WorldWideScience

Sample records for nacl suiyoekichu ni

  1. Paradoxes of the influence of small Ni impurity additions in a NaCl crystal on the kinetics of its magnetoplasticity

    Science.gov (United States)

    Alshits, V. I.; Darinskaya, E. V.; Koldaeva, M. V.; Petrzhik, E. A.

    2016-01-01

    A comparative study of magnetoplasticity in two types of NaCl crystals differing in impurity content only by a small Ni addition (0.06 ppm) in one of them, NaCl(Ni), has been carried out. Two methods of sample magnetic exposure were used: in a constant field B = 0-0.6 T and in crossed fields in the EPR scheme—the Earth's field B Earth (50 μT) and a variable pumping field tilde B( ˜ 1 μ T) at frequencies ν 1 MHz. In the experiments in the EPR scheme, the change of the field orientation from tilde B bot B_{Earth} to . {tilde B} |B_{Earth} led to almost complete suppression of the effect in the NaCl(Ni) crystals and reduced only slightly (approximately by 20%) the height of the resonance peak of dislocation mean paths in the crystals without Ni, with the amplitude of the mean paths in NaCl(Ni) in the orientation tilde B bot B_{Earth} having been appreciably lower than that in NaCl. In contrast, upon exposure to a constant magnetic field, a more intense effect was observed in the crystal with Ni. The threshold pumping field amplitude tilde B, below which the effect is absent under resonance conditions, for the NaCl(Ni) crystals turned out to be a factor of 5 smaller than that for NaCl, while the thresholds of a constant magnetic field coincide for both types of crystals. All these differences are discussed in detail and interpreted.

  2. Characterization of corrosion resistant on NiCoCr coating layer exposed to 5%NaCl

    Science.gov (United States)

    Sugiarti, E.; Sundawa, R.; Desiati, R. D.; Zaini, K. A.

    2018-03-01

    Highly corrosion resistant of carbon steel coated NiCoCr was applied in corrosive of marine environtment. Carbon steel coated NiCoCr was prepared by a two step technique of NiCo electro-deposition and Cr pack cementation. The samples were exposed to 5 wt.% NaCl for 48 and 168 hours. The microstructure and corrosion product were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The corrosion resistance of carbon steel coated NiCoCr was found to be better than that of carbon steel substrate without coating. The results showed the microstructure of 48 h corroded sample has duplex layer composed of inner α-(Ni,Co), α-Cr and outer Cr2O3, while a quite thin and continues protective oxide of Cr2O3 was observed in outer layer of 168 h corroded sample. The formation of oxide scale rich in Cr2O3 has contributed for the better corrosion resistance of carbon steel coated NiCoCr, whereas the formation of non protective oxide of iron might caused low corrosion resistance of carbon steel substrate.

  3. Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

    Energy Technology Data Exchange (ETDEWEB)

    Arthanari, Srinivasan; Jang, Jae Cheol; Shin, Kwang Seon [Seoul National University, Seoul (Korea, Republic of)

    2017-06-15

    In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density (i{sub corr}) value (5.969 μA/cm{sup 2}) compared to N15 (7.387 μA/cm{sup 2}). EIS-Bode plots revealed a higher impedance (|Z|) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer (R{sub 1}) and charge transfer resistance (R{sub ct}) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss (P{sub W}) and hydrogen volume (P{sub H}) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al{sub 3}Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

  4. SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel joints prepared by dynamic diffusion bonding: Microelectrochemical studies in 0.6 M NaCl solution

    International Nuclear Information System (INIS)

    Andreatta, Francesco; Matesanz, Laura; Akita, Adriano H.; Paussa, Luca; Fedrizzi, Lorenzo; Fugivara, Cecilio S.; Gomez de Salazar, Jose M.; Benedetti, Assis V.

    2009-01-01

    Corrosion of SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel interfaces was investigated in 0.6 M NaCl solution using an electrochemical microcell, which enables local electrochemical characterization at the micrometer scale. Two pieces of steel, one with a WC-Co coating covered with Ni (12 μm) and Cu (5 μm) layers, and the other with a Ni (15 μm) layer, were welded by dynamic diffusion bonding. A WC-Co coating was applied to the steel by the high velocity oxygen-fuel process, and Ni-Cu and Ni layers by electroplating. Polarization curves were recorded using an electrochemical microcell. Different regions of welded samples were investigated, including steel, cermet coating, and steel/cermet and steel/Ni-Cu-Ni/cermet interfaces. Optical and electronic microscopes were employed to study the corroded regions. Potentiodynamic polarization curves obtained using the microcell revealed that the base metal was more susceptible to corrosion than the cermet. In addition, cermet steel/cermet and steel/Ni-Cu-Ni/cermet joints exhibited different breakdown potentials. Steel was strongly corroded in the regions adjacent to the interfaces, while the cermet was less corroded. Iron oxides/hydroxides and chloride salts were the main corrosion products of steel. After removal of the superficial layer of corrosion products, iron oxides were mainly observed. Chloride ions were detected mainly on a copper-enriched layer placed between two Ni-enriched layers.

  5. Effects of environment on the release of Ni, Cr, Fe, and Co from new and recast Ni-Cr alloy.

    Science.gov (United States)

    Oyar, Perihan; Can, Gülşen; Atakol, Orhan

    2014-07-01

    The addition of previously cast alloy to new alloy for economic reasons may increase the release of elements. The purpose of this study was to analyze the effects of the immersion period, immersion media, and addition of previously cast alloy to new alloy on the release of elements. Disk-shaped specimens were prepared from a Ni-Cr alloy (Ni: 61 wt%, Cr: 26 wt%, Mo: 11 wt%, Si: 1.5 wt%, Fe, Ce, Al, and Co alloy (group N) and 50% new/50% recast alloy (group R). After the immersion of the specimens in both NaCl (pH 4) and artificial saliva (pH 6.7) for 3, 7, 14, 30, and 60 days, the release of ions was determined by using atomic absorption spectrometry. Data were analyzed with a 3-way ANOVA (α=.001). The release of Ni was significantly affected by the immersion period, of Ni and Cr by the alloy and media (Palloy (Palloy in artificial saliva was 109.71 for Ni, 6.49 for Cr, 223.22 for Fe, and 29.90 μg/L for Co. The release of Co in NaCl was below the detection limit in both groups. The release of Ni in NaCl and artificial saliva increased with the length of the immersion period in both groups. The release of Cr and Fe was higher in artificial saliva than in NaCl in group R, regardless of the immersion period. The release of Co in NaCl was below the detection limit in both groups. Copyright © 2014 The Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    Science.gov (United States)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  7. Corrosion Resistance Of Electroless Ni-P/Cu/Ni-P Multilayer Coatings

    Directory of Open Access Journals (Sweden)

    Zhao G.L.

    2015-06-01

    Full Text Available Ni-P/Cu/Ni-P multilayer coatings were prepared by deposition of Cu layer between two Ni–P layers. The Cu layer was deposited by metal displacement reaction between Cu2+ and Fe atoms. Corrosion behavior of single-layer Ni-P coatings, double-layer Ni-P/Cu coatings, and three-layer Ni-P/Cu/Ni-P coatings were investigated by electrochemical tests in 3.5% NaCl solution. The three-layer coatings exhibited more positive Ecorr and decreased Icorr compared with conventional single-layer Ni-P coatings, which indicated an improved corrosion resistance. The polarization curves of the three-layer coatings were characterized by two passive regions. The improved corrosion resistance was not only attributed to the function of the blocked pores of Cu. The Cu interlayer also acted as a sacrificial layer instead of a barrier in the coatings, which altered the corrosion mechanism and further improved the corrosion resistance of the coatings.

  8. Magnetoplastic effect in irradiated NaCl and LiF crystals

    International Nuclear Information System (INIS)

    Al'shitz, V.I.; Darinskaya, E.V.; Kazakova, O.L.

    1997-01-01

    The effect of low x-ray irradiation doses (≅10 2 rad) on the magnetoplastic effect - the detachment of dislocations from paramagnetic centers under the action of an external magnetic field B - in alkali-halide crystals has been investigated. The measurements were performed on LiF crystals and three types of NaCl crystals, differing in impurity content. The dependence of the mean free path l of the dislocations on the rotational frequency ν of a sample in a magnetic field was especially sensitive to low irradiation doses. In unirradiated crystals this dependence is a single-step dependence and is characterized by a critical frequency ν c ∝B 2 above which the magnetoplastic effect is not observed. The frequency ν c depends only on the type of paramagnetic centers, and not on their density. Even the lowest irradiation dose employed ( c2 , that is insensitive to the irradiation dose, and that corresponds to the appearance of magnetically sensitive stoppers of a new type under irradiation. The initial critical frequency ν c1 , as a rule, also varies with the dose, reflecting the change in state of the impurity complexes (Ca in NaCl and Mg in LiF). Specifically, it is shown for NaCl(Ca) crystals that as the irradiation dose increases, the frequency ν c1 increases, gradually approaching the value ν c2 , so that by the time the dose is ≅300 rad, the dependence l(ν) once again becomes a single-step dependence, dropping sharply only for ν≥ν c2 . It is shown that the addition of a small number of Ni atoms to a NaCl crystal makes the Ca complexes radiation resistant, and the critical frequency ν c1 corresponding to them initially equals ν c2 for crystals with no Ni. The recombination kinetics of radiation defects in the case in which the samples are irradiated under a tungsten lamp was investigated. A possible physical model of the observed dependences is discussed

  9. Electrochemical corrosion behavior of Ni-containing hypoeutectic Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Abul Hossain

    2015-12-01

    Full Text Available Electrochemical corrosion characteristics of the thermally treated 2 wt % Ni-containing Al-6Si-0.5Mg alloy were studied in NaCl solutions. The corrosion behavior of thermally treated (T6 Al-6Si-0.5Mg (-2Ni alloys in 0.1 M NaCl solution was investigated by electrochemical potentiodynamic polarization technique consisting of linear polarization method using the fit of Tafel plot and electrochemical impedance spectroscopy (EIS techniques. Generally, linear polarization experiments revealed a decrease of the corrosion rate at thermal treated Al-6Si-0.5Mg-2Ni alloy. The EIS test results showed that there is no significant change in charge transfer resistance (Rct after addition of Ni to Al-6Si-0.5Mg alloy. The magnitude of the positive shift in the open circuit potential (OCP, corrosion potential (Ecorr and pitting corrosion potential (Epit increased with the addition of Ni to Al-6Si-0.5Mg alloy. The forms of corrosion in the studied Al-6Si-0.5Mg alloy (except Al-6Si-0.5Mg-2Ni alloy are pitting corrosion as obtained from the scanning electron microscopy (SEM study.

  10. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys

    International Nuclear Information System (INIS)

    Sriraman, K.R.; Ganesh Sundara Raman, S.; Seshadri, S.K.

    2007-01-01

    The present work deals with evaluation of corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys. Corrosion behaviour of the coatings deposited on steel substrates was studied using polarization and electrochemical impedance spectroscopy techniques in 3.5% NaCl solution while their passivation behaviour was studied in 1N sulphuric acid solution. The corrosion resistance of Ni-W alloys increased with tungsten content up to 7.54 at.% and then decreased. In case of Ni-Fe-W alloys it increased with tungsten content up to 9.20 at.% and then decreased. The ternary alloy coatings exhibited poor corrosion resistance compared to binary alloy coatings due to preferential dissolution of iron from the matrix. Regardless of composition all the alloys exhibited passivation behaviour over a wide range of potentials due to the formation of tungsten rich film on the surface

  11. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Olvera, S.; Sánchez-Marcos, J.; Palomares, F.J.; Salas, E.; Arce, E.M.; Herrasti, P.

    2014-01-01

    CoNi alloys including Co 30 Ni 70 , Co 50 Ni 50 and Co 70 Ni 30 were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ B /atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H 2 SO 4 and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H 2 SO 4 and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni x Co 100-x alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions

  12. EPR spectroscopy on irradiated nickel tetracyanide in NaCl host lattice: mechanism for the simultaneous formation of reduced and oxidized species

    International Nuclear Information System (INIS)

    Braga de Araujo, M.; Pinhal, Nelson Moreira; Vugman, Ney Vernon

    2002-01-01

    The kinetics of oxidized and reduced Ni 2+ complexes produced by X-ray irradiation on single crystals of NaCl doped with [Ni(CN) 4 ] 2- is studied by Electron Paramagnetic Resonance at room temperature. The interdependent generation of these two complexes is attributed to migration of the charge compensating vacancy from the reduced to the oxidized complex in a reversible reaction. At higher X-ray doses, there is a predominant formation of the reduced complex

  13. Composite coatings of titanium-aluminum nitride for steel against corrosion induced by solid NaCl deposit and water vapor at 600 °C

    Directory of Open Access Journals (Sweden)

    M.S. Li

    2004-03-01

    Full Text Available Composite coatings (Ti,AlN with different Al content were deposited on a wrought martensite steel 1Cr11Ni2W2MoV by reactive multi-arc ion plating. With the addition of Al to the coatings, the crystallographic structure of them changed from B1 NaCl to B4 ZnS, the relevant hardness and adhesive strength firstly increased then decreased and their oxidation-resistance was also dramatically improved. It was indicated that the introduction of Al was beneficial to (Ti,AlN coatings against corrosion induced by NaCl(s in wet oxygen at 600 °C as well as wet corrosion in NaCl solution at ambient temperature.

  14. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, S. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Sánchez-Marcos, J. [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, 28049 Madrid (Spain); Salas, E. [Spline Spanish CRG Beamline at the European Synchrotron Radiation Facilities, ESRF, BP 220-38043, Grenoble Cedex (France); Arce, E.M. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Herrasti, P., E-mail: pilar.herrasti@uam.es [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain)

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.

  15. Rootstock Effect on the Tolerance of cv. Hass Avocado Plants to Nacl Stress Efecto del Portainjerto en la Tolerancia de Plantas de Palto cv. Hass al Estrés por NaCl

    Directory of Open Access Journals (Sweden)

    Mónica Castro V

    2009-09-01

    control con 30 mg L-1 de Cl- y de plantas tratadas con 200 mg L-1 de Cl-, mediante el uso de NaCl en la solución nutritiva (5.64 mM. No hubo interacción entre el NaCl y los portainjertos para las variables de crecimiento vegetativo ni en el contenido interno foliar o radical de K+ ni el radical de Ca+2. A nivel de tasa de asimilación de carbono, Nabal fue uno de los portainjertos que presentó las mayores tasas bajo tratamiento con NaCl, retuvo la máxima concentración de cloruro a nivel radical y limitó en mayor medida la concentración que se encontró en las hojas del cv. Hass, por lo tanto se presenta como un portainjerto promisorio en la tolerancia a sales.

  16. Comparison of Corrosion Behavior of Electrochemically Deposited Nano-Cobalt-Coated Ni Sheet

    Directory of Open Access Journals (Sweden)

    Nasser Al-Aqeeli

    2013-01-01

    Full Text Available Corrosion behavior of nano-coblat-coated Ni sheet was compared with pure Ni and 20% Fe-Ni alloy sheet using potentiodynamic polarization and linear polarization technique in 0.1 M NaCl solution at room temperature. Results showed that corrosion resistance properties of nano-Co-coated Ni sheet were almost same as that of pure Ni sheet, however corrosion resistance of 20% Fe-Ni sheet was decreased significantly. Pitting potential of 20% Fe-Ni sheet was subsequently decreased as compared to pure Ni sheet as well as nano-cobalt-coated Ni sheet. SEM/EDS analysis of the corroded surfaces showed that both pure Ni and nano-coblat-coated Ni sheet did not show any appreciable corrosion however significant corrosion was observed in the case of 20% Fe-Ni sheet.

  17. Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, A. U.; Mishra, Brajendra [Colorado School of Mines, Denver (United States); Mittal, Vikas [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2016-01-15

    The aim of this study was to evaluate the use of iron-nickel oxide (Fe{sub 2}O{sub 3}.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

  18. Crystallographic characterization of cement pastes hydrated with NaCl; Caracterizacao cristalografica de pastas de cimento hidratadas com NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Carina Gabriela de Melo e; Martinelli, Antonio Eduardo; Melo, Dulce Maria Araujo; Melo, Marcus Antonio de Freitas; Melo, Vitor Rodrigo de Melo e [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2012-07-01

    One of the major current challenges faced by oil companies is the exploration of pre salt basins. Salt layers deposited upon the evaporation of ocean water and continental separation are mainly formed by NaCl and isolate immense oil reservoirs. The mechanical stability and zonal isolation of oil wells that run through salt layers must be fulfilled by cement sheaths saturated with NaCl to assure chemical compatibility between cement and salt layer. The present study aimed at evaluating the effect of NaCl addition on the hydration of oil well cement slurries as well as identifying the nature of crystalline phases present in the hardened cement. To that end, cement slurries containing NaCl were mixed, hardened and characterized by X-ray diffraction. The results revealed that the presence of NaCl affects the formation of hydration products by the presence of Friedel's salt. The intensity of the corresponding peaks increase as the contents of NaCl in the slurry increase. High concentrations of NaCl in Portland slurries increase the setting time of cement and the presence of Friedel's salt decreases the strength of the hardened cement. (author)

  19. Corrosion behavior of nanostructured Ni-Si{sub 3}N{sub 4} composite films: A study of electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.M.; Cai, C.; Xue, M.Z.; Liu, Y.G. [School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai (China); Yin, J.Y.; Zhang, Z. [Department of Chemistry, Zhejiang University, Hangzhou (China); Key Laboratory for Light Alloy Materials Technology, JiaXing (China); Li, J.F. [School of Materials Science and Engineering, Central South University, Changsha (China); Yang, J.F. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University (China)

    2012-07-15

    Ni-Si{sub 3}N{sub 4} nanocomposite films with both the consecutive Ni crystallites and dispersed Si{sub 3}N{sub 4} particles in the nanometer range have been fabricated using DC electroplating technique, and characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). The corrosion resistance of the Ni-Si{sub 3}N{sub 4} nanocomposite film has been compared to that of pure Ni coating through polarization. Meanwhile, the corrosion process of Ni-Si{sub 3}N{sub 4} nanocomposite film in neutral 3.5% NaCl solution has been investigated using electrochemical impedance spectroscopy (EIS). The results show that the Ni-Si{sub 3}N{sub 4} nanocomposite film is more resistant to corrosion than the pure Ni coating. The corrosion of Ni-Si{sub 3}N{sub 4} nanocomposite film is controlled by electrochemical step, and the whole corrosion process is divided into two sequential stages. The main corrosion type of Ni-Si{sub 3}N{sub 4} nanocomposite films in neutral 3.5% NaCl solution is pitting. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Microstructure and Properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densities

    Directory of Open Access Journals (Sweden)

    Góral A.

    2016-03-01

    Full Text Available The study presents investigations of an influence of various direct current densities on microstructure, residual stresses, texture, microhardness and corrosion resistance of the nickel coatings electrodeposited from modified Watt’s baths. The properties of obtained coatings were compared to the nano-crystalline composite Ni/Al2O3 coatings prepared under the same plating conditions. The similarities and differences of the obtained coatings microstructures visible on both their surfaces and cross sections and determined properties were presented. The differences in the growth character of the Ni matrix and in the microstructural properties were observed. All electrodeposited Ni and Ni/Al2O3 coatings were compact and well adhering to the steel substrates. The thickness and the microhardness of the Ni and Ni/Al2O3 deposits increased significantly with the current density in the range 2 - 6 A/dm2. Residual stresses are tensile and they reduced as the current density increased. The composite coatings revealed better protection from the corrosion of steel substrate than pure nickel in solution 1 M NaCl.

  1. Hot Corrosion Behavior of Bare, Cr3C2-(NiCr) and Cr3C2-(NiCr) + 0.2wt.%Zr Coated SuperNi 718 at 900 °C

    Science.gov (United States)

    Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2015-01-01

    Corrosion in incinerators, power plants, and chemical industries are frequently encountered due to the presence of salts containing sodium, sulphur, and chlorine. To obviate this problem, bare and coated alloys were tested under environments simulating the conditions present inside incinerators and power plants. 0.2 wt.% zirconium powder was incorporated in the Cr3C2-(NiCr) coating powder. The original powder and Zr containing powder was sprayed on Superni 718 alloy by D-gun technique. The bare and coated alloys were tested under Na2SO4 + K2SO4 + NaCl + KCl and Na2SO4 + NaCl environment. The corrosion rate of specimens was monitored using weight change measurements. Characterization of the corrosion products has been done using FE-SEM/EDS and XRD techniques. Bare and coated alloys showed very good corrosion resistance under given molten salt environments. Addition of 0.2wt.%Zr in Cr3C2-25%(NiCr) coating further greatly reduced the oxidation rate as well as improved the adherence of oxide scale to the coating surface during the time of corrosion.

  2. Diffusion of calcium in pure and doped NaCl; Diffusion du calcium dans NaCl pur et dope

    Energy Technology Data Exchange (ETDEWEB)

    Slifkin, L; Brebec, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    We have determined, by diffusion experiments of Ca in pure and doped NaCl, the activation energy for the calcium jumps and the binding energy between calcium ion and vacancy. (authors) [French] Nous avons determine, par des mesures de diffusion du Ca dans NaCl pur et NaCl dope avec CaCl{sub 2}, l'energie d'activation relative aux sauts du calcium et l'energie de liaison lacune-calcium. (auteurs)

  3. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under Sodium Chloride Aqueous Conditions

    Directory of Open Access Journals (Sweden)

    Alvaro A. Rodriguez

    2018-01-01

    Full Text Available The corrosion behavior of high-entropy alloys (HEAs CoCrFeNi2 and CoCrFeNi2Mo0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276 and stainless steel 316L (UNS 31600 to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pitting corrosion. Cyclic voltammetry (CV can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi2Mo0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi2 and stainless steel 316L.

  4. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Georgiou, E.P.; Tsopani, A.; Piperi, L. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece)

    2011-03-15

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  5. Kinetin Reversal of NaCl Effects

    Science.gov (United States)

    Katz, Adriana; Dehan, Klara; Itai, Chanan

    1978-01-01

    Leaf discs of Nicotiana rustica L. were floated on NaCl in the presence of kinetin or abscisic acid. On the 5th day 14CO2 fixation, [3H]leucine incorporation, stomatal conductance, and chlorophyll content were determined. Kinetin either partially or completely reversed the inhibitory effects of NaCl while ABA had no effect. PMID:16660618

  6. Combined Effects of Boron and NaCl on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    ZHEN Mei-nan

    2015-08-01

    Full Text Available To investigate the combined effects of boron(Band NaCl on the growth of wheat, a pot experiment was conducted using wheat (Triticum aestivum Linn.seedlings. Boron concentrations of culture medium were set as 0, 50 mg·kg-1 and 100 mg·kg-1, and NaCl concentrations were 0, 1 g·kg-1 and 2 g·kg-1. The results showed that both boron and NaCl could significantly inhibit wheat growth. At 50 mg B·kg-1, NaCl aggravated growth inhibition caused by boron. At 100 mg B·kg-1, however, NaCl alleviated the inhibition caused by boron. The combined stress of boron and NaCl significantly increased the root to shoot ratio of wheat. NaCl inhibited the uptake of boron by wheat. It suggests that under severe boron stress, NaCl is able to alleviate boron toxicity in wheat by increasing root to shoot ratio and reducing boron uptake.

  7. An experimental study on the erosion behavior of pseudoelastic TiNi alloy in dry sand and in aggressive media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Li, D.Y. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering

    2000-11-30

    The corrosive erosion behavior of Ti-51at.%Ni alloy under different erosion conditions was studied and compared to that of 304 stainless steel. Erosion tests were performed in a slurry-pot tester with dry sand, 3.5% NaCl slurry and 0.1 moll{sup -1} H{sub 2}SO{sub 4} slurry containing 30% silica sand, respectively. Synergistic effects of corrosion and erosion were studied in steady corrosion, polarization, dry sand erosion and micro-wear experiments. An electrochemical-scratching test characterized the failure and recovery of the passive film formed on TiNi alloy in 3.5% NaCl and 0.1 mol l{sup -1} H{sub 2}SO{sub 4} solutions, respectively. In both dry sand and the corrosive media, the TiNi alloy exhibited considerably greater erosion resistance than 304 stainless steel. (orig.)

  8. Electron scattering in graphene with adsorbed NaCl nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Wołoś, Agnieszka [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Pasternak, Iwona; Strupiński, Włodek [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Krajewska, Aleksandra [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2015-01-07

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.

  9. Electron scattering in graphene with adsorbed NaCl nanoparticles

    International Nuclear Information System (INIS)

    Drabińska, Aneta; Kaźmierczak, Piotr; Bożek, Rafał; Karpierz, Ewelina; Wysmołek, Andrzej; Kamińska, Maria; Wołoś, Agnieszka; Pasternak, Iwona; Strupiński, Włodek; Krajewska, Aleksandra

    2015-01-01

    In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The main inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer

  10. Secretory NaCl and volume flow in renal tubules.

    Science.gov (United States)

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  11. Explosive phenomena in heavily irradiated NaCl

    NARCIS (Netherlands)

    denHartog, HW; Vainshtein, DI; Matthews, GE; Williams, RT

    1997-01-01

    In heavily irradiated NaCl crystals explosive phenomena can be initiated during irradiation or afterwards when samples are heated to temperatures between 100 and 250 degrees C. During irradiation of NaCl Na and Cl-2 precipitates and void structures are produced along with the accumulation of stored

  12. Structural, electronic, and mechanical properties of CoN and NiN. An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Amudhavalli, A.; Manikandan, M.; Cinthia, A. Jemmy; Rajeswarapalanichamy, R. [NMSSVN College, Tamil Nadu (India). Dept. of Physics; Iyakutti, K. [SRM Univ., Tamil Nadu (India). Dept. of Physics and Nanotechnology

    2017-07-01

    The structural stabilities of cobalt mononitride (CoN) and nickel mono-nitride (NiN) were investigated among the crystal structures, namely, NaCl (B1), CsCl (B2), and zinc blende (B3). It was found that the zinc blende (B3) phase was the most stable phase for both nitrides. A pressure-induced structural phase transition from B3 to B1 phase was predicted in these nitrides. The computed lattice parameter values were in agreement with the experimental values and other theoretical values. The electronic structures reveal that these nitrides are metallic at zero pressure. The computed elastic constants indicate that CoN and NiN are mechanically stable in the B1 and B3 phases. The variations of the elastic constants, bulk modulus, shear modulus, Poisson's ratio, and elastic anisotropy factor with pressure were investigated. The Debye temperature θ{sub D} values are reported for both the nitrides in their B1 and B3 phases. The high-pressure NaCl phase of both CoN and NiN were found to be ferromagnetic.

  13. Corrosion behavior of novel imitation-gold copper alloy with rare earth in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Chen, J.L.; Li, Z.; Zhu, A.Y.; Luo, L.Y.; Liang, J.

    2012-01-01

    Highlights: → The design alloy has better anti-tarnish property than that of H7211 alloy during salt-spray test. → The corrosion rate of design alloy is much lower than that of H7211 alloy as immersed in NaCl solution. → In the low frequency region, the capacitive behavior normally faded and diffusion process had a key role. → In the medium frequency region, the Bode pattern showed a capacitive behavior. -- Abstract: A novel imitation-gold copper alloy with rare earth was designed and prepared. The corrosion behavior of the alloy immersed in 3.5% NaCl solution and its anti-tarnish property in the salt spray for different days has been studied. The designed alloy (CuZnAlNiMeRe) has more excellent anti-tarnish property and lower corrosion rate than those of currency coinage materials of H7211 alloy (used in China). A uniform and compact of corrosion film has been formed after the designed alloy immersed in 3.5% NaCl solution. The corrosion current densities I corr of the alloy decreased while the polarization resistance R p increased with time. The capacitance of the corrosion product film C film of the alloy decreased while the charge transfer resistance R ct . The Warburg diffusion impedance W R and the resistance of the equivalent circuit R increased with time.

  14. Acid-base behavior of the gaspeite (NiCO3(s)) surface in NaCl solutions.

    Science.gov (United States)

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S; Schott, Jacques

    2010-08-03

    Gaspeite is a low reactivity, rhombohedral carbonate mineral and a suitable surrogate to investigate the surface properties of other more ubiquitous carbonate minerals, such as calcite, in aqueous solutions. In this study, the acid-base properties of the gaspeite surface were investigated over a pH range of 5 to 10 in NaCl solutions (0.001, 0.01, and 0.1 M) at near ambient conditions (25 +/- 3 degrees C and 1 atm) by means of conventional acidimetric and alkalimetric titration techniques and microelectrophoresis. Over the entire experimental pH range, surface protonation and electrokinetic mobility are strongly affected by the background electrolyte, leading to a significant decrease of the pH of zero net proton charge (PZNPC) and the pH of isoelectric point (pH(iep)) at increasing NaCl concentrations. This challenges the conventional idea that carbonate mineral surfaces are chemically inert to background electrolyte ions. Multiple sets of surface complexation reactions (i.e., ionization and ion adsorption) were formulated within the framework of three electrostatic models (CCM, BSM, and TLM) and their ability to simulate proton adsorption and electrokinetic data was evaluated. A one-site, 3-pK, constant capacitance surface complexation model (SCM) reproduces the proton adsorption data at all ionic strengths and qualitatively predicts the electrokinetic behavior of gaspeite suspensions. Nevertheless, the strong ionic strength dependence exhibited by the optimized SCM parameters reveals that the influence of the background electrolyte on the surface reactivity of gaspeite is not fully accounted for by conventional electrostatic and surface complexation models and suggests that future refinements to the underlying theories are warranted.

  15. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    Science.gov (United States)

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  16. Characterisation of electrodeposited and heat-treated Ni-Mo-P coatings

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Regis L.; Casciano, Paulo N.S.; Correia, Adriana N.; Lima-Neto, Pedro de, E-mail: pln@ufc.br [Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, Fortaleza, CE (Brazil)

    2012-07-01

    The electrodeposition, hardness and corrosion resistance properties of Ni-Mo-P coatings were investigated. Characterisations of the electrodeposited coatings were carried out using scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis techniques. Corrosion tests were performed at room temperature in 10-1 mol dm-3 NaCl solutions and by potentiodynamic linear polarisation. Amorphous Ni-Mo-P coatings were successfully obtained by electrodeposition using direct current. The coating composition showed to be dependent on the bath composition, current density and bath temperature. Both P and Mo contents contribute for the hardness properties of the Ni-Mo-P coatings and the absence of cracks is a requirement to produce electrodeposited Ni-Mo-P coatings with good hardness properties. The hardness values increase with heat-treatment temperature due to the precipitation of Ni, Ni{sub 3}P and NiMo phases during the heat treatment. The corrosion resistance of the electrodeposited Ni-Mo-P amorphous coatings increases with P content in the layer. Among the electrodeposited Ni-Mo-P amorphous coatings, Ni{sub 78}Mo{sub 10}P{sub 12} presented the best hardness and corrosion-resistance properties. The results showed that the addition of P is beneficial for the hardness and corrosion resistance properties of the Ni-Mo-based coatings. (author)

  17. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Science.gov (United States)

    Li, Kun; Li, Yan; Huang, Xu; Gibson, Des; Zheng, Yang; Liu, Jiao; Sun, Lu; Fu, Yong Qing

    2017-08-01

    Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb2O5. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (Ecorr) and lower corrosion current densities (icorr) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of Ecorr and icorr was found among the Ni-Ti-Nb films.

  18. Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications

    International Nuclear Information System (INIS)

    Khalil-Allafi, Jafar; Amin-Ahmadi, Behnam; Zare, Mehrnoush

    2010-01-01

    Due to unique properties of NiTi shape memory alloys such as high corrosion resistance, biocompatibility, super elasticity and shape memory behavior, NiTi shape memory alloys are suitable materials for medical applications. Although TiO 2 passive layer in these alloys can prevent releasing of nickel to the environment, high nickel content and stability of passive layer in these alloys are very debatable subjects. In this study a NiTi shape memory alloy with nominal composition of 50.7 atom% Ni was investigated by corrosion tests. Electrochemical tests were performed in two physiological environments of Ringer solution and NaCl 0.9% solution. Results indicate that the breakdown potential of the NiTi alloy in NaCl 0.9% solution is higher than that in Ringer solution. The results of Scanning Electron Microscope (SEM) reveal that low pitting corrosion occurred in Ringer solution compared with NaCl solution at potentiostatic tests. The pH value of the solutions increases after the electrochemical tests. The existence of hydride products in the X-ray diffraction analysis confirms the decrease of the concentration of hydrogen ion in solutions. Topographical evaluations show that corrosion products are nearly same in all samples. The biocompatibility tests were performed by reaction of mouse fibroblast cells (L929). The growth and development of cells for different times were measured by numbering the cells or statistics investigations. The figures of cells for different times showed natural growth of cells. The different of the cell numbers between the test specimen and control specimen was negligible; therefore it may be concluded that the NiTi shape memory alloy is not toxic in the physiological environments simulated with body fluids.

  19. Understanding the corrosion behavior of isomorphous Cu–Ni alloy from its electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.C.; Lu, H.; Li, D.Y., E-mail: dongyang.li@ualberta.ca

    2016-04-15

    The electrode potential or galvanic series is usually used to reflect the nobility of metals and semi-metals. However, this potential is environment-dependent and the intrinsic nobility of a metal is ultimately governed by its electron stability, which can be represented by the electron work function (EWF). This article reports our studies on the corrosion behavior of isomorphous Cu–Ni alloy in HCl and NaCl solutions, respectively. It was demonstrated that the EWF of the alloy increased as the Ni concentration was increased, so did the corrosion resistance in the acidic solution. In the sodium chloride solution, however, the trend was reversed due to adsorption, hydrolysis and the formation of oxide scale on Cu-rich samples, which more or less prevented them from further corrosion in this solution. In order to confirm this, corrosive wear tests were performed to analyze the performance of the alloy when the effect of oxide scale was eliminated or minimized by the mechanical action. - Highlights: • Increasing %Ni resulted in higher overall electron work function of Cu–Ni alloy. • Higher EWF corresponded to higher resistance to corrosion in a HCl solution. • Trend was reversed in a NaCl solution due to the formation of oxide scale. • During slurry-jet tests, alloys with higher EWFs performed better.

  20. Understanding the corrosion behavior of isomorphous Cu–Ni alloy from its electron work function

    International Nuclear Information System (INIS)

    Huang, X.C.; Lu, H.; Li, D.Y.

    2016-01-01

    The electrode potential or galvanic series is usually used to reflect the nobility of metals and semi-metals. However, this potential is environment-dependent and the intrinsic nobility of a metal is ultimately governed by its electron stability, which can be represented by the electron work function (EWF). This article reports our studies on the corrosion behavior of isomorphous Cu–Ni alloy in HCl and NaCl solutions, respectively. It was demonstrated that the EWF of the alloy increased as the Ni concentration was increased, so did the corrosion resistance in the acidic solution. In the sodium chloride solution, however, the trend was reversed due to adsorption, hydrolysis and the formation of oxide scale on Cu-rich samples, which more or less prevented them from further corrosion in this solution. In order to confirm this, corrosive wear tests were performed to analyze the performance of the alloy when the effect of oxide scale was eliminated or minimized by the mechanical action. - Highlights: • Increasing %Ni resulted in higher overall electron work function of Cu–Ni alloy. • Higher EWF corresponded to higher resistance to corrosion in a HCl solution. • Trend was reversed in a NaCl solution due to the formation of oxide scale. • During slurry-jet tests, alloys with higher EWFs performed better.

  1. NaCl salinity affects lateral root development in Plantago maritima

    NARCIS (Netherlands)

    Rubinigg, M; Wenisch, J; Elzenga, JTM; Stulen, [No Value

    2004-01-01

    Root growth and morphology were assessed weekly in hydroponically-grown seedlings of the halophyte Plantago maritima L. during exposure to 0, 50, 100 and 200 mM NaCl for 21 d. Relative growth rate was reduced by 25% at 200 mM NaCl. The lower NaCl treatments did not affect relative growth rates.

  2. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density

    DEFF Research Database (Denmark)

    Yan, Wei; Huang, Shengli; Stenby, Erling Halfdan

    2011-01-01

    over climate change and energy security. This work is an experimental and modeling study of two fundamental properties in high pressure CO2–NaCl brine equilibrium, i.e., CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. A literature review of the available data was presented first...

  3. NaCl responsive taste cells in the mouse fungiform taste buds.

    Science.gov (United States)

    Yoshida, R; Horio, N; Murata, Y; Yasumatsu, K; Shigemura, N; Ninomiya, Y

    2009-03-17

    Previous studies have demonstrated that rodents' chorda tympani (CT) nerve fibers responding to NaCl can be classified according to their sensitivities to the epithelial sodium channel (ENaC) blocker amiloride into two groups: amiloride-sensitive (AS) and -insensitive (AI). The AS fibers were shown to respond specifically to NaCl, whereas AI fibers broadly respond to various electrolytes, including NaCl. These data suggest that salt taste transduction in taste cells may be composed of at least two different systems; AS and AI ones. To further address this issue, we investigated the responses to NaCl, KCl and HCl and the amiloride sensitivity of mouse fungiform papilla taste bud cells which are innervated by the CT nerve. Comparable with the CT data, the results indicated that 56 NaCl-responsive cells tested were classified into two groups; 25 cells ( approximately 44%) narrowly responded to NaCl and their NaCl response were inhibited by amiloride (AS cells), whereas the remaining 31 cells ( approximately 56%) responded not only to NaCl, but to KCl and/or HCl and showed no amiloride inhibition of NaCl responses (AI cells). Amiloride applied to the basolateral side of taste cells had no effect on NaCl responses in the AS and AI cells. Single cell reverse transcription-polymerase chain reaction (RT-PCR) experiments indicated that ENaC subunit mRNA was expressed in a subset of AS cells. These findings suggest that the mouse fungiform taste bud is composed of AS and AI cells that can transmit taste information differently to their corresponding types of CT fibers, and apical ENaCs may be involved in the NaCl responses of AS cells.

  4. IRSL characteristics of NaCl and KCl relative to dosimeter

    International Nuclear Information System (INIS)

    Tanir, Guenes; Hicabi Boeluekdemir, M.; Catli, Serap; Tel, Eyyuep

    2007-01-01

    The aim of this work is to determine and compare the dosimetric properties of NaCl and KCl samples using infrared-stimulated luminescence (IRSL) technique. For a material to be used as dosimeter, both the IRSL temperature dependence and the radiation dose response have critical importance. In this work the IRSL characteristics from NaCl and KCl samples were experimentally investigated as a function of temperature and laboratory radiation doses. Dosimetric properties of NaCl and KCl samples were found significantly different. The IRSL signals displayed by NaCl were found to be more stable, reliable and agreeable than those of KCl

  5. Three-Dimensional Porous Nickel Frameworks Anchored with Cross-Linked Ni(OH)2 Nanosheets as a Highly Sensitive Nonenzymatic Glucose Sensor.

    Science.gov (United States)

    Mao, Weiwei; He, Haiping; Sun, Pengcheng; Ye, Zhizhen; Huang, Jingyun

    2018-05-02

    A facile and scalable in situ microelectrolysis nanofabrication technique is developed for preparing cross-linked Ni(OH) 2 nanosheets on a novel three-dimensional porous nickel template (Ni(OH) 2 @3DPN). For the constructed template, the porogen of NaCl particles not only induces a self-limiting surficial hot corrosion to claim the "start engine stop" mechanism but also serves as the primary battery electrolyte to greatly accelerate the growth of Ni(OH) 2 . As far as we know, the microelectrolysis nanofabrication is superior to the other reported Ni(OH) 2 synthesis methods due to the mild condition (60 °C, 6 h, NaCl solution, ambient environment) and without any post-treatment. The integrated Ni(OH) 2 @3DPN electrode with a highly suitable microstructure and a porous architecture implies a potential application in electrochemistry. As a proof-of-concept demonstration, the electrode was employed for nonenzymatic glucose sensing, which exhibits an outstanding sensitivity of 2761.6 μA mM -1 cm -2 ranging from 0.46 to 2100 μM, a fast response, and a low detection limit. The microelectrolysis nanofabrication is a one-step, binder-free, entirely green, and therefore it has a distinct advantage to improve clean production and reduce energy consumption.

  6. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts*

    Science.gov (United States)

    Guo, Rong-fang; Yuan, Gao-feng; Wang, Qiao-mei

    2013-01-01

    To understand the regulation mechanism of NaCl on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCl were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCl. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCl at relatively low concentrations (20, 40, and 60 mmol/L). NaCl treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCl treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCl could be desirable for human nutrition. PMID:23365011

  7. Electrodeposition of amorphous Ni-P coatings onto Nd-Fe-B permanent magnet substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.B [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China); Cao, F.H [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China); Zhang, Z. [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China)]. E-mail: eaglezzy@zjuem.zju.edu.cn; Zhang, J.Q [Department of Chemistry, Yuquan campus, Zhejiang University, Hangzhou 310027 (China); State Key Laboratory for Corrosion and Protection of Metals, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2006-12-15

    Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H{sub 3}PO{sub 3} on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni{sub 2}P/Ni{sub 3}P and the resultant formation of multi-phase coatings (such as Ni{sub 2}P-P)

  8. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Science.gov (United States)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  9. Polishing large NaCl windows on a continuous polisher

    International Nuclear Information System (INIS)

    Williamson, R.

    1979-01-01

    The Helios and Antares CO 2 fusion laser systems incorporate numerous large sodium chloride windows. These must be refinished periodically, making necessary a consistent and predictable polishing capability. A continuous polisher (or annular lap) which might at Kirtland's Developmental Optical Facility. Large NaCl windows had not been polished on this type of machine. The machine has proven itself capable of producing lambda/16 figures at 633 nm (HeNe) with extremely smooth surfaces on glass. Since then, we have been working exclusively on NaCl optics. Due to different polishing parameters between NaCl and glass, and the slight solubility of the pitch in the slurry, this phase presents new problems. The work on glass will be reviewed. Results on NaCl to date will be reported. The potential of this type of machine relative to prisms, thin and irregularly shaped optics will be discussed

  10. Manipulating Single Microdroplets of NaCl Solutions

    DEFF Research Database (Denmark)

    Utoft, Anders; Kinoshita, Koji; Bitterfield, Deborah

    2018-01-01

    fraction of S = 1.9, the saturation concentration of NaCl in aqueous solution as measured with nanograms of material (5.5 ± 0.1 M), the diffusion coefficient for water in octanol, D = (1.96 ± 0.10) × 10−6 cm2/s, and the effect of the solvent’s activity on dissolution kinetics. It is further shown...... growth are affected by changing the bathing medium from octanol to decane. A much slower loss of water-solvent and concomitant slower up-concentration of the NaCl solute resulted in a lower tendency to nucleate and slower crystal growth because much less excess material was available at the onset...... of nucleation in the decane system as compared to the octanol system. Thus, the crystal structure is reported to be dendritic for NaCl solution microdroplets dissolving rapidly and nucleating violently in octanol, while they are formed as single cubic crystals in a gentler way for solution-dissolution in decane...

  11. Utilizing NaCl to increase the porosity of electrospun materials

    International Nuclear Information System (INIS)

    Wright, L.D.; Andric, T.; Freeman, J.W.

    2011-01-01

    Electrospinning has emerged as a popular method for creating scaffolding materials used in tissue engineering applications to repair or replace damaged tissues. To become a viable scaffold material, however, pore sizes in electrospun materials must be increased to improve cell infiltration. Deposition of NaCl crystals during electrospinning was utilized to help overcome this obstacle. The NaCl crystals are released above the rotating collection mandrel and become incorporated into the poly(L-lactide) electrospun material. The NaCl then leaches out of the electrospun material creating larger pores: average pore diameter of 48.7 μm for PLLA-NaCl electrospinning versus 5.5 μm for PLLA alone electrospinning. Electrospun PLLA scaffolds with NaCl pores have a lower elastic modulus (8.05 MPa) and yield stress (349 kPa) and a higher yield strain (0.04) compared to their traditional counterparts (40.36 MPa, 676 kPa, and 0.0188). Decreased elastic modulus and yield stress would be beneficial to tissue engineering of elastic tissues including skin. The presence of NaCl pores did not significantly affect the cellular proliferation of MC3T3 cells but did allow for cell infiltration into the electrospun material. Therefore, the creation of large pores through NaCl leaching can significantly improve the performance of electrospun materials for tissue engineering applications by improving cellular infiltration.

  12. Adsorption of small NaCl clusters on surfaces of silicon nanostructures

    International Nuclear Information System (INIS)

    Amsler, Maximilian; Alireza Ghasemi, S; Goedecker, Stefan; Neelov, Alexey; Genovese, Luigi

    2009-01-01

    We have studied possible adsorption geometries of neutral NaCl clusters on the disordered surface of a large silicon model tip used in non-contact atomic force microscopy. The minima hopping method was used to determine low energy model tip configurations as well as ground state geometries of isolated NaCl clusters. The combined system was treated with density functional theory. Alkali halides have proven to be strong structure seekers and tend to form highly stable ground state configurations whenever possible. The favored adsorption geometry for four Na and four Cl atoms was found to be an adsorption of four NaCl dimers due to the formation of Cl-Si bonds. However, for larger NaCl clusters, the increasing energy required to dissociate the cluster into NaCl dimers suggests that adsorption of whole clusters in their isolated ground state configuration is preferred.

  13. Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel

    Science.gov (United States)

    Jiang, Li; Syed, Junaid Ali; Gao, Yangzhi; Lu, Hongbin; Meng, Xiangkang

    2018-05-01

    In the present paper, polyaniline (PANI) coating was electropolymerized in the presence of phosphoric acid with subsequent deposition of Ni(OH)2 particles. The Ni(OH)2 reinforced PANI coating significantly enhances the corrosion resistance of 304 stainless steel (304SS) in comparison with the pristine PANI coating. The galvanostatically deposited Ni(OH)2 particles fill the pores of the pristine PANI coating and improves the coatings hydrophobicity which decreases the diffusion of aggressive media. Importantly, the Rp values of Ni(OH)2 reinforced PANI coating is much higher than that of pristine PANI coating and the Ni(OH)2 reinforced PANI coating presents a long-term anti-corrosive ability (360 h) in 3.5 wt% NaCl solution. The prolonged corrosion protection of Ni(OH)2 reinforced PANI coating is attributed to the improved physical barrier as well as the facile formation of passive oxide film that sustain the anodic protection of the coating.

  14. NaCl samples for optical luminescence dosimetry

    International Nuclear Information System (INIS)

    Catli, S.

    2005-01-01

    Optically stimulated luminescence (OSL) have been used broadly for luminescence dosimetry and dating. In many cases, it has been pointed out that the decay of the OSL do not generally behave according to a simple exponential function. In this study the Infra-red stimulated luminescence (IRSL) intensity from NaCl samples were experimentally measured. The decay curves for this sample were fitted to some functions and it is in good agreement with the function y = α + b exp(-cx). The IRSL decay curves from NaCl using different β-doses have been obtained and investigated their dose response

  15. Effect Of Low-Temperature Annealing On The Properties Of Ni-P Amorphous Alloys Deposited Via Electroless Plating

    Directory of Open Access Journals (Sweden)

    Zhao Guanlin

    2015-06-01

    Full Text Available Amorphous Ni-P alloys were prepared via electroless plating and annealing at 200°C at different times to obtain different microstructures. The effects of low-temperature annealing on the properties of amorphous Ni-P alloys were studied. The local atomic structure of the annealed amorphous Ni-P alloys was analyzed by calculating the atomic pair distribution function from their X-ray diffraction patterns. The results indicate that the properties of the annealed amorphous Ni-P alloys are closely related to the order atomic cluster size. However, these annealed Ni-P alloys maintained their amorphous structure at different annealing times. The variation in microhardness is in agreement with the change in cluster size. By contrast, the corrosion resistance of the annealed alloys in 3.5 wt% NaCl solution increases with the decrease in order cluster size.

  16. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Huang, Xu [Memry Corporation, Bethel, CT 06801 (United States); Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Zheng, Yang; Liu, Jiao; Sun, Lu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Fu, Yong Qing, E-mail: richard.fu@northumbria.ac.uk [Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

    2017-08-31

    Highlights: • The corrosion resistance of Ni-Ti-Nb shape memory thin films is investigated. • Modified surface oxide layers improve the corrosion resistance of Ni-Ti-Nb films. • Further Nb additions reduce the potential corrosion tendency of the films. - Abstract: Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb{sub 2}O{sub 5}. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (E{sub corr}) and lower corrosion current densities (i{sub corr}) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of E{sub corr} and i{sub corr} was found among the Ni-Ti-Nb films.

  17. Corrosion behavior of oxide-covered Cu47Ti34Zr11Ni8 (Vitreloy 101) in chloride-containing solutions

    International Nuclear Information System (INIS)

    Baca, N.; Conner, R.D.; Garrett, S.J.

    2014-01-01

    Highlights: • Enrichment of Ti/Zr (as TiO 2 /ZrO 2 ) and depletion of Cu/Ni due to thermodynamically driven segregation. • Dominant corrosion mechanism is pitting. • Pit interiors were depleted of Ti and Zr due to equilibrium solubilization of oxide layer. • Corrosion can be explained by equilibrium and metal nobility arguments. - Abstract: The corrosion resistance of oxides that form in air on Vitreloy 101 (Cu 47 Ti 34 Zr 11 Ni 8 ) metallic glass ribbons in NaCl and HCl solutions was studied by scanning electron microscopy, X-ray photoelectron spectroscopy and potentiodynamic polarization. The air-exposed alloy was covered by a TiO 2 /ZrO 2 layer overlying a Cu-enriched region beneath. Ni was absent at the surface. Segregation of Ti and Zr was driven by exothermic oxide formation. Immersion in NaCl or HCl caused pitting corrosion by local Galvanic reactions that depleted less noble Ti, Zr and Ni from the pit interiors, leaving them rich in more noble Cu. Corrosion products containing Ti and Zr accumulated around the pit. Pits were most numerous in 1.0 M HCl due to TiO 2 (s)/Ti 3+ (aq) equilibrium that resulted in rapid solubilization of the oxide, creating local weaknesses and an increased rate of pit formation. On average, Ti preferentially dissolved from the oxide in accord with metal nobility arguments

  18. Effect of nanocrystalline phase on the electrochemical behavior of the alloy Ti{sub 60}Ni{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Shubhra, E-mail: shubhramathur3@gmail.com [Department of Physics, Jagannath Gupta Institute of Engineering and Technology, Jaipur 303905 (India); Jain, Rohit [Department of Physics, Jagannath Gupta Institute of Engineering and Technology, Jaipur 303905 (India); Kumar, Praveen [Surface Physics and Nanostructure Group, National Physical Laboratory, New Delhi 110012 (India); Sachdev, K.; Sharma, S.K. [Department of Physics, Malaviya National Institute of Technology, JLN-Marg, Jaipur 302017 (India)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Polarization studies carried out on different structural states of the alloy Ti{sub 60}Ni{sub 40}. Black-Right-Pointing-Pointer Nanocrystalline state exhibits superior corrosion resistance as compared to other states of the alloy Ti{sub 60}Ni{sub 40}. Black-Right-Pointing-Pointer XPS results show that nanocrystalline specimen contains only TiO{sub 2} species. Black-Right-Pointing-Pointer It leads to the formation of adherent and stable film and improves the corrosion resistance. - Abstract: Polarization studies were carried out on crystalline, amorphous and nanocrystalline states of the alloy Ti{sub 60}Ni{sub 40} in 1 M NaCl aqueous medium at room temperature. It was observed that nanocrystalline state exhibits superior corrosion resistance as compared to other states of the alloy Ti{sub 60}Ni{sub 40}. Cyclic voltammetry studies and weight loss data corroborates the polarization studies. X-ray photoelectron spectroscopy (XPS) technique was used in order to decipher the nature of the oxide film formed after corrosion test on the specimens of the alloy Ti{sub 60}Ni{sub 40}. The crystalline specimen of the alloy Ti{sub 60}Ni{sub 40} shows the presence of Ti{sup 2+}, Ti{sup 3+} and Ti{sup 4+} species along with some unoxidized Ti in metallic form (Ti{sup 0}) whereas the amorphous specimen consists of Ti{sup 3+} and Ti{sup 4+} species. On the other hand nanocrystalline specimen contains only Ti{sup 4+} species. Thus it is likely that the presence of fewer species and the absence of Ti{sup 3+} in the oxide film formed on nanocrystalline specimen of Ti{sub 60}Ni{sub 40} lead to the formation of a film with greater homogeneity and protective quality in comparison to the films formed on crystalline and amorphous states of the alloy Ti{sub 60}Ni{sub 40} in 1 M NaCl aqueous medium.

  19. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qingfeng [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Lu, Fenggui [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Ruifeng [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003 (China); Huang, Jian; Wu, Yixiong [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China)

    2017-02-28

    Highlights: • Equimolar CrMnFeCoNi high entropy alloy coating are prepared by laser cladding. • The cladding layer forms a simple FCC phase solid solution with identical dendritic structure. • The cladding layer exhibits a noble corrosion resistance in both 3.5 wt.% NaCl and 0.5 M sulfuric acid. • Element segregation makes Cr-depleted interdendrites the starting point of corrosion reaction. - Abstract: Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower i{sub corr} than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted R{sub t} value reaches its maximum at 24 h during a 48 h’ immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H{sub 2}SO{sub 4} reveals that corrosion starts from Cr-depleted interdendrites.

  20. Phase equilibria of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions

    International Nuclear Information System (INIS)

    Mohammadi, Amir H.; Richon, Dominique

    2012-01-01

    Highlights: → Dissociation conditions of H 2 S or CO 2 hydrate + inhibitor aqueous solution are reported. → Methanol, methanol + NaCl and EG + NaCl aqueous solutions are considered as inhibitors. → Comparisons are made between our experimental data and the corresponding literature data. - Abstract: This work aims at reporting the dissociation pressures of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions at different temperatures and various concentrations of inhibitor in aqueous solution. The equilibrium results were generated using an isochoric pressure-search method. These values are compared with some selected experimental data from the literature on the dissociation conditions of hydrogen sulfide and carbon dioxide simple hydrates in the presence of pure water to show the inhibition effects of the above mentioned aqueous solutions. Comparisons are finally made between our experimental values and the corresponding literature data. Some disagreements among the literature data and our data are found.

  1. Structure and composition of layers of Ni-Co-Mn-In Heusler alloys obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, Grzegorz; Sagan, Piotr; Stefaniuk, Ireneusz; Cieniek, Bogumil; Maziarz, Wojciech; Kuzma, Marian

    2017-01-01

    In present work we were analysing thin layers of Ni-Co-Mn-In alloys, grown by pulsed laser deposition method (PLD) on Si, NaCl and glass substrates. For target ablation the second harmonics of YAG:Nd 3+ laser was used. The target had the composition Ni 45 Co 5 Mn 34.5 In 14.5 . The morphology of the layers and composition were studied by electron microscopy TESCAN Vega3 equipped with microanalyzer EDS – Easy EdX system working with Esprit Bruker software. The X-ray diffraction measurements (XRD), performed on spectrometer Bruker XRD D8 Advance system, reveals Ni 2 -Mn-In cubic phase having lattice constant a = 6.02Å.

  2. Proteins associated with adaptation of cultured tobacco cells to NaCl

    International Nuclear Information System (INIS)

    Singh, N.K.; Handa, A.K.; Hasegawa, P.M.; Bressan, R.A.

    1985-01-01

    Cultured tobacco cells (Nicotiana tabacum L. cv Wisconsin 38) adapted to grow in medium containing high levels of NaCl or polyethylene glycol (PEG) produce several new or enhanced polypeptide bands on sodium dodecyl sulfate-polyarylamide gel electrophoresis. The intensities of some of the polypeptide bands increase with increasing levels of NaCl adaptation, while the intensities of other polypeptide bands are reduced. Synthesis of 26-kilodalton polypeptide(s) occurs at two different periods during culture growth of NaCl adapted cells. Unadapted cells also incorporate 35 S into a 26-kilodalton polypeptide during the later stage of culture growth beginning at midlog phase. The 26-kilodalton polypeptides from adapted and unadapted cells have similar partial proteolysis peptide maps and are immunologically cross-reactive. During adaptation to NaCl, unadapted cells synthesize and accumulate a major 26-kilodalton polypeptide, and the beginning of synthesis corresponds to the period of osmotic adjustment and culture growth. From their results, the authors suggest an involvement of the 26-kilodalton polypeptide in the adaptation of cultured tobacco cells to NaCl and water stress. 38 references, 11 figures, 2 tables

  3. Study of the structural and electronic properties of YC using DFT: The true ground state is a NiAs-like structure

    International Nuclear Information System (INIS)

    Abdel-Rahim, G P; Rodríguez M, J A; Moreno-Armenta, M G

    2013-01-01

    We study the structural and electronic properties of YC in volume using density functional theory (DFT) within the generalized gradient approximation (GGA), using the scheme of Wu-Cohen 2006 and Tran et al. 2007. Several crystal structures were considered: Nickel Arsenide (NiAs), Sodium Chloride (NaCl), Cesium Chloride (CsCl), and zincblende (ZB). A new fact that we present in this paper is the inclusion of the NiAs-like structure, which is the true ground state (GS) for YC. We calculated the density of states (DOS) and the band structure and found that YC is non-magnetic and its behavior is metallic-like. The lattice parameter alatt is 3.69 Å and the c/a = 1.47. Cohesion energy (Ecoh) is −12.90 eV, which is very close to Ecoh of the NaCl structure. Therefore, YC exists in these two structures. Our results with respect to alatt, bulk modulus (B), Ecoh, and the main features of the electronic properties are in good agreement with those found by other researchers. Other researchers found a transition from NaCl to CsCl, but we found a new transition from NiAs to CsCl, where the volume diminishes ∼10% and its transition pressure (PT ∼79 GPa) is very close to the 80 GPa of the former. The contraction can fracture the material if it is worked on near the transition. For pressures before and after the transition, YC maintains non-magnetic and metallic behaviors

  4. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Layek, Samar, E-mail: samarlayek@gmail.com; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni{sub 1−x}Mn{sub x}O (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  5. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    International Nuclear Information System (INIS)

    Layek, Samar; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni_1_−_xMn_xO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  6. Experimental determination of the H2O + 15 wt% NaCl and H2O + 25 wt% NaCl liquidi to 1.4 GPa

    Science.gov (United States)

    Valenti, P.; Schmidt, C.

    2009-12-01

    The binary H2O+NaCl is one of the most important model systems for chloridic fluids in many geologic environments such as the Earth’s crust, upper mantle, and subducting slabs, and is also applicable to extraterrestrial icy planetary bodies (e.g., Manning 2004, Zolensky et al., 1999). The knowledge on phase equilibria and PVTx properties of this system is still fragmentary at high pressures, e.g., very little has been reported on liquidi at compositions Daniel 2008). In this study, we investigated the liquidus of 15 and 25 wt% NaCl solutions at pressures up to 1.4 GPa. The experiments were performed using a hydrothermal diamond-anvil cell (Bassett et al. 1993) modified for Raman spectroscopy and accurate temperature measurements. A quartz chip, halite, and water were loaded into the sample chamber, which also contained a small trapped air bubble (10 vol%) when it was sealed. The actual salinity was then determined from measurement of the vapor-saturated liquidus temperature. The sample chamber was then compressed until the bubble disappeared. After freezing, phase transitions occurring with increasing temperature were observed optically, and the pressure was determined from the frequency shift of the 464 cm-1 Raman line of quartz (Schmidt and Ziemann 2000). The sample chamber was then compressed further, and the experiment was repeated at various bulk densities until a pressure of ~1.4 GPa was attained. At some conditions, Raman spectra were acquired for identification of the phase assemblage. The solution always crystallized to a single phase upon cooling above ~0.15 GPa at 25 wt% NaCl and above ~1 GPa at 15 wt% NaCl. Raman spectra in the OH stretching region indicate that this phase contains or is a NaCl hydrate other than hydrohalite, probably in solid solution with ice. Melting of this phase produced liquid and hydrohalite and/or ice VI. Ice VI was the last solid that dissolved upon heating, between 1100 MPa, 3 °C and 1370 MPa, 17 °C for 15 wt% NaCl and at

  7. Temperature dependence of thermal pressure for NaCl

    Science.gov (United States)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  8. Synthesis of Zn(BH{sub 4}){sub 2} and Gas Absorption and Release Characteristics of Zn(BH{sub 4}){sub 2}, Ni, or Ti-Added MgH{sub 2}–Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Jun; Lee, Seong Ho; Kwon, Sung Nam; Park Il Woo; Song, Myoung Youp [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-07-15

    A sample [named Zn(BH{sub 4}){sub 2}(+NaCl)] was synthesized by milling ZnCl{sub 2} and NaBH{sub 4} at 400 rpm under argon gas for 2 h. And Zn(BH{sub 4}){sub 2}(+NaCl)+MgH{sub 2} sample was prepared by milling MgH{sub 2} in a planetary ball mill and mixing with the Zn(BH{sub 4}){sub 2}(+NaCl) synthesized by milling for 4 h in a mortar with a pestle. Then the gas-release characteristics of the two samples were investrigated. Analyses of XRD patterns and FT-IR spectra, as well as TGA, DTA, and SEM observations, were also performed. After heating the samples to 400 ℃, the weight losses of Zn(BH{sub 4}){sub 2}(+NaCl) and Zn(BH{sub 4}){sub 2}(+NaCl)+MgH{sub 2} were 11.2 and 8.2 wt%, respectively, with respect to the sample weight. The DTA results for the two samples showed a decomposition peak for Zn(BH{sub 4}){sub 2} at about 61 ℃. The DTA result of Zn(BH{sub 4}){sub 2}(+NaCl) + MgH{sub 2} showed a decomposition peak for MgH{sub 2} at about 374 ℃. A sample of Zn(BH{sub 4}){sub 2}(+NaCl)+MgH{sub 2} to which Ni, and Ti were added, with a composition of 90 wt% MgH{sub 2}-5 wt% Zn(BH{sub 4}){sub 2}(+NaCl)-2.5 wt% Ni-2.5 wt% Ti, in which a large amount of MgH2 is contained in order to make a large quantity of hydrogen be absorbed and released reversibly, was also prepared. The experimental results showed that addition of Zn(BH{sub 4}){sub 2}(+NaCl), Ni, or Ti increased the dehydriding rate of MgH{sub 2}, while decreased its initial hydriding rate.

  9. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    Science.gov (United States)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  10. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    Science.gov (United States)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  11. Arbuscular mycorrhizal fungi mitigates nacl induced adverse effects on solanum lycopersicum l

    International Nuclear Information System (INIS)

    Abeer, H.

    2015-01-01

    The present study aimed to investigate the effects of AMF on the growth and physio-biochemical attributes, antioxidant enzyme activities, plant growth regulators and inorganic nutrients in tomato grown under salt stress condition. Tomato plants were exposed to different concentrations of NaCl alone (0, 50 and 150 mM) and in combination with AMF (0mM+AMF, 50mM+AMF and 150mM+AMF). Spore population and colonization, growth and biomass yield, pigments, membrane stability index and malondialdehyde were negatively affected. Exposure of plants to combination of NaCl and AMF showed positive impact on the above parameters. Proline and antioxidant enzyme activity increased with increasing concentration of NaCl and further increase was observed in plants treated with NaCl in combination with AMF. Acid and alkaline phosphatase, hydrolytic enzymes and pectinase are also affected with increasing concentration of salt. However plants treated with NaCl in combination with AMF balances the above enzymatic activity. Salt stress decreases the auxin concentration in plants but application of AMF has been shown to restore the auxin content. ABA increases with salt concentration but less accumulation of ABA have been found in plants treated with AMF. Regarding the nutrient uptake, Na+ and Na;K ratio increased and P, K, Mg and Ca decreases with increasing concentration of NaCl. Enhanced accumulation of P, K, Mg, Ca and K:N ratio and less uptake of Na+ was observed in presence of AMF. The results confirm that NaCl imposes threat to the survival of tomato plants and application of AMF mitigates the negative effect to an appreciable level. (author)

  12. Anodic dissolution and corrosion of alloy Cu30Ni in chloride solutions

    International Nuclear Information System (INIS)

    Zolotarev, E.I.

    1989-01-01

    The anodic and corrosion behavior of alloy Cu30Ni is studied in a solution of 3 N NaCl + 0.01 N HCl by a radiometric method using gamma isotopes of 58 Co (as a marker for Ni) and 64 Cu in combination with electrochemical measurements. It was established that under stationary conditions there was uniform dissolution of the alloy both during free corrosion and anodic polarization. The authors obtained partial anodic dissolution curves for the components of the alloy. It was shown that the dissolution kinetics differed from the mechanisms controlling dissolution of the corresponding pure metals. During corrosion of the alloy in an oxygen atmosphere a back precipitation of copper on the surface of the alloy was not observed. The characteristics observed in the corrosion-electrochemical behavior of the alloy in concentrated chloride solutions can be explained by the presence of Ni on the surface of the dissolving alloy

  13. Effect of mycorrhiza symbiosis on the Nacl salinity in Sorghum bicolor

    African Journals Online (AJOL)

    In order to determine mycorrhizal symbiosis on the Nacl salinity tolerance in Sorghum bicolor (aspydfyd cultivar), an experiment with two factors was done in Damghan Islamic Azad University laboratory (Iran) in 2007. The first factor with two levels (mycorihizal and non-mycorihizal) and second factor with six levels Nacl ...

  14. Effect of NaCl on seed germination in some Centaurium Hill. Species (Gentianaceae

    Directory of Open Access Journals (Sweden)

    Živković S.

    2007-01-01

    Full Text Available The influence of high NaCl concentrations on seed germination in both light and darkness was examined in the species Centaurium pulchellum, C. erythraea, C. littorale, C. spicatum, and C. tenuiflorum. Salt tolerance was found to depend on the life history of the seeds. To be specific, seeds of all five species failed to complete germination when exposed to continuous white light if kept all the time in the presence of 100-200 mM and greater NaCl concentrations. However, when after two weeks NaCl was rinsed from the seeds and the seeds were left in distilled water under white light for an additional two weeks, all species completed germination to a certain extent. The percent of germination not only depended on NaCl concentration in the prior medium, but was also species specific. Thus, seeds of C. pulchellum, C. erythraea, and C. littorale completed germination well almost irrespective of the salt concentration previously experienced. On the other hand, seeds of C. tenuiflorum completed germination poorly if NaCl concentrations in the prior media were greater than 200 mM. When seeds after washing were transferred to darkness for an additional 14 days, they failed to complete germination if previously imbibed on media containing NaCl concentrations greater than 400 mM. However, the seeds of all species, even if previously imbibed at 800 mM NaCl, could be induced to complete germination in darkness by 1 mM gibberellic acid. .

  15. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    Science.gov (United States)

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  16. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    International Nuclear Information System (INIS)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M.

    2003-01-01

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant

  17. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M

    2003-07-25

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant.

  18. Visible laser induced positive ion emissions from NaCl nanoparticles prepared by droplet rapid drying

    International Nuclear Information System (INIS)

    Sun, Mao-Xu; Guo, Deng-Zhu; Xing, Ying-Jie; Zhang, Geng-Min

    2012-01-01

    Highlights: ► NaCl nanoparticles were firstly prepared by heat induced explosion on silicon wafer. ► We found that laser induced ion emissions from NaCl nanoparticles are more prominent. ► We found that water adsorption can efficiently enhance laser induced ion emissions. ► The ultra-photothermal effect in NaCl nanoparticles was observed and explained. - Abstract: A novel convenient way for the formation of sodium chloride (NaCl) nanoparticles on silicon wafer is proposed by using a droplet rapid drying method. The laser induced positive ion emissions from NaCl nanoparticles with and without water treatment is demonstrated by using a laser desorption/ionization time-of-flight mass spectrometer, with laser intensity well below the plasma formation threshold. It is found that the positive ion emissions from NaCl nanoparticles are obviously higher than that from microsize NaCl particles under soft 532 nm laser irradiations, and water adsorption can efficiently enhance the ion emissions from NaCl nanoparticles. The initial kinetic energies of the emitted ions are estimated as 16–17 eV. The synergy of the ultra-thermal effect in nanomaterials, the defect-mediated multiphoton processes, and the existence of intermediate states in NaCl-water interfaces are suggested as the mechanisms.

  19. Equilibrium chemical transformations in NaPO3 + NaCl melts

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Rodionov, Yu.I.

    1988-01-01

    Because of the problems of the burial of solidified radioactive wastes into different geological rock formations, in particular into massives of rock-salt, the state of molten polyphosphate-chloride mixtures (taking into account the chemical character of the interaction of their components) for a prolonged period of time. The equilibrium products of the reaction in the NaPO 3 -NaCl system were studied in melts in air in the composition range of 30-70 mole % NaCl. It was shown that with increase in the NaCl content in the mixtures, the polyphosphate gradually depolymerizes to sodium tri-, di-, and monophosphates, and the composition of the equilibrium melts is dependent only on the ratio between the components in the initial molten mixtures. The time until the equilibrium is attained is shorter, the higher is the experimental temperature

  20. Cr-Ni ALLOY ELECTRODEPOSITION AND COMPARISON WITH CONVENTIONAL PURE Cr COATING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    M. Moniruzzaman

    2012-12-01

    Full Text Available Cr coating is widely used as the outer surface of precision parts due to its attractive appearance and superior corrosion resistance properties. It is obtained by electrodeposition via a conventional bath with hexavalent Cr ions. This manufacturing technique has many drawbacks, such as very low efficiency and high operating temperature and it is hazardous to health. In this work, we studied a Cr-Ni alloy deposition technique and compared the alloy coating properties to those with conventional Cr coating. Sequential two-step alloy electrodeposition was also compared. We took varying concentrations of Cr, Ni and complexing agents for the electrodeposition of Cr-Ni alloy and sequential Cr-Ni alloy coating on mild steel. Operating parameters, i.e. current density and temperature, were varied to examine their effects on the coating properties. The coatings thus obtained were characterized by visual observation, corrosion test, microhardness measurement, morphology and chemical analysis. The Cr-Ni alloy coating was found to be more corrosion resistant in 5% NaCl solution and harder than the pure Cr coating obtained by conventional electrodeposition. Toxic gas was produced in a much lower extent in the alloy coating than the conventional Cr coating technique. Again, the two-step Cr-Ni alloy coating was found better in terms of corrosion resistance as well as hardness compared to the Cr-Ni alloy coating. The process was also found to be much more environmentally friendly.

  1. Irreversible dilation of NaCl contaminated lime-cement mortar due to crystallization cycles

    International Nuclear Information System (INIS)

    Lubelli, B.; Hees, R.P.J. van; Huinink, H.P.; Groot, C.J.W.P.

    2006-01-01

    The mechanism of damage occurring in NaCl contaminated materials has not been clarified yet. Apart from crystallization pressure, other hypotheses have been proposed to explain the cause of decay. Irreversible dilation has been observed in a few cases but has never been studied in a more systematic way. The aim of the research is to contribute to the modeling of this phenomenon. In the present paper the effect of NaCl on the hydric and hygric behavior of a lime-cement mortar is extensively studied. The results indicate that NaCl influences the hydric and hygric dilation behavior of the material. The material contaminated with NaCl shrinks during dissolution and dilates during crystallization of the salt. This dilation is irreversible and sufficient to damage the material after few dissolution/crystallization cycles. This behavior is not restricted to NaCl, but is observed in the presence of other salts as well (NaNO 3 and KCl). Outcomes of electron microscopy studies suggest that salts causing irreversible dilation tend to crystallize as layers on the pore wall

  2. The effect of NaCl substitution by KCl on telemea cheese properties

    Directory of Open Access Journals (Sweden)

    Mihai ANGHELOIU

    2016-12-01

    Full Text Available The effect of partial or total substitution of sodium chloride by potassium chloride on the chemical composition, texture profile and sensory properties of Telemea cheese during 28 days of ripening at 4°C was evaluated in the current study. Telemea cheese was ripened in 4 different brine solutions (20%, wt/wt made from different NaCl:KCl ratios as follows: (NaCl (A, KCl (B, 1NaCl:1KCl (C and 1NaCl:2KCl (D. The physicochemical properties of Telemea cheese (dry matter, fat, protein, ash, pH, total nitrogen (TN, water soluble nitrogen (WSN and ripening degree values were determined after 1, 7, 14, 21 and 28 days of ripening. Dry matter, pH and ripening degree values were significantly (p < 0.05 affected during ripening. The results of this study indicated that replacing 66% NaCl with KCl influenced the texture profile and sensorial characteristics of Telemea cheese.

  3. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy

    Science.gov (United States)

    Wang, Hui-Long; Liu, Ling-Yun; Dou, Yong; Zhang, Wen-Zhu; Jiang, Wen-Feng

    2013-12-01

    In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings.

  4. Nanocrystalline soft ferromagnetic Ni-Co-P thin film on Al alloy by low temperature electroless deposition

    International Nuclear Information System (INIS)

    Aal, A. Abdel; Shaaban, A.; Hamid, Z. Abdel

    2008-01-01

    Soft ferromagnetic ternary Ni-Co-P films were deposited onto Al 6061 alloy from low temperature Ni-Co-P electroless plating bath. The effect of deposition parameters, such as time and pH, on the plating rate of the deposit were examined. The results showed that the plating rate is a function of pH bath and the highest coating thickness can be obtained at pH value from 8 to10. The surface morphology, phase structure and the magnetic properties of the prepared films have been investigated using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD) and vibrating magnetometer device (VMD), respectively. The deposit obtained at optimum conditions showed compact and smooth with nodular grains structure and exhibited high magnetic moments and low coercivety. Potentiodynamic polarization corrosion tests were used to study the general corrosion behavior of Al alloys, Ni-P and Ni-Co-P coatings in 3.5% NaCl solution. It was found that Ni-Co-P coated alloy demonstrated higher corrosion resistance than Ni-P coating containing same percent of P due to the Co addition. The Ni-Co-P coating with a combination of high corrosion resistance, high hardness and excellent magnetic properties would be expected to enlarge the applications of the aluminum alloys

  5. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Priyotomo, Gadang, E-mail: gada001@lipi.go.id; Nuraini, Lutviasari, E-mail: Lutviasari@gmail.com [Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Gd.474, Setu, Tangerang Selatan, Banten 15314 (Indonesia); Kaneno, Yasuyuki, E-mail: kaneno@mtr.osakafu-u.ac.id [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  6. The Salty Scrambled Egg: Detection of NaCl Toward CRL 2688

    Science.gov (United States)

    Highberger, J. L.; Thomson, K. J.; Young, P. A.; Arnett, D.; Ziurys, L. M.

    2003-08-01

    NaCl has been detected toward the circumstellar envelope of the post-AGB star CRL 2688 using the IRAM 30 m telescope, the first time this molecule has been identified in a source other than IRC +10216. The J=7-->6, 11-->10, 12-->11, and 18-->17 transitions of NaCl at 1, 2, and 3 mm have been observed, as well as the J=8-->7 line of the 37Cl isotopomer. The J=12-->11 line was also measured at the ARO 12 m telescope. An unsuccessful search was additionally conducted for AlCl toward CRL 2688, although in the process new transitions of NaCN were observed. Both NaCl and NaCN were found to be present in the AGB remnant wind, as suggested by their U-shaped line profiles, indicative of emission arising from an optically thin, extended shell-like source of radius ~10"-12". These data contrast with past results in IRC +10216, where the distribution of both molecules is confined to within a few arcseconds of the star. A high degree of excitation is required for the transitions observed for NaCl and NaCN; therefore, these two species likely arise in the region where the high-velocity outflow has collided with the remnant wind. Here the effects of shocks and clumping due to Rayleigh-Taylor instabilities have raised the densities and temperatures significantly. The shell source is thus likely to be clumpy and irregular. The chemistry producing the sodium compounds is consequently more complex than simple LTE formation. Abundances of NaCl and NaCN, relative to H2, are f~1.6×10-10 and ~5.2×10-9, respectively, while the upper limit to AlCl is f<2×10-9. These values differ substantially from those in IRC +10216, where AlCl has an abundance near 10-7. The NaCl observations additionally indicate a chlorine isotope ratio of 35Cl/37Cl=2.1+/-0.8 in CRL 2688, suggestive of s-process enhancement of chlorine 37.

  7. A possible NaCl pathway in the bioregenerative human life support system

    Science.gov (United States)

    Polonskiy, V. I.; Gribovskaya, I. V.

    One of the ways to involve NaCl in the mass exchange of the bioregenerative human life support system (BLSS) is to grow some vegetables and leafy greens that can accumulate sodium chloride at high concentrations in their edible biomass. Lettuce, celery cabbage, chard, dill and radish plants were grown hydroponically in Knop's nutrient solution. In the first series of experiments, at the end of the growth period the plants were grown on solutions containing 2-14 g/L of NaCl for 1-5 days. It was found that the amount of sodium in edible biomass of the plants increased with NaCl concentration in the solution and with the time plants were irrigated with that solution. The content of NaCl in the biomass of leaves and edible roots was considerable—up to 10% dry matter. At the same time, the amount of water in the leaves decreased and productivity of the treatment plants was 14-28% lower than that of the control ones, grown on Knop's solution. The treatment plants contained less than half of the amount of nitrates recorded in the control ones. Expert evaluation showed that the taste of the vegetables and leafy greens of the treatment group were not inferior to the taste of the control plants. In the second series of experiments, prior to being grown on the NaCl solution, the plants were irrigated with water for 2, 4 or 6 days. It was found that lower salt status of the plants was not favorable for increased salt accumulation in their biomass. If a human consumes 30 g salad vegetables and follows a low-sodium diet (3 g/d of table salt), it may be feasible to recycle NaCl in the BLSS using vegetables and leafy greens.

  8. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    International Nuclear Information System (INIS)

    Sun Xiaonan; Silly, Fabien

    2010-01-01

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22x√(3)) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22x√(3)). Local atomic hexagonal packing has also been observed in the NaCl(1 0 0) layer. At submonolayer NaCl coverage, PTCDA forms two-dimensional islands on the Au(1 1 1) surface and nucleate preferentially at the NaCl island step edges. When the Au surface is fully covered with NaCl layers, PTCDA molecules form three-dimensional molecular clusters decorating the step edges of NaCl layers.

  9. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiaonan [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands); Silly, Fabien, E-mail: Fabien.silly@cea.fr [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands); CEA, IRAMIS, SPCSI, Nanostructures and Organic Semiconductors Laboratory, F-91191 Gif-sur-Yvette (France); UPMC, IPCM, UMR CNRS 7201, 4 place Jussieu, F-75005 Paris (France)

    2010-01-15

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22x{radical}(3)) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22x{radical}(3)). Local atomic hexagonal packing has also been observed in the NaCl(1 0 0) layer. At submonolayer NaCl coverage, PTCDA forms two-dimensional islands on the Au(1 1 1) surface and nucleate preferentially at the NaCl island step edges. When the Au surface is fully covered with NaCl layers, PTCDA molecules form three-dimensional molecular clusters decorating the step edges of NaCl layers.

  10. [Effect of NaCl stress on ion compartmentation, photosynthesis and growth of Salicornia bigelovii Torr].

    Science.gov (United States)

    Wang, Li-Yan; Zhao, Ke-Fu

    2004-02-01

    Seedlings of Salicornia bigelovii Torr. were treated with different concentrations of NaCl (0, 100, 300, 600 mmol/L). Ion contents, Na(+) subcelluar localization, photosynthetic rate, ultrastructure of chloroplast and other parameters were measured. The data showed both fresh and dry weight of whole plant of Salicornia bigelovii Torr. under salinity were higher than the control. When NaCl concentration is about 300 mmol/L Salicornia bigelovii Torr. grow strongest. The contents of Na(+) and Cl(-) and c(Na)/c(K) in shoots increased with the salinity. Both Na(+) and Cl(-) were mainly transported to shoots. Ion X-ray microanalysis indicated Na(+) was mainly compartmentalized into vacuoles. Photosynthetic rate increased with the salinity under NaCl 100-300 mmol/L, but declined under NaCl 600 mmol/L. Ultrastructure of chloroplast was destroyed by NaCl 600 mmol/L.

  11. Propagating particle density fluctuations in molten NaCl

    International Nuclear Information System (INIS)

    Demmel, F.; Hosokawa, S.; Pilgrim, W.-C.; Lorenzen, M.

    2004-01-01

    In this paper we present the observation of acoustic modes in the spectra of molten NaCl measured over a large momentum transfer range using synchrotron radiation. A surprisingly large positive dispersion was deduced with a mode velocity exceeding the adiabatic value by nearly 70%. The large effect seems to be describable as a viscoelastic reaction of the liquid. Additionally, the derived dispersion resembles the Q-ω relation of the acoustic modes in liquid sodium. As an explanation for the large positive dispersion we propose that the density fluctuations in molten NaCl can be interpreted as a decoupled motion of the lighter and smaller cations on a nearly resting anionic background. These molten alkali halide measurements are the first experimental evidences for the so-called fast sound in a binary ionic liquid

  12. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    Science.gov (United States)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  13. Ab initio interionic potentials for NaCl by multiple lattice inversion

    International Nuclear Information System (INIS)

    Zhang Shuo; Chen Nanxian

    2002-01-01

    Based on the Chen-Moebius lattice inversion and a series of pseudopotential total-energy curves, a different method is presented to derive the ab initio interionic pair potentials for B1-type ionic crystals. Comparing with the experimental data, the static properties of B1- and B2-type NaCl are well reproduced by the interionic potentials. Moreover, the phase stability of B1-NaCl has been described by the energy minimizations from the global deformed and disturbed states. The molecular-dynamics simulations for the molten NaCl indicate that the calculated mean-square displacements, radial distribution function, and diffusion coefficients gain good agreements with the experimental results. It can be concluded that the inversion pair potentials are valid over a wide range of interionic separations for describing the structural properties of B1-type ionic crystals

  14. Low-field NMR determination of water distribution in meat batters with NaCl and polyphosphate addition.

    Science.gov (United States)

    Shao, Jun-Hua; Deng, Ya-Min; Jia, Na; Li, Ru-Ren; Cao, Jin-Xuan; Liu, Deng-Yong; Li, Jian-Rong

    2016-06-01

    The objective was to elucidate the influence of NaCl and polyphosphates in the stage of protein swelling on the water-holding capacity (WHC) of meat batter. The meat batters were formulated with salt in different ways by adding established amounts of only NaCl, only polyphosphates, jointly adding NaCl and polyphosphates, and a control without any salt. An increase (pwater retention was found when a combination of NaCl and polyphosphates was used. A high textural parameter was observed in the two treatments with NaCl, but not in the group with only polyphosphate. For the polyphosphate group, T22 was lower (pwater, particularly with polyphosphate, but polyphosphate could not be an equal substitute for NaCl given its resulting lowest textural properties and poor microstructure. By presenting different hydration states in the protein swelling stage, the meat batter qualities were differentiated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress.

    Science.gov (United States)

    Masood, Sajid; Saleh, Livia; Witzel, Katja; Plieth, Christoph; Mühling, Karl H

    2012-07-01

    Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 μM H₃BO₃ (control), 75 mM NaCl, 200 μM H₃BO₃, or 75 mM NaCl + 200 μM H₃BO₃, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Effects of dilute aqueous NaCl solution on caffeine aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam (India)

    2013-11-21

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  17. Effects of dilute aqueous NaCl solution on caffeine aggregation

    International Nuclear Information System (INIS)

    Sharma, Bhanita; Paul, Sandip

    2013-01-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl

  18. In situ AFM study on barite (0 0 1) surface dissolution in NaCl solutions at 30 °C

    International Nuclear Information System (INIS)

    Kuwahara, Yoshihiro; Makio, Masato

    2014-01-01

    Highlights: • We examined barite surface dissolution behavior in NaCl solutions by AFM. • Step retreat and step splitting behavior changed with the NaCl concentration. • Etch pit formation and development differed in each NaCl solution. • Step retreat and etch pit growth rates increased with the NaCl concentration. • We assessed the effects of temperature and NaCl concentration on these rates. - Abstract: This paper reports in situ observations on barite (0 0 1) surface dissolution behavior in 0.1–0.001 M NaCl solutions at 30 °C using atomic force microscopy (AFM). The step retreating on barite (0 0 1) surfaces changed with increasing NaCl solution concentrations. In solutions with a higher NaCl concentration (⩾0.01 M), many steps showed curved or irregular fronts during the later experimental stage, while almost all steps in solutions with a lower NaCl concentration exhibited straight or angular fronts, even during the late stage. The splitting phenomenon of the initial 〈h k 0〉 one-layer steps (7.2 Å) into two half-layer steps (3.6 Å) occurred in all NaCl solutions, while that of the initial [0 1 0] one-layer steps observed only in the 0.1 M NaCl solution. The step retreat rates increased with an increasing NaCl solution concentration. We observed triangular etch pit and deep etch pit formation in all NaCl solutions, which tended to form late in solutions with lower NaCl concentrations. The deep etch pit morphology changed with increasing NaCl solution concentrations. A hexagonal form elongated in the [0 1 0] direction was bounded by the {1 0 0}, {3 1 0}, and (0 0 1) faces in a 0.001 M NaCl solution, and a rhombic form was bounded by the {5 1 0} and (0 0 1) faces in 0.01 M and 0.1 M NaCl solutions. An intermediate form was observed in a 0.005 M NaCl solution, which was defined by {1 0 0}, a curved face tangent to the [0 1 0] direction, {3 1 0}, and (0 0 1) faces: the intermediate form appeared between the hexagonal and rhombic forms in

  19. Long-term adaptation of methanol-fed thermophilic (55°C) sulfate-reducing reactors to NaCl

    NARCIS (Netherlands)

    Vallero, M.V.G.; Lettinga, G.; Lens, P.N.L.

    2003-01-01

    A laboratory-scale upflow anaerobic sludge bed (UASB) reactor was operated during 273 days at increasing NaCl concentrations (0.5-12.5 g NaCl l(-1)) to assess whether the stepwise addition of the salt NaCl results in the acclimation of that sludge. The 6.5-1 thermophilic (55 degreesC), sulfidogenic

  20. Proteomic changes in Debaryomyces hansenii upon exposure to NaCl stress

    DEFF Research Database (Denmark)

    Gori, Klaus; Hébraud, Michel; Chambon, Christophe

    2007-01-01

    The proteome of the highly NaCl-tolerant yeast Debaryomyces hansenii was investigated by two-dimensional polyacrylamide gel electrophoresis (2D PAGE), and 47 protein spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) followed by mass spectrometry (MS...... 7% and 4% of the rate in medium without NaCl. In addition, the number of protein spots detected on 2D gels prepared from cells exposed to 8% and 12% (w/v) NaCl exceeded less than 28% of the number of protein spots detected on 2D gels prepared from cells without added NaCl. Several proteins were...

  1. Effect of NaCl and KCl on irradiated diploid yeast cells

    International Nuclear Information System (INIS)

    Amirtaev, K.G.; Lobachevskij, P.N.; Lyu Gvan Son

    1984-01-01

    Irradiated dipload yeast Saccharomyces cerevisiae kept in NaCl and KCl solutions died more readily than nonirradiated cells: the death rate was a functaon of radiation Jose and temperature of exposure. It was suggested that the radiation-induced injury to mass cell structures was responsible for the death rate. It was shown that the postirradiataon recovery of cells from radiation damages proceeded in KCl solution two-three times slower than mn water, and it was inhibited completely in NaCl solution

  2. Proteomic analysis of the response to NaCl stress of Lactobacillus bulgaricus.

    Science.gov (United States)

    Li, Chun; Li, Pei-Zhao; Sun, Jin-Wei; Huo, Gui-Cheng; Liu, Li-Bo

    2014-11-01

    Lactobacillus bulgaricus is commonly used in dairy products as a starter culture. Its viability during freeze-drying is of commercial interest. Here a significant (p bulgaricus ATCC 11842 was achieved during freeze-drying when it was prestressed with 2 % (w/v) NaCl for 2 h in the late growth phase. To understand the mechanism of this stress-related viability improvement in L. bulgaricus, protein synthesis was analyzed by 2D difference gel electrophoresis. Nine protein spots were significantly altered by NaCl and were subsequently identified by peptide mass fingerprinting. The functions of the proteins included stress-related protein synthesis, amino acid biosynthesis, nucleotide biosynthesis, sugar metabolism, transport systems, and vitamin biosynthesis. These findings provide a considerable background regarding the NaCl stress response of L. bulgaricus.

  3. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying.

    Science.gov (United States)

    Li, Chun; Sun, Jinwei; Qi, Xiaoxi; Liu, Libo

    2015-01-01

    The viability of Lactobacillus bulgaricus in freeze-drying is of significant commercial interest to dairy industries. In the study, L.bulgaricus demonstrated a significantly improved (p enzymes in glycolysis during 2% NaCl stress were studied. NaCl stress significantly enhanced (p enzymes (phosphofructokinase, pyruvate kinase, and lactate dehydrogenase) decreased during freeze-drying, and NaCl stress were found to improve activities of these enzymes before and after freeze-drying. However, a transcriptional analysis of the corresponding genes suggested that the effect of NaCl stress on the expression of the pfk2 gene was not obvious. The increased survival of freeze-dried cells of L. bulgaricus under NaCl stress might be due to changes in only the activity or translation level of these enzymes in different environmental conditions but have no relation to their mRNA transcription level.

  4. Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys

    Energy Technology Data Exchange (ETDEWEB)

    El-Awadi, G.A., E-mail: gaberelawdi@yahoo.com [Atomic Energy Authority, NRC, Cyclotron Project, Abo-zabal, 13759 Cairo (Egypt); Abdel-Samad, S., E-mail: salem_abdelsamad@yahoo.com [Atomic Energy Authority, NRC, Cyclotron Project, Abo-zabal, 13759 Cairo (Egypt); Elshazly, Ezzat S. [Atomic Energy Authority, NRC, Metallurgy Dept., Abo-zabal, 13759 Cairo (Egypt)

    2016-08-15

    Highlights: • Supperalloy good resistance to high temperature oxidation. • Ni-base alloy IN738 and Inconel 617 good resistance to hot corrosion. • Corrosion resistance of supperalloys depending on environment of abrasive ions such as (NaCl or NaSO{sub 4}). • Hot corrosion resistance depend on what the oxides phases where formed. - Abstract: Superalloys are extensively used at high temperature applications due to their good oxidation and corrosion resistance properties in addition to their high stability were made at high temperature. Experimental measurements of hot corrosion at high temperature of Inconel 617 and Inconel 738 superalloys. The experiments were carried out at temperatures 700 °C, 800 °C and 900 °C for different exposure times to up to 100 h. The corrosive media was NaCl and Na{sub 2}SO{sub 4} sprayed on the specimens. Seven different specimens were used at each temperature. The corrosion process is endothermic and the spontaneity increased by increasing temperature. The activation energy was found to be Ea = 23.54 and E{sub a} = 25.18 KJ/mol for Inconel 738 and Inconel 617 respectively. X-ray diffraction technique (XRD) was used to analyze the formed scale. The morphology of the specimen and scale were examined by scanning electron microscopy (SEM). The results show that the major corrosion products formed were NiCr{sub 2}O{sub 4}, and Co Cr{sub 2}O{sub 4} spinles, in addition to Cr{sub 2}O{sub 3}.

  5. Comparative study of electroless Co-Ni-P plating on Tencel fabric by Co0-based and Ni0-based activation for electromagnetic interference shielding

    Science.gov (United States)

    Bi, Siyi; Zhao, Hang; Hou, Lei; Lu, Yinxiang

    2017-10-01

    The primary objective of this research work was to develop high-performance conductive fabrics with desired electromagnetic interference (EMI) shielding effectiveness (SE), excellent durability and improved corrosion resistance. Such conductive fabrics were fabricated by combining an ultra-low-cost electroless plating method with an alkoxy silane self-assembly technology, which involved successive steps of modification, activation, Co-Ni-P coating deposition and 3-aminopropyltrimethoxysilane (APTMS) thin coatings assembling. Malic acid (MA) was selected to modify the pristine Tencel (TS) substrates, and the probably interaction mechanism was investigated by FT-IR measurement. Co0 and Ni0 nanoparticles (NPs) were used as the activators to initiate electroless plating, respectively, and thereby two categories of Co-Ni-P coatings with different Co/Ni atomic ratio were obtained. Both of them presented compact morphologies and preferential (1 1 1) crystal orientation, which were validated by FE-SEM and XRD measurements. Owing to the lower square resistance and higher magnetic properties, the Co-Ni-P coated fabric activated by Co0 activator showed a higher EMI SE (18.2-40.1 dB) at frequency of 30-1000 MHz. APTMS thin coatings were then assembled on the top of alloy coated fabrics to act as anti-corrosion barriers. Electrochemical polarization measurement in 3.5 wt.% NaCl solution showed that top-APTMS coated conductive fabric exhibited a higher corrosion resistance than the one in absence of APTMS assembly. Overall, the whole process of fabrication could be performed in several hours (or less) without any specialized equipment, which shows a great potential as EMI shielding fabrics in mass-production.

  6. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    International Nuclear Information System (INIS)

    Xu Jiang; Tao Jie; Jiang Shuyun; Xu Zhong

    2008-01-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 deg. C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2 O 3 , MoO 3 , SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer

  7. Improve the corrosion and cytotoxic behavior of NiTi implants with use of the ion beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, L. L., E-mail: llm@isps.tsc.ru; Meisner, S. N. [Institute of Strength Physics and Materials Science SB RAS, 2/4 Akademichesky Ave., Tomsk, 634021 (Russian Federation); National Research Tomsk State University, 36, Lenina Avenue, Tomsk, 634050 (Russian Federation); Matveeva, V. A.; Matveev, A. L. [Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,Russian Academy of Sciences, Novosibirsk, 630090 (Russian Federation)

    2015-11-17

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ∼3400 and ∼6000 h, respectively. It is found that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.

  8. Dry sliding wear behavior and corrosion resistance of NiCrBSi coating deposited by activated combustion-high velocity air fuel spray process

    International Nuclear Information System (INIS)

    Liu, Shenglin; Zheng, Xueping; Geng, Gangqiang

    2010-01-01

    NiCrBSi is a Ni-based superalloy widely used to obtain high wear and corrosion resistant coatings. This Ni-based alloy coating has been deposited onto 0Cr13Ni5Mo stainless steel using the AC-HVAF technique. The structure and morphologies of the Ni-based coatings were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS). The wear resistance and corrosion resistance were studied. The tribological behaviors were evaluated using a HT-600 wear test rig. The wear resistance of the Ni-based coating was shown to be higher than that of the 0Cr13Ni5Mo stainless steel because Fe 3 B, with high hardness, was distributed in the coating so the dispersion strengthening in the Ni-based coating was obvious and this increased the wear resistance of the Ni-based coating in a dry sliding wear test. Under the same conditions, the worn volume of 0Cr13Ni5Mo stainless steel was 4.1 times greater than that of the Ni-based coating. The wear mechanism is mainly fatigue wear. A series of the electrochemical tests was carried out in a 3.5 wt.% NaCl solution in order to examine the corrosion behavior. The mechanisms for corrosion resistance are discussed.

  9. DNA scanning mechanism of T4 endonuclease V. Effect of NaCl concentration on processive nicking activity

    International Nuclear Information System (INIS)

    Gruskin, E.A.; Lloyd, R.S.

    1986-01-01

    T4 endonuclease V is a pyrimidine dimer-specific endonuclease which generates incisions in DNA at the sites of pyrimidine dimers by a processive reaction mechanism. A model is presented in which the degree of processivity is directly related to the efficacy of the one-dimensional diffusion of endonuclease V on DNA by which the enzyme locates pyrimidine dimers. The modulation of the processive nicking activity of T4 endonuclease V on superhelical covalently closed circular DNA (form I) which contains pyrimidine dimers has been investigated as a function of the ionic strength of the reaction. Agarose gel electrophoresis was used to separate the three topological forms of the DNA which were generated in time course reactions of endonuclease V with dimer-containing form I DNA in the absence of NaCl, and in 25, 50, and 100 mM NaCl. The degree of processivity was evaluated in terms of the mass fraction of form III (linear) DNA which was produced as a function of the fraction of form I DNA remaining. Processivity is maximal in the absence of NaCl and decreases as the NaCl concentration is increased. At 100 mM NaCl, processivity is abolished and endonuclease V generates incisions in DNA at the site of dimers by a distributive reaction mechanism. The change from the distributive to a processive reaction mechanism occurs at NaCl concentrations slightly below 50 mM. The high degree of processivity which is observed in the absence of NaCl is reversible to the distributive mechanism, as demonstrated by experiments in which the NaCl concentration was increased during the time course reaction. In addition, unirradiated DNA inhibited the incision of irradiated DNA only at NaCl concentrations at which processivity was observed

  10. Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: liu_yunli@hotmail.com [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom); Beckett, D.; Hawthorne, D. [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom)

    2011-02-15

    Electroless black nickel-phosphorus plating is an advanced electroless nickel plating process formulated to deposit a black finish when processed through an oxidizing acid solution. Heat treatment, five types of top organic coating techniques and one conversion coating technique with three different experimental conditions were investigated to stabilize the black film and increase the hardness and corrosion resistance. Morphology and compositions of electroless nickel-phosphorous films with or without heat treatment, with five types of top organic coatings, and with three conversion coatings were compared to examine nickel, phosphorus, oxygen, carbon, silicon and chrome contents on the corrosion resistance of black surfaces by energy dispersive X-ray microanalysis and scanning electron microscope. Corrosion resistance of black electroless nickel-phosphorus coatings with or without heat treatment, with five types of top organic coatings, and with three conversion coatings was investigated by the polarization measurements and the salt spray test in 5% NaCl solution, respectively. HydroLac as the top organic coating from MacDermid showed the excellent corrosion resistance and the black EN film did not lose the black color after 48 h salt spray test. Electrotarnil B process with 0.5 ASD for 1 min stabilized the black Ni-P film immediately and increased the hardness and corrosion performance of the black Ni-P film. The black Ni-P coating with Electroarnil B process passed the 5% NaCl salt spray test for 3000 h in the black color and had a minimal corrosion current 0.8547 {mu}A/cm{sup 2} by the polarization measurement.

  11. Supercooling of aqueous NaCl and KCl solutions under acoustic levitation.

    Science.gov (United States)

    Lü, Y J; Wei, B

    2006-10-14

    The supercooling capability of aqueous NaCl and KCl solutions is investigated at containerless state by using acoustic levitation method. The supercooling of water is obviously enhanced by the alkali metal ions and increases linearly with the augmentation of concentrations. Furthermore, the supercooling depends on the nature of ions and is 2-3 K larger for NaCl solution than that for KCl solution in the present concentration range: Molecular dynamics simulations are performed to reveal the intrinsic correlation between supercoolability and microstructure. The translational and orientational order parameters are applied to quantitatively demonstrate the effect of ionic concentration on the hydrogen-bond network and ice melting point. The disrupted hydrogen-bond structure determines essentially the concentration dependence of supercooling. On the other hand, the introduced acoustic pressure suppresses the increase of supercooling by promoting the growth and coalescence of microbubbles, the effective nucleation catalysts, in water. However, the dissolved ions can weaken this effect, and moreover the degree varies with the ion type. This results in the different supercoolability for NaCl and KCl solutions under the acoustic levitation conditions.

  12. Effects of different NaCl Concentrations on germination and ...

    African Journals Online (AJOL)

    USER

    Salinity refers to the salt content of any given system. By nature, arid .... Effect of varying concentrations of NaCl on seed germination of Amaranthus hybridus in percentages. .... Osmotic differences could explain this phenomenon where by ...

  13. Nano-sized precipitated formations in irradiated NaCl

    NARCIS (Netherlands)

    Sugonyako, Anton V.

    2007-01-01

    The interest in the formation of radiation damage in alkali halides and in particular, in NaCl, is stimulated by the fact that rock-salt in stable geological formations is a prominent candidate medium for storage of high-level waste (HLW) of nuclear power plants. Since the 1950s, scientists and

  14. Reactions of metal oxides with molten NaPO3 + NaCl mixtures

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Mityakhina, V.S.; Rodionov, Yu.I.; Silin, M.Yu.

    1988-01-01

    We consider the dissolution mechanism for iron (III), europium(III), and tin(IV) oxides in molten NaPO 3 + NaCl that are responsible for the peak solubilities. We chose Fe 2 O 3 as the basic material since this occurs in large amounts around damaged metal structures in rock salt mines in a proposed zone for storing vitrified radioactive wastes. Solubility measurement and paper chromatography show that Fe 2 O 3 dissolves in molten NaPO 3 + NaCl in air by reaction with the solvent to give double iron and sodium diphosphates and monophosphates in accordance with the initial solution-in-the-melt composition, the degree of equilibration, and the temperature. The elevated solubilities for initial NaCl contents close to 30 mole % are due to sodium triphosphates and tricyclophosphates present in these melts. Moessbauer spectroscopy confirms that double iron, europium and tin diphosphates and monophosphates containing sodium occur in these chloride-polyphosphate melts

  15. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    Science.gov (United States)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  16. Imbibition and percentage of germination of cape gooseberry (Physalis peruviana L. seeds under NaCl stress

    Directory of Open Access Journals (Sweden)

    Miranda Diego

    2010-04-01

    Full Text Available

    In Colombia cape gooseberry is often grown on salt affected soils. The present study evaluated the effect of increasing NaCl concentrations on imbibition and percentage of germination of ‘Colombia’ ecotype cape gooseberry seeds. Under controlled laboratory conditions (25/20°C day/night temperature, 80% relative humidity, and a 12 hour photoperiod, the seeds were subjected to 0, 30, 60, 90 and 120 mM NaCl concentrations (corresponding to respective electrical conductivity levels of 0.8, 3.0, 6.0, 9.0, and 12.2 dS m-1, during an evaluation period of 299 hours. A significantly lower imbibition level, expressed as 35% of the fresh weight accumulated by the control seeds, was observed in the 120 mM NaCl treatment. At the end of the experiment, respective germination percentages of 97.6% and 96.4% were recorded in the salt-free seeds and in those exposed to 30 mM NaCl. In contrast, only 62.5% of those seeds treated with 120 mM NaCl germinated. Root malformations such as lack of elongation were observed in the highest NaCl concentration treatment. Regarding its germination process, cape gooseberry can be classified as moderately tolerant to sodium. In effect, after 299 h of treatment, there was no statistical difference in imbibition level or percentage of germination between the 0, 30 and 60 mM NaCl treatments.

  17. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  18. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    Science.gov (United States)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  19. The equation of state of B2-type NaCl

    International Nuclear Information System (INIS)

    Ono, S

    2010-01-01

    The equation of state (EOS) of B2-type NaCl has been investigated to 270 GPa and 3000 K using the first-principles molecular dynamics method and high-pressure experiments in a diamond anvil cell. We used the high-pressure experimental data to determine the compressibility at room temperature, and used the generalized gradient approximation (GGA) and the projector augmented-wave method (PAW) in simulations to calculate the thermal pressure. A Vinet EOS fitted to the room temperature data yielded an isothermal bulk modulus of B T0 = 39.25 GPa and a pressure derivative of B T0 ' = 4.72. The high-temperature data from the first-principles calculations were fitted to the thermal pressure EOS. The resulting calculated parameters of the thermal pressure, αB T (V 0 ,T) and (δB T /δT) V , were 3.28 x 10 -3 (GPa/K) and 4.3 x10 -4 (GPa/K), respectively. A small volume dependence of the thermal pressure of B2-type NaCl was revealed from the analysis of our data. A significant temperature dependence of the calculated Grueneisen parameters was confirmed. This indicates that the conventional approach using the Mie-Grueneisen approximation is likely to have a significant uncertainty in determining the EOS for B2-type NaCl, and that an intrinsic anharmonicity should be considered to analyze the EOS.

  20. Effect of NaCl on the hydric and hygric dilation behaviour of lime-cement mortar

    NARCIS (Netherlands)

    Lubelli, B.; van Hees, R.P.J.; Huinink, H.P.

    2006-01-01

    The mechanism of damage due to NaCl crystallization has not been clarified yet. Apart from crystallization pressure, other hypotheses have been proposed to explain the decay. Irreversible dilation during NaCl crystallization has been observed in a few cases but has never been studied in a systematic

  1. Swelling/deswelling of polyacrylamide gels in aqueous NaCl solution

    Indian Academy of Sciences (India)

    Swelling kinetics of water-swollen polyacrylamide (PAAm) hydrogels (WSG) was investigated in various ... parameter, χ, were calculated and found to decrease with increase in [NaCl]. Collective ..... in other words, increase in hydrophilicity.

  2. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides

    International Nuclear Information System (INIS)

    Schultz, Michael K.; Mueller, Dirk; Baum, Richard P.; Leonard Watkins, G.; Breeman, Wouter A.P.

    2013-01-01

    A new NaCl based method for preparation of gallium-68 labeled radiopharmaceuticals has been adapted for use with an automated gallium-68 generator system. The method was evaluated based on 56 preparations of [ 68 Ga]DOTATOC and compared to a similar acetone-based approach. Advantages of the new NaCl approach include reduced preparation time ( 97%), and specific activity (>40 MBq nmole −1 [ 68 Ga]DOTATOC) and is well-suited for clinical production of radiopharmaceuticals. - Highlights: ► A NaCl based automated production of Ga-68-radiopharmaceuticals is described. ► Using 5 M NaCl for pre-purification of 68Ga eliminates the need for organic solvents. ► The method provides for high efficiency, specific activity, and radiochemical purity. ► The new method eliminates the need for the quality control by gas chromatography

  3. Recovery of phenol of industrial wastewaters with NaCl treatment

    International Nuclear Information System (INIS)

    Serna, Iveth; Torres, Jesus; Hoyos Bibian

    2003-01-01

    A technique for phenol recovery from residual wastewater, which has been made in an empiric way in some local industries, is explored in this work. It was carried out an experimental design that takes into account the concentration of NaCl as the entrance variable and the phenol recovery percentage as the exit variable. The statistical analysis of data determined that the best operation point is 25 Celsius degrade, with a initial ph between 2 and 3, an initial concentration of 6% and 21,5% for phenol and NaCl respectively, achieving a phenol recovery of 79 % with a phenol concentration in the organic phase of 83%. Besides the experimental part some theories are exposed dealing with the separation of a no electrolyte and water by salt addition

  4. Study on the spectrum of photonic crystal cavity and its application in measuring the concentration of NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Wuxi Institute of Commerce, Wuxi (China). School of Electromechanical Technology; Xie, Xun; Hao, Jiong-Ju; Yang, Hong-Wei [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Yang, Ze-Kun [Lanzhou Univ. (China). School of Information Science and Engineering; Xu, Zhi-Gang [Nanjing Agricultural Univ., Nanjing (China). College of Agriculture

    2017-07-01

    In this article, we propose an approach to measure solution concentrations by using photonic crystal cavities. Based on the experimental data, the refractive index of a NaCl solution is proportional to the concentration. Filling the proposed photonic crystal cavity with a NaCl solution, we calculate the spectral transmission using the transfer matrix method. We found that the cavity transmittance was proportional to the refractive index of the NaCl solution, and thus we obtained a linear relationship between cavity transmittance and the concentration of the NaCl solution. The formula was found by fitting the simulation results with experimental data. Such a formula can be applied to the measurement of an unknown concentration of NaCl solution utilizing a photonic crystal cavity.

  5. Influence of NaCl salinity on growth analysis of strawberry cv. Camarosa

    Directory of Open Access Journals (Sweden)

    H. Mirdehghan

    2011-12-01

    Full Text Available In order to study of salinity effect on growth analysis of strawberry, a greenhouse experiment was conducted in Vali-e-Asr University of Rafsanjan in 2010. This study was carried out RCBD design with 4 replications to determine the influence of salinity (30, 60, 90 Mmol and control with distilled water on strawberry growth analysis. Results indicated that relative growth rate (RGR, crop growth rate (CGR, leaf area ratio (LAR and dry matter accumulation were decreased with increasing salinity. The lowest RGR, CGR and LAR were observed in 90 Mmol NaCl salinity. Results also indicated that maximum dry matter accumulations were observed in 1050, 1200 and 1400 degree days in 30, 60 and 90 Mmol NaCl salinity, respectively. Water salinity more than 30 Mmol NaCl L-1 will decreased fresh fruit yield more than 50 percent in hydroponics strawberry production. Dry mass partitioning in NaCl-stressed plants was in favor of crown and petioles and at expense of root, stem and leaf whereas leaf, stem and root DM progressively declined with an increase in salinity.

  6. Characteristics of injury and recovery of net NO3- transport of barley seedlings from treatments of NaCl

    Science.gov (United States)

    Klobus, G.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The nature of the injury and recovery of nitrate uptake (net uptake) from NaCl stress in young barley (Hordeum vulgare L, var CM 72) seedlings was investigated. Nitrate uptake was inhibited rapidly by NaCl, within 1 minute after exposure to 200 millimolar NaCl. The duration of exposure to saline conditions determined the time of recovery of NO3- uptake from NaCl stress. Recovery was dependent on the presence of NO3- and was inhibited by cycloheximide, 6-methylpurine, and cerulenin, respective inhibitors of protein, RNA, and sterol/fatty acid synthesis. These inhibitors also prevented the induction of the NO3- uptake system in uninduced seedlings. Uninduced seedlings exhibited endogenous NO3- transport activity that appeared to be constitutive. This constitutive activity was also inhibited by NaCl. Recovery of constitutive NO3- uptake did not require the presence of NO3-.

  7. [Effects of NaCl stress on cation contents in different pumpkin cultivars' seedlings].

    Science.gov (United States)

    Li, Wei-Xin; Chen, Gui-Lin; Ren, Liang-Yu; Wang, Peng

    2008-03-01

    With the seedlings of 19 pumpkin cultivars as test materials, this paper studied the variations of Na+, K+, Ca2+, Na+/K+, Na+/Ca2+, SN+, K+ and SNa+, ca2+ in their shoots and roots under the stress of 300 mmol NaCl x L(-1). The results showed that after an 8-day exposure to 300 mmol NaCl x L(-1), the Na+ content in the seedlings increased significantly while the K+ content decreased, resulting in the brokenness of ion balance. The root Na+ content, shoot Na+/K+ and Na+/Ca2+ ratios, and SNa+, K+ and SNa+, Ca2+ of Cucurbita moschata (Q1) were significantly higher than those of C. maxima (H2) and C. ficifolia (H3). The variation tendency of these parameters of different pumpkin cultivars' seedlings were nearly consistent with the salt injury index of the seedlings under NaCl stress, which further proved that the strong salt-tolerance of Q1 was related to the lower values of shoot Na+/K+, Na+/Ca2+, SNa+, K+ and SNa+, Ca2+, and the high contents of K+ and Ca2+, while the salt-sensitivity of H2 and H3 was related to the higher values of shoot Na+/K+, Na+/Ca2+, SNa+, K+ and SNa+, Ca2+, and low contents of K+ and Ca2+ under NaCl stress.

  8. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating

    International Nuclear Information System (INIS)

    Shi Lei; Sun Chufeng; Gao Ping; Zhou Feng; Liu Weimin

    2006-01-01

    Ni-Co/SiC nanocomposite coatings with various contents of SiC nano-particulates were prepared by electrodeposition in a Ni-Co plating bath containing SiC nano-particulates to be co-deposited. The influences of the nanoparticulates concentration, current density, stirring rate and temperature of the plating bath on the composition of the coatings were investigated. The shape and size of the SiC nano-particulates were observed and determined using a transmission electron microscope. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The wear behavior of the Ni-Co/SiC nanocomposite coatings was evaluated on a ball-on-disk UMT-2MT test rig. The worn surface morphologies of the Ni-Co/SiC nanocomposite coatings were observed using a scanning electron microscope. The corrosion behavior of the nanocomposite coatings was evaluated by charting the Tafel curves of the solution of 0.5 mol L -1 NaCl at room temperature. It was found that the cathodic polarization potential of the composite electrolyte increased with increasing SiC concentration in the plating bath. The microhardness and wear and corrosion resistance of the nanocomposite coatings also increased with increasing content of the nano-SiC in the plating bath, and the morphologies of the nanocomposite coatings varied with varying SiC concentration in the plating bath as well. Moreover, the co-deposited SiC nano-particulates were uniformly distributed in the Ni-Co matrix and contributed to greatly increase the microhardness and wear resistance of the Ni-Co alloy coating

  9. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure.

    Science.gov (United States)

    Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D

    2017-09-15

    Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater

  10. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.

    Science.gov (United States)

    Yan, Xiao-Jun; Yang, Da-Zhi

    2006-04-01

    The purpose of this study was to investigate corrosion resistance of a laser spot-welded joint of NiTi alloy wires using potentiodynamic tests in Hank's solution at different PH values and the PH 7.4 NaCl solution for different Cl- concentrations. Scanning electron microscope observations were carried out before and after potentiodynamic tests. The composition of a laser spot-welded joint and base metal were characterized by using an electron probe microanalyzer. The results of potentiodynamic tests showed that corrosion resistance of a laser spot-welded joint of NiTi alloy wire was better than that of base metal, which exhibited a little higher breakdown potential and passive range, and a little lower passive current density. Corrosion resistances of a laser spot-welded joint and base metal decreased with increasing of the Cl- concentration and PH value. The improvement of corrosion resistance of the laser spot-welded joint was due to the decrease of the surface defects and the increase of the Ti/Ni ratio. (c) 2005 Wiley Periodicals, Inc.

  11. On the corrosion testing of weldments of high alloyed CrNiMo-stainless steels and NiCrMo-alloys

    International Nuclear Information System (INIS)

    Riedel, G.; Voigt, C.; Werner, H.

    1997-01-01

    Weldments of high-alloyed CrNiMo stainless steels and NiCrMo alloys can be more susceptible to localized corrosion than the solution annealed basic material owing to segregations and precipitations in the heat affected zone, the high temperature zone and/or in the weld. To investigate these differences the FeCl 3 -test (10% FeCl 3 . 6aq), the test ''green death'' (11.5% H 2 SO 4 , 1.2% HCl, 1% CuCl 2 , 1% FeCl 3 ) as well as chronopotentiostatic tests in artificial sea water or in 3% NaCl-solution are used. In particular for testing the highest alloyed materials a CaCl 2 -test was developed (4.5 M CaCl 2 , chronopotentiostatic test in duration of 8 to 10 hours at + 200 mV (SCE)), which can be carried out to a temperature of 115 C at atmospheric pressure. The aggressivity increases in the range FeCl 3 -test, ''green death''-test, CaCl 2 -test. Matching and graduated over-alloyed weldments (TIG, heat input of 7 and 15.5 kJ/cm) of materials 1.4529, 1.4562, 2.4856, 2.4819 (german materials No.) are comparingly examined in various tests, of materials 1.4406, 1.4539, 1.4439 and 1.4563 (german materials No.) only matching weldments in the FeCl 3 -test. In strongly oxidizing media only a highly over-alloyed performed weldment (filler material 2.4607, german material No.) produces the best corrosion behaviour, measured as the critical temperatures of localized corrosion. Measurements of critical current densities of passivation can be used for investigations of corrosion behaviour of weldments, too. Critical current densities of passivation are showing a tendency to inverse proportion to the critical temperatures of localized corrosion. Suitable electrolytes are among others 0.2 M H 2 SO 4 + 1 M NaCl + 10 -3 % KSCN, N 2 -bubbled, 25 to 60 C and xM H 2 SO 4 + 4 M NaCl + 10 -3 % KSCN (x = 0.05 to 1), 25 C, in contact with air. An influence of heat input at the welding is indicated in the test of localized corrosion, but it is only small. It is sometimes more clearly shown at

  12. Mechanical Degradation of Porous NiTi Alloys Under Static and Cyclic Loading

    Science.gov (United States)

    Hosseini, Seyyed Alireza

    2017-12-01

    Pore characteristics and morphology have significant effect on mechanical behavior of porous NiTi specimens. In this research, porous NiTi with different pore sizes, shapes and morphology were produced by powder metallurgy methods using space-holder materials. The effect of the pore characteristics on the mechanical properties was investigated by static and cyclic compression tests at body temperature. The results show that specimens with low porosity and isolated pores exhibit more mechanical strength and recoverable strain. The specimen with 36% porosity produced without space holder could preserve its properties up to 10% strain and its strain recovery was complete after cyclic compression tests. On the other hand, the specimens produced by a urea space holder with more than 60% interconnected porosity show rapid degradation of their scaffolds. The highly porous specimens degraded even below 5% strain due to crack formation and propagation in the thin pore walls. For highly porous specimens produced by a NaCl space holder, the pores are partially interconnected with a cubic shape; nevertheless, their mechanical behavior is close to low-porosity specimens.

  13. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route

    International Nuclear Information System (INIS)

    Jha, Nidhi; Mondal, D.P.; Dutta Majumdar, J.; Badkul, Anshul; Jha, A.K.; Khare, A.K.

    2013-01-01

    Highlights: ► NaCl crystals has been used as space holder. ► Variation of NaCl:Ti ratio varies porosity (65–80%). ► NaCl is cubic but the cells are spherical. ► Two types of pores: micro and macro pores are obtained. ► Foams are suitable for bones scaffolds and engineering applications. - Abstract: Open cell Titanium-foam (Ti-foam) with varying porosities (65–80%) was prepared using sodium chloride (NaCl) particles as space holder through powder metallurgy route. In order to ensure sufficient handling strength in cold compacted pallets, 2 wt.% polyvinyl alcohol (PVA) solutions (5 wt.% PVA in water) was mixed with the mixture of Ti and NaCl powders prior to cold compaction. After sintering, NaCl salt was removed by dissolving it in hot water. Detailed Energy dispersive X-ray (EDX) analysis and X-ray diffraction studies of the prepared Ti-foams were conducted to examine any physical and chemical changes in the phase constituents. The micro-architectural characteristics, density vis-a-vis porosity, and compressive deformation behavior of the synthesized foams were evaluated to examine their suitability as biomaterial and engineering applications

  14. Cephradine as corrosion inhibitor for copper in 0.9% NaCl solution

    Science.gov (United States)

    Tasić, Žaklina Z.; Petrović Mihajlović, Marija B.; Radovanović, Milan B.; Simonović, Ana T.; Antonijević, Milan M.

    2018-05-01

    The effect of (6R,7R)-7-[[(2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetyl]amino]-3-methyl-8-oxo-5-thia-1-azobicyclo[4.2.0]oct-2-ene-2-carboxylic acid (cephradine) on corrosion behavior of copper in 0.9% NaCl solution was investigated. The electrochemical methods including the open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy and quantum chemical calculations were used for this investigation. According to the results obtained by potentiodynamic polarization, cephradine acts as mixed type inhibitor. Also, the results obtained by electrochemical impedance spectroscopy indicate that cephradine provides good copper protection in 0.9% NaCl solution. The inhibition efficiency of cephradine increases with increasing its concentration. The scanning electron microscopy with energy dispersive X-ray spectroscopy confirms that a protective layer is formed on the copper surface due to the adsorption of cephradine on the active sites on the copper surface. Adsorption of cephradine in 0.9% NaCl solution follows the Langmuir adsorption isotherm. Quantum chemical calculations are in agreement with results obtained by electrochemical measurements.

  15. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Safaa N. Saud

    2017-01-01

    Full Text Available The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery, and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  16. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys.

    Science.gov (United States)

    Saud, Safaa N; Hamzah, E; Bakhsheshi-Rad, H R; Abubakar, T

    2017-01-01

    The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  17. Calculation of inelastic helium atom scattering from H2/ NaCl(001)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing; Traeger, F.

    2011-01-01

    The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determi......The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 me...

  18. Relationship between NaCl- and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhonghao Jiang

    Full Text Available Salinity is among the environmental factors that affect plant growth and development and constrain agricultural productivity. Salinity stress triggers increases in cytosolic free Ca(2+ concentration ([Ca(2+]i via Ca(2+ influx across the plasma membrane. Salinity stress, as well as other stresses, induces the production of reactive oxygen species (ROS. It is well established that ROS also triggers increases in [Ca(2+]i. However, the relationship and interaction between salinity stress-induced [Ca(2+]i increases and ROS-induced [Ca(2+]i increases remain poorly understood. Using an aequorin-based Ca(2+ imaging assay we have analyzed [Ca(2+]i changes in response to NaCl and H2O2 treatments in Arabidopsis thaliana. We found that NaCl and H2O2 together induced larger increases in [Ca(2+]i in Arabidopsis seedlings than either NaCl or H2O2 alone, suggesting an additive effect on [Ca(2+]i increases. Following a pre-treatment with either NaCl or H2O2, the subsequent elevation of [Ca(2+]i in response to a second treatment with either NaCl or H2O2 was significantly reduced. Furthermore, the NaCl pre-treatment suppressed the elevation of [Ca(2+]i seen with a second NaCl treatment more than that seen with a second treatment of H2O2. A similar response was seen when the initial treatment was with H2O2; subsequent addition of H2O2 led to less of an increase in [Ca(2+]i than did addition of NaCl. These results imply that NaCl-gated Ca(2+ channels and H2O2-gated Ca(2+ channels may differ, and also suggest that NaCl- and H2O2-evoked [Ca(2+]i may reduce the potency of both NaCl and H2O2 in triggering [Ca(2+]i increases, highlighting a feedback mechanism. Alternatively, NaCl and H2O2 may activate the same Ca(2+ permeable channel, which is expressed in different types of cells and/or activated via different signaling pathways.

  19. Comparative study on structure, corrosion and hardness of Zn-Ni alloy deposition on AISI 347 steel aircraft material

    Energy Technology Data Exchange (ETDEWEB)

    Gnanamuthu, RM. [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of); Mohan, S., E-mail: sanjnamohan@yahoo.com [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Saravanan, G. [Central Electrochemical Research Institute, (CSIR), Karaikudi 630 006, Tamilnadu (India); Lee, Chang Woo, E-mail: cwlee@khu.ac.kr [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Electrodeposition of Zn-Ni alloy on AISI 347 steel as an aircraft material has been carried out from various baths. Black-Right-Pointing-Pointer The effect of pulse duty cycle on thickness, current efficiency and hardness reached maximum values at 40% duty cycle and for 50 Hz frequencies average current density of 4 A dm{sup -2}. Black-Right-Pointing-Pointer The XRF characterizations of 88:12% Zn-Ni alloy provided excellent corrosion resistance. Black-Right-Pointing-Pointer It is found that Zn-Ni alloy on AISI 347 aircraft material has better structure and corrosion resistance by pulse electrodeposits from electrolyte-4. - Abstract: Zn-Ni alloys were electrodeposited on AISI 347 steel aircraft materials from various electrolytes under direct current (DCD) and pulsed electrodepositing (PED) techniques. The effects of pulse duty cycle on thickness, current efficiency and hardness of electrodeposits were studied. Alloy phases of the Zn-Ni were indexed by X-ray diffraction (XRD) techniques. Microstructural morphology, topography and elemental compositions were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray fluorescence spectroscopy (XRF). The corrosion resistance properties of electrodeposited Zn-Ni alloy in 3.5% NaCl aqueous solution obtained by DCD and PED were compared using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) technique. Elemental analysis showed that 88% of Zn and 12% of Ni obtained from electrolyte-4 by PED technique at 40% duty cycle for 50 Hz frequencies having better corrosion resistance than that of deposits obtained from other electrolytes.

  20. Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy

    Science.gov (United States)

    Sadreddini, S.; Rahemi Ardakani, S.; Rassaee, H.

    2017-05-01

    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate ( i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  1. A comparative study of functional properties of normal and wooden breast broiler chicken meat with NaCl addition.

    Science.gov (United States)

    Xing, Tong; Zhao, Xue; Han, Minyi; Cai, Linlin; Deng, Shaolin; Zhou, Guanghong; Xu, Xinglian

    2017-09-01

    The selection of broilers for augmented growth rate and breast has brought about wooden-breast (WB) muscle abnormalities, which caused substantial economic losses. The objective of this study was to compare water holding capacity, water mobility and distribution, salt-soluble protein (SSP) content, and protein profiles of normal and WB chicken meat with different additions of NaCl. Thirty WB and 30 normal chicken breasts were selected from a deboning line of a major Chinese processing plant at 2 to 3 h post mortem. Two different meat batters were formulated to 150 mg/g meat protein and different NaCl contents (0%, 1%, 2%, 3%, and 4%). Results indicated that as NaCl contents increased, the cooking loss of meat batters decreased (P meat showed different protein profiles, with myosin heavy chain exhibiting a higher intensity at ≥3% salt level. Low-field nuclear magnetic resonance (LF-NMR)revealed an increased T22 and higher P22 in raw WB meat compared to normal meat (P meat batters, WB meat batters had reduced T21 and lower immobilized water proportions at low NaCl contents (meat gels. Meat gels prepared from WB had a lower proportion of water within the myofibrillar protein matrix and a greater proportion of exuded bulk water at NaCl contents meat, meat batters and gels, water distribution and mobility of WB exhibited significant differences compared to normal meat. The addition of NaCl affected water mobility and distributions in meat batters, with a level of 3% NaCl eliminating the differences between processed normal and WB meat products. © 2017 Poultry Science Association Inc.

  2. PEMANFAATAN LIMBAH CAIR GARAM BAHAN BAKU 30˚ Be UNTUK PENGASINAN IKAN GABUS RENDAH NACl DAN MENGANDUNG Mg

    Directory of Open Access Journals (Sweden)

    Nilawati Nilawati

    2014-12-01

    Full Text Available Pengasinan merupakan metode pengawetan yang sudah lama dengan menggunakan garam krosok namun pengasinan dengan  limbah cair garam 30˚ Be belum banyak dilakukan. Keuntungan dengan metode ini akan menghasilkan produk ikan asin yang rendah NaCl dan tinggi kandungan Mg. Penelitian ini menggunakan 1 variabel yaitu konsentrasi limbah cair garam 30˚ Be  yaitu B0 (0 persen- kontrol, B10 (10 persen. B20 (20 persen, B30 (30 persen,  B40(40 persen, B50 (50 persen  dan kontrol  B100 (100 persen  serta kontrol pembanding penggaraman kering dengan garam bahan baku G100 (100 persen atau dikenal garam krosok. Hasil penelitian diperoleh kandungan NaCl murni pada pemakaian larutan 30˚ Be sebanyak 10 persen  sebesar 6,952 persen. Dan pada konsentrasi limbah cair garam 30˚ Be dengan konsentrasi   50 persen diperoleh kndungan NaCl murni sebesar 15,478 persen, namun untuk kontrol yang menggunakan garam krosok maka NaCl nya paling tinggi, sedangkan kontrol dengan 100 persen larutan 30˚ Be kandungan NaCl murninya sampai 25,134 persen, yang menggunakan garam bahan baku  kandungan NaCl sebesar 43,864 persen.  Perlakuan yang terbaik diperoleh pada pemakaian larutan garam 30˚ Be pada konsentrasi 40 persen. Kandungan Magnesium pada     penelitian ini berkisar antara 0,387 Sampai  3,444  persen.  Perlakuan mulai konsentrasi 30 persen keatas   penampakan ikan asin putih kecoklatan , empuk, bersih, namun kalau dibawah 30 persen penampakannya kecoklatan muda, daging liat agak keras namun NaCl nya rendah

  3. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    Science.gov (United States)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  4. Effects of NaCl on Fermentative Metabolism of Mature Green Tomatoes cv. Ailsa Craig in Brine

    Directory of Open Access Journals (Sweden)

    Sotirios Fragkostefanakis

    2010-01-01

    Full Text Available The effect of osmotic strength on gene expression and activity of the major enzymes of fermentative metabolism of mature green tomato fruit (Solanum lycopersicum cv. Ailsa Craig has been studied by exposing fruit to brine containing 0 (water, 5 and 10 % NaCl. The fruits were surface sterilized prior to treatment to prevent the growth of microbes naturally present on the skin of the fruit. Changes in fruit expression of fermentation genes and the activity of the respective enzymes as well as physicochemical quality characteristics (soluble solid content, titratable acidity, pH and firmness were studied in both fruit and brine for 0.5, 1, 1.5, 2, 3, 7 and 14 days. Discrepancies in responses that resulted from the different salt concentrations were obtained at molecular and quality levels. The complex kinetics of solutes between the fruit and the surrounding solution due to osmotic potential has led to different responses of the tissue to fermentation. Tomato fruit showed cracking soon after storage in water; water-stored fruit had higher titratable acidity, lower soluble solid content, and higher induction of anaerobic metabolism as indicated by the expression or the activity of the fermentation enzymes compared to fruit stored in brine with 5 or 10 % NaCl. No cracking was observed in fruit stored in 5 (isotonic or 10 % NaCl (hypertonic brine, though in the latter, signs of dehydration were observed. The presence of salt in brine reduced the intensity of fermentative metabolism as indicated by the lower gene expression and enzyme activity. However, fruit stored in brine with 5 % NaCl survived longer than with 0 or 10 % NaCl. The presence of 5 % NaCl in brine caused mild changes of both the fermentative metabolism and the physicochemical characteristics and prevented fruit deterioration during storage.

  5. Morphological, Physiological, and Structural Responses of Two Species of Artemisia to NaCl Stress

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Guan

    2013-01-01

    Full Text Available Effects of salt stress on Artemisia scoparia and A. vulgaris “Variegate” were examined. A. scoparia leaves became withered under NaCl treatment, whereas A. vulgaris “Variegate” leaves were not remarkably affected. Chlorophyll content decreased in both species, with a higher reduction in A. scoparia. Contents of proline, MDA, soluble carbohydrate, and Na+ increased in both species under salt stress, but A. vulgaris “Variegate” had higher level of proline and soluble carbohydrate and lower level of MDA and Na+. The ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+ in A. vulgaris “Variegate” under NaCl stress were higher. Moreover, A. vulgaris “Variegate” had higher transport selectivity of K+/Na+ from root to stem, stem to middle mature leaves, and upper newly developed leaves than A. scoparia under NaCl stress. A. vulgaris “Variegate” chloroplast maintained its morphological integrity under NaCl stress, whereas A. scoparia chloroplast lost integrity. The results indicated that A. scoparia is more sensitive to salt stress than A. vulgaris “Variegate.” Salt tolerance is mainly related to the ability of regulating osmotic pressure through the accumulation of soluble carbohydrates and proline, and the gradient distribution of K+ between roots and leaves was also contributed to osmotic pressure adjustment and improvement of plant salt tolerance.

  6. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    Science.gov (United States)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  7. Corrosion electrochemical behaviors of silane coating coated magnesium alloy in NaCl solution containing cerium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F.; Li, Q.; Zhong, X.K.; Gao, H.; Dai, Y.; Chen, F.N. [School of Chemistry and Chemical Engineering, Southwest University Chongqing (China)

    2012-02-15

    Sol-gel coatings cannot provide adequate corrosion protection for metal/alloys in the corrosive environments due to their high crack-forming potential. This paper demonstrates the possibility to employ cerium nitrate as inhibitor to decrease the corrosion development of sol-gel-based silane coating on the magnesium alloy in NaCl solution. Cerium nitrate was added into the NaCl solution where the silane coating coated magnesium alloy was immersed. Scanning electron microscopy (SEM) was used to examine surface morphology of the silane coating coated magnesium alloy immersed in NaCl solutions doped and undoped with cerium nitrate. The corrosion electrochemical behaviors were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. The results showed that the introduction of cerium nitrate into NaCl solution could effectively inhibit the corrosion of the silane coating coated magnesium alloy. Moreover, the influence of concentration of cerium nitrate on the corrosion inhibition and the possible inhibiting mechanism were also discussed in detail. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Nanocontainer-Enhanced Self-Healing for Corrosion-Resistant Ni Coating on Mg Alloy.

    Science.gov (United States)

    Xie, Zhi-Hui; Li, Dan; Skeete, Zakiya; Sharma, Anju; Zhong, Chuan-Jian

    2017-10-18

    The ability to manipulate the functionalization of Ni coating is of great importance in improving the corrosion resistance of magnesium (Mg) alloy for many industrial applications. In the present work, MCM-41 type mesoporous silica nanocontainers (MSNs) loaded with corrosion inhibitor (NaF) were synthesized and employed as smart reinforcements to enhance the integrity and corrosion inhibition of the Ni coating. The incorporation of the F-loaded MSNs (F@MSNs) to enhance the corrosion resistant capacity of a metallic coating is reported for the first time. The mesoporous structures of the as-prepared MSNs and F@MSNs were confirmed by transmission electron microscopy (TEM), small angle X-rays scattering (SAXS), and N 2 adsorption-desorption isotherms. The X-ray photoelectron spectroscopy (XPS) data demonstrated the successful immobilization of fluoride ion on the MSNs and formation of a magnesium fluoride (MgF 2 ) protective film at the corrosion sites of the Mg alloy upon soaking in a F@MSNs-containing NaCl solution. The results from potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) for both bare Mg alloy and Ni coatings with and without F@MSNs have revealed a clear decrease in corrosion rate in a corrosive solution for a long-time immersion due to the introduction of F@MSNs. These findings open new opportunities in the exploration of self-healing metallic coatings for highly enhanced anticorrosion protection of Mg alloy.

  9. Impact of NaCl reduction in Danish semi-hard Samsoe cheeses on proliferation and autolysis of DL-starter cultures.

    Science.gov (United States)

    Søndergaard, Lise; Ryssel, Mia; Svendsen, Carina; Høier, Erik; Andersen, Ulf; Hammershøj, Marianne; Møller, Jean R; Arneborg, Nils; Jespersen, Lene

    2015-11-20

    Reduction of sodium chloride (NaCl) in cheese manufacturing is a challenge for the dairy industry. NaCl has a profound role on microbial development influencing cheese sensory and technological properties. The purpose of this work was to investigate how proliferation, distribution and autolysis of two commercial DL-starter cultures (C1 and C2) used in the production of Danish semi-hard Samsoe cheeses were affected by reduced NaCl levels. Cheeses containing autolysis were monitored during ripening, as well as the impact of NaCl content and autolysis on the formation of free amino acids (FAA). Reduction of NaCl resulted in higher LAB counts at the early stages of ripening, with differences between the two DL-starter cultures. The unsalted cheeses produced with C1 had retained a significantly higher number of the initial LAB counts (cfu/g) after 1 and 2 weeks of ripening (i.e. 58% and 71%), compared to the normal-salted cheeses (i.e. 22% and 21%), whereas no significant difference was found between the reduced-salt (i.e. 31% and 35%) and normal-salted cheeses. At the later stages of ripening (i.e. 7 and 11 weeks) NaCl had no significant influence. For cheeses produced with C2, a significant influence of NaCl was only found in cheeses ripened for 7 weeks, where the unsalted and reduced-salt cheeses had retained a significantly higher number of the initial LAB counts (cfu/g) (i.e. 39% and 38%), compared to the normal-salted cheeses (i.e. 21%). In the Samsoe cheeses, bacteria were organized as single cells, in groups of 2-3 cells or in groups of ≥4 cells. During ripening the decrease in the number of viable bacteria was mainly due to a reduction in the number of viable bacteria organized in groups of ≥4 cells. A negative correlation between NaCl content and PepX activity was observed. At the end of ripening the total FAA content was lower in the unsalted cheeses, compared to the reduced- and normal-salted cheeses. In conclusion, NaCl had a significant influence on

  10. Growth, structure and magnetic properties of FePt nanostructures on NaCl(001) and MgO(001)

    International Nuclear Information System (INIS)

    Liscio, F; Maret, M; Doisneau-Cottignies, B; Makarov, D; Albrecht, M; Roussel, H

    2010-01-01

    A comparison of the structural and magnetic properties of FePt nanostructures grown at different temperatures on NaCl(001) and MgO(001) substrates is presented. A strong influence of the deposition temperature on the epitaxial growth as well as on the size distribution of FePt nanostructures grown on NaCl substrates is observed. In spite of a large lattice mismatch between FePt and NaCl, a 'cube-over-cube' growth of nanostructures with a narrow size distribution was achieved at 520 K. Moreover, the growth of FePt nanostructures on NaCl(001) is not preceded by the formation of a wetting layer as observed on MgO(001). The higher degree of L1 0 chemical ordering in FePt nanostructures grown on MgO(001) accompanied by the absence of L1 0 variants with an in-plane tetragonal c-axis indicates that the tensile epitaxial stress induced by the MgO substrate is a key factor in the formation of the L1 0 phase with an out-of-plane c-axis. Superparamagnetic behavior is revealed for the FePt nanostructures grown on NaCl(001) due to their small size and relatively poor chemical order.

  11. Reaction of metal oxides with molten mixtures NaPO3+NaCl

    International Nuclear Information System (INIS)

    Kovarskaya, E.N.; Mityakhina, V.S.; Rodionov, Yu.I.; Silin, M.Yu.

    1988-01-01

    By methods of solubility determination and paper chromatography it is shown, that Fe 2 O 3 solution in NaPO 3 +NaCl melts in the air relizes due to its chemical interaction with solvent resulting in formation of iron and sodium binary di- and monophosphates depending on melt-solvent initial composition, its attainment of equilibrium state and experiment temperature. It is established, that oxides increased solubility in melts with NaCl initial content ∼30 mol.% is specified by sodium tri- and tricyclophosphates presence in the melts. On this basis of NGR-spectroscopy data the presence of iron, europium, tin and sodium binary di- and monophosphates in some chloride-polyphosphate melts is confirmed

  12. Changes in growth, carbon and nitrogen enzyme activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to NaCl stress

    Science.gov (United States)

    Wang, Dongmei; Wang, Weiwei; Xu, Nianjun; Sun, Xue

    2016-12-01

    Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaCl stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the most rapid growth was observed at 1.00 mol L-1 NaCl, followed by 2.00 mol L-1 NaCl. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00 mol L-1 NaCl, decreasing to 37.33% and 26.39% of those values, respectively, in the presence of 3.00 mol L-1 NaCl, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00 mol L-1 NaCl, followed by 1.00 mol L-1 NaCl. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaCl concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit ( rbcL), and small subunit ( rbcS), attained their highest abundances in the presence of 1.00 and 2.00 mol L-1 NaCl, respectively. The CA mRNA accumulation was induced from 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaCl stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaCl in D. viridis.

  13. Evaluation of Potential Effects of NaCl and Sorbic Acid on Staphylococcal Enterotoxin A Formation

    Directory of Open Access Journals (Sweden)

    Nikoleta Zeaki

    2015-09-01

    Full Text Available The prophage-encoded staphylococcal enterotoxin A (SEA is recognized as the main cause of staphylococcal food poisoning (SFP, a common foodborne intoxication disease, caused by Staphylococcus aureus. Studies on the production of SEA suggest that activation of the SOS response and subsequent prophage induction affect the regulation of the sea gene and the SEA produced, increasing the risk for SFP. The present study aims to evaluate the effect of NaCl and sorbic acid, in concentrations relevant to food production, on SOS response activation, prophage induction and SEA production. The impact of stress was initially evaluated on steady state cells for a homogenous cell response. NaCl 2% was found to activate the SOS response, i.e., recA expression, and trigger prophage induction, in a similar way as the phage-inducer mitomycin C. In contrast, sorbic acid decreased the pH of the culture to a level where prophage induction was probably suppressed, even when combined with NaCl stress. The impact of previous physiological state of the bacteria was also addressed on cells pre-exposed to NaCl, and was found to potentially affect cell response upon exposure to further stress. The results obtained highlight the possible SFP-related risks arising from the use of preservatives during food processing.

  14. Charging induced emission of neutral atoms from NaCl nanocube corners

    International Nuclear Information System (INIS)

    Ceresoli, Davide; Zykova-Timan, Tatyana; Tosatti, Erio

    2008-01-01

    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutralized. We carried out first principles density functional calculations and simulations of neutral and charged NaCl nanocubes, to establish the energetics of extraction of neutralized corner ions. Following hole donation (electron removal) we find that detachment of neutral Cl corner atoms will require a limited energy of about 0.8 eV. Conversely, following the donation of an excess electron to the cube, a neutral Na atom is extractable from the corner at the lower cost of about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100) surface state, which we also determine) is estimated to lie about 1.8 eV below vacuum, the overall energy balance upon donation to the nanocube of a zero-energy electron from vacuum will be exothermic. The atomic and electronic structure of the NaCl(100) surface, and of the nanocube Na and Cl corner vacancies are obtained and analyzed as a byproduct

  15. Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata-Anabaena azollae under NaCl stress.

    Science.gov (United States)

    Rai, Vandna; Sharma, Naveen Kumar; Rai, Ashwani K

    2006-09-01

    Salinity, at a concentration of 10 mM NaCl affected the growth of Azolla pinnata-Anabaena azollae association and became lethal at 40 mM. Plants exposed up to 30 mM NaCl exhibited longer roots than the control, especially during the beginning of incubation. Average root number in plants exposed to 10 and 20 mM NaCl remained almost the same as in control. A further rise in NaCl concentration to 30 mM reduced the root number, and roots shed off at 40 mM NaCl. Presence of NaCl in the nutrient solution increased the cellular Na+ of the intact association exhibiting differential accumulation by individual partners, while it reduced the cellular Ca2+ level. However, cellular K+ content did not show significant change. Cellular Na+ based on fresh weight of respective individual partners (host tissues and cyanobiont) remained higher in the host tissues than the cyanobiont, while reverse was true for K+ and Ca2+ contents. The contribution of A. azollae in the total cellular ion content of the association was a little because of meagre contribution of the cyanobiont mass (19-21%). High salt sensitivity of Azolla-Anabaena complex is due to an inability of the association to maintain low Na+ and high Ca2+ cellular level.

  16. Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi-Montes, Natalia, E-mail: nataliarin@gmail.com [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain); Gorria, Pedro [Departamento de Física & IUTA, EPI, Universidad de Oviedo, E-33203 Gijón (Spain); Martínez-Blanco, David [Servicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo (Spain); Fuertes, Antonio B. [Instituto Nacional del Carbón, CSIC, E-33080 Oviedo (Spain); Fernández Barquín, Luis [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, E-39005 Santander (Spain); Puente-Orench, Inés [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-02-15

    Among all bi-magnetic core(transition metal)@shell(transition metal oxide) nanoparticles (NPs), Ni@NiO ones show an onset temperature for the exchange bias (EB) effect far below the Néel temperature of bulk antiferromagnetic NiO. In this framework, the role played by the magnetism of NiO at the nanoscale is investigated by comparing the microstructure and magnetic properties of NiO and Ni@NiO NPs. With the aim of bridging the two systems, the diameter of the NiO NPs (~4 nm) is chosen to be comparable to the shell thickness of Ni@NiO ones (~2 nm). The EB effect in Ni@NiO NPs is attributed to the exchange coupling between the core and the shell, with an interfacial exchange energy of ΔE~0.06 erg cm{sup −2}, thus comparable to previous reports on Ni/NiO interfaces both in thin film and NP morphologies. In contrast, the EB detected in NiO NPs is explained in a picture where uncompensated spins located on a magnetically disordered surface shell are exchange coupled to the antiferromagnetic core. In all the studied NPs, the variation of the EB field as a function of temperature is described according to a negative exponential law with a similar decay constant, yielding a vanishing EB effect around T~40–50 K. In addition, the onset temperature for the EB effect in both NiO and Ni@NiO NPs seems to follow a universal dependence with the NiO crystallite size. - Highlights: • Comparison of the exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. • Universal temperature dependence of the exchange bias effect. • Suggested similar physical origin of the effect in both systems. • Size and crystallinity of the NiO shell hold the key for exchange bias properties.

  17. Growth responses of NaCl stressed rice (Oryza sativa L.) plants ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... Growth responses of NaCl stressed rice (Oryza sativa. L.) plants ... 2008), which is a real threat to human's food security. Existed situation may ..... content and composition of essential oil and minerals in black cumin. (Nigella ...

  18. Impact of NaCl reduction in Danish semi-hard Samsoe cheeses on development and autolysis of DL-starter cultures

    DEFF Research Database (Denmark)

    Søndergaard, Lise; Ryssel, Mia; Svendsen, Carina

    2015-01-01

    of two commercial DL-starter cultures (C1 and C2) used in the production of Danish semi-hard Samsoe cheeses were affected by reduced NaCl levels. Cheeses containing .... Lactic acid bacteria (LAB), distribution of bacteria as single cells or microcolonies, their viability in the cheeses and cell autolysis were monitored during ripening, as well as the impact of NaCl content and autolysis on the formation of free amino acids (FAA). Reduction of NaCl resulted in higher LAB...

  19. Domain structure of human complement C4b extends with increasing NaCl concentration: implications for its regulatory mechanism.

    Science.gov (United States)

    Fung, Ka Wai; Wright, David W; Gor, Jayesh; Swann, Marcus J; Perkins, Stephen J

    2016-12-01

    During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg 104 -Glu 1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s 20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar R G values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b. © 2016 The Author(s).

  20. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    Science.gov (United States)

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Irradiation induced creep in whiskers of NaCl

    International Nuclear Information System (INIS)

    Khan, J.A.A.

    1977-09-01

    Whiskers of NaCl have been grown and irradiated under flexion by X-rays (approximately 2x10 7 R/h) at room temperature and the residual curvature measured. Complete recovery of the initial form of the whisker within an hour's annealing at 400 0 C proves clearly that the observed deformation (creep) is due to the presence of dislocation loops. The choice of NaCl extremely simplifies the experiment and its interpretation since X-rays create point defects one by one. Moreover, this mode of irradiation, at room temperature, produces a very simple situation: perfect interstitial dislocation loops and immobile point defects which are little influenced by the applied stress. The flexion leads to a stress system which hardly differs from an uniaxial stress. One can study separately the preferential nucleation of dislocation loops and their differential growth by carrying out an irradiation under stress followed by an irradiation without stress and vice versa. It is shown that the induced creep is mostly due to the preferential nucleation of dislocation loops and is little affected by the differential growth of these loops. The nucleation period of the loops is very short: a dose of approximately 10 -5 d.p.a. is largely sufficient for the quasi completion of dislocation loops in a crystal having an impurity concentration of approximately 10 -3 [fr

  2. Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties.

    Science.gov (United States)

    Jisha, K C; Puthur, Jos T

    2014-07-01

    The investigation was carried out to study the effect of halopriming on NaCl and polyethylene glycol-6000 (PEG-6000) induced stress tolerance potential of three Vigna radiata (L.) Wilczek varieties, with varied abiotic stress tolerance potential. Halopriming is a seed priming technique in which the seeds were soaked in various salt solutions (in this study NaCl was used). The results of the study indicated that the application of stresses (both NaCl and PEG) induced retardation of growth attributes (measured in terms of shoot length, fresh weight, dry weight) and decrease in physiological attributes like total chlorophyll content, metabolites, photosynthetic and mitochondrial activity of the seedlings in all three V. radiata (L.) varieties. However, halopriming of the seeds could reduce the extent of decrease in these biological attributes. NaCl and PEG stress also caused increase in MDA content (a product of membrane lipid peroxidation) in all the varieties studied and this increase was significantly minimized under halopriming. From the present investigation it was evident that among the green gram varieties studied, Pusa Vishal, a NaCl tolerant variety showed enhanced tolerance to NaCl and PEG induced stress, when the seeds were subjected to halopriming followed by Pusa Ratna (stress sensitive variety). Pusa 9531 (drought tolerant variety) also showed positive halopriming effects but it was less significant when compared to other two varieties. It could be concluded that halopriming improved the drought and salinity stress tolerance potential of all varieties and it was significantly higher in the Pusa Vishal as compared to Pusa 9531 and Pusa Ratna.

  3. Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method

    International Nuclear Information System (INIS)

    Yokota, Yuui; Yanagida, Takayuki; Fujimoto, Yutaka; Nikl, Martin; Yoshikawa, Akira

    2010-01-01

    We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce 3+ ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce 3+ 5d-4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.

  4. Microstructural development in NiAl/Ni-Si-B/Ni transient liquid phase bonds

    International Nuclear Information System (INIS)

    Gale, W.F.; Orel, S.V.

    1996-01-01

    A transmission electron microscopy (TEM) based investigation of microstructural development during transient liquid phase bonding of near-stoichiometric NiAl to commercial purity nickel is presented in this article. The work described employed Ni-4.5 wt pct Si-3.2 wt pct B (BNi-3) melt-spun interlayers. The precipitation of both Ni-Al based phases and borides within the joint and adjacent substrate regions is discussed. The article considers martensite formation (within the NiAl substrate) and the precipitation of L1 2 type phases (both within the joint and at the interface with the NiAl substrate). The relative roles of the two substrate materials (NiAl and Ni) in the isothermal resolidification process are identified. The preferential formation of Ni 3 B boride phases in the Ni substrate near the original location of the Ni substrate-joint interface is discussed and contrasted with the absence of similar events in the NiAl substrate

  5. Electrochemical corrosion behavior of gas atomized Al–Ni alloy powders

    International Nuclear Information System (INIS)

    Osório, Wislei R.; Spinelli, José E.; Afonso, Conrado R.M.; Peixoto, Leandro C.; Garcia, Amauri

    2012-01-01

    Highlights: ► Spray-formed Al–Ni alloy powders have cellular microstructures. ► Porosity has no deleterious effect on the electrochemical corrosion behavior. ► Better pitting corrosion resistance is related to a fine powder microstructure. ► A coarse microstructure can be related to better general corrosion resistance. - Abstract: This is a study describing the effects of microstructure features of spray-formed Al–Ni alloy powders on the electrochemical corrosion resistance. Two different spray-formed powders were produced using nitrogen (N 2 ) gas flow (4 and 8 bar were used). Electrochemical impedance spectroscopy (EIS), potentiodynamic anodic polarization techniques and an equivalent circuit analysis were used to evaluate the electrochemical behavior in a dilute 0.05 M NaCl solution at room temperature. It was found that a N 2 gas pressure of 8 bar resulted in a microstructure characterized by a high fraction of small powders and fine cell spacings, having improved pitting potential but higher corrosion current density when compared with the corresponding results of a coarser microstructure array obtained under a lower pressure. A favorable effect in terms of current density and oxide protective film formation was shown to be associated with the coarser microstructure, however, its pitting potential was found to be lower than that of the finer microstructure.

  6. Interactions of Ni and Ca at the calcite-solution interface

    International Nuclear Information System (INIS)

    Carlsson, T.; Aalto, H.

    1996-10-01

    The performance assessment of repositories for spent nuclear fuel need, among other things, data describing the solubilities of radionuclides in the near field and far field. The solubility limits are often used in order to estimate the maximum concentrations of radionuclides during their possible transport to the biosphere. The solubilities used are mostly the individual solubilities for pure solids of the actual radionuclides. This way of using solubility limits represents a conservative performance assessment where the estimated nuclide concentrations are unrealistically high. This is acceptable from a performance assessment point of view but very unsatisfactory for an optimal design of the repository. In order to make the assessment more realistic, coprecipitation and solid solution formation should be taken into account. Only solids which are, in geological terms, formed in fast reactions need to be considered, which in practice restricts the number of radionuclide scavengers to calcite and iron(III)oxihydroxide. This work focuses on the Ni coprecipitation with calcite. The systems were studied under anoxic conditions and consisted of calcite-saturated 0.05 M NaCl solutions in equilibrium with synthetic calcite. The solutions were initially spiked with 63 Ni and 45 Ca and the concentrations of these elements were determined using liquid scintillation counting. (18 refs.)

  7. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  8. Structural and optical properties of a NaCl single crystal doped with CuO nanocrystals

    International Nuclear Information System (INIS)

    Addala, S.; Bouhdjer, L.; Halimi, O.; Boudine, B.; Sebais, M.; Chala, A.; Bouhdjar, A.

    2013-01-01

    A cupric oxide (CuO) nanocrystal-doped NaCl single crystal and a pure NaCl single crystal are grown by using the Czochralski (Cz) method. A number of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, optical absorption in the UV—visible range, and photoluminescence (PL) spectroscopy are used to characterize the obtained NaCl and NaCl:CuO crystals. It is observed that the average radius of CuO crystallites in NaCl:CuO crystal is about 29.87 nm, as derived from the XRD data analysis. Moreover, FT-IR and Raman spectroscopy results confirm the existence of the monoclinic CuO phase in NaCl crystal. UV—visible absorption measurements indicate that the band gap of the NaCl:CuO crystal is 434 nm (2.85 eV), and it shows a significant amount of blue-shift (ΔE g = 1 eV) in the band gap energy of CuO, which is due to the quantum confinement effect exerted by the CuO nanocrystals. The PL spectrum of the NaCl:CuO shows a broad emission band centred at around 438 nm, which is consistent with the absorption measurement. (interdisciplinary physics and related areas of science and technology)

  9. Evaluation of NaCl Salinity Stress Using Three Different Laboratory Methods

    Directory of Open Access Journals (Sweden)

    S Laleh

    2012-02-01

    Full Text Available To investigate the effects of different salinity levels of NaCl on germination of safflower (cv. Esfahan 24 seeds under three different incubation methods, a factorial experiment was carried out based on a complete randomize design with three replications. Salinity levels were 0, 5, 10, 15 and 20 dSm-1 (NaCl and incubation methods were sandwich method, and using petri dishes with open or closed doors. The results showed that among investigated traits, including germination percentage and rate, length, fresh and dry weight of root and shoot, salinity had the highest negative correlation with germination percentage. There was not a significant difference in germination percentage between 5 dSm-1 and control, but increasing salinity levels to 10, 15 and 20 dSm-1 led to 13, 23.50 and 39.74 % reduction in germination percentage, respectively, compared to control (P

  10. Effect of NaCl on thermophilic (55°C) methanol degradation in sulfate reducing granular sludge reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Hulshoff Pol, L.W.; Lettinga, G.; Lens, P.N.L.

    2003-01-01

    The effect of NaCl on thermophilic (55degreesC) methanol conversion in the presence of excess of sulfate (COD/SO42-=0.5) was investigated in two 6.5L lab-scale upflow anaerobic sludge bed reactors inoculated with granular sludge previously not adapted to NaCl
    The effect of NaCl on thermophilic

  11. Effect of NaCl Priming on Seed Germination of Tunisian Fenugreek (Trigonella foenum-graecum L. Under Salinity Conditions

    Directory of Open Access Journals (Sweden)

    Souguir, Maher

    2013-04-01

    Full Text Available Salinity is one major problem of increasing production in crop growing areas throughout the world. The objective of this research was to evaluate the effect of NaCl priming on seed germination of Tunisian fenugreek (Trigonella foenum-graecum L. under salinity conditions. Seeds of fenugreek were primed with NaCl (4g/l for 36 h in continuous 25°C. Experimental factors were included 2 priming treatments (NaCl and non-priming as control and five salinity solution (4,6,8,10 and 12 gl-1. Results showed that seed priming increased final germination percentage, germination speed and radicle length over the non-primed treatment. At the lowest levels of salinity, there were no notable differences between primed and non-primed seeds, but with increasing salinity levels, primed seeds showed the better performance than non-primed seeds. These results indicated that NaCl priming significantly improved seed performance under salinity conditions.

  12. P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

    Directory of Open Access Journals (Sweden)

    Rita Delgado Marques

    2013-10-01

    Full Text Available Local purinergic signals modulate renal tubular transport. Acute activation of renal epithelial P2 receptors causes inhibition of epithelial transport and thus, should favor increased water and salt excretion by the kidney. So far only a few studies have addressed the effects of extracellular nucleotides on ion transport in the thick ascending limb. In the medullary thick ascending limb (mTAL, basolateral P2X receptors markedly (~25% inhibit NaCl absorption. Although this segment does express both apical and basolateral P2Y2 receptors, acute activation of the basolateral P2Y2 receptors had no apparent effect on transepithelial ion transport. Here we studied, if the absence of the P2Y2 receptor causes chronic alterations in mTAL NaCl absorption by comparing basal and AVP-stimulated transepithelial transport rates. We used perfused mouse mTALs to electrically measure NaCl absorption in juvenile (35 days male mice. Using microelectrodes, we determined the transepithelial voltage (Vte and the transepithelial resistance (Rte and thus, transepithelial NaCl absorption (equivalent short circuit current, I’sc.We find that mTALs from adult wild type (WT mice have significantly lower NaCl absorption rates when compared to mTALs from juvenile WT mice. This could be attributed to significantly higher Rte values in mTALs from adult WT mice. This pattern was not observed in mTALs from P2Y2 receptor knockout (KO mice. In addition, adult P2Y2 receptor KO mTALs have significantly lower Vte values compared to the juvenile. No difference in absolute I´sc was observed when comparing mTALs from WT and KO mice. AVP stimulated the mTALs to similar increases of NaCl absorption irrespective of the absence of the P2Y2 receptor. No difference was observed in the medullary expression level of NKCC2 in between the genotypes.These data indicate that the lack of P2Y2 receptors does not cause substantial differences in resting and AVP-stimulated NaCl absorption in

  13. Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Yuui, E-mail: y-yokota@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); Yanagida, Takayuki; Fujimoto, Yutaka [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); Nikl, Martin [Institute of Physics, Academy of Sciences of the Czech Republic/6253, Prague (Czech Republic); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University/2-1-1, Katahira, Aoba-ku, Sendai (Japan)

    2010-03-15

    We have investigated luminescent properties of nondope, Ce and Pr doped NaCl [nondope NaCl, Ce:NaCl, Pr:NaCl] single crystals grown by a modified micro-pulling-down method with a removable chamber system. Nondope, Ce 1% and Pr 1% doped NaCl crystals with a single phase of NaCl structure were obtained and the crystals indicated general crystal quality by the X-ray rocking curve measurement. For the nondope NaCl and Pr:NaCl crystals, the transmittance spectra indicated almost more than 60% in the wavelength from 200 to 800 nm and an absorption of Ce{sup 3+} ion was observed in the transmittance spectrum of Ce:NaCl crystal. The emission spectrum originated from Ce{sup 3+} 5d-4f transition appeared around 300 nm in the photoluminescence spectrum and the decay time was 19.7 ns.

  14. Terahertz reflection spectroscopy of aqueous NaCl and LiCl solutions

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Merbold, Hannes

    2010-01-01

    frequencies. Whereas both the real and imaginary part of the permittivity of NaCl increases with concentration,we see that the imaginary part of the permittivity of LiCl (related to the absorption)decreases with increasing salt concentration. We relate these changes to the behavior...

  15. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  16. Effect of NaCl on Asparagus Quality, Production and Mineral Leaching

    NARCIS (Netherlands)

    Kruistum, van G.; Poll, J.T.K.; Meijer, J.W.

    2008-01-01

    Previous research has shown that the incidence of Fusarium oxysporum and F. redolens on asparagus roots was reduced by field applications of NaCl. F. oxysporum and F. redolens are important diseases in asparagus crops causing physiological rust (brown discoloration on the harvested spears), reduced

  17. The Cathodic Behavior of Ti(III) Ion in a NaCl-2CsCl Melt

    Science.gov (United States)

    Song, Yang; Jiao, Shuqiang; Hu, Liwen; Guo, Zhancheng

    2016-02-01

    The cathodic behavior of Ti(III) ions in a NaCl-2CsCl melt was investigated by cyclic voltammetry, chronopotentiometry, and square wave voltammetry with a tungsten electrode being the working electrode at different temperatures. The results show that the cathodic behavior of Ti(III) ion consists of two irreversible steps: Ti3+ + e = Ti2+ and Ti2+ + 2 e = Ti. The diffusion coefficient for the Ti(III) ion in the NaCl-2CsCl eutectic is 1.26 × 10-5 cm2 s-1 at 873 K (600 °C), increases to be 5.57 × 10-5 cm2 s-1 at 948K (675°C), and further rises to 10.8 × 10-5 cm2 s-1 at 1023 (750 °C). Moreover, galvanostatic electrolysis performed on a titanium electrode further presents the feasibility of electrodepositing metallic titanium in the molten NaCl-2CsCl-TiCl3 system.

  18. Body Temperatures During Exercise in Deconditioned Dogs: Effect of NACL and Glucose Infusion

    Science.gov (United States)

    Greenleaf, J. E.; Kruk, B.; Nazar, K.; Kaciuba-Usciko, H.

    2000-01-01

    Infusion of glucose (Glu) into normal exercising dogs attenuates the rise in rectal temperature (Delta-Tre) when compared with delta-Tre during FFA infusion or no infusion. Rates of rise and delta-=Tre levels are higher during exercise after confinement. Therefore, the purpose of this study was to determine if Glu infusion would attenuate the exercise-induced excess hyperthermia after deconditioning. Rectal and quadricep femoris muscle temperatures (Tmu) were measured in 7 male, mongrel dogs dogs (19.6 +/- SD 3.0 kg) during 90 minutes of treadmill exercise (3.1 +/-SD 0.2 W/kg) with infusion (30ml/min/kg) of 40% Glu or 0.9% NaCL before BC) and after confinement (AC) in cages (40 x 110 x 80 cm) for 8 wk. Mean (+/-SE body wt. were 19.6 +/- 1.1 kg BC and 19.5 +/- 1.1kg AC, exercise VO2 were not different (40.0 - 42.0 mi/min/kg-1). With NaCl AC, NaCl BC, GluAC, and GluBC: Delta-Tre were, 1.8, 1.4, 1.3 and 0.9C respectively; and Delta-Tmu were 2.3, 1.9, 1.6, and 1.4C. respectively (Pbody temperature with Glu infusion must affect avenues of heat dissipation.

  19. Response of Eucalyptus occidentais to water stress induced by NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Itai, C.

    1978-01-01

    Eucalyptus occidentalis plants were exposed to NaCl in their culture solution for various time. Determination of cytokinin, abscisic acid, /sup 14/C leucine incorporation of E. occidentalis, a xerophyte, does not differ from the response of mesophytes to such treatments. 13 references, 1 figure, 4 tables.

  20. Regeneration of plantlets under NaCl stress from NaN3 treated ...

    African Journals Online (AJOL)

    use

    2011-11-16

    Nov 16, 2011 ... plant regeneration under NaCl stressed conditions was assessed in some sugarcane ( ... cell is a useful work for the establishment of pure form of ... balance. The relative water contents (RWC) were calculated .... J. Life Sci.

  1. Synthesis of NaCl Single Crystals with Defined Morphologies as Templates for Fabricating Hollow Nano/micro-structures

    DEFF Research Database (Denmark)

    Wang, B.B.; Jin, P.; Yue, Yuanzheng

    2015-01-01

    . These naturally abundant NaCl single crystal templates are water-soluble, environmentally-friendly and uniform in both geometry and size, and hence are ideal for preparing high quality hollow nano/micro structures. The new approach may have the potential to replace the conventional hard or soft template...... approaches. Furthermore, this work has revealed the formation mechanism of nano/micron NaCl crystals with different sizes and geometries....

  2. A Case Study of Landfill Leachate Using Coal Bottom Ash for the Removal of Cd2+, Zn2+ and Ni2+

    Directory of Open Access Journals (Sweden)

    Julia Ayala

    2016-11-01

    Full Text Available The removal of Cd2+, Zn2+ and Ni2+ by coal bottom ash has been investigated. In single metal system, metal uptake was studied in batch adsorption experiments as a function of pH (2–3, contact time (5–180 min, initial metal concentration (50–400 mg/L, adsorbent concentration (5–40 g/L, particle size, and ionic strength (0–1 M NaCl. Removal percentages of metals ions increased with increasing pH and dosage. Removal efficiency at lower concentrations was greater than at higher values. The maximum amount of metal ion adsorbed in milligrams per gram was 35.4, 35.1 and 34.6 mg/g for Zn2+, Cd2+ and Ni2+, respectively, starting out from an initial solution at pH 3. Simultaneous removal of Zn2+, Cd2+ and Ni2+ ions from ternary systems was also investigated and compared with that from single systems. Cd2+ uptake was significantly affected by the presence of competing ions at pH 2. The results obtained in the tests with landfill leachate showed that bottom ash is effective in simultaneously removing several heavy metals such as Ni, Zn, Cd, As, Mn, Cu, Co, Se, Hg, Ag, and Pb.

  3. A new automated NaCl based robust method for routine production of gallium-68 labeled peptides

    Science.gov (United States)

    Schultz, Michael K.; Mueller, Dirk; Baum, Richard P.; Watkins, G. Leonard; Breeman, Wouter A. P.

    2017-01-01

    A new NaCl based method for preparation of gallium-68 labeled radiopharmaceuticals has been adapted for use with an automated gallium-68 generator system. The method was evaluated based on 56 preparations of [68Ga]DOTATOC and compared to a similar acetone-based approach. Advantages of the new NaCl approach include reduced preparation time ( 97%), and specific activity (> 40 MBq nmole−1 [68Ga]DOTATOC) and is well-suited for clinical production of radiopharmaceuticals. PMID:23026223

  4. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution

    Science.gov (United States)

    Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin

    2018-05-01

    In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.

  5. The effect of TiO2 coating on biological NiTi alloys after micro-arc oxidation treatment for corrosion resistance.

    Science.gov (United States)

    Sukuroglu, Ebru Emine; Sukuroglu, Suleyman; Akar, Kubra; Totik, Yasar; Efeoglu, Ihsan; Arslan, Ersin

    2017-08-01

    NiTi alloys exhibit good properties, such as shape memory behavior, high corrosion resistant, having the closest elasticity modulus of a human bone and superior biocompatibility properties. However, the surface problems that arise during the use of this alloy limit the usage in the industry and health sector. In recent years, micro-arc oxidation method is used to improve the surface properties and increase the usage of these alloys. In this study, the TiO 2 coatings were deposited on the NiTi substrates. The surface topography, morphology, crystallographic structure, and thickness of the coatings were determined using scanning electron microscopy and X-ray diffraction. The corrosion properties were investigated using potentiostat test unit in two different media such as NaCl solution and simulated body fluid. The results show that the coated samples have higher corrosion resistance than uncoated samples in the two different media.

  6. Over-expression of Arabidopsis DnaJ (Hsp40) contributes to NaCl ...

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... levels of DnaJ in their transgenic sense lines exhibited tolerance to NaCl stress. Under 120 mM ... polymerase chain reaction; RT-PCR, reverse transcriptase –. PCR; CTAB ..... Engineering salt tolerance in plants. Curr. Opin.

  7. Elevated NaCl concentration improves cryotolerance and developmental competence of porcine oocytes

    DEFF Research Database (Denmark)

    Lin, L; Du, Y; Liu, Y

    2009-01-01

    High hydrostatic pressure has been reported to improve the fertilizing or developmental ability of mammalian spermatozoa, oocytes and embryos. This study investigated the effect of another stress, temporarily increased NaCl concentration, on cryotolerance and developmental competence of porcine...

  8. Short-pulse CO2-laser damage studies of NaCl and KCl windows

    International Nuclear Information System (INIS)

    Newnam, B.E.; Nowak, A.V.; Gill, D.H.

    1979-01-01

    The damage resistance of bare surfaces and the bulk interior of NaCl and KCl windows was measured with a short-pulse CO 2 laser at 10.6 μm. Parametric studies with 1.7-ns pulses indicated that adsorbed water was probably the limiting agent on surface thresholds in agreement with previous studies at long pulsewidths. Rear-surface thresholds up to 7 J/cm 2 were measured for polished NaCl windows, whereas KCl surfaces damaged at approximately 60% of this level. The breakdown electric-field thresholds of exit surfaces were only 50% of the value of the bulk materials. The pulsewidth dependence of surface damage from 1 to 65 ns, in terms of incident laser fluence, increased as t/sup 1/3/

  9. NaCl islands decorated with 2D or 3D 3,4,9,10-perylene-tetracarboxylic-dianhydride nanostructures

    NARCIS (Netherlands)

    Sun, Xiaonan; Silly, Fabien

    2010-01-01

    The formation of PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) nanostrutures on Au(1 1 1)-(22 x root 3) covered with NaCl islands has been studied using scanning tunneling microscopy (STM). Atomically resolved STM images show that NaCl grows as (1 0 0)-terminated layers on Au(1 1 1)-(22 x

  10. Effects of NaCl stress on seed germination, early seedling growth ...

    African Journals Online (AJOL)

    Effects of salt stress on seed germination, early seedling growth and some physiological characteristics were evaluated for four cauliflower species in seven treatments of salinity including 0 (control), 34, 68, 102, 136, 170 and 204 mM NaCl in a three replicated randomized completely block design (RCBD). This result shows ...

  11. Color kinetics and acrylamide formation in NaCl soaked potato chips

    DEFF Research Database (Denmark)

    Pedreschi, Franco; Bustos, Oscar; Mery, Domingo

    2007-01-01

    The objective of this work was to study the kinetics of color development in blanched and blanched-NaCl impregnated potato slices during frying by using the dynamic method and also to evaluate the effect of NaCl in reducing acrylamide formation in potato chips. The measurement of color was done b...

  12. Combinations of nisin with salt (NaCl) to control Listeria ...

    African Journals Online (AJOL)

    This study evaluated the effect of combinations of nisin with salt (NaCl) to control Listeria monocytogenes on sheep natural sausage casings. Casings were inoculated with 3.0 x 105 cfu/g final inocula of L. monocytogenes, stored at 6°C in different solutions of nisin at 0, 100, 150 and 200 ìg/g. Each combined with salt at 0, 4, ...

  13. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    Science.gov (United States)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  14. The effects of NaCl priming on salt tolerance in sunflower ...

    African Journals Online (AJOL)

    This experiment was conducted to evaluate the effects of NaCl priming with KNO3 on the germination traits and seedling growth of four Helianthus annuus L. cultivars under salinity conditions. Seeds of four spring sunflower (Armawireski, Airfloure, Alestar and Ismailli) were primed with KNO3 (-1.0 M Pa) for 24 h in ...

  15. Heteroepitaxial strain in alkali halide thin films: KCl on NaCl

    DEFF Research Database (Denmark)

    Baker, J.; Lindgård, Per-Anker

    1999-01-01

    We have pet-formed Monte Carlo simulations of the properties of a NaCl (001) surface covered by full or partial layers of KCl, for coverages up to 5 monolayers (ML). A wide variety of structures of the film is found. For integer ML coverages we find the continuous, so-called floating mode rumple ...

  16. Thermoluminescence analysis of co-doped NaCl at low temperature irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Zaragoza, E., E-mail: ecruz@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Ortiz, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, IPN, Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico D.F. (Mexico); Furetta, C. [Touro University Rome, Circne Gianicolense 15-17, 00153 Rome (Italy); Flores J, C.; Hernandez A, J.; Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2011-02-15

    The thermoluminescent response and kinetics parameters of NaCl, doubly activated by Ca-Mn and Cd-Mn ions, exposed to gamma radiation are analyzed. The doped NaCl samples were irradiated at relative low temperature, i.e. at the liquid nitrogen temperature (LNT) and at dry ice temperature (DIT), and the glow curves obtained after 2 Gy of gamma irradiation were analyzed using the computerized glow curve deconvolution (CGCD). An evident variation in the glow curve structure after LNT and DIT was observed. It seems that different kinds of trapping levels are activated at relative low temperature. The original two prominent peaks in compositions A (Ca,Mn) and B (Ca,Mn) have been changed in only one main peak with satellites in the low temperature side of the glow curves. In compositions C (Cd,Mn) and D (Cd,Mn), low temperature peaks become stronger and prominent than the high temperature peaks; this effect could be explained considering that the trapping probability for low temperature traps, the one very close to the conduction band, is enhanced by low temperatures during irradiation.

  17. Effect of halopriming on the induction of nacl salt tolerance in different wheat genotypes

    International Nuclear Information System (INIS)

    Muhammad, Z.; Hussain, F.; Rehmanullah, M.; Majeed, A.

    2015-01-01

    Salinity is a major environmental stress limiting plant growth and productivity of wide range of crops with impairing effects on germination and yield. The present study was conducted to assess the induction of salt tolerance in seven wheat genotypes (Bakhtawar-92, Bhakar-2002, Fakhar-e-Sarhad, Khyber-87, Nasir-2000, Pirsabak-2005, and Uqab-2000) at germination and seedling stage through halo-priming with NaCl. Seeds of each wheat genotype were halo-primed separately. Halo-primed seeds of each wheat genotype were subjected to 0.02 (control), 2, 4, 6 and 8 dS/m NaCl salinity under laboratory conditions. Germination percentage age varied significantly among various wheat genotypes; however, differences between different salt concentrations were non-significant. All the seedling growth characters (germination, plumule growth, fresh and dry weight of seedling and moisture contents) exhibited significant differences among wheat genotypes as well as under the applied salt concentration except for radicle growth which varied non-significantly under salt stress. Interaction between various wheat genotypes and salt concentration was also significant for all the seedling growth characters, while it was non-significant for germination percentage age. It is concluded that NaCl proved to be effective priming agents in inducing salt tolerance in the tested wheat genotypes. (author)

  18. Recuperación de fenol de aguas residuales industriales por tratamiento con NaCl

    Directory of Open Access Journals (Sweden)

    Iveth Serna

    2003-01-01

    Full Text Available En el presente trabajo se explora una técnica para la recuperación de fenol de aguas residuales que hasta el momento se ha realizado en forma empírica en algunas industrias locales. Se realizó un diseño experimental donde se tomó la concentración de NaCl como variable de entrada del proceso y el porcentaje de recuperación de fenol como variable de salida. El análisis estadístico de los datos muestra que la concentración de NaCl es una variable de suma importancia en el proceso. Se determinó que el mejor punto de operación está a 25º C, con un pH inicial entre 2 y 3, una concentración inicial de fenol de 6% y concentración inicial de NaCl de 21,5%, logrando una recuperación del fenol del 79 % con una concentración de fenol en la fase orgánica del 83 %. Además de la parte experimental, en el trabajo se exponen algunas teorías desarrolladas acerca de la separación de una solución de no electrolito y agua por adición de sal.

  19. Ultrasonic cavitation erosion of Ti in 0.35% NaCl solution with bubbling oxygen and nitrogen.

    Science.gov (United States)

    Li, D G; Wang, J D; Chen, D R; Liang, P

    2015-09-01

    The influences of oxygen and nitrogen on the ultrasonic cavitation erosion of Ti in 0.35%NaCl solution at room temperature, were investigated using a magnetostrictive-induced ultrasonic cavitation erosion (CE) facility and scanning electron microscopy (SEM). The roles of oxygen and nitrogen in the composition and the electronic property of the passive film on Ti, were studied by Mott-Schottky plot and X-ray photoelectron spectroscopy (XPS). The results showed that the mass loss of Ti in 0.35%NaCl solution increased with increasing cavitation time. Bubbling oxygen can evidently increase the resistance of ultrasonic cavitation erosion comparing with bubbling nitrogen. XPS results showed that the thickness of the passive film on Ti in 0.35%NaCl solution in the case of bubbling oxygen for 3 weeks, was about 7 nm, and the passive film was mainly composed of TiO2 with an anatase structure. While TiO2 with a rutile structure was found to be the major component of the passive film on Ti in 0.35%NaCl solution in the case of bubbling nitrogen for 3 weeks, and the film thickness was 5 nm. The results extracted from Mott-Schottky plot showed that the passive film on Ti in the case of bubbling oxygen had more donor density than the passive film on Ti in the case of bubbling nitrogen. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertebrate communities

    International Nuclear Information System (INIS)

    Blasius, B.J.; Merritt, R.W.

    2002-01-01

    Short-term exposure to road salt did not significantly affect stream macro-invertebrate communities. - Field and laboratory experiments were conducted to examine the effects of road salt (NaCl) on stream macroinvertebrates. Field studies investigated leaf litter processing rates and functional feeding group composition at locations upstream and downstream from point source salt inputs in two Michigan, USA streams. Laboratory studies determined the effects of increasing NaCl concentrations on aquatic invertebrate drift, behavior, and survival. Field studies revealed that leaves were processed faster at upstream reference sites than at locations downstream from road salt point source inputs. However, it was sediment loading that resulted in partial or complete burial of leaf packs, that affected invertebrate activity and confounded normal leaf pack colonization. There were no significant differences that could be attributed to road salt between upstream and downstream locations in the diversity and composition of invertebrate functional feeding groups. Laboratory drift and acute exposure studies demonstrated that drift of Gammarus (Amphipoda) may be affected by NaCl at concentrations greater than 5000 mg/l for a 24-h period. This amphipod and two species of limnephilid caddisflies exhibited a dose response to salt treatments with 96-h LC 50 values of 7700 and 3526 mg NaCl/l, respectively. Most other invertebrate species and individuals were unaffected by NaCl concentrations up to 10,000 mg/l for 24 and 96 h, respectively

  1. NaCl stress-induced changes in the essential oil quality and abietane diterpene yield and composition in common sage

    Directory of Open Access Journals (Sweden)

    Taieb Tounekti

    2015-09-01

    Full Text Available Aim: The purpose of this study was to evaluate how increasing NaCl salinity in the medium can affects the essential oils (EOs composition and phenolic diterpene content and yield in leaves of Salvia officinalis L. The protective role of such compounds against NaCl stress was also argued with regard to some physiological characteristics of the plant (water and ionic relations as well as the leaf gas exchanges. Materials and Methods: Potted plants were exposed to increasing NaCl concentrations (0, 50, 75 and 100 mM for 4 weeks during July 2012. Replicates from each treatment were harvested after 0, 2, 3 and 4 weeks of adding salt to perform physiological measurements and biochemical analysis. Results: Sage EOs were rich in manool, viridiflorol, camphor, and borneol. Irrigation with a solution containing 100 mM NaCl for 4 weeks increased considerably 1.8-cineole, camphor and beta-thujone concentrations, whereas lower concentrations (50 and 75 mM had no effects. On the contrary, borneol and viridiflorol concentrations decreased significantly under the former treatment, while manool and total fatty acid concentrations were not affected. Leaf extracts contained also several diterpenes such as carnosic acid (CA, carnosol (CAR and 12- and #1054;-methoxy carnosic acid (MCA. The concentrations and total contents of CA and MCA increased after 3 weeks of irrigation with 75 or 100 mM NaCl. The 50 mM NaCl had no effect on these diterpenes. Our results suggest a protective role for CA against salinity stress. Conclusion: This study may provide ways to manipulate the concentration and yield of some phenolic diterpenes and EOs in sage. In fact soil salinity may favour a directional production of particular components of interest. [J Intercult Ethnopharmacol 2015; 4(3.000: 208-216

  2. Effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 580-185 (Korea, Republic of); Choi, Kyoung-Hee [Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan, Jeollabuk 570-749 (Korea, Republic of); Lee, Ju-Woon, E-mail: sjwlee@kaeri.re.k [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk 580-185 (Korea, Republic of)

    2010-04-15

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D{sub 10} values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased (P<0.05) as irradiation dose increased, and no differences (P>=0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D{sub 10} values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  3. Relative transcription of Listeria monocytogenes virulence genes in liver pâtés with varying NaCl content

    DEFF Research Database (Denmark)

    Olesen, Inger; Thorsen, Line; Jespersen, Lene

    2010-01-01

    three liver pâtés with reduced NaCl content of which one also has been supplied with organic acids (Ca-acetate and Ca-lactate). The three strains (EGD-e: reference strain; O57: more NaCl sensitive; 6896: more NaCl tolerant) were selected out of twelve strains based on their growth in BHI broth adjusted......B for both O57 and 6896 were significantly higher when the strains were grown in BHI compared to the standard liver pâté. Reducing the NaCl content of the standard liver pâté did not change relative transcription levels of prfA, inlA, sigB or clpC (except for prfA in O57 and sigB in 6896). However......, the presence of Ca-acetate and Ca-lactate induced relative transcription of the stress response gene, clpC, for all three strains. This study demonstrates that relative microbial gene transcription can be measured in complex food matrices and points to the need for designing experimental set-ups in real food...

  4. Effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    Science.gov (United States)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-04-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis ( Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased ( P<0.05) as irradiation dose increased, and no differences ( P≥0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  5. Efecto del NaCl en plántulas de curarí (Tabebuia serratifolia en condiciones de laboratorio

    Directory of Open Access Journals (Sweden)

    Maribel Ramírez

    Full Text Available El objetivo de este trabajo fue evaluar el efecto del cloruro de sodio (NaCl durante la germinación y el desarrollo inicial de las plántulas de curarí (Tabebuia serratifolia, en condiciones de laboratorio. Las semillas se colocaron en cinco concentraciones de NaCl: 2, 4, 6, 8 y 10 dS m-1, y en agua destilada (testigo, con una conductividad eléctrica entre 0,02 y 0,04 dS m-1. Se empleó un diseño experimental completamente al azar, con cinco repeticiones, y se aplicó un análisis de varianza. Se determinó el porcentaje de germinación (PG y la tasa de germinación (TG; y se midió la longitud del tallo (LT, la longitud de la raíz (LR, el área cotiledonal (AC, la biomasa fresca (BF y la biomasa seca (BS. La concentración de NaCl mostró efectos significativos para las variables PG, TG, BS, LT, LR y AC. Se obtuvo un 79,6 % de germinación y una TG de 1,66 días, cuando las semillas se sometieron a 6 dS m-1 de NaCl. Las concentraciones de 8 y 10 dS m-1 disminuyeron significativamente el PG, la LT y el AC de las plántulas, y retardaron la TG. Se concluye que las plántulas de curarí mostraron tolerancia a la condición salina del NaCl hasta 6 dS m-1, por lo que esta especie se puede utilizar con fines agroforestales en los sistemas de producción agropecuaria, así como en la recuperación de áreas que presenten problemas moderados de salinidad.

  6. The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation.

    Science.gov (United States)

    Peitsch, T; Klocke, A; Kahl-Nieke, B; Prymak, O; Epple, M

    2007-09-01

    The influence of dynamic mechanical loading and of surface nitridation on the nickel release from superelastic nickel-titanium orthodontic wires was investigated under ultrapure conditions. Commercially available superelastic NiTi arch wires (size 0.018 x 0.025'') without surface modification (Neo Sentalloy) and with nitrogen ion implantation surface treatment (Neo Sentalloy Ionguard) were analyzed. Mechanical loading of wire segments with a force similar to the physiological situation was performed with a frequency of 5 Hz in ultrapure water and saline solution, respectively. The release of nickel was monitored by atomic absorption spectroscopy for up to 36 days. The mechanically loaded wires released significantly more nickel ( approximately 45 ng cm(-2) d(-1)) than did nonloaded wires (<1 ng cm(-2) d(-1)). There was no statistically significant effect of the testing solution (water or NaCl) or of the surface nitridation. The total amount of released nickel was small in all cases, but may nevertheless account for the occasional clinical observations of adverse reactions during application of NiTi-based orthodontic appliances. The surface nitridation did not constrain the release of nickel from NiTi under continuous mechanical stress.

  7. Preparation and properties of Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Ma, XiuHua [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Li, Qiang, E-mail: qli@xju.edu.cn [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Zhang, Jijun [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Dong, Yaqiang; Chang, Chuntao [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2014-09-01

    Highlights: • Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20–50 at.%) BMGs were prepared by fluxing and J-quenching techniques. • The highest GFA is reached at x = 40 and the corresponding critical diameter is up to 2.5 mm. • The present FeNi-based BMGs exhibit very large ε{sub p} and the ε{sub p} of Fe{sub 30}Ni{sub 50}P{sub 14}B{sub 6} BMG is 11.7%. • The present FeNi-based BMGs have much higher corrosion resistance than stainless steel. - Abstract: Bulk Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20, 30, 40, 50 at.%) glassy alloy rods with the diameters of 1.0–2.5 mm were synthesized by combining fluxing technique and J-quenching technique. The glassy alloy rods were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). It is found that the range of supercooled liquid region (ΔT{sub x}) is 27–32 K. The saturation magnetization of Fe{sub 80−x}Ni{sub x}P{sub 14}B{sub 6} (x = 20, 30, 40, 50 at.%) bulk glassy alloys gradually decreases from 1.13 T to 0.58 T with increasing Ni content from x = 20 to x = 50. More importantly, the present quaternary FeNiPB bulk metallic glasses (BMGs) shows a significant plastic strain, in particular, the plastic strain of Fe{sub 30}Ni{sub 50}P{sub 14}B{sub 6} BMG reaches as high as 11.7%. The corrosion resistance of the present FeNiPB BMGs was studied by weight-loss method, potentiodynamic polarization curves and scanning electron microscopy (SEM). It is shown that the corrosion resistance of the present FeNiPB BMGs in 0.5 M NaCl and 1 M HCl solution increases with Ni content, and further the present FeNiPB BMGs exhibit larger E{sub corr} values and lower I{sub corr} values, i.e. higher corrosion resistances, than that of stainless steel.

  8. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis

    DEFF Research Database (Denmark)

    Pagter, Majken; Bragato, Claudia; Malagoli, Mario

    2009-01-01

    Osmotic and ion-specific effects of NaCl and Na2SO4 on Phragmites australis (Cav.) Trin ex. Steud. were investigated in a laboratory experiment by examining effects of iso-osmotic solutions of NaCl and Na2SO4 on growth, osmolality of cell sap, proline content, elemental composition and gas exchange....... Plants were supplied with a control standard nutrient solution (Ψ = -0.09 MPa) or solutions of NaCl or Na2SO4 at water potentials of -0.50, -1.09 or -1.74 MPa. Salt treatments increased root concentrations of Na and S or Cl, whereas P. australis had efficient mechanisms for exclusion of Na and S...... and partly Cl ions from the leaves. Incomplete exclusion of Cl from the leaves may affect aboveground biomass production, which was significantly more reduced by NaCl than Na2SO4. Stomatal conductance was negatively influenced by decreasing water potentials caused by NaCl or Na2SO4, implying that a non...

  9. Radiation inactivation of angiotensin-converting enzyme in solutions. Communication 3. The effect of NaCl

    International Nuclear Information System (INIS)

    Orlova, M.A.; Kost, O.A.; Nikol'skaya, I.I.; Troshina, N.N.; Binevskij, P.V.

    1999-01-01

    The effect of 0-0.15 M NaCl on the dose response of angiotensin-converting enzyme is described. The data represented at three-dimensional surfaces demonstrate the existence of special areas where definite mechanisms of dose response are predominant. In acidic and alkaline media, the regions of high values of enzyme activation can be emphasized; moreover, the oscillations of enzyme activity can also be detected. At pH 7.5, when angiotensin-converting enzyme conformation is less rigid, activation peaks on the three-dimensional surface are less pronounced indicating the decreasing effect of NaCl on dose response at this pH value [ru

  10. The scid mutation does not affect slowly repairing potentially lethal damage that is sensitive to 0.23 M NaCl

    International Nuclear Information System (INIS)

    Kimura, Hiroshi; Ikebuchi, Makoto; Fushiki, Masato; Komatsu, Kenshi.

    1996-01-01

    The repair of slowly repairing potentially lethal damage (PLD) in radiosensitive cells from the severe combined immunodeficient (scid) mouse was compared with that in Balb/c 3T3 cells with ''wild-type'' radiosensitivity and that in RD13B2 cells derived from scid cells whose sensitivity is normal because of the presence of fragments of human chromosome 8. Treatment with 0.23 M NaCl was used for fixation of slowly repairing PLD. The scid cells repaired PLD sensitive to 0.23 M NaCl to a great extent whin 3-4 h, similarly to Balb/c 3T3 and RD13B2 cells. This indicates that the scid mutation hardly affects the repair of PLD sensitive to 0.23 M NaCl. On the other hand, as reported previously, the rapidly repairing PLD that is sensitive to 0.5 M NaCl was repaired only slowly (3-4 h) in scid cells, in contrast to the rapid repair (within 1 h) seen with Balb/c 3T3 and RD13B2. This suggests that scid mutation is responsible for this repair at reduced rate. To confirm the independence of repair of 0.23 M NaCl-sensitive PLD from that of 0.5 M NaCl-sensitive PLD, both treatments with 0.23 M NaCl and 0.5 M NaCl were combined in each line. It is found that the repair of either PLD was not affected by the other treatment. The scid mutation impaired only the repair of 0.5 M NaCl-sensitive PLD. (author)

  11. Exclusive study of Ni+Ni and Ni+Au central collisions: phase coexistence and spinodal decomposition; Etude exclusive des collisions centrales Ni+Ni et Ni+Au: coexistence de phase et decomposition spinodale

    Energy Technology Data Exchange (ETDEWEB)

    Guiot, B

    2002-12-01

    The INDRA multidetector allowed us to study the Ni+Ni collisions at 32A MeV and the Ni+Au collisions at 52,4 MeV. Central collisions leading to 'quasi-fused' systems were isolated using multidimensional analysis techniques: the Discriminant Analysis and the Principal Component Analysis. Comparison with a statistical model shows that the selected events are compatible with thermodynamical equilibrium. The average thermal excitation energy is 5A MeV for both systems. Calculations of heat capacities show that the deexcitation of the hot sources are akin to a liquid-gas phase transition of nuclear matter. Indeed heat capacities exhibit a negative branch as expected for a phase transition of a finite system. The dynamics of this phase transition has been investigated by applying the charge correlation method. An enhanced production of events with equal-sized fragments has been evidenced for Ni+Au at 52A MeV. No signal was found for Ni+Ni at 32A MeV. Finally this method was improved by taking into account the total charge conservation. The signal is seen more clearly for Ni+Au at 52A MeV, but is ambiguous for Ni+Ni at 32A MeV. The path followed in the state diagram, or the involved time scales, seem to be different for these systems. (authors)

  12. The release of stored energy in heavily irradiated NaCl explosive reactions

    NARCIS (Netherlands)

    Vainshtein, D.; Bemt, M. van den; Seinen, J.; Datema, H.C.; Hartog, H.W. den

    1995-01-01

    During irradiation of NaCl with ionizing radiation at moderate temperatures (50-150 degrees C) irregular structures of very fine Na and Cl nano-precipitates are formed. The increase of the temperature to a value between 50 and 250 degrees C might induce explosive reactions between radiolytic Na and

  13. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    International Nuclear Information System (INIS)

    Somera, L.; Cruz Z, E.; Roman L, J.; Hernandez A, J. M.; Murrieta S, H.

    2015-10-01

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl 2 ) impurity were grown by using the Czochralski method. The emission characteristic of Mn 2+ was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from 60 Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  14. Thermoluminescence and F centers of manganese doped NaCl and NaCl-CKl crystals exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Somera, L.; Cruz Z, E.; Roman L, J. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Hernandez A, J. M.; Murrieta S, H., E-mail: ecruz@nucleares.unam.mx [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2015-10-15

    Alkali halides crystals doped with rare earths or transition metals have been widely studied due to the luminescence properties. In particular, NaCl and KCl single crystals present thermally stimulated luminescence (Tl) after gamma irradiation. The NaCl and the NaCl KCl mixed crystal doped with manganese (MnCl{sub 2}) impurity were grown by using the Czochralski method. The emission characteristic of Mn{sup 2+} was observed at 543 nm. The crystals were exposed between 0.02 and 10 kGy gamma dose from {sup 60}Co irradiator. Optical absorption at room temperature shows the peaked band at 452 nm corresponding to the manganese impurity. The F bands, was ascribed to the electron trapped in the anion vacancy in the lattice, were obtained at 452 nm and 455 nm belonging to NaCl:Mn and NaCl KCl:Mn, respectively. The F band increases as the doses increase and it was bleaching by the UV light at 470 nm. The glow curves of the samples show the first glow peak between 92-103 degrees C, while the second main peak was observed at 183 degrees C for the undoped NaCl and at 148 and 165 degrees C for the NaCl:Mn and NaCl-KCl:Mn, respectively. The main peak was slowly bleaching when the irradiated sample was illuminated with F (470 nm) light. Optical bleaching confirms that the F center has an important participation in the thermoluminescent response. The glow curves structure from the thermal bleaching suggests the participation of different kind of traps. Also, the kinetics parameters such as activation energy (E), frequency factor (s) and the kinetic order (b) were investigated. (Author)

  15. The Effects of NaCl Concentration and Confining Pressure on Mechanical and Acoustic Behaviors of Brine-Saturated Sandstone

    Directory of Open Access Journals (Sweden)

    Yan-Hua Huang

    2018-02-01

    Full Text Available To better understand the mechanical behavior of rock with brine saturation, conventional triaxial experiments were carried out on sandstone for a range of confining pressures (0–60 MPa and NaCl concentrations (0–30%. As the confining pressure and NaCl concentration increased, the triaxial compressive strength, crack damage threshold, Young’s modulus, cohesion, and internal friction angle all increased. Real-time ultrasonic wave and acoustic emission (AE techniques were used to obtain the relationship between acoustic behavior and stress level during the whole triaxial compression process. During the whole deformation process, the evolution of P-wave velocity and accumulated AE count could be divided into four phases. The microstructural characteristics of brine-saturated sandstone, before and after loading, indicated that the strength enhancement mechanism may be attributed to an increase in inter-particle friction resulting from salt crystallisation around the points of contact. The angle of friction increased by more than 86% at maximum NaCl concentration compared to that for distilled water. The NaCl deposition in the pore space resulted in nonlinear strength increases for the brine-saturated sandstone specimens with increasing salinity. The present study is expected to improve the knowledge of the strength and failure mechanisms of sedimentary rock in deep saline aquifers.

  16. Rhizospheric salt tolerant bacteria improving plant growth in single and mixed culture inoculations under NaCl stress (abstract)

    International Nuclear Information System (INIS)

    Afrasayab, S.; Hasnain, S.

    2005-01-01

    Salt tolerant bacterial strains isolated from rhizosphere of Mazus plant (inhabitant of salt range) were used singly (ST -1; ST -2; ST -3; ST -4) and in mixed combinations (ST -1,3,4; ST -2,3,4) to improve the growth to Tricticum aestivum in the pot experiments. Growth and yield of T. aestivum var. Inqlab-91 plants exposed to NaCl stress (0.75% NaCl) was markedly affected. Na/sup +//K/sup +/ ratios in shoots and roots were profoundly increased under NaCl stress. Bacterial inoculations improved plant growth under salt stress. Bacterial combinations ST - 1,3,4 and ST -2,3,4 were more effective in stimulating growth and showed prominent results as compared to their pure cultures. Mono and mixed bacterial inoculations improved yield parameters of wheat. ST -1,3,4 mixed culture inoculation maximally improved yield under salt stress. Generally bacterial inoculations resulted in increase in Na/sup +//K/sup +/ ratios in shoots and roots under salt free and salt stress conditions. Overall ST -1,3,4 mixed inoculation yielded promising results under NaCl stress, hence 168 rRNA gene sequence analysis of its pure cultures was obtained for their identification to genus level. (author)

  17. Structural, magnetic, electrical and electrochemical properties of NiFe{sub 2}O{sub 4} synthesized by the molten salt technique

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, Baskaran [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Kalai Selvan, Ramakrishnan, E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641 046 (India); Vinothbabu, Palanisamy [Department of Physics, Gobi Arts and Science College, Gobichettipalayam 638 453 (India); Perelshtein, Ilana [Kanbar Laboratory for Nanomaterials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Gedanken, Aharon, E-mail: gedanken@mail.biu.ac.il [Kanbar Laboratory for Nanomaterials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2011-10-17

    Highlights: {yields} The article describes the comprehensive study of molten salt synthesised NiFe{sub 2}O{sub 4}. {yields} The optimized NiFe{sub 2}O{sub 4} were further studied for their application as electrodes in redox supercapacitors and hydrogen evolving reaction (HER) using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques, respectively. {yields} The electrochemical characterization of NiFe{sub 2}O{sub 4} showed pseudocapacitive property and exhibited specific capacitance of 18.5 F g{sup -1}. {yields} It also confirmed through LSV, the prepared NiFe{sub 2}O{sub 4} has good electrocatalytic behavior compared with its individual constituents like NiO and Fe{sub 2}O{sub 3} as well as the NiFe{sub 2}O{sub 4} prepared by solid state reaction. - Abstract: Submicron-sized NiFe{sub 2}O{sub 4} particles were synthesized by the molten salt method at 900 deg. C using binary melts of a NaCl and KCl mixture that acts as a flux. The X-ray diffraction pattern confirmed the single phase, high crystalline and cubic structure of NiFe{sub 2}O{sub 4} with a Fd3m space group. The FT-IR spectra reveal the stretching vibration of octahedral complexes of Fe{sup 3+}-O{sup 2-} through the observed band around 552.3 cm{sup -1}. The SEM and TEM image had indicated the formation of submicron-sized NiFe{sub 2}O{sub 4} particles. The ferrimagnetic behavior and high saturation magnetization of 44 emu g{sup -1} was elucidated by VSM. The maximum electrical conductivity of 1.42 x 10{sup -4} S cm{sup -1} was observed at 873 K. The NiFe{sub 2}O{sub 4} showed a pseudocapacitive property in 1 M of a LiClO{sub 4} electrolyte and exhibited a specific capacitance of 18.5 F g{sup -1} at 10 mV s{sup -1}. The hydrogen evolution reaction was also studied for NiFe{sub 2}O{sub 4} in 1 M of a H{sub 2}SO{sub 4} solution.

  18. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments

    International Nuclear Information System (INIS)

    Chou, Y.L.; Yeh, J.W.; Shih, H.C.

    2010-01-01

    The purpose of this study is to investigate the electrochemical properties of the Co 1.5 CrFeNi 1.5 Ti 0.5 Mo x high-entropy alloys in three aqueous environments which simulate acidic, marine, and basic environments at ambient temperature (∼25 o C). The potentiodynamic polarisation curves of the Co 1.5 CrFeNi 1.5 Ti 0.5 Mo x alloys, obtained in aqueous solutions of H 2 SO 4 and NaOH, clearly revealed that the corrosion resistance of the Mo-free alloy was superior to that of the Mo-containing alloys. On the other hand, the lack of hysteresis in cyclic polarisation tests and SEM micrographs confirmed that the Mo-containing alloys are not susceptible to pitting corrosion in NaCl solution.

  19. Effects of NaCl treatment on the antioxidant enzymes of oilseed rape ...

    African Journals Online (AJOL)

    The effects of NaCl treatment on the activity of antioxidant enzymes in leaves of oilseed rape seedlings (Brassica napus L.) were studied. The results showed that the relative water content from leaves of oilseed rape seedlings was gradually decreased and the electronic conductivity was increased during 0 - 24 h under 200 ...

  20. Effect of NaCl salinity on nitrate uptake in Plantago maritima L.

    NARCIS (Netherlands)

    Rubinigg, Michael; Posthumus, F.S; Elzenga, J.T.M.; Stulen, I.

    2005-01-01

    Exposure of plants to NaCl salinity reduces the rate of nitrate net uptake by the roots. Previous studies showed that this effect was due to a reduced nitrate influx, which could only partially be explained by a lower demand of nitrate for growth. In the present work we tested the hypothesis that

  1. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.

    Science.gov (United States)

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (NaCl) concentration on reductions of nitrates and on the characteristics of NZVI were investigated. Although NaCl is known as a promoter of iron corrosion, a high concentration of NaCl (>3 g/L) has a significant inhibition effect on the degree of NZVI reactivity towards nitrate. The experimental results were interpreted by a Langmuir-Hinshelwood-Hougen-Watson reaction in terms of inhibition, and the decreased NZVI reactivity could be explained by the increase in the inhibition constant. As a result of a chloride concentration analysis, it was verified that 7.7-26.5% of chloride was adsorbed onto the surface of NZVI. Moreover, the change of the iron corrosion product under different NaCl concentrations was investigated by a surface analysis of spent NZVI. Magnetite was the main product, with a low NaCl concentration (0.5 g/L), whereas amorphous iron hydroxide was observed at a high concentration (12 g/L). Though the surface was changed to permeable iron hydroxide, the Fe(0) in the core was not completely oxidized. Therefore, the inhibition effect of NaCl could be explained as the competitive adsorption of chloride and nitrate.

  2. Computer simulation of aqueous Na-Cl electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hummer, G. [Los Alamos National Lab., NM (United States); Soumpasis, D.M. [Max-Planck-Institut fuer Biophysikalische Chemie (Karl-Friedrich-Bonhoeffer-Institut), Goettingen (Germany); Neumann, M. [Vienna Univ. (Austria). Inst. fuer Experimentalphysik

    1993-11-01

    Equilibrium structure of aqueous Na-Cl electrolytes between 1 and 5 mol/l is studied by means of molecular dynamics computer simulation using interaction site descriptions of water and ionic components. Electrostatic interactions are treated both with the newly developed charged-clouds scheme and with Ewald summation. In the case of a 5 mol/l electrolyte, the results for pair correlations obtained by the two methods are in excellent agreement. However, the charged-clouds technique is much faster than Ewald summation and makes simulations at lower salt concentrations feasible. It is found that both ion-water and ion-ion correlation functions depend only weakly on the ionic concentration. Sodium and chloride ions exhibit only a negligible tendency to form contact pairs. In particular, no chloride ion pairs in contact are observed.

  3. Computer simulation of aqueous Na-Cl electrolytes

    International Nuclear Information System (INIS)

    Hummer, G.; Soumpasis, D.M.; Neumann, M.

    1993-01-01

    Equilibrium structure of aqueous Na-Cl electrolytes between 1 and 5 mol/l is studied by means of molecular dynamics computer simulation using interaction site descriptions of water and ionic components. Electrostatic interactions are treated both with the newly developed charged-clouds scheme and with Ewald summation. In the case of a 5 mol/l electrolyte, the results for pair correlations obtained by the two methods are in excellent agreement. However, the charged-clouds technique is much faster than Ewald summation and makes simulations at lower salt concentrations feasible. It is found that both ion-water and ion-ion correlation functions depend only weakly on the ionic concentration. Sodium and chloride ions exhibit only a negligible tendency to form contact pairs. In particular, no chloride ion pairs in contact are observed

  4. Thermoluminescence and recovery processes in pure and doped NaCl after 20 K irradiation

    International Nuclear Information System (INIS)

    Lopez, F.J.; Aguilar, M.; Jaque, F.; Agullo-Lopez, F.

    1980-01-01

    The thermoluminescence (TL) spectra after X-ray irradiation at 20 K have been investigated for pure as well as divalent cation doped NaCl. The F-centre decay has also been determined in pure and Ca and Mg doped NaCl for comparison purposes. A clear decrease in F-centre concentration appears to correlate with glow peaks at 44 and 50 K for pure and Ca-doped samples. Main glow peak appearing at 69 K is not associated to any appreciable F-centre decay step. Below liquid nitrogen temperature (LNT) all peaks show both σ and π exciton emission bands. Above LNT, the glow peaks for doped samples show the σ emission together with another band at 410 nm, whereas pure samples still present the intrinsic emission bands. (author)

  5. Clostridium tyrobutyricum strains show wide variation in growth at different NaCl, pH, and temperature conditions.

    Science.gov (United States)

    Ruusunen, Marjo; Surakka, Anu; Korkeala, Hannu; Lindström, Miia

    2012-10-01

    Outgrowth from Clostridium tyrobutyricum spores in milk can lead to butyric acid fermentation in cheeses, causing spoilage and economical loss to the dairy industry. The aim of this study was to investigate the growth of 10 C. tyrobutyricum strains at different NaCl, pH, and temperature conditions. Up to 7.5-fold differences among the maximum growth rates of different strains in the presence of 2.0% NaCl were observed. Five of 10 strains were able to grow in the presence of 3.0% NaCl, while a NaCl concentration of 3.5% was completely inhibitory to all strains. Seven of 10 strains were able to grow at pH 5.0, and up to 4- and 12.5-fold differences were observed among the maximum growth rates of different strains at pH 5.5 and 7.5, respectively. The maximum growth temperatures varied from 40.2 to 43.3°C. The temperature of 10°C inhibited the growth of all strains, while 8 of 10 strains grew at 12 and 15°C. Despite showing no growth, all strains were able to survive at 10°C. In conclusion, wide variation was observed among different C. tyrobutyricum strains in their ability to grow at different stressful conditions. Understanding the physiological diversity among the strains is important when designing food control measures and predictive models for the growth of spoilage organisms in cheese.

  6. MAPK-mediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L.) under NaCl stress.

    Science.gov (United States)

    Li, Zhe; Wang, Wenwen; Li, Guilong; Guo, Kai; Harvey, Paul; Chen, Quan; Zhao, Zhongjuan; Wei, Yanli; Li, Jishun; Yang, Hetong

    2016-11-01

    Peppermint (Mentha × piperita L.) is an important and commonly used flavoring agent worldwide, and salinity is a major stress that limits plant growth and reduces crop productivity. This work demonstrated the metabolic responses of essential oil production including the yield and component composition, gene expression, enzyme activity, and protein activation in a salt-tolerant peppermint Keyuan-1 with respect to NaCl stress. Our results showed that Keyuan-1 maintained normal growth and kept higher yield and content of essential oils under NaCl stress than wild-type (WT) peppermint.Gas chromatography-mass spectrometry (GC-MS) and qPCR results showed that compared to WT seedlings, a 150-mM NaCl stress exerted no obvious changes in essential oil composition, transcriptional level of enzymes related to essential oil metabolism, and activity of pulegone reductase (Pr) in Keyuan-1 peppermint which preserved the higher amount of menthol and menthone as well as the lower content of menthofuran upon the 150-mM NaCl stress. Furthermore, it was noticed that a mitogen-activated protein kinase (MAPK) protein exhibited a time-dependent activation in the Keyuan-1 peppermint and primarily involved in the modulation of the essential oil metabolism in the transcript and enzyme levels during the 12-day treatment of 150 mM NaCl. In all, our data elucidated the effect of NaCl on metabolic responses of essential oil production, and demonstrated the MAPK-dependent regulation mechanism of essential oil biosynthesis in the salt-tolerant peppermint, providing scientific basis for the economic and ecological utilization of peppermint in saline land.

  7. Influence of in situ synthesized TiC on thermal stability and corrosion behavior of Zr60Cu10Al15Ni15 amorphous composites

    International Nuclear Information System (INIS)

    Geng, Jiwei; Teng, Xinying; Zhou, Guorong; Leng, Jinfeng; Zhao, Degang

    2014-01-01

    In situ synthesized TiC particles were prepared by a thermal explosion method. Adding “in situ synthesized” TiC into Zr 60 Cu 10 Al 15 Ni 15 glass matrix to obtain amorphous matrix composites was achieved. The corrosion behavior of Zr 60 Cu 10 Al 15 Ni 15 amorphous composites was evaluated using potentiodynamic polarization measurements in 3.5 wt% NaCl solution at room temperature. The results show that the microhardness and thermal stability are improved apparently, while the TiC (≤0.6 wt%) does not significantly affect the supercooled liquid behavior. Moreover, the corrosion resistance is improved apparently because the nanocrystals accelerate the diffusion of passive elements for faster formation of the protective passive film at nanocrystals/amorphous interfaces. However, when the TiC content is more than 0.6 wt%, both glass forming ability and corrosion resistance are reduced significantly

  8. Crevice Corrosion on Ni-Cr-Mo Alloys

    International Nuclear Information System (INIS)

    P. Jakupi; D. Zagidulin; J.J. Noel; D.W. Shoesmith

    2006-01-01

    Ni-Cr-Mo alloys were developed for their exceptional corrosion resistance in a variety of extreme corrosive environments. An alloy from this series, Alloy-22, has been selected as the reference material for the fabrication of nuclear waste containers in the proposed Yucca Mountain repository located in Nevada (US). A possible localized corrosion process under the anticipated conditions at this location is crevice corrosion. therefore, it is necessary to assess how this process may, or may not, propagate if the use of this alloy is to be justified. Consequently, the primary objective is the development of a crevice corrosion damage function that can be used to assess the evolution of material penetration rates. They have been using various electrochemical methods such as potentiostatic, galvanostatic and galvanic coupling techniques. Corrosion damage patterns have been investigated using surface analysis techniques such as scanning electron microscopy (SEM) and optical microscopy. All crevice corrosion experiments were performed at 120 C in 5M NaCl solution. Initiating crevice corrosion on these alloys has proven to be difficult; therefore, they have forced it to occur under either potentiostatic or galvanostatic conditions

  9. Impaired NaCl taste thresholds in Zn deprived rats

    International Nuclear Information System (INIS)

    Brosvic, G.M.; Slotnick, B.M.; Nelson, N.; Henkin, R.I.

    1986-01-01

    Zn deficiency is a relatively common cause of loss of taste acuity in humans. In some patients replacement with exogenous Zn results in rapid reversal of the loss whereas in others prolonged treatment is needed to restore normal taste function. To study this 300 gm outbred Sprague Dawley rats were given Zn deficient diet (< 1 ppm Zn) supplemented with Zn in drinking water (0.1 gm Zn/100 gm body weight). Rats were trained in an automated operant conditions procedure and NaCl taste thresholds determined. During an initial training period and over two replications mean thresholds were 0.006% and mean plasma Zn was 90 +/- 2 μg/dl (M +/- SEM) determined by flame atomic absorption spectrophotometry. Rats were then divided into two groups; in one (3 rats) Zn supplement was removed, in the other (4 rats), pair-fed with the former group, Zn supplement was continued. In 10 days NaCl thresholds in Zn deprived rats increased significantly (0.07%, p < 0.01) and in 17 days increased 13 fold (0.08%) but thresholds for pair fed, supplemented rats remained constant (0.006%). There was no overlap in response between any rat in the two groups. Plasma Zn at 17 days in Zn-deprived rats was significantly below pair-fed rats (52 +/- 13 vs 89 +/- 6 μg/dl, respectively, P < 0.01). At this time Zn-deprived rats were supplemented with Zn for 27 days without any reduction in taste thresholds. These preliminary results are consistent with previous observations in Zn deficient patients

  10. Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ambrish [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, Sichuan 610500 (China); Department of Chemistry, LFTS, Lovely Professional University, Phagwara, Punjab 144402 (India); Lin, Yuanhua, E-mail: yhlin28@163.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, Sichuan 610500 (China); Obot, I.B. [Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ebenso, Eno E. [Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735 (South Africa); Material Science Innovation & Modelling (MaSIM) Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735 (South Africa); Ansari, K.R.; Quraishi, M.A. [Department of Applied Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh (India)

    2015-11-30

    Graphical abstract: SECM studies revealed decrease of steady current in the presence of inhibitor while it increased for 3.5% NaCl solution that acted as the conductor. - Highlights: • J55 steel protection in 3.5% NaCl solution saturated with CO{sub 2} by HPT. • Potentiodynamic polarization curves reveal that the actions of HPT are mixed type. • The adsorption of HPT obeys the Langmuir adsorption isotherm. • Scanning electrochemical microscopy is used to discuss the insulated and conductive surface. - Abstract: 1,2,4,7,9,10-Hexaazacyclo-pentadeca-10,15-dien-3,5,6,8-tetraone (HPT) a macrocyclic compound has been studied using electrochemical methods and scanning electrochemical microscopy (SECM) techniques. The R{sub ct} values increased and C{sub dl} values decreased with the increase in concentration of the inhibitor. The corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO{sub 2} by polarization studies revealed that HPT acted as a mixed type inhibitor. The adsorption of HPT on the J55 steel surface obeyed the Langmuir adsorption isotherm. The thermodynamic parameters (K{sub ads}, ΔG°{sub ads}) were also computed and discussed.

  11. Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor

    International Nuclear Information System (INIS)

    Singh, Ambrish; Lin, Yuanhua; Obot, I.B.; Ebenso, Eno E.; Ansari, K.R.; Quraishi, M.A.

    2015-01-01

    Graphical abstract: SECM studies revealed decrease of steady current in the presence of inhibitor while it increased for 3.5% NaCl solution that acted as the conductor. - Highlights: • J55 steel protection in 3.5% NaCl solution saturated with CO 2 by HPT. • Potentiodynamic polarization curves reveal that the actions of HPT are mixed type. • The adsorption of HPT obeys the Langmuir adsorption isotherm. • Scanning electrochemical microscopy is used to discuss the insulated and conductive surface. - Abstract: 1,2,4,7,9,10-Hexaazacyclo-pentadeca-10,15-dien-3,5,6,8-tetraone (HPT) a macrocyclic compound has been studied using electrochemical methods and scanning electrochemical microscopy (SECM) techniques. The R ct values increased and C dl values decreased with the increase in concentration of the inhibitor. The corrosion inhibition of J55 steel in 3.5 wt.% NaCl solution saturated with CO 2 by polarization studies revealed that HPT acted as a mixed type inhibitor. The adsorption of HPT on the J55 steel surface obeyed the Langmuir adsorption isotherm. The thermodynamic parameters (K ads , ΔG° ads ) were also computed and discussed.

  12. PROPRIEDADES EMULSIONANTES E SOLUBILIDADE DA CASEÍNA BOVINA: 2. EFEITO DA ADIÇÃO DE NaCl EMULSIFYING PROPERTIES AND SOLUBILITY OF CASEIN: 2. EFFECTS OF THE NaCl ADDITION

    Directory of Open Access Journals (Sweden)

    Ângela Jardim DUARTE

    1998-08-01

    Full Text Available O efeito da adição de NaCl sobre algumas propriedades funcionais da caseína e de seus hidrolisados trípticos, foi estudado em dois valores de pH (4,0 e 5,0. Para tal, foi adicionado um teor de 0,02M do sal às soluções-tampão empregadas no preparo das amostras. Foram determinadas a solubilidade protéica, a capacidade emulsificante (EC, o índice de atividade emulsificante (EAI e a estabilidade das emulsões (ES, e o raio médio dos glóbulos de gordura (R foi calculado. Os resultados obtidos indicaram que, nos dois valores de pH estudados, a adição de NaCl levou a um aumento significativo da solubilidade e da EC da caseína e de todos os hidrolisados trípticos. Por outro lado, diminuiu os valores de EAI da caseína e elevou os dos hidrolisados, tendo sido observado o oposto para o tamanho dos glóbulos de gordura. Com relação à ES, a da caseína apresentou ligeiro aumento no pH 5,0, enquanto que apenas alguns hidrolisados trípticos tiveram a sua ES elevada em pH 4,0 ou 5,0.The effect of the NaCl addition on the emulsifying properties of casein and tryptic casein hydrolysates was studied in two pH values (4,0 e 5,0. A 0.02 M concentration of salt was added to the buffer solutions used for preparing the samples. The protein solubility, the emulsifying capacity (EC, the emulsifying activity index (EAI and the emulsion stability (ES were determined. The mean radius (R of fat droplets was also calculated. The results showed that the addition of NaCl increased the solubility and the EC of casein and casein hydrolysates, in both pH values. However, this salt addition reduced the EAI of casein and increased that of the hydrolysates.The opposite was observed relating to the R of fat droplets. Regarding the ES, that of casein presented little increase in pH 5.0, and the same result was obtained for only some hydrolysates in pH 5.0 or 4.0.

  13. Electrolytic coloration of O22--doped NaCl crystals

    International Nuclear Information System (INIS)

    Qin Fang; Gu Hongen; Song Cuiying; Wang Na; Guo Meili; Wang Fen; Liu Jia

    2007-01-01

    O 2 2- -doped NaCl crystals are colored electrolytically by using a pointed cathode and a flat anode at various temperatures and voltages, which mainly benefit from appropriate coloration temperatures and voltages as well as anode structure of used electrolysis apparatus. Characteristic OH - , U, V 2 m , U A , V 2 , V 3 , O 2- -V a + complex, F, R 1 , R 2 and M absorption bands are observed in absorption spectra of the colored crystals. Production and conversion of color centers in electrolytic coloration is explained. Current-time curves for electrolytic colorations and their relationships with electrolytic colorations were given

  14. Effect of tonicity on 22NaCl solution uptake by rabbit eye in vivo and in vitro

    International Nuclear Information System (INIS)

    Obenberger, J.; Bartosova, D.; Babicky, A.

    1979-01-01

    Solutions of 22 NaCl in saline or distilled water differ with respect to their ocular uptake. Studies were performed on eyes of living rabbits as well on the enucleated rabbit eyes. Chromatographic paper strips (15x2 mm) were soaked in both solutions, stretched over the cornea and left in contact for 1 min. Radioactivities of paper strips and rabbit eyes were measured and the ocular uptake of 22 Na was expressed as percentual values of the total radioactivities contained in the paper strips before their application to the corneal surface. Values of the ocular uptake of 22 NaCl solved in distilled water exceeded more than twice the values found in experiments where 22 Na solution in saline was used. The use of carrier-free 22 NaCl solutions in distilled water is recommended for the method measuring the ocular uptake hydrodynamics on basis of ocular 22 Na clearance. Uptake of 22 Na in enucleated eyes was twenty-five per cent higher in comparison with the eyes of living rabitts. (author)

  15. Exclusive study of Ni+Ni and Ni+Au central collisions: phase coexistence and spinodal decomposition

    International Nuclear Information System (INIS)

    Guiot, B.

    2002-12-01

    The INDRA multidetector allowed us to study the Ni+Ni collisions at 32A MeV and the Ni+Au collisions at 52,4 MeV. Central collisions leading to 'quasi-fused' systems were isolated using multidimensional analysis techniques: the Discriminant Analysis and the Principal Component Analysis. Comparison with a statistical model shows that the selected events are compatible with thermodynamical equilibrium. The average thermal excitation energy is 5A MeV for both systems. Calculations of heat capacities show that the deexcitation of the hot sources are akin to a liquid-gas phase transition of nuclear matter. Indeed heat capacities exhibit a negative branch as expected for a phase transition of a finite system. The dynamics of this phase transition has been investigated by applying the charge correlation method. An enhanced production of events with equal-sized fragments has been evidenced for Ni+Au at 52A MeV. No signal was found for Ni+Ni at 32A MeV. Finally this method was improved by taking into account the total charge conservation. The signal is seen more clearly for Ni+Au at 52A MeV, but is ambiguous for Ni+Ni at 32A MeV. The path followed in the state diagram, or the involved time scales, seem to be different for these systems. (authors)

  16. Multilayered Zn-Ni alloy coatings for better corrosion protection of mild steel

    Directory of Open Access Journals (Sweden)

    Sadananda Rashmi

    2017-06-01

    Full Text Available A simple aqueous electrolyte for the deposition of anti-corrosive Zn-Ni alloy coatings was optimized using conventional Hull cell method. The corrosion protection value of the electrodeposited coatings at a current density (c.d. range of 2.0–5.0 A dm−2 has been testified in 5 wt% NaCl solution, as representative corrosion medium. The electrochemical behavior of the coatings towards corrosion was related to its surface topography, elemental composition and phase structure using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analyses, respectively. Among the monolithic coatings developed at different c.d.’s, the coating obtained at 3.0 A dm−2 was found to be the best with least corrosion current (icorr value. Further, the corrosion protection efficacy of the monolayer coatings were improved to many folds through multilayer coating approach, by modulating the cyclic cathode current densities (CCCD’s. The composition modulated multilayer (CMM Zn-Ni alloy coating with 60 layers, developed from the combination of CCCD’s 3.0 and 5.0 A dm−2 was found to be the best with 3 fold enhancement in corrosion protection efficiency. The formation of multilayer coatings was confirmed using cross-sectional SEM, and the experimental results are discussed with tables and figures.

  17. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  18. AFM of metallic nano-particles and nano-structures in heavily irradiated NaCl

    NARCIS (Netherlands)

    Gaynutdinov, R; Vainshtein, DI; Hak, SJ; Tolstikhina, A; Den Hartog, HW

    2003-01-01

    AFM investigations are reported for heavily, electron irradiated NaCl crystals in ultra high vacuum (UHV) in the non-contact mode-with an UHV AFM/STM Omicron system. To avoid chemical reactions between the radiolytic Na and oxygen and water, the irradiated samples were cleaved and prepared for the

  19. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    International Nuclear Information System (INIS)

    Chopra, Nitin; Claypoole, Leslie; Bachas, Leonidas G.

    2010-01-01

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  20. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin [University of Alabama, Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT) (United States); Claypoole, Leslie [Fairmont State University (United States); Bachas, Leonidas G., E-mail: bachas@uky.ed [University of Kentucky, Department of Chemistry (United States)

    2010-10-15

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  1. Effects of B Addition on Glass Formation, Mechanical Properties and Corrosion Resistance of the Zr66.7- x Ni33.3B x ( x = 0, 1, 3, and 5 at.%) Metallic Glasses

    Science.gov (United States)

    Xu, Jing; Niu, Jiazheng; Zhang, Zitang; Ge, Wenjuan; Shang, Caiyun; Wang, Yan

    2016-02-01

    The effects of B addition on glass formation, mechanical properties and electrochemical corrosion of Zr66.7- x Ni33.3B x ( x = 0, 1, 3, and 5 at.%) glassy ribbons have been investigated. The results reveal that the B addition can improve the glass forming ability and obviously raise the thermal stability of the Zr-Ni-B metallic glasses. The 1 at.% B addition exhibits the most positive effect on enhancing the microhardness of Vickers-type (HV) by 13.83%. In addition, Zr63.7Ni33.3B3 possesses the best plasticity in the nanoindentation test. The electrochemical test and microstructural observation show that the moderate B addition effectively enhances the corrosion resistance of the Zr-Ni-B metallic glasses in different solutions. The 3 at.% B addition is beneficial to improve the corrosion resistance in the 0.5 M NaCl solution. But in the 1 M HCl and 2 M NaOH solutions, the better effect is induced by the 1 and 5 at.% B addition. Moreover, the Zr-Ni-B metallic glasses exhibit active dissolution behavior in the chloride- and hydrogen-containing solutions, but passivation occurs in the 2 M NaOH solution.

  2. Synthesis of Ni3Ta, Ni2Ta and NiTa by high-energy ball milling and subsequent heat treatment

    International Nuclear Information System (INIS)

    Benites, H.S.N.; Silva, B.P da; Ramos, A.S.; Silva, A.A.A.P.; Coelho, G.C.; Lima, B.B. de

    2014-01-01

    The tantalum has relevance for the development of multicomponent Ni-based superalloys which are hardened by solid solution and precipitation mechanisms. Master alloys are normally used in the production step in order to produce refractory metals and alloys. The present work reports on the synthesis of Ni_3Ta, Ni_2Ta and NiTa by high-energy ball milling and subsequent heat treatment. The elemental Ni-25Ta, Ni-33Ta and Ni-50Ta (at.-%) powder mixtures were ball milled under Ar atmosphere using stainless steel balls and vials, 300 rpm and a ball-to-powder weight ratio of 10:1. Following, the as-milled samples were uniaxially compacted and heat-treated at 1100 deg C for 4h under Ar atmosphere. The characterization of as-milled and heat-treated samples was conducted by means of X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. A large amount of Ni_3Ta, Ni_2Ta and NiTa was formed in the mechanically alloyed heat-treated Ni-25Ta, Ni-33Ta and Ni-50Ta alloys. (author)

  3. Irreversible dilation of NaCl contaminated lime-cement mortar due to crystallization cycles

    NARCIS (Netherlands)

    Lubelli, B.; van Hees, R.P.J.; Huinink, H.P.; Groot, C.J.W.P.

    2006-01-01

    The mechanism of damage occurring in NaCl contaminated materials has not been clarified yet. Apart from crystn. pressure, other hypotheses have been proposed to explain the cause of decay. Irreversible dilation has been obsd. in a few cases but has never been studied in a more systematic way. The

  4. Effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate) survival under combinations of pH and NaCl

    International Nuclear Information System (INIS)

    Yoon, Yohan; Kim, Jae-Hun; Byun, Myung-Woo; Choi, Kyoung-Hee; Lee, Ju-Woon

    2010-01-01

    This study evaluated the effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0-3%), and pH-adjusted to 4-7 was treated with gamma irradiation (0-0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D 10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased (P 10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.

  5. Effect of the partial NaCl substitution by other chloride salts on the volatile profile during the ripening of dry-cured lacón

    Directory of Open Access Journals (Sweden)

    Domínguez, R.

    2016-06-01

    Full Text Available The influence of three salting treatments (treatment II: 50% NaCl-50% KCl; III: 45% NaCl-25% KCl-20% CaCl2-10% MgCl2; IV: 30% NaCl-50% KCl-15% CaCl2-5% MgCl2 on the formation of volatile compounds throughout the process was studied and compared to those of a control “lacón” (treatment I: 100% NaCl. There was an intense formation of volatile compounds throughout the processing, particularly during the dry-ripening stage. The most abundant chemical family in all the formulations, in the final product was hydrocarbons followed by aldehydes. The total volatile compound release was more intense in the control “lacóns” (1164 AU_106·g-1dry matter than in “lacóns” from formulations II, III and IV (817-891 AUx106·g-1dry matter. The “lacóns” from formulation I showed the highest amounts of aldehydes. The “lacóns” from formulations I and II presented the highest amounts of hydrocarbons. The main conclusion is that the replacement of NaCl produces changes in the volatile profile and could be affect the aroma of “lacón”.Se estudió la influencia de tres tratamientos de salado (tratamiento II: 50 % NaCl-50 % KCl; III: 45 % NaCl-25 % KCl-20 % CaCl2-10 % MgCl2; IV: 30 % NaCl-50 % KCl-15 % CaCl2-5 % MgCl2 en la formación de compuestos volátiles durante la elaboración de lacón, en comparación con un control (tratamiento I: 100 % NaCl. Hubo una intensa formación de compuestos volátiles durante el procesado, principalmente durante la fase de secado-maduración. La familia química más abundante en el producto final fueron los hidrocarbonos, seguidos por los aldehídos. La liberación de volátiles fue más intensa en los lacones control (1164 AU_106·g-1 materia seca que en los otros lacones (817-891 AUx106· g-1 materia seca. Los lacones de la formulación I mostraron las mayores cantidades de aldehídos, y los lacones de las formulaciones I y II presentaron los mayores contenidos de hidrocarburos. La principal conclusi

  6. On the nature of Ni···Ni interaction in a model dimeric Ni complex.

    Science.gov (United States)

    Kamiński, Radosław; Herbaczyńska, Beata; Srebro, Monika; Pietrzykowski, Antoni; Michalak, Artur; Jerzykiewicz, Lucjan B; Woźniak, Krzysztof

    2011-06-07

    A new dinuclear complex (NiC(5)H(4)SiMe(2)CHCH(2))(2) (2) was prepared by reacting nickelocene derivative [(C(5)H(4)SiMe(2)CH=CH(2))(2)Ni] (1) with methyllithium (MeLi). Good quality crystals were subjected to a high-resolution X-ray measurement. Subsequent multipole refinement yielded accurate description of electron density distribution. Detailed inspection of experimental electron density in Ni···Ni contact revealed that the nickel atoms are bonded and significant deformation of the metal valence shell is related to different populations of the d-orbitals. The existence of the Ni···Ni bond path explains the lack of unpaired electrons in the complex due to a possible exchange channel.

  7. Laboratory studies of galvanic corrosion. III. Effect of velocity in NaCl and substitute ocean water

    International Nuclear Information System (INIS)

    Mansfeld, F.; Kenkel, J.V.

    1977-01-01

    The galvanic corrosion behavior of 4340 steel coupled to Type 304 stainless steel, Cu, Ti-6Al-4V, Al 2024, Al 6061, and zinc has been studied in 3.5 percent NaCl and ASTM substitute ocean water as a function of velocity using a rotating galvanic couple electrode holder. For steel coupled to Type 304 stainless steel, Cu or Ti, the galvanic current generally increases proportional to the square root of the rotation speed in both media. The increase is, however, smaller in the substitute ocean water. For couples involving Al alloys and Zn, the galvanic current has a more complicated dependence on velocity in substitute ocean water than in 3.5 percent NaCl

  8. Gd-Ni-Si system

    International Nuclear Information System (INIS)

    Bodak, O.I.; Shvets, A.F.

    1983-01-01

    By X-ray phase analysis method isothermal cross section of phase diagram of the Gd-Ni-Si system at 870 K is studied. The existence of nine previously known compounds (GdNisub(6.72)Sisub(6.28), GdNi 10 Si 2 , GdNi 5 Si 3 , GdNi 4 Si, GdNi 2 Si 2 , GdNiSi 3 , GdNiSi 2 , Gd 3 Ni 6 Si 2 and GdNiSi) is confirmed and three new compounds (GdNisub(0.2)Sisub(1.8), Gdsub(2)Nisub(1-0.8)Sisub(1-1.2), Gd 5 NiSi 4 ) are found. On the base of Gd 2 Si 3 compound up to 0.15 at. Ni fractions, an interstitial solid solution is formed up to 0.25 at Ni fractions dissolution continues of substitution type. The Gd-Ni-Si system is similar to the Y-Ni-Si system

  9. Systematic UHV-AFM experiments on Na nano-particles and nano-structures in NaCl

    NARCIS (Netherlands)

    Sugonyako, A.V.; Turkin, A.A.; Gaynutdinov, R.; Vainshtein, D.I.; Hartog, H.W. den; Bukharaev, A.A.

    2005-01-01

    Results of systematic AFM (atomic force microscopy) experiments on heavily and moderatly irradiated NaCl samples are presented. The sodium nanoparticles and structures of nanoparticles are poduced in sodium chloride during irradiation. The AFM images of the nanoparticles have been obtained in ultra

  10. Effect of Acacia Gum, NaCl, and Sucrose on Physical Properties of Lotus Stem Starch

    Science.gov (United States)

    Gill, Balmeet Singh

    2014-01-01

    Consumer preferences in east Asian part of the world pave the way for consumption of lotus stem starch (LSS) in preparations such as breakfast meals, fast foods, and traditional confectioneries. The present study envisaged the investigation and optimization of additives, that is, acacia gum, sodium chloride (NaCl), and sucrose, on water absorption (WA), water absorption index (WAI), and water solubility index (WSI) of LSS employing response surface methodology (RSM). Acacia gum resulted in increased water uptake and swelling of starch; however, NaCl reduced the swelling power of starch by making water unavailable to starch and also due to starch-ion electrostatic interaction. Sucrose restricted the water absorption by binding free water and decreased amylose leaching by building bridges with starch chains and thus forming rigid structure. PMID:26904639

  11. CT-guided lung biopsy: incidence of pneumothorax after instillation of NaCl into the biopsy track

    International Nuclear Information System (INIS)

    Billich, Christian; Brenner, Gerhard; Schmidt, Stefan A.; Brambs, Hans-Juergen; Pauls, Sandra; Muche, Rainer; Krueger, Stefan

    2008-01-01

    This study was conducted to evaluate whether instillation of NaCl 0.9% solution into the biopsy track reduces the incidence of pneumothoraces after CT-guided lung biopsy. A total of 140 consecutive patients with pulmonary lesions were included in this prospective study. All patients were alternatingly assigned to one of two groups: group A in whom the puncture access was sealed by instillation of NaCl 0.9% solution during extraction of the guide needle (n 70) or group B for whom no sealing was performed (n = 70). CT-guided biopsy was performed with a 18-G coaxial system. Localization of lesion (pleural, peripheral, central), lesion size, needle-pleural angle, rate of pneumothorax and alveolar hemorrhage were evaluated. In group A, the incidence of pneumothorax was lower compared to group B (8%, 6/70 patients vs. 34%, 24/70 patients; P < 0.001). All pneumothoraces occurred directly post punctionem after extraction of the guide needle. One patient in group A and eight patients in group B developed large pneumothoraces requiring chest tube placement (P 0.01). The frequency of pneumothorax was independent of other variables. After CT-guided biopsy, instillation of NaCl 0.9% solution into the puncture access during extraction of the needle significantly reduces the incidence of pneumothorax. (orig.)

  12. CT-guided lung biopsy: incidence of pneumothorax after instillation of NaCl into the biopsy track

    Energy Technology Data Exchange (ETDEWEB)

    Billich, Christian; Brenner, Gerhard; Schmidt, Stefan A.; Brambs, Hans-Juergen; Pauls, Sandra [University of Ulm, Department of Diagnostic and Interventional Radiology, Ulm (Germany); Muche, Rainer [University of Ulm, Institute of Biometrics, Ulm (Germany); Krueger, Stefan [University of Ulm, Department of Internal Medicine, Ulm (Germany)

    2008-06-15

    This study was conducted to evaluate whether instillation of NaCl 0.9% solution into the biopsy track reduces the incidence of pneumothoraces after CT-guided lung biopsy. A total of 140 consecutive patients with pulmonary lesions were included in this prospective study. All patients were alternatingly assigned to one of two groups: group A in whom the puncture access was sealed by instillation of NaCl 0.9% solution during extraction of the guide needle (n = 70) or group B for whom no sealing was performed (n = 70). CT-guided biopsy was performed with a 18-G coaxial system. Localization of lesion (pleural, peripheral, central), lesion size, needle-pleural angle, rate of pneumothorax and alveolar hemorrhage were evaluated. In group A, the incidence of pneumothorax was lower compared to group B (8%, 6/70 patients vs. 34%, 24/70 patients; P < 0.001). All pneumothoraces occurred directly post punctionem after extraction of the guide needle. One patient in group A and eight patients in group B developed large pneumothoraces requiring chest tube placement (P = 0.01). The frequency of pneumothorax was independent of other variables. After CT-guided biopsy, instillation of NaCl 0.9% solution into the puncture access during extraction of the needle significantly reduces the incidence of pneumothorax. (orig.)

  13. Comparative microstructural and corrosion development of VCrNiCoFeCu equiatomic multicomponent alloy produced by induction melting and spark plasma sintering

    Science.gov (United States)

    Fazakas, É.; Heczel, A.; Molnár, D.; Varga, B.; Zadorozhnyy, V.; Vida, Á.

    2018-03-01

    The present study focuses on the corrosion behavior of a single-phase FCC high entropy alloy (VCrNiCoFeCu) casted by two different methods: induction melting and spark plasma sintering. The corrosion resistance has been evaluated using immersion tests in 3.5% NaCl solution, the potentiodynamic polarization measurements and the results are compared how is dependent the corrosion rate as a function of the production methods. Our results show that induction melted sample is stable in salty environment. On the other hand, based on the changes of polarization curves, there must be an evolution of oxide films on the SPSed sample until reaching the stable oxide layer.

  14. Electronic structure of Ni/sub 3/Al and Ni/sub 3/Ga alloys

    CERN Document Server

    Pong, W F; Chang, Y K; Tsai, M H; Hsieh, H H; Pieh, J Y; Tseng, P K; Lee, J F; Hsu, L S

    1999-01-01

    This work investigates the charge transfer and Al(Ga) p-Ni d hybridization effects in the intermetallic Ni/sub 3/Al(Ni/sub 3/Ga) alloy using the NiL/sub 3.2/- and K-edge and Al(Ga)K X-ray absorption near edge structure (XANES) measurements. We find that the intensity of white-line features at the NiL/sub 3.2/-edge in the Ni/sub 3/Al(Ni /sub 3/Ga) alloy decreased in comparison with that of pure Ni, which can be attributed to the enhancement of Ni3d states filling and the depletion of the density of Ni 3d unoccupied states in the Ni/sub 3 /Al(Ni/sub 3/Ga) alloy. Two clear features are also observed in the Ni/sub 3/Al(Ni/sub 3/Ga) XANES spectrum at the Al(Ga) K-edge, which can be assigned to the Al(Ga) unoccupied 3p (4p) states and their hybridized states with the Ni 3d/4sp states above the Fermi level in Ni/sub 3/Al(Ni/sub 3/Ga). The threshold at Al K-edge XANES for Ni/sub 3/Al clearly shifts towards higher photon energies relative to that of pure Al, indicating that Al loses charges upon forming Ni/sub 3 /Al. ...

  15. Ni-NiO core-shell inverse opal electrodes for supercapacitors.

    Science.gov (United States)

    Kim, Jae-Hun; Kang, Soon Hyung; Zhu, Kai; Kim, Jin Young; Neale, Nathan R; Frank, Arthur J

    2011-05-14

    A general template-assisted electrochemical approach was used to synthesize three-dimensional ordered Ni core-NiO shell inverse opals (IOs) as electrodes for supercapacitors. The Ni-NiO IO electrodes displayed pseudo-capacitor behavior, good rate capability and cycling performance. © The Royal Society of Chemistry 2011

  16. The effect of NaCl on room-temperature-processed indium oxide nanoparticle thin films for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Häming, M., E-mail: Marc.Haeming@yahoo.de [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), D-76344 Eggenstein-Leopoldshafen (Germany); Baby, T.T. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, 76344 Eggenstein-Leopoldshafen (Germany); Garlapati, S.K. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, 76344 Eggenstein-Leopoldshafen (Germany); Technische Universität Darmstadt, KIT-TUD Joint Research Laboratory for Nanomaterials, Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Krause, B. [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), D-76344 Eggenstein-Leopoldshafen (Germany); Hahn, H. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, 76344 Eggenstein-Leopoldshafen (Germany); Technische Universität Darmstadt, KIT-TUD Joint Research Laboratory for Nanomaterials, Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Karlsruhe Institute of Technology (KIT), Helmholtz Institute Ulm, Albert-Einstein-Allee 11, 89081 Ulm (Germany); Dasgupta, S. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, 76344 Eggenstein-Leopoldshafen (Germany); Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Weinhardt, L.; Heske, C. [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), 76128 Karlsruhe (Germany); University of Nevada, Las Vegas (UNLV), Department of Chemistry and Biochemistry, Las Vegas, NV 89154-4003 (United States)

    2017-02-28

    Highlights: • The effect of NaCl ink additive on indium oxide nanoparticle thin films is analyzed. • NaCl changes the thin film morphology and its chemical structure. • NaCl decomposes the nanoparticle shell leading to lower charge transport barriers. • Explanation of the increase in field effect mobility from 1 to >12 cm{sup 2}/Vs. • Understanding of the ink drying process and the nanoparticle agglomeration behavior. - Abstract: One of the major challenges in flexible electronics industry is the fabrication of high-mobility field-effect transistors (FETs) at ambient conditions and on inexpensive polymer substrates compatible with roll-to-roll printing technology. In this context, a novel and general route towards room-temperature fabrication of printed FETs with remarkably high field-effect mobility (μ{sub FET}) above 12 cm{sup 2}/Vs has recently been developed. A detailed understanding of the chemical structure of the involved nanoparticle (NP) thin films, prepared by chemical flocculation, is essential for further optimization of the charge transport properties of such devices. In this study, we thus analyze indium oxide NP thin films with and without NaCl additive using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). It is demonstrated that the introduction of a sodium chloride additive to the ink leads to a strongly altered film morphology and a modification of the NP shell. The results suggest that, as a consequence of the additive, the charge-transport barriers between individual indium oxide NPs are lowered, facilitating long-range charge percolation paths despite the presence of a significant concentration of carbonaceous residues.

  17. Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu–Al–Ni shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saud, Safaa N.; Hamzah, E., E-mail: esah@fkm.utm.my; Abubakar, T.; Bakhsheshi-Rad, H.R.; Farahany, S.; Abdolahi, A.; Taheri, M.M.

    2014-11-05

    Highlights: • Thermal analysis showed four different phase β, α, NiAl and γ2 during solidification. • The martensite appeared in the microstructure as a plate and needle like shape. • Shape recovery ratio of 80% was obtained after Ag nanoparticles addition. • Effect of Ag nanoparticles on the corrosion behaviour of Cu–Al–Ni SMA was investigated. - Abstract: Incorporation of silver nanoparticles into Cu-based shape memory alloys is recommended to enhance their phase transformation behaviour. However, this incorporation can affect their transformation temperatures, mechanical, microstructural and corrosion characteristics. Four different phase reactions β, α, NiAl and γ{sub 2} were detected on a derivative curve during the solidification by-computer-aided cooling curve thermal analysis. The highest fraction solid (82%) was calculated for the parent phase (β) based on the Newtonian baseline method. The microstructural changes and mechanical properties were investigated using field emission scanning electron microscopy, X-ray diffraction tensile test and shape memory effect test. It was found that the addition of Ag can control the phase morphology and orientations along with the formation of the Ag-rich precipitates, and thus the tensile strength, elongation, fracture stress–strain, yield strength and shape memory effect are improved. Remarkably, the shape recovery ratio reached approximately 80% of the original shape. The corrosion behaviour of the Cu–Al–Ni shape memory alloy were investigated using electrochemical tests in NaCl solution and their results showed that the corrosion potential (E{sub corr}) of Cu–Al–Ni SMA is shifted towards the nobler direction from −307.4 to −277.1 m V{sub SCE} with the addition of 0.25 wt.% Ag.

  18. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.

    Science.gov (United States)

    Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong

    2017-11-01

    Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g -1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm -2 , together with a remarkable power density of 20.2 mW cm -2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A density model based on the Modified Quasichemical Model and applied to the (NaCl + KCl + ZnCl2) liquid

    International Nuclear Information System (INIS)

    Ouzilleau, Philippe; Robelin, Christian; Chartrand, Patrice

    2012-01-01

    Highlights: ► A model for the density of multicomponent inorganic liquids. ► The density model is based on the Modified Quasichemical Model. ► Application to the (NaCl + KCl + ZnCl 2 ) ternary liquid. ► A Kohler–Toop-like asymmetric interpolation method was used. - Abstract: A theoretical model for the density of multicomponent inorganic liquids based on the Modified Quasichemical Model has been presented previously. By introducing in the Gibbs free energy of the liquid phase temperature-dependent molar volume expressions for the pure components and pressure-dependent excess parameters for the binary (and sometimes higher-order) interactions, it is possible to reproduce, and eventually predict, the molar volume and the density of the multicomponent liquid phase using standard interpolation methods. In the present article, this density model is applied to the (NaCl + KCl + ZnCl 2 ) ternary liquid and a Kohler–Toop-like asymmetric interpolation method is used. All available density data for the (NaCl + KCl + ZnCl 2 ) liquid were collected and critically evaluated, and optimized pressure-dependent model parameters have been found. This new volumetric model can be used with Gibbs free energy minimization software, to calculate the molar volume and the density of (NaCl + KCl + ZnCl 2 ) ternary melts.

  20. Thermal stability and electrical characteristics of NiSi films with electroplated Ni(W) alloy

    International Nuclear Information System (INIS)

    Xin Yuhang; Hu Anmin; Li Ming; Mao Dali

    2011-01-01

    In this study, an electroplating method to deposited Ni, crystalline NiW(c-NiW), amorphous NiW (a-NiW) films on P-type Si(1 0 0) were used to form Ni-silicide (NiSi) films. After annealed at various temperatures, sheet resistance of Ni/Cu, c-NiW/Cu and a-NiW/Cu was measured to observe the performance of those diffusion barrier layers. With W added in the barrier layer, the barrier performance was improved. The results of XRD and resistance measurement of the stacked Si/Ni(W)/Cu films reveal that Cu atom could diffuse through Ni barrier layer at 450 deg. C, could diffuse through c-NiW at 550 deg. C, but could hardly diffuse through a-NiW barrier layer. c-NiW layer has a better barrier performance than Ni layer, meanwhile the resistance is lower than a-NiW layer.

  1. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  2. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice.

    Science.gov (United States)

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2015-05-15

    Soaking is one of the important steps of the parboiling process. In this study, we investigated the effect of changes in different sodium chloride (NaCl) content (0%, 1.5% and 3.0% NaCl, w/v) of soaking media and soaking temperatures (30°C, 45°C and 60°C) on the phenolic compounds (α-tocopherol, γ-oryzanol) and on the fatty acids of glutinous rice, compared with unsoaked samples. Overall, the total phenolic content, total phenolic acids, γ-oryzanol, saturated fatty acid and mono-unsaturated fatty acid of the glutinous rice showed an increasing trend as NaCl content and soaking temperature increased, while α-tocopherol and polyunsaturated fatty acids decreased. Soaking at 3.0% NaCl provided the highest total phenolic content, total phenolic acids and γ-oryzanol (0.2mg GAE/g, 63.61 μg/g and 139.76 mg/100g, respectively) for the soaking treatments tested. Nevertheless, the amount of α-tocopherol and polyunsaturated fatty acid were found to be the highest (18.30/100g and 39.74%, respectively) in unsoaked rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gagorowska, B; Dus-Sitek, M [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)

    2007-08-15

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d{sub Cu} = 2 nm) and the thickness of Ni layer - variable (1 nm {<=} d{sub Ni} {<=} 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent.

  4. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Gagorowska, B; Dus-Sitek, M

    2007-01-01

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d Cu = 2 nm) and the thickness of Ni layer - variable (1 nm ≤ d Ni ≤ 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent

  5. Study of dipole interaction in micron-width NiFe/Cu/NiFe/NiO wire using exchange anisotropy

    International Nuclear Information System (INIS)

    Kimura, Takashi; Itagaki, Yoshio; Wakaya, Fujio; Gamo, Kenji

    2001-01-01

    The dipole interaction between a NiFe layer pinned by a NiO and a free NiFe layer in a micron-wide NiFe/Cu/NiFe/NiO wire was studied by changing the direction of the exchange bias from the NiO layer. The effect of the dipole interaction when the exchange bias was perpendicular to the wire axis was larger than that when the exchange bias was parallel to the wire axis, and was consistently explained by the stray field caused by the magnetic charges of the pinned layer. It was demonstrated that this method, using exchange anisotropy, is useful for investigating the dipole interaction between ferromagnetic materials separated by a nonmagnetic material in small-scale magnetic multilayers. [copyright] 2001 American Institute of Physics

  6. Ion association in concentrated NaCl brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Collings Matthew D

    2002-11-01

    Full Text Available Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m NaCl–water mixtures under ambient (25°C, 1 bar, hydrothermal (325°C, 1 kbar and deep crustal (625°C, 15 kbar conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757. With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (NanClmn-m clusters in addition to simple NaCl ion pairs. Large polyatomic (NanClmn-m clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions.

  7. WATER EXTRACT OF PURPLE SWEET POTATO TUBERS REDUCES BLOOD PRESSURE 0F HYPERTENSIVE RATS INDUCED BY NaCl

    Directory of Open Access Journals (Sweden)

    I MADE JAWI

    2013-04-01

    Full Text Available Compliance of hypertensive patients to take medication is one of many determinant factors to achieve successful treatment. Side effects and the expensive price of drugs are the causes of the incompliance of patients taking the medication. Utilization of herbal medicine is a new hope to resolve the issue. Purple sweet potato tuber is a plant part that expected has beneficial effect in lowering blood pressure because it contains anthocyanins which are antioxidants and can preserve endothelial function. To prove these hypothesis, a study was conducted with randomized control group pre and post-test design. The  study was done on 20 adult male Wistar rats that were divided into two groups of 10 rats.  Both groups of rats were made hypertensive by administering high doses of NaCl. Control group of rats given only NaCl alone for 14 days. Treatment group were given NaCl and water extract of purple sweet potato tuber with a dose of 4 cc per day for 14 days. Before treatment and during treatment, blood pressure were taken everyday with special sphygmomanometer. The results indicate a significant difference in blood pressure between the control group with treatment (P = 0.0001. In the treatment group, it was observed that there was a significant decrease in blood pressure compared to the control group (P=0.0001. From the results of this study, it can be concluded that administration of purple sweet potato tuber water extract may lower high blood pressure of rats induced by NaCl.

  8. Effect of applied voltage and initial concentration to desalting NaCl solution using electrodialysis

    International Nuclear Information System (INIS)

    Boubakri, Ali; Gzara, Lassaad; Dhahbi, Mahmoud; Bouguecha, Salah

    2009-01-01

    The desalination process of electrodialysis is one of membrane separation that competes with reverse osmosis for desalination of brackish water and seawater. In this work water desalination using a laboratory electrodialysis was performed and evaluated to desalting aqueous solutions containing 5000, 10000 and 20000 mg/L NaCl at different applied potential (10, 15 and 20 V) and at a constant flow rate of 3 L/min. Nine electrodialysis runs were performed. The results showed that the increasing of applied potential and decreasing of NaCl concentration have an important effect to enhance the electrodialysis performance. The efficiencies of each experiment were evaluated as function of specific power consumption with the electrical energy consumed in electrodialysis stack. It was obtained that the specific power consumption increased when the salt concentration and applied voltage increased. A laboratory electrodialysis stack containing fifteen cation exchange membranes and fifteen anion exchange membranes of 0,716 m 2 total effective area was used.

  9. Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces

    International Nuclear Information System (INIS)

    Baskes, M.I.; Angelo, J.E.; Moody, N.R.

    1995-01-01

    Embedded Atom Method (EAM) potentials have been developed for the Ni/Al/H system. The potentials have been fit to numerous properties of this system. For example, these potentials represent the structural and elastic properties of bulk Ni, Al, Ni 3 Al, and NiAl quite well. In addition the potentials describe the solution and migration behavior of hydrogen in both nickel and aluminum. A number of calculations using these potentials have been performed. It is found that hydrogen strongly prefers sites in Ni 3 Al that are surrounded by 6 Ni atoms. Calculations of the trapping of hydrogen to a number of grain boundaries in Ni 3 Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Ni 3 Al boundaries. Boundaries containing a preponderance of nickel are severely weakened by hydrogen. In order to investigate the potential embrittlement of γ/γ' alloys, trapping of hydrogen to a spherical Ni 3 Al precipate in nickel as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ interface

  10. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua; Wu, Xiaozhi; Wang, Rui; Liu, Qing; Gan, Liyong

    2014-01-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  11. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  12. Ni Foam-Ni3 S2 @Ni(OH)2 -Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance.

    Science.gov (United States)

    Wang, Xiaobing; Hu, Jiangjiang; Su, Yichang; Hao, Jin; Liu, Fanggang; Han, Shuang; An, Jian; Lian, Jianshe

    2017-03-23

    A novel Ni foam-Ni 3 S 2 @Ni(OH) 2 -graphene sandwich-structured electrode (NF-NN-G) with high areal mass loading (8.33 mg cm -2 ) has been developed by sulfidation and hydrolysis reactions. The conductivity of Ni 3 S 2 and Ni(OH) 2 were both improved. The upper layer of Ni(OH) 2 , covered with a thin graphene film, is formed in situ from the surface of the lower layer of Ni 3 S 2 , whereas the Ni 3 S 2 grown on Ni foam substrate mainly acts as a rough support bridging the Ni(OH) 2 and Ni foam. The graphene stabilized the Ni(OH) 2 and the electrochemical properties were effectively enhanced. The as-synthesized NF-NN-G-5mg electrode shows a high specific capacitance (2258 F g -1 at 1 A g -1 or 18.81 F cm -2 at 8.33 mA cm -2 ) and an outstanding rate property (1010 F g -1 at 20 Ag -1 or 8.413 F cm -2 at 166.6 mA cm -2 ). This result is around double the capacitance achieved in previous research on Ni 3 S 2 @Ni(OH) 2 /3DGN composites (3DGN=three-dimensional graphene network). In addition, the as-fabricated NF-NN-G-5mg composite electrode has an excellent cycle life with no capacitance loss after 3000 cycles, indicating a potential application as an efficient electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  14. Simulation of NaCl and KCl mass transfer during salting of Prato cheese in brine with agitation: a numerical solution

    Directory of Open Access Journals (Sweden)

    E. Bona

    2007-09-01

    Full Text Available The association of dietary NaCl with arterial hypertension has led to a reduction in the levels of this salt in cheeses. For salting, KCl has been used as a partial substitute for NaCl, which cannot be completely substituted without affecting product acceptability. In this study a sensorially adequate saline solution (NaCl/KCl was simultaneously diffused during salting of Prato cheese in brine with agitation. The simultaneous multicomponent diffusion during the process was modeled with Fick’s second generalized law. The system of partial differential equations formed was solved by the finite element method (FEM. In the experimental data concentration the deviation for NaCl was of 7.3% and for KCl of 5.4%, both of which were considered acceptable. The simulation of salt diffusion will allow control and modulation of salt content in Prato cheese, permitting the prediction of final content from initial conditions.

  15. Corrosion behavior of TiO{sub 2}-NiO nanocomposite thin films on AISI 316L stainless steel prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, H., E-mail: hoch2020@yahoo.com [Materials Science and Engineering Department, Iran University of Science and Technology (IUST), P.O. Box: 16765163, Narrmak Street, Tehran (Iran, Islamic Republic of); Shahmiri, M., E-mail: mshahmiri@iust.ac.ir [Materials Science and Engineering Department, Iran University of Science and Technology (IUST), P.O. Box: 16765163, Narrmak Street, Tehran (Iran, Islamic Republic of); Sadeghian, Z. [Research Institute of Petroleum Industry (RIPI), P.O. Box: 14857-3311, West Blvd. Azadi Sport Complex, Tehran (Iran, Islamic Republic of)

    2012-11-01

    TiO{sub 2}-NiO nanocomposite thin films were deposited on the 316L stainless steel using sol-gel method by a dip coating technique. Different techniques such as differential thermal analysis, thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectrometry, scanning electron microscopy and scanning probe microscopy were carried out in order to characterize the structure of the coatings. The corrosion resistance of the coatings was evaluated by using Tafel polarization and electrochemical impedance spectroscopy tests of uncoated and coated specimens in a 3.5% NaCl solution at room temperature. It was found that to obtain desirable structure in coatings, the coatings should be calcined at 600 Degree-Sign C for one and half hour. NiTiO{sub 3}, anatase and rutile were the phases obtained in different calcination conditions in air atmosphere. The results of corrosion tests indicated that with increasing the dipping times from 2 to 4, the corrosion current density first decreases but when increasing the dipping times to 6, it increases. Also the corrosion current density decreased from 186.7 nA.cm{sup -2} (uncoated steel) to 34.21 nA.cm{sup -2} (80%TiO{sub 2}-20%NiO) and corrosion potential increased from - 150.2 mV (uncoated steel) to - 107.3 mV (67%TiO{sub 2}-33%NiO). - Highlights: Black-Right-Pointing-Pointer TiO{sub 2}-NiO thin films were deposited on the 316L stainless steel using sol-gel method. Black-Right-Pointing-Pointer Different compositions, annealing times and temperatures resulted in various phases. Black-Right-Pointing-Pointer Films having different compositions showed various surface morphologies. Black-Right-Pointing-Pointer Films having a composition of 80%TiO{sub 2}-20%NiO showed a good corrosion protection.

  16. Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions.

    Science.gov (United States)

    Bourgou, Soumaya; Bettaieb, Iness; Saidani, Moufida; Marzouk, Brahim

    2010-12-08

    This research evaluated the effect of saline conditions on fruit yield, fatty acids, and essential oils compositions and phenolics content of black cumin (Nigella sativa). This plant is one of the most commonly found aromatics in the Mediterranean kitchen. Increasing NaCl levels to 60 mM decreased significantly the fruits yield by 58% and the total fatty acids amount by 35%. Fatty acids composition analysis indicated that linoleic acid was the major fatty acid (58.09%) followed by oleic (19.21%) and palmitic (14.77%) acids. Salinity enhanced the linoleic acid percentage but did not affect the unsaturation degree of the fatty acids pool and thus the oil quality. The essential oil yield was 0.39% based on the dry weight and increased to 0.53, 0.56, and 0.72% at 20, 40, and 60 mM NaCl. Salinity results on the modification of the essential oil chemotype from p-cymene in controls to γ-terpinene/p-cymene in salt-stressed plants. The amounts of total phenolics were lower in the treated plants. Salinity decreased mainly the amount of the major class, benzoics acids, by 24, 29, and 44% at 20, 40, and 60 mM NaCl. The results suggest that salt treatment may regulate bioactive compounds production in black cumin fruits, influencing their nutritional and industrial values.

  17. Relation between shape of Ni-particles and Ni migration in Ni-YSZ electrodes – a hypothesis

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hauch, Anne; Sun, Xiufu

    2016-01-01

    This is an attempt to explain a phenomenon of total depletion of Ni next to the electrolyte in Ni-YSZ cermet electrodes in solid oxide electrolysis cells during electrolysis at high current density/overpotential. Intuitively, we would think that Ni would always migrate down the steam partial...

  18. Magnetoresistance of nanogranular Ni/NiO controlled by exchange anisotropy

    International Nuclear Information System (INIS)

    Del Bianco, L.; Spizzo, F.; Tamisari, M.; Allia, P.

    2013-01-01

    A link between exchange anisotropy and magnetoresistance has been found to occur in a Ni/NiO sample consisting of Ni nanocrystallites (mean size ∼13 nm, Ni content ∼33 vol%) dispersed in a NiO matrix. This material shows metallic-type electric conduction and isotropic spin-dependent magnetoresistance as well as exchange bias effect. The latter is the outcome of an exchange anisotropy arising from the contact interaction between the Ni phase and the NiO matrix. Combined analysis of magnetization M(H) and magnetoresistance MR(H) loops measured in the 5–250 K temperature range after zero-field-cooling (ZFC) and after field-cooling (FC) from 300 K reveals that the magnetoresistance is influenced by exchange anisotropy, which is triggered by the FC process and can be modified in strength by varying the temperature. Compared to the ZFC case, the exchange anisotropy produces a horizontal shift of the FC MR(H) loop along with a reduction of the MR response associated to the reorientation of the Ni moments. A strict connection between magnetoresistance and remanent magnetization of FC loops on one side and the exchange field on the other, ruled by exchange anisotropy, is indicated. - Highlights: • Nanogranular Ni/NiO with giant magnetoresistance (MR) and exchange bias effect. • Exchange anisotropy produces a shift of the field-cooled MR(H) loop and reduces MR. • MR, remanence of field-cooled loops and exchange field are three correlated quantities. • It is possible to control MR of nanogranular systems through the exchange anisotropy

  19. Niños y niñas como cuidadores familiares

    OpenAIRE

    María Rosa Estupiñán Aponte

    2015-01-01

    En el contexto familiar, el cuidado de otra persona por parte de niños y niñas constituye un terreno inexplorado tanto en su significado como en las implicaciones que podrían darse en el proceso. Aunque históricamente se ha asignado el cuidado familiar a las mujeres generando condiciones de inequidad, incrementada con los cambios sociales de los últimos tiempos, es necesario reconocer que en muchos hogares niños y niñas se han visto obligados a desempeñar esta labor sin la preparación ni las ...

  20. Effect of the partial NaCl substitution by other chloride salts on the volatile profile during the ripening of dry-cured lacón

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, R.; Munekata, P.E.; Cittadini, A.; Lorenzo, J.M.

    2016-07-01

    The influence of three salting treatments (treatment II: 50% NaCl-50% KCl; III: 45% NaCl-25% KCl-20% CaCl2-10% MgCl2; IV: 30% NaCl-50% KCl-15% CaCl2-5% MgCl2) on the formation of volatile compounds throughout the process was studied and compared to those of a control “lacón” (treatment I: 100% NaCl). There was an intense formation of volatile compounds throughout the processing, particularly during the dry-ripening stage. The most abundant chemical family in all the formulations, in the final product was hydrocarbons followed by aldehydes. The total volatile compound release was more intense in the control “lacóns” (1164 AU×106 ·g–1dry matter) than in “lacóns” from formulations II, III and IV (817–891 AU×106 ·g−1dry matter). The “lacóns” from formulation I showed the highest amounts of aldehydes. The “lacóns” from formulations I and II presented the highest amounts of hydrocarbons. The main conclusion is that the replacement of NaCl produces changes in the volatile profile and could be affect the aroma of “lacón”. (Author)

  1. Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn

    International Nuclear Information System (INIS)

    Douglas, Jason E.; Pollock, Tresa M.; Chater, Philip A.; Brown, Craig M.; Seshadri, Ram

    2014-01-01

    The structural implications of excess Ni in the TiNiSn half-Heusler compound are examined through a combination of synchrotron x-ray and neutron scattering studies, in conjunction with first principles density functional theory calculations on supercells. Despite the phase diagram suggesting that TiNiSn is a line compound with no solid solution, for small x in TiNi 1+x Sn there is indeed an appearance—from careful analysis of the scattering—of some solubility, with the excess Ni occupying the interstitial tetrahedral site in the half-Heusler structure. The analysis performed here would point to the excess Ni not being statistically distributed, but rather occurring as coherent nanoclusters. First principles calculations of energetics, carried out using supercells, support a scenario of Ni interstitials clustering, rather than a statistical distribution.

  2. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    International Nuclear Information System (INIS)

    Gupta, Vinay; Kawaguchi, Toshikazu; Miura, Norio

    2009-01-01

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co 3 O 4 , NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm 2 current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides

  3. Interfacial reaction of Ni{sub 3}Sn{sub 4} intermetallic compound in Ni/SnAg solder/Ni system under thermomigration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi-Shan; Yang, Chia-Jung; Ouyang, Fan-Yi, E-mail: fyouyang@ess.nthu.edu.tw

    2016-07-25

    The growth of Ni{sub 3}Sn{sub 4} intermetallic compound (IMC) between liquid–solid interface in micro-scale Ni/SnAg/Ni system was investigated under a temperature gradient of 160 °C/cm at 260 °C on a hot plate. In contrast to a symmetrical growth of Ni{sub 3}Sn{sub 4} on both interfaces under isothermally annealed at 260 °C, the interfacial Ni{sub 3}Sn{sub 4} IMC exhibited asymmetric growth under a temperature gradient; the growth of Ni{sub 3}Sn{sub 4} at cold interface was faster than that at hot side because of temperature gradient induced mass migration of Ni atoms from the hot end toward the cold end. It was found that two-stage growth behavior of Ni{sub 3}Sn{sub 4} IMC under a temperature gradient. A growth model was established and growth kinetic analysis suggested that the chemical potential gradient controlled the growth of Ni{sub 3}Sn{sub 4} at stage I (0–120 min) whereas the dynamic equilibrium between chemical potential gradient and temperature gradient forces was attained at the hot end at stage II (120–210 min). When dynamic equilibrium was achieved at 260 °C, the critical length-temperature gradient product at the hot end was experimentally estimated to be 489.18 μm × °C/cm and the moving velocity of Ni{sub 3}Sn{sub 4} interface due to Ni consumption was calculated to be 0.134 μm/h. The molar heat of transport (Q*) of Ni atoms in molten SnAg solder was calculated to be +0.76 kJ/mol. - Highlights: • Interfacial reaction in Ni/SnAg solder/Ni system under thermal gradient. • Growth rate of Ni{sub 3}Sn{sub 4} at cold end is faster than that at hot end. • Critical length-temperature gradient product at hot end is 489.2 μm°C/cm at 260 °C. • Velocity of Ni{sub 3}Sn{sub 4} moving interface is 0.134 μm/h during dynamic equilibrium. • Molar heat of transport (Q*) of Ni in molten SnAg was +0.76 kJ/mol.

  4. Formation enthalpy of NiBe and Ni5Be21

    International Nuclear Information System (INIS)

    Ivanov, M.I.; Karpova, T.F.; Dalago, N.Yu.

    1981-01-01

    The method of dissolution calorimetry is used to determine standard enthalpies of NiBe and Ni 5 Be 21 formation, which are 84.8+-2.2 and (-669+-37)kJ/mol. The enthalpy values of NiBe and Ni 5 Be 21 at 331 K are shown to coincide (within the limits of errors of these values) with the values at the standard temperature of 298.15 K [ru

  5. Liquid Scintillation counting Standardization of 22 NaCl by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Carles, A.; Grau Malonda, A.

    1995-09-01

    We describe a procedure for preparing a stable solution of ''22 NaCl for liquid scintillation counting and its counting stability and spectral evolution in Insta-Gel''R is studied. The solution has been standardised in terms of activity concentration by the CIEMAT/NIST method with discrepancies between experimental and computed efficiencies lower than 0.4/% and an overall uncertainty of 0.35%

  6. A thermoluminescence study of Z2-centres in terbium-doped NaCl crystals

    International Nuclear Information System (INIS)

    Reddy, K.N.; Ahmed, I.M.; Pandaraiah, N.; Rao, U.V.S.; Babu, V.H.

    1983-01-01

    Thermoluminescence (TL), optical absorption are used to correlate thermal annealing of Z 2 -centres with TL peak occurring around 110 0 C in terbium-doped NaCl crystals. The TL glow peak occurring around 190 0 C is attributed to the thermal annealing of F-centres. The thermal activation parameters are calculated for both Z 2 - and F-centre peaks. (author)

  7. Variables affecting the acceptability of radappertized ground beef products. Effects of food grade phosphates, NaCl, fat level, and grinding methods

    International Nuclear Information System (INIS)

    Cohen, J.S.; Shults, G.W.; Mason, V.C.; Wierbicki, E.

    1977-01-01

    A series of experiments was conducted to determine the effect of different variables on the quality of an irradiated ground beef product. Factors studied included: different food-grade phosphates; NaCl content; fat content; and size of grind. The influence of these variables on the cooking loss (moisture retention), shear press values and sensory scores was studied. The addition of phosphates and NaCl was desirable in controlling cooking losses. The most effective phosphate was tetrasodium pyrophosphate. The addition of NaCl decreased the shear press force required to penetrate the beef patty, i.e., it tenderized the product. Phosphate addition did not affect the shear press force. Increased fat content increased the cooking losses, but did not affect the shear press force. Irradiation with sterilizing doses had a marked effect on decreasing the shear press force

  8. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Holec, D.; Bojda, O.; Dlouhy, A.

    2008-01-01

    Non-uniform distributions of Ni 4 Ti 3 precipitate crystallographic variants are investigated in a Ni-rich NiTi shape memory alloy after aging, assisted by external stress. A finite-element method model is presented that considers the elastic anisotropy of the B2 parent phase and also mutual misorientations of grains in a polycrystalline sample. On loading by the external stress, the stress is redistributed in the microstructure and the precipitation of some Ni 4 Ti 3 crystallographic variants becomes distinctly favorable in grain boundary regions since these variant configurations minimize the elastic interaction energy. The volume fraction of the affected grain boundary regions is calculated and the numerical results are compared with the data obtained by differential scanning calorimetry and transmission electron microscopy

  9. Oxygen-rich Mass Loss with a Pinch of Salt: NaCl in the Circumstellar Gas of IK Tauri and VY Canis Majoris

    Science.gov (United States)

    Milam, S. N.; Apponi, A. J.; Woolf, N. J.; Ziurys, L. M.

    2007-10-01

    The NaCl molecule has been observed in the circumstellar envelopes of VY Canis Majoris (VY CMa) and IK Tauri (IK Tau)-the first identifications of a metal refractory in oxygen-rich shells of evolved stars. Five rotational transitions of NaCl at 1 and 2 mm were detected toward VY CMa and three 1 mm lines were observed toward IK Tau, using the telescopes of the Arizona Radio Observatory. In both objects, the line widths of the NaCl profiles were extremely narrow relative to those of other molecules, indicating that sodium chloride has not reached the terminal outflow velocity in either star, likely a result of early condensation onto grains. Modeling the observed spectra suggests abundances, relative to H2, of f~5×10-9 in VY CMa and f~4×10-9 in IK Tau, with source sizes of 0.5" and 0.3", respectively. The extent of these sources is consistent with the size of the dust acceleration zones in both stars. NaCl therefore appears to be at least as abundant in O-rich shells as compared to C-rich envelopes, where f~(0.2-2)×10-9, although it appears to condense out earlier in the O-rich case. Chemical equilibrium calculations indicate that NaCl is the major carrier of sodium at T~1100 K for oxygen-rich stars, with predicted fractional abundances in good agreement with the observations. These measurements suggest that crystalline salt may be an important condensate for sodium in both C- and O-rich circumstellar shells.

  10. Inhibitive Behaviour of Corrosion of Aluminium Alloy in NaCl by Mangrove Tannin

    International Nuclear Information System (INIS)

    Solhan Yahya; Afidah Abdul Rahim; Affaizza Mohd Shah; Rohana Adnan

    2011-01-01

    Anticorrosion potential of mangrove tannins on aluminium alloys AA6061 in NaCl solution has been studied using potentiodynamic polarisation method and scanning electron microscopy (SEM). The study was carried out in different pH of corrosive medium in the absence and presence of various concentrations of tannin. The corrosion inhibition behaviour of the mangrove tannin on AA6061 aluminium alloy corrosion was found to be dependant on the pH of NaCl solution. Our results showed that the inhibition efficiency increased with increasing tannins concentration in chloride solution at pH 6. Treatment of aluminium alloy 6061 with all concentrations of mangrove tannins reduced the current density, thus decreased the corrosion rate. Tannins behaved as mixed inhibitors at pH 6 and reduction in current density predominantly affected in cathodic reaction. Meanwhile, at pH 12, addition of tannins shifted the corrosion potential to more cathodic potentials and a passivating effect was observed in anodic potentials. SEM studies have shown that the addition of tannins in chloride solution at pH 12 reduced the surface degradation and the formation of pits. (author)

  11. Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    International Nuclear Information System (INIS)

    Wu, Dengfeng; Cheng, Daojian

    2015-01-01

    A core/shell AgNi/PtAgNi nanoparticle (NP) was synthesized via a new seed-mediated growth method in organic solvent medium. The as-synthesized AgNi/PtAgNiNP exhibits an AgNi core coated with PtAgNi shell, which was confirmed by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The AgNi/PtAgNiNPs/C catalyst possesses higher oxygen reduction reaction (ORR) activity and better durability compared with the commercial Pt/C catalyst. It is found that the ORR polarization curve of the AgNi/PtAgNiNPs/C catalyst shows an onset potential of 0.91 V vs. RHE, which is superior to the commercial Pt/C (0.88 V vs. RHE). In addition, the AgNi/PtAgNiNPs/C catalyst shows much better durability than the commercial Pt/C catalyst. More interestingly, the AgNi/PtAgNiNPs/C catalyst displays much higher methanol tolerance than the commercial Pt/C catalyst in 0.1 M KOH solution in the presence of 0.5 M methanol. Our results show that core/shell AgNi/PtAgNiNPs possess selective activity for ORR even in the presence of methanol, showing potential application as methanol-tolerant cathode catalysts in direct methanol fuel cells.

  12. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    Science.gov (United States)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  13. One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys

    Science.gov (United States)

    Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.

    2002-12-01

    One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.

  14. Increased frequency and severity of developmental deformities in rough-skinned newt (Taricha granulosa) embryos exposed to road deicing salts (NaCl and MgCl2)

    International Nuclear Information System (INIS)

    Hopkins, Gareth R.; French, Susannah S.; Brodie, Edmund D.

    2013-01-01

    Road-side aquatic ecosystems in North America are annually polluted with millions of tons of road deicing salts, which threaten the survival of amphibians which live and breed in these habitats. While much is known of the effects of NaCl, little is known of the second most-commonly used deicer, MgCl 2 , which is now used exclusively in parts of the continent. Here we report that environmentally relevant concentrations of both NaCl and MgCl 2 cause increased incidence of developmental deformities in rough-skinned newt hatchlings that developed embryonically in these salts. In addition, we provide some of the first quantification of severity of different deformities, and reveal that increased salt concentrations increase both deformity frequency and severity. Our work contributes to the growing body of literature that suggests salamanders and newts are particularly vulnerable to salt, and that the emerging pollutant, MgCl 2 is comparable in its effects to the more traditionally-used NaCl. - Highlights: ► Rough-skinned newt embryos were raised in NaCl and MgCl 2 road deicing salts. ► We quantified the frequency and severity of resulting developmental deformities. ► Both salts caused increased frequency and severity of developmental deformities. ► Effects of MgCl 2 , an emerging stressor, are comparable to traditionally-used NaCl. ► Newts and salamanders may be more susceptible to road salt than frogs and toads. - Two commonly used road deicing salts, NaCl and MgCl 2 , caused increased frequency and severity of developmental deformities in rough-skinned newt embryos.

  15. Study of the central collisions in the reactions Ni + Al and Ni + Ni at 28 A.MeV; Etude des collisions centrales dans les reactions Ni + Al et Ni + Ni a 28 A.MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, L.

    1995-12-01

    The work is in characterisation of mechanisms in the energy range of onset of multifragmentation (excitation energy of composed nucleus around 4 - 5 AMeV). This work focused on an experiment performed at the SARA facility, in Grenoble, using the AMPHORA multi detection array. I have been particularly interested in central collisions in the Ni + Al and Ni + Ni systems. The possibility to detect complete events for Ni + Al, and quasi-complete events for the Ni + Ni case, is the reason of this choice. Furthermore Ni + Ni presents the interest of a symmetrical system, for which the excitation energy per nucleon is maximum. The study of these reactions has been focused on the quasi-complete events (events for which at least 80 % of the total charge has been detected). Heavy ions produced in peripheral collisions are very likely emitted along the beam line or stopped in the plastic detectors, energy thresholds are too high for the quasi-target products detection, consequently by requiring complete or quasi-complete measurement of the total charge, we are able to detect mostly central events. The knowledge of informations like charge, energy or detection angles allows to isolate the source(s) and to reconstruct the size and the excitation energy of the source(s). Comparisons with simulations like sequential emission (GEMINI code), very deep inelastic collision or instantaneous emission (Berliner code) allows to characterise the first stage of the collision (binary collisions or central collisions) and the type of deexcitation of the source(s). Some calculations was also performed with the statistical model code MODGAN. Indeed azimuthal correlations seem to be a good tool in getting more information about involved reaction mechanisms. Comparisons with MODGAN provide information about angular momentum of the source and time delay between emissions of the two particles (separation between sequential or instantaneous process). (author). 69 refs.

  16. Liquid Scintillation Counting Standardization of 22NaCl by te CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Grau Carles, A.; Grau Malonda, A.

    1995-01-01

    We describe a procedure for preparing a stable solution of ''22NaCl for liquid scintillation counting and its counting stability and spectral evolution in Insta-Gel''R is studied. The solution has been standardised in terms of activity concentration by the CIEMAT/NIST method with discrepancies between experimental and computed efficiencies lower than 0.4 % and an overall uncertainty of 0.35 %. (Author) 4 refs

  17. Liquid Scintillation Counting Standardization of {sup 2}2NaCl by te CIEMAT/NIST method; Calibracion por Centelleo Liquido del ''22NaCl, mediante el metodo CIEMAT/NIST

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Grau Carles, A.; Grau Malonda, A.

    1995-07-01

    We describe a procedure for preparing a stable solution of ''22NaCl for liquid scintillation counting and its counting stability and spectral evolution in Insta-Gel''R is studied. The solution has been standardised in terms of activity concentration by the CIEMAT/NIST method with discrepancies between experimental and computed efficiencies lower than 0.4 % and an overall uncertainty of 0.35 %. (Author) 4 refs.

  18. Computer simulation of radiation damage in NaCl using a kinetic rate reaction model

    International Nuclear Information System (INIS)

    Soppe, W.J.

    1993-01-01

    Sodium chloride and other alkali halides are known to be very susceptible to radiation damage in the halogen sublattice when exposed to ionizing radiation. The formation of radiation damage in NaCl has generated interest because of the relevance of this damage to the disposal of radioactive waste in rock salt formations. In order to estimate the long-term behaviour of a rock salt repository, an accurate theory describing the major processes of radiation damage in NaCl is required. The model presented in this paper is an extended version of the Jain-Lidiard model; its extensions comprise the effect of impurities and the colloid nucleation stage on the formation of radiation damage. The new model has been tested against various experimental data obtained from the literature and accounts for several well known aspects of radiation damage in alkali halides which were not covered by the original Jain-Lidiard model. The new model thus may be expected to provide more reliable predictions for the build-up of radiation damage in a rock salt nuclear waste repository. (Author)

  19. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica)

    International Nuclear Information System (INIS)

    Sanzo, Domenico; Hecnar, Stephen J.

    2006-01-01

    Vast networks of roads cover the earth and have numerous environmental effects including pollution. A major component of road runoff in northern countries is salt (mostly NaCl) used as a winter de-icing agent, but few studies of effects of road salts on aquatic organisms exist. Amphibians require aquatic habitats and chemical pollution is implicated as a major factor in global population declines. We exposed wood frog tadpoles to NaCl. Tests revealed 96-h LC50 values of 2636 and 5109 mg/l and tadpoles experienced reduced activity, weight, and displayed physical abnormalities. A 90 d chronic experiment revealed significantly lower survivorship, decreased time to metamorphosis, reduced weight and activity, and increased physical abnormalities with increasing salt concentration (0.00, 0.39, 77.50, 1030.00 mg/l). Road salts had toxic effects on larvae at environmentally realistic concentrations with potentially far-ranging ecological impacts. More studies on the effects of road salts are warranted. - Road salts have toxic effects on amphibians at environmentally realistic concentrations

  20. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica)

    Energy Technology Data Exchange (ETDEWEB)

    Sanzo, Domenico [Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1 (Canada); Hecnar, Stephen J. [Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1 (Canada)]. E-mail: stephen.hecnar@lakeheadu.ca

    2006-03-15

    Vast networks of roads cover the earth and have numerous environmental effects including pollution. A major component of road runoff in northern countries is salt (mostly NaCl) used as a winter de-icing agent, but few studies of effects of road salts on aquatic organisms exist. Amphibians require aquatic habitats and chemical pollution is implicated as a major factor in global population declines. We exposed wood frog tadpoles to NaCl. Tests revealed 96-h LC50 values of 2636 and 5109 mg/l and tadpoles experienced reduced activity, weight, and displayed physical abnormalities. A 90 d chronic experiment revealed significantly lower survivorship, decreased time to metamorphosis, reduced weight and activity, and increased physical abnormalities with increasing salt concentration (0.00, 0.39, 77.50, 1030.00 mg/l). Road salts had toxic effects on larvae at environmentally realistic concentrations with potentially far-ranging ecological impacts. More studies on the effects of road salts are warranted. - Road salts have toxic effects on amphibians at environmentally realistic concentrations.

  1. Ni/boride interfaces and environmental embrittlement in Ni-based superalloys: A first-principles study

    International Nuclear Information System (INIS)

    Sanyal, Suchismita; Waghmare, Umesh V.; Hanlon, Timothy; Hall, Ernest L.

    2011-01-01

    Highlights: ► Fracture strengths of Ni/boride interfaces through first-principles calculations. ► Fracture strengths of Ni/boride interfaces are higher than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► Ni/boride interfaces have higher resistance to O-embrittlement than Ni/Ni 3 Al and NiΣ5 grain boundaries. ► CrMo-borides are more effective than Cr-borides in resisting O-embrittlement. ► Electronegativity differences between alloying elements correlate with fracture strengths. - Abstract: Motivated by the vital role played by boride precipitates in Ni-based superalloys in improving mechanical properties such as creep rupture strength, fatigue crack growth rates and improved resistance towards environmental embrittlement , we estimate fracture strength of Ni/boride interfaces through determination of their work of separation using first-principles simulations. We find that the fracture strength of Ni/boride interfaces is higher than that of other commonly occurring interfaces in Ni-alloys, such as Ni Σ-5 grain boundaries and coherent Ni/Ni 3 Al interfaces, and is less susceptible to oxygen-induced embrittlement. Our calculations show how the presence of Mo in Ni/M 5 B 3 (M = Cr, Mo) interfaces leads to additional reduction in oxygen-induced embrittlement. Through Electron-Localization-Function based analyses, we identify the electronic origins of effects of alloying elements on fracture strengths of these interfaces and observe that chemical interactions stemming from electronegativity differences between different atomic species are responsible for the trends in calculated strengths. Our findings should be useful towards designing Ni-based alloys with higher interfacial strengths and reduced oxygen-induced embrittlement.

  2. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    International Nuclear Information System (INIS)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace

    2017-01-01

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.

  3. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace, E-mail: jglin@ntu.edu.tw

    2017-02-15

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of ~100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix. - Highlights: • Structural and magnetic properties of finite sized NiO nanoparticles are systematically investigated with several advanced techniques. • A strong interaction between ferromagnetic and antiferromagnetic phases is found below 150 K. • Exchange bias field in finite sized NiO nanoparticles is due to anisotropy energy of Ni clusters over riding the domain wall energy of NiO.

  4. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  5. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  6. Thermodynamic characterization of Ni3TeO6, Ni2Te3O8 and NiTe2O5

    Science.gov (United States)

    Dawar, Rimpi; Babu, R.; Ananthasivan, K.; Anthonysamy, S.

    2017-09-01

    Measurement of vapour pressure of TeO2(g) over the biphasic mixture Ni3TeO6 (s) + NiO(s) in the temperature range 1143-1272 K was carried out using transpiration-thermogravimetric technique (TTG). Gibbs energy of formation of Ni3TeO6 was obtained from the temperature dependence of vapour pressure of TeO2 (g) generated by the incongruent vapourisation reaction, Ni3TeO6 (s) → NiO(s) + TeO2 (g) + 1/2 O2 in the temperature range 1143-1272 K. An isoperibol type drop calorimeter was used to measure the enthalpy increments of Ni3TeO6, Ni2Te3O8 and NiTe2O5. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of these compounds were derived from the experimentally measured enthalpy increment values. Third-law analysis was carried out to ascertain absence of temperature dependent systematic errors in the measurement of vapour pressure of TeO2 (g). A value of -1265.1 ± 1.5 kJ mol-1 was obtained for Δ Hf,298K o (Ni3TeO6) using third-law analysis.

  7. Applicability of iron phosphate glass medium for loading NaCl originated from seawater used for cooling the stricken power reactors

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Kobayashi, Hidekazu; Yokozawa, Takuma; Yamashita, Teruo; Nagai, Takayuki; Kitamura, Naoto; Takebe, Hiromichi; Mitamura, Naoki; Tsuzuki, Tatsuya

    2013-01-01

    As the part of investigation for immobilization of the sludge as one of the radioactive wastes arising from the treatment of contaminated water at Fukushima Dai-ichi nuclear power plant, applicability of vitrification method has been evaluated as a candidate technique. The aim of this study is to evaluate the influence of NaCl as one of the main constituents of sludge, on glass formation and glass properties. Two kinds of iron phosphate glass (IPG) media in the xFe 2 O 3 -(100-x)P 2 O 5 , with x=30 and 35 (mol%) were chosen and the glass formation, structure and properties including density, coefficient of thermal expansion, glass transition temperature, onset crystallization temperature and chemical durability of NaCl-loaded IPG were studied. The results are summarized as follows. Sodium chloride, NaCl could be loaded into IPG medium as Na 2 O and Cl contents and their loading ratio could be up to 19 and 15 mol%, respectively. Majority of Cl content of raw material NaCl was thought to be volatilized during glass melting. Loading NaCl into IPG induces to de-polymerize glass network of phosphate chains, leads to decrease both glass transition and onset crystallization temperatures, and to increase coefficient of thermal expansion. NaCl-loaded IPG indicated good chemical durability in case of using 35Fe 2 O 3 - 65P 2 O 5 medium. (authors)

  8. Ferromagnetic resonance study of sputtered NiFe/V/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Alayo, W., E-mail: willian.rodriguez@ufpel.edu.br [Departamento de Física – IFM, Universidade Federal de Pelotas, 96010-900 Rio Grande do Sul (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, 22290-180 (Brazil)

    2015-03-01

    The Ni{sub 81}Fe{sub 19}/V/Ni{sub 81}Fe{sub 19} heterostructures has been produced by magnetron sputtering and analyzed by ferromagnetic resonance. Two systems were investigated: the non symmetrical NiFe(50 Å)/V(t)/NiFe(30 Å) trilayers and the symmetrical NiFe(80 Å)/V(t)/NiFe(80 Å) trilayers, with variable ultrathin V thickness t. Ferromagnetic exchange coupling was evidenced for t below 10 Å by the excitation of the optic mode, in the case of the non symmetrical samples, and by the observation of a single resonance mode for the symmetrical trilayers. For larger V thickness, all samples exhibited two modes, which were attributed to the resonance of the individual NiFe layers with different effective magnetizations. The analysis with the equilibrium and resonance conditions provided the exchange coupling constants and effective magnetizations. - Highlights: • We present a study of symmetrical and non symmetrical NiFe/V/NiFe trilayers deposited on Si single crystals by ferromagnetic resonance (FMR) at room temperature. • For the non symmetrical trilayers, the FMR spectra show the optic and acoustic modes for samples with very thin V layer thicknesses, evidencing ferromagnetic exchange coupling, whereas, for larger V thickness, the spectra exhibited two well resolved modes associated to each independent NiFe layer. For the symmetrical trilayers, strong ferromagnetic exchange coupling is evidenced by the observation of a single resonance mode. • The analysis with the equilibrium condition and dispersion relation provides the exchange coupling constants and effective magnetizations.

  9. Exogenous proline relieves growth inhibition caused by NaCl in petunia cells: Metabolism of L-[15M]-proline followed by 15N NMR

    International Nuclear Information System (INIS)

    Heyser, J.W.; Chacon, M.J.

    1989-01-01

    Exogenous proline stimulated the growth of Petunia hybrida cells on 195 mM NaCl 10-fold as compared with cells grown on 195 mM CaCl medium minus proline. L-[ 15 N]-proline was fed to cells growing on 0 and 195 mM CaCl, and its metabolism was followed by 15 N NMR analysis of cell extracts. Total proline and amino acids were determined by ninhydrin assay. Proline and primary amino acids were easily resolved in NMR spectra and the amount of 15 N-label which remained in proline was determined. Reduced catabolism of proline in cells grown on NaCl was evident. The role of exogenous proline in conferring increased NaCl tolerance in this nonhalophyte will be discussed

  10. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al nanoparticles as a high microwave absorption material

    International Nuclear Information System (INIS)

    Pang, Yu; Xie, Xiubo; Li, Da; Chou, Wusheng; Liu, Tong

    2017-01-01

    The Al_3Ni_2@Al nanoparticles (NPs) were prepared from Ni_4_5Al_5_5 master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m"2/g and big pore volume of 0.507 cc/g. The saturation magnetization (M_S) and coercivity (H_C) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al_3Ni_2@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m"2/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  11. Phase stability and magnetism in NiPt and NiPd alloys

    International Nuclear Information System (INIS)

    Paudyal, Durga; Mookerjee, Abhijit

    2004-01-01

    We show that the differences in stability of 3d-5d NiPt and 3d-4d NiPd alloys arise mainly due to relativistic corrections. The magnetic properties of disordered NiPd and NiPt alloys also differ due to these corrections, which lead to increase in the separation between the s-d bands of 5d elements in these alloys. For the magnetic case we also analyse the results in terms of splitting of majority and minority spin d band centres of the 3d elements. We further examine the effect of relativistic corrections to the pair energies and order-disorder transition temperatures in these alloys. The magnetic moments and Curie temperatures have also been studied along with the short range ordering/segregation effects in NiPt/NiPd alloys

  12. Investigation into the MgF2-NiF2, CaF2-NiF2, SrF2-NiF2 systems

    International Nuclear Information System (INIS)

    Ikrami, D.D.; Petrov, S.V.; Fedorov, P.P.; Ol'khovaya, L.A.; Luginina, A.A.; AN SSSR, Moscow. Inst. Fizicheskikh Problem; AN SSSR, Moscow. Inst. Kristallografii)

    1984-01-01

    Using the methods of differential thermal and X-ray phase analyses the systems MgF 2 -NiF 2 , CaF 2 -NiF 2 , SrF 2 -NiF 2 have been studied. In the system SrF 2 -NiF 2 the only orthorhombic compounds SrNiF 4 (a=14.43; b=3.93; c=5.66 (+-0.01 A)) is formed. SrNiF 4 density constitutes: dsub(X-ray)=4.60+-0.01 g/cm 3 , dsub(exp.)=4.60+-0.03 g/cm 3 . Refraction indices are as follows SrNiF 4 :Ng=1.500; Nsub(m)=1.497; Nsub(p)=1.479. SrNiF 4 magnetic ordering temperature Tsub(N) approximately 100 K

  13. Influence of Rhizobacterium Inoculation on NaCl Salinity Tolerance in Pusa Sukomal and RC101 Varieties of Cowpea (Vigna unguiculata L.

    Directory of Open Access Journals (Sweden)

    Sadhna Chaturvedi

    2017-06-01

    Full Text Available Soil salinity is one of the most severe factors limiting growth and physiological response in cowpea plants. In the present study, the effect of rhizobacterium strains BR2 and BR3 on the growth of cowpea (Vigna unguiculata L. varieties—Pusa Sukomal and RC101—tolerance to 0, 25, 50, and 75 mM concentrations of NaCl salinity was evaluated. The rate of growth, in general, was high in plants irrigated with 25 mM NaCl saline water as compared to control, and thereafter, the growth reduced with increase in salinity concentrations. The results revealed that treating the seeds with rhizobacteria accompanied by NaCl salinity increased growth parameters of the cowpea plant as compared to the seeds irrigated with sodium chloride alone. Treatment with rhizobacteria mitigated the harmful effect of NaCl, and the growth was significantly better than the plants growing in saline water without rhizobacterium inoculation. The overall performance of Pusa Sukomal with BR3 strain was found to be better than the other combinations tested. Flowering in field plants started within 45 days of sowing, and the seeds in plants irrigated with saline water, in the presence of rhizobacterium, were found to be healthy as compared to control seeds. Seed protein profile was analyzed by SDS PAGE gel studies.

  14. Energy stored in irradiated NaCl

    International Nuclear Information System (INIS)

    Lidiard, A.B.

    1979-01-01

    Recently reported measurements of the energy stored in heavily irradiated NaCl are reviewed in the light of recent understanding of radiation-damage processes in this material. It is shown that, in the ranges of temperatures and dose rates of these experiments, the F-centres produced by the irradiation are retained principally in the form of colloids: the stored energy is thus a direct measure of the number of F-centres retained in this form. Comparison of these results with the prediction of the recently proposed theory of colloid growth shows that the predictions of the dependence of colloid growth rates upon temperature and dose rate are qualitatively correct. The dependence of stored energy dose, however, appears to require the inclusion of a thermally activated back-reaction and possible modifications to the theory are briefly discussed. However, further experiments in this range of temperatures and dose rates are necessary for more quantitative tests of the theory. This reconsideration of the data does not alter the broad conclusion as to the relative insignificance of stored energy in a natural salt formation used as a radioactive waste repository, although more extensive measurements permitting a more exact test of theory would allow better predictions to be made for such applications. (author)

  15. Anodic behavior of alloy 22 in bicarbonate containing media: Effect of alloying

    International Nuclear Information System (INIS)

    Zadorozne, N S; Giordano, C M; Rebak, R B; Ares, A E; Carranza, R M

    2012-01-01

    Alloy 22 is one of the candidates for the manufacture of high level nuclear waste containers. These containers provide services in natural environments characterized by multi-ionic solutions.It is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is necessary to produce cracking, . It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media at potentials below transpassivity. The aim of this work is to study the effect of alloying elements on the anodic behavior of Alloy 22 in media containing bicarbonate and chloride ions at different concentrations and temperatures. Polarization curves were made on alloy 22 (Ni-22% Cr-13% Mo), Ni-Mo (Ni-28, 5% Mo) and Ni-Cr (Ni-20% Cr) in the following solutions: 1 mol/L NaCl at 90 o C, and 1.148 mol/L NaHCO 3 ; 1.148 mol/L NaHCO 3 + 1 mol/L NaCl; 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl, at 90 o C, 75 o C, 60 o C and 25 o C. It was found that alloy 22 has a anodic current density peak at potentials below transpassivity, only in the presence of bicarbonate ions. Curves performed in 1 mol/L NaCl did not show any anodic peak, in any of the tested alloys. The curves made on alloys Ni-Mo and Ni-Cr in the presence of bicarbonate ions, allowed to determine that Cr, is responsible for the appearance of the anodic peak in alloy 22. The curves of alloy Ni-Mo showed no anodic peak in the studied conditions. The potential at which the anodic peak appears in alloy 22 and Ni-Cr alloy, increases with decreasing temperature. The anodic peak was also affected by solution composition. When chloride ion is added to bicarbonate solutions, the anodic peak is shifted to higher potential and current densities, depending on the concentration of added chloride ions (author)

  16. Density functional theory study of the interfacial properties of Ni/Ni3Si eutectic alloy

    International Nuclear Information System (INIS)

    Zhao, Yuhong; Wen, Zhiqin; Hou, Hua; Guo, Wei; Han, Peide

    2014-01-01

    In order to clarify the heterogeneous nucleation potential of α-Ni grains on Ni 3 Si particles in Ni-Ni 3 Si eutectic alloy, the work of adhesion (W ad ), fracture toughness (G), interfacial energy (γ i ), and electronic structure of the index (0 0 1), (1 1 0) and (1 1 1) Ni/Ni 3 Si interfaces with two different cohesive manners are investigated using first-principles method based on density functional theory. Results indicate that the center site stacking sequence (OM) is preferable to continue the natural stacking sequence of bulk Ni and Ni 3 Si. Since OM stacking interfaces have larger W ad , G and γ i than that of the top site stacking (OT) interfaces. The Ni/Ni 3 Si (1 1 0) interface with OM stacking has the best mechanical properties. Therefore, the formation of this interface can improve the stability, ductility and fracture toughness of Ni-Ni 3 Si eutectic alloy. The calculated interfacial energy of Ni/Ni 3 Si (0 0 1), (1 1 0) and (1 1 1) interfaces with OM stacking proves the excellent nucleation potency of Ni 3 Si particles for α-Ni phase from thermodynamic considerations. Besides, the electronic structure and chemical bonding of (1 1 0) interface with OM stacking are also discussed.

  17. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl

    Directory of Open Access Journals (Sweden)

    Yinghui Yuan

    2016-07-01

    Full Text Available Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well reported. To gain a better understanding of the cucumber (Cucumis sativus L. responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. 62 differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%, protein metabolism (24.2%, carbohydrate metabolism (19.4% and amino acid metabolism (14.5%. Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy.

  18. Direct synthesis of solid and hollow carbon nanospheres over NaCl crystals using acetylene by chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Kishore, S.; Anandhakumar, S.; Sasidharan, M., E-mail: sasidharan.m@res.srmuniv.ac.in

    2017-04-01

    Highlights: • Hollow and solid carbon nanospheres were synthesized by CVD method. • NaCl was used as template for direct growth of carbon nanospheres. • Separation of NaCl from the mixture is made easy by dissolving in water. • The hollow carbon nanospheres exhibit high specific capacity in Li-ion batteries than the graphite anodes. - Abstract: Carbon nanospheres (CNS) with hollow and solid morphologies have been synthesised by a simple chemical vapour deposition method using acetylene as a carbon precursor. Sodium chloride (NaCl) powder as a template was used for the direct growth of CNS via facile and low-cost approach. The effect of various temperatures (500 °C, 600 °C and 700 °C) and acetylene flow rates were investigated to study the structural evolution on the carbon products. The purified CNS thus obtained was characterized by various physicochemical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and cyclicvoltametry. The synthesised hollow nanospheres were investigated as anode materials for Li-ion batteries. After 25 cycles of repeated charge/discharge cycles, the discharge and charge capacities were found to be 574 mAh/g and 570 mAh/g, respectively which are significantly higher than the commercial graphite samples.

  19. Microstructure and tribological properties of NiMo/Mo2Ni3Si intermetallic 'in-situ' composites

    International Nuclear Information System (INIS)

    Gui Yongliang; Song Chunyan; Yang Li; Qin Xiaoling

    2011-01-01

    Research highlights: → Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites was fabricated successfully with Mo-Ni-Si powder blends as the starting materials. Microstructure of the NiMo/Mo 2 Ni 3 Si composites consists of Mo 2 Ni 3 Si primary dendrites, binary intermetallic phase NiMo and small amount of Ni/NiMo eutectics structure. The NiMo/Mo 2 Ni 3 Si composites exhibited high hardness and outstanding tribological properties under room-temperature dry-sliding wear test conditions which were attributed to the covalent-dominant strong atomic bonds and excellent combination of strength and ductility and toughness. - Abstract: Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites with a microstructure of ternary metal silicide Mo 2 Ni 3 Si primary dendritic, the long strip-like NiMo intermetallic phase, and a small amount of Ni/NiMo eutectics structure were designed and fabricated using molybdenum, nickel and silicon elemental powders. Friction and wear properties of NiMo/Mo 2 Ni 3 Si composites were evaluated under different contact load at room-temperature dry-sliding wear test conditions. Microstructure, worn surface morphologies and subsurface microstructure were characterized by OM, XRD, SEM and EDS. Results indicate that NiMo/Mo 2 Ni 3 Si composites have low fiction coefficient, excellent wear resistance and sluggish wear-load dependence. The dominant wear mechanisms of NiMo/Mo 2 Ni 3 Si composites are soft abrasion and slightly superficial oxidative wear.

  20. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-01-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  1. CONFIGURATION-INTERACTION IN NI METAL AND NI-ALLOYS AND HIGH-ENERGY SPECTROSCOPY

    NARCIS (Netherlands)

    TANAKA, A; JO, T; SAWATZKY, GA

    We discuss the electronic state of Ni atoms in Ni metal and of Ni impurity in Cu and Au metals from the viewpoint of 3d configuration interaction (CI) using the Anderson impurity model including atomic multiplets. On the basis of the discussion, we give an interpretation for the Ni 2p-core X-ray

  2. The structure of PbCl2 on the {100} surface of NaCl and its consequences for crystal growth

    Science.gov (United States)

    Townsend, Eleanor R.; Brugman, Sander J. T.; Blijlevens, Melian A. R.; Smets, Mireille M. H.; de Poel, Wester; van Enckevort, Willem J. P.; Meijer, Jan A. M.; Vlieg, Elias

    2018-04-01

    The role that additives play in the growth of sodium chloride is a topic which has been widely researched but not always fully understood at an atomic level. Lead chloride (PbCl2) is one such additive which has been reported to have growth inhibition effects on NaCl {100} and {111}; however, no definitive evidence has been reported which details the mechanism of this interaction. In this investigation, we used the technique of surface x-ray diffraction to determine the interaction between PbCl2 and NaCl {100} and the structure at the surface. We find that Pb2+ replaces a surface Na+ ion, while a Cl- ion is located on top of the Pb2+. This leads to a charge mismatch in the bulk crystal, which, as energetically unfavourable, leads to a growth blocking effect. While this is a similar mechanism as in the anticaking agent ferrocyanide, the effect of PbCl2 is much weaker, most likely due to the fact that the Pb2+ ion can more easily desorb. Moreover, PbCl2 has an even stronger effect on NaCl {111}.

  3. Growth of single-crystal W whiskers during humid H2/N2 reduction of Ni, Fe-Ni, and Co-Ni doped tungsten oxide

    International Nuclear Information System (INIS)

    Wang Shiliang; He Yuehui; Zou Jou; Wang Yong; Huang Han

    2009-01-01

    Numbers of W whiskers were obtained by reducing Ni, Ni-Fe, and Ni-Co doped tungsten oxide in a mixed atmosphere of humid H 2 and N 2 . The phases and morphologies of the reduction products were characterized by XRD and SEM. Intensive TEM and EDS analyses showed that the obtained whiskers were W single crystals which typical have alloyed particles (Ni-W, Fe-Ni, or Co-Ni-W) at the growth tips. The formed W whiskers were presumed to be induced by the alloyed particles. Our experimental results revealed that, during the reduction process of tungsten oxide, the pre-reduced Ni, Fe-Ni, or Co-Ni particles not only served as nucleation aids for the initial growth of W phase from W oxide but also played the roles of catalysts during the reductive decomposition of gaseous WO 2 (OH) 2 .

  4. Preparation of one-step NiO/Ni-CGO composites using factorial design

    International Nuclear Information System (INIS)

    Araujo, A.J.M. de; Sousa, A R.O. de; Camposa, L.F.A.; Macedo, D.A.; Loureiro, F. J.A.; Fagg, D.P.

    2016-01-01

    This work deals with the synthesis, processing and characterization of NiO/Ni- CGO composite materials as potential solid oxide fuel cell (SOFC) anodes. The particulate materials were obtained by a one-step synthesis method and characterized by thermal analysis (prior to calcination) and X-ray diffraction (calcined powder). The ceramic processing of samples containing from 30 to 70 wt.% NiO was carried out by factorial design. Besides the NiO content controlled during the chemical synthesis, the impacts of the pore-former content (citric acid, used in proportions of 0, 7.5 and 15 wt.%) and the sintering temperature (1300, 1350 and 1400 °C) were also investigated. The open porosity of NiO-CGO composites and reduced Ni-CGO cermets was modeled as a function of factors (NiO content, citric acid content and sintering temperature) and interaction of factors. (author)

  5. Characterization of Ni-P-SiO_2-Al_2O_3 nanocomposite coatings on aluminum substrate

    International Nuclear Information System (INIS)

    Rahemi Ardakani, S.; Afshar, A.; Sadreddini, S.; Ghanbari, A.A.

    2017-01-01

    In the present work, nano-composites of Ni-P-SiO_2-Al_2O_3 were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO_2 in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO_2 and Al_2O_3 in Ni-P coating at the SiO_2 concentration of 10 g/L and 14 g/L Al_2O_3 led to the lowest corrosion rate (i_c_o_r_r = 0.88 μA/cm"2), the most positive E_c_o_r_r and maximum microhardness (537 μHV). Furthermore, increasing the amount of nanoparticles in the coating was found to decrease CPE_d_l and improve porosity. - Highlights: • The maximum content of Al_2O_3 and SiO_2 in the coating was increased to 14.02%wt and 4.54%wt, respectively. • By enhancing the amount of nanoparticles in the coating, there was higher corrosion resistance. • Increasing the nanoparticles content in the coating improved microhardness of coating. • The maximum of microhardness of Ni-P-SiO_2-Al_2O_3 was measured to be 537 μHV.

  6. 24-Epibrassinolide ameliorates the adverse effect of salt stress (NaCl on pepper (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Ibn Maaouia-Houimli Samira

    2012-04-01

    Full Text Available The present study investigates the role of 24-epibrassinolide (EBL in inducing plant tolerance to salinity. Seedlings of pepper (Capsicum annuum L. were grown in the presence of 70 mM NaCl and were sprayed with 10-6 M EBL at 7 days after transplantation and were sampled at 28 day. The plants exposed to NaCl exhibited a significant decline in relative growth rate, net CO2 assimilation, stomatal conductance, transpiration and water use efficiency. However, the follow up treatment with EBL significantly improved the above parameters. EBL treated plants had greater relative growth rate compared to untreated plants when exposed to salt stress. Application of EBL increased photosynthesis by increasing stomatal conductance in both control and salt stressed plants and may have contributed to the enhanced growth. The water use efficiency was improved because CO2 assimilation is more important than the transpiration.

  7. Electrokinetic properties of tantalum oxide deposited on model substrate in NaCl and LiCl solutions

    International Nuclear Information System (INIS)

    Sidorova, M.P.; Bogdanova, N.F.; Ermakova, L.Eh.; Bobrov, P.V.

    1997-01-01

    Electrokinetic characteristics of tantalum oxide have been studied using a model system - a plane-parallel capillary in chloride solutions containing monocharge (H + , Na + , Li + ) counterions in a wide range of pH and concentrations. It is shown that position of isoelectric point (IEP) of Ta 2 O 5 depends on concentration and type of counterion, moreover, the dependence is not explained in the framework of classical notions of the influence of counterion specific adsorption on IEP position. Electrokinetic potential of Ta 2 O-5 surface at the background of diluted LiCl solutions is higher in its absolute value, than at the background of NaCl solutions according to direct lyotropic series. The results of measurements of the capillary resistance dependence on pH at the background of NaCl and LiCl solutions 10 -3 -10 -1 M are used for the calculation of efficiency and specific surface conductivity factors

  8. Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum.

    Science.gov (United States)

    Chen, Jingyuan; Xu, Qin; Shu, Yun; Hu, Xiaoya

    2018-07-01

    A nonenzymatic glucose electrochemical sensor was constructed based on Au nanoparticles (AuNPs) decorated Ni metal-organic-framework (MOF)/Ni/NiO nanocomposite. Ni-MOF/Ni/NiO nanocomposite was synthesized by one-step calcination of Ni-MOF. Then AuNPs were loaded onto the Ni-based nanocomposites' surface through electrostatic adsorption. Through characterization by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and energy disperse spectroscopy (EDS) mapping, it is found that the AuNPs were well distributed on the surface of Ni-based nanocomposite. Cyclic voltammetric (CV) study showed the electrocatalytic activity of Au-Ni nanocomposite was highly improved after loading AuNPs onto it. Amperometric study demonstrated that the Au-Ni nanocomposites modified glassy carbon electrode (GCE) exhibited a high sensitivity of 2133.5 mA M -1 cm -2 and a wide linear range (0.4-900 μM) toward the oxidation of glucose with a detection limit as low as 0.1 μM. Moreover, the reproducibility, selectivity and stability of the sensor all exhibited outstanding performance. We applied the as-fabricated high performance sensor to measure the glucose levels in human serum and obtained satisfactory results. It is believed that AuNPs decorated Ni MOF/Ni/NiO nanocomposite provides a new platform for developing highly performance electrochemical sensors in practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  10. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    International Nuclear Information System (INIS)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju

    2012-01-01

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  11. CLASSICAL AREAS OF PHENOMENOLOGY: First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    Science.gov (United States)

    Wang, Yun-Jiang; Wang, Chong-Yu

    2009-10-01

    A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.

  12. CO2 Fixation by Membrane Separated NaCl Electrolysis

    DEFF Research Database (Denmark)

    Park, Hyun Sic; Lee, Ju Sung; Han, Junyoung

    2015-01-01

    for converting CO2 into CaCO3 requires high temperature and high pressure as reaction conditions. This study proposes a method to fixate CaCO3 stably by using relatively less energy than existing methods. After forming NaOH absorbent solution through electrolysis of NaCl in seawater, CaCO3 was precipitated...... crystal product was high-purity calcite. The study shows a successful method for fixating CO2 by reducing carbon dioxide released into the atmosphere while forming high-purity CaCO3.......Atmospheric concentrations of carbon dioxide (CO2), a major cause of global warming, have been rising due to industrial development. Carbon capture and storage (CCS), which is regarded as the most effective way to reduce such atmospheric CO2 concentrations, has several environmental and technical...

  13. Mini-review: regulation of the renal NaCl cotransporter by hormones.

    Science.gov (United States)

    Rojas-Vega, Lorena; Gamba, Gerardo

    2016-01-01

    The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone. Copyright © 2016 the American Physiological Society.

  14. Synthesis of Ni core NiO shell nanostructure and magnetic investigation for shell thickness determination

    International Nuclear Information System (INIS)

    Arabi, H.; Bruck, E.; Tichelaar, F.D.

    2007-01-01

    Full text: Nickel oxide has received a considerable amount of attention in recent years for its catalytic, electronic and magnetic properties. Ni nanoparticles with an average size of 8 nm were prepared by dc - arc discharge in argon atmosphere. A current of 130 A and 300 milli bar pressure of argon have been applied. The produced Ni nanoparticles were annealed for oxidizing in air at 350 for six hours to produce antiferromagnetic NiO particles. The structure of Ni and NiO nanoparticles and size estimation of them studied by means of X-ray diffraction. The size and morphology of the particles were also characterized by high resolution transmission microscopy (TEM). The Ni core NiO shell structure, resulting from the oxidation process, were studied by magnetic properties measurements. A quantum design squid magnetometer, model MPMS5S was used for measuring saturation magnetization of both nanoparticles of Ni with and without NiO layer. By knowing the density of Ni and NiO, we were able to deduce the thickness of the Ni core and NiO outer layer. They are around 3 and 5 nanometers respectively. (authors)

  15. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    International Nuclear Information System (INIS)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K.

    2003-01-01

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer

  16. Study on the deterioration process of a chromium-free conversion coating on AZ91D magnesium alloy in NaCl solution

    International Nuclear Information System (INIS)

    Zhao Ming; Wu Shusen; An Ping; Luo Jirong

    2006-01-01

    The morphology of a chromium-free conversion coating for AZ91D magnesium alloy was observed with an Atomic Force Microscopy. The results showed the uniform conversion coating has a relatively smooth appearance with shallow valleys. The EDX results indicated that the compositions of the coating were mainly compounds of Mg, Al, Mn, P, Ca and O. The XRD result showed that the coating contained amorphous materials and a small quantity of crystalline compound. The pitting product of the coating in NaCl water solution mainly composed of Mg, Cl, Mn, P, Ca and O. The corrosion behavior of the samples in NaCl solution was also studied by electrochemical impedance spectroscopy (EIS), which was characterized by one capacitive loop and one inductive loop. Based upon study on both a mathematical model for Faradic admittance of coating in NaCl solution and EIS, it could be considered that the inductive loop was caused by the adsorption of Cl anion and the appearance of pitting corrosion. A degradation mechanism of the coating in NaCl solution is set forth: dissolution velocity of the Cl - adsorption regions of the coating is higher than those non-adsorption regions, for Cl - anions are selective adsorption at some regions of coating surface. When the adsorption regions of coating layer are penetrated by dissolution, the pitting comes into being. The degradation mechanism of conversion coating and the mathematical model are consistent with the EIS results, polarization measurement results and coating's corrosion test results

  17. Electrochemical Behaviour of Ni and Ni-PVC Electrodes for the Electroxidation of Ethanol

    International Nuclear Information System (INIS)

    Mohd Syafiq Hamdan; Norazzizi Nordin; Siti Fathrita Mohd Amir; Riyanto; Mohamed Rozali Othman

    2011-01-01

    In this study, two nickel based electrodes were prepared; nickel foil and nickel-polyvinylchloride (Ni-PVC), in order to study their electrochemical behavior using cyclic voltammetry, CV and chronocoulometry, CC. Ni electrode was prepared from Ni metal foil while Ni-PVC electrode was prepared by mixing a weighed portion of Ni powder and PVC in THF solvent, swirled until the suspension was homogeneous and drying the suspension in an oven at 50 degree Celsius for 3 h. The dry sample was then placed in a 1 cm diameter stainless steel mould and pressed at 10 ton/ cm 2 . From CV data, Ni-PVC electrode showed a better electrochemical behavior compared to Ni metal foil electrode. The use of Ni-PVC electrode at higher concentration of supporting electrolyte (1.0 M KOH) was better than at lower concentration of the same supporting electrolyte in electroxidation of ethanol. In addition to acetic acid, the oxidation of ethanol also produced ethyl acetate and acetaldehyde. (author)

  18. Nonenzymatic Glucose Sensor Based on In Situ Reduction of Ni/NiO-Graphene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhang

    2016-10-01

    Full Text Available Ni/NiO nanoflower modified reduced graphene oxide (rGO nanocomposite (Ni/NiO-rGO was introduced to screen printed electrode (SPE for the construction of a nonenzymatic electrochemical glucose biosensor. The Ni/NiO-rGO nanocomposite was synthesized by an in situ reduction process. Graphene oxide (GO hybrid Nafion sheets first chemical adsorbed Ni ions and assembled on the SPE. Subsequently, GO and Ni ions were reduced by hydrazine hydrate. The electrochemical properties of such a Ni/NiO-rGO modified SPE were carefully investigated. It showed a high activity for electrocatalytic oxidation of glucose in alkaline medium. The proposed nonenzymatic sensor can be utilized for quantification of glucose with a wide linear range from 29.9 μM to 6.44 mM (R = 0.9937 with a low detection limit of 1.8 μM (S/N = 3 and a high sensitivity of 1997 μA/mM∙cm−2. It also exhibited good reproducibility as well as high selectivity.

  19. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, A.V., E-mail: knyazevav@gmail.com [N.I. Lobachevsky State University of Nizhni Novgorod, Gagarin Prospekt 23/2, 603950 Nizhni Novgorod (Russian Federation); Zakharchuk, I.; Lähderanta, E. [Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland); Baidakov, K.V.; Knyazeva, S.S. [N.I. Lobachevsky State University of Nizhni Novgorod, Gagarin Prospekt 23/2, 603950 Nizhni Novgorod (Russian Federation); Ladenkov, I.V. [Joint-stock Company “Research and Production Company “Salut”, Nizhni Novgorod (Russian Federation)

    2017-08-01

    Highlights: • Ni-Zn and Ni-Zn-Co ferrite powders were prepared by the solid-state reaction at 1073 K. • The room temperature saturation magnetizations are 59.7 emu/g for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 57.1 emu/g for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. • The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. • The temperature dependences of magnetization exhibit large spin frustration and spin-glass-like behavior. - Abstract: Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4} were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4} was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130–630 nm for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 140–350 nm for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. The room temperature saturation magnetizations are 59.7 emu/g for Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and 57.1 emu/g for Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 2}O{sub 4}. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  20. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  1. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Science.gov (United States)

    Kabir, L.; Mandal, A. R.; Mandal, S. K.

    2010-04-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  2. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    International Nuclear Information System (INIS)

    Kabir, L.; Mandal, A.R.; Mandal, S.K.

    2010-01-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  3. EFFECT OF DIFFERENT K2 HPO4, NaCl LEVELS AND TWO DIFFERENT TEMPARATURES ON SOME EMULSION PROPERTIES OF GOAT MEAT

    OpenAIRE

    Mustafa KARAKAYA; Hüsnü Yusuf GÖKALP; Ramazan BAYRAK

    1996-01-01

    Different levels of K2 HPO4 (0.00 %, 0.25 % and 0.50 %) and NaCl (2.5 % and 3.0 %) were added into goat meat, at the two different temperatures (11o C and 18o C) in order to investigate the emulsion properties in the model emulsion system. Emulsion capacity (EK), emulsion viscocity (EV), emulsion stability ratio (ES), the ratio of separated water (ESO) and oil (EYO) ratio from the emulsion, and the emulsion pH were determined. K2 HPO4 and NaCl levels and the oil temperatures have significant ...

  4. Effects of NaCl and seawater induced salinity on survival and reproduction of three soil invertebrate species.

    Science.gov (United States)

    Pereira, C S; Lopes, I; Sousa, J P; Chelinho, S

    2015-09-01

    The increase of global mean temperature is raising serious concerns worldwide due to its potential negative effects such as droughts and melting of glaciers and ice caps leading to sea level rise. Expected impacts on soil compartment include floodings, seawater intrusions and use of saltwater for irrigation, with unknown effects on soil ecosystems and their inhabitants. The present study aimed at evaluating the effects of salinisation on soil ecosystems due to sea level rise. The reproduction and mortality of three standard soil invertebrate species (Folsomia candida, Enchytraeus crypticus, Hypoaspis aculeifer) in standard artificial OECD soil spiked with serial dilutions of seawater/gradient of NaCl were evaluated according to standard guidelines. An increased sensitivity was observed in the following order: H. aculeifer≪E. crypticus≈F. candida consistent with the different exposure pathways: springtails and enchytraeids are exposed by ingestion and contact while mites are mainly exposed by ingestion due to a continuous and thick exoskeleton. Although small differences were observed in the calculated effect electrical conductivity values, seawater and NaCl induced the same overall effects (with a difference in the enchytraeid tests where a higher sensitivity was found in relation to NaCl). The adverse effects described in the present study are observed on soils not considered saline. Therefore, the actual limit to define saline soils (4000 μS cm(-1)) does not reflect the existing knowledge when considering soil fauna. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates

    International Nuclear Information System (INIS)

    Michutta, J.; Somsen, Ch.; Yawny, A.; Dlouhy, A.; Eggeler, G.

    2006-01-01

    The present study shows that multiple-step martensitic transformations can be observed in aged Ni-rich NiTi single crystals. Ageing of solution-annealed and water-quenched Ni-rich NiTi single crystals results in a homogeneous precipitation of coherent Ni 4 Ti 3 particles. When the interparticle spacing reaches a critical value (order of magnitude: 200 nm), three distinct transformation processes are observed on cooling from the high-temperature phase using differential scanning calorimetry and in situ transmission electron microscopy. The transformation sequence begins with the formation of R-phase starting from all precipitate/matrix interfaces (first step). The transformation continues with the formation of B19' and its subsequent growth along all precipitate/matrix interfaces (second step). Finally, the matrix in between the precipitates transforms to B19' (third step). Elementary transformation mechanisms which account for two- and three-step transformations in a system with small-scale microstructural heterogeneities were identified

  6. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    Science.gov (United States)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  7. Reactive Ni/Ti nanolaminates

    International Nuclear Information System (INIS)

    Adams, D. P.; Bai, M. M.; Rodriguez, M. A.; McDonald, J. P.; Jones, E. Jr.; Brewer, L.; Moore, J. J.

    2009-01-01

    Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti multilayer foils characterized by average propagation speeds between ∼0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T ig )∼300-400 deg. C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T ig . Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19 ' NiTi (martensite), hexagonal NiTi 2 , and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small.

  8. Electronic structure of Ni-- and Ni2--ethylene cluster complexes

    International Nuclear Information System (INIS)

    Basch, H.; Newton, M.D.; Moskowitz, J.W.

    1978-01-01

    The electronic structure of metal cluster--ethylene complexes has been investigated by carrying out ab initio bonding pair-correlated, self-consistent field, and configuration interaction (CI) calculations on the NiC 2 H 4 and Ni 2 C 2 H 4 species. The π-NiC 2 H 4 and π-Ni 2 C 2 H 4 cluster complexes are found to be bound, the former only with CI, while disigma-Ni 2 C 2 H 4 has only a repulsive Ni 2 --C 2 H 4 ground state potential curve. The bonding in the π-type cluster complexes can be described as follows: The metal atom configuration is 3d 9 4s 1 with the 4s hybridized (by the metal 4p) away from the ethylene molecule, thereby allowing the π orbital to form a dative sigma bond with the metal atom. The bonding interaction is promoted by the presence of a second nickel atom behind the first one, leading to a 4s orbital electron deficiency of the bonded nickel atom and thus making this nickel atom a better electron acceptor. Back donation from the occupied metal 3d into the ethylene π* molecular orbital also takes place to some extent, and thus both features of the classical Dewar--Chatt--Duncanson model are observed. The π-Ni 2 C 2 H 4 species is analyzed in terms of the addition of a bare nickel atom to a π-NiC 2 H 4 cluster complex, with concomitant stabilization of the orbitals of the bonded nickel atom. A study of the excited electronic states of π-NiC 2 H 4 shows that low-lying 4s→π* and 3d→π* (M→L) charge transfer transitions are predicted. The former is not observed experimentally, probably due to the diffuse nature of the 4s orbital. The relationship between small cluster--ethylene complex systems and ethylene chemisorption on a nickel metal surface is discussed

  9. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  10. Effect of NaCl induced floc disruption on biological disintegration of sludge for enhanced biogas production.

    Science.gov (United States)

    Kavitha, S; Kaliappan, S; Adish Kumar, S; Yeom, Ick Tae; Rajesh Banu, J

    2015-09-01

    In the present study, the influence of NaCl mediated bacterial disintegration of waste activated sludge (WAS) was evaluated in terms of disintegration and biodegradability of WAS. Floc disruption was efficient at 0.03 g/g SS of NaCl, promoting the shifts of extracellular proteins and carbohydrates from inner layers to extractable--soluble layers (90 mg/L), respectively. Outcomes of sludge disintegration reveal that the maximum solubilization achieved was found to be 23%, respectively. The model elucidating the parameter evaluation, explicates that floc disrupted--bacterially disintegrated sludge (S3) showed superior biodegradability of about 0.23 (gCOD/gCOD) than the bacterially disintegrated (S2) and control (S3) sludges of about 0.13 (gCOD/gCOD) and 0.05 (gCOD/gCOD), respectively. Cost evaluation of the present study affords net profits of approximately 2.5 USD and -21.5 USD in S3 and S2 sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Ultrathin NiO/NiFe2O4 Nanoplates Decorated Graphene Nanosheets with Enhanced Lithium Storage Properties

    International Nuclear Information System (INIS)

    Du, Dejian; Yue, Wenbo; Fan, Xialu; Tang, Kun; Yang, Xiaojing

    2016-01-01

    Highlights: • Ultrathin NiO/NiFe 2 O 4 nanoplates derived from NiFe layered double hydroxides are fabricated on the graphene. • NiO/NiFe 2 O 4 nanoplates on the graphene show superior electrochemical performance compared to pure NiO/NiFe 2 O 4 aggregates. • The effects of the content and the particle size/component of NiO/NiFe 2 O 4 on the electrochemical performances are studied. • Graphene-encapsulated NiO/NiFe 2 O 4 is prepared and shows slightly decreased performance compared to graphene-based composite. - Abstract: As anode materials for lithium-ion batteries, bicomponent metal oxide composites show high reversible capacities; but the morphology and particle size of the composites are hardly controllable, which may reduce their electrochemical properties. In this work, ultrathin NiO/NiFe 2 O 4 nanoplates with a diameter of 5 ∼ 7 nm and a thickness of ∼2 nm are controllably fabricated on the graphene derived from NiFe layered double hydroxides (NiFe-LDHs), and exhibit superior electrochemical performance compared to pure NiO/NiFe 2 O 4 aggregates without graphene. The nanosized NiO and NiFe 2 O 4 plates are separated from each other and the graphene substrate can prevent the aggregation of NiO/NiFe 2 O 4 as well as enhance the electronic conductivity of the composite, which is beneficial to improving the electrochemical performance. Moreover, the effects of the content and the particle size/component of NiO/NiFe 2 O 4 on the electrochemical performances are also studied in order to achieve optimal performance. Ultrathin NiO/NiFe 2 O 4 nanoplates are further encapsulated by graphene nanosheets and show slightly decreased performance compared to those supported by graphene nanosheets. The different electrochemical behaviors of graphene-containing composites may be attributed to the different interactions between graphene nanosheets and NiO/NiFe 2 O 4 nanoplates.

  12. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    Science.gov (United States)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  13. Chemistry of Frozen NaCl and MgSO4 Brines - Implications for Surface Expression of Europa's Ocean Composition

    Science.gov (United States)

    Johnson, P. V.; Hodyss, R. P.; Choukroun, M.; Vu, T. H.

    2015-12-01

    The composition of Europa's subsurface ocean is a critical determinant of its habitability, but current analysis of the ocean composition is limited to its expression on the Europan surface. While there is observational evidence indicating that ocean materials make their way to the surface, our understanding of the chemical processes that can alter this material under Europan surface conditions is limited. We present experimental data on the chemistry of mixed solutions of NaCl and MgSO4 as they are frozen to 100 K, replicating the conditions that may occur when subsurface ocean fluids are emplaced onto Europa's surface. Confocal micro-Raman spectroscopy is used to study the formation of salts during the freezing process, and the interaction of ions in the frozen brines. Our data indicate that mixed aqueous solutions of NaCl and MgSO4 form Na2SO4 and MgCl2 preferentially when frozen, rather than making NaCl and MgSO4 precipitates. The detection of epsomite (MgSO4Ÿ•7H2O) on Europa's surface may therefore imply an ocean composition relatively low in sodium, unless radiolytic chemistry converts MgCl2 to MgSO4 as suggested by Hand and Brown 2013 (ApJ 145 110). These results have important implications for the interpretation of remote sensing data of Europa's surface.

  14. NaCl Effects on In Vitro Germination and Growth of Some Senegalese Cowpea (Vigna unguiculata (L.) Walp.) Cultivars

    Science.gov (United States)

    Thiam, Mahamadou; Ourèye SY, Mame

    2013-01-01

    Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important grain legumes in sub-Saharian regions. It contributes to man food security by providing a protein-rich diet. However, its production is limited by abiotic stresses such as salinity. This study aims to evaluate the salt tolerance of 15 cowpea cultivars, at germination stage. The seed germination process consisted of sowing them in agarified water (8 g·L−1) supplemented with 6 different concentrations of NaCl (0, 10, 50, 100, 150, and 200 mM). Results highlighted that high salt concentrations drastically reduced germination and significantly delayed the process for all varieties. A cowpea varietal effect towards the salt tolerance was noticed. Genotypes Diongoma, 58-78, and 58-191 were more salt-tolerant cultivars while Mougne and Yacine were more salt-sensitive ones as confirmed in the three groups of the dendrogram. NaCl effects on the early vegetative growth of seedlings were assessed with a tolerant (58-191) and a susceptible (Yacine) cultivar. Morphological (length and dry biomass) and physiological (chlorophyll and proline contents) parameter measurements revealed a negative effect of high (NaCl). However, 58-191 was much more salt tolerant, and the chlorophyll and proline contents were higher than those of Yacine genotype at increasing salt concentrations. PMID:25937976

  15. Luminescence of BaCl2:Eu2+ particles dispersed in the NaCl host excited by synchrotron radiation

    International Nuclear Information System (INIS)

    Pushak, A.S.; Savchyn, P.V.; Vistovskyy, V.V.; Demkiv, T.M.; Dacyuk, J.R.; Myagkota, S.V.; Voloshinovskii, A.S.

    2013-01-01

    BaCl 2 :Eu 2+ microcrystals embedded in the NaCl host have been obtained in the NaCl–BaCl 2 (1 mol%)–EuCl 3 (0.02 mol%) crystalline system. The influence of the annealing conditions on the formation of such particles has been studied. In particular, long-term annealing (at 200 °S during 100 h) promotes the microcrystals formation in the NaCl–BaCl 2 –Eu crystalline system. The subsequent heat treatment (annealed at 600 °S during 72 h and quenched to room temperature) is shown to lead to the destruction of the majority of these particles. The luminescent-kinetic properties of BaCl 2 :Eu 2+ microcrystals have been studied upon the ultra-violet excitation by the synchrotron radiation. The X-ray excited luminescence has been measured in order to estimate the distribution of europium ions between microcrystals and the NaCl host. The excitation mechanisms of Eu 2+ ions in the NaCl–BaCl 2 –Eu crystalline system are discussed. - Highlights: ► The formation of BaCl 2 :Eu 2+ microcrystals of 1–100 μm size embedded in the NaCl host is revealed. ► Annealing at 600 °C leads to the destruction of significant number of embedded microcrystals. ► The luminescent parameters of microcrystals is similar to ones of single crystal analogs.

  16. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    Science.gov (United States)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  17. NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications.

    Science.gov (United States)

    Saravanakumar, Balasubramaniam; Jayaseelan, Santhana Sivabalan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-12-07

    Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo 2 S 4 as an electroactive material. The fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm -2 and 199.74 F cm -3 , respectively, at a current density of 0.2 mA cm -1 with a maximum volumetric energy and power density (E V : 6.935 mW h cm -3 ; P V : 1.019 W cm -3 ). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of C A : 0.12 F cm -2 and C V : 19.57 F cm -2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (E V : 5.33 mW h cm -3 ) and power (P V : 855.69 mW cm -3 ) density.

  18. The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity

    Science.gov (United States)

    Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi; Yang, Wulin

    2017-06-01

    The intermediate phase of NiS2 is thought to be a bottleneck currently to improve the overall performance of Li/NiS2 thermal batteries because of its low conductivity and close formation enthalpy between NiS2 and the intermediate phase (NiS, Ni3S2, etc). For improving the discharge performances of Li/NiS2 thermal batteries, the nano NiS2 with an average size of 85 ± 5 nm is designated as a cathode material. The electrochemical measurements show that the specific capacity of nano NiS2 cathode is higher than micro NiS2. The nano NiS2 cathode exhibits excellent electrochemical performances with high specific capacities of 794 and 654 mAh g-1 at current density of 0.1 and 0.5 A cm-2 under a cut-off voltage of 0.5 V, respectively. These results show that the rapid intermediate phase evolution from the nanocrystallization can obviously enhance use efficiency of NiS2 and improve discharge performances of thermal batteries.

  19. Valence electronic structure of Ni in Ni Si alloys from relative K X-ray intensity studies

    Science.gov (United States)

    Kalayci, Y.; Aydinuraz, A.; Tugluoglu, B.; Mutlu, R. H.

    2007-02-01

    The Kβ-to-Kα X-ray intensity ratio of Ni in Ni 3Si, Ni 2Si and NiSi has been determined by energy dispersive X-ray fluorescence technique. It is found that the intensity ratio of Ni decreases from pure Ni to Ni 2Si and then increases from Ni 2Si to NiSi, in good agreement with the electronic structure calculations cited in the literature. We have also performed band structure calculations for pure Ni in various atomic configurations by means of linear muffin-tin orbital method and used this data with the normalized theoretical intensity ratios cited in the literature to estimate the 3d-occupation numbers of Ni in Ni-Si alloys. It is emphasized that investigation of alloying effect in terms of X-ray intensity ratios should be carried out for the stoichiometric alloys in order to make reliable and quantitative comparisons between theory and experiment in transition metal alloys.

  20. Heavy metal environmental impact. Nickel (Ni); Impatto ambientale da metalli pesanti. Il Nichel (Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G. [Padua Univ. Padua (Italy). Dipt. di Farmacologia, Lab. di Tossicologia

    2001-02-01

    Nickel (Ni) is a heavy metal in over 3.000 different alloys used to produce kitchen utensils, batteries, coins, etc.. Human extractive and industrial activities are therefore a cause for environmental dispersion of this metal into the biosphere. This shows how in urban areas car traffic and house-heating are the main sources of nickel pollution. Nickel is relatively non-toxic, such as iron, cobalt, copper and zinc; nevertheless prolonged inhalation of dust containing such compounds as Ni O or NiCl{sub 2} concurs in the outbreak of respiratory pathologies. The carcinogenic effect of such compounds as Ni S, Ni O and Ni(CO){sub 4} has been confirmed by experiments on laboratory animals. Ni potentially toxic concentrations, and as a consequence of potential environmental impact, are to be mainly found in populated areas where the main sources are represented by industries and landfills. [Italian] Il nichel (Ni) e' un metallo presente in oltre 3.000 differenti leghe che vengono utilizzate per la produzione di utensili da cucina, batterie, monete, ecc.. Le attivita' estrattive ed industriali dell'uomo sono quindi causa di una dispersione del metallo nella biosfera. Sono stati riscontrati elevati tassi di Ni nell'atmosfera di aree urbane. Cio' sta a dimostrare che nelle aree urbane il traffico automobilistico e il riscaldamento domestico sono le fonti principali di inquinamento da tale metallo. Il nichel e' relativamente atossico, analogamente a ferro, cobalto, rame e zinco, tuttavia l'inalazione protratta di polveri contenenti composti come il NiO o il NiCl{sub 2} contribuisce al manifestarsi di patologie dell'apparato respiratorio. E' stato confermato sperimentalmente su animali da laboratorio l'effetto cancerogeno di alcuni composti quali NiS, NiO e Ni(CO){sub 4}. Concentrazioni potenzialmente tossiche di Ni, e quindi di probabile impatto ambientale, sono maggiormente da ricercare nelle zone antropizzate dove le fonti

  1. Positron annihilation studies in CeNiIn and LaNiIn

    International Nuclear Information System (INIS)

    Ray, R.; Giri, S.; Sen, M.; Nambissan, P.M.G.; Ghoshray, K.; Ghoshray, A.; Sen, P.

    1997-01-01

    Doppler broadened positron annihilation spectral lineshape (DBPAS) and positron lifetime measurements in the temperature range 18-280 K have been performed in CeNiIn and LaNiIn systems. The nature of the temperature variations of the lifetime in both systems is almost similar in the whole temperature range studied, whereas the nature of the temperature variation of the S parameter in CeNiIn is similar to that in LaNiIn except in the temperature region 18-40 K. For the former system there is a dip around 20 K in the S parameter versus temperature curve. The lifetime versus T curve in both systems could be explained by the thermal expansion of the lattice. The S parameter versus T curve in LaNiIn could also be attributed to the thermal expansion of the lattice, whereas in CeNiIn the above mentioned dip seems an extra feature of the thermal expansion of the lattice. To understand this low temperature behaviour other results on the same system have been discussed. (orig.)

  2. Interacción familiar y desarrollo emocional en niños y niñas

    Directory of Open Access Journals (Sweden)

    Gloria Cecilia Henao López

    2009-01-01

    Full Text Available En la presente investigación se tuvo como objetivo principal abordar los estilos de interacción de padres y madres de niños y niñas preescolares y su relación con el desarrollo emocional de sus hijos e hijas (235 niños y 169 niñas entre cinco y seis años de edad. Las dimensiones que se consideraron para evaluar el nivel emocional de los niños y niñas fueron: autorregulación, comprensión emocional, y empatía. Como primer aspecto describimos los tipos de interacción con sus hijos e hijas y el desarrollo emocional de los niños y niñas evaluados. Un segundo aspecto que se abordó, es el de explorar las asociaciones entre el estilo de interacción familiar y el desarrollo emocional infantil. El instrumento utilizado dirigido a los padres y madres fue la Escala de Identificación de Prácticas Educativas Familiares (PEF, versión española realizada por Alonso y Román; a los niños y niñas les aplicamos la evaluación del desempeño emocional (EDEI, que se construye como parte de esta investigación. Se trabajó con una muestra de 404 niños y niñas, y sus respectivos padres y madres. Los resultados obtenidos en esta investigación resaltan el estilo equilibrado como generador de conductas adecuadas y adaptativas en el niño o niña, al igual que rescata este estilo como el que más posibilita el nivel de comprensión emocional en los niños y niñas de nuestro estudio.

  3. High-frequency permeability of electroplated CoNiFe and CoNiFe-C alloys

    International Nuclear Information System (INIS)

    Rhen, Fernando M.F.; McCloskey, Paul; O'Donnell, Terence; Roy, Saibal

    2008-01-01

    We have investigated CoNiFe and CoNiFe-C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co 59.4 Fe 27.7 Ni 12.8 show coercivity of 95 A m -1 (1.2 Oe) and magnetization saturation flux (μ 0 M s ) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μ r ' ∼475 up to 30 MHz with a quality factor (Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe-C, which have resistivity and permeability of 85, 38 μΩ cm, μ r '=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe-C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency

  4. Water dissociation on Ni(100) and Ni(111): Effect of surface temperature on reactivity

    International Nuclear Information System (INIS)

    Seenivasan, H.; Tiwari, Ashwani K.

    2013-01-01

    Water adsorption and dissociation on Ni(100) and Ni(111) surfaces are studied using density functional theory calculations. Water adsorbs on top site on both the surfaces, while H and OH adsorb on four fold hollow and three fold hollow (fcc) sites on Ni(100) and Ni(111), respectively. Transition states (TS) on both surfaces are identified using climbing image-nudged elastic band method. It is found that the barrier to dissociation on Ni(100) surface is slightly lower than that on Ni(111) surface. Dissociation on both the surfaces is exothermic, while the exothermicity on Ni(100) is large. To study the effect of lattice motion on the energy barrier, TS calculations are performed for various values of Q (lattice atom coordinate along the surface normal) and the change in the barrier height and position is determined. Calculations show that the energy barrier to reaction decreases with increasing Q and increases with decreasing Q on both the surfaces. Dissociation probability values at different surface temperatures are computed using semi-classical approximation. Results show that the influence of surface temperature on dissociation probability on the Ni(100) is significantly larger compared to that of Ni(111). Moreover, on Ni(100), a dramatic shift in energy barrier to lower incident energy values is observed with increasing surface temperature, while the shift is smaller in the case of Ni(111)

  5. Some studies about the NaCl:Ca2+ :Mn2+ and NaCl: Cd2+ :Mn2+ dosemeters

    International Nuclear Information System (INIS)

    Verdiguel G, H.; Flores J, C.; Camarillo G, E.; Espejel P, R.; Cabrera B, E.; Hernandez A, J.; Murrieta S, H.; Cruz Z, E.; Ramos B, S.; Negron, A.

    2002-01-01

    Nowadays, a great interest by counting with dosemeters of characteristics such as a high stability, of easy operation and easier production exists. Looking for a commitment with all these characteristics,a possibility to use the system NaCl: Ca 2+ :Mn 2+ and NaCl: Cd 2+ :Mn 2+ as dosemeters was studied. The studies were realized irradiating with gamma radiation from a 60 Co source. The crystals that were used as samples did not suffer any thermal treatment previous to irradiation. The supplied doses were 10, 30, 60, 100, 300, and 600 rads. 24 hours after irradiation the thermoluminescent response was obtained. In the case of the system NaCl: Ca 2+ :Mn 2+ several thermoluminescent bands were observed (BTL). Two concentrations of Mn 2+ with only one concentration of Ca 2+ (1%) were studied. For the case of the smaller concentration of Mn 2+ (0.1%) 4 BTL were observed, whereas for a greater concentration (0.3%) just 2 BTL were detected. The positions of the maximum of the BTL peaks differ for both concentrations, this possible due to what the nature of the traps for both cases differs by the type of precipitates present in the net. For the case of the system NaCl: Cd 2+ (1%) :Mn 2+ (0.1% and 0.5%) a similar situation to the previous was found, although in this case for both manganese concentrations just 2 BTL were observed; however all the peaks seem to be the superposition of several bands. Despite the apparent complexity of the thermoluminescent response, such response as function of the dose shows that both systems present a stable response to gamma radiation in the interval from 10 to 600 rads. In the case of calcium it is had a response of linear type of the Tl intensity depending on the dose, whereas for the cadmium system a supra linear response seems to exist. Nowadays, studies for determining the BTL origin being carried out. (Author)

  6. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al nanoparticles as a high microwave absorption material

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Yu; Xie, Xiubo; Li, Da [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China); Chou, Wusheng [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191 (China)

    2017-03-15

    The Al{sub 3}Ni{sub 2}@Al nanoparticles (NPs) were prepared from Ni{sub 45}Al{sub 55} master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m{sup 2}/g and big pore volume of 0.507 cc/g. The saturation magnetization (M{sub S}) and coercivity (H{sub C}) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of −86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤−10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance. - Graphical abstract: The microporous Ni/NiO nanoparticles prepared by chemically dealloying Al{sub 3}Ni{sub 2}@Al NPs exhibit high microwave absorption intensity (−86.9 dB) and wide absorption bandwidth (2.6 GHz for RC≤−10 dB). - Highlights: • Microporous Ni/NiO nanoparticals were prepared by chemically dealloying method. • They possessed micropores of 0.7–1.6 nm with a surface area of 69.5 m{sup 2}/g. • They showed high microwave absorption intensity and wide absorption bandwidth. • Microwave absorption mechanism was explained by micropore and core/shell structures.

  7. Thermal capture cross section for 58Ni (n,γ)59 Ni reaction

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Pecequilo, B.R.S.

    1989-01-01

    The 58 Ni total thermal capture cross section was determined by suming the partial cross sections calculated for the primary transitions of the reaction 58 Ni (n,γ) 59 Ni. The primary transitions energies and intensities were determined from the 58 Ni thermal neutrons prompt gamma capture gamma rays spectrum in the 3.7 to 9.3 MeV region. The obtained value for the total cross section was 4.52 + 0.10b. (author) [pt

  8. Niños y niñas como cuidadores familiares

    Directory of Open Access Journals (Sweden)

    María Rosa Estupiñán Aponte

    2015-01-01

    Full Text Available En el contexto familiar, el cuidado de otra persona por parte de niños y niñas constituye un terreno inexplorado tanto en su significado como en las implicaciones que podrían darse en el proceso. Aunque históricamente se ha asignado el cuidado familiar a las mujeres generando condiciones de inequidad, incrementada con los cambios sociales de los últimos tiempos, es necesario reconocer que en muchos hogares niños y niñas se han visto obligados a desempeñar esta labor sin la preparación ni las destrezas necesarias. Desde una perspectiva de género, el artículo busca evidenciar esta situación mediante la revisión de los abordajes que sobre el tema se han hecho en países de Europa y Norteamérica, así como el análisis de información obtenida a partir de las Encuestas de Hogares y Uso del Tiempo (EUT en algunos países de Latinoamérica. Se establece la forma como las problemáticas sociales inciden en las dinámicas, tipo de tareas y responsabilidades que deben asumir niños y niñas en los hogares, mostrando delgados límites entre la colaboración al interior de las familias, la transmisión cultural de roles y funciones y las actividades que podrían incidir negativamente en su crecimiento y el ejercicio de sus derechos.

  9. Iodine capture by Hofmann-type clathrate Ni(II)(pz)[Ni(II)(CN)_4

    International Nuclear Information System (INIS)

    Massasso, Giovanni; Long, Jerome; Haines, Julien; Devautour-Vinot, Sabine; Maurin, Guillaume; Larionova, Joulia; Guerin, Christian; Guari, Yannick; Grandjean, Agnes; Onida, Barbara; Donnadieu, Bruno

    2014-01-01

    The thermally stable Hofmann-type clathrate framework Ni(II)(pz)[Ni(II)(CN)_4] (pz = pyrazine) was investigated for the efficient and reversible sorption of iodine (I_2) in the gaseous phase and in solution with a maximum adsorption capacity of 1 mol of I_2 per 1 mol of Ni(II)pz)[Ni(II)(CN)_4] in solution. (authors)

  10. Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders

    International Nuclear Information System (INIS)

    Wang Yi; Wang Xin; Gao Xueping; Shen Panwen

    2008-01-01

    The electrochemical characteristics of the ball-milled LaMg 10 NiMn alloys with Ni powders were investigated. It was found that the ball-milled LaMg 10 NiMn + 150 wt.% Ni composite exhibited higher first discharge capacity and better cycle performance. By means of the analysis of electrochemical impedance spectra (EIS), it was shown that the existence of manganese in LaMg 10 NiMn alloy increased the electrocatalytic activity due to its catalytic effect, and destabilized metal hydrides, and so reduced the hydrogen diffusion resistance. These contributed to the higher discharge capacity of the ball-milled LaMg 10 NiMn-Ni composite. According to the analytical results of X-ray diffraction (XRD), EIS and steady-state polarization (SSP) experiments, the inhibition of metal corrosion is not the main reason for the better cycle performance. The main reason is that the electrochemical reaction resistance of the ball-milled LaMg 10 NiMn-Ni composite is always lower than that of the ball-milled LaMg 10 Ni 2 -Ni composite because the former one contains manganese, which is a catalyst for the electrode reaction

  11. Development of the dentistry alloy Ni-Cr-Nb; Desenvolvimento de ligas odontologicas Ni-Cr-Nb

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A.; Ramos, A.S.; Hashimoto, T.M., E-mail: mari_sou@hotmail.co [UNESP/FEG, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    This work reports on the structural characterization of Ni-Cr-Mo and Ni-Cr-Nb alloys produced by arc melting. Samples were characterized by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and EDS analysis. Results indicated that the arc melting process was efficient to produce homogeneous structures in Ni-Cr-Mo and Ni-Cr-Nb alloys. The nickel dissolved large amounts of Cr, Mo and Nb, which was detected by EDS analysis and X-ray diffraction. The alloy containing molybdenum indicated the presence of structure based on Ni{sub SS}, while that the alloys containing niobium presented primary grains of Ni{sub SS} and precipitates formed by the simultaneous transformation of the Ni and Ni{sub 3}Nb phases. (author)

  12. Enhanced Electrocatalytic Activity for Water Splitting on NiO/Ni/Carbon Fiber Paper

    Directory of Open Access Journals (Sweden)

    Ruoyu Zhang

    2016-12-01

    Full Text Available Large-scale growth of low-cost, efficient, and durable non-noble metal-based electrocatalysts for water splitting is crucial for future renewable energy systems. Atomic layer deposition (ALD provides a promising route for depositing uniform thin coatings of electrocatalysts, which are useful in many technologies, including the splitting of water. In this communication, we report the growth of a NiO/Ni catalyst directly on carbon fiber paper by atomic layer deposition and report subsequent reduction and oxidation annealing treatments. The 10–20 nm NiO/Ni nanoparticle catalysts can reach a current density of 10 mA·cm−2 at an overpotential of 189 mV for hydrogen evolution reactions and 257 mV for oxygen evolution reactions with high stability. We further successfully achieved a water splitting current density of 10 mA·cm−2 at 1.78 V using a typical NiO/Ni coated carbon fiber paper two-electrode setup. The results suggest that nanoparticulate NiO/Ni is an active, stable, and noble-metal-free electrocatalyst, which facilitates a method for future water splitting applications.

  13. Ultrasonic-assisted synthesis of superabsorbent hydrogels based on sodium lignosulfonate and their adsorption properties for Ni2.

    Science.gov (United States)

    Wang, Xiaohong; Wang, Yingying; He, Shufu; Hou, Haiqian; Hao, Chen

    2018-01-01

    Nowadays, the attention of both academic and industrial research is paid to the novel materials based on renewable organic resources. Sodium lignosulphonate (SLS) is selected in this study to synthesize novel superabsorbent hydrogels by ultrasonic polymerization. The structure, morphology and stability of SLS-based hydrogel were confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Under the optimal condition, SLS-based hydrogel possesses the water absorbency of 1328g·g -1 in distilled water and 110g·g -1 in 0.9wt% NaCl solution. In addition, the prepared SLS-hydrogel as an adsorbent was applied to remove Ni 2+ from an aqueous solution in virtue of its low cost and favorable adsorption capacity. The various experimental conditions that influence the adsorption capacity were investigated such as temperature (20-60°C), pH (2.0-7.0), contact time (0-360min) and initial concentration of the Ni 2+ solution (100-600mg·L -1 ). Then the adsorption capability could reach 293mg·g -1 under optimal conditions. The results revealed that the adsorption behavior is spontaneous and endothermic. Furthermore, it was observed that the adsorption mechanism and adsorption equilibrium data obeyed pseudo-second-order kinetic and Freundlich models. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coloration dependence in the thermoluminescence properties of the double doped NaCl single crystals under gamma irradiation

    International Nuclear Information System (INIS)

    Sanchez-Mejorada, G.; Gelover-Santiago, A.L.; Frias, D.

    2006-01-01

    In this work the behaviour of calcium manganese doped NaCl single crystals under gamma irradiation is reported. Various single crystals of NaCl doped with Ca and Mn have been irradiated at different doses with ionising radiation. The production of defects has been correlated to the increase in the intensity of the thermo luminescent glow curve as a function of doses. The glow curves intensity as a function of doses shows the potential use of these materials as dosimeters. Optical properties of such crystals after irradiation with gamma rays have also been studied; results have shown their potentiality as a good detector and optical store memory devices. Since the creations of colour centres by photons with energy less than the band gap energy has been detected also in ns 2 -ion doped alkali halides. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. EFFECT OF DIFFERENT K2 HPO4, NaCl LEVELS AND TWO DIFFERENT TEMPARATURES ON SOME EMULSION PROPERTIES OF GOAT MEAT

    Directory of Open Access Journals (Sweden)

    Mustafa KARAKAYA

    1996-03-01

    Full Text Available Different levels of K2 HPO4 (0.00 %, 0.25 % and 0.50 % and NaCl (2.5 % and 3.0 % were added into goat meat, at the two different temperatures (11o C and 18o C in order to investigate the emulsion properties in the model emulsion system. Emulsion capacity (EK, emulsion viscocity (EV, emulsion stability ratio (ES, the ratio of separated water (ESO and oil (EYO ratio from the emulsion, and the emulsion pH were determined. K2 HPO4 and NaCl levels and the oil temperatures have significant effect (p

  16. Pitting corrosion of copper in aqueous solutions containing phosphonic acid as an inhibitor. Hosuhon san wo inhibita toshite fukumu suiyoekichu ni okeru do no koshiku ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y. (Muroran Univ., Hokkaido (Japan). Graduate School); Seri, O.; Tagashira, K. (Muroran Univ., Hokkaido (Japan)); Nagata, K. (Sumitomo Light Metal Co. Ltd., Tokyo (Japan). Technical Research Lab.)

    1993-09-15

    Phosphonic acid-based inhibitors that are poured into cooling water for copper-tube circulation systems for open heat-accumulators were studied on their influence on pitting corrosion of copper. Amino trimethylene phosphonic acid (ATMP) dissolved into distilled water to 50 ppm was used for the immersion corrosion test. The corrosion-proof effect of additives such as ZnSO4, benzotriazole (BTA) was tested too. 0.5 mm thick phosphate-treated copper plates with a hole of 5 mm in diameter were used as test specimens. Pitting corrosion on the copper plate occurred when ATMP, BTA and ZnSO4 coexisted. It was proved that SO4 [sup 2-] is essential since Na2SO4 in stead of ZnSO4 induced also corrosion. The pitting took place when 0.6 ppm or more of SO4 [sup 2-] was present in a BTA-added ATMP solution. It was observed that the pitting is prone to occur with increase of SO4 [sup 2-] and the number of pitting increases. The following relationship is established when pitting corrosion occurs; E[sub b] [le] E[sub corr], where the former is a potential value at which current density shows a steep increase and the latter is an average value of spontaneous electrode potential showing a plateau. 8 refs., 11 figs., 1 tab.

  17. Microstructure and mechanical properties of sputter deposited Ni/Ni{sub 3}Al multilayer films at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Lu, Fenggui; Huang, Jian; Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China)

    2016-08-15

    Highlights: • Ni/Ni{sub 3}Al multilayers are prepared by magnetron sputtering. • Both grain size and phase constitution of annealed Ni/Ni{sub 3}Al multilayers are dependent on individual layer thickness. • The hardness of annealed Ni/Ni{sub 3}Al multilayers varies with individual layer thickness and annealing temperature. • 40 nm Ni/Ni{sub 3}Al multilayer exhibits excellent hardness at elevated temperature. - Abstract: Nano-structured Ni/Ni{sub 3}Al multilayer was prepared by magnetron sputtering, with individual layer thicknesses h varying from 10 to 160 nm. The microstructure and hardness of Ni/Ni{sub 3}Al multilayer were investigated by X-ray diffraction, transmission electron microscopy and nanoindentation. The results show that the hardness increases with decreasing h for as-deposited and 500 °C annealed multilayers. When annealed at 700 °C, the hardness approach a peak value at h = 40 nm with followed by softening at smaller h. The influence of individual layer thickness, grain size as well as formation of ordered Ni{sub 3}Al on strengthening mechanisms of Ni/Ni{sub 3}Al multilayers at elevated temperature are discussed.

  18. Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Jiangdong [School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Mechanical and Electrical Department, Nantong Shipping College, Nantong, Jiangsu 226010 (China); Zhang, Junsong [School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Hua, Yinqun, E-mail: huayq@ujs.edu.cn [School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, Ruifang [School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Li, Zhibao [School of Material Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Ye, Yunxia [School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2017-03-15

    The effects of laser shock processing on microstructure, the residual stress, and hot corrosion behavior of the Ni-based superalloy GH202 were investigated. The microstructures of GH202 before and after laser shock processing (LSP) were characterized by electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). A large number of crystal defects (twins, dislocation arrays, and high dense tangles) were generated on the surface of GH202 treated with LSP. The cross-sectional compressive residual stress and micro-hardness of specimens treated by LSP were improved significantly. The corrosion kinetics of GH202 with or without LSP treatment at 800 °C and 900 °C were investigated. Analysis by X-ray diffraction (XRD) revealed that the corrosion products mainly consist of Cr{sub 2}O{sub 3}, TiO{sub 2}, Al{sub 2}O{sub 3}, NiO, CrS, Ni{sub 3}S{sub 2}, and Na{sub 2}CrO{sub 4}. The surface and cross-section morphologies were observed by scanning electron microscope (SEM) combined with energy dispersive spectroscopy (EDS). The results confirmed that the crystal defects induced by LSP promotes the creation of diffusion paths for elements (Cr, Al, and Ti), allowing the formation of tiny homogeneous oxidation films in a very short time. Additionally, the spallation of oxidation film on the treated specimens was alleviated significantly. Overall, the hot corrosion resistance of Ni-based GH202 induced by LSP was improved in Na{sub 2}SO{sub 4} and NaCl molten salt from 800 °C to 900 °C. - Highlights: • Microstructure changes of GH202 before and after LSP were observed by EBSD and TEM. • The hardness and residual compressive stress after LSP were significantly increased. • The increased diffusion paths for elements helped to form oxidation films quickly. • Hot corrosion resistance of GH202 after LSP was significantly improved.

  19. The europium and praseodymium hydrolysis in a 2M NaCl environment; La hidrolisis del europio y del praseodimio en un medio 2M de NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez R, M.; Lopez G, H.; Solache R, M.; Rojas H, A. [Instituto Nacional de Investigaciones Nucleares, Departamento de quimica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    It was studied the europium and praseodymium hydrolysis in a 2M NaCl ion force environment at 303 K, through two methods: this one extraction with dissolvents (lanthanide-water-NaCl-dibenzoylmethane) in presence of a competitive ligand (diglycolic acid) and that one direct potentiometric titration, of soluble species, followed by a computer refining. The values of one or another techniques of the first hydrolysis constants obtained were similar, which demonstrates that the results are reliable. The set of data obtained on the stability constants of hydrolysis products allowed to draw up the distribution diagrams of chemical species, as europium as praseodymium in aqueous environment. (Author)

  20. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions

    International Nuclear Information System (INIS)

    Wang, Yafei; Cheng, Guangxu; Wu, Wei; Qiao, Qiao; Li, Yun; Li, Xiufeng

    2015-01-01

    Highlights: • Pitting behavior of X80 steel in aerated NaCl solutions is studied systematically. • Unique large pit morphology is observed in neutral/acidic NaCl solutions. • In low pH solutions, pit will propagate in the horizontal direction, leading to the shallow shape of pitting morphology; in high pH solutions, the pit sizes are much smaller. • Film growth, which is dependent on the pH and chloride concentration, has great influence on the cathodic reaction by affecting oxygen diffusion process. - Abstract: The pitting corrosion mechanism of high strength pipeline steel in aerated NaCl solutions with different pH and chloride content was investigated, using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The pitting behavior in alkaline solutions was found to be significantly different from that in neutral and acidic solutions. Electrochemical results and SEM images indicate that the product film formed on the steel surface results in different corrosion behavior in an alkaline solution. SEM images show that pH and chloride concentration in the bulk solution have a great influence on the pitting morphology. Unique large pit morphology due to corrosion in neutral/acidic solutions with 0.05 mol/L NaCl was observed. The relationship between solution pH and the effect of chloride concentration is also discussed

  1. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  2. AFM of metallic nano-particles and nano-structures in heavily irradiated NaCl

    OpenAIRE

    Gaynutdinov, R; Vainshtein, DI; Hak, SJ; Tolstikhina, A; Den Hartog, HW

    2003-01-01

    AFM investigations are reported for heavily, electron irradiated NaCl crystals in ultra high vacuum (UHV) in the non-contact mode-with an UHV AFM/STM Omicron system. To avoid chemical reactions between the radiolytic Na and oxygen and water, the irradiated samples were cleaved and prepared for the experiments in UHV At the surface of freshly cleaved samples, we have observed sodium nano-precipitates with shapes, which depend on the irradiation dose and the volume fraction of the radiolytic Na...

  3. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    Science.gov (United States)

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Synthesis of high aspect ratio of Ni 0.5Zn 0.5Fe 2O 4 platelets for electromagnetic devices

    Science.gov (United States)

    Hallynck, Sylvain; Pourroy, Geneviève; Vilminot, Serge; Jacquart, Pierre-Marie; Autissier, Denis; Vukadinovic, Nicolas; Pascard, Hubert

    2006-01-01

    Ni 0.5Zn 0.5Fe 2O 4 ferrite platelets of 5 to 300 μm have been obtained by reaction in a molten salt between hematite platelets, NiO and ZnO powders. The hematite platelets are obtained by a hydrothermal treatment in an alkaline medium between 180 and 270 °C through a dissolution-recrystallization mechanism from maghemite which crystallizes first. The key parameter for size control is the mixture alkalinity. The largest platelets are obtained for [Fe 3+] = 2.0 mol dm -3 and [OH -] = 15.3 N. The size distribution is narrow and the aspect ratio about 30. The reaction with nickel and zinc oxides yields the formation of polycrystalline platelets through a topotactic reaction allowing the platelet morphology, initial shape and size to be conserved. SEM observations reveal the ferrite platelets are made of adjacent micronic ferrite crystals with their [111] faces parallel to the platelet surface. Increasing the reaction temperature promotes an enlargement of the [111] faces. The respective solubilities of oxides and ferrites in the molten salts control the ferrite stoichiometry. KCl as a flux gives better results than NaCl with no modification of the crystal shape and no ZnO loss.

  5. Structural Investigation of Fe-Ni-S and Fe-Ni-Si Melts by High-temperature Fluorescence XAFS Measurements

    International Nuclear Information System (INIS)

    Manghnani, Murli H.; Balogh, John; Hong Xinguo; Newville, Matthew; Amulele, G.

    2007-01-01

    Iron-nickel (Fe-Ni) alloy is regarded as the most abundant constituent of Earth's core, with an amount of 5.5 wt% Ni in the core based on geochemical and cosmochemical models. The structural role of nickel in liquid Fe-Ni alloys with light elements such as S or Si is poorly understood, largely because of the experimental difficulties of high-temperature melts. Recently, we have succeeded in acquiring Ni K-edge fluorescence x-ray absorption fine structure (XAFS) spectra of Fe-Ni-S and Fe-Ni-Si melts and alloys. Different structural environment of Ni atoms in Fe-Ni-S and Fe-Ni-Si melts is observed, supporting the effect of light elements in Fe-Ni melts

  6. Structure of Ni-rich Ni--Cr--B--Si coating alloys

    International Nuclear Information System (INIS)

    Knotek, O.; Lugscheider, E.; Reimann, H.

    1975-01-01

    The structures of quaternary, nickel-rich Ni--Cr--B--Si alloys were analyzed at a constant boron content of 10 at. percent and a temperature of 850 0 C. The composition range for silicide formation was determined. In these quaternary alloys, known binary nickel silicides, nickel and chromium borides, and the ternary silico-boride Ni 6 Si 2 B were confirmed. A new composition for the W 5 Si 3 -type phase in the Ni--B--Si system was proposed. (U.S.)

  7. NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus

    Energy Technology Data Exchange (ETDEWEB)

    Bankaji, I.; Sleimi, N.; Gómez-Cadenas, A.; Pérez-Clemente, R.M.

    2016-07-01

    The objective of the present work was to evaluate the extent of Cd- and Cu-induced oxidative stress and the antioxidant response triggered in the halophyte species Atriplex halimus after metallic trace elements exposure. Plants were treated for one month with Cd2+ or Cu2+ (400 µM) in the absence or presence of 200 mM NaCl in the irrigation solution. The interaction between salinity and heavy metal stress was analyzed in relation to plant growth, tissue ion contents (Na+, K+ and Mg2+), oxidative damage and antioxidative metabolism. Data indicate that shoot and root weight significantly decreased as a consequence of Cd2+- or Cu2+-induced stress. Metallic stress leads to unbalanced nutrient uptake by reducing the translocation of K+ and Mg2+ from the root to the shoot. The levels of malondialdehyde increased in root tissue when Cd, and especially Cu, were added to the irrigation solution, indicating that oxidative damage occurred. Results showed that NaCl gave a partial protection against Cd and Cu induced toxicity, although these contaminants had distinct influence on plant physiology. It can be concluded that salinity drastically modified heavy metal absorption and improved plant growth. Salinity also decreased oxidative damage, but differently in plants exposed to Cd or Cu stress.

  8. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    Science.gov (United States)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  9. Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance

    International Nuclear Information System (INIS)

    Tao, Yan; Ruiyi, Li; Lin, Zhou; Chenyang, Ma; Zaijun, Li

    2015-01-01

    We reported a new strategy for fabricating three-dimensiona electrode of Ni/Co layered double hydroxide@NiCo 2 S 4 @graphene@Ni foam for supercapacitors. The resulting 3D electrode offers a jungle-like architecture. The unique structure creates ultra fast electron transfer and electrolyte transport as well as the maximum utilization rate of the space and the surface. The electrode exhibits a prominent advantage of high specific capacitance, high-current capacitive behaviour and cycle stability. - Highlights: • The study developed a new strategy for fabricating 3D electrode of Ni/Co-LDH@NiCo 2 S 4 @G. • The as-prepared 3D electrode offers a jungle-like architecture. • The unique structure creates an efficient conduction network and high mass loading. • The electrode achieves significantly synergetic effect among different materials. • The electrode exhibits an excellent electrochemical performance for supercapacitors. - ABSTRACT: Great challenge for the fabrication of free-standing three-dimensional electrode still remains to simultaneously achieve high specific capacitance, rate performance and cycle stability. The paper reprted a new three-dimensional (3D) electrode of Ni/Co layered double hydroxide@NiCo 2 S 4 @graphene@Ni foam (Ni/Co-LDH@NiCo 2 S 4 @G) for supercapacitors. The as-prepared 3D electrode offers an unique architecture, which create an efficient conduction network and maximum utilization of space and interface. The graphene acts as well-knit and conductive skin coated on the skeleton of Ni foam for growing NiCo 2 S 4 . The conductive NiCo 2 S 4 array serves as bridge between Ni/Co-LDH and graphene, leading to ultrafast electron transfer and electrolyte transport. A slew of splits and holes existing in the NiCo 2 S 4 array play one role as the ion-reservoir to contain host of electrolyte ions. To evaluate the feasibility of 3D electrode’s application in supercapacitors, the electrochemical performance was investigated by using the three

  10. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    Science.gov (United States)

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  11. Electrochemical preparation and characteristics of Ni-Co-LaNi5 composite coatings as electrode materials for hydrogen evolution

    International Nuclear Information System (INIS)

    Wu Gang; Li Ning; Dai Changsong; Zhou Derui

    2004-01-01

    Electrocatalytic activity for the hydrogen evolution reaction on Ni-Co-LaNi 5 composite electrodes prepared by electrochemical codeposition technique was evaluated. The relationship between the current density for hydrogen evolution reaction and the amount of LaNi 5 particles in Ni-Co baths is like the well-known 'volcano plot'. The Surface morphology and microstructure of Ni-Co-LaNi 5 coatings were determined by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The kinetic parameters were determined from electrochemical steady-state Tafel polarization and electrochemical impedance spectroscopy technology in 1 M NaOH solution. The values obtained for the apparent energies of activation are 32.48, 46.29 and 57.03 kJ mol -1 for the Ni-Co-LaNi 5 , Ni-Co and Ni electrodes, respectively. The hydrogen evolution reaction on Ni-Co-LaNi 5 proceeds via Volmer-Tafel reaction route with the mixed rate determining characteristics. The composite coating Ni-Co-LaNi 5 is catalytically more active than Ni and Ni-Co electrodes due to the increase in its real surface areas and the decrease in the apparent free energy of activation caused by the electrocatalytic synergistic effect of the Ni-Co alloys and the hydrogen storage intermetallic particles on the electrode surface

  12. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  13. Effect of NaCl Solution Spraying on Fatigue Lives of Smooth and Slit Specimens of 0.37% Carbon Steel

    Science.gov (United States)

    Makabe, Chobin; Ferdous, Md. Shafiul; Shimabukuro, Akimichi; Murdani, Anggit

    2017-07-01

    The fatigue crack initiation life and growth rate are affected by experimental conditions. A corrosive environment can be created in a laboratory by means of dropping salt water onto the specimen surface, spraying chloride mist into the experimental chamber, etc. In the case of smooth specimens of some metals, fatigue life is shortened and the fatigue limit disappears under such corrosive experimental conditions. In this study, the effects of intermittent spraying of 3% NaCl solution-mist on corrosion fatigue behavior were investigated. The material used was 0.37% carbon steel. This is called JIS S35C in Japan. Spraying of 3% NaCl solution-mist attacked the surface layer of the specimen. It is well known that the pitting, oxidation-reduction reaction, etc. affect the fatigue strength of metals in a corrosive environment. We carried out corrosion fatigue tests with smooth specimens, holed specimens and slit specimens. Then the effects of such specimen geometry on the fatigue strength were investigated when the NaCl solution-mist was sprayed onto the specimen surface. In the case of lower stress amplitude application in slit specimens, the fatigue life in a corrosive atmosphere was longer than that in the open air. It is discussed that the behavior is related to the crack closure which happens when the oxide builds up and clogs the crack or slit.

  14. Effects of prior cold work on corrosion and corrosive wear of copper in HNO3 and NaCl solutions

    International Nuclear Information System (INIS)

    Yin Songbo; Li, D.Y.

    2005-01-01

    Effects of prior cold work on corrosion and corrosive wear behavior of copper in 0.1 M HNO 3 and 3.5% NaCl solutions, respectively, were investigated using electrochemical tests, electron work function measurements, and sliding corrosive wear tests with and without cathodic protection. Optical microscope and SEM were employed to examine the microstructure and worn surfaces. It was shown that, in general, the prior cold work raised the corrosion rate, but the effect differed in different corrosive media. In both the solutions, pure mechanical wear decreased with an increase in cold work. The prior cold work had a significant influence on the corrosive wear of copper, depending on the corrosive solution and the applied load. In the 0.1 M HNO 3 solution, the ratio of the wear loss caused by corrosion-wear synergism to the total wear loss increased with the cold work and became saturated when the cold work reached a certain level. In the 3.5% NaCl solution, however, this ratio decreased initially and then became relatively stable with respect to the cold work. It was observed that wear of copper in the 3.5% NaCl solution was larger than that in 0.1 M HNO 3 solution, although copper showed lower corrosion rate in the former solution. The experimental observations and the possible mechanisms involved are discussed

  15. Combining Ru, Ni and Ni(OH){sub 2} active sites for improving catalytic performance in benzene hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua, E-mail: lihuazhu@stu.xmu.edu.cn [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Sun, Hanlei; Zheng, Jinbao [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zhang, Nuowei [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Shu, Qing [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Chen, Bing H., E-mail: chenbh@xmu.edu.cn [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2017-05-01

    In this study, the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were successfully prepared by the simple methods of hydrazine-reduction and galvanic replacement, where 0.04/0.96 and T represented the Ru/Ni atomic ratio and reducing temperature of the catalyst in N{sub 2}+10%H{sub 2}, respectively. The nanostructures of the Ru{sub 0.04}Ni{sub 0.96} nanoparticles in the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were controlled by modulating their annealing temperature in N{sub 2}+10%H{sub 2} and characterized by an array of techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy energy dispersive X-ray spectroscopy (STEM-EDS) mapping and high-sensitivity low-energy ion scattering (HS-LEIS). The Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, which was composed of Ru clusters or single atoms supported on Ni/Ni(OH){sub 2} nanoparticles, exhibited much better catalytic performance for benzene hydrogenation than the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts reduced at above 30 °C, such as Ru{sub 0.04}Ni{sub 0.96}/C(160) with the nanostructure of partial Ru{sub 0.04}Ni{sub 0.9} alloy and Ru{sub 0.04}Ni{sub 0.96}/C(280) with the nanostructure of complete Ru{sub 0.04}Ni{sub 0.9} alloy. The reason was that the synergistic effect of multiple active sites – Ru, Ni and Ni(OH){sub 2} sites was present in the Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, where hydrogen was preferentially activated at Ru sites, benzene was probably activated at Ni(OH){sub 2} surface and Ni acted as a “bridge” for transferring activated H{sup ∗} species to activated benzene by hydrogen spillover effect, hydrogenating and forming product – cyclohexane. This study also provided a typical example to illustrate that the synergy effect of multiple active sites can largely improve the catalytic hydrogenation performance. - Highlights: • The Ru

  16. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    Science.gov (United States)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  17. Effect of Water Content, Temperature and NaCl on CO2 Corrosion of Carbon Steel (A106B in Iraqi Crude Oil

    Directory of Open Access Journals (Sweden)

    Saad Ahmed Jafar

    2018-01-01

    Full Text Available An investigation was carried out to determine the corrosion rate of carbon steel (A 106 GradeB as flow line in crude oil production with CO2 content employing three Iraqi crude oil (Kirkuk crude oil, Halfaya crude oil, and Rumalia crude oil with identical produced water (brine [1%NaCl,2%NaCl, and 3%NaCl]. Experiments were performed in an autoclave test apparatus, crude oilproduced water mixtures, water cuts were (0, 10, 20, 30, 40, and 100%, and temperature (20, 40, 60°C. For all experiments, CO2 partial pressure was maintained at 4bar and rotational speed 500 rpm. The corrosion rates were determined by the weight loss method. The results revealed that the corrosion rate of carbon steel increased by increasing water cut and temperature, but decreased with increasing salt concentration for all types of crude oil. Rumaila crude oil exhibited the highest corrosion rate and Kirkuk crude oil exhibits the lowest corrosion rate while Halfaya crude oil exhibits a moderate corrosion rate.

  18. Corrosion control of copper in 3.5 wt.% NaCl Solution by Domperidone: Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Wang, Dan; Xiang, Bin; Liang, Yuanpeng; Song, Shan; Liu, Chao

    2014-01-01

    Highlights: • Domperidone has good inhibition effect for copper in 3.5 wt.% NaCl solution. • Domperidone acts as an anodic type inhibitor. • The SEM and AFM analyses support the weight loss, polarization, and EIS data. • Molecular dynamics (MD) method simulates the adsorption model of domperidone on Cu surface. • The adsorption of domperidone on copper surface obeys Langmuir adsorption isotherm. - Abstract: Inhibition of copper corrosion in 3.5 wt.% NaCl solution by domperidone was investigated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results revealed that domperidone was an anodic inhibitor with a maximum achievable inhibition efficiency of 94.2%. The results of SEM and AFM studies further confirmed the inhibition action of domperidone. Quantum chemical calculation and the molecular dynamics (MD) simulation showed that the domperidone molecule could be adsorbed on copper surface through the imidazolidinone ring, benzene ring and N atom of hexaheterocyclic. Adsorption of domperidone was found to follow the Langmuir adsorption isotherm

  19. Gene Transcription and Virulence Potential of Listeria monocytogenes Strains After Exposure to Acidic and NaCl Stress

    DEFF Research Database (Denmark)

    Olesen, Inger; Vogensen, Finn Kvist; Jespersen, Lene

    2009-01-01

    transcription were observed both after exposure to shock (six genes) and after long-term adaptation to stress (18 genes). In the shock experiments, a transient induction of clpC and clpE was seen for both strains, while transient induction of sigB, inlA, and inlB was observed for strain 4140 only; actA was only...... induced in EGD-e after NaCl shock. The longterm stress experiments were included to imitate the stress conditions encountered by L. monocytogenes when present in food products. Long-term adaptation of EGD-e to acidic stress induced transcription of iap and repressed flaA, while genes related to stress......Gene transcription and virulence potential of two strains of Listeria monocytogenes, EGD-e and 4140, were compared by quantitative real-time polymerase chain reaction and in a Caco-2 in vitro model after exposure to acidic (pH 5.5) and NaCl (4.5% w=v) stress. Strain-dependent differences in gene...

  20. H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Evirgen, A.; Pons, J.; Karaman, I.; Santamarta, R.; Noebe, R. D.

    2018-03-01

    The distributions of H-phase precipitates in Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys formed by aging treatments at 500 and 550 °C or slow furnace cooling and their effects on the thermal martensitic transformation have been investigated by TEM and calorimetry. The comparative study clearly reveals faster precipitate-coarsening kinetics in the NiTiZr alloy than in NiTiHf. For precipitates of a similar size of 10-20 nm in both alloys, the martensite plates in Ni50.3Ti29.7Zr20 have larger widths and span a higher number of precipitates compared with the Ni50.3Ti29.7Hf20 alloy. However, for large H-phase particles with hundreds of nm in length, no significant differences in the martensitic microstructures of both alloy systems have been observed. The martensitic transformation temperatures of Ni50.3Ti29.7Hf20 are 80-90 °C higher than those of Ni50.3Ti29.7Zr20 in the precipitate-free state and in the presence of large particles of hundreds on nm in length, but this difference is reduced to only 10-20 °C in samples with small H-phase precipitates. The changes in the transformation temperatures are consistent with the differences in the precipitate distributions between the two alloy systems observed by TEM.

  1. Microstructural investigations of Ni and Ni2Al3 coatings exposed in biomass power plants

    DEFF Research Database (Denmark)

    Wu, D. L.; Dahl, K. V.; Christiansen, T. L.

    2018-01-01

    The present work investigates the corrosion resistance of Ni and Ni2Al3 coated austenitic stainless steel (TP347H) tubes, which were exposed in a biomass-fired boiler with an outlet steam temperature of 540 °C for 6757 h. The Ni2Al3 coating was produced by electroplating Ni followed by low...... temperature pack cementation. After exposure, microstructural investigations were performed by light optical and electron microscopy (SEM-EDS). Electroplated Ni coatings were not protective in straw firing power plants and exhibited similar corrosion morphology as uncoated tubes. For Ni2Al3 coatings...

  2. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    International Nuclear Information System (INIS)

    Zhou, M. H.; Wang, Y. G.; Bi, K.; Fan, H. P.; Zhao, Z. S.

    2015-01-01

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α E,31 = 2.8 V ⋅ cm −1 ⋅ Oe −1 is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors

  3. Métodos instrumentales para la determinación de NaCl en las salmueras de aceitunas

    Directory of Open Access Journals (Sweden)

    García García, P.

    1991-08-01

    Full Text Available Aplicability of flame photometric and ion selective (sodium or chloride methods to determinate NaCI concentration in olive brines in comparison with the official one (Volhard, which uses AgNO3, is studied. According to the results using standard solutions or fermentative olive brines without previous lye treatment, no proportional systematic or constant systematic errors are detected and the percentaje of NaCl is evaluated by them with the same accuracy as by the reference. However, when the flame photometric or sodium ion-selective methods are used to determine this compound in Spanish olive brines, there is a deviation in comparison with the values obtained by the official one (Volhard that is correlated with the combine acidity concentration of the solution. This fact is due to the presence of sodium organic salts, called combined acidity, that are formed during the lye treatment or "cocido" that these fruits are given before fermentation. Nevertheless, is does not represent any problem as there is a good correlation between such combined acidity and the magnitude of the deviation, that permit to calculate the corresponding correction factor. In addition these problems can be solved using the chloride selective ion method.

    Se estudia la aplicación de la fotometría de llama y el empleo de electrodos selectivos de iones cloruro o sodio, para la determinación de la concentración de NaCl en las salmueras de aceitunas de mesa, comparándolos con el actualmente utilizado de valoración de nitrato de plata (Volhard. De acuerdo con los resultados, la utilización de los mismos a soluciones patrones o de aceitunas en salmuera no da lugar a errores sistemáticos porporcionales ni constantes, pudiéndose analizar dicho compuesto con la misma precisión que con el procedimiento de referencia. Sin embargo, cuando se analizan las correspondientes a las elaboradas al estilo español, los valores que se obtienen con la fotometría de

  4. Kinetics of steel corrosion in water

    International Nuclear Information System (INIS)

    Vettegren', V.I.; Bashkarev, A.Ya.; Danchukov, K.G.; Morozov, G.I.

    2003-01-01

    Kinetics of corrosion damage accumulation in steels of different composition (Cr-Ni-Mo-Ti, Cr-Ni-Mn-N-V, Cr-Ni-N-Mn-Mo, Cr-Ni-Nb, Cr-Ni-Ti, Cr-Mn-Ni, Mn-Al-Nb-Si, Mn-Cr-Al-Si and Mn-Al-Si) in NaCl solution and in sea water was studied. It is shown that degree of corrosion damage relates to time according to the first order reaction expression. The values of corrosion activation energy and of parameter characterizing protection properties of corrosion film are determined [ru

  5. PRECIPITATION HARDENING IN B2-ORDERED NiAl BY Ni2AlTiCOMPOUND

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; K. Ohishi; M. Nemoto

    2001-01-01

    Microstructural variations and correlated hardness changes in B2-ordered NiAl containing fine precipitation of Ni2AlTi have been investigated by means of transmission electron microscopy (TEM) and hardness tests. The amount of age hardening is not large as compared to the large microstructural variations during aging. TEM observations have revealed that the L21-type Ni2AlTi precipitates keep a lattice coherency with the NiAl matrix at the beginning of aging. By longer periods of aging Ni2AlTi precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. The temperature dependence of the yield strength of precipitate-containing B2-ordered NiAl was investigated by compression tests over the temperature range of 873-1273K. The fine precipitation of Ni2AlTi was found to enhance greatly the yield strength and the high-temperature strength is comparison with that of superalloy Mar-M200.``

  6. Controlled growth of Ni/NiO core–shell nanoparticles: Structure, morphology and tuning of magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    D’Addato, S., E-mail: sergio.daddato@unimore.it [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, Modena (Italy); Spadaro, M.C. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, Modena (Italy); Luches, P. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Grillo, V. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); CNR-IMEM, Parco Area delle Scienze 37/A, 43100 Parma (Italy); Frabboni, S.; Valeri, S. [CNR-NANO, S3, via G. Campi 213/a, Modena (Italy); Dipartimento FIM, Università di Modena e Reggio Emilia, via G. Campi 213/a, Modena (Italy); Ferretti, A.M.; Capetti, E.; Ponti, A. [CNR-ISTM, Laboratorio di Nanotecnologie, via G. Fantoli 16/15, 20138 Milano (Italy)

    2014-07-01

    We performed a detailed study of Ni/NiO core–shell nanoparticles (NP) obtained with a gas aggregation source. The NP oxide shells were produced by oxidizing the NP with different procedures: deposition in oxygen atmosphere, post-annealing in air, sequential deposition of (a) first NiO layer, (b) Ni NP and (c) third NiO Layer. X-ray photoelectron spectroscopy from Ni 2p core-level gave information about the chemical state of Ni in the core and in the oxide shell, while scanning electron microscopy was used for investigation of the NP morphology. High quality scanning transmission electron microscopy in high angle annular dark field mode data demonstrated core–shell structure also for NiO/Ni NP/NiO samples. Field-cooled/zero-field-cooled magnetization curves and field-cooled isothermal hysteresis cycles at T = 5 K were recorded by a SQUID magnetometer. In this way, the relation between magnetic properties and oxide shell structure was assessed, showing the role played by the control of the formation of oxide on the exchange bias and interparticle magnetic interaction.

  7. Controlled growth of Ni/NiO core–shell nanoparticles: Structure, morphology and tuning of magnetic properties

    International Nuclear Information System (INIS)

    D’Addato, S.; Spadaro, M.C.; Luches, P.; Grillo, V.; Frabboni, S.; Valeri, S.; Ferretti, A.M.; Capetti, E.; Ponti, A.

    2014-01-01

    We performed a detailed study of Ni/NiO core–shell nanoparticles (NP) obtained with a gas aggregation source. The NP oxide shells were produced by oxidizing the NP with different procedures: deposition in oxygen atmosphere, post-annealing in air, sequential deposition of (a) first NiO layer, (b) Ni NP and (c) third NiO Layer. X-ray photoelectron spectroscopy from Ni 2p core-level gave information about the chemical state of Ni in the core and in the oxide shell, while scanning electron microscopy was used for investigation of the NP morphology. High quality scanning transmission electron microscopy in high angle annular dark field mode data demonstrated core–shell structure also for NiO/Ni NP/NiO samples. Field-cooled/zero-field-cooled magnetization curves and field-cooled isothermal hysteresis cycles at T = 5 K were recorded by a SQUID magnetometer. In this way, the relation between magnetic properties and oxide shell structure was assessed, showing the role played by the control of the formation of oxide on the exchange bias and interparticle magnetic interaction.

  8. Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for Steviol glycoside production.

    Science.gov (United States)

    Gupta, Pratibha; Sharma, Satyawati; Saxena, Sanjay

    2014-03-01

    Steviol glycosides are natural non-caloric sweeteners which are extracted from the leaves of Stevia rebaudiana plant. Present study deals the effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia plant for steviol glycoside (SGs) production. Yellow-green and compact calli obtained from in vitro raised Stevia leaves sub-cultured on MS medium supplemented with 2.0 mg l(-1) NAA and different concentrations of NaCl (0.05-0.20%) and Na2CO3 (0.0125-0.10%) for 2 weeks, and incubated at 24 ± 1 °C and 22.4 μmol m(-2) s(-1) light intensity provided by white fluorescent tubes for 16 h. Callus and suspension biomass cultured on salts showed less growth as well as browning of medium when compared with control. Quantification of SGs content in callus culture (collected on 15th day) and suspension cultures (collected at 10th and 15th days) treated with and without salts were analyzed by HPLC. It was found that abiotic stress induced by the salts increased the concentration of SGs significantly. In callus, the quantity of SGs got increased from 0.27 (control) to 1.43 and 1.57% with 0.10% NaCl, and 0.025% Na2CO3, respectively. However, in case of suspension culture, the same concentrations of NaCl and Na2CO3 enhanced the SGs content from 1.36 (control) to 2.61 and 5.14%, respectively, on the 10th day.

  9. The large magnetoelectric effect in Ni-lead zirconium titanate-Ni trilayers derived by electroless deposition

    International Nuclear Information System (INIS)

    Bi, K; Wang, Y G; Wu, W; Pan, D A

    2010-01-01

    Magnetoelectric (ME) Ni-lead zirconium titanate-Ni trilayers with neither electrodes nor bonding layers have been derived by electroless deposition. The structure and magnetic properties of the electroless deposited Ni layers with different pH values are characterized by x-ray diffraction and vibrating sample magnetometer. The influence of the bias magnetic field and the magnetic field frequency (f) on ME coupling is discussed. It is seen that α E,31 depends strongly on H dc and f. The value of the ME coefficient increases as the thickness of the Ni layer and the pH of the bath increase. A maximum of the ME voltage coefficient α E,31 = 5.77 V cm -1 Oe -1 at resonance frequency with a deposited Ni layer thickness t Ni = 302 μm is obtained. The large ME coefficient makes these Ni-PZT-Ni trilayers suitable for applications in sensors, actuators and transducers. (fast track communication)

  10. Electrochemical Properties of Hydrogen-Storage Alloys ZrMn{sub 2}Ni{sub x} and ZrMnNi{sub 1+x} for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Ryoung [Faculty of Applied Chemistry, Chonnam National University, Kwangju (Korea); Kwon, Ik Hyun [Automobile High-Technology Research Institute, Division of Advanced Materials Engineering, Chonbuk National University, Chonju (Korea)

    2001-04-01

    In order to improve the performance of AB{sub 2}-type hydrogen-storage alloys for Ni-MH secondary battery, AB{sub 2}-type alloys, ZrMn{sub 2}Ni{sub x}(x=0.0, 0.3, 0.6, 0.9 and 1.2) and ZrMnNi{sub 1+x}(x=0.0, 0.1, 0.2, 0.3 and 0.4) were prepared as the Zr-Mn-Ni three component alloys. The hydrogen-storage and the electrochemical properties were investigated. The C14 Laves phase formed in all alloys of ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2). The equilibrium plateau pressure of the alloy, ZrMn{sub 2}Ni{sub 0.6}-H{sub 2} system, was about 0.5 atm at 30 degree C. Among these alloys, ZrMn{sub 2}Ni{sub 0.6} was the easiest to activate, and it had the largest discharge capacity as well as the best cycling performance. The C14 Laves phase also formed in all alloys of ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4). The equilibrium plateau pressure of the alloy, ZrMnNi{sub 1.0}-H{sub 2} system, was about 0.45 atm at 30 degree C. Among these alloys, ZrMnNi{sub 1.0} was the easiest to activate, taking only 3 charge-discharge cycles, and it had the largest discharge capacity of 42 mAh/g. Among these alloys, ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2) and ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4), ZrMnNi{sub 1.0} had the largest discharge capacity (maximum value of 42 mAh/g), and it showed the fastest activation and good cycling performance. 23 refs., 4 figs., 2 tabs.

  11. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    Science.gov (United States)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in

  12. Decay of 57Ni

    International Nuclear Information System (INIS)

    Santos Scardino, A.M. dos.

    1987-01-01

    The decay of 57 Ni to 57 Co was studied by gamma ray spectroscopy using both singles and coincidence spectra. The sources were obtained with the 58 Ni (Y,n) 57 Ni reaction. Natural metallic nickel was irradiated in the bremsstrahluhng beam of the linear accelerator of the Instituto de Fisica da Universidade de Sao Paulo with 30 MeV electrons. The singles espectra were taken with 104 cc HPGe detector and the coincidences espectra with 27 and 53cc Ge(Li) and 104 cc. HPGe detectors. The energies of transitions that follow the 57 Ni decay were measured using 56 Co as standard (which was obtained by (Y,np) reaction in 58 Ni) and taking into account the cascade cross-over relations. (author) [pt

  13. Development of small-scale electroplating system for Ni-63 electroplating onto Ni foil

    International Nuclear Information System (INIS)

    Kim, Jin Joo; Choi, Sang Mu; Son, Kwang Jae; Hong, Jintae

    2016-01-01

    Betavoltaic battery is a device that converts the decay energy of beta-emitting radioisotopes into electric energy. Ni-63 is pure betaemitter with a low energy spectrum and significantly long half-life of 100.1 years and thus is widely used as the power source of betavoltaic battery. There are several methods for the formation of a Ni deposit onto a semiconductor such as electroplating, electroless plating, and chemical vapor deposition. In this study, small-scale radioisotope electroplating system was designed and fabricated to perform electroplating with a small amount of plating buffer and minimum exposure of radioactive materials. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery. In this study, an electroplating system for small-scale Ni electroplating was designed and manufactured. The process for the fabrication of a Ni-63 foil as the energy source of a betavoltaic battery was developed using the minimum concentration of Ni. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery

  14. Development of small-scale electroplating system for Ni-63 electroplating onto Ni foil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Choi, Sang Mu; Son, Kwang Jae; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Betavoltaic battery is a device that converts the decay energy of beta-emitting radioisotopes into electric energy. Ni-63 is pure betaemitter with a low energy spectrum and significantly long half-life of 100.1 years and thus is widely used as the power source of betavoltaic battery. There are several methods for the formation of a Ni deposit onto a semiconductor such as electroplating, electroless plating, and chemical vapor deposition. In this study, small-scale radioisotope electroplating system was designed and fabricated to perform electroplating with a small amount of plating buffer and minimum exposure of radioactive materials. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery. In this study, an electroplating system for small-scale Ni electroplating was designed and manufactured. The process for the fabrication of a Ni-63 foil as the energy source of a betavoltaic battery was developed using the minimum concentration of Ni. These procedures and the manufactured electroplating device can be applied to radioactive Ni-63 electroplating for the fabrication of a betavoltaic battery.

  15. Layering and temperature-dependent magnetization and anisotropy of naturally produced Ni/NiO multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, S. D.; Trachylis, D.; Velgakis, M. J. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Kapaklis, V.; Joensson, P. E.; Papaioannou, E. Th. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process Engineering Research Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Poulopoulos, P. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Materials Science Department, University of Patras, 26504 Patras (Greece); Fumagalli, P. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Politis, C. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2012-09-01

    Ni/NiO multilayers were grown by magnetron sputtering at room temperature, with the aid of the natural oxidation procedure. That is, at the end of the deposition of each single Ni layer, air is let to flow into the vacuum chamber through a leak valve. Then, a very thin NiO layer ({approx}1.2 nm) is formed. Simulated x-ray reflectivity patterns reveal that layering is excellent for individual Ni-layer thickness larger than 2.5 nm, which is attributed to the intercalation of amorphous NiO between the polycrystalline Ni layers. The magnetization of the films, measured at temperatures 5-300 K, has almost bulk-like value, whereas the films exhibit a trend to perpendicular magnetic anisotropy (PMA) with an unusual significant positive interface anisotropy contribution, which presents a weak temperature dependence. The power-law behavior of the multilayers indicates a non-negligible contribution of higher order anisotropies in the uniaxial anisotropy. Bloch-law fittings for the temperature dependence of the magnetization in the spin-wave regime show that the magnetization in the multilayers decreases faster as a function of temperature than the one of bulk Ni. Finally, when the individual Ni-layer thickness decreases below 2 nm, the multilayer stacking vanishes, resulting in a dramatic decrease of the interface magnetic anisotropy and consequently in a decrease of the perpendicular magnetic anisotropy.

  16. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Holec, David; Bojda, Ondřej; Dlouhý, Antonín

    2008-01-01

    Roč. 481, Sp. Iss. (2008), s. 462-465 ISSN 0921-5093. [ESOMAT 2006. Bochum, 10.09.2006-15.09.2006] R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitates * Multi-step martensitic transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  17. Extracting Tenebrio molitor protein while preventing browning: effect of pH and NaCl on protein yield

    NARCIS (Netherlands)

    Yi, L.; Boekel, van T.; Lakemond, C.M.M.

    2017-01-01

    The potential of insects as an alternative protein source for food applications was investigated by studying the effect of pH and NaCl on extraction yield of water-soluble proteins from Tenebrio molitor, while preventing browning due to polyphenol oxidation. Minimum protein solubility (29.6%) was at

  18. Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is reduced by NaCl via a decrease in bacterial growth and the repression of the genes involved in putrescine production.

    Science.gov (United States)

    Del Rio, Beatriz; Redruello, Begoña; Ladero, Victor; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2016-09-02

    The reduction of NaCl in food is a public health priority; high NaCl intakes have been associated with serious health problems. However, it is reported that reducing the NaCl content of cheeses may lead to an increase in the content of biogenic amines (BAs). The present work examines the effect of NaCl on the accumulation of putrescine (one of the BAs often detected at high concentration in cheese) in experimental Cabrales-like cheeses containing Lactococcus lactis subsp. cremoris CECT 8666, a dairy strain that catabolises agmatine to putrescine via the agmatine deiminase (AGDI) pathway. The genes responsible for this pathway are grouped in the AGDI cluster. This comprises a regulatory gene (aguR) (transcribed independently), followed by the catabolic genes that together form an operon (aguBDAC). Reducing the NaCl concentration of the cheese led to increased putrescine accumulation. In contrast, increasing the NaCl concentration of both pH-uncontrolled and pH-controlled (pH 6) cultures of L. lactis subsp. cremoris CECT 8666 significantly inhibited its growth and the production of putrescine. Such production appeared to be inhibited via a reduction in the transcription of the aguBDAC operon; no effect on the transcription of aguR was recorded. The present results suggest that low-sodium cheeses are at risk of accumulating higher concentrations of putrescine. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells.

    Science.gov (United States)

    Lauf, Peter K; Chimote, Ameet A; Adragna, Norma C

    2008-01-01

    During regulatory volume decrease (RVD) of human lens epithelial cells (hLECs) by clotrimazole (CTZ)-sensitive K fluxes, Na-K-2Cl cotransport (NKCC) remains active and K-Cl cotransport (KCC) inactive. To determine whether such an abnormal behavior was caused by RVD-induced cell shrinkage, NKCC was measured in the presence of either CTZ or in high K media to prevent RVD. NKCC transports RbCl + NaCl, and LiCl + KCl; thus ouabain-insensitive, bumetanide-sensitive (BS) or Cl-dependent (ClD) Rb and Li fluxes were determined in hyposmotic high NaCl media with CTZ, or in high KCl media alone, or with sulfamate (Sf) or nitrate as Cl replacement at varying Rb, Li or Cl mol fractions (MF). Unexpectedly, NKCC was inhibited by 80% with CTZ (IC(50) = 31 microM). In isosmotic (300 mOsM) K, Li influx was approximately 1/3 of Rb influx in Na, 50% lower in Sf, and bumetanide-insensitive (BI). In hypotonic (200 mOsM) K, only the ClD but not BS Li fluxes were detected. At Li MFs from 0.1-1, Li fluxes fitted a bell-shaped curve maxing at approximately 0.6 Li MF, with the BS fluxes equaling approximately 1/4 of the ClD-Li influx. The difference, i.e. the BI/ClD Li influx, saturated with increasing Li and Cl MFs, with K(ms) for Li of 11 with, and 7 mM without K, and of approximately 46 mM for Cl. Inhibition of this K-independent Li influx by thiazides was weak whilst furosemide (<100 microM) was ineffective. Reverse transcription polymerase chain reaction and Western blots verified presence of both NKCC1 and Na-Cl cotransport (NCC). In conclusion, in hyposmotic high K media, which prevents CTZ-sensitive K flux-mediated RVD in hLECs, NKCC1, though molecularly expressed, was functionally silent. However, a K-independent and moderately thiazide-sensitive ClD-Li flux, i.e. LiCC, likely occurring through NCC was detected operationally and molecularly. (c) 2008 S. Karger AG, Basel.

  20. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-10-01

    Full Text Available Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti2Ni phase region, and Ti5Si3 phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm2 at 0 V (vs. Ag/AgCl in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  1. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.

    Science.gov (United States)

    Li, Ting; Ding, Dongyan; Dong, Zhenbiao; Ning, Congqin

    2017-10-31

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti₂Ni phase region, and Ti₅Si₃ phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm² at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  2. Nanostructure analysis of friction welded Pd-Ni-P/Pd-Cu-Ni-P metallic glass interface

    International Nuclear Information System (INIS)

    Ohkubo, T.; Shoji, S.; Kawamura, Y.; Hono, K.

    2005-01-01

    Friction welded Pd 40 Ni 40 P 20 /Pd 40 Cu 30 Ni 10 P 20 metallic glass interface has been characterized by energy filtering transmission electron microscopy. The interface is fully amorphous with a gradual compositional change of Cu and Ni in the range of 30 nm. By annealing above T g , the interdiffusion of Cu and Ni progressed in the supercooled liquid region, and the crystallization occurred from the Pd 40 Ni 40 P 20 glass

  3. Ni3d-Gd4f correlation effects on the magnetic behaviour of GdNi

    Energy Technology Data Exchange (ETDEWEB)

    Paulose, P L [Tata Inst. of Fundamental Research, Bombay (India); Patil, Sujata [Tata Inst. of Fundamental Research, Bombay (India); Mallik, R [Tata Inst. of Fundamental Research, Bombay (India); Sampathkumaran, E V [Tata Inst. of Fundamental Research, Bombay (India); Nagarajan, V [Tata Inst. of Fundamental Research, Bombay (India)

    1996-07-01

    The results of magnetization and heat-capacity measurements on the alloys, Gd{sub 1-x}Y{sub x}Ni (x=0.0, 0.25, 0.5, 0.75 and 0.9) are reported. The data suggest that there is a Gd induced magnetic moment on Ni, which may in turn enhance Gd-Gd exchange interaction strength in GdNi. The induced moment (on Ni) apparently exhibits itinerant ferromagnetism in the magnetically ordered state of GdNi. (orig.).

  4. Ni-Ni ion pair excitation transfer in D sub(3h) symmetry

    International Nuclear Information System (INIS)

    Terrile, M.C.

    1990-01-01

    The mechanisms contributing to excitation transfer are examined for Ni-Ni ion pairs in order to explain the delocalized character of electronic excitations observed in CsNiF sub(3). Using both first-and second-order perturbation theory and from symmetry arguments, the kind of interactions giving matrix elements between states connecting different sites for the position of the excitation are discussed. (author)

  5. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    International Nuclear Information System (INIS)

    Cherif, S.-M.; Layadi, A.; Ben Youssef, J.; Nacereddine, C.; Roussigne, Y.

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K 1 and K 2 , have been included; for the Ni/Cu series, K 1 was found to decrease from 1.0x10 6 to 0.18x10 6 erg/cm 3 as t increases from 31 to 165 nm, while K 2 increased from 0.24x10 6 to 0.8x10 6 erg/cm 3 . Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t≥165 nm in Ni/glass and t≥90 nm in Ni/Cu

  6. Continuum mechanics simulations of NiO/Ni-YSZ composites during reduction and re-oxidation

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Frandsen, Henrik Lund; Kaiser, Andreas

    2010-01-01

    for the dimensional change arises from the volumetric change related to the phase change NiO ↔ Ni. The measurable change in bulk length is given by the ceramic YSZ backbone as a response to the stress created by the chemical strain. The different subprocesses described in the model for YSZ were elastic and anelastic...... expansion, diffusional creep, grain boundary sliding (GBS) and microcracking due to excessive stress. In the Ni/NiO phase, nonelastic strains in terms of diffusional and power law creep were implemented, and additionally for NiO deformation due to microcracking and/or pseudoplasticity. Semi...

  7. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M. H.; Wang, Y. G.; Bi, K., E-mail: bike@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Fan, H. P. [School of Mechanical and Electrical Engineering, Qingdao Technological University Qindao College, Qingdao 266106 (China); Zhao, Z. S. [Shandong Engineering Consulting Institute, Jinan 250013 (China)

    2015-04-15

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α{sub E,31} = 2.8 V ⋅ cm{sup −1} ⋅ Oe{sup −1} is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  8. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  9. Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material

    Directory of Open Access Journals (Sweden)

    Natalie Jenkins

    2016-02-01

    Full Text Available A constant current charge/discharge protocol which showed fumed silica filled to the point of incipient wetness with aqueous NaCl solution to have dielectric constants >108 over the full range of dielectric thicknesses of 0.38–3.9 mm and discharge times of 0.25–>100 s was studied, making this material another example of a superdielectric. The dielectric constant was impacted by both frequency and thickness. For time to discharge greater than 10 s the dielectric constant for all thicknesses needed to be fairly constant, always >109, although trending higher with increasing thickness. At shorter discharge times the dielectric constant consistently decreased, with decreasing time to discharge. Hence, it is reasonable to suggest that for time to discharge >10 s the dielectric constant at all thicknesses will be greater than 109. This in turn implies an energy density for a 5 micron thick dielectric layer in the order of 350 J/cm3 for discharge times greater than 10 s.

  10. Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material.

    Science.gov (United States)

    Jenkins, Natalie; Petty, Clayton; Phillips, Jonathan

    2016-02-20

    A constant current charge/discharge protocol which showed fumed silica filled to the point of incipient wetness with aqueous NaCl solution to have dielectric constants >10⁸ over the full range of dielectric thicknesses of 0.38-3.9 mm and discharge times of 0.25->100 s was studied, making this material another example of a superdielectric. The dielectric constant was impacted by both frequency and thickness. For time to discharge greater than 10 s the dielectric constant for all thicknesses needed to be fairly constant, always >10⁸, although trending higher with increasing thickness. At shorter discharge times the dielectric constant consistently decreased, with decreasing time to discharge. Hence, it is reasonable to suggest that for time to discharge >10 s the dielectric constant at all thicknesses will be greater than 10⁸. This in turn implies an energy density for a 5 micron thick dielectric layer in the order of 350 J/cm³ for discharge times greater than 10 s.

  11. Characterization of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} nanocomposite coatings on aluminum substrate

    Energy Technology Data Exchange (ETDEWEB)

    Rahemi Ardakani, S., E-mail: saeed.rahemi69@gmail.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Afshar, A. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Sadreddini, S., E-mail: sina.sadreddini1986@gmail.com [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Ghanbari, A.A. [Department of Materials Science and Engineering, Sharif University of Technology, International Campus, Kish Island (Iran, Islamic Republic of)

    2017-03-01

    In the present work, nano-composites of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} were coated on a 6061 aluminum substrate. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO{sub 2} in the coating was determined by Energy Dispersive Analysis of X-Ray (EDX) and the crystalline structure of the coating was examined by X-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5%wt NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO{sub 2} and Al{sub 2}O{sub 3} in Ni-P coating at the SiO{sub 2} concentration of 10 g/L and 14 g/L Al{sub 2}O{sub 3} led to the lowest corrosion rate (i{sub corr} = 0.88 μA/cm{sup 2}), the most positive E{sub corr} and maximum microhardness (537 μHV). Furthermore, increasing the amount of nanoparticles in the coating was found to decrease CPE{sub dl} and improve porosity. - Highlights: • The maximum content of Al{sub 2}O{sub 3} and SiO{sub 2} in the coating was increased to 14.02%wt and 4.54%wt, respectively. • By enhancing the amount of nanoparticles in the coating, there was higher corrosion resistance. • Increasing the nanoparticles content in the coating improved microhardness of coating. • The maximum of microhardness of Ni-P-SiO{sub 2}-Al{sub 2}O{sub 3} was measured to be 537 μHV.

  12. Systematic UHV-AFM experiments on Na nano-particles and nano-structures in NaCl

    OpenAIRE

    Sugonyako, A.V.; Turkin, A.A.; Gaynutdinov, R.; Vainshtein, D.I.; Hartog, H.W. den; Bukharaev, A.A.

    2005-01-01

    Results of systematic AFM (atomic force microscopy) experiments on heavily and moderatly irradiated NaCl samples are presented. The sodium nanoparticles and structures of nanoparticles are poduced in sodium chloride during irradiation. The AFM images of the nanoparticles have been obtained in ultra high vacuum (UHV) in the non-contact mode with an Omicron UHV AFM/STM system. The sizes and arrangements of the observed particles depend on the irradiation conditions. The melting behaviour of the...

  13. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn

    Directory of Open Access Journals (Sweden)

    Sonia A. Barczak

    2018-03-01

    Full Text Available TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi1+ySn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5–3 mW m−1 K−2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m−1 K−1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn.

  14. Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast.

    Science.gov (United States)

    Yang, Jingli; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping; Li, Chenghao

    2011-03-01

    A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd(2+), Zn(2+), Cu(2+), and NaCl stress. Transgenic yeast also accumulated more Cd(2+), Zn(2+), and NaCl, but not Cu(2+). Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd(2+)) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in ThMT3-transgenic yeast. H(2)O(2) levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in the transgenic yeast. Cd(2+), Zn(2+), and Cu(2+) increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.

  15. Structure of formations on the NaCl monocrystal surface following simultaneous irradiation of it by hydrocarbon molecule flow and Ne/sup +/ ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Derevyanchenko, A S; Palatnik, L S; Martynov, I S; Seryugin, A L; Gritsyna, V V; Koval' , A G; Kiyan, T S; Fogel' , Ya M [Khar' kovskii Gosudarstvennyi Univ. (Ukrainian SSR)

    1975-07-01

    The structure of a film growing on the surface of NaCl crystal with a simultaneous irradiation of the film with molecules of hydrocarbons and Ne ions has been investigated. At the first stage of formation the film has a net structure of graphite with an abnormally large internet distance. At the subsequent stage of growing hollow spherulites are formed in the film, their walls having the structure of the third phase of carbon - carbine and dendrites - crystals with the structure of NaCl forming inside of the growing film.

  16. Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties

    International Nuclear Information System (INIS)

    Liu, Tong; Pang, Yu; Xie, Xiubo; Qi, Wen; Wu, Ying; Kobayashi, Satoru; Zheng, Jie; Li, Xingguo

    2016-01-01

    The fabrication of microporous metal materials with many potential applications is challenging due to their high chemical activities and the difficulty in controlling the pore size. By adjusting the reaction condition and the composition of the Ni–Al nanoparticle precursor, we have successfully produced the microporous Ni nanoparticles (NPs) of 22 nm by chemical dealloying method. During the passivation process, the microporous Ni NPs covered with NiO shell are generated as the result of surface oxidation. The micropores range from 0.6 to 1.2 nm in diameter with a large surface area of 68.9 m"2/g. Due to the elimination of Al atoms during dealloying process, the crystalline size of the microporous Ni NPs is sharply decreased to 2–5 nm. The specific architecture offers the microporous Ni/NiO NPs a small microwave reflection coefficient (RC) and a wide absorption bandwidth (RC ≤ −10 dB) of −49.1 dB and 5.8 GHz, much better than the nonporous counterpart of −24.1 dB and 3.7 GHz. The enhanced microwave absorption performance has been interpreted in terms of the micropore structure, core/shell structure and nanostructure effects. - Highlights: • Microporous Ni/NiO nanoparticles are prepared by chemical dealloying method. • They possess micropores of 0.6–1.2 nm with a surface area of 68.9 m"2/g. • They show minimum microwave reflection coefficient of −49.1 dB and bandwidth of 5.8 GHz. • Microwave absorption mechanism is explained by micropore and core/shell structures.

  17. Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong, E-mail: tongliu@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 (China); Pang, Yu; Xie, Xiubo [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191 (China); Qi, Wen; Wu, Ying [China Iron & Steel Research Institute Group, Advanced Technology & Materials Co., Ltd, No.76 Xueyuannanlu, Haidian District, Beijing, 100081 (China); Kobayashi, Satoru [Faculty of Engineering, Iwate University, Ueda, Morioka, 020-8551 (Japan); Zheng, Jie; Li, Xingguo [Beijing National Laboratory for Molecular Sciences (BNLMS), The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China)

    2016-05-15

    The fabrication of microporous metal materials with many potential applications is challenging due to their high chemical activities and the difficulty in controlling the pore size. By adjusting the reaction condition and the composition of the Ni–Al nanoparticle precursor, we have successfully produced the microporous Ni nanoparticles (NPs) of 22 nm by chemical dealloying method. During the passivation process, the microporous Ni NPs covered with NiO shell are generated as the result of surface oxidation. The micropores range from 0.6 to 1.2 nm in diameter with a large surface area of 68.9 m{sup 2}/g. Due to the elimination of Al atoms during dealloying process, the crystalline size of the microporous Ni NPs is sharply decreased to 2–5 nm. The specific architecture offers the microporous Ni/NiO NPs a small microwave reflection coefficient (RC) and a wide absorption bandwidth (RC ≤ −10 dB) of −49.1 dB and 5.8 GHz, much better than the nonporous counterpart of −24.1 dB and 3.7 GHz. The enhanced microwave absorption performance has been interpreted in terms of the micropore structure, core/shell structure and nanostructure effects. - Highlights: • Microporous Ni/NiO nanoparticles are prepared by chemical dealloying method. • They possess micropores of 0.6–1.2 nm with a surface area of 68.9 m{sup 2}/g. • They show minimum microwave reflection coefficient of −49.1 dB and bandwidth of 5.8 GHz. • Microwave absorption mechanism is explained by micropore and core/shell structures.

  18. Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution

    International Nuclear Information System (INIS)

    Alar, Vesna; Stojanovic, Ivan; Simunovic, Vinko

    2014-01-01

    The effects of applied torque on the corrosion behaviour of W.-Nr. 1.4404 and 1.4462 stainless steels and W.-Nr. 2.4605 and 2.4858 nickel alloys with crevices were investigated using the cyclic potentiodynamic polarization method. Crevice corrosion (material-to-polytetrafluoroethylene) was tested in 3.5 % NaCl solution at 22 C. The corroded surface was examined using scanning electron microscopy. The results indicate similar trends in susceptibility to crevice corrosion with increasing torque. Among the four specimens, the W.-Nr. 1.4404 is the most susceptible to crevice corrosion. (orig.)

  19. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    Science.gov (United States)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  20. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  1. A Study on Production of Carbon Nanotubes by CH4 Decomposition over LaNiO3, La4Ni3O10, La3Ni2O7 and La2NiO4

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotubes (CNTs) of narrow size distribution can be abundantly produced in the catalytic decomposition of CH4 over pre-reduced LaNiO3, La4Ni3O10, La3Ni2O7 and La2NiO4.The CNTs obtained were characterized by means of transmission electron microscopy (TEM).Thermal oxidation of CNTs in air was monitored thermogravimetrically (TG). The resultsrevealed that a lower La/Ni ratio of the catalysts would lead to a wider diameter distribution and a higher degree of graphitic nature.

  2. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-07-01

    Full Text Available Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C, were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS, and methanol oxidation activity compared using CV and chronoamperometry (CA. While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells.

  3. Hard X-ray MCD in GdNi/sub 5/ and TbNi/sub 5/ single crystals

    CERN Document Server

    Galera, R M

    1999-01-01

    XMCD experiments have been performed at the R L/sub 2,3/ and Ni K- edges on magnetically saturated single crystals of GdNi/sub 5/ and Tb Ni/sub 5/ ferromagnetic compounds. The spectra present huge and well structured dichroic $9 signals at both the R L/sub 2,3/ and the Ni K- edges. Structures from the quadrupolar (2p to 4f) transitions are clearly observed at the R L/sub 2,3/-edges. Though Ni is not magnetic, large intensities, up to 0.4, are measured at the $9 Ni K- edge. The Ni K-edge XMCD shows a three-peak structure which intensities dependent on the rare earth. (7 refs).

  4. Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodon dactylon under NaCl treatment: a parallel investigation with rice.

    Science.gov (United States)

    Roy, Swarnendu; Chakraborty, Usha

    2018-01-01

    Comparative analyses of the responses to NaCl in Cynodon dactylon and a sensitive crop species like rice could effectively unravel the salt tolerance mechanism in the former. C. dactylon, a wild perennial chloridoid grass having a wide range of ecological distribution is generally adaptable to varying degrees of salinity stress. The role of salt exclusion mechanism present exclusively in the wild grass was one of the major factors contributing to its tolerance. Salt exclusion was found to be induced at 4 days when the plants were treated with a minimum conc. of 200 mM NaCl. The structural peculiarities of the salt exuding glands were elucidated by the SEM and TEM studies, which clearly revealed the presence of a bicellular salt gland actively functioning under NaCl stress to remove the excess amount of Na + ion from the mesophyll tissues. Moreover, the intracellular effect of NaCl on the photosynthetic apparatus was found to be lower in C. dactylon in comparison to rice; at the same time, the vacuolization process increased in the former. Accumulation of osmolytes like proline and glycine betaine also increased significantly in C. dactylon with a concurrent check on the H 2 O 2 levels, electrolyte leakage and membrane lipid peroxidation. This accounted for the proper functioning of the Na + ion transporters in the salt glands and also in the vacuoles for the exudation and loading of excess salts, respectively, to maintain the osmotic balance of the protoplasm. In real-time PCR analyses, CdSOS1 expression was found to increase by 2.5- and 5-fold, respectively, and CdNHX expression increased by 1.5- and 2-fold, respectively, in plants subjected to 100 and 200 mM NaCl treatment for 72 h. Thus, the comparative analyses of the expression pattern of the plasma membrane and tonoplast Na + ion transporters, SOS1 and NHX in both the plants revealed the significant role of these two ion transporters in conferring salinity tolerance in Cynodon.

  5. Lamellar-crossing-structured Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposite for electrochemical supercapacitor materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingnan [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Wen, Ming, E-mail: m_wen@tongji.edu.cn [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092 (China); Chen, Shipei [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Wu, Qingsheng [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092 (China)

    2015-10-15

    Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructure with a single lamellar spacing of ∼5 nm was effectively constructed through two-phase-interface reaction process followed by the CNTs crossed among the lamellar-nanostructured Ni(OH){sub 2}. The resultant nanocomposite can offer large active surface areas and short diffusion paths for electrons and ions, and is investigated as a potential pseudocapacitor electrode material for electrochemical energy storage applications. Electrochemical data demonstrate that the as-prepared nanocomposite exhibits a high specific capacitance of ∼1600 F g{sup −1} at the scan rate of 1 mV s{sup −1} in 6 M KOH solution at normal pressure and temperature, which is great higher than Ni(OH){sub 2} (∼1200 F g{sup −1}). Furthermore, Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposite shows a higher energy density (∼125 Wh kg{sup −1}, 2 A g{sup −1}) and has a slightly decrease of 5% in specific capacitance after 1000 continuous charge/discharge cycles. - Graphical abstract: As-constructed Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructure exhibits remarkable enhancement in electrochemical stability and high specific capacity of ∼1600 F g{sup −1} at a scan rate of 1 mV s{sup −1}, suggesting promising potential for supercapacitor applications. - Highlights: • New designed lamellar-crossing-structured Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites have been firstly reported in this work. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructures show firm nanostructure and excellent electrochemical stability. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites exhibit excellent specific capacitance. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites have the potential application in electrochemical energy storage applications.

  6. Comparative study of NiW, NiMo and MoW prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Villalba, R.; Ochoa, J.

    2007-01-01

    The present work concern the amorphisation process induced by mechanical alloying in the NiW, NiMo and MoW systems. The alloys chosen combine a group of transition elements varying from very similar atomic radius and electronic valences (MoW) to different ones (NiW and NiMo). The three systems achieved an amorphous state after 50 h of milling. The mechanism of amorphisation proposed for NiW and NiMo was the combined effect of an excess concentration of the solute atoms entering into the structure of one of the elements and a critical concentration of defects. Continuous formation of an amorphous phase at the interface of the crystalline phase was observed during the process. MoW seems to amorphize by continuous reduction of grain size down to a critical value where the amorphisation takes place

  7. Fe-solubility of Ni7S6 and Ni9S8: Thermodynamic analysis

    International Nuclear Information System (INIS)

    Waldner, P.

    2011-01-01

    Experimental data on phase equilibria have been used for thermodynamic analysis of the iron solubility of the nickel sulfides Ni 7 S 6 and Ni 9 S 8 . For both compounds, a two-sublattice approach within the framework of the compound energy formalism has been applied to perform Gibbs free energy modelling at 0.1 MPa total pressure consistently embedded in recent thermodynamic assessment studies of other iron-nickel-sulfides. The predicted maxima of iron solubility around 3 at% of Ni 7 S 6 and 5.5 at% of Ni 9 S 8 are confirmed by experimental data. The calculations of complex ternary phase relations with Fe-bearing Ni 7 S 6 and Ni 9 S 8 gain further improvement. The first internally consistent description of all thermodynamically stable phases known in the literature for the iron-nickel-sulfur system is completed.

  8. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    Science.gov (United States)

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  9. Corrosive sliding wear behavior of laser clad Mo2Ni3Si/NiSi intermetallic coating

    International Nuclear Information System (INIS)

    Lu, X.D.; Wang, H.M.

    2005-01-01

    Many ternary metal silicides such as W 2 Ni 3 Si, Ti 2 Ni 3 Si and Mo 2 Ni 3 Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2 Ni 3 Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2 Ni 3 Si/NiSi composite coating have a fine microstructure of Mo 2 Ni 3 Si primary dendrites and the interdendritic Mo 2 Ni 3 Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments

  10. MARINATED WITH EFFECT OF NaCl AND SODIUM TRIPOLYPHOSPHATE BROMATOLOGICAL PROPERTIES ON THE MEAT GOAT

    OpenAIRE

    Ricardo Peña F.; Daniel Salvador Duran O; Luis Carlos Baleta M.

    2014-01-01

    Goat meat has all the significant nutritional characteristics by consumers to be an excellent alternative supply; therefore, this study proposes the use of a mixture of NaCl, sodium tripolyphosphate, laurel and rosemary extracts as marginalisers agents using maceration technique marinade as facilitator system and applying vacuum packaging and storage at refrigeration of an overall strategy of modernization. In the finished product bromatologic variables pH, fat, protein, water holding c...

  11. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon [Korea Institute of Science & Technology, Seoul (Korea, Republic of)] [and others

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  12. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced nacl tolerance by regulation of nacl and lenhx1 gene expression and improved photosynthetic performance in tomato seedlings

    International Nuclear Information System (INIS)

    Ghazanfar, B.; Chihui, C.; Liu, H.; Ahmad, I.; Khan, A.R.

    2016-01-01

    Salinity stress hampers plant growth and cause significant yield losses thus induction of salinity stress tolerance in crop plants is one of major goals of agriculture research. Arbuscular mycorhizae fungi Glomus etunicatum and acetyl salicylic acid were tested for induction of NaCl stress tolerance in tomato seedlings, cultivar No. 4. The seedlings were inoculated with Glomus etunicatum and exogenously sprayed with acetyl salicylic acid (0.30 mM) followed by salinity stress (150 mM). It was observed that both Glomus etunicatum and acetyl salicylic acid (singly or in combination) were significantly effective to minimize the injurious effects of salinity by improving root morphological parameters (length, diameter, surface area, volume and number of tips, nodes, bifurcations and connections), photosynthetic parameters (net photosynthesis Pn, stomatal conductance Gs) and chlorophyll contents compared to sole salinity treatment. The bio-inoculant Glomus etunicatum and chemical ameliorator acetyl salicylic acid also notably improved vegetative (fresh and dry weights) and reproductive growth (percent seedlings with flower buds and opened flowers, number of flower buds and opened flowers per seedling) of the plants as compared to the sole salinity treatment. The studied salt responsive genes (LeNHX1 and NaCl) were also regulated to different extents in seedling roots and leaves which was consistent with enhanced salinity stress tolerance. From these observations it is suggested that the individual or synergetic use of the AMF (Glomus etunicatum) and acetyl salicylic acid can be useful for tomato cultivation in the marginally salinity effected soils and warrants further investigations. (author)

  13. Reduction mechanism of Ni2+ into Ni nanoparticles prepared from ...

    Indian Academy of Sciences (India)

    journal of. March 2009 physics pp. 577–586. Reduction mechanism of Ni2+ into Ni ..... and at high field, no domain wall is available and hence, the system becomes a .... [23] J Ding, T Tsuzuki, P G McCormick and R Street, J. Phys. D: Appl.

  14. Nickel distribution and isotopic fractionation in a Brazilian lateritic regolith: Coupling Ni isotopes and Ni K-edge XANES

    Science.gov (United States)

    Ratié, G.; Garnier, J.; Calmels, D.; Vantelon, D.; Guimarães, E.; Monvoisin, G.; Nouet, J.; Ponzevera, E.; Quantin, C.

    2018-06-01

    Ultramafic (UM) rocks are known to be nickel (Ni) rich and to weather quickly, which makes them a good candidate to look at the Ni isotope systematics during weathering processes at the Earth's surface. The present study aims at identifying the Ni solid speciation and discussing the weathering processes that produce Ni isotope fractionation in two deep laterite profiles under tropical conditions (Barro Alto, Goiás State, Brazil). While phyllosilicates and to a lower extent goethite are the main Ni-bearing phases in the saprolitic part of the profile, iron (Fe) oxides dominate the Ni budget in the lateritic unit. Nickel isotopic composition (δ60Ni values) has been measured in each unit of the regolith, i.e., rock, saprock, saprolite and laterite (n = 52). δ60Ni varies widely within the two laterite profiles, from -0.10 ± 0.05‰ to 1.43 ± 0.05‰, showing that significant Ni isotope fractionation occurs during the weathering of UM rocks. Overall, our results show that during weathering, the solid phase is depleted in heavy Ni isotopes due to the preferential sorption and incorporation of light Ni isotopes into Fe oxides; the same mechanisms likely apply to the incorporation of Ni into phyllosilicates (type 2:1). However, an isotopically heavy Ni pool is observed in the solid phase at the bottom of the saprolitic unit. This feature can be explained by two hypotheses that are not mutually exclusive: (i) a depletion in light Ni isotopes during the first stage of weathering due to the preferential dissolution of light Ni-containing minerals, and (ii) the sorption or incorporation of isotopically heavy Ni carried by percolating waters (groundwater samples have δ60Ni of 2.20 and 2.27‰), that were enriched in heavy Ni isotopes due to successive weathering processes in the overlying soil and laterite units.

  15. Probing the semi-magicity of $^{68}$Ni via the $^{3}$H($^{66}$Ni,$^{68}$Ni)p two-neutron transfer reaction in inverse kinematics

    CERN Multimedia

    Reiter, P; Blazhev, A A; Kruecken, R; Franchoo, S; Mertzimekis, T; Darby, I G; Van de walle, J; Raabe, R; Elseviers, J; Gernhaeuser, R A; Sorlin, O H; Georgiev, G P; Bree, N C F; Habs, D; Chapman, R; Gaudefroy, L; Diriken, J V J; Jenkins, D G; Kroell, T; Axiotis, M; Huyse, M L; Patronis, N

    We propose to perform the two-neutron transfer reaction $^{3}$H($^{66}$Ni, $^{68}$Ni)$p$ using the ISOLDE radioactive ion beam at 2.7 $A$ MeV and the MINIBALL + T-REX setup to characterize the 0$^{+}$ and 2$^{+}$ states in $^{68}$Ni.

  16. Sputtering Yields of Si and Ni from the Ni1-xSix System Studied by Rutherford Backscattering Spectrometry

    Science.gov (United States)

    Kim, Su Chol; Yamaguchi, Satoru; Kataoka, Yoshihide; Iwami, Motohiro; Hiraki, Akio; Satou, Mamoru; Fujimoto, Fuminori

    1982-01-01

    Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni1-xSix), including the pure materials (Ni and Si), caused by 5 keV Ar+ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni1-xSix increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi2 to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni1-xSix which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.

  17. Thermodiffusive behaviour of NaCl and KCl aqueous solutions a model for the Na-K pump

    International Nuclear Information System (INIS)

    Gaeta, F.S.; Mita, D.G.; Perna, G.; Scala, G.

    1975-01-01

    In NaCl and KCl aqueous nonisothermal solutions K + inverts its sense of migration within the physiological concentration range; Na + behaves similarly at much lower concentrations. These findings are discussed in relation to solute induced modifications of water structure and of their influence on thermal diffusion. A possible evolutionary model of a thermodiffusive mechanism for the sodium potassium pump is also suggested

  18. The europium and praseodymium hydrolysis in a 2M NaCl environment

    International Nuclear Information System (INIS)

    Jimenez R, M.; Lopez G, H.; Solache R, M.; Rojas H, A.

    1998-01-01

    It was studied the europium and praseodymium hydrolysis in a 2M NaCl ion force environment at 303 K, through two methods: this one extraction with dissolvents (lanthanide-water-NaCl-dibenzoylmethane) in presence of a competitive ligand (diglycolic acid) and that one direct potentiometric titration, of soluble species, followed by a computer refining. The values of one or another techniques of the first hydrolysis constants obtained were similar, which demonstrates that the results are reliable. The set of data obtained on the stability constants of hydrolysis products allowed to draw up the distribution diagrams of chemical species, as europium as praseodymium in aqueous environment. (Author)

  19. Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni

    International Nuclear Information System (INIS)

    Zhou, N.; Shen, C.; Wagner, M.F.-X.; Eggeler, G.; Mills, M.J.; Wang, Y.

    2010-01-01

    Precipitation of Ni 4 Ti 3 plays a critical role in determining the martensitic transformation path and temperature in Ni-Ti shape memory alloys. In this study, the equilibrium shape of a coherent Ni 4 Ti 3 precipitate and the concentration and stress fields around it are determined quantitatively using the phase field method. Most recent experimental data on lattice parameters, elastic constants, precipitate-matrix orientation relationship and thermodynamic database are used as model inputs. The effects of the concentration and stress fields on subsequent martensitic transformations are analyzed through interaction energy between a nucleating martensitic particle and the existing microstructure. Results indicate that R-phase formation prior to B19' phase could be attributed to both direct elastic interaction and stress-induced spatial variation in concentration near Ni 4 Ti 3 precipitates. The preferred nucleation sites for the R-phase are close to the broad side of the lenticular-shaped Ni 4 Ti 3 precipitates, where tension normal to the habit plane is highest, and Ni concentration is lowest.

  20. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: a_layadi@yahoo.fr; Ben Youssef, J. [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Roussigne, Y. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France)

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K {sub 1} and K {sub 2}, have been included; for the Ni/Cu series, K {sub 1} was found to decrease from 1.0x10{sup 6} to 0.18x10{sup 6} erg/cm{sup 3} as t increases from 31 to 165 nm, while K {sub 2} increased from 0.24x10{sup 6} to 0.8x10{sup 6} erg/cm{sup 3}. Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t{>=}165 nm in Ni/glass and t{>=}90 nm in Ni/Cu.

  1. Ultrasonic measurements at elevated pressures (9 GPa) to determine Poisson's ratio and other elastic moduli of NaCl and NaF

    International Nuclear Information System (INIS)

    Morris, C.E.; Jamieson, J.C.; Yarger, F.L.

    1976-01-01

    Transit times of longitudinal and transverse ultrasonic waves were measured simultaneously in NaCl and NaF as a function of ''quasihydrostatic'' pressure to 9 GPa. The dimensionless ratio of these transit times yields directly the ratio of the longitudinal to shear velocity. This velocity ratio is independent of sample length. Using third-order elasticity theory a correction for a probable superimposed uniaxial stress component may be made. When done, this allows the direct determination of Poisson's ratio for each pressure. Shock-wave data are used to obtain other elastic moduli and velocities of shear and longitudinal waves. Apparatus for making these measurements is described and data for NaCl and NaF are presented

  2. Electrochemical preparation and characteristics of Ni-Co-LaNi{sub 5} composite coatings as electrode materials for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wu Gang; Li Ning; Dai Changsong; Zhou Derui

    2004-02-15

    Electrocatalytic activity for the hydrogen evolution reaction on Ni-Co-LaNi{sub 5} composite electrodes prepared by electrochemical codeposition technique was evaluated. The relationship between the current density for hydrogen evolution reaction and the amount of LaNi{sub 5} particles in Ni-Co baths is like the well-known 'volcano plot'. The Surface morphology and microstructure of Ni-Co-LaNi{sub 5} coatings were determined by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The kinetic parameters were determined from electrochemical steady-state Tafel polarization and electrochemical impedance spectroscopy technology in 1 M NaOH solution. The values obtained for the apparent energies of activation are 32.48, 46.29 and 57.03 kJ mol{sup -1} for the Ni-Co-LaNi{sub 5}, Ni-Co and Ni electrodes, respectively. The hydrogen evolution reaction on Ni-Co-LaNi{sub 5} proceeds via Volmer-Tafel reaction route with the mixed rate determining characteristics. The composite coating Ni-Co-LaNi{sub 5} is catalytically more active than Ni and Ni-Co electrodes due to the increase in its real surface areas and the decrease in the apparent free energy of activation caused by the electrocatalytic synergistic effect of the Ni-Co alloys and the hydrogen storage intermetallic particles on the electrode surface.

  3. Compositional and structural characterisation of Ni-phyllosilicates in hydrous silicate type Ni-laterite deposits

    OpenAIRE

    Villanova de Benavent, Cristina

    2015-01-01

    Ni-bearing Mg-phyllosilicates (commonly known as garnierites) are significant ore minerals in many Ni-laterite deposits worldwide. However, the characterisation of these mineral phases is complex, as well as their classification and nomenclature, due to their fine-grained nature, low crystallinity and frequent occurrence as mixtures. The aim of this study is to shed some light to the nature of the Ni-bearing Mg-phyllosilicates occurring at the Falcondo Ni-laterite. In this deposit, these ...

  4. Influence of Ni Solute segregation on the intrinsic growth stresses in Cu(Ni) thin films

    International Nuclear Information System (INIS)

    Kaub, T.M.; Felfer, P.; Cairney, J.M.; Thompson, G.B.

    2016-01-01

    Using intrinsic solute segregation in alloys, the compressive stress in a series of Cu(Ni) thin films has been studied. The highest compressive stress was noted in the 5 at.% Ni alloy, with increasing Ni concentration resulting in a subsequent reduction of stress. Atom probe tomography quantified Ni's Gibbsian interfacial excess in the grain boundaries and confirmed that once grain boundary saturation is achieved, the compressive stress was reduced. This letter provides experimental support in elucidating how interfacial segregation of excess adatoms contributes to the post-coalescence compressive stress generation mechanism in thin films. - Graphical abstract: Cu(Ni) film stress relationship with Ni additions. Atom probe characterization confirms solute enrichment in the boundaries, which was linked to stress response.

  5. Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples

    Science.gov (United States)

    Fang, Gu; Chen, Chih-chi

    2015-07-01

    Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.

  6. Exchange bias coupling in NiO/Ni bilayer tubular nanostructures synthetized by electrodeposition and thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T., E-mail: work_tian@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhang, Z.W.; Xu, Y.H. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Liu, Y. [Analytical & Testing Center, Sichuan University, Chengdu 610064 (China); Li, W.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Nie, Y.; Zhang, X. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Xiang, G., E-mail: gxiang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-05-01

    In this paper, we reported the synthesis of NiO/Ni bilayer nanotubes by electrodeposition and thermal oxidation using anodic aluminum oxide templates. The morphology, structure, chemical composition and magnetic properties, especially magnetic exchange bias induced by subsequent magnetic field cooling, in this one-dimensional antiferromagnetic/ferromagnetic hybrid system were investigated. It was found that the effect of the annealing temperature, which mainly dominated the thickness of the NiO layer, and the annealing time, which mainly dominated the grain size of the NiO, on the exchange bias field showed competitive relationship. The optimized exchange bias field was achieved by the combination of the shorter annealing time and higher annealing temperature. - Highlights: • NiO-Ni bilayer tubular nanotubes were fabricated by electrodeposition and thermal oxidation. • The exchange bias effect in NiO-Ni nanotubes was induced by magnetic field cooling. • The competitive effect of annealing temperature and annealing time on the exchange bias coupling was analyzed.

  7. Effects of phase transformation and interdiffusion on the exchange bias of NiFe/NiMn

    International Nuclear Information System (INIS)

    Lai, Chih-Huang; Lien, W. C.; Chen, F. R.; Kai, J. J.; Mao, S.

    2001-01-01

    The correlation between the exchange field of NiFe/NiMn and the phase transformation of NiMn was investigated. Transmission electron microscopy (TEM) dark-field images, contributed by the order phase of NiMn, were used to identify the location and volume fraction of the order phase. TEM selected area diffraction patterns showed the (110) superlattice diffraction rings of NiMn, verifying the existence of the order phase in the annealed samples. The order volume fraction can be calculated by the dark field image contributed by the (110) diffraction. The exchange field increased almost linearly with increasing order volume fraction. Energy dispersive x-ray spectroscopy attached to TEM indicated that Mn diffused into NiFe for annealing at 280 degreeC, leading to a larger coercivity and small coercivity squareness. Part of the NiMn still maintains the paramagnetic phase even after annealing at 280 degreeC. [copyright] 2001 American Institute of Physics

  8. Radioactive 63Ni in biological research

    International Nuclear Information System (INIS)

    Kasprzak, K.S.; Sunderman, F.W. Jr.

    1979-01-01

    Applications of 63 Ni in biological research are reviewed, with emphasis upon recent investigations of nickel metabolism and toxicology in experimental animals. The radiochemistry of 63 Ni is summarized, including consideration of the preparation of certain 63 Ni compounds (e.g. 63 Ni(CO) 4 and 63 Ni 3 S 2 ) that are of current interest in toxicology, teratology and cancer research. Practical guidance is given regarding the detection and determination of 63 Ni in biological materials by autoradiography and liquid scintillation spectrometry. (author)

  9. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  10. Neutron enrichment at midrapidity in 58Ni + 58Ni at 52 MeV/u

    International Nuclear Information System (INIS)

    Theriault, D.; Vallee, A.; Gingras, L.; Larochelle, Y.; Roy, R.; April, A.; Beaulieu, L.; Grenier, F.; Lemieux, F.; Moisan, J.; Samri, M.; Saint-Pierre, C.; Turbide, S.; Yennello, S.J.; Martin, E.; Winchester, E.

    2003-01-01

    By combining data from a charged particle 58 Ni + 58 Ni experiment at 52 MeV/u with an 36 Ar + 58 Ni experiment at 50 MeV/u for which free neutrons have been detected, an increase in the neutron to proton ratio of the whole nuclear material at midrapidity has been experimentally observed in the reaction 58 Ni + 58 Ni at 52 MeV/u. The neutron to proton ratio is measured above the initial neutron to proton ratio of the system. Neutron to proton ratio of the quasi-projectile emission is analysed for the same reactions and is seen to decrease below the ratio of the initial system. (authors)

  11. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    Science.gov (United States)

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  12. XRD studies on solid state amorphisation in electroless Ni/P and Ni/B deposits

    International Nuclear Information System (INIS)

    Sampath Kumar, P.; Kesavan Nair, P.

    1996-01-01

    The decomposition of electroless Ni-P and Ni-B deposits on annealing at various temperature is studied using x-ray diffraction techniques employing profile deconvolution and line profile analysis. It appears that solid state amorphisation takes place in the Ni-B deposits in a narrow temperature range just prior to the onset of crystallization of amorphous phase. In the case of Ni-P deposits no evidence for solid state amorphisation could be obtained. Thermodynamic and kinetic considerations also support such a conclusion

  13. 23Na and 35/37Cl as NMR probes of growth and shape of sodium taurodeoxycholate micellar aggregates in the presence of NaCl.

    Science.gov (United States)

    Asaro, Fioretta; Feruglio, Luigi; Galantini, Luciano; Nardelli, Alessia

    2013-02-15

    The growth of the aggregates of the dihydroxylated bile salt sodium taurodeoxycholate (NaTDC) upon NaCl addition and the involvement of the counterion were investigated by NMR spectroscopy of monoatomic ionic species. (23)Na T(1) values from 0.015, 0.100, and 0.200 mol kg(-1) NaTDC solutions in D(2)O, at variable NaCl content, proved to be sensitive to the transition from primary to secondary aggregates, which occurs in the former sample, and to intermicellar interaction. Some (79)Br NMR measurements were performed on a 0.100 mol kg(-1) NaTDC sample added by NaBr in place of NaCl for comparison purposes. The (23)Na, (35)Cl, and (37)Cl double quantum filtered (DQF) patterns, from the 0.100 mol kg(-1) NaTDC sample, and (23)Na ones also from the 0.200 mol kg(-1) NaTDC one, in the presence of 0.750 mol kg(-1) NaCl, are a clear manifestation of motional anisotropy. Moreover, the DQF spectra of (23)Na and (37)Cl, which possess close quadrupole moments, display a striking similarity. The DQF lineshapes were simulated exploiting the Scilab environment to obtain an estimate of the residual quadrupole splitting magnitude. These results support the description of NaTDC micelles as cylindrical aggregates, strongly interacting at high ionic strengths, and capable of association with added electrolytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Inhibition effect of 4-amino-antipyrine on the corrosion of copper in 3 wt.% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Hong Song; Chen Wen; Luo Hongqun [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li Nianbing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer 4-Amino-antipyrine (AAP) has inhibition behaviour for copper corrosion in 3.0 wt.% NaCl. Black-Right-Pointing-Pointer AAP acted as a mixed-type inhibitor with anodic predominance. Black-Right-Pointing-Pointer Adsorption of AAP on the copper surface obeys the Langmuir isotherm. Black-Right-Pointing-Pointer Quantum chemical calculations were applied to explain the experimental results. - Abstract: The effect of 4-amino-antipyrine (AAP) on the corrosion of copper in 3.0 wt.% NaCl was investigated using weight loss, potentiodynamic polarisation, and electrochemical impedance spectroscopy. The results revealed that AAP acts as a mixed-type inhibitor with more pronounced effect on anodic domain and the inhibition efficiency decreases with increasing the temperature. The adsorption of AAP was found to obey the Langmuir isotherm. Surface characterisation was performed using scanning electron microscope and Fourier transform infrared spectrometer. Quantum chemical calculations show that AAP has large negative charge in nitrogen and oxygen atoms, which facilitates the adsorption of AAP on the copper surface.

  15. Radiation induced color center and colloid formation in synthetic NaCl and natural rock salt

    International Nuclear Information System (INIS)

    Levy, P.W.; Swyler, K.J.; Klaffky, R.W.

    1979-01-01

    F-center and colloid particle formation has been studied in synthetic NaCl and natural rock salt crystals with apparatus for making optical absorption measurements during irradiation. F-center and colloid formation are functions of temperature, dose, dose rate, strain applied prior to irradiation and numerous other factors. Many of the observed properties are in accord with the Jain-Lidiard theory for radiation induced F-center and colloid growth above room temperature

  16. Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors

    International Nuclear Information System (INIS)

    Hou Linrui; Yuan Changzhou; Li Diankai; Yang Long; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Highlights: → NiS is synthesized by means of the H 2 O/CS 2 interface under hydrothermal treatment. → NiS itself owns poor electrochemical capacitance in 2 M KOH solution. → NiS is electrochemically induced and transformed into electroactive Ni(OH) 2 . → Ni(OH) 2 is responsible for good energy storage of the NiS in the KOH solution. → The new formed Ni(OH) 2 delivers large energy density at high rates. - Abstract: Nickel sulfide nanoparticles (NPs) are first synthesized by virtue of a unique H 2 O/CS 2 interface under mild hydrothermal treatment. Electrochemical data reveals that the as-synthesized NiS NPs themselves own poor supercapacitive behavior at initial cyclic voltammetry (CV) cycles in 2 M KOH solution, while a specific capacitance of 893 F g -1 can be surprisingly obtained at a current density of 5 A g -1 just after continuous 320 CV cycles. X-ray diffraction and Fourier transform infrared techniques demonstrate that what is really responsible for the good electrochemical capacitance in the KOH aqueous solution is the new electrochemically formed Ni(OH) 2 phase, rather than NiS NPs themselves. The Ni(OH) 2 is slowly formed during the continuous CV cycling process, in which the electrochemically induced phase transformation from NiS to Ni(OH) 2 phase takes place. Furthermore, the new Ni(OH) 2 phase demonstrates the great ability of delivering large specific capacitance at high rates.

  17. Effect of amorphous Mg50Ni50 on hydriding and dehydriding behavior of Mg2Ni alloy

    International Nuclear Information System (INIS)

    Guzman, D.; Ordonez, S.; Fernandez, J.F.; Sanchez, C.; Serafini, D.; Rojas, P.A.; Aguilar, C.; Tapia, P.

    2011-01-01

    Composite Mg 2 Ni (25 wt.%) amorphous Mg 50 Ni 50 was prepared by mechanical milling starting with nanocrystalline Mg 2 Ni and amorphous Mg 50 Ni 50 powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg 50 Ni 50 improved the hydriding and dehydriding kinetics of Mg 2 Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: → First study of the hydriding behavior of composite Mg 2 Ni (25 wt.%) amorphous Mg 50 Ni 50 . → Microstructural characterization of composite material using XRD and SEM was obtained. → An improved effect of Mg 50 Ni 50 on the Mg 2 Ni hydriding behavior was verified. → The apparent activation energy for the hydrogen desorption of composite was obtained.

  18. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  19. Precipitation of Ni4Ti3-variants in a polycrystalline Ni-rich NiTi shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Bojda, Ondřej; Eggeler, G.; Dlouhý, Antonín

    2005-01-01

    Roč. 53, č. 1 (2005), s. 99-104 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitation * Transmission electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.228, year: 2005

  20. Rapid synthesis of binary α-NiS–β-NiS by microwave autoclave for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Idris, Nurul Hayati; Rahman, Md Mokhlesur; Chou, Shu-Lei; Wang Jiazhao; Wexler, David; Liu, Hua-Kun

    2011-01-01

    Highlights: ► NiS has been synthesized by a rapid, one-pot, hydrothermal microwave autoclave method. ► The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in terms of high reversible capacity (320 mAh g −1 at 0.1C up to 100 cycles). ► At high rates, the sample operated at a good fraction of its capacity. - Abstract: To reduce the reaction time, electrical energy consumption, and cost, binary α-NiS–β-NiS has been synthesized by a rapid, one-pot, hydrothermal autoclave microwave method within 15 min at temperatures of 160–180 °C. The microstructure and morphology of the α-NiS–β-NiS products were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). At 140 °C, pure hexagonal NiAs-type α-NiS phase was identified from the XRD patterns. With increasing reaction temperature (160–180 °C), the XRD evidence indicates that an increasing fraction of rhombohedral millerite-like β-NiS is formed as a secondary phase. The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in term of high reversible capacity (320 mAh g −1 at 0.1C up to 100 cycles). Even at high rates, the sample operated at a good fraction of its capacity. The likely contributing factor to the superior electrochemical performance of the α-NiS–β-NiS sample could be related to the improved morphology. TEM imaging confirmed that needle-like protrusions connect the clusters of α-NiS particles, and the individual protrusions indicated a very high surface area including folded sheet morphology, which helps to dissipate the surface accumulation of Li + ions and facilitate rapid mobility. These factors help to enhance the amount of lithium intercalated within the material.

  1. Effect of amount of glycine as fuel in obtaining nanocomposite Ni/NiO

    International Nuclear Information System (INIS)

    Simoes, A.N.; Simoes, V.N.; Neiva, L.S.; Quirino, M.R.; Vieira, D.A.; Gama, L.

    2010-01-01

    This paper proposes to investigate the effect of the amount of glycine in obtaining nanocomposite Ni/NiO synthesized by combustion reaction technique. The amount of glycine used was calculated on the stoichiometric composition of 50% and 100%. Characterizations by X-ray diffraction (XRD), N2 adsorption by the BET method and scanning electron microscopy (SEM) were performed with powder of Ni/NiO result. The analysis of X-ray diffraction showed the presence of crystalline NiO phase in the presence of nickel as a secondary phase, whose amount increased with the amount of glycine. Increasing the concentration of glycine also caused an increase in surface area, which ranged from 1.1 to 1.4 m 2 /g. The micrographs revealed the formation of soft agglomerates with porous appearance and easy dispersions. It can be concluded that the synthesis is effective to obtain nanosized powders. (author)

  2. Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation

    Science.gov (United States)

    Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.

    2002-12-01

    The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.

  3. Effect of NiO inserted layer on spin-Hall magnetoresistance in Pt/NiO/YIG heterostructures

    International Nuclear Information System (INIS)

    Shang, T.; Zhan, Q. F.; Yang, H. L.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Li, Run-Wei; Wu, Y. H.; Zhang, S.

    2016-01-01

    We investigate spin-current transport with an antiferromagnetic insulator NiO thin layer by means of the spin-Hall magnetoresistance (SMR) over a wide range of temperature in Pt/NiO/Y_3Fe_5O_1_2 (Pt/NiO/YIG) heterostructures. The SMR signal is comparable to that without the NiO layer as long as the temperature is near or above the blocking temperature of the NiO, indicating that the magnetic fluctuation of the insulating NiO is essential for transmitting the spin current from the Pt to YIG layer. On the other hand, the SMR signal becomes negligibly small at low temperature, and both conventional anisotropic magnetoresistance and the anomalous Hall resistance are extremely small at any temperature, implying that the insertion of the NiO has completely suppressed the Pt magnetization induced by the YIG magnetic proximity effect (MPE). The dual roles of the thin NiO layer are, to suppress the magnetic interaction or MPE between Pt and YIG, and to maintain efficient spin current transmission at high temperature.

  4. Chemical vapor deposition of NiSi using Ni(PF3)4 and Si3H8

    International Nuclear Information System (INIS)

    Ishikawa, M.; Muramoto, I.; Machida, H.; Imai, S.; Ogura, A.; Ohshita, Y.

    2007-01-01

    NiSi x films were deposited using chemical vapor deposition (CVD) with a Ni(PF 3 ) 4 and Si 3 H 8 /H 2 gas system. The step coverage quality of deposited NiSi x was investigated using a horizontal type of hot-wall low pressure CVD reactor, which maintained a constant temperature throughout the deposition area. The step coverage quality improved as a function of the position of the gas flow direction, where PF 3 gas from decomposition of Ni(PF 3 ) 4 increased. By injecting PF 3 gas into the Ni(PF 3 ) 4 and Si 3 H 8 /H 2 gas system, the step coverage quality markedly improved. This improvement in step coverage quality naturally occurred when PF 3 gas was present, indicating a strong relationship. The Si/Ni deposit ratio at 250 deg. C is larger than at 180 deg. C. It caused a decreasing relative deposition rate of Ni to Si. PF 3 molecules appear to be adsorbed on the surface of the deposited film and interfere with faster deposition of active Ni deposition species

  5. Tracer diffusion of 60Co and 63Ni in amorphous NiZr alloy

    International Nuclear Information System (INIS)

    Hoshino, K.; Averback, R.S.; Hahn, H.; Rothman, S.J.

    1987-01-01

    Tracer diffusion of 60 Co and 63 Ni in equiatomic amorphous NiZr alloy in the temperature range between 486 and 641 0 K can be described by: D/sub Co/sup */ = 3.7 x 10 -7 exp[-(135 +- 14) kJ mole -1 /RT] m 2 /sec and D/sub Ni//sup */ = 1.7 x 10 -7 exp[-(140 +- 9) kJ mole -1 /RT] m 2 /sec. The values of D/sub Ni//sup */ are in reasonable agreement with those measured by the Rutherford backscattering technique. The measured diffusivities were independent of time, indicating that no relaxation took place during diffusion. 27 refs., 2 tabs

  6. Electroplated Ni on the PN Junction Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm{sup 2}. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased.

  7. Electroplated Ni on the PN Junction Semiconductor

    International Nuclear Information System (INIS)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae

    2015-01-01

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm 2 . The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased

  8. Water activities of ternary mixtures of poly(ethylene glycol), NaCl and water over the temperature range of 293.15 K to 313.15 K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Ziamajidi, Fatemeh

    2006-01-01

    The improved isopiestic method has been used to obtain activities of water for aqueous solutions of poly(ethylene glycol) 400/NaCl at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. From these measurements, values of the vapour pressure of solutions were determined. The effect of temperature on the (vapour + liquid) equilibrium of {poly(ethylene glycol) + NaCl + H 2 O} systems has been studied. It was found that the slope of the constant activity lines for water increased with increasing temperature. The results have been discussed on the basis of the effect of temperature on the hydrophobicity of the polymer. Also it was found that the vapour pressure depression for an aqueous (PEG + NaCl) system is more than the sum of those for the corresponding binary solutions. Furthermore, the segment-based local composition Wilson model has been used for the correlation of the experimental water activity data. The agreement between the correlation and the experimental data are good

  9. Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications

    KAUST Repository

    Liang, Hanfeng

    2017-04-11

    Water splitting driven by electricity or sunlight is one of the most promising ways to address the global terawatt energy needs of future societies; however, its large-scale application is limited by the sluggish kinetics of the oxygen evolution reaction (OER). NiFe-based compounds, mainly oxides and hydroxides, are well-known OER catalysts and have been intensively studied; however, the utilization of the synergistic effect between two different NiFe-based materials to further boost the OER performance has not been achieved to date. Here, we report the rapid conversion of NiFe double hydroxide into metallic NiFeP using PH3 plasma treatment and further construction of amorphous NiFe hydroxide/NiFeP/Ni foam as efficient and stable oxygen-evolving anodes. The strong electronic interactions between NiFe hydroxide and NiFeP significantly lower the adsorption energy of H2O on the hybrid and thus lead to enhanced OER performance. As a result, the hybrid catalyst can deliver a geometrical current density of 300 mA cm–2 at an extremely low overpotential (258 mV, after ohmic-drop correction), along with a small Tafel slope of 39 mV decade–1 and outstanding long-term durability in alkaline media.

  10. One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery

    Science.gov (United States)

    Li, JiLan; Chen, ChangGuo

    2018-01-01

    Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.

  11. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors

    Science.gov (United States)

    Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong

    2014-08-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.

  12. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors.

    Science.gov (United States)

    Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong

    2014-01-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g(-1) at current densities of 5, 10, 15, 20, and 25 A g(-1), respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.

  13. Microstructural characterisation of Ni75Al25 and Ni31.5Al68.5 powder particles produced by gas atomisation

    International Nuclear Information System (INIS)

    García-Escorial, A.; Lieblich, M.

    2014-01-01

    Highlight: ► Successful production of gas atomised Ni75Al25 and Ni31.5Al68.5 powder particles. ► Characterization of the as-solidified microstructure of 75 Al 25 and Ni 31.5 Al 68.5 at.% powder particles below 100 μm in size have been studied. The gas atomised Ni 75 Al 25 powder particles are mainly spherical. The solidification of this alloy is very fast, and its microstructure consists of a dendrite and lamellar structure of partially ordered γ-(Ni), γ′-Ni 3 Al L1 2 phase, and β-NiAl phase. The order increases with the powder particle size. The gas atomised Ni 31.5 Al 68.5 powder particles are also spherical in shape. The microstructure consists of Ni 2 Al 3 dendrites with interdendritic peritectic NiAl 3 and eutectic NiAl 3 + α-Al. The amount of the Ni 2 Al 3 increases as the cooling rate increases. NiAl phase is absent in the gas atomised Ni 31.5 Al 68.5 powder

  14. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular rings as detected by μsR

    OpenAIRE

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P.V.; Timco, G.; Winpenny, R. E.P.; Blundell, S. J.; Lascialfari, A.

    2017-01-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J, while Cr7Ni-Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J ≪ J. The longitudinal muon relaxation rate λ collected at low magnetic fields...

  15. The study of quasi-projectiles produced in Ni+Ni and Ni+Au collisions: excitation energy and spin; Etude des quasi-projectiles produits dans les collisions Ni+Ni et Ni+Au: energie d'excitation et spin

    Energy Technology Data Exchange (ETDEWEB)

    Buta, A

    2003-02-01

    During the collision between the projectile and the target nuclei in the intermediate energy regime (E < 100 MeV/nucleon) two excited nuclei are mainly observed in the exit channel, the quasi projectile (QP) and the quasi target. They disintegrate by particle emission. However, this binary picture is perturbed by the emission of particles and light fragments with velocities intermediate between the projectile velocity and the target one, all along the interaction (midrapidity component). This work aim to determine the excitation energy and the intrinsic angular momentum (or spin) of quasi-projectiles produced in the Ni+Ni and Ni+Au collisions at 52 and 90 MeV/nucleon. The excitation energy is deduced from the kinematical characteristics of particles emitted by the quasi-projectile. They have to be separated from midrapidity particles. Three different scenarios have been used for this purpose. The spin of the quasi-projectile has been extracted from the experimental data by mean of proton and alpha particles multiplicities emitted by the QP in the Ni+Au at 52 MeV/nucleon reaction. The results have been compared to the predictions of a theoretical model based on nucleon transfers. Their evolution is qualitatively reproduced as a function of the violence of the collision. (author)

  16. Enhanced optical and electrical properties of Ni inserted ITO/Ni/AZO tri-layer structure for photoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. Melvin David; Kim, Hyunki [Department of Electrical Engineering, Incheon National University, Incheon 406772 (Korea, Republic of); Park, Yun Chang [Measurement and Analysis Division, National Nanofab Center (NNFC), Daejeon 305-806 (Korea, Republic of); Kim, Joondong, E-mail: joonkim@incheon.ac.kr [Department of Electrical Engineering, Incheon National University, Incheon 406772 (Korea, Republic of)

    2015-05-15

    Highlights: • Ni-embedding transparent conductor effectively reduces the resistivity. • Ni insertion improves the carrier mobility and collection efficiencies. • ITO/Ni/AZO is effective to improve photo-responses compared to ITO/AZO. - Abstract: A thin Ni layer of 5 nm thickness was deposited in between indium-tin-oxide (ITO) and aluminum-doped-zinc oxide (AZO) layers of 50 nm thickness each. The Ni inserting tri-layer structure (ITO/Ni/AZO) showed lower resistivity of 5.51 × 10{sup −4} Ωcm which is nearly 20 times lesser than 97.9 × 10{sup −4} Ωcm of bilayer structure (ITO/AZO). A thin Ni layer in between ITO and AZO enhanced the carrier concentration, mobility and photoresponse behaviors so that figure of merit (FOM) value of ITO/Ni/AZO device was greater than that of ITO/AZO device. ITO/Ni/AZO structure showed improved quantum efficiencies over a broad range of wavelengths (∼350–950 nm) compared to that of ITO/AZO bilayer structure, resulting in enhanced photoresponses. These results show that the optical, electrical and photoresponse properties of ITO/AZO structure could be enhanced by inserting Ni layer of 5 nm thickness in between ITO and AZO layers.

  17. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN- Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases.

    Science.gov (United States)

    Perotto, Carlo U; Sodipo, Charlene L; Jones, Graham J; Tidey, Jeremiah P; Blake, Alexander J; Lewis, William; Davies, E Stephen; McMaster, Jonathan; Schröder, Martin

    2018-03-05

    The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN - ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N 2 S 2 )Fe(CO) 2 (CN) 2 ], [Ni( S 4 )Fe(CO) 2 (CN) 2 ], and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO) 2 (CN) 2 } unit. X-ray crystallographic studies on [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc + /Fc and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] possesses a reversible oxidation process at 0.17 V vs Fc + /Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a Ni III Fe II formulation for [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + . The singly occupied molecular orbital (SOMO) in [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + is based on Ni 3d z 2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a Ni III Fe II formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] and its [Ni( N 2 S 3 )] precursor, together with calculations on the oxidized [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + and [Ni( N 2 S 3 )] + forms suggests that the binding of the {Fe(CO)(CN) 2 } unit to the {Ni(CysS) 4 } center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors

  18. Structure-activity relations for Ni-containing zeolites during NO reduction. II. Role of the chemical state of Ni

    NARCIS (Netherlands)

    Mosqueda Jimenez, B.I.; Jentys, A.; Seshan, Kulathuiyer; Lercher, J.A.

    2003-01-01

    The influence of the metal in Ni-containing zeolites used as catalysts for the reduction of NO with propane and propene was studied. In the fresh catalysts, Ni is located in ion exchange positions for Ni/MOR, Ni/ZSM-5, and Ni/MCM-22. The formation of carbonaceous deposits, the removal of Al from

  19. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: NaCl and temperature-time profile effects and kinetics

    NARCIS (Netherlands)

    Fels, van der H.J.; Capuano, E.; Nguyen, H.T.; Mogol, B.A.; Kocadagli, T.; Goncuoglu Tas, N.; Hamzalioglu, A.; Boekel, van M.A.J.S.; Gokmen, V.

    2014-01-01

    The present study aimed to investigate the effect of recipe and temperature–time on the formation of acrylamide and 5-hydroxymethylfurfural (HMF) during biscuit baking. Baking experiments were performed with biscuits of two different recipes, with and without NaCl, at 180 °C, 190 °C and 200 °C.

  20. Performance of the PdNi and PdNiSe as cathodes in PEM fuel cells; Desempeno de PdNi y PdNiSe como catodos en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A.; Ramos-Sanchez, G.; Vazquez, G.; Solorza-Feria, O. [Centro de Investigaciones y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: gramos@cinvestav.mx

    2009-09-15

    The search for new materials capable of catalyzing oxygen reactions in low temperature fuel cells continues to be one of the key issues in the development of a hydrogen economy. Electrochemical and physical characterization studies have demonstrated that the PdNi and PdNiSe catalysts have adequate properties for use as cathodes in fuel cells. Nevertheless, the performance of the materials in proton exchange membrane (PEM) fuel cells depends not only on the catalytic properties but also on the adequate preparation of the electrocatalyst membrane interface (EMI). This work presents the results of the search for optimal conditions to prepare the EMIs with PdNi and PdNiSe cathodes. There are many variables for handling the preparation of the interfaces, nevertheless our search focuses on two: catalyst ratio/Vulcan Carbon® and the catalyst amount. Interfaces were prepared with an active area of 5 cm{sup 2} with PdNi and PdNiSe cathodes and carbon fabric anode with Pt E-tek®. These interfaces were tested with an ElectroChem model under different gas pressure and temperature conditions. The optimization method was carried out using a simplex method with the variables mentioned above and power density per unit mass and catalyst area as response variables. [Spanish] La busqueda de nuevos materiales capaces de catalizar la Reaccion de Oxigeno (RRO) en celdas de combustible de baja temperatura, sigue siendo uno de los temas clave para el desarrollo de una Economia del Hidrogeno. Estudios electroquimicos y de caracterizacion fisica han demostrado que los catalizadores PdNi y PdNiSe, tienen las propiedades adecuadas para poder ser utilizados como catodos en celdas de combustible; sin embargo el desempeno de los materiales en celdas de combustible de membrana de intercambio protonico (PEM), no solo depende de las propiedades del catalizador, sino tambien de la preparacion adecuada del Ensamble Membrana Electrocatalizador (EME). En este trabajo se presentan los resultados de la