-Italia project are presented. The KM3NeT-Italia project foresees the construction, within two years, of 8 towers in the view of the several km 3 -scale neutrino telescope KM3NeT

  18. Confinement and electron correlation effects in photoionization of atoms in endohedral anions: Ne-Cz-60

    International Nuclear Information System (INIS)

    Dolmatov, V K; Craven, G T; Keating, D

    2010-01-01

    Trends in resonances, termed confinement resonances, in photoionization of atoms A in endohedral fullerene anions A-C z- 60 are theoretically studied and exemplified by the photoionization of Ne in Ne-C z- 60 . Remarkably, above a particular nl ionization threshold of Ne in neutral Ne-C 60 (I z=0 nl ), confinement resonances in corresponding partial photoionization cross sections σ nl of Ne in any charged Ne-C z- 60 are not affected by a variation in the charge z of the carbon cage, as a general phenomenon. At lower photon energies, ω z=0 nl , the corresponding photoionization cross sections of charged Ne-C z- 60 (i.e., those with z ≠ 0) develop additional, strong, z-dependent resonances, termed Coulomb confinement resonances, as a general occurrence. Furthermore, near the innermost 1s ionization threshold, the 2p photoionization cross section σ 2p of the outermost 2p subshell of thus confined Ne is found to inherit the confinement resonance structure of the 1s photoionization spectrum, via interchannel coupling. As a result, new confinement resonances emerge in the 2p photoionization cross section of the confined Ne atom at photoelectron energies which exceed the 2p threshold by about a thousand eV, i.e., far above where conventional wisdom said they would exist. Thus, the general possibility for confinement resonances to resurrect in photoionization spectra of encapsulated atoms far above thresholds is revealed, as an interesting novel general phenomenon.

  19. IKONIČNE REPREZENTACIJE NEKATERIH MATEMATIČNIH POJMOV PRI OSNOVNOŠOLCIH

    OpenAIRE

    Podgoršek, Manja

    2015-01-01

    Ikonične reprezentacije so reprezentacije, ki predstavljajo prehod med enaktivnimi in simbolnimi reprezentacijami. Ikonične reprezentacije matematičnih pojmov na razredni stopnji so v veliki večini primerov grafične. V magistrski nalogi smo s pomočjo preizkusa znanja želeli ugotoviti, na kakšen način učenci od 5. do 8. razreda osnovne šole grafično ponazarjajo vnaprej podane matematične pojme (odštevanje s prehodom, številski izraz z oklepaji, izraz dela celote in potenca). Zanimalo nas je tu...

  20. Miocene uplift of the NE Greenland margin linked to plate tectonics: Seismic evidence from the Greenland Fracture Zone, NE Atlantic

    DEFF Research Database (Denmark)

    Døssing Andreasen, Arne; Japsen, Peter; Watts, Anthony B.

    2016-01-01

    Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses to ...... by plate tectonic forces, induced perhaps by a change in the Iceland plume (a hot pulse) and/or by changes in intra-plate stresses related to global tectonics.......Tectonic models predict that, following breakup, rift margins undergo only decaying thermal subsidence during their post-rift evolution. However, post-breakup stratigraphy beneath the NE Atlantic shelves shows evidence of regional-scale unconformities, commonly cited as outer margin responses...... backstripping. We explain the thermo-mechanical coupling and the deposition of contourites by the formation of a continuous plate boundary along the Mohns and Knipovich ridges, leading to an accelerated widening of the Fram Strait. We demonstrate that the IMU event is linked to onset of uplift and massive shelf...