WorldWideScience

Sample records for nacelles

  1. Nacelle Transfer Function

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine. A comparison between wind speed on the met mast and Nacelle Wind speed are made and the results are presented on graphs and in a table. The data used for the comparison are the data that are same as used for the power curve report....

  2. Nacelle lidar power curve

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  3. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  4. Generic methodology for calibrating profiling nacelle lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    Improving power performance assessment by measuring at different heights has been demonstrated using ground-based profiling LIDARs. More recently, nacelle-mounted lidars studies have shown promising capabilities to assess power performance. Using nacelle lidars avoids the erection of expensive me...

  5. 76 FR 10328 - Grant of Authority for Subzone Status; Vestas Nacelles America, Inc. (Wind Turbine Nacelles, Hubs...

    Science.gov (United States)

    2011-02-24

    ... Status; Vestas Nacelles America, Inc. (Wind Turbine Nacelles, Hubs, Blades and Towers), Brighton, Denver...-purpose subzone at the wind turbine nacelle, hub, blade and tower manufacturing and warehousing facilities... status for activity related to the manufacturing and warehousing of wind turbine nacelles, hubs, blades...

  6. Flax in the nacelle; Flachs in der Gondel

    Energy Technology Data Exchange (ETDEWEB)

    Wonneberger, Maik [INVENT GmbH, Braunschweig (Germany). Projekt Strukturmechanik und Entwicklung

    2010-03-15

    A consortium of industrial organizations and Fraunhofer LBF cooperated in the development of prototype nacelles for multi-MW wind power systems. The nacelles are constructed as hybrid systems of CFRP and biomaterials. (orig.)

  7. Acoustic Panel Liner for an Engine Nacelle

    Science.gov (United States)

    Jones, Michael G. (Inventor); Nark, Douglas M. (Inventor); Ayle, Earl (Inventor); Ichihashi, Fumitaka (Inventor)

    2016-01-01

    An acoustic panel liner includes a face sheet, back plate, and liner core positioned there-between, which may be used in an engine nacelle. Elongated chambers contain variable amounts of septa at a calibrated depth or depths. The septa may have varying DC flow resistance. The chambers may have a hexagonal or other polygonal cross sections. The septa, such as mesh caps, may be bonded to an inner wall of a corresponding chamber. The insertion depths may be the same or different. If different, the pattern of distribution of the depths may be randomized.

  8. 14 CFR 23.1182 - Nacelle areas behind firewalls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Nacelle areas behind firewalls. 23.1182... Powerplant Fire Protection § 23.1182 Nacelle areas behind firewalls. Components, lines, and fittings, except those subject to the provisions of § 23.1351(e), located behind the engine-compartment firewall must be...

  9. Energy Efficient Engine program advanced turbofan nacelle definition study

    Science.gov (United States)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  10. Atmospheric turbulence affects wind turbine nacelle transfer functions

    Directory of Open Access Journals (Sweden)

    C. M. St. Martin

    2017-06-01

    Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence

  11. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    Science.gov (United States)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  12. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    OpenAIRE

    Sasaki, Daisuke; Nakahashi, Kazuhiro

    2011-01-01

    An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achiev...

  13. Power curve measurement with a nacelle mounted lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Friis Pedersen, Troels; Courtney, Michael

    2014-01-01

    is tested. A pulsed lidar prototype, measuring horizontally, was installed on the nacelle of a multi-megawatt wind turbine. A met mast with a top-mounted cup anemometer standing at two rotor diameters in front of the turbine was used as a reference. After a data-filtering step, the comparison of the 10 min......Nacelle-based lidars are an attractive alternative to conventional mast base reference wind instrumentation where the erection of a mast is expensive, for example offshore. In this paper, the use of this new technology for the specific application of wind turbine power performance measurement...... in wind speed measurements. A lower scatter in the power curve was observed for the lidar than for the mast. Since the lidar follows the turbine nacelle as it yaws, it always measures upwind. The wind measured by the lidar therefore shows a higher correlation with the turbine power fluctuations than...

  14. CFD Calculations of the Flow Around a Wind Turbine Nacelle

    International Nuclear Information System (INIS)

    Varela, J.; Bercebal, D.

    1999-01-01

    The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs

  15. CFD Calculations of the Flow Around a Wind Turbine Nacelle

    Energy Technology Data Exchange (ETDEWEB)

    Varela, J.; Bercebal, D. [Ciemat, Madrid (Spain)

    2000-07-01

    The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs.

  16. Structural Optimization of an Innovative 10 MW Wind Turbine Nacelle

    DEFF Research Database (Denmark)

    Dabrowski, Dariusz; Natarajan, Anand; Stehouwer, Ewoud

    2015-01-01

    For large wind turbine configurations of 10 MW and higher capacities, direct-drives present a more compact solution over conventional geared drivetrains. Further, if the generator is placed in front of the wind turbine rotor, a compact “king-pin” drive is designed, that allows the generator...... to be directly coupled to the hub. In presented study, the structural re-design of the innovative 10 MW nacelle was made using extreme loads obtained from a 10 MW reference wind turbine. On the basis of extreme loads the ultimate stresses on critical nacelle components were determined to ensure integrity...

  17. Alternative approach for establishing the Nacelle Transfer Function

    DEFF Research Database (Denmark)

    Krishna, Vinay B.; Ormel, Frank; Hansen, Kurt Schaldemose

    2016-01-01

    The IEC 61400-12-2:2013 is an alternative for all the power performance measurements and analysis when the requirements of the IEC 61400-12-1:2005 are not met. The methodology in the IEC 61400-12-2 standard is solely based on the nacelle anemometry instead of the more traditional methods involving...

  18. Generic calibration procedures for nacelle-based profiling lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    In power performance testing, it has been demonstrated that the effects of wind speed and direction variations over the rotor disk can no longer be neglected for large wind turbines [1]. A new generation of commercial nacelle-based lidars is now available, offering wind profiling capabilities. De...

  19. Turbulence characterization from a forward-looking nacelle lidar

    DEFF Research Database (Denmark)

    Peña, Alfredo; Mann, Jakob; Dimitrov, Nikolay Krasimirov

    2017-01-01

    of lidars were installed on the nacelle of a wind turbine. Comparison of the lidar-based along-wind unfiltered variances with those from a cup anemometer installed on a meteorological mast close to the turbine shows a bias of just 2 %. The ratios of the unfiltered and filtered radial velocity variances...

  20. Turboprop Engine Nacelle Optimization for Flight Increased Safety and Pollution Reduction

    Directory of Open Access Journals (Sweden)

    Cristian DOROBAT

    2018-03-01

    Full Text Available Commuter airplanes defined in CS-23 as being propeller driven, twin-engine, nineteen seats and maximum certified take-off weight of 8618 Kg had lately a special development due to advantages of turboprop engine compared with piston or jet engines. Nacelle optimization implies a sound and vibrations proof engine frame, engine fuel consumption reduction (through smaller nacelle drag and weight, better lift, better pressure recovery in air induction system, smaller drag of exhaust nozzles, engine cooling and nacelle ventilation more efficient, composite nacelle fairings with noise reduction properties, etc.. Nacelle aerodynamic experimental model, air induction experimental model and other nacelle experimental systems tested independently allow construction efficiency due to minimizing modifications on nacelle assembly and more safety in operation [1].

  1. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings V : Clark Y Biplane Cellule - NACA Cowled Nacelle - Tractor Propeller

    Science.gov (United States)

    Valentine, E Floyd

    1935-01-01

    This report is the fifth of a series giving the results obtained from wind tunnel tests on the interference drag and propulsive efficiency of nacelle-propeller-wing combinations. This report gives results of tests of an NACA cowled air-cooled engine nacelle with tractor propeller located in 12 positions with reference to a Clark Y biplane cellule.

  2. Characterizing the Influence of Abstraction in Full-Scale Wind Turbine Nacelle Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schkoda, Ryan; Bibo, Amin; Guo, Yi; Lambert, Scott; Wallen, Robb

    2016-08-01

    In recent years, there has been a growing interest in full-scale wind turbine nacelle testing to complement individual component testing. As a result, several wind turbine nacelle test benches have been built to perform such testing with the intent of loading the integrated components as they are in the field. However, when mounted on a test bench the nacelle is not on the top of a tower and does not have blades attached to it--this is a form of abstraction. This paper aims to quantify the influence of such an abstraction on the dynamic response of the nacelle through a series of simulation case studies. The responses of several nacelle components are studied including the main bearing, main shaft, gearbox supports, generator, and yaw bearing interface. Results are presented to highlight the differences in the dynamic response of the nacelle caused by the abstraction. Additionally, the authors provide recommendations for mitigating the effects of the abstraction.

  3. Generic Methodology for Field Calibration of Nacelle-Based Wind Lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    2016-01-01

    Nacelle-based Doppler wind lidars have shown promising capabilities to assess power performance, detect yaw misalignment or perform feed-forward control. The power curve application requires uncertainty assessment. Traceable measurements and uncertainties of nacelle-based wind lidars can be obtai...

  4. Aircraft Wing for Over-The-Wing Mounting of Engine Nacelle

    Science.gov (United States)

    Hahn, Andrew S. (Inventor); Kinney, David J. (Inventor)

    2011-01-01

    An aircraft wing has an inboard section and an outboard section. The inboard section is attached (i) on one side thereof to the aircraft's fuselage, and (ii) on an opposing side thereof to an inboard side of a turbofan engine nacelle in an over-the-wing mounting position. The outboard section's leading edge has a sweep of at least 20 degrees. The inboard section's leading edge has a sweep between -15 and +15 degrees, and extends from the fuselage to an attachment position on the nacelle that is forward of an index position defined as an imaginary intersection between the sweep of the outboard section's leading edge and the inboard side of the nacelle. In an alternate embodiment, the turbofan engine nacelle is replaced with an open rotor engine nacelle.

  5. Nacelle lidar for power curve measurement - Avedøre campaign

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Davoust, Samuel

    measurement of the wind speed away from the instrument. In the first phase of the EUDP project: “Nacelle lidar for power performance measurement”, a measurement campaign with a na-celle lidar prototype placed on an onshore turbine demonstrated the poten-tial of the technology for power curve measurement....... The main deviations of this method to the requirement of the IEC 61400-12-1 were identified and a procedure was established for the use of a nacelle lidar specifically for power curve measurement. This report describes the results of a sec-ond measurement campaign aiming at testing and finalising...

  6. Winglet and long duct nacelle aerodynamic development for DC-10 derivatives

    Science.gov (United States)

    Taylor, A. B.

    1978-01-01

    Advanced technology for application to the Douglas DC-10 transport is discussed. Results of wind tunnel tests indicate that the winglet offers substantial cruise drag reduction with less wing root bending moment penalty than a wing-tip extension of the same effectiveness and that the long duct nacelle offers substantial drag reduction potential as a result of aerodynamic and propulsion improvements. The aerodynamic design and test of the nacelle and pylon installation are described.

  7. Wind field reconstruction from nacelle-mounted lidar short-range measurements

    Directory of Open Access Journals (Sweden)

    A. Borraccino

    2017-05-01

    Full Text Available Profiling nacelle lidars probe the wind at several heights and several distances upstream of the rotor. The development of such lidar systems is relatively recent, and it is still unclear how to condense the lidar raw measurements into useful wind field characteristics such as speed, direction, vertical and longitudinal gradients (wind shear. In this paper, we demonstrate an innovative method to estimate wind field characteristics using nacelle lidar measurements taken within the induction zone. Model-fitting wind field reconstruction techniques are applied to nacelle lidar measurements taken at multiple distances close to the rotor, where a wind model is combined with a simple induction model. The method allows robust determination of free-stream wind characteristics. The method was applied to experimental data obtained with two different types of nacelle lidar (five-beam Demonstrator and ZephIR Dual Mode. The reconstructed wind speed was within 0.5 % of the wind speed measured with a mast-top-mounted cup anemometer at 2.5 rotor diameters upstream of the turbine. The technique described in this paper overcomes measurement range limitations of the currently available nacelle lidar technology.

  8. Evaluation of wind flow with a nacelle-mounted, continuous wave wind lidar

    DEFF Research Database (Denmark)

    Medley, John; Barker, Will; Harris, Mike

    2014-01-01

    Nacelle-mounted lidar is becoming widely recognized as a tool with potential for assessing power curves, understanding wind flow characteristics, and controlling turbines. As rotor diameters continue to increase, and the deployment of turbines in complex terrain becomes more widespread, knowledge...... mounted on the nacelle of a 550 kW turbine at the Risø campus of the Technical University of Denmark (DTU). Lidar measurements of wind speed and turbulence were compared against those made by anemometers on a high-quality traditional mast. Analysis showed excellent correlation between mast and Zeph...... that this is the first time that a commercially available nacelle-mounted lidar has been used to evaluate such rotor-equivalent power curves....

  9. Uncertainty of power curve measurement with a two-beam nacelle-mounted lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Courtney, Michael Stephen; Friis Pedersen, Troels

    2015-01-01

    Nacelle lidars are attractive for offshore measurements since they can provide measurements of the free wind speed in front of the turbine rotor without erecting a met mast, which significantly reduces the cost of the measurements. Nacelle-mounted pulsed lidars with two lines of sight (LOS) have...... lies between 1 and 2% for the wind speed range between cut-in and rated wind speed. Finally, the lidar was mounted on the nacelle of a wind turbine in order to perform a power curve measurement. The wind speed was simultaneously measured with a mast-top mounted cup anemometer placed two rotor diameters...... lidar was less than 10% larger on average than that obtained with the mast mounted cup anemometer. Copyright © 2015 John Wiley & Sons, Ltd....

  10. Yawing characteristics during slippage of the nacelle of a multi MW wind turbine

    Science.gov (United States)

    Kim, M.-G.; Dalhoff, P. H.; Gust, P.

    2016-09-01

    High aerodynamic yaw loads coupled with electrical failures in the wind turbine can result to a slippage of the nacelle, due to limited braking capabilities of the yaw system. A slippage on the other hand can lead to a mechanical malfunction of the yaw system. To analyse the yawing characteristics of a wind turbine during nacelle slippage situations, a detailed multibody system model of the yaw system has been developed and incorporated in a multibody system model of a wind turbine based on a 3.3 MW turbine. Extreme load cases which lead to a nacelle slippage have been simulated. The dynamics and loads on different wind turbine components are presented and discussed. First results show minimal load increases of the rotor torque and the bending moments of the blade root sections during slippage but unfavourable rotational speeds of the yaw drives.

  11. Characterization of the unsteady flow in the nacelle region of a modern wind turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.

    2011-01-01

    A three-dimensional Navier–Stokes solver has been used to investigate the flow in the nacelle region of a wind turbine where anemometers are typically placed to measure the flow speed and the turbine yaw angle. A 500 kW turbine was modelled with rotor and nacelle geometry in order to capture...... the complex separated flow in the blade root region of the rotor. A number of steady state and unsteady simulations were carried out for wind speeds ranging from 6 m s−1 to 16 m s−1 as well as two yaw and tilt angles. The flow in the nacelle region was found to be highly unsteady, dominated by unsteady vortex...... anemometry showed significant dependence on both yaw and tilt angles with yaw errors of up to 10 degrees when operating in a tilted inflow. Copyright © 2010 John Wiley & Sons, Ltd....

  12. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1182 Nacelle areas behind firewalls... immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...

  13. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    Science.gov (United States)

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  14. Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle

    Science.gov (United States)

    Xiong, Neng; Tao, Yang; Liu, Zhiyong; Lin, Jun

    2018-05-01

    The aerodynamic performance of laminar flow nacelle is highly sensitive to uncertain working conditions, especially the surface roughness. An efficient robust aerodynamic optimization method on the basis of non-deterministic computational fluid dynamic (CFD) simulation and Efficient Global Optimization (EGO)algorithm was employed. A non-intrusive polynomial chaos method is used in conjunction with an existing well-verified CFD module to quantify the uncertainty propagation in the flow field. This paper investigates the roughness modeling behavior with the γ-Ret shear stress transport model including modeling flow transition and surface roughness effects. The roughness effects are modeled to simulate sand grain roughness. A Class-Shape Transformation-based parametrical description of the nacelle contour as part of an automatic design evaluation process is presented. A Design-of-Experiments (DoE) was performed and surrogate model by Kriging method was built. The new design nacelle process demonstrates that significant improvements of both mean and variance of the efficiency are achieved and the proposed method can be applied to laminar flow nacelle design successfully.

  15. Optimal design and installation of ultra high bypass ratio turbofan nacelle

    Science.gov (United States)

    Savelyev, Andrey; Zlenko, Nikolay; Matyash, Evgeniy; Mikhaylov, Sergey; Shenkin, Andrey

    2016-10-01

    The paper is devoted to the problem of designing and optimizing the nacelle of turbojet bypass engine with high bypass ratio and high thrust. An optimization algorithm EGO based on development of surrogate models and the method for maximizing the probability of improving the objective function has been used. The designing methodology has been based on the numerical solution of the Reynolds equations system. Spalart-Allmaras turbulence model has been chosen for RANS closure. The effective thrust losses has been uses as an objective function in optimizing the engine nacelle. As a result of optimization, effective thrust has been increased by 1.5 %. The Blended wing body aircraft configuration has been studied as a possible application. Two variants of the engine layout arrangement have been considered. It has been shown that the power plant changes the pressure distribution on the aircraft surface. It results in essential diminishing the configuration lift-drag ratio.

  16. Application of laminar flow control to high-bypass-ratio turbofan engine nacelles

    Science.gov (United States)

    Wie, Y. S.; Collier, F. S., Jr.; Wagner, R. D.

    1991-01-01

    Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.

  17. Development of a Kevlar/PMR-15 reduced drag DC-9 nacelle fairing

    Science.gov (United States)

    Kawai, R. T.; Hrach, F. J.

    1980-01-01

    The paper describes an advanced composite fairing designed to reduce drag on DC-9 nacelles as a part of the NASA Engine Component Improvement Program. This fairing is the aft enclosure for the thrust reverser actuator system on JT8D engine nacelles and is subjected to a 500 F exhaust flow during the reverse thrust. A reduced-drag configuration was developed by using in-flight tuft surveys for flow visualization in order to identify areas with low-quality flow, and then modifying the aerodynamic lines to improve the flow. A fabrication method for molding the part in an autoclave was developed; this material system is suitable for 500 F. The resultant composite fairing reduces the overall aircraft drag 1% with a weight reduction of 40% when compared with a metal component.

  18. Is the nacelle mounted anemometer an acceptable option in performance testing?

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J A [FFA, The Aeronautical Research Inst. of Sweden, Bromma (Sweden); Frandsen, S; Madsen, H A; Antoniou, I; Friis Pedersen, T [Risoe National Lab., Roskilde (Denmark); Hunter, R [RES, Renewable Energy Systems, Glasgow, Scotland (United Kingdom); Klug, H [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    Although the nacelle anemometer method has been used for power verification purposes for several years, it is only relatively recently that a full understanding of its limitations has emerged. the technique is totally dependent upon the assumption that the nacelle to free wind speed relationship established for a reference turbine in free air can be applied universally to other turbines. Facts emerged from research projects have shown that this assumption is unjustified. In the present paper facts are presented of which some have not been identified nor presented before. E.g. the effect related to wake conditions is novel as a phenomena and the size of the effect can be considerable. The analysis shows that the total error caused by the effects considered in this paper can, in the worst case reach unacceptable high values, 24%, but by taking precautionary measures the errors can be kept at acceptable low levels, 4%. It is found probable that the future use of nacelle anemometry for power performance verification will be subject to strong restrictions. (au)

  19. Wind tunnel investigation of an STOL aircraft model. STOL zenki mokei-fudo shiken. ; Engine nacelle keijo koka

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The nacelle shape of a mimic engine mounted on the wind tunnel test model for an STOL aircraft developed by the National Aerospace Laboratory has much larger length than in the nacelle of a scale reduced to 8% of an actual engine, and the shape below the nacelle is different. Therefore, in order to estimate the air force in the actual aircraft from the aerodynamic data obtained in a wind tunnel test, the data are corrected by using differences in aerodynamic loads (estimated values) applied on the mimic engine and the actual engine. For the purpose of discussing the reasonability of this correction, an 8%-scale flow through nacelle with the same shape as in the actual aircraft (the actual aircraft type) and a flow through nacelle for a wind tunnel testing model of the experimental STOL aircraft were fabricated and wind tunnel tests were performed. These results were compared with the corrected results of the mimic engine wind tunnel test. As a result, it was made clear that the force data have been corrected excessively, and the moments have been corrected considerably well. 7 refs., 32 figs., 7 tabs.

  20. Computational Fluid Dynamics (CFD) Design of a Blended Wing Body (BWB) with Boundary Layer Ingestion (BLI) Nacelles

    Science.gov (United States)

    Morehouse, Melissa B.

    2001-01-01

    A study is being conducted to improve the propulsion/airframe integration for the Blended Wing-Body (BWB) configuration with boundary layer ingestion nacelles. TWO unstructured grid flow solvers, USM3D and FUN3D, have been coupled with different design methods and are being used to redesign the aft wing region and the nacelles to reduce drag and flow separation. An initial study comparing analyses from these two flow solvers against data from a wind tunnel test as well as predictions from the OVERFLOW structured grid code for a BWB without nacelles has been completed. Results indicate that the unstructured grid codes are sufficiently accurate for use in design. Results from the BWB design study will be presented.

  1. Sensitivity analysis of nacelle lidar free stream wind speed measurements to wind-induction reconstruction model and lidar range configuration

    DEFF Research Database (Denmark)

    Svensson, Elin; Borraccino, Antoine; Meyer Forsting, Alexander Raul

    The sensitivity of nacelle lidar wind speed measurements to wind-induction models and lidar range configurations is studied using experimental data from the Nørrekær Enge (NKE) measurement campaign and simulated lidar data from Reynold-Averaged Navier Stokes (RANS) aerodynamic computational fluid...... the ZDM was configured to measure at five distances. From the configured distances, a large number of range configurations were created and systematically tested to determine the sensitivity of the reconstructed wind speeds to the number of ranges, minimum range and maximum range in the range......) of the fitting residuals. The results demonstrate that it is not possible to use RANS CFD simulated lidar data to determine optimal range configurations for real-time nacelle lidars due to their perfect (unrealistic) representation of the simulated flow field. The recommended range configurations are therefore...

  2. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  3. Suppression of pool fires with HRC-125 in a simulated engine nacelle.

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, David R. (INS, Inc., Lexington Park, MD); Hewson, John C.

    2007-06-01

    CFD simulations are conducted to predict the distribution of fire suppressant in an engine nacelle and to predict the suppression of pool fires by the application of this suppressant. In the baseline configuration, which is based on an installed system, suppressant is injected through four nozzles at a rate fast enough to suppress all simulated pool fires. Variations that reduce the mass of the suppression system (reducing the impact of the suppression system on meeting mission needs) are considered, including a reduction in the rate of suppressant injection, a reduction in the mass of suppressant and a reduction in the number of nozzles. In general, these variations should work to reduce the effectiveness of the suppression system, but the CFD results point out certain changes that have negligible impact, at least for the range of phenomena considered here. The results are compared with measurements where available. Comparisons with suppressant measurements are reasonable. A series of twenty-three fire suppression tests were conducted to check the predictions. The pre-test predictions were generally successful in identifying the range of successful suppression tests. In two separate cases, each where one nozzle of the suppression system was capped, the simulation results did indicate a failure to suppress for a condition where the tests indicated successful suppression. When the test-suppressant discharge rate was reduced by roughly 25%, the tests were in agreement with the predictions. That is, the simulations predict a failure to suppress slightly before observed in these cases.

  4. Aerodynamic analysis for aircraft with nacelles, pylons, and winglets at transonic speeds

    Science.gov (United States)

    Boppe, Charles W.

    1987-01-01

    A computational method has been developed to provide an analysis for complex realistic aircraft configurations at transonic speeds. Wing-fuselage configurations with various combinations of pods, pylons, nacelles, and winglets can be analyzed along with simpler shapes such as airfoils, isolated wings, and isolated bodies. The flexibility required for the treatment of such diverse geometries is obtained by using a multiple nested grid approach in the finite-difference relaxation scheme. Aircraft components (and their grid systems) can be added or removed as required. As a result, the computational method can be used in the same manner as a wind tunnel to study high-speed aerodynamic interference effects. The multiple grid approach also provides high boundary point density/cost ratio. High resolution pressure distributions can be obtained. Computed results are correlated with wind tunnel and flight data using four different transport configurations. Experimental/computational component interference effects are included for cases where data are available. The computer code used for these comparisons is described in the appendices.

  5. Doppler lidar mounted on a wind turbine nacelle - UPWIND deliverable D6.7.1

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, N.; Mann, J.; Courtney, M.; Sjoeholm, M.

    2010-12-15

    A ZephIR prototype wind lidar manufactured by QinetiQ was mounted on the nacelle of a Vestas V27 wind turbine and measurements of the incoming wind flow towards the rotor of the wind turbine were acquired for approximately 3 months (April - June 2009). The objective of this experiment was the investigation of the turbulence attenuation induced in the lidar measurements. In this report are presented results from data analysis over a 21-hour period (2009-05-05 12:00 - 2009-05-06 09:00). During this period the wind turbine was not operating and the line-of-sight of the lidar was aligned with the wind direction. The analysis included a correlation study between the ZephIR lidar and a METEK sonic anemometer. The correlation analysis was performed using both 10 minutes and 10 Hz wind speed values. The spectral transfer function which describes the turbulence attenuation, which is induced in the lidar measurements, was estimated by means of spectral analysis. An attempt to increase the resolution of the wind speed measurements of a cw lidar was performed, through the deconvolution of the lidar signal. A theoretical model of such a procedure is presented in this report. A simulation has validated the capability of the algorithm to deconvolve and consequently increase the resolution of the lidar system. However the proposed method was not efficient when applied to real lidar wind speed measurements, probably due to the effect, that the wind direction fluctuations along the lidar's line-of-sight have, on the lidar measurements. (Author)

  6. Numerical study on non-locally reacting behavior of nacelle liners incorporating drainage slots

    Science.gov (United States)

    Chen, Chao; Li, Xiaodong; Thiele, Frank

    2018-06-01

    For acoustic liners used in current commercial nacelles, in order to prevent any liquid accumulating in the resonators, drainage slots are incorporated on the partition walls between closely packed cavities. Recently, an experimental study conducted by Busse-Gerstengarbe et al. shown that the cell interaction introduced by drainage slots causes an additional dissipation peak which increases with the size of the slot. However, the variation of damping process due to drainage slots is still not fully understood. Therefore, a numerical study based on computational aeroacoustic methods is carried out to investigate the mechanism of the changed attenuation characteristics due to drainage slots in presence of grazing incident sound waves with low or high intensities. Different slot configurations are designed based on the generic non-locally reacting liner model adopted in the experimental investigation. Both 2-D and 3-D numerical simulations of only slit resonators are carried out. Numerical results indicate that the extra peak is a result of a resonance excited in the second cavity at specific frequency. Under high sound pressure level incoming waves, the basic characteristics of the acoustic performance remain. However, vortex shedding transpires at the resonances around both the slits and the drainage slot. Vorticity contours show that the connection of two coupled cavities decreases the strength of vortex shedding around the basic Helmholtz resonance due to a higher energy reflection. Meanwhile, the cell interaction significantly increases the vorticity magnitude near the extra resonant frequency. Finally, a semi-empirical model is derived to predict the extra attenuation peak frequency.

  7. Field Testing of Feedforward Collective Pitch Control on the CART2 Using a Nacelle-Based Lidar Scanner

    International Nuclear Information System (INIS)

    Schlipf, David; Haizmann, Florian; Hofsäß, Martin; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew; Wright, Alan

    2014-01-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, when the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Furthermore, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines

  8. Field Testing of Feedforward Collective Pitch Control on the CART2 Using a Nacelle-Based Lidar Scanner

    Science.gov (United States)

    Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsäß, Martin; Wright, Alan; Cheng, Po Wen

    2014-12-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, when the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Furthermore, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.

  9. Numerical study of a novel procedure for installing the tower and Rotor Nacelle Assembly of offshore wind turbines based on the inverted pendulum principle

    Science.gov (United States)

    Guachamin Acero, Wilson; Gao, Zhen; Moan, Torgeir

    2017-09-01

    Current installation costs of offshore wind turbines (OWTs) are high and profit margins in the offshore wind energy sector are low, it is thus necessary to develop installation methods that are more efficient and practical. This paper presents a numerical study (based on a global response analysis of marine operations) of a novel procedure for installing the tower and Rotor Nacelle Assemblies (RNAs) on bottom-fixed foundations of OWTs. The installation procedure is based on the inverted pendulum principle. A cargo barge is used to transport the OWT assembly in a horizontal position to the site, and a medium-size Heavy Lift Vessel (HLV) is then employed to lift and up-end the OWT assembly using a special upending frame. The main advantage of this novel procedure is that the need for a huge HLV (in terms of lifting height and capacity) is eliminated. This novel method requires that the cargo barge is in the leeward side of the HLV (which can be positioned with the best heading) during the entire installation. This is to benefit from shielding effects of the HLV on the motions of the cargo barge, so the foundations need to be installed with a specific heading based on wave direction statistics of the site and a typical installation season. Following a systematic approach based on numerical simulations of actual operations, potential critical installation activities, corresponding critical events, and limiting (response) parameters are identified. In addition, operational limits for some of the limiting parameters are established in terms of allowable limits of sea states. Following a preliminary assessment of these operational limits, the duration of the entire operation, the equipment used, and weather- and water depth-sensitivity, this novel procedure is demonstrated to be viable.

  10. Advantages on monitoring wind turbine nacelle oscillation

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Marhadi, Kun Saptohartyadi; Hilmisson, Reynir

    2015-01-01

    and vibrations on blades, tower and drive train components, which may jeopardize their working condition. The present paper deals with the comparison and analysis of vibration signals from wind turbines subjected to various failure modes and operating conditions, such as blade misalignment, pitch malfunction...

  11. Detecting wind turbine wakes with nacelle lidars

    DEFF Research Database (Denmark)

    Held, D. P.; Larvol, A.; Mann, Jakob

    2017-01-01

    variance is used as a detection parameter for wakes. A one month long measurement campaign, where a continuous-wave lidar on a turbine has been exposed to multiple wake situations, is used to test the detection capabilities. The results show that it is possible to identify situation where a downstream...... turbine is in wake by comparing the peak widths. The used lidar is inexpensive and brings instalments on every turbine within economical reach. Thus, the information gathered by the lidars can be used for improved control at wind farm level....

  12. Advanced Computational and Experimental Techniques for Nacelle Liner Performance Evaluation

    Science.gov (United States)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.; Nark, Douglas

    2009-01-01

    The Curved Duct Test Rig (CDTR) has been developed to investigate sound propagation through a duct of size comparable to the aft bypass duct of typical aircraft engines. The axial dimension of the bypass duct is often curved and this geometric characteristic is captured in the CDTR. The semiannular bypass duct is simulated by a rectangular test section in which the height corresponds to the circumferential dimension and the width corresponds to the radial dimension. The liner samples are perforate over honeycomb core and are installed on the side walls of the test section. The top and bottom surfaces of the test section are acoustically rigid to simulate a hard wall bifurcation or pylon. A unique feature of the CDTR is the control system that generates sound incident on the liner test section in specific modes. Uniform air flow, at ambient temperature and flow speed Mach 0.275, is introduced through the duct. Experiments to investigate configuration effects such as curvature along the flow path on the acoustic performance of a sample liner are performed in the CDTR and reported in this paper. Combinations of treated and acoustically rigid side walls are investigated. The scattering of modes of the incident wave, both by the curvature and by the asymmetry of wall treatment, is demonstrated in the experimental results. The effect that mode scattering has on total acoustic effectiveness of the liner treatment is also shown. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation to the convected Helmholtz equation are reported. The spectra of attenuation produced by the analytic model are similar to experimental results for both walls treated, straight and curved flow path, with plane wave and higher order modes incident. The numerical model is used to define the optimized resistance and reactance of a liner that significantly improves liner attenuation in the frequency range 1900-2400 Hz. A liner impedance descriptor is used to determine the liner parameters that achieve the optimum impedance.

  13. Turbulence measurement with a two-beam nacelle lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Sathe, Ameya; Mioullet, A.

    The analysis of the turbulence intensity measurement is performed for a lidar measuring horizontally with two beams. First the turbulence intensity measured by such a system was evaluated theoretically. The Mann model of turbulence was used to evaluate the true value of the turbulence intensity...... of the wind speed and the main effects of the lidar measurement principles on turbulence intensity measurement were modeled: - A lidar senses the wind speed over the probe volume acting as a low pass-filter and thus cannot resolve high frequency turbulence; - The horizontal wind speed is retrieved from...... the combination of the radial speeds measured along two line-of-sights with different orientations; this results in the contamination of the lidar turbulence intensity measurement from the transverse component of the wind field. Secondly, the theoretical results were compared to experimental measurements. A two...

  14. CFD Investigation of Flow Past Idealized Engine Nacelle Clutter

    National Research Council Canada - National Science Library

    Casper, Matthew S

    2007-01-01

    ...), to resolve the flow-field dynamics inside the clutter element and determine mechanisms accounting for the failure of suppressant spray droplets from traversing the array under low-speed, free-stream conditions (ReD = 1, 575...

  15. Doppler lidar mounted on a wind turbine nacelle – UPWIND deliverable D6.7.1

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Mann, Jakob; Courtney, Michael

    measurements, was estimated by means of spectral analysis. An attempt to increase the resolution of the wind speed measurements of a cw lidar was performed, through the deconvolution of the lidar signal. A theoretical model of such a procedure is presented in this report. A simulation has validated...... the capability of the algorithm to deconvolve and consequently increase the resolution of the lidar system. However the proposed method was not efficient when applied to real lidar wind speed measurements, probably due to the effect, that the wind direction fluctuations along the lidar’s line-of-sight have...

  16. Estimating Turbulence Statistics and Parameters from Ground- and Nacelle-Based Lidar Measurements

    DEFF Research Database (Denmark)

    Sathe, Ameya; Banta, Robert; Pauscher, Lukas

    , these documents are often adopted in part or in total by other standards-making bodies. A Recommended Practices document includes actions and procedures recommended by the experts involved in the research project. A Best Practices document includes suggested actions and procedures based on good industry practices...... collected during the research project. An Experts Group Studies report includes the latest background information on the topic as well as a survey of practices, where possible. Previously issued IEA Wind Recommended Practices, Best Practices, and Expert Group Reports can be found here on the Task 11 web......The International Energy Agency Implementing Agreement for Co-operation in the Research, Development and Deployment of Wind Energy Systems (IEA Wind) is a vehicle for member countries to exchange information on the planning and execution of national, large-scale wind system projects...

  17. 78 FR 31517 - Notification of Proposed Production Activity; Vestas Nacelles America, Inc.; Subzone 123E (Wind...

    Science.gov (United States)

    2013-05-24

    ... foreign inputs. The current request involves the use of additional inputs in the production of the... reduced on foreign status production equipment. Components and materials sourced from abroad include... and lubricants; assembly pastes; antifreeze/ coolants; fiberglass plates; plastic pipes/tubes/hoses...

  18. Evaluation of wind flow with a nacelle-mounted continuous-wave lidar

    DEFF Research Database (Denmark)

    Medley, John; Slinger, Chris; Barker, Will

    IR, increasing the confidence in the ZephIR for measuring wind parameters in this configuration. SCADA data from the turbine was combined with measured wind speeds and directions to derive power curves from the mast data (hub-height) and from ZephIR data (hub-height and rotor-equivalent). The rotor...

  19. Influence of the rotor nacelle assembly mass on the design of monopile foundations

    NARCIS (Netherlands)

    Segeren, M.L.A.; Diepeveen, N.F.B.

    2014-01-01

    In light of the developments of the offshore wind industry in terms of water depth and turbine size, the objective of the research presented in this paper is to gain insight in the applicability limits of the monopile support structure for large offshore wind turbines. This is done by demonstrating

  20. Communal Sensor Network for Adaptive Noise Reduction in Aircraft Engine Nacelles

    Science.gov (United States)

    Jones, Kennie H.; Nark, Douglas M.; Jones, Michael G.

    2011-01-01

    Emergent behavior, a subject of much research in biology, sociology, and economics, is a foundational element of Complex Systems Science and is apropos in the design of sensor network systems. To demonstrate engineering for emergent behavior, a novel approach in the design of a sensor/actuator network is presented maintaining optimal noise attenuation as an adaptation to changing acoustic conditions. Rather than use the conventional approach where sensors are managed by a central controller, this new paradigm uses a biomimetic model where sensor/actuators cooperate as a community of autonomous organisms, sharing with neighbors to control impedance based on local information. From the combination of all individual actions, an optimal attenuation emerges for the global system.

  1. A lifting-surface theory solution for the diffraction of internal sound sources by an engine nacelle

    Science.gov (United States)

    Martinez, R.

    1986-07-01

    Lifting-surface theory is used to solve the problem of diffraction by a rigid open-ended pipe of zero thickness and finite length, with application to the prediction of acoustic insertion-loss performance for the encasing structure of a ducted propeller or turbofan. An axisymmetric situation is assumed, and the incident field due to a force applied directly to the fluid in the cylinder axial direction is used. A virtual-source distribution of unsteady dipoles is found whose integrated component of radial velocity is set to cancel that of the incident field over the surface. The calculated virtual load is verified by whether its effect on the near-field input power at the actual source is consistent with the far-field power radiated by the system, a balance which is possible if the no-flow-through boundary condition has been satisfied over the rigid pipe surface such that the velocity component of the acoustic intensity is zero.

  2. 75 FR 5283 - Foreign-Trade Zone 123 - Denver, Colorado, Application for Subzone, Vestas Nacelles America, Inc...

    Science.gov (United States)

    2010-02-02

    ..., electrical equipment, motors, generators, batteries, profile projectors and parts, ducts, clamps, roller...% of annual shipments). On domestic shipments, the company would be able to elect the duty rate that...

  3. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    Science.gov (United States)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    2005-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  4. Large-Scale V/STOL Experimental Investigations of an Ejector-Lift Fighter and a Twin Tilt-Nacelle Transport

    Science.gov (United States)

    Dudley, Michael R.

    2016-01-01

    In the 1980s NASA Aeronautics was actively involved in full-scale wind tunnel testing of promising VSTOL aircraft concepts. This presentation looks at two, a multi-role fighter and a subsonic tactical transport. Their strengths and weaknesses are discussed with some of the rationale that ultimately led to the selection of competing concepts for production, namely the V-22 Osprey and the F-35 Lightning. The E7-A STOVL multi-role fighter was the product of an aircraft development program in the late 1980s by NASA, the Defense Advanced Research Projects Agency (DARPA), the Canadian Department of Industry Science and Technology (DIST), and industry partners General Dynamics and Boeing Dehavilland. The program was conducted an in response to increasing US-UK interest in supersonic STOVL fighters. The objective was to design an aircraft that could replace most existing close air support-air combat fighters with a single aircraft that had some of the qualities of an air superiority fighter and the deployment flexibility of a VSTOL aircraft. The resulting E7-A concept was a delta-wing supersonic fighter that used a fuselage-mounted thrust augmenting ejector and a ventral deflecting jet nozzle for vertical lift. The Grumman Aircraft Company, the Navy, and NASA developed the Design-698 (D-698) subsonic tactical transport in response to the Navy's Type A VSTOL utility aircraft requirement. The objective was to develop a subsonic utility transport with the operational flexibility of a helicopter, but with greater speed and range. The D-698 employs two high-bypass turbofan engines mounted on a dumbbell that rotates through ninety degrees for vertical takeoff and cruise flight. Movable vanes positioned in the exhaust flow provide control in hover with the need for reaction control jets. The presentations concluding comments suggest that technology advances in the last thirty-years may justify the value of revisiting some of these concepts.

  5. 78 FR 51050 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Science.gov (United States)

    2013-08-20

    ... (LHS) longerons are vulnerable to fatigue cracking. Failure of the nacelle lower longeron would result...] of the RHS and LHS nacelle lower longerons until the terminating action is accomplished. The initial...

  6. 77 FR 32497 - Grant of Authority for Subzone Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine...

    Science.gov (United States)

    2012-06-01

    ... Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine Nacelles and Generating Sets) Fort Smith... special-purpose subzone at the wind turbine nacelle and generating set manufacturing facility of... related to the manufacturing of wind turbine nacelles and generating sets at the Mitsubishi Power Systems...

  7. 77 FR 20782 - Foreign-Trade Zone 161-Sedgwick County, KS; Application for Temporary/Interim Manufacturing...

    Science.gov (United States)

    2012-04-06

    ... Turbine Nacelles and Hubs); Hutchinson, KS An application has been submitted to the Executive Secretary of... County), Kansas. Under T/IM procedures, Siemens has requested authority to produce wind turbine nacelles... (4008.11), hydraulic hoses (4009.21, 4009.42), rubber gaskets and o-rings (4016.93), vibration dampeners...

  8. Evaluation of the TRIMAX 280 System

    National Research Council Canada - National Science Library

    Kalberer, Jennifer

    2002-01-01

    .... A series of five JP-8 pool fires of 2500-sq ft, three JP-8 3500-sq ft pool fires with F100 engine nacelle mockup, and one JP-8 700-sq ft with F100 engine nacelle mockup were used to evaluate the 90...

  9. 14 CFR 121.277 - Protection of other airplane components against fire.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on both...

  10. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  11. Performance, Stability, and Control Investigation at Mach Numbers from 0.60 to 1.05 of a Model of the "Swallow" with Outer Wing Panels Swept 75 degree with and without Power Simulations

    Science.gov (United States)

    Schmeer, James W.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model with the outer wing panels swept 75 deg. has been conducted in the Langley 16-foot transonic tunnel. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. The engine nacelles incorporated swept lateral and vertical fins for aerodynamic stability and control. Jet-off data were obtained with flow-through nacelles, simulating inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained at Mach numbers from 0.60 to 1.05 through a range of angles of attack and angles of side-slip. Control characteristics were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control. The results indicate that the basic wing-body configuration becomes neutrally stable or unstable at a lift coefficient of 0.15; addition of nacelles with fins delayed instability to a lift coefficient of 0.30. Addition of nacelles to the wing-body configuration increased minimum drag from 0.0058 to 0.0100 at a Mach number of 0.60 and from 0.0080 to 0.0190 at a Mach number of 1.05 with corresponding reductions in maximum lift-drag ratio of 12 percent and 33 percent, respectively. The nacelle-fin combinations were ineffective as longitudinal controls but were adequate as directional and lateral controls. The model with nacelles and fins was directionally and laterally stable; the stability generally increased with increasing lift. Jet interference effects on stability and control characteristics were small but the adverse effects on drag were greater than would be expected for isolated nacelles.

  12. Wake meandering of a model wind turbine operating in two different regimes

    Science.gov (United States)

    Foti, Daniel; Yang, Xiaolei; Campagnolo, Filippo; Maniaci, David; Sotiropoulos, Fotis

    2018-05-01

    The flow behind a model wind turbine under two different turbine operating regimes (region 2 for turbine operating at optimal condition with the maximum power coefficient and 1.4-deg pitch angle and region 3 for turbine operating at suboptimal condition with a lower power coefficient and 7-deg pitch angle) is investigated using wind tunnel experiments and numerical experiments using large-eddy simulation (LES) with actuator surface models for turbine blades and nacelle. Measurements from the model wind turbine experiment reveal that the power coefficient and turbine wake are affected by the operating regime. Simulations with and without a nacelle model are carried out for each operating condition to study the influence of the operating regime and nacelle on the formation of the hub vortex and wake meandering. Statistics and energy spectra of the simulated wakes are in good agreement with the measurements. For simulations with a nacelle model, the mean flow field is composed of an outer wake, caused by energy extraction by turbine blades, and an inner wake directly behind the nacelle, while for the simulations without a nacelle model, the central region of the wake is occupied by a jet. The simulations with the nacelle model reveal an unstable helical hub vortex expanding outward toward the outer wake, while the simulations without a nacelle model show a stable and columnar hub vortex. Because of the different interactions of the inner region of the wake with the outer region of the wake, a region with higher turbulence intensity is observed in the tip shear layer for the simulation with a nacelle model. The hub vortex for the turbine operating in region 3 remains in a tight helical spiral and intercepts the outer wake a few diameters further downstream than for the turbine operating in region 2. Wake meandering, a low-frequency large-scale motion of the wake, commences in the region of high turbulence intensity for all simulations with and without a nacelle model

  13. Halon Flightline Extinguisher Evaluation: Data Supporting Standard Development

    National Research Council Canada - National Science Library

    Dierdorf, Dougls S; Kiel, Jennifer C

    2005-01-01

    .... An F-100 engine nacelle mockup was used to evaluate the full extinguishment times and amount of extinguishing agent used on a series of twenty aft engine and pool fires of 100-ft2 and ten access panel fires...

  14. A new class of actuator surface models for wind turbines

    Science.gov (United States)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2018-05-01

    Actuator line model has been widely employed in wind turbine simulations. However, the standard actuator line model does not include a model for the turbine nacelle which can significantly impact turbine wake characteristics as shown in the literature. Another disadvantage of the standard actuator line model is that more geometrical features of turbine blades cannot be resolved on a finer mesh. To alleviate these disadvantages of the standard model, we develop a new class of actuator surface models for turbine blades and nacelle to take into account more geometrical details of turbine blades and include the effect of turbine nacelle. In the actuator surface model for blade, the aerodynamic forces calculated using the blade element method are distributed from the surface formed by the foil chords at different radial locations. In the actuator surface model for nacelle, the forces are distributed from the actual nacelle surface with the normal force component computed in the same way as in the direct forcing immersed boundary method and the tangential force component computed using a friction coefficient and a reference velocity of the incoming flow. The actuator surface model for nacelle is evaluated by simulating the flow over periodically placed nacelles. Both the actuator surface simulation and the wall-resolved large-eddy simulation are carried out. The comparison shows that the actuator surface model is able to give acceptable results especially at far wake locations on a very coarse mesh. It is noted that although this model is employed for the turbine nacelle in this work, it is also applicable to other bluff bodies. The capability of the actuator surface model in predicting turbine wakes is assessed by simulating the flow over the MEXICO (Model experiments in Controlled Conditions) turbine and a hydrokinetic turbine.

  15. Low Noise Research Fan Stage Design

    Science.gov (United States)

    Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

    1995-01-01

    This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

  16. Turbofan Engine Core Compartment Vent Aerodynamic Configuration Development Methodology

    Science.gov (United States)

    Hebert, Leonard J.

    2006-01-01

    This paper presents an overview of the design methodology used in the development of the aerodynamic configuration of the nacelle core compartment vent for a typical Boeing commercial airplane together with design challenges for future design efforts. Core compartment vents exhaust engine subsystem flows from the space contained between the engine case and the nacelle of an airplane propulsion system. These subsystem flows typically consist of precooler, oil cooler, turbine case cooling, compartment cooling and nacelle leakage air. The design of core compartment vents is challenging due to stringent design requirements, mass flow sensitivity of the system to small changes in vent exit pressure ratio, and the need to maximize overall exhaust system performance at cruise conditions.

  17. Research in Aeroelasticity EFP-2007-II

    DEFF Research Database (Denmark)

    is demonstrated. For attached flow over thin airfoils (18%) 2D computations provide good results while a combination of Detached Eddy Simulation and laminar/ turbulent transition modeling improve the results in stalled conditions for a thick airfoil. • The unsteady flow in the nacelle region of a wind turbine......This report contains results from the EFP-2007-II project "Program for Research in Applied Aeroelasticity". The main results can be summed up into the following bullets: • 2D CFD was used to investigate tower shadow effects on both upwind and downwind turbines, and was used to validate the tower...... is dominated by large flow gradients caused by unsteady shedding of vortices from the root sections of the blades. • The averaged nacelle wind speed compares well to the freestream wind speed, whereas the nacelle flow angle is highly sensitive to vertical positioning and tilt in the inflow. • The trailing edge...

  18. Advanced Low-Noise Research Fan Stage Design

    Science.gov (United States)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  19. An Investigation of Large Tilt-Rotor Hover and Low Speed Handling Qualities

    Science.gov (United States)

    Malpica, Carlos A.; Decker, William A.; Theodore, Colin R.; Lindsey, James E.; Lawrence, Ben; Blanken, Chris L.

    2011-01-01

    A piloted simulation experiment conducted on the NASA-Ames Vertical Motion Simulator evaluated the hover and low speed handling qualities of a large tilt-rotor concept, with particular emphasis on longitudinal and lateral position control. Ten experimental test pilots evaluated different combinations of Attitude Command-Attitude Hold (ACAH) and Translational Rate Command (TRC) response types, nacelle conversion actuator authority limits and inceptor choices. Pilots performed evaluations in revised versions of the ADS-33 Hover, Lateral Reposition and Depart/Abort MTEs and moderate turbulence conditions. Level 2 handling qualities ratings were primarily recorded using ACAH response type in all three of the evaluation maneuvers. The baseline TRC conferred Level 1 handling qualities in the Hover MTE, but there was a tendency to enter into a PIO associated with nacelle actuator rate limiting when employing large, aggressive control inputs. Interestingly, increasing rate limits also led to a reduction in the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired, pitching motions proportional to the allowable amount of nacelle rate. A modification that counteracted this effect significantly improved the handling qualities. Evaluation of the different response type variants showed that inclusion of TRC response could provide Level 1 handling qualities in the Lateral Reposition maneuver by reducing coupled pitch and heave off axis responses that otherwise manifest with ACAH. Finally, evaluations in the Depart/Abort maneuver showed that uncertainty about commanded nacelle position and ensuing aircraft response, when manually controlling the nacelle, demanded high levels of attention from the pilot. Additional requirements to maintain pitch attitude within 5 deg compounded the necessary workload.

  20. Comparison of CFD Predictions of the TCA Baseline

    Science.gov (United States)

    Cappuccio, Gelsomina

    1999-01-01

    The computational fluid dynamics (CFD) comparisons being presented are compared to each other and to wind tunnel (WT) data on the baseline TCA. Some of the CFD computations were done prior to the tests and others later. Only force data (CL vs CD) from CFD will be presented as part of this report. The WT data presented comes from the testing of the baseline TCA in the Langley Unitary Plan Wind Tunnel (UPWT), Test Section #2. There are 2 sets of wind tunnel data being presented: one from test 1671 of model 2a (flapped wing) and the other from test 1679 of model 2b (solid wing). Most of the plots show only one run from each of the WT tests per configuration. But many repeat runs were taken during the tests. The WT repeat runs showed an uncertainty in the drag of +/- 0.5 count. There were times when the uncertainty in drag was better, +/- 0.25 count. Test 1671 data was of forces and pressures measured from model 2a. The wing had cutouts for installing various leading and trailing edge flaps at lower Mach numbers. The internal duct of the nacelles are not designed and fabricated as defined in the outer mold lines (OML) iges file. The internal duct was fabricated such that a linear transition occurs from the inlet to exhaust. Whereas, the iges definition has a constant area internal duct that quickly transitions from the inlet to exhaust cross sectional shape. The nacelle internal duct was fabricated, the way described, to save time and money. The variation in the cross sectional area is less than 1% from the iges definition. The nacelles were also installed with and without fairings. Fairings are defined as the build up of the nacelles on the upper wing surface so that the nacelles poke through the upper surface as defined in the OML iges file. Test 1679 data was of forces measured from model 2a and 2b. The wing for model 2b was a solid wing. The nacelles were built the same way as for model 2a, except for the nacelle base pressure installation. The nacelles were only

  1. Detection of icing on wind turbine blades by means of vibration and power curve analysis

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Kleani, Karolina; Mijatovic, Nenad

    2016-01-01

    accelerometers and power performance analysis. Features extracted from these two techniques serve as inputs in a decision-making scheme, allowing early activation of de-icing systems or shut down of the wind turbine. An additional parameter is the month of operation, assuring consistent outcomes in both winter......Ice accretion on wind turbines' blades is one of the main challenges of systems installed in cold climate locations, resulting in power performance deterioration and excessive nacelle oscillation. In this work, consistent detection of icing events is achieved utilizing indications from the nacelle...

  2. Small scale experimental study of the dynamic response of a tension leg platform wind turbine

    DEFF Research Database (Denmark)

    Hansen, Anders Mandrup; Laugesen, Robert; Bredmose, Henrik

    2014-01-01

    the pitch stiffness and thereby the nacelle displacements. Inclining the tendons towards the wind turbine reduces the nacelle displacements significantly and reduces the occurrence of slack tendons, but increases the inline tilt-motion of the rotor. Application of a very stiff mooring configuration...... increases the occurrence of slack tendons and the magnitude of the pitch accelerations. In a robust commercial design, however, slack tendons must be avoided. The experiments demonstrate the ability of the wind turbine model and the experimental setup to give insight to the dynamic characteristics...

  3. Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream

    Science.gov (United States)

    Myers, Robert B.; Yagiela, Anthony S.

    1990-12-25

    An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member.

  4. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...

  5. Control design and optimization for the DOT500 hydraulic wind turbine

    NARCIS (Netherlands)

    Mulders, S.P.; Jager, Stéphane; Diepeveen, N.F.B.; van Wingerden, J.W.

    2017-01-01

    The drivetrain of most wind turbines currently being deployed commercially consists of a rotor-gearboxgenerator configuration in the nacelle. This abstract introduces the control system design and optimization for a wind turbine with a hydraulic drivetrain, based on the Delft Offshore Turbine (DOT)

  6. preliminary multidomain modelling and simulation study

    African Journals Online (AJOL)

    user

    rad/s at a height of 10m. At this angular ... exerted on the rotor, the power train and the nacelle into the ground. .... Thesis, Department of Electrical and Computer. Engineering ... studies”, International Conference on Power Systems. Transients ...

  7. Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter

    Science.gov (United States)

    1993-01-01

    Pratt & Whitney Advanced Ducted Propulsor (ADP) Engine Test in 40x80ft w.t.: Engineers Peter Zell (left) and Dr Clifton Horne (right) are shown preparing a laser light sheet for a flow visualization test. Shown standing in the nacelle of the ADP is John Girvin, senior test engineer for Pratt & Whitney.

  8. Performance, Stability, and Control Investigation at Mach Numbers from 0.4 to 0.9 of a Model of the "Swallow" with Outer Wing Panels Swept 25 degree with and without Power Simulation

    Science.gov (United States)

    Runckel, Jack F.; Schmeer, James W.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model (the "Swallow") with the outer wing panels swept 25 deg has been conducted in the Langley 16-foot transonic tunnel. The wing was uncambered and untwisted and had RAE 102 airfoil sections with a thickness-to-chord ratio of 0.14 normal to the leading edge. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. A pair of swept lateral fins and a single vertical fin were mounted on each engine nacelle to provide aerodynamic stability and control. Jets-off data were obtained with flow-through nacelles, stimulating the effects of inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained through a Mach number range of 0.40 to 0.90 at angles of attack and angles of sideslip from 0 deg to 15 deg. Longitudinal, directional, and lateral control were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control.

  9. Power Curve Measurements

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  10. Increasing the Feasibility of Superconducting Generators for 10 MW Direct-Drive Wind Turbines

    NARCIS (Netherlands)

    Liu, D.

    2017-01-01

    In recent years, superconducting synchronous generators (SCSGs) have been proposed as an alternative to permanent magnet synchronous generators (PMSGs). They are expected to reduce the top head mass and the nacelle size for such large wind turbines. In 2012, the INNWIND.EU project initiated this

  11. Data report: the wake of a horizontal-axis wind turbine model, measurements in uniform approach flow and in a simulated atmospheric boundary layer

    NARCIS (Netherlands)

    Talmon, A.M.

    1985-01-01

    Wake effects will cause power loss when wínd turbínes are grouped in so called wind turbine parks. Wind tunnel measurements of the wake of a wind turbíne model are conducted in order to refine calculatíons of wake effects. Wake effects caused by tower and nacelle are studied in uniform flow. Wake

  12. NTF – wind speed comparison

    DEFF Research Database (Denmark)

    Vesth, Allan; Gómez Arranz, Paula

    The report describes measurements carried out on a given turbine. A comparison between wind speed on the met mast and Nacelle Wind speed are made and the results are presented on graphs and in a table. The data used for the comparison are the data that are same as used for the power curve report...

  13. Calibration report for ZephIR Dual Mode lidar (unit 351)

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael

    Nacelle-based profiling LiDARs may be the future of power performance assessment. Due to their large rotor size, single-point measurements are insufficient to quantify the power modern wind turbines can harness. The available energy in the wind indeed varies with heights. Improving power performa...

  14. Calibration report for Avent 5-beam Demonstrator lidar

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael

    Nacelle-based profiling LiDARs may be the future of power performance assessment. Due to their large rotor size, single-point measurements are insufficient to quantify the power modern wind turbines can harness. The available energy in the wind indeed varies with heights. Improving power performa...

  15. On the Modeling of Contact Interfaces with Frictional Slips

    Directory of Open Access Journals (Sweden)

    Ligia Munteanu

    2013-09-01

    Full Text Available The paper analyses the contact interfaces between the scatterers and the matrix into the sonic composites, in the presence of the frictional slips. The sonic composite is a sonic liner designed in order to provide suppression of unwanted noise for jet engines, with emphases on the nacelle of turbofan engines for commercial aircraft.

  16. Aero-Propulsion Technology (APT) Task V Low Noise ADP Engine Definition Study

    Science.gov (United States)

    Holcombe, V.

    2003-01-01

    A study was conducted to identify and evaluate noise reduction technologies for advanced ducted prop propulsion systems that would allow increased capacity operation and result in an economically competitive commercial transport. The study investigated the aero/acoustic/structural advancements in fan and nacelle technology required to match or exceed the fuel burned and economic benefits of a constrained diameter large Advanced Ducted Propeller (ADP) compared to an unconstrained ADP propulsion system with a noise goal of 5 to 10 EPNDB reduction relative to FAR 36 Stage 3 at each of the three measuring stations namely, takeoff (cutback), approach and sideline. A second generation ADP was selected to operate within the maximum nacelle diameter constrain of 160 deg to allow installation under the wing. The impact of fan and nacelle technologies of the second generation ADP on fuel burn and direct operating costs for a typical 3000 nm mission was evaluated through use of a large, twin engine commercial airplane simulation model. The major emphasis of this study focused on fan blade aero/acoustic and structural technology evaluations and advanced nacelle designs. Results of this study have identified the testing required to verify the interactive performance of these components, along with noise characteristics, by wind tunnel testing utilizing and advanced interaction rig.

  17. 76 FR 426 - Airworthiness Directives; The Boeing Company Model 737-300, -400, and -500 Series Airplanes

    Science.gov (United States)

    2011-01-05

    ... corrosion damage of the chrome runout on the head side found on all four midspar fuse pins of the nacelle strut. Additionally, a large portion of the chrome plate was missing from the corroded area of the shank... 616 $209,440, per inspection inspections (required by AD inspection cycle. 2008-21-03). cycle. Midspar...

  18. Quiet engine program flight engine design study

    Science.gov (United States)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  19. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results ar...

  20. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes measurements carried out on a given turbine and period. The measurements are carried out in accordance to Ref. [1]. A comparison between wind speed and wind direction on the met mast and nacelle wind speed and yaw direction is made in accordance to Ref. [2] and the results...... are presented on graphs and in a table....

  1. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2013-01-01

    The drivetrain in a wind turbine nacelle typically consists of a variety of heavily loaded components, like the main shaft, bearings, gearbox and generator. The variations in environmental load challenge the performance of all the components of the drivetrain. Failure of each of these components...

  2. Calibration of Avent Wind IRIS SN 01030167

    DEFF Research Database (Denmark)

    Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement un...

  3. Calibration of Avent Wind IRIS SN. WI01030176

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement un...

  4. 77 FR 34935 - Foreign-Trade Zone 161; Temporary/Interim Manufacturing Authority; Siemens Energy, Inc., (Wind...

    Science.gov (United States)

    2012-06-12

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket T-4-2012] Foreign-Trade Zone 161; Temporary/Interim Manufacturing Authority; Siemens Energy, Inc., (Wind Turbine Nacelles and Hubs); Notice of... temporary/interim manufacturing (T/IM) authority, on behalf of Siemens Energy, Inc., to manufacture wind...

  5. 78 FR 21079 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Science.gov (United States)

    2013-04-09

    ... accomplished. The initial inspection may be either a detailed inspection or a bolt- hole eddy current (BHEC... inspection or a bolt-hole eddy current (BHEC) test for cracking of each nacelle lower longeron, in accordance...-39, Revision A, dated August 2, 2012, specify to contact the manufacturer for instructions to repair...

  6. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 3, book 1 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation is described in detail.

  7. Ames Optimized TCA Configuration

    Science.gov (United States)

    Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.

    1999-01-01

    Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the

  8. Wind Turbine Performance Measurements by Means of Dynamic Data Analysis

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Wagner, Rozenn; Demurtas, Giorgio

    tools have been developed by authors to try to make the drift field and fixed point determination more robust. A sensitivity analysis with nacelle lidar data showed drift determination was not very dependent on the time steps applied, leading to use of time steps of 2-3 points for each dataset. Power...... bin size should be fixed. Data averaging with 5 sec data was more distinct for determination of the fixed points than 2 and 1 sec data. With the nacelle lidar the Langevin method seemed to produce a power curve that was comparable to the IEC power curve. Analysis of the Langevin method with spinner...... curves could be made faster with 1Hz dataset. In the FastWind project the Langevin power curve method was used on real power curve measurement datasets with the purpose to evaluate the method for practical use. A practical guide to application of the method to real power curve measurement data was made...

  9. Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine

    Directory of Open Access Journals (Sweden)

    Taufik Roni Sahroni

    2015-01-01

    Full Text Available This paper presents the modeling and simulation of offshore wind power platform for oil and gas companies. Wind energy has become the fastest growing renewable energy in the world and major gains in terms of energy generation are achievable when turbines are moved offshore. The objective of this project is to propose new design of an offshore wind power platform. Offshore wind turbine (OWT is composed of three main structures comprising the rotor/blades, the tower nacelle, and the supporting structure. The modeling analysis was focused on the nacelle and supporting structure. The completed final design was analyzed using finite element modeling tool ANSYS to obtain the structure’s response towards loading conditions and to ensure it complies with guidelines laid out by classification authority Det Norske Veritas. As a result, a new model of the offshore wind power platform for 5 MW Baseline NREL turbine was proposed.

  10. Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine

    Science.gov (United States)

    Roni Sahroni, Taufik

    2015-01-01

    This paper presents the modeling and simulation of offshore wind power platform for oil and gas companies. Wind energy has become the fastest growing renewable energy in the world and major gains in terms of energy generation are achievable when turbines are moved offshore. The objective of this project is to propose new design of an offshore wind power platform. Offshore wind turbine (OWT) is composed of three main structures comprising the rotor/blades, the tower nacelle, and the supporting structure. The modeling analysis was focused on the nacelle and supporting structure. The completed final design was analyzed using finite element modeling tool ANSYS to obtain the structure's response towards loading conditions and to ensure it complies with guidelines laid out by classification authority Det Norske Veritas. As a result, a new model of the offshore wind power platform for 5 MW Baseline NREL turbine was proposed. PMID:26550605

  11. A new approach to the design of the large turbofan power plant

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, G L [Economobile Projects Ltd., Belper (United Kingdom)

    1995-06-01

    The lower direct operating costs of the Big Twin subsonic transports encourage the building of ever larger turbofan engines installed on the wings. The steadily improving reliability of the turbofan and the good safety statistics of twin-engined aircraft over many years encourages this trend. Fuel economy is still the dominant factor in determining the design layout of turbofan engines. It requires the combination of the highest possible thermal efficiency of the gas generator core of the engine with optimum propulsion efficiency of the power plant as a whole in cruise flight, allowing for engine nacelle drag and nacelle to wing interference drag. The paper presents two possible turbofan design layouts intended to overcome the limitation of current turbofan power plant designs. The aim is to design a power plant with the highest thrust per unit frontal area combined with the highest air miles per gallon in cruise flight. (author)

  12. Lidar-based Research and Innovation at DTU Wind Energy – a Review

    DEFF Research Database (Denmark)

    Mikkelsen, Torben

    2014-01-01

    " for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn...... "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing...... their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today...

  13. Background and system description of the Mod 1 wind turbine generator

    Science.gov (United States)

    Ernst, E. H.

    1978-01-01

    The Mod-1 wind turbine considered is a large utility-class machine, operating in the high wind regime, which has the potential for generation of utility grade power at costs competitive with other alternative energy sources. A Mod-1 wind turbine generator (WTG) description is presented, taking into account the two variable-pitch steel blades of the rotor, the drive train, power generation/control, the Nacelle structure, and the yaw drive. The major surface elements of the WTG are the ground enclosure, the back-up battery system, the step-up transformer, elements of the data system, cabling, area lighting, and tower foundation. The final system weight (rotor, Nacelle, and tower) is expected to be about 650,000 pounds. The WTG will be capable of delivering 1800 kW to the utility grid in a wind-speed above 25 mph.

  14. Wind turbine tower for storing hydrogen and energy

    Science.gov (United States)

    Fingersh, Lee Jay [Westminster, CO

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  15. Closing Symposium of the DFG Research Unit FOR 1066

    CERN Document Server

    Niehuis, Reinhard; Kroll, Norbert; Behrends, Kathrin

    2016-01-01

    The book reports on advanced solutions to the problem of simulating wing and nacelle stall, as presented and discussed by internationally recognized researchers at the Closing Symposium of the DFG Research Unit FOR 1066. Reliable simulations of flow separation on airfoils, wings and powered engine nacelles at high Reynolds numbers represent great challenges in defining suitable mathematical models, computing numerically accurate solutions and providing comprehensive experimental data for the validation of numerical simulations. Additional problems arise from the need to consider airframe-engine interactions and inhomogeneous onset flow conditions, as real aircraft operate in atmospheric environments with often-large distortions. The findings of fundamental and applied research into these and other related issues are reported in detail in this book, which targets all readers, academics and professionals alike, interested in the development of advanced computational fluid dynamics modeling for the simulation of...

  16. Vibration analysis of three guyed tower designs for intermediate size wind turbines

    Science.gov (United States)

    Christie, R. J.

    1982-01-01

    Three guyed tower designs were analyzed for intermediate size wind turbines. The four lowest natural frequencies of vibration of the three towers concepts were estimated. A parametric study was performed on each tower to determine the effect of varying such tower properties as the inertia and stiffness of the tower and guys, the inertia values of the nacelle and rotor, and the rotational speed of the rotor. Only the two lowest frequencies were in a range where they could be excited by the rotor blade passing frequencies. There two frequencies could be tuned by varying the guy stiffness, the guy attachment point on the tower, the tower and mass stiffness, and the nacelle/rotor/power train masses.

  17. The design of a wind tunnel VSTOL fighter model incorporating turbine powered engine simulators

    Science.gov (United States)

    Bailey, R. O.; Maraz, M. R.; Hiley, P. E.

    1981-01-01

    A wind-tunnel model of a supersonic VSTOL fighter aircraft configuration has been developed for use in the evaluation of airframe-propulsion system aerodynamic interactions. The model may be employed with conventional test techniques, where configuration aerodynamics are measured in a flow-through mode and incremental nozzle-airframe interactions are measured in a jet-effects mode, and with the Compact Multimission Aircraft Propulsion Simulator which is capable of the simultaneous simulation of inlet and exhaust nozzle flow fields so as to allow the evaluation of the extent of inlet and nozzle flow field coupling. The basic configuration of the twin-engine model has a geometrically close-coupled canard and wing, and a moderately short nacelle with nonaxisymmetric vectorable exhaust nozzles near the wing trailing edge, and may be converted to a canardless configuration with an extremely short nacelle. Testing is planned to begin in the summer of 1982.

  18. Handling Qualities of Large Rotorcraft in Hover and Low Speed

    Science.gov (United States)

    2015-03-01

    shaft axes can themselves be a function of the nacelle angle. Following the rules of calculus of variations, the variation for the -force from Eq. (7...their preference. Main inceptor forces, in terms of gradients , breakouts, damping, and friction are provided by a hydraulic McFadden variable force...during training and formal evaluation. 29 Table 8. Inceptor force-displacement characteristics. Cockpit Control Rotorcraft Configuration Gradient

  19. Transportation of Large Wind Components: A Permitting and Regulatory Review

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cook, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report summarizes permitting and regulatory issues associated with transporting wind turbine blades, towers, and nacelles as well as large transformers (wind components). These wind components are commonly categorized as oversized and overweight (OSOW) and require specific permit approvals from state and local jurisdictions. The report was developed based on a Quadrennial Energy Review (QER) recommendation on logistical requirements for the transportation of 'oversized or high-consequence energy materials, equipment, and components.'

  20. Wind and Yaw correlation

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes measurements carried out on a given wind turbine. A comparison between wind speed on the metmast and Nacelle Windspeed are made and the results are presented on graphs and in a table. The data used for the comparison are identical with the data used for the Risø-I-3246(EN) po......) power curve report. The measurements are carried out in accordance to Ref. [1] and the wind and yaw correlation is analyzed in accordance to Ref. [2]....

  1. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes

    Science.gov (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.

    2014-01-01

    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  2. Computational Methods for Aerodynamic Design (Inverse) and Optimization

    Science.gov (United States)

    1990-01-01

    min minimum pressure coefficient cp* critical pressure coefficient Th mass flow through nacelle M Mach number Q, u velocity QPU, QPL upper and lower...Airfoils with Given Velocity Distribution in Incompressible Flow," J. Aircraft, Vol. 10, 1973, pp. 651-659. 7. Polito, L., "Un Metodo Esatto -per 11 Progetto...however, a modification in the definition of the critical pressure coefficient is applied. The relevant formulas are derived from those applied in the

  3. Cartesian Mesh Linearized Euler Equations Solver for Aeroacoustic Problems around Full Aircraft

    Directory of Open Access Journals (Sweden)

    Yuma Fukushima

    2015-01-01

    Full Text Available The linearized Euler equations (LEEs solver for aeroacoustic problems has been developed on block-structured Cartesian mesh to address complex geometry. Taking advantage of the benefits of Cartesian mesh, we employ high-order schemes for spatial derivatives and for time integration. On the other hand, the difficulty of accommodating curved wall boundaries is addressed by the immersed boundary method. The resulting LEEs solver is robust to complex geometry and numerically efficient in a parallel environment. The accuracy and effectiveness of the present solver are validated by one-dimensional and three-dimensional test cases. Acoustic scattering around a sphere and noise propagation from the JT15D nacelle are computed. The results show good agreement with analytical, computational, and experimental results. Finally, noise propagation around fuselage-wing-nacelle configurations is computed as a practical example. The results show that the sound pressure level below the over-the-wing nacelle (OWN configuration is much lower than that of the conventional DLR-F6 aircraft configuration due to the shielding effect of the OWN configuration.

  4. Noise Simulations of the High-Lift Common Research Model

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.; Vatsa, Veer N.; O'Connell, Matthew D.; Duda, Benjamin; Fares, Ehab

    2017-01-01

    The PowerFLOW(TradeMark) code has been used to perform numerical simulations of the high-lift version of the Common Research Model (HL-CRM) that will be used for experimental testing of airframe noise. Time-averaged surface pressure results from PowerFLOW(TradeMark) are found to be in reasonable agreement with those from steady-state computations using FUN3D. Surface pressure fluctuations are highest around the slat break and nacelle/pylon region, and synthetic array beamforming results also indicate that this region is the dominant noise source on the model. The gap between the slat and pylon on the HL-CRM is not realistic for modern aircraft, and most nacelles include a chine that is absent in the baseline model. To account for those effects, additional simulations were completed with a chine and with the slat extended into the pylon. The case with the chine was nearly identical to the baseline, and the slat extension resulted in higher surface pressure fluctuations but slightly reduced radiated noise. The full-span slat geometry without the nacelle/pylon was also simulated and found to be around 10 dB quieter than the baseline over almost the entire frequency range. The current simulations are still considered preliminary as changes in the radiated acoustics are still being observed with grid refinement, and additional simulations with finer grids are planned.

  5. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    Science.gov (United States)

    Sutliff, Daniel L.; Brown, Cliff; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations - a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 inches. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed 4 sweeps, for a total span of 168 inches acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels.

  6. Unsteady Reynolds-averaged Navier-Stokes simulations of inlet distortion in the fan system of a gas-turbine aero-engine

    Science.gov (United States)

    Spotts, Nathan

    As modern trends in commercial aircraft design move toward high-bypass-ratio fan systems of increasing diameter with shorter, nonaxisymmetric nacelle geometries, inlet distortion is becoming common in all operating regimes. The distortion may induce aerodynamic instabilities within the fan system, leading to catastrophic damage to fan blades, should the surge margin be exceeded. Even in the absence of system instability, the heterogeneity of the flow affects aerodynamic performance significantly. Therefore, an understanding of fan-distortion interaction is critical to aircraft engine system design. This thesis research elucidates the complex fluid dynamics and fan-distortion interaction by means of computational fluid dynamics (CFD) modeling of a complete engine fan system; including rotor, stator, spinner, nacelle and nozzle; under conditions typical of those encountered by commercial aircraft. The CFD simulations, based on a Reynolds-averaged Navier-Stokes (RANS) approach, were unsteady, three-dimensional, and of a full-annulus geometry. A thorough, systematic validation has been performed for configurations from a single passage of a rotor to a full-annulus system by comparing the predicted flow characteristics and aerodynamic performance to those found in literature. The original contributions of this research include the integration of a complete engine fan system, based on the NASA rotor 67 transonic stage and representative of the propulsion systems in commercial aircraft, and a benchmark case for unsteady RANS simulations of distorted flow in such a geometry under realistic operating conditions. This study is unique in that the complex flow dynamics, resulting from fan-distortion interaction, were illustrated in a practical geometry under realistic operating conditions. For example, the compressive stage is shown to influence upstream static pressure distributions and thus suppress separation of flow on the nacelle. Knowledge of such flow physics is

  7. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    Science.gov (United States)

    Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels

  8. Icing Impacts on Wind Energy Production

    DEFF Research Database (Denmark)

    Davis, Neil

    was developed for the identification of icing periods from the turbine power data and the nacelle wind speeds. This method was based on the spread of power production observations at cold temperatures that was not seen during warmer periods. Using the insights gained through the observational analysis...... and the turbine power loss. The model took the shape of a hierarchal model that combined a decision tree model, based on the existence of ice on the turbine blade, and two Generalized Additive Models (GAM). The GAM for periods where icing was forecast was found to include the terms wind speed, total ice mass...

  9. Converter structure-based power loss and static thermal modeling of the press-pack IGBT-based three-level ANPC and HB VSCs applied to Multi-MW wind turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    and the switch thermal performance which is determined by the converter load profile and the converter structure. In this study, the converter-structure based power loss and thermal models are developed for the medium voltage full-scale 3LANPC- VSC and 3L-HB-VSC utilizing press-pack IGBT-diode pairs......The wind turbine converters demand high power density due to nacelle space limitation and high reliability due to high maintenance cost. Once the converter topology with the semiconductor switch technology is selected, the converter power density and reliability are dependent on the component count...

  10. Drag Reduction Devices for Aircraft (Latest Citations from the Aerospace Database)

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning the modeling, application, testing, and development of drag reduction devices for aircraft. Slots, flaps, fences, large-eddy breakup (LEBU) devices, vortex generators and turbines, Helmholtz resonators, and winglets are among the devices discussed. Contour shaping to ensure laminar flow, control boundary layer transition, or minimize turbulence is also covered. Applications include the wings, nacelles, fuselage, empennage, and externals of aircraft designed for high-lift, subsonic, or supersonic operation. The design, testing, and development of directional grooves, commonly called riblets, are covered in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.)

  11. Power performance optimization and loads alleviation with active flaps using individual flap control

    DEFF Research Database (Denmark)

    Pettas, Vasilis; Barlas, Athanasios; Gertz, Drew Patrick

    2016-01-01

    the sensor inputs. The AEP is increased due to the upscaling but also further due to the flap system while the fatigue loads in components of interest (blade, tower, nacelle and main bearing) are reduced close to the level of the original turbine. The aim of this study is to demonstrate a simple....... In an industrial-oriented manner the baseline rotor is upscaled by 5% and the ATEFs are implemented in the outer 30% of the blades. The flap system is kept simple and robust with a single flap section and control with wind speed, rotor azimuth, root bending moments and angle of attack in flap's mid-section being...

  12. Optimization and comparison of superconducting generator topologies for a 10 MW wind turbine application

    DEFF Research Database (Denmark)

    Liu, Dong; Polinder, Henk; Abrahamsen, Asger Bech

    2017-01-01

    A direct-drive superconducting generator (DDSCG) is proposed for 10 MW wind turbines in the INNWIND.EU project. To fit the generator into the "king-pin" conceptual nacelle design, the generator structure with inner stationary superconducting (SC) field winding and outer rotating copper armature...... winding is investigated in the first research phase. Since the cost is an important performance indicator for this application, this paper presents a method to minimize the active material cost of the "king-pin" fitted DDSCG. In this method a relatively fast optimization program is developed with 2D non...

  13. Control System on a Wind Turbine: Evaluation of Control Strategies for a Wind Turbine with Hydraulic Drive Train by Means of Aeroelastic Analysis

    OpenAIRE

    Frøyd, Lars

    2009-01-01

    The evolution of wind turbines are going towards floating offshore structures. To improve the stability of these turbines, the weight of the nacelle should be as low as possible. The company ChapDrive has developed a hydraulic drive train that gives the ability to move the generator to the base of the tower and to replace the traditional gearbox. To test the system, ChapDrive has constructed a prototype turbine which is located at Valsneset.This thesis describes the combined aero-elastic and...

  14. Materials by Design - Computational Alloy Design for Corrosion

    Science.gov (United States)

    2011-02-01

    Es = + 0.33 eV Cs Rb K · ~·Ba Sr ::~ \\ H ~ YCd ./ G B FS A~ Zn " Be• ’f_ Ni?.Au SeA. ’\\ . At-v Rh Ru • Zr Ja Mo Tc _,. • • • pt • lr Nb w...Windows Air Conditioning Autoflight Electrical Power Navigation Engine Exhaust Stabilizer Doors Fuel system Nacelles/Pylons Power Plant Equip...p. 14 ASETSDefense 2011: Sustainable Surface Engineering for Aerospace and Defense Workshop Quantum Mechanics Insights into SCC resistance 3.5 -E 0

  15. Application of computational aerodynamics methods to the design and analysis of transport aircraft

    Science.gov (United States)

    Da Costa, A. L.

    1978-01-01

    The application and validation of several computational aerodynamic methods in the design and analysis of transport aircraft is established. An assessment is made concerning more recently developed methods that solve three-dimensional transonic flow and boundary layers on wings. Capabilities of subsonic aerodynamic methods are demonstrated by several design and analysis efforts. Among the examples cited are the B747 Space Shuttle Carrier Aircraft analysis, nacelle integration for transport aircraft, and winglet optimization. The accuracy and applicability of a new three-dimensional viscous transonic method is demonstrated by comparison of computed results to experimental data

  16. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    Science.gov (United States)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  17. Offshore Wind Farms

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Hasager, Charlotte Bay; Courtney, Michael

    2015-01-01

    : the rotor, the nacelle, the tower, and the foundation. Further the determinations of the essential environmental conditions are treated: the wind field, the wave field, the sea current, and the soil conditions. The various options for grid connections, advantages, and disadvantages are discussed. Of special...... concern are the problems associated with locating the turbines close together in a wind farm and the problems of placing several large wind farms in a confined area. The environmental impacts of offshore wind farms are also treated, but not the supply chain, that is, the harbors, the installation vessels...

  18. Prediction Methodology for Propulsive Induced Force and Moments of V/STOL Aircraft in Transition/STOL Flight. Volume 1. Technical Discussion.

    Science.gov (United States)

    1979-07-31

    VAPE ). - -5 (over) DD O, 73 1473 EDITION OF I NOVSS iS 1O.yTS/ Unclassified S/N 0102-LF-014-6601 SCCURIVV CLASWFICATION OF T1MI PAGS (When Dot&eta...S6nd) \\.- ,.t-*#,*’" Unclassified SECURITY CLASSIFICATION OF THiS PAGE ("on Date EntIe.4o The VAPE program is capable of evaluating: e- Effects of...Vought. This method will determine the pressures on the inlet face and nacelle inlet lips. The VAPE program will then utilize these pressures to

  19. Multi-hazard response analysis of a 5MW offshore wind turbine

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Sanz, A. Arrospide; Georgakis, Christos T.

    2017-01-01

    Wind energy has already dominant role on the scene of the clean energy production. Well-promising markets, like China, India, Korea and Latin America are the fields of expansion for new wind turbines mainly installed in offshore environment, where wind, wave and earthquake loads threat...... of the blades, the nacelle, the tower and the monopile was developed with the use of an aeroelastic code considering the interaction between the elastic and inertial forces, developed in the structure, as well as the generated aerodynamic and hydrodynamic forces. Based on the analysis results, the dynamic...

  20. Transportation of Large Wind Components: A Review of Existing Geospatial Data

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, Meghan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report features the geospatial data component of a larger project evaluating logistical and infrastructure requirements for transporting oversized and overweight (OSOW) wind components. The goal of the larger project was to assess the status and opportunities for improving the infrastructure and regulatory practices necessary to transport wind turbine towers, blades, and nacelles from current and potential manufacturing facilities to end-use markets. The purpose of this report is to summarize existing geospatial data on wind component transportation infrastructure and to provide a data gap analysis, identifying areas for further analysis and data collection.

  1. Wind turbines - generating noise or electricity?

    International Nuclear Information System (INIS)

    Russell, Eric

    1999-01-01

    Wind turbine technology has made great strides in the past few years. Annual energy output is up by two orders of magnitude and nacelle weight and noise has been halved. Computational fluid dynamics has paid a part in advancing knowledge of air flow and turbulence around wind generators. Current research is focused on how to increase turbine size and improve efficiency. A problem is that while larger wind turbines will produce cheaper electricity, the noise problem will mean that the number of acceptable sites will decrease. The biggest wind generators will need about 800 m clearance from the nearest house. (UK)

  2. Kevlar/PMR-15 polyimide matrix composite for a complex shaped DC-9 drag reduction fairing

    Science.gov (United States)

    Kawai, R. T.; Mccarthy, R. F.; Willer, M. S.; Hrach, F. J.

    1982-01-01

    The Aircraft Energy Efficiency (ACEE) Program was established by NASA to improve the fuel efficiency of commercial transport aircraft and thereby to reduce the amount of fuel consumed by the air transportation industry. One of the final items developed by the program is an improved fairing which is the aft closure for the thrust reverser actuators on the JT8D nacelles on DC-9 aircraft. The reduced-drag fairing uses, in the interest of weight savings, an advanced composite construction. The composite material contains Kevlar 49 fibers in a PMR-15 matrix. Attention is given to the aerodynamic configuration, the material system, and aspects of fabrication development.

  3. Quaternion-Based Conversion Formulas for Kinematic Attitude of Floating Offshore Wind Turbines (FOWT)

    Science.gov (United States)

    Li, Yugang; Fu, Gaoyong

    2018-01-01

    A floater allowing large-angle motion supporting a large payload (wind turbine and nacelle) with large aerodynamic loads high above the water surface is a great challenge because of the raised center of gravity and large overturning moment. In this paper, the conversion formulas between Euler angles and quaternions were derived, the research offered an efficient methodology without singularity to compute large-angle rigid body rotations of a FOWT, which laid the foundation for quaternion-based attitude kinematic model introduced to describe the dynamic response of the FOWT system and further solution.

  4. Analysis of broadband aerodynamic noise from VS45

    Energy Technology Data Exchange (ETDEWEB)

    Dundabin, P. [Renewable Energy Systems Ltd., Glasgow, Scotland (United Kingdom)

    1997-12-31

    This paper describes the analysis of acoustic data taken from the VS45 at Kaiser-Wilhelm-Koog. The aim was to investigate the dependence of aerodynamic noise on tip speed and angle of attack. In particular, the dependence of noise in individual third octave bands on these variable is examined. The analysis is divided into 3 sections: data selection, data checks and analysis of broadband nacelle noise; analysis of broadband aerodynamic noise and its sensitivity to tip speed and angle of attack. (LN)

  5. Development, Field Testing, and Evaluation of LIDAR Assisted Controls

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, Robert [Asltom Power Inc.; Wang, Na [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scholbrock, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guadayol, Marc [Alstom Power Inc.; Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arora, Dhiraj [Alstom Power Inc.

    2015-05-18

    Typical wind turbines utilize feedback controllers which have a delayed response to winds peed disturbances. A nacelle mounted LIght Detection and Ranging(LIDAR) system measures a preview wind signal in front of the turbine. This can be included in a feed-forward control system, improving turbine pitch command for incoming variations in wind speed. The overall aim is reduced blade and tower fatigue, and potentially improved annual energy production. To be successful, the LIDAR must yield accurate wind speed measurements. Therefore, a LIDAR was characterized against a nearby met tower and turbine wind speed estimator. Results indicate good correlation between measurements.

  6. Advancements in Wind Energy Metrology - UPWIND 1A2.3

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Troels F.; Wagner, R.

    2011-02-15

    enough for inclusion in the IEC standard. In relation to the coming IEC standard on performance verification with the use of nacelle anemometry, IEC61400-12-2-CD, nacelle anemometry has been studied, both with experiments and in theory. An alternative to nacelle anemometry has been developed, the socalled spinner anemometer. This type of sensor measures yaw-error with high absolute accuracy, and avoids the draw-backs of nacelle anemometry because the spinner anemometer is positioned in front of the rotor. Advances in classic mast measurement technologies have also been made. A mast flow distortion correction method has been developed to improve classical state of the art mast measurements. Finally, an optical method for measurements of turbine vibrations is considered. (Author)

  7. XV-15 Structural-Acoustic Data

    Science.gov (United States)

    Lyle, Karen H.

    1997-01-01

    Tiltrotor aircraft are a potentially viable means of intercity travel. The tiltrotor is able to transport passengers relatively quickly from the center of a city to destinations within a 300-mile radius. For such vehicles to be commercially viable, the interior noise and vibration levels must be acceptable to the passengers. A review of the literature revealed very little structural-acoustic data related to the tiltrotor. For this reason, structural-acoustic measurements were taken aboard an XV-15 tiltrotor. The six flight conditions included five in level flight, nominally 140-220 knots, for airplane mode (nacelle at 0 degrees) and one out-of-ground-effect (OGE) hover (nacelle at 90 degrees). The flight test measurements included nine exterior surface pressures, five structural accelerations, and two interior pressures. These sensors were located near the tip path plane on the port side of the aircraft. One minute of data was acquired at each condition. The data is presented as time histories, autospectra, coherence functions, and cross-spectra. In general, for level flight, the measured data showed very little effect of forward flight speed except to change the amplitude of the response; however, the character of the response was found to be dependent on spatial location. In contrast, in the hover mode the spatial location had very little effect on the character of the response. Additionally, the report highlights: the coherence between the transducer data and the rotor tach signal; and transfer function calculations between the exterior pressures.

  8. Second-Generation Large Civil Tiltrotor 7- by 10-Foot Wind Tunnel Test Data Report

    Science.gov (United States)

    Theodore, Colin R.; Russell, Carl R.; Willink, Gina C.; Pete, Ashley E.; Adibi, Sierra A.; Ewert, Adam; Theuns, Lieselotte; Beierle, Connor

    2016-01-01

    An approximately 6-percent scale model of the NASA Second-Generation Large Civil Tiltrotor (LCTR2) Aircraft was tested in the U.S. Army 7- by 10-Foot Wind Tunnel at NASA Ames Research Center January 4 to April 19, 2012, and September 18 to November 1, 2013. The full model was tested, along with modified versions in order to determine the effects of the wing tip extensions and nacelles; the wing was also tested separately in the various configurations. In both cases, the wing and nacelles used were adopted from the U.S. Army High Efficiency Tilt Rotor (HETR) aircraft, in order to limit the cost of the experiment. The full airframe was tested in high-speed cruise and low-speed hover flight conditions, while the wing was tested only in cruise conditions, with Reynolds numbers ranging from 0 to 1.4 million. In all cases, the external scale system of the wind tunnel was used to collect data. Both models were mounted to the scale using two support struts attached underneath the wing; the full airframe model also used a third strut attached at the tail. The collected data provides insight into the performance of the preliminary design of the LCTR2 and will be used for computational fluid dynamics (CFD) validation and the development of flight dynamics simulation models.

  9. Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment

    International Nuclear Information System (INIS)

    Castellani, Francesco; Astolfi, Davide; Sdringola, Paolo; Proietti, Stefania; Terzi, Ludovico

    2017-01-01

    Highlights: • The directional behavior of four turbines of an onshore wind farm is investigated. • The positions of the nacelles are discretized to highlight clusterization effects. • The recurrent alignment patterns of the cluster are individuated and analyzed. • The patterns are studied by the point of view of efficiency and power output. • Significative performance deviations arise among the most frequent configurations. - Abstract: SCADA control systems are the keystone for reliable performance optimization of wind farms. Processing into knowledge the amount of information they spread is a challenging task, involving engineering, physics, statistics and computer science skills. This work deals with SCADA data analysis methods for assessing the importance of how wind turbines align in patterns to the wind direction. In particular it deals with the most common collective phenomenon causing clusters of turbines behaving as a whole, rather than as a collection of individuality: wake effects. The approach is based on the discretization of nacelle position measurements and subsequent post-processing through simple statistical methods. A cluster, severely affected by wakes, from an onshore wind farm, is selected as test case. The dominant alignment patterns of the cluster are identified and analyzed by the point of view of power output and efficiency. It is shown that non-trivial alignments with respect to the wind direction arise and important performance deviations occur among the most frequent configurations.

  10. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  11. Numerical methods for engine-airframe integration

    International Nuclear Information System (INIS)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment

  12. Thrust reverser design studies for an over-the-wing STOL transport

    Science.gov (United States)

    Ammer, R. C.; Sowers, H. D.

    1977-01-01

    Aerodynamic and acoustics analytical studies were conducted to evaluate three thrust reverser designs for potential use on commercial over-the-wing STOL transports. The concepts were: (1) integral D nozzle/target reverser, (2) integral D nozzle/top arc cascade reverser, and (3) post exit target reverser integral with wing. Aerodynamic flowpaths and kinematic arrangements for each concept were established to provide a 50% thrust reversal capability. Analytical aircraft stopping distance/noise trade studies conducted concurrently with flow path design showed that these high efficiency reverser concepts are employed at substantially reduced power settings to meet noise goals of 100 PNdB on a 152.4 m sideline and still meet 609.6 m landing runway length requirements. From an overall installation standpoint, only the integral D nozzle/target reverser concept was found to penalize nacelle cruise performance; for this concept a larger nacelle diameter was required to match engine cycle effective area demand in reverse thrust.

  13. Unstructured Grid Euler Method Assessment for Aerodynamics Performance Prediction of the Complete TCA Configuration at Supersonic Cruise Speed

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a proposed high speed civil transport configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at Mach 2.4 for a range of angles-of-attack and sideslip. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex shock wave structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics are shown to correlate very well with the measured data across the examined range of angles-of-attack and sideslip. The results from the present effort have been documented into a NASA Controlled-Distribution report which is being presently reviewed for publication.

  14. Analysis and simulation on two types of thrust reversers in an aircraft engine

    Directory of Open Access Journals (Sweden)

    Tian Feng

    2017-01-01

    Full Text Available With rapid development of new composite material and manufacturing, innovative engineering solutions are supplied to the advanced nacelle, such as integrated propulsion system(IPS, carbon-fiber composite inner skin by single-piece molding process,which offers a reduction in fuel burn and less noise produced by engines. The advanced nacelle has an O-duct thrust reverser demonstrator whose composite structure is in the form of an “O” as opposed to the traditional “D-duct”. A comparative study is to be conducted to investigate the differences between the latest O-duct and conventional D-duct in numerical approaches. To focus on the quantitative analysis of thrust reverser’s operation, this paper mainly uses CATIA/Digital Mock Up(DMU to simulate under deployment and stowed conditions of two different thrust reverser. After comparing the structural weight, the design models of blocker door are built for kinematic analysis of relevant mechanism and simulation. The results show that simplified design and elimination of multiple interfaces generates weight saving, O-duct improves airflows within the engine, meanwhile D-duct has excellent cost effective and maintainability.

  15. Effects of winglet on transonic flutter characteristics of a cantilevered twin-engine-transport wing model

    Science.gov (United States)

    Ruhlin, C. L.; Bhatia, K. G.; Nagaraja, K. S.

    1986-01-01

    A transonic model and a low-speed model were flutter tested in the Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90. Transonic flutter boundaries were measured for 10 different model configurations, which included variations in wing fuel, nacelle pylon stiffness, and wingtip configuration. The winglet effects were evaluated by testing the transonic model, having a specific wing fuel and nacelle pylon stiffness, with each of three wingtips, a nonimal tip, a winglet, and a nominal tip ballasted to simulate the winglet mass. The addition of the winglet substantially reduced the flutter speed of the wing at transonic Mach numbers. The winglet effect was configuration-dependent and was primarily due to winglet aerodynamics rather than mass. Flutter analyses using modified strip-theory aerodynamics (experimentally weighted) correlated reasonably well with test results. The four transonic flutter mechanisms predicted by analysis were obtained experimentally. The analysis satisfactorily predicted the mass-density-ratio effects on subsonic flutter obtained using the low-speed model. Additional analyses were made to determine the flutter sensitivity to several parameters at transonic speeds.

  16. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Simple Modes

    Science.gov (United States)

    Sutliff, Daniel, L.; Brown, Clifford, A.; Walker, Bruce, E.

    2012-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the Langley Research Center s 14- by 22-Foot wind tunnel test of the Hybrid Wing Body (HWB) full three-dimensional 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of candidate engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft and to provide a database for shielding code validation. A range of frequencies, and a parametric study of modes were generated from exhaust and inlet nacelle configurations. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular to the axis of the nacelle (in its 0 orientation) and three planes parallel were acquired from the array sweep. In each plane the linear array traversed five sweeps, for a total span of 160 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Level, and integrated Power Levels are presented in this paper; as well as the in-duct modal structure.

  17. Summary of Data from the Sixth AIAA CFD Drag Prediction Workshop: CRM Cases 2 to 5

    Science.gov (United States)

    Tinoco, Edward N.; Brodersen, Olaf P.; Keye, Stefan; Laflin, Kelly R.; Feltrop, Edward; Vassberg, John C.; Mani, Mori; Rider, Ben; Wahls, Richard A.; Morrison, Joseph H.; hide

    2017-01-01

    Results from the Sixth AIAA CFD Drag Prediction Workshop Common Research Model Cases 2 to 5 are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. Cases 2 to 5 focused on force/moment and pressure predictions for the NASA Common Research Model wing-body and wing-body-nacelle-pylon configurations, including Case 2 - a grid refinement study and nacelle-pylon drag increment prediction study; Case 3 - an angle-of-attack buffet study; Case 4 - an optional wing-body grid adaption study; and Case 5 - an optional wing-body coupled aero-structural simulation. The Common Research Model geometry differed from previous workshops in that it was deformed to the appropriate static aeroelastic twist and deflection at each specified angle-of-attack. The grid refinement study used a common set of overset and unstructured grids, as well as user created Multiblock structured, unstructured, and Cartesian based grids. For the supplied common grids, six levels of refinement were created resulting in grids ranging from 7x10(exp 6) to 208x10(exp 6) cells. This study (Case 2) showed further reduced scatter from previous workshops, and very good prediction of the nacelle-pylon drag increment. Case 3 studied buffet onset at M=0.85 using the Medium grid (20 to 40x10(exp 6) nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Although the use of the prescribed aeroelastic twist and deflection at each angle-of-attack greatly improved the wing pressure distribution agreement with test data, many solutions still exhibited premature flow separation. The remaining solutions exhibited a significant spread of lift and pitching moment at each angle-of-attack, much of which can be attributed to excessive aft pressure loading and shock location variation. Four Case 4 grid adaption solutions were submitted. Starting

  18. Research in aeroelasticity EFP-2007-II

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, T. (ed.)

    2009-06-15

    This report contains results from the EFP-2007-II project 'Program for Research in Applied Aeroelasticity'. The main results can be summed up into the following bullets: 1) 2D CFD was used to investigate tower shadow effects on both upwind and downwind turbines, and was used to validate the tower shadow models implemented in the aeroelastic code HAWC2. 2) Using a streamlined tower reduces the tower shadow by 50% compared to a cylindrical tower. Similar reductions can be achieved using a four legged lattice tower. 3) The application of laminar/turbulent transition in CFD computations for airfoils is demonstrated. For attached flow over thin airfoils (18%) 2D computations provide good results while a combination of Detached Eddy Simulation and laminar/ turbulent transition modeling improve the results in stalled conditions for a thick airfoil. 4) The unsteady flow in the nacelle region of a wind turbine is dominated by large flow gradients caused by unsteady shedding of vortices from the root sections of the blades. 5) The averaged nacelle wind speed compares well to the freestream wind speed, whereas the nacelle flow angle is highly sensitive to vertical positioning and tilt in the inflow. 6) The trailing edge noise model, TNO, was implemented and validated. The results showed that the noise was not predicted accurately, but the model captured the trends and can be used in airfoil design. The model was implemented in the airfoil design tool AIRFOILOPT and existing airfoils can be adjusted to maintain the aerodynamic characteristics, but with reduced noise in the order of up to 3dB in total sound power level and up to 1dB with A-weighting. 7) 2D CFD simulations are performed to verify their capability in predicting multi element airfoil configurations. The present computations show good agreement with measured performance from wind tunnel experiments. 8) The stochastic fluctuations of the aerodynamic forces on blades in deep-stall have an insignificant

  19. Analysis of the Environmental Impact on Remanufacturing Wind Turbines

    Science.gov (United States)

    Sosa Skrainka, Manuel R.

    To deliver clean energy the use of wind turbines is essential. In June 2011 there was an installed wind capacity equivalent to 211,000MW world-wide (WWEA, 2011). By the end of the year 2009 the U.S. had 35,100MW of wind energy installed capacity to generate electricity (AWEA, 2010). This industry has grown in recent years and is expected to grow even more in the future. The environmental impacts that will arise from the increased number of wind turbines and their end-of-life should be addressed, as large amounts of resources will be required to satisfy the current and future market demands for wind turbines. Since future 10MW wind turbines are expected to be as heavy as 1000 tons each, the study of the environmental response of profitable retirement strategies, such as remanufacturing for these machines, must be considered. Because of the increased number of wind turbines and the materials used, this study provides a comparison between the environmental impacts from remanufacturing the components installed inside the nacelle of multi-megawatt wind turbines and wind turbines manufactured using new components. The study methodology is the following: • Describe the life-cycle and the materials and processes employed for the manufacture and remanufacturing for components inside the nacelle. • Identify remanufacturing alternatives for the components inside the nacelle at the end of the expected life-time service of wind turbines. • Evaluate the environmental impacts from the remanufactured components and compare the results with the impacts of the manufacturing of new components using SimaPro. • Conduct sensitivity analysis over the critical parameters of the life cycle assessment • Propose the most environmentally friendly options for the retirement of each major component of wind turbines. After an analysis of the scenarios the goal of the study is to evaluate remanufacturing as an end-of-life option from an environmental perspective for commercial multi

  20. Magnus air turbine system

    Science.gov (United States)

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling

  1. Engine Power Turbine and Propulsion Pod Arrangement Study

    Science.gov (United States)

    Robuck, Mark; Zhang, Yiyi

    2014-01-01

    A study has been conducted for NASA Glenn Research Center under contract NNC10BA05B, Task NNC11TA80T to identify beneficial arrangements of the turboshaft engine, transmissions and related systems within the propulsion pod nacelle of NASA's Large Civil Tilt-Rotor 2nd iteration (LCTR2) vehicle. Propulsion pod layouts were used to investigate potential advantages, disadvantages, as well as constraints of various arrangements assuming front or aft shafted engines. Results from previous NASA LCTR2 propulsion system studies and tasks performed by Boeing under NASA contracts are used as the basis for this study. This configuration consists of two Fixed Geometry Variable Speed Power Turbine Engines and related drive and rotor systems (per nacelle) arranged in tilting nacelles near the wing tip. Entry-into-service (EIS) 2035 technology is assumed for both the engine and drive systems. The variable speed rotor system changes from 100 percent speed for hover to 54 percent speed for cruise by the means of a two speed gearbox concept developed under previous NASA contracts. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified in previous work and used here. Results reported in this study illustrate that a forward shafted engine has a slight weight benefit over an aft shafted engine for the LCTR2 vehicle. Although the aft shafted engines provide a more controlled and centered CG (between hover and cruise), the length of the long rotor shaft and complicated engine exhaust arrangement outweighed the potential benefits. A Multi-Disciplinary Analysis and Optimization (MDAO) approach for transmission sizing was also explored for this study. This tool offers quick analysis of gear loads, bearing lives, efficiencies, etc., through use of commercially available RomaxDESIGNER software. The goal was to create quick methods to explore various concept models. The output results from RomaxDESIGNER have been successfully linked to Boeing

  2. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  3. Low-Boom and Low-Drag Optimization of the Twin Engine Version of Silent Supersonic Business Jet

    Science.gov (United States)

    Sato, Koma; Kumano, Takayasu; Yonezawa, Masahito; Yamashita, Hiroshi; Jeong, Shinkyu; Obayashi, Shigeru

    Multi-Objective Optimization has been applied to a design problem of the twin engine concept for Silent Supersonic Business Jet (SSBJ). This problem aims to find main wing, body, tail wing and engine nacelle configurations, which can minimize both sonic boom and drag in a supersonic cruising flight. The multi-objective genetic algorithm (MOGA) coupled with the Kriging model has been used to globally and effectively search for optimal design candidates in the multi-objective problem. The drag and the sonic boom have been evaluated by the computational fluid dynamics (CFD) simulation and the waveform parameter method. As a result, the present optimization has successfully obtained low-boom and low-drag design candidates, which are better than the baseline design by more than 40% regarding each performance. Moreover, the structure of design space has been visualized by the self-organizing map (SOM).

  4. Inflow measurements from blade-mounted flow sensors: Flow analysis, application and aeroelastic response

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard

    -mounted flow sensor, BMFS, e.g. a five-hole pitot tube, which has been used in several research experiments over the last 30 years. The BMFS measured flow velocity is, however, located inside the induction zone and thereby influenced by the aerodynamic properties, the control strategy and the operational......The power and load performance of wind turbines are both crucial for the development and expansion of wind energy. The power and loads are highly dependent on the inflow conditions, which can be measured using different types of sensors mounted on nearby met masts, on the nacelle, at the spinner...... or at the blade. Each combination of sensor type and mounting position has advantages and shortcomings. To characterise the inflow that results in high and low fatigue loads, information about the temporal and spatial variations within the rotor area is required. This information can be obtained from a blade...

  5. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can...... be performed from a few hours or days of measurements. In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup...... anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation...

  6. IEA Wind Task 32: Wind lidar identifying and mitigating barriers to the adoption of wind lidar

    DEFF Research Database (Denmark)

    Clifton, Andrew; Clive, Peter; Gottschall, Julia

    2018-01-01

    IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex...... flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models......, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been...

  7. Aeroelastic Analysis of Olsen Wings 14.3m Blade-Blatigue Project

    DEFF Research Database (Denmark)

    Galinos, Christos

    HAWC2 model description and basic analysis of a 15 m rotor radius horizontal axis wind turbine (HAWT) based on 14.3m blade from Olsen Wings and the V27 wind turbine (WT) tower and nacelle properties. The subcomponents of the aero-elastic HAWC2 model have been created in previous projects. The aim...... of this analysis is to give an overview of the whole model properties and response through simulations. The blade structural and aerodynamic properties in HAWC2 format have been provided by Frederik Zahle and the HAWC2 model of the V27 structure by Morten H. Hansen of DTU Wind Energy Department. The current...... analysis is part of the Bladigue project ( Blatigue, 2020)....

  8. Power density investigation on the press-pack IGBT 3L-HB-VSCs applied to large wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    capabilities, DC capacitor sizes, converter cabinet volumes of the three 3LHB- VSCs utilizing press-pack IGBTs are investigated in order to quantify and compare the power densities of the 3L-HB-VSCs employed as grid-side converters. Also, the suitable transformer types for the 3L-HB-VSCs are determined......With three different DC-side and AC-side connections, the three-level H-bridge voltage source converters (3L-HB-VSCs) are alternatives to 3L neutral-point-clamped VSCs (3L-NPC-VSCs) for interfacing large wind turbines with electricity grids. In order to assess their feasibility for large wind...... turbines, they should be investigated in terms of power density, which is one of the most important design criteria for wind turbine converters due to turbine nacelle space limitation. In this study, by means of the converter electro-thermal models based on the converter characteristics, the power...

  9. Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control

    DEFF Research Database (Denmark)

    Schlipf, David; Cheng, Po Wen; Mann, Jakob

    2013-01-01

    - or spinner-based lidar system. If on the one hand, the assumed correlation is overestimated, then the uncorrelated frequencies of the preview will cause unnecessary control action, inducing undesired loads. On the other hand, the benefits of the lidar-assisted controller will not be fully exhausted......, if correlated frequencies are filtered out. To avoid these miscalculations, this work presents a method to model the correlation between lidar systems and wind turbines using Kaimal wind spectra. The derived model accounts for different measurement configurations and spatial averaging of the lidar system......Investigations of lidar-assisted control to optimize the energy yield and to reduce loads of wind turbines have increased significantly in recent years. For this kind of control, it is crucial to know the correlation between the rotor effective wind speed and the wind preview provided by a nacelle...

  10. Tribology of a Combined Yaw Bearing and Brake for Wind Turbines

    DEFF Research Database (Denmark)

    Poulios, Konstantinos

    disc brake is typically included as an independent system. However, the increasing size of wind turbines makes roller element bearings an economically costly option. Moreover, the additional brake system increases complexity and consequently adds further production and maintenance costs. One...... of the innovations aiming at reducing complexity in the yaw system consists in combining a segmented sliding bearing and a brake into a single system. This thesis studies the tribological implications of such a hybrid sliding bearing and brake for the yaw system of wind turbines. Based to a large extent...... that are affected by the tendency for building larger units, is the yaw system of horizontal axis wind turbines. State of the art wind turbine yaw systems consist of either a large roller element bearing or a corresponding segmented sliding bearing that connects the wind turbine nacelle and tower. An additional...

  11. An experimental and numerical study of the atmospheric stability impact on wind turbine wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Koblitz, Tilman

    2016-01-01

    campus test site. Wake measurements are averaged within a mean wind speed bin of 1 m s1 and classified according to atmospheric stability using three different metrics: the Obukhov length, the Bulk–Richardson number and the Froude number. Three test cases are subsequently defined covering various...... atmospheric conditions. Simulations are carried out using large eddy simulation and actuator disk rotor modeling. The turbulence properties of the incoming wind are adapted to the thermal stratification using a newly developed spectral tensor model that includes buoyancy effects. Discrepancies are discussed......In this paper, the impact of atmospheric stability on a wind turbine wake is studied experimentally and numerically. The experimental approach is based on full-scale (nacelle based) pulsed lidar measurements of the wake flow field of a stall-regulated 500 kW turbine at the DTU Wind Energy, Risø...

  12. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...... the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The tower support structure has free yawing capabilities provided at the base. A short overview on the technical details of the experiment is given as well as a brief summary of the design process...

  13. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, J.W.

    2012-01-01

    During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible ...... in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2....... blades are mounted. The tower support structure has free yawing capabilities provided at the tower base. A short overview on the technical details of the experiment is provided as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating...

  14. Prediction of flyover jet noise spectra from static tests

    Science.gov (United States)

    Michel, U.; Michalke, A.

    A scaling law for predicting the overall flyover noise of a single stream shock-free circular jet from static experiments is outlined. It is valid for isothermal and hot jets. It assumes that the jet flow and turbulence field are axially stretched in flight. Effects of the boundary layer within the nozzle and along the engine nacelle are neglected. The scaling laws for the power spectral density and spectra with constant relative bandwidth can be derived. In order to compare static and inflight directivities, the far field point relative to the source position must be denoted by the emission angle and the wave normal distance. From the solution of the convective Lighthill equation in a coordinate system fixed to the jet nozzle (wind tunnel case), the power spectral density of sound pressure at a given frequency is found. Predictions for Aerotrain compare well with measured values.

  15. Semiconductor Laser Wind Lidar for Turbine Control

    DEFF Research Database (Denmark)

    Hu, Qi

    This thesis describes an experimentally oriented study of continuous wave (CW) coherent Doppler lidar system design. The main application is remote wind sensing for active wind turbine control using nacelle mounted lidar systems; and the primary focus is to devise an industrial instrument that can...... historical overview within the topic of wind lidar systems. Both the potential and the challenges of an industrialized wind lidar has been addressed here. Furthermore, the basic concept behind the heterodyne detection and a brief overview of the lidar signal processing is explained; and a simple...... investigation of the telescope truncation and lens aberrations is conducted, both numerically and experimentally. It is shown that these parameters dictate the spatial resolution of the lidar system, and have profound impact on the SNR. In this work, an all-semiconductor light source is used in the lidar design...

  16. VASCOMP II. The V/STOL Aircraft Sizing and Performance Computer Program. Volume VI. User’s Manual. Revision 3

    Science.gov (United States)

    1980-05-01

    absorbers) 1.2 Doors, Cowl Flaps, and Work Platforms dj Minimum doors 0 Standard 1.0 Radial engine cowl flaps 1.1 Split and hinged engine cowl 1.2 Hinged...cowl with work platform 1.3 - High wing 1.2 - Low wing 1.1 These factors should be assessed on basis of size of cowl versus total nacelle. 4-170 ( 0D 0 V...V41L U 11. 𔄁N .7N %rf700 rC LAO ( LA,’ 4 LA LLA LAC ’.1’ .oNf a NW r) N rn NW rN W)i NW) NW)n NW)n NI" fli cW) )~ 1 N N N . N.? w- -j ... N.? WIx

  17. Detailed field test of yaw-based wake steering

    DEFF Research Database (Denmark)

    Fleming, P.; Churchfield, M.; Scholbrock, A.

    2016-01-01

    production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental......This paper describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power...... design and setup. All data collected as part of this field experiment will be archived and made available to the public via the U.S. Department of Energy’s Atmosphere to Electrons Data Archive and Portal....

  18. Medium voltage three-level converters for the grid connection of a multi-MW wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2009-01-01

    Three-level (3L) neutral point clamped (NPC), flying capacitor (FC), and H-bridge (HB) voltage source converters (VSCs) as a grid-side full-scale medium voltage (MV) converter are modeled, controlled, and simulated for the grid connection of a hypothetical 6MW wind turbine. Via the converter...... topological features and the simulation results demonstrating the converter performance, these three 3L-VSCs are discussed and compared in terms of power density and reliability, which can be considered as two of the most important criteria for the converters placed in wind turbine nacelles. Given the grid...... connection circuit (without capacitive switching ripple filters), the 3L-HB-VSC is expected to be superior with respect to power density and reliability over the 3L-NPC- and -FC-VSCs....

  19. Medium Voltage Three-level Converters for the Grid Connection of aMulti-MW Wind Turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2009-01-01

    Three-level (3L) neutral point clamped (NPC), flying capacitor (FC), and H-bridge (HB) voltage source converters (VSCs) as a grid-side full-scale medium voltage (MV) converter are modeled, controlled, and simulated for the grid connection of a hypothetical 6MW wind turbine. Via the converter...... topological features and the simulation results demonstrating the converter performance, these three 3L-VSCs are discussed and compared in terms of power density and reliability, which can be considered as two of the most important criteria for the converters placed in wind turbine nacelles. Given the grid...... connection circuit (without capacitive switching ripple filters), the 3L-HB-VSC is expected to be superior with respect to power density and reliability over the 3L-NPC- and -FC-VSCs....

  20. Advanced Propfan Engine Technology (APET) and Single-rotation Gearbox/Pitch Change Mechanism

    Science.gov (United States)

    Sargisson, D. F.

    1985-01-01

    The projected performance, in the 1990's time period, of the equivalent technology level high bypass ratio turbofan powered aircraft (at the 150 passenger size) is compared with advanced turboprop propulsion systems. Fuel burn analysis, economic analysis, and pollution (noise, emissions) estimates were made. Three different cruise Mach numbers were investigated for both the turbofan and the turboprop systems. Aerodynamic design and performance estimates were made for nacelles, inlets, and exhaust systems. Air to oil heat exchangers were investigated for oil cooling advanced gearboxes at the 12,500 SHP level. The results and conclusions are positive in that high speed turboprop aircraft will exhibit superior fuel burn characteristics and lower operating costs when compared with equivalent technology turbofan aircraft.

  1. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft

    Science.gov (United States)

    Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.

    1990-01-01

    Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.

  2. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    Science.gov (United States)

    Acree, C W.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) is a useful reference design for technology impact studies. The present paper takes a broad view of technology assessment by examining the extremes of what aerodynamic improvements might hope to accomplish. Performance was analyzed with aerodynamically idealized rotor, wing, and airframe, representing the physical limits of a large tiltrotor. The analysis was repeated with more realistic assumptions, which revealed that increased maximum rotor lift capability is potentially more effective in improving overall vehicle efficiency than higher rotor or wing efficiency. To balance these purely theoretical studies, some practical limitations on airframe layout are also discussed, along with their implications for wing design. Performance of a less efficient but more practical aircraft with non-tilting nacelles is presented.

  3. Composites in energy generation and storage systems - An overview

    Science.gov (United States)

    Fulmer, R. W.

    Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.

  4. Research in aeroelasticity EFP-2006

    DEFF Research Database (Denmark)

    on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown...... and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found...... that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle...

  5. The application of hydraulics in the 2,000 kW wind turbine generator

    Science.gov (United States)

    Onufreiczuk, S.

    1978-01-01

    A 2000 kW turbine generator using hydraulic power in two of its control systems is being built under the management of NASA Lewis Research Center. The hydraulic systems providing the control torques and forces for the yaw and blade pitch control systems are discussed. The yaw-drive-system hydraulic supply provides the power for positioning the nacelle so that the rotary axis is kept in line with the direction of the prevailing wind, as well as pressure to the yaw and high speed shaft brakes. The pitch-change-mechanism hydraulic system provides the actuation to the pitch change mechanism and permits feathering of the blades during an emergency situation. It operates in conjunction with the overall windmill computer system, with the feather control permitting slewing control flow to pass from the servo valve to the actuators without restriction.

  6. Experimental and numerical study of a 10MW TLP wind turbine in waves and wind

    DEFF Research Database (Denmark)

    Pegalajar Jurado, Antonio Manuel; Hansen, Anders Mandrup; Laugesen, Robert

    2016-01-01

    with the tests by matching key system features, namely the steady thrust curve and the decay tests in water. The calibrated model is used to reproduce the wind-wave climates in the laboratory, including regular and irregular waves, with and without wind. The model predictions are compared to the measured data......This paper presents tests on a 1:60 version of the DTU 10MW wind turbine mounted on a tension leg platform and their numerical reproduction. Both the experimental setup and the numerical model are Froude-scaled, and the dynamic response of the floating wind turbine to wind and waves is compared......, and a good agreement is found for surge and heave, while some discrepancies are observed for pitch, nacelle acceleration and line tension. The addition of wind generally improves the agreement with test results. The aerodynamic damping is identified in both tests and simulations. Finally, the sources...

  7. Development of FJR710 turbofan engine and its operation with STOL research aircraft ASUKA''. FJR710 turbofan engine no kaihatsu to STOL jikkenki asuka ni yoru un prime yo

    Energy Technology Data Exchange (ETDEWEB)

    Nose, H; Morita, M; Sasaki, M [National Aerospace Lab., Tokyo (Japan)

    1990-07-05

    Flight experiment of ASUKA, STOL experimental m/c ended in March, 1990. In order to successively meet the future airplane development, operations have been operated to collect the technical results obtained from the development of experimental machines, flight experiment and related ground tests to form a data base. This report outlines the process of development of the FJR engines, and outlined the aerial engine test, the status of engine operation and the result of developing the reliability enhancement which has been conducted also after the end of the operations. It was demonstrated by the flight experiment of the experimental machine that such methods as the engine matching adopted in the engine mounting, nacelle design and engine mounting design were appropriate. The results of the technical development for the reliability improvement which had been in parallel were applied to the mounted engine and controlled to the safe and efficient flight experiments. 11 refs., 17 figs., 3 tabs.

  8. Estimation of turbulence intensity using rotor effective wind speed in Lillgrund and Horns Rev-I offshore wind farms

    DEFF Research Database (Denmark)

    Gögmen, Tuhfe; Giebel, Gregor

    2016-01-01

    varies over the extent of the wind farm. This paper describes a method to estimate the TI at individual turbine locations by using the rotor effective wind speed calculated via high frequency turbine data. The method is applied to Lillgrund and Horns Rev-I offshore wind farms and the results are compared...... with TI derived from the meteorological mast, nacelle mounted anemometer on the turbines and estimation based on the standard deviation of power. The results show that the proposed TI estimation method is in the best agreement with the meteorological mast. Therefore, the rotor effective wind speed...... is shown to be applicable for the TI assessment in real-time wind farm calculations under different operational conditions. Furthermore, the TI in the wake is seen to follow the same trend with the estimated wake deficit which enables to quantify the turbulence in terms of the wake loss locally inside...

  9. Development of selected advanced aerodynamics and active control concepts for commercial transport aircraft

    Science.gov (United States)

    Taylor, A. B.

    1984-01-01

    Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.

  10. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  11. Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Harte, M.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...

  12. Application of OMA to an Operating Wind Turbine: now including Vibration Data from the Blades

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Larsen, Gunner Chr.

    2013-01-01

    due to the rotor rotation) as well as the considerable aerodynamic damping make OMA of operating wind turbines a difficult task. While in the previous works OMA was based on data provided by sensors mounted on the wind turbine tower and nacelle, we here attempt to improve the results by instrumenting......The presented study continues the work on application of Output Only Modal Analysis (OMA) to operating wind turbines. It is known from previous studies that issues like the time-varying nature of the equations of motion of an operating wind turbine (in particular the significant harmonic components...... discusses the technical challenges regarding blade instrumentation and data acquisition, data processing applied to eliminate the time-varying nature of an operating wind turbine in the resulting eigenvalue problem and, finally, it presents and discusses the initial results....

  13. Research in aeroelasticity EFP-2007

    DEFF Research Database (Denmark)

    . Comparison of 3D CFD computations with and without inflow shear showed that the integrated rotor thrust and power were largely identical in the two situations. The influence of tower shadow with and without inflow shear showed significant differences compared to BEM computations, which gives cause...... for further investigation. 3D CFD computations showed that the flow in the region of the nacelle anemometer measured the flow angle in the wake with errors up to as much as 7 deg. relative to the freestream flow angle. As long as the flow over a blade remains attached there is little difference between 2-D...... and 3-D flow. However, at separation an increased lift is observed close to the rotational axis. A correlation based transition model has been implemented in the incompressible EllipSys2D/3D Navier-Stokes solver. Computations on airfoils and rotors showed good agreement and distinct improvement...

  14. Nonlinear Stochastic stability analysis of Wind Turbine Wings by Monte Carlo Simulations

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Iwankiewiczb, R.; Nielsen, Søren R.K.

    2007-01-01

    and inertial contributions. A reduced two-degrees-of-freedom modal expansion is used specifying the modal coordinate of the fundamental blade and edgewise fixed base eigenmodes of the beam. The rotating beam is subjected to harmonic and narrow-banded support point motion from the nacelle displacement...... under narrow-banded excitation, and it is shown that the qualitative behaviour of the strange attractor is very similar for the periodic and almost periodic responses, whereas the strange attractor for the chaotic case loses structure as the excitation becomes narrow-banded. Furthermore......, the characteristic behaviour of the strange attractor is shown to be identifiable by the so-called information dimension. Due to the complexity of the coupled nonlinear structural system all analyses are carried out via Monte Carlo simulations....

  15. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  16. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...... and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental...... estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models...

  17. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.

    Science.gov (United States)

    Ma, Ping; Lien, Fue-Sang; Yee, Eugene

    2017-01-01

    This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.

  18. Studies on aerodynamic interferences between the components of transport airplane using unstructured Navier-Stokes simulations

    International Nuclear Information System (INIS)

    Wang, G.; Ye, Z.

    2005-01-01

    It is well known that the aerodynamic interference flows widely exist between the components of conventional transport airplane, for example, the wing-fuselage juncture flow, wing-pylon-nacelle flow and tail-fuselage juncture flow. The main characteristic of these aerodynamic interferences is flow separation, which will increase the drag, reduce the lift and cause adverse influence on the stability and controllability of the airplane. Therefore, the modern civil transport designers should do their best to eliminate negative effects of aerodynamic interferences, which demands that the aerodynamic interferences between the aircraft components should be predicted and analyzed accurately. Today's CFD techniques provide us powerful and efficient analysis tools to achieve this objective. In this paper, computational investigations of the interferences between transport aircraft components have been carried out by using a viscous flow solver based on mixed element type unstructured meshes. (author)

  19. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    DEFF Research Database (Denmark)

    Hunter, R.; Friis Pedersen, Troels; Dunbabin, P.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard forwind turbine power performance testing....... The standard is being divided into four documents. Two of them are drafted for evaluation and verification of complete wind farms and of individual wind turbines within wind farms. This document, and the project itdescribes, has been designed to help provide a solid technical foundation for this revised...... standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support offundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle...

  20. Calibration of a spinner anemometer for yaw misalignment measurements

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels; Demurtas, Giorgio; Zahle, Frederik

    2015-01-01

    constant, k1, mainly affects the measurement of wind speed. The ratio between the two constants, kα = k2/k1, however, only affects the measurement of flow angles. The calibration of kα is thus a basic calibration of the spinner anemometer. Theoretical background for the non-linear calibration is derived......The spinner anemometer is an instrument for yaw misalignment measurements without the drawbacks of instruments mounted on the nacelle top. The spinner anemometer uses a non-linear conversion algorithm that converts the measured wind speeds by three sonic sensors on the spinner to horizontal wind...... from the generic spinner anemometer conversion algorithm. Five different methods were evaluated for calibration of a spinner anemometer on a 500 kW wind turbine. The first three methods used rotor yaw direction as reference angular, while the wind turbine, was yawed in and out of the wind. The fourth...

  1. Optimum balance between innovation and reliability

    International Nuclear Information System (INIS)

    Negro, B.

    2004-01-01

    This PowerPoint presentation introduced Gamesa Eolica companies and their industrial capacity, with reference to the product portfolio, market position, main technologies applied, and internationalization. Gamesa has commercial offices in Spain, Germany, Italy, Greece, Portugal, France, and Brazil and is involved in joint ventures with local companies in China, India, Australia, Japan and the United Kingdom. It is a modular vertically integrated company that is involved with wind turbine production, development of wind farms and aeronautic components that include nacelles, blade moulds, root joints, blades, towers, generators and gearboxes. The benefits of modular vertical integration include: quality control in critical components and final product performance; cost competitiveness due to optimized production processes; shorter lead times in the market; and, product reliability. Gamesa Eolica will invest in new production centres in the United States and Europe in 2004 in response to demands for new multi-megawatt wind turbines. tabs., figs

  2. Une centrale dans le vent

    International Nuclear Information System (INIS)

    Dessonnaz, Michel

    1998-01-01

    Full text: Wind conditions required for aeolian energy are not very favourable in Switzerland. Nevertheless, there are some suitable places for a wind turbines complex. That's why Mont-Crosin situated at 1200 meters above sea level, in the Saint-Imier area of the Swiss Jura, was chosen. Last spring, three wind turbines, each of them generating 600 kilowatts, were constructed. The generator produces a voltage of 690 volts AC, injected after conversion into the local 16'000 volts network. The power station opened in autumn 1996, was inaugurated in May this year. Its annual production is estimated at 1,8 MWh. This movie shows the construction of this exceptional installation. The concrete foundations have a volume of 100 m3 per tower. The nacelle as well as the generator are situated in 45 m height. The rotor with its variable blades has a diameter of 44 m. (author)

  3. A method of measuring and correcting tilt of anti - vibration wind turbines based on screening algorithm

    Science.gov (United States)

    Xiao, Zhongxiu

    2018-04-01

    A Method of Measuring and Correcting Tilt of Anti - vibration Wind Turbines Based on Screening Algorithm is proposed in this paper. First of all, we design a device which the core is the acceleration sensor ADXL203, the inclination is measured by installing it on the tower of the wind turbine as well as the engine room. Next using the Kalman filter algorithm to filter effectively by establishing a state space model for signal and noise. Then we use matlab for simulation. Considering the impact of the tower and nacelle vibration on the collected data, the original data and the filtering data are classified and stored by the Screening algorithm, then filter the filtering data to make the output data more accurate. Finally, we eliminate installation errors by using algorithm to achieve the tilt correction. The device based on this method has high precision, low cost and anti-vibration advantages. It has a wide range of application and promotion value.

  4. One-Way Fluid-Structure Interaction Simulation of an Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhi-Kui Wang

    2014-07-01

    Full Text Available The Fluid-Structure Interaction (FSI has gained great interest of scholars recently, meanwhile, extensive studies have been conducted by the virtue of numerical methods which have been implemented on wind turbine models. The blades of a wind turbine have been gained a deep insight into the FSI analyses, however, few studies have been conducted on the tower and nacelle, which are key components of the wind turbine, using this method. We performed the one-way FSI analysis on a 2-MW offshore wind turbine, using the Finite Volume Method (FVM with ANSYS CFX solver and the RNG k-ε turbulence model, to achieve a comprehensive cognition of it. The grid convergence was studied and verified in this study, and the torque value is chosen to determine the optimal case. The superior case, which was chosen to conduct the FSI analysis, with a relative error is only 2.15%, thus, the accuracy of results is credible.

  5. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    DEFF Research Database (Denmark)

    Borraccino, Antoine

    the so-called whitebox approach. It consists mainly in calibrating the lidar primary measurementsof line-of-sight velocities. The line-of-sight velocity is the projection of the wind vector onto the laser beam propagation path. The calibration is performed in situ, by comparing the lidar velocity...... measurements to a reference quantity itself traceable to the international standards of units. The uncertainty of the line-ofsight velocity measurements was assessed using a normative methodology (GUM) which is based on the law of propagation of uncertainties. The generic calibration procedure was applied...... to two commercially developed nacelle lidars systems, the Avent 5-beam Demonstrator and the ZephIR Dual Mode lidars. Further, the lineof-sight positioning quantities such as inclination angles or beam trajectory werealso calibrated and their uncertainties assessed. Calibration results were of high...

  6. Condition monitoring of rotor blades of modern wind power systems; Ueberwachung mit Hertz. Condition Monitoring von Rotorblaettern moderner Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, Nikolaus

    2010-06-15

    With seven wind turbines, the Austrian wind farm ''Sternwald'' is the biggest wind farm in Upper Austria. It is the only wind farm in a forest, and all turbines are therefore equipped with automatic fire fighting equipment. The mountain range on which the wind farm is located is about 1000 m high, with strong wind and much ice and snow in the winter season. For this reason, the owner decided to instal a condition monitoring system with ice detectors. The piezoelectric sensors are mounted directly on the rotor blades as measurements on the nacelle will always be incorrect. Installation on the rotor blades, on the other hand, makes high demands on the fastenings and sensors as the velocity of the blade tips may be up to 250 km per hour. (orig.)

  7. USB environment measurements based on full-scale static engine ground tests. [Upper Surface Blowing for YC-14

    Science.gov (United States)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive-lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data and to establish a basis for future flight test comparisons.

  8. USB environment measurements based on full-scale static engine ground tests

    Science.gov (United States)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.

  9. European wind turbine testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, R.; Friis Pedersen, T.; Dunbabin, P.; Antoniou, I.; Frandsen, S.; Klug, H.; Albers, A.; Lee, W.K.

    2001-01-01

    There is currently significant standardisation work ongoing in the context of wind farm energy yield warranty assessment and wind turbine power performance testing. A standards maintenance team is revising the current IEC (EN) 61400-12 Ed 1 standard for wind turbine power performance testing. The standard is being divided into four documents. Two of them are drafted for evaluation and verification of complete wind farms and of individual wind turbines within wind farms. This document, and the project it describes, has been designed to help provide a solid technical foundation for this revised standard. The work was wide ranging and addressed 'grey' areas of knowledge, regarding existing methodologies or to carry out basic research in support of fundamentally new procedures. The work has given rise to recommendations in all areas of the work, including site calibration procedures, nacelle anemometry, multi-variate regression analysis and density normalisation. (au)

  10. The MOD-OA 200 kilowatt wind turbine generator design and analysis report

    Science.gov (United States)

    Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.

    1980-01-01

    The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.

  11. Prototype bucket foundation for wind turbines - natural frequency estimation

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models capable of simulating dynamic frequency dependent behaviour of the structure-foundation system. (au)

  12. Experimental Characterization of a Grid-Loss Event on a 2.5-MW Dynamometer Using Advanced Operational Modal Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, J.; Weijtjens, W.; Guo, Y.; Keller, J.; McNiff, B.; Devriendt, C.; Guillaume, P.

    2015-02-01

    This paper experimentally investigates a worst case grid loss event conducted on the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) drivetrain mounted on the 2.5MW NREL dynamic nacelle test-rig. The GRC drivetrain has a directly grid-coupled, fixed speed asynchronous generator. The main goal is the assessment of the dynamic content driving this particular assess the dynamic content of the high-speed stage of the GRC gearbox. In addition to external accelerometers, high frequency sampled measurements of strain gauges were used to assess torque fluctuations and bending moments both at the nacelle main shaft and gearbox high-speed shaft (HSS) through the entire duration of the event. Modal analysis was conducted using a polyreference Least Squares Complex Frequency-domain (pLSCF) modal identification estimator. The event driving the torsional resonance was identified. Moreover, the pLSCF estimator identified main drivetrain resonances based on a combination of acceleration and strain measurements. Without external action during the grid-loss event, a mode shape characterized by counter phase rotation of the rotor and generator rotor determined by the drivetrain flexibility and rotor inertias was the main driver of the event. This behavior resulted in significant torque oscillations with large amplitude negative torque periods. Based on tooth strain measurements of the HSS pinion, this work showed that at each zero-crossing, the teeth lost contact and came into contact with the backside flank. In addition, dynamic nontorque loads between the gearbox and generator at the HSS played an important role, as indicated by strain gauge-measurements.

  13. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading

    Energy Technology Data Exchange (ETDEWEB)

    Murtagh, P J; Basu, B; Broderick, B M [Department of Civil, Structural and Environmental Engineering, Trinity College, Dublin (Ireland)

    2005-07-15

    This paper proposes an approach to investigate the along-wind forced vibration response of a wind turbine tower and rotating blades assembly subjected to rotationally sampled stationary wind loading. The wind turbine assembly consists of three rotating rotor blades connected to the top of a flexible annular tower, constituting a multi-body dynamic entity. The tower and rotating blades are each modelled as discretized multi-degree-of-freedom (MDOF) entities, allowing the free vibration characteristics of each to be obtained using a discrete parameter approach. The free vibration properties of the tower include the effect of a rigid mass at the top, representing the nacelle, and those of the blade include the effects of centrifugal stiffening due to rotation and blade gravity loadings. The blades are excited by drag force time-histories derived from discrete Fourier transform (DFT) representations of rotationally sampled wind turbulence spectra. Blade response time-histories are obtained using the mode acceleration method, which allows for the quantification of base shear forces due to flapping for the three blades to be obtained. This resultant base shear is imparted into the top of the tower. Wind drag loading on the tower is also considered, with a series of spatially correlated nodal force time-histories being derived using DFTs of wind force spectra. The tower/nacelle is then coupled with the rotating blades by combining their equations of motion and solving for the displacement at the top of the tower under compatibility conditions in the frequency domain. An inverse Fourier transform of the frequency domain response yields the response time-history of the coupled system. The response of an equivalent system that does not consider the blade/tower interaction is also investigated, and the results are compared. (Author)

  14. Testing and Performance Verification of a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    Science.gov (United States)

    VanZante, Dale E.; Podboy, Gary G.; Miller, Christopher J.; Thorp, Scott A.

    2009-01-01

    A 1/5 scale model rotor representative of a current technology, high bypass ratio, turbofan engine was installed and tested in the W8 single-stage, high-speed, compressor test facility at NASA Glenn Research Center (GRC). The same fan rotor was tested previously in the GRC 9x15 Low Speed Wind Tunnel as a fan module consisting of the rotor and outlet guide vanes mounted in a flight-like nacelle. The W8 test verified that the aerodynamic performance and detailed flow field of the rotor as installed in W8 were representative of the wind tunnel fan module installation. Modifications to W8 were necessary to ensure that this internal flow facility would have a flow field at the test package that is representative of flow conditions in the wind tunnel installation. Inlet flow conditioning was designed and installed in W8 to lower the fan face turbulence intensity to less than 1.0 percent in order to better match the wind tunnel operating environment. Also, inlet bleed was added to thin the casing boundary layer to be more representative of a flight nacelle boundary layer. On the 100 percent speed operating line the fan pressure rise and mass flow rate agreed with the wind tunnel data to within 1 percent. Detailed hot film surveys of the inlet flow, inlet boundary layer and fan exit flow were compared to results from the wind tunnel. The effect of inlet casing boundary layer thickness on fan performance was quantified. Challenges and lessons learned from testing this high flow, low static pressure rise fan in an internal flow facility are discussed.

  15. Long Elastic Open Neck Acoustic Resonator for low frequency absorption

    Science.gov (United States)

    Simon, Frank

    2018-05-01

    Passive acoustic liners, used in aeronautic engine nacelles to reduce radiated fan noise, have a quarter-wavelength behavior, because of perforated sheets backed by honeycombs (with one or two degrees of freedom). However, their acoustic absorption ability is naturally limited to medium and high frequencies because of constraints in thickness. The low ratio "plate thickness/hole diameter" generates impedance levels dependent on the incident sound pressure level and the grazing mean flow (by a mechanism of nonlinear dissipation through vortex shedding), which penalises the optimal design of liners. The aim of this paper is to overcome this problem by a concept called LEONAR ("Long Elastic Open Neck Acoustic Resonator"), in which a perforated plate is coupled with tubes of variable lengths inserted in a limited volume of a back cavity. To do this, experimental and theoretical studies, using different types of liners (material nature, hole diameter, tube length, cavity thickness) are described in this paper. It is shown that the impedance can be precisely determined with an analytical approach based on parallel transfer matrices of tubes coupled to the cavity. Moreover, the introduction of tubes in a cavity of a conventional resonator generates a significant shift in the frequency range of absorption towards lower frequencies or allows a reduction of cavity thickness. The impedance is practically independent of sound pressure level because of a high ratio "tube length/tube hole diameter". Finally, a test led in an aeroacoustic bench suggests that a grazing flow at a bulk Mach number of 0.3 has little impact on the impedance value. These first results allow considering these resonators with linear behavior as an alternative to classical resonators, in particular, as needed for future Ultra High Bypass Ratio engines with shorter and thinner nacelles.

  16. Maintenance Maneuver Automation for an Adapted Cylindrical Shape TEC

    Directory of Open Access Journals (Sweden)

    Rafael Morales

    2016-09-01

    Full Text Available Several manufacturers have developed devices with which to harness tidal/current power in areas where the depth does not exceed 40 m. These are the so-called first generation Tidal Energy Converters (TEC, and they are usually fixed to the seabed by gravity. When carrying out maintenance tasks on these devices it is, therefore, necessary to remove the nacelles from their bases and raise them to the surface of the sea. They must subsequently be placed back on their bases. These tasks require special high performance ships, signifying high maintenance costs. The automation of emersion and immersion maneuvers will undoubtedly lead to lower costs, given that ships with less demanding requirements will be required for the aforementioned maintenance tasks. This research presents a simple two degrees of freedom dynamic model that can be used to control a first generation TEC that has been conceived of to harness energy from marine currents. The control of the system is carried out by means of a water ballast system located inside the nacelle of the main power unit and is used as an actuator to produce buoying vertical forces. A nonlinear control law based on a decoupling term for the closed loop depth and/or orientation control is also proposed in order to ensure adequate behavior when the TEC performs emersion and immersion maneuvers with only hydrostatic buoyancy forces. The control scheme is composed of an inner loop consisting of a linear and decoupled input/output relationship and the vector of friction and compressibility terms and an outer loop that operates with the tracking error vector in order to ensure the asymptotically exponential stability of the TEC posture. Finally, the effectiveness of the dynamic model and the controller approach is demonstrated by means of numerical simulations when the TEC is carrying out an emersion maneuver for the development of general maintenance tasks and an emersion maneuver for blade-cleaning maintenance

  17. Data mining techniques for performance analysis of onshore wind farms

    International Nuclear Information System (INIS)

    Astolfi, Davide; Castellani, Francesco; Garinei, Alberto; Terzi, Ludovico

    2015-01-01

    Highlights: • Indicators are formulated for monitoring quality of wind turbines performances. • State dynamics is processed for formulation of two Malfunctioning Indexes. • Power curve analysis is revisited. • A novel definition of polar efficiency is formulated and its consistency is checked. • Mechanical effects of wakes are analyzed as nacelle stationarity and misalignment. - Abstract: Wind turbines are an energy conversion system having a low density on the territory, and therefore needing accurate condition monitoring in the operative phase. Supervisory Control And Data Acquisition (SCADA) control systems have become ubiquitous in wind energy technology and they pose the challenge of extracting from them simple and explanatory information on goodness of operation and performance. In the present work, post processing methods are applied on the SCADA measurements of two onshore wind farms sited in southern Italy. Innovative and meaningful indicators of goodness of performance are formulated. The philosophy is a climax in the granularity of the analysis: first, Malfunctioning Indexes are proposed, which quantify goodness of merely operational behavior of the machine, irrespective of the quality of output. Subsequently the focus is shifted to the analysis of the farms in the productive phase: dependency of farm efficiency on wind direction is investigated through the polar plot, which is revisited in a novel way in order to make it consistent for onshore wind farms. Finally, the inability of the nacelle to optimally follow meandering wind due to wakes is analysed through a Stationarity Index and a Misalignment Index, which are shown to capture the relation between mechanical behavior of the turbine and degradation of the power output

  18. Smart Novel Semi-Active Tuned Mass Damper for Fixed-Bottom and Floating Offshore Wind (Paper)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Tsouroukdissian, Arturo [Alstom Renewable US LLC (GE Subsidiary); Lackner, Mathew [University of Massachusetts; Cross-Whiter, John [Glosten Associates; Park, Se Myung [University of Massachusetts; Pourazarm, Pariya [University of Massachusetts; La Cava, William [University of Massachusetts; Lee, Sungho [Glosten Associates

    2016-05-02

    The intention of this paper is to present the results of a novel smart semi-active tuned mass damper (SA-TMD), which mitigates unwanted loads for both fixed-bottom and floating offshore wind systems. The paper will focus on the most challenging water depths for both fixed-bottom and floating systems. A close to 38m Monopile and 55m Tension Leg Platform (TLP) will be considered. A technical development and trade-off analysis will be presented comparing the new system with existing passive non-linear TMD (N-TMD) technology and semi-active. TheSATMD works passively and activates itself with low power source under unwanted dynamic loading in less than 60msec. It is composed of both variable stiffness and damping elements coupled to a central pendulum mass. The analysis has been done numerically in both FAST(NREL) and Orcaflex (Orcina), and integrated in the Wind Turbine system employing CAD/CAE. The results of this work will pave the way for experimental testing to complete the technology qualification process. The load reductions under extreme and fatigue cases reach up significant levels at tower base, consequently reducing LCOE for fixed-bottom to floating wind solutions. The nacelle acceleration is reduced substantially under severe random wind and sea states, reducing the risks of failure of electromechanical components and blades at the rotor nacelle assembly. The SA-TMD system isa new technology that has not been applied previously in wind solutions. Structural damping devices aim to increase offshore wind turbine system robustness and reliability, which eases multiple substructures installations and global stability.

  19. Anisotropy of the Reynolds stress tensor in the wakes of wind turbine arrays in Cartesian arrangements with counter-rotating rotors

    Science.gov (United States)

    Hamilton, Nicholas; Cal, Raúl Bayoán

    2015-01-01

    A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress - v w ¯ . The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean

  20. Lidar-based Research and Innovation at DTU Wind Energy - a Review

    Science.gov (United States)

    Mikkelsen, T.

    2014-06-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site "Østerild" for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site "Høvsøre" DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast scanning continuous-wave based wind lidars

  1. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines

    International Nuclear Information System (INIS)

    Kumar, A A; Hugues-Salas, O; Savini, B; Keogh, W

    2016-01-01

    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods. (paper)

  2. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  3. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  4. Development of a Multifidelity Approach to Acoustic Liner Impedance Eduction

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.

    2017-01-01

    The use of acoustic liners has proven to be extremely effective in reducing aircraft engine fan noise transmission/radiation. However, the introduction of advanced fan designs and shorter engine nacelles has highlighted a need for novel acoustic liner designs that provide increased fan noise reduction over a broader frequency range. To achieve aggressive noise reduction goals, advanced broadband liner designs, such as zone liners and variable impedance liners, will likely depart from conventional uniform impedance configurations. Therefore, educing the impedance of these axial- and/or spanwise-variable impedance liners will require models that account for three-dimensional effects, thereby increasing computational expense. Thus, it would seem advantageous to investigate the use of multifidelity modeling approaches to impedance eduction for these advanced designs. This paper describes an extension of the use of the CDUCT-LaRC code to acoustic liner impedance eduction. The proposed approach is applied to a hardwall insert and conventional liner using simulated data. Educed values compare well with those educed using two extensively tested and validated approaches. The results are very promising and provide justification to further pursue the complementary use of CDUCT-LaRC with the currently used finite element codes to increase the efficiency of the eduction process for configurations involving three-dimensional effects.

  5. The SKYLON Spaceplane

    Science.gov (United States)

    Varvill, R.; Bond, A.

    SKYLON is a single stage to orbit (SSTO) winged spaceplane designed to give routine low cost access to space. At a gross takeoff weight of 275 tonnes of which 220 tonnes is propellant the vehicle is capable of placing 12 tonnes into an equatorial low Earth orbit. The vehicle configuration consists of a slender fuselage containing the propellant tankage and payload bay with delta wings located midway along the fuselage carrying the SABRE engines in axisymmetric nacelles on the wingtips. The vehicle takes off and lands horizontally on it's own undercarriage. The fuselage is constructed as a multilayer structure consisting of aeroshell, insulation, structure and tankage. SKYLON employs extant or near term materials technology in order to minimise development cost and risk. The SABRE engines have a dual mode capability. In rocket mode the engine operates as a closed cycle liquid oxygen/liquid hydrogen high specific impulse rocket engine. In airbreathing mode (from takeoff to Mach 5) the liquid oxygen flow is replaced by atmospheric air, increasing the installed specific impulse 3-6 fold. The airflow is drawn into the engine via a 2 shock axisymmetric intake and cooled to cryogenic temperatures prior to compression. The hydrogen fuel flow acts as a heat sink for the closed cycle helium loop before entering the main combustion chamber.

  6. Annoyance rating of wind turbine noise

    International Nuclear Information System (INIS)

    Iredale, R.

    1993-01-01

    Annoyance rating is important, but more important still is agreement on techniques for formulating minimal complaint criteria for design and specification purposes thus integrating noise control into the plant at the outset. A minimal complaint design criteria is suggested that finds its origin in the logic and techniques used successfully over many years for a wide range of power plant and other installations. The criterion is based on the masking of the wind turbine noise by the wind generated background noise. Satisfactory use of the criterion depends on the specification of inaudibility for the tones generated by the mechanical plant. Wind turbines generate more drive train noise than is realized and this contains many tones which tend to characterize the noise. Reduction of drive train noise would not only reduce the overall noise level but also give it a more acceptable character providing a margin against complaint in unusual circumstances of propagation. This requires very careful design of noise and vibration control in individual components. Vibration isolation between the support structures and the nacelle also requires careful attention. (UK)

  7. Development of LiDAR measurements for the German offshore test site

    International Nuclear Information System (INIS)

    Rettenmeier, A; Kuehn, M; Waechter, M; Rahm, S; Mellinghoff, H; Siegmeier, B; Reeder, L

    2008-01-01

    The paper introduces the content of the recently started joint research project 'Development of LiDAR measurements for the German Offshore Test Site' which has the objective to support other research projects at the German offshore test site 'alpha ventus'. The project has started before the erection of the offshore wind farm and one aim is to give recommendations concerning LiDAR technology useable for offshore measurement campaigns and data analysis. The work is organized in four work packages. The work package LiDAR technology deals with the specification, acquisition and calibration of a commercial LiDAR system for the measurement campaigns. Power curve measurements are dedicated to power curve assessment with ground-based LiDAR using standard statistical methods. Additionally, it deals with the development of new methods for the measurement of non-steady short-term power curves. Wind field research aims at the development of wake loading simulation methods of wind turbines and the exploration of loading control strategies and nacelle-based wind field measurement techniques. Finally, dissemination of results to the industry takes place in work package Technology transfer

  8. CleverFarm - A SuperSCADA system for wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G [ed.; Juhl, A; Gram Hansen, K; Biebhardt, J [and others

    2004-08-01

    The CleverFarm project started out to build an integrated monitoring system for wind farms, where all information would be available and could be used across the wind farm for maintenance and component health assessments. This would enable wind farm operators to prioritise their efforts, since they have a good view of the farm status from home. A large emphasis was placed on the integration of condition monitoring approaches in the central system, enabling estimates of the remaining lifetime of components, especially in the nacelle. During the 3,5 years of the project, software and hardware was developed and installed in two wind farms in Denmark and Germany. The connected hardware included two different condition monitoring systems based on vibration sensors from Gram&Juhl and ISET, plus a camera system developed by Overspeed. Additionally, short-term predictions of the wind farm output were delivered by DMI and Risoes Prediktor system throughout the period of the project. All these diverse information sources are integrated through a web interface based on Java Server Pages. The software was developed in Java, and is delivered as so-called CleverBeans. The main part of the software is open-sourced. The report contains the experiences and results of a one-year experimental period. This report is a slightly edited version of the final publishable report to the EU Commission as part of the requirements of the CleverFarm project.

  9. AIAA Applied Aerodynamics Conference, 8th, Portland, OR, Aug. 20-22, 1990, Technical Papers. Parts 1 ampersand 2

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The present conference discusses topics in CFD methods and their validation, vortices and vortical flows, STOL/VSTOL aerodynamics, boundary layer transition and separation, wing airfoil aerodynamics, laminar flow, supersonic and hypersonic aerodynamics, CFD for wing airfoil and nacelle applications, wind tunnel testing, flight testing, missile aerodynamics, unsteady flow, configuration aerodynamics, and multiple body/interference flows. Attention is given to the numerical simulation of vortical flows over close-coupled canard-wing configuration, propulsive lift augmentation by side fences, road-vehicle aerodynamics, a shock-capturing method for multidimensional flow, transition-detection studies in a cryogenic environment, a three-dimensional Euler analysis of ducted propfan flowfields, multiple vortex and shock interaction at subsonic and supersonic speeds, and a Navier-Stokes simulation of waverider flowfields. Also discussed are the induced drag of crescent-shaped wings, the preliminary design aerodynamics of missile inlets, finite wing lift prediction at high angles-of-attack, optimal supersonic/hypersonic bodies, and adaptive grid embedding for the two-dimensional Euler equations

  10. Experimental investigation of damping for edgewise blade vibrations; Eksperimentel bestemmelse af daempning for kantsvingninger

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, K.; Thirstrup Petersen, J. [Forskningscenter Risoe (Denmark); Nim, E. [Bonus Energy A/S (Denmark); Oeye, S. [Danmarks Tekniske Univ. (Denmark); Pedersen, B. [LM Glasfiber A/S (Denmark)

    2000-01-01

    The main result of the investigation is a newly developed method to identify the effective damping for the edgewise blade mode shape for wind turbines. The method consists of an exciter mechanism which makes it possible to excite the edgewise blade mode shapes from the wind turbine nacelle and furthermore of an analysis method, which enables a straightforward determination of the damping. The analysis method is based on a local blade whirl description of the edgewise blade vibrations. The method is verified on a Bonus wind turbine and for this specific turbine the effective damping for edgewise blade vibrations has been determined. The results have been compared with aeroelastic simulations. The potential of the method is that the results can support the further development of aeroelastic models and fine tuning of parameters of importance of the edgewise blade vibration problem and thus improve the certainty in the predicted risk of vibrations. Furthermore, the method can be used for experimental investigation of the risk of edgewise blade vibrations for a specific turbine. (au)

  11. Analysis of Limit Cycle Oscillation Data from the Aeroelastic Test of the SUGAR Truss-Braced Wing Model

    Science.gov (United States)

    Bartels, Robert E.; Funk, Christie; Scott, Robert C.

    2015-01-01

    Research focus in recent years has been given to the design of aircraft that provide significant reductions in emissions, noise and fuel usage. Increases in fuel efficiency have also generally been attended by overall increased wing flexibility. The truss-braced wing (TBW) configuration has been forwarded as one that increases fuel efficiency. The Boeing company recently tested the Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) wind-tunnel model in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). This test resulted in a wealth of accelerometer data. Other publications have presented details of the construction of that model, the test itself, and a few of the results of the test. This paper aims to provide a much more detailed look at what the accelerometer data says about the onset of aeroelastic instability, usually known as flutter onset. Every flight vehicle has a location in the flight envelope of flutter onset, and the TBW vehicle is not different. For the TBW model test, the flutter onset generally occurred at the conditions that the Boeing company analysis said it should. What was not known until the test is that, over a large area of the Mach number dynamic pressure map, the model displayed wing/engine nacelle aeroelastic limit cycle oscillation (LCO). This paper dissects that LCO data in order to provide additional insights into the aeroelastic behavior of the model.

  12. Aeroelastic stability of full-span tiltrotor aircraft model in forward flight

    Directory of Open Access Journals (Sweden)

    Zhiquan LI

    2017-12-01

    Full Text Available The existing full-span models of the tiltrotor aircraft adopted the rigid blade model without considering the coupling relationship among the elastic blade, wing and fuselage. To overcome the limitations of the existing full-span models and improve the precision of aeroelastic analysis of tiltrotor aircraft in forward flight, the aeroelastic stability analysis model of full-span tiltrotor aircraft in forward flight has been presented in this paper by considering the coupling among elastic blade, wing, fuselage and various components. The analytical model is validated by comparing with the calculation results and experimental data in the existing references. The influence of some structural parameters, such as the fuselage degrees of freedom, relative displacement between the hub center and the gravity center, and nacelle length, on the system stability is also investigated. The results show that the fuselage degrees of freedom decrease the critical stability velocity of tiltrotor aircraft, and the variation of the structural parameters has great influence on the system stability, and the instability form of system can change between the anti-symmetric and symmetric wing motions of vertical and chordwise bending. Keywords: Aeroelastic stability, Forward flight, Full-span model, Modal analysis, Tiltrotor aircraft

  13. A study of supply-chain capabilities in the Canadian wind power industry

    International Nuclear Information System (INIS)

    Wittholz, H.; Pan, D.

    2004-11-01

    In recent years, Canadian wind energy has developed to a total installed capacity of 439 MW. It is possible that by 2012, the cumulative installed wind power capacity may reach 5,600 MW, representing an investment of $8.4 billion. This analysis of the supply-chain structure in the life cycle of a wind farm identified many potential areas where Canadian companies can offer services. Opportunities for both manufacturers and service providers were presented. It was emphasized that although wind energy is a growth industry, Canada has not participated in the development and commercialization of large wind turbine technology. The technical barriers facing Canadian suppliers regarding wind turbine generator (WTG) assembly and component manufacturing were presented. Currently, Canada imports all large WTGs and components. In order to maximize benefits to the Canadian economy, it was recommended that Canadian companies acquire European technology through licences, joint ventures or foreign investment. Technology transfer funding, training and technical assistance funding, tax incentives for capital equipment and support to universities and colleges were also recommended. It was suggested that Canadian companies should focus on manufacturing rotor blades, towers, base frames, nacelle covers and spinners, flexible drive shafts, disk brakes, vibration mounts, inverters, control cabinets, and generators. tabs., figs

  14. Development of large scale wind energy conservation system. Development of large scale wind energy conversion system; Ogata furyoku hatsuden system no kaihatsu. Ogata furyoku hatsuden system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takita, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for development of large scale wind energy conversion system. The study on technological development of key components evaluates performance of, and confirms reliability and applicability of, hydraulic systems centered by those equipped with variable pitch mechanisms and electrohydraulic servo valves that control them. The study on blade conducts fatigue and crack-propagation tests, which show that the blades developed have high strength. The study on speed-increasing gear conducts load tests, confirming the effects of reducing vibration and noise by modification of the gear teeth. The study on NACELLE cover conducts vibration tests to confirm its vibration characteristics, and analyzes three-dimensional vibration by the finite element method. Some components for a 500kW commercial wind mill are fabricated, including rotor heads, variable pitch mechanisms, speed-increasing gears, YAW systems, and hydraulic control systems. The others fabricated include a remote supervisory control system for maintenance, system to integrate the wind mill into a power system, and electrical control devices in which site conditions, such as atmospheric temperature and lightening, are taken into consideration.

  15. Measuring and model validation at a 1 MW wind power plant gondola system test rig in view of future certification procedures; Messung und Modellvalidierung an einem 1 MW WEA Gondelsystempruefstand im Hinblick auf zukuenftige Zertifizierungsprozeduren

    Energy Technology Data Exchange (ETDEWEB)

    Schelenz, R.; Jacobs, G.; Barenhorst, F.; Bi, L. [RWTH Aachen Univ. (Germany). Inst. fuer Maschinenelemente und Maschinengestaltung (IME)

    2013-06-01

    Wind Turbines (WT) are highly dynamical stressed vibration systems with complex interactions among their separate components. The request for turbines with higher performance and at the same time higher profitability leads to a conflict between required stiffness and reduction of masses. This has a significant influence on the turbines dynamic response behaviour. Through the realistic reproduction of the de facto loads it is possible to design the profoundly connected components safely and profitable at the same time during the early stages of WT-development. Because of the high speed of WT-development there is a lack of needful long time experience. Nowadays the tests of actual WT are based on both time and cost intensive field tests under undefined wind conditions. At AWTH Aachen University there are two test benches for the testing of nacelles to supplement and partial substitute these aforementioned field tests, one with 1 MW power in use and one with 4 MW power under construction. Findings from the test bench operation are to be combined with simulation results. In this way comprehensive knowledge about the single components and their interactions can be gained to further support the industrial development of WT. (orig.)

  16. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    Science.gov (United States)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  17. Study on the application of energy storage system in offshore wind turbine with hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, Yajun; Mu, Anle; Ma, Tao

    2016-01-01

    Highlights: • Hydraulic offshore wind turbine is capable of outputting near constant power. • Open loop hydraulic transmission uses seawater as the working fluid. • Linear control strategy distributes total flow according to demand and supply. • Constant pressure hydraulic accumulator stores/releases the surplus energy. • Simulations show the dynamic performance of the hybrid system. - Abstract: A novel offshore wind turbine comprising fluid power transmission and energy storage system is proposed. In this wind turbine, the conventional mechanical transmission is replaced by an open-loop hydraulic system, in which seawater is sucked through a variable displacement pump in nacelle connected directly with the rotor and utilized to drive a Pelton turbine installed on the floating platform. Aiming to smooth and stabilize the output power, an energy storage system with the capability of flexible charging and discharging is applied. The related mathematical model is developed, which contains some sub-models that are categorized as the wind turbine rotor, hydraulic pump, transmission pipeline, proportional valve, accumulator and hydraulic turbine. A linear control strategy is adopted to distribute the flow out of the proportional valve through comparing the demand power with captured wind energy by hydraulic pump. Ultimately, two time domain simulations demonstrate the operation of the hybrid system when the hydraulic accumulator is utilized and show how this system can be used for load leveling and stabilizing the output power.

  18. Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines

    International Nuclear Information System (INIS)

    Ning, A; Dykes, K

    2014-01-01

    For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent

  19. Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines

    Science.gov (United States)

    Ning, A.; Dykes, K.

    2014-06-01

    For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent.

  20. An artificial neural network approach for aerodynamic performance retention in airframe noise reduction design of a 3D swept wing model

    Directory of Open Access Journals (Sweden)

    Tao Jun

    2016-10-01

    Full Text Available With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic performance loss in the meantime. In this case, an approach based on artificial neural network is introduced. An established database serves as a basis and the training sample of a back propagation (BP artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization process of slat cove filler (SCF for high lift devices (HLD on the Trap Wing is presented. Aerodynamic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES, and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excellent aerodynamic performance retention simultaneously.

  1. Separated core turbofan engine; Core bunrigata turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y; Endo, M; Matsuda, Y; Sugiyama, N; Sugahara, N; Yamamoto, K [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report outlines the separated core turbofan engine. This engine is featured by parallel separated arrangement of a fan and core engine which are integrated into one unit in the conventional turbofan engine. In general, cruising efficiency improvement and noise reduction are achieved by low fan pressure ratio and low exhaust speed due to high bypass ratio, however, it causes various problems such as large fan and nacelle weight due to large air flow rate of a fan, and shift of an operating point affected by flight speed. The parallel separated arrangement is thus adopted. The stable operation of a fan and core engine is easily retained by independently operating air inlet unaffected by fan. The large degree of freedom of combustion control is also obtained by independent combustor. Fast response, simple structure and optimum aerodynamic design are easily achieved. This arrangement is also featured by flexibility of development and easy maintenance, and by various merits superior to conventional turbofan engines. It has no technological problems difficult to be overcome, and is also suitable for high-speed VTOL transport aircraft. 4 refs., 5 figs.

  2. Quantifying the hurricane catastrophe risk to offshore wind power.

    Science.gov (United States)

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay

    2013-12-01

    The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. © 2013 Society for Risk Analysis.

  3. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    Science.gov (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  4. Viscous Design of TCA Configuration

    Science.gov (United States)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  5. Modeling of Broadband Liners Applied to the Advanced Noise Control Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2015-01-01

    The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  6. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    Science.gov (United States)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  7. Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility

    Science.gov (United States)

    Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.

    2017-05-01

    The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.

  8. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  9. CFD Study on Aerodynamic Power Output Changes with Inter-Turbine Spacing Variation for a 6 MW Offshore Wind Farm

    Directory of Open Access Journals (Sweden)

    Nak Joon Choi

    2014-11-01

    Full Text Available This study examined the aerodynamic power output change of wind turbines with inter-turbine spacing variation for a 6 MW wind farm composed of three sets of 2 MW wind turbines using computational fluid dynamics (CFD. The wind farm layout design is becoming increasingly important as the use of wind energy is steadily increasing. Among the many wind farm layout design parameters, the inter-turbine spacing is a key factor in the initial investment cost, annual energy production and maintenance cost. The inter-turbine spacing should be determined to maximize the annual energy production and minimize the wake effect, turbulence effect and fatigue load during the service lifetime of wind turbines. Therefore, some compromise between the aerodynamic power output of wind turbines and the inter-turbine spacing is needed. An actuator disc model with the addition of a momentum source was not used, and instead, a full 3-dimensional model with a tower and nacelle was used for CFD analysis because of its great technical significance. The CFD analysis results, such as the aerodynamic power output, axial direction wind speed change, pressure drop across the rotor of wind turbine, and wind speed deficit due to the wake effect with inter-turbine spacing variation, were studied. The results of this study can be applied effectively to wind farm layout design and evaluation.

  10. The Use of Design Models of Wind-Electric Set with a Horizontal Axis of Rotation of the Wind Wheel for Dynamic Calculations at Urban Development

    Directory of Open Access Journals (Sweden)

    Konstantinov Igor

    2016-01-01

    Full Text Available The issues of modern urban development raise a significant question about an environmental cleanliness of progressing cities. Energy sources which are running on fuel cause tremendous harm to the atmosphere. Therefore, special attention is paid to the rational use of natural renewable resources such as wind and solar energy. Wind-electric sets, or wind turbines, are able to work autonomously, which is also important for the development of modern “smart” cities. Currently, the most commonly used design of wind turbines is the system which has the form of a tower of circular cross section (also called pipe, which carries at the upper end a nacelle with wind wheel. When such a system is being designed in urban conditions the wind pulsation and seismic calculations are added to the standard calculations. These added calculations are dynamic loads. It is known that in the process of solution of dynamic tasks design models of various levels of approximation can be used. It occurs due to stages of the design and other factors. The question of errors, which are associated with the use of a dissected, or partitioned, design scheme, raises.

  11. V/STOL Tandem Fan transition section model test. [in the Lewis Research Center 10-by-10 foot wind tunnel

    Science.gov (United States)

    Simpkin, W. E.

    1982-01-01

    An approximately 0.25 scale model of the transition section of a tandem fan variable cycle engine nacelle was tested in the NASA Lewis Research Center 10-by-10 foot wind tunnel. Two 12-inch, tip-turbine driven fans were used to simulate a tandem fan engine. Three testing modes simulated a V/STOL tandem fan airplane. Parallel mode has two separate propulsion streams for maximum low speed performance. A front inlet, fan, and downward vectorable nozzle forms one stream. An auxilliary top inlet provides air to the aft fan - supplying the core engine and aft vectorable nozzle. Front nozzle and top inlet closure, and removal of a blocker door separating the two streams configures the tandem fan for series mode operations as a typical aircraft propulsion system. Transition mode operation is formed by intermediate settings of the front nozzle, blocker door, and top inlet. Emphasis was on the total pressure recovery and flow distortion at the aft fan face. A range of fan flow rates were tested at tunnel airspeeds from 0 to 240 knots, and angles-of-attack from -10 to 40 deg for all three modes. In addition to the model variables for the three modes, model variants of the top inlet were tested in the parallel mode only. These lip variables were: aft lip boundary layer bleed holes, and Three position turning vane. Also a bellmouth extension of the top inlet side lips was tested in parallel mode.

  12. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    Science.gov (United States)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  13. Quantifying the hurricane risk to offshore wind turbines.

    Science.gov (United States)

    Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Grossmann, Iris; Apt, Jay

    2012-02-28

    The U.S. Department of Energy has estimated that if the United States is to generate 20% of its electricity from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind turbines have yet been built in the United States. We present a probabilistic model to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm. We apply this model to estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf Coastal waters of the United States. In the most vulnerable areas now being actively considered by developers, nearly half the turbines in a farm are likely to be destroyed in a 20-y period. Reasonable mitigation measures--increasing the design reference wind load, ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants in the areas with lower risk--can greatly enhance the probability that offshore wind can help to meet the United States' electricity needs.

  14. Semi-active control of monopile offshore wind turbines under multi-hazards

    Science.gov (United States)

    Sun, C.

    2018-01-01

    The present paper studies the control of monopile offshore wind turbines subjected to multi-hazards consisting of wind, wave and earthquake. A Semi-active tuned mass damper (STMD) with tunable natural frequency and damping ratio is introduced to control the dynamic response. A new fully coupled analytical model of the monopile offshore wind turbine with an STMD is established. The aerodynamic, hydrodynamic and seismic loading models are derived. Soil effects and damage are considered. The National Renewable Energy Lab monopile 5 MW baseline wind turbine model is employed to examine the performance of the STMD. A passive tuned mass damper (TMD) is utilized for comparison. Through numerical simulation, it is found that before damage occurs, the wind and wave induced response is more dominant than the earthquake induced response. With damage presence in the tower and the foundation, the nacelle and the tower response is increased dramatically and the natural frequency is decreased considerably. As a result, the passive TMD with fixed parameters becomes off-tuned and loses its effectiveness. In comparison, the STMD retuned in real-time demonstrates consistent effectiveness in controlling the dynamic response of the monopile offshore wind turbines under multi-hazards and damage with a smaller stroke.

  15. A soft rotor concept - design, verification and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, F; Thirstrup Petersen, J [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    This paper contains results from development and testing of a two-bladed soft rotor for an existing 15 kW flexible wind turbine. The new concept is characterised as a free yawing down wind turbine with nacelle tilting flexibility and a two-bladed teetering rotor with three-point supported flexible blades with built-in structural couplings. The power and the loads are controlled by active stall and active coning. The concept has been developed by extensive application of aero-elastic predictions, numerical optimisation and stability analysis in order to obtain optimal aero-elastic response and minimal loads. The flexible blades and the principle of active coning allow the blades to deflect with the wind to such an extent that the loads are reduced to between 25 and 50% of the loads for a similar rigid rotor. All conceptual design principles have been focused on application to large MW turbines, and aero-elastic predictions for an upscale 1 MW version show that this would have approximately identical characteristisc, without being particularly optimised for the actual size. (au)

  16. Objective and subjective rating of tonal noise radiated from UK wind farms

    International Nuclear Information System (INIS)

    1996-01-01

    The radiation of noise to the environment is currently a major issue with regard to U.K. wind farm developments. The reason for this concern is not that wind turbines are unduly noisy, but rather because wind farms are often located in rural areas where background noise levels can fall very low. The fact that background noise levels fall so low in these areas means that the permissible noise radiation from wind farms must also be kept similarly low if nuisance to local residents is to be avoided. However, ensuring that the overall noise level of the wind farm does not exceed the pre-existing background noise level by more than a set amount is not the whole story. Noise radiated from wind turbines can exhibit characteristics that set it apart from the natural background noises typically found in quiet rural areas, where ''natural'' background noises might include the sound of the wind blowing through trees, or the sound of running water. One of the acoustic characteristics that can be attributed to some wind turbines is the radiation of tonal noise from mechanical plant located in the nacelles. It is well accepted that tonal components in otherwise broad band, or ''characterless'', noise, can increase the subjective perception of that noise. Account for increased annoyance due to tones is found in both of the British Standards which relate to environmental noise; BS4142 and BS7445. (UK)

  17. WindPACT Turbine Design Scaling Studies: Technical Area 4 - Balance-of-Station Cost; ANNUAL

    International Nuclear Information System (INIS)

    Shafer, D. A.; Strawmyer, K. R.; Conley, R. M.; Guidinger J. H.; Wilkie, D. C.; Zellman, T. F.

    2001-01-01

    DOE's Wind Partnerships for Advanced Component Technologies (WindPACT) program explores the most advanced wind-generating technologies for improving reliability and decreasing energy costs. The first step in the WindPact program is a scaling study to bound the optimum sizes for wind turbines, to define size limits for certain technologies, and to scale new technologies. The program is divided into four projects: Composite Blades for 80-120-meter Rotors; Turbine, Rotor, and Blade Logistics; Self-Erecting Tower and Nacelle Feasibility; and Balance-of-Station Cost. This report discusses balance-of-station costs, which includes the electrical power collector system, wind turbine foundations, communications and controls, meteorological equipment, access roadways, crane pads, and the maintenance building. The report is based on a conceptual 50-megawatt (MW) wind farm site near Mission, South Dakota. Cost comparisons are provided for four sizes of wind turbines: 750 kilowatt (kW), 2.5 MW, 5.0 MW, and 10.0 MW

  18. Directionality Effects of Aligned Wind and Wave Loads on a Y-Shape Semi-Submersible Floating Wind Turbine under Rated Operational Conditions

    Directory of Open Access Journals (Sweden)

    Shengtao Zhou

    2017-12-01

    Full Text Available The Y-shape (triangular semi-submersible foundation has been adopted by most of the built full-scale floating wind turbines, such as Windfloat, Fukushima Mirai and Shimpuu. Considering the non-fully-symmetrical shape and met-ocean condition, the foundation laying angle relative to wind/wave directions will not only influence the downtime and power efficiency of the floating turbine, but also the strength and fatigue safety of the whole structure. However, the dynamic responses induced by various aligned wind and wave load directions have scarcely been investigated comparatively before. In our study, the directionality effects are investigated by means of combined wind and wave tests and coupled multi-body simulations. By comparing the measured data in three load directions, it is found that the differences of platform motions are mainly derived from the wave loads and larger pitch motion can always be observed in one of the directions. To make certain the mechanism underlying the observed phenomena, a coupled multi-body dynamic model of the floating wind turbine is established and validated. The numerical results demonstrate that the second-order hydrodynamic forces contribute greatly to the directionality distinctions for surge and pitch, and the first-order hydrodynamic forces determine the variations of tower base bending moments and nacelle accelerations. These findings indicate the directionality effects should be predetermined comprehensively before installation at sea, which is important for the operation and maintenance of the Y-shape floating wind turbines.

  19. IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar

    Directory of Open Access Journals (Sweden)

    Andrew Clifton

    2018-03-01

    Full Text Available IEA Wind Task 32 exists to identify and mitigate barriers to the adoption of lidar for wind energy applications. It leverages ongoing international research and development activities in academia and industry to investigate site assessment, power performance testing, controls and loads, and complex flows. Since its initiation in 2011, Task 32 has been responsible for several recommended practices and expert reports that have contributed to the adoption of ground-based, nacelle-based, and floating lidar by the wind industry. Future challenges include the development of lidar uncertainty models, best practices for data management, and developing community-based tools for data analysis, planning of lidar measurements and lidar configuration. This paper describes the barriers that Task 32 identified to the deployment of wind lidar in each of these application areas, and the steps that have been taken to confirm or mitigate the barriers. Task 32 will continue to be a meeting point for the international wind lidar community until at least 2020 and welcomes old and new participants.

  20. NASA ERA Integrated CFD for Wind Tunnel Testing of Hybrid Wing-Body Configuration

    Science.gov (United States)

    Garcia, Joseph A.; Melton, John E.; Schuh, Michael; James, Kevin D.; Long, Kurt R.; Vicroy, Dan D.; Deere, Karen A.; Luckring, James M.; Carter, Melissa B.; Flamm, Jeffrey D.; hide

    2016-01-01

    NASAs Environmentally Responsible Aviation (ERA) Project explores enabling technologies to reduce aviations impact on the environment. One research challenge area for the project has been to study advanced airframe and engine integration concepts to reduce community noise and fuel burn. In order to achieve this, complex wind tunnel experiments at both the NASA Langley Research Centers (LaRC) 14x22 and the Ames Research Centers 40x80 low-speed wind tunnel facilities were conducted on a Boeing Hybrid Wing Body (HWB) configuration. These wind tunnel tests entailed various entries to evaluate the propulsion airframe interference effects including aerodynamic performance and aeroacoustics. In order to assist these tests in producing high quality data with minimal hardware interference, extensive Computational Fluid Dynamic (CFD) simulations were performed for everything from sting design and placement for both the wing body and powered ejector nacelle systems to the placement of aeroacoustic arrays to minimize its impact on the vehicles aerodynamics. This paper will provide a high level summary of the CFD simulations that NASA performed in support of the model integration hardware design as well as some simulation guideline development based on post-test aerodynamic data. In addition, the paper includes details on how multiple CFD codes (OVERFLOW, STAR-CCM+, USM3D, and FUN3D) were efficiently used to provide timely insight into the wind tunnel experimental setup and execution.

  1. Application of powered lift and mechanical flap concepts for civil short-haul transport aircraft design

    Science.gov (United States)

    Conlon, J. A.; Bowles, J. V.

    1977-01-01

    The objective of this paper is to determine various design and performance parameters, including wing loading and thrust loading requirements, for powered-lift and mechanical flap conceptual aircraft constrained by field length and community noise impact. Mission block fuel and direct operating costs (DOC) were found for optimum designs. As a baseline, the design and performance parameters were determined for the aircraft using engines without noise suppression. The constraint of the 90 EPNL noise contour being less than 2.6 sq km (1.0 sq mi) in area was then imposed. The results indicate that for both aircraft concepts the design gross weight, DOC, and required mission block fuel decreased with field length. At field lengths less than 1100 m (3600 ft) the powered lift aircraft had lower DOC and block fuel than the mechanical flap aircraft but produced higher unsuppressed noise levels. The noise goal could easily be achieved with nacelle wall treatment only and thus resulted in little or no performance or weight penalty for all studied aircraft.

  2. Simulation of shear and turbulence impact on wind turbine power performance

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, R.; Courtney, M.S.; Larsen, T.J.; Paulsen, U.S.

    2010-01-15

    Aerodynamic simulations (HAWC2Aero) were used to investigate the influence of the speed shear, the direction shear and the turbulence intensity on the power output of a multi-megawatt turbine. First simulation cases with laminar flow and power law wind speed profiles were compared to the case of a uniform inflow. Secondly, a similar analysis was done for cases with direction shear. In each case, we derived a standard power curve (function of the wind speed at hub height) and power curves obtained with various definitions of equivalent wind speed in order to reduce the scatter due to shear. Thirdly, the variations of the power output and the power curve were analysed for various turbulence intensities. Furthermore, the equivalent speed method was successfully tested on a power curve resulting from simulations cases combining shear and turbulence. Finally, we roughly simulated the wind speed measurements we may get from a LIDAR mounted on the nacelle of the turbine (measuring upwind) and we investigated different ways of deriving an equivalent wind speed from such measurements. (author)

  3. Active control of the tip vortex: an experimental investigation on the performance characteristics of a model turbine

    International Nuclear Information System (INIS)

    Anik, E; Abdulrahim, A; Ostovan, Y; Mercan, B; Uzol, O

    2014-01-01

    This study is part of an on-going experimental research campaign that focuses on the active control of the tip leakage/vortex characteristics of a model horizontal axis wind turbine rotor using tip injection. This paper presents both baseline (no-injection) data as well as data with tip injection, concentrating on the effects of tip injection on power and thrust variations with the Tip Speed Ratio (TSR). The experiments are conducted by placing a specially designed 3-bladed model wind turbine rotor at the exit of a 1.7 m diameter open-jet wind tunnel. The rotor blades are non-linearly twisted and tapered with NREL S826 airfoil profile all along the span. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the blade tips while the rotor is rotating. Baseline results show that the general trends are as expected for a small wind turbine and the maximum power coefficient is reached at around TSR=4.5. Results with injection show that the tip injection has significant effect on the power and thrust coefficients in comparison to the baseline data, especially at TSR values higher than the max C P TSR value. Both coefficients seem to be significantly increased due to tip injection and the max C P TSR value also gets shifted to a slightly higher TSR value. Tip injection seems to have no significant effect for TSR values less than 3.5

  4. Time-varying linear control for tiltrotor aircraft

    Directory of Open Access Journals (Sweden)

    Jing ZHANG

    2018-04-01

    Full Text Available Tiltrotor aircraft have three flight modes: helicopter mode, airplane mode, and transition mode. A tiltrotor has characteristics of highly nonlinear, time-varying flight dynamics and inertial/control couplings in its transition mode. It can transit from the helicopter mode to the airplane mode by tilting its nacelles, and an effective controller is crucial to accomplish tilting transition missions. Longitudinal dynamic characteristics of the tiltrotor are described by a nonlinear Lagrange-form model, which takes into account inertial/control couplings and aerodynamic interferences. Reference commands for airspeed velocity and attitude in the transition mode are calculated dynamically by visiting a command library which is founded in advance by analyzing the flight envelope of the tiltrotor. A Time-Varying Linear (TVL model is obtained using a Taylor-expansion based online linearization technique from the nonlinear model. Subsequently, based on an optimal control concept, an online optimization based control method with input constraints considered is proposed. To validate the proposed control method, three typical tilting transition missions are simulated using the nonlinear model of XV-15 tiltrotor aircraft. Simulation results show that the controller can be used to control the tiltrotor throughout its operating envelop which includes a transition flight, and can also deal with vertical gust disturbances. Keywords: Constrained optimal control, Inertia/control couplings, Tiltrotor aircraft, Time-varying control, Transition mode

  5. Comparative study of Danish and foreign wind turbine economics

    International Nuclear Information System (INIS)

    Godtfredsen, F.

    1993-02-01

    This comparative study indicates that Denmark still is the leading nation in wind turbine technology in regard to economics as well as energy output and nacelle weight per swept rotor area. For roughness class 1, the levellized socioeconomic costs of wind power from Danish wind turbines is DKK 0.396 - 0.536 per kWh compared with production costs of DKK 0.525 for the most economic of the foreign wind turbines investigated. Furthermore it is pointed out, that there seems to be no correlation between generator capacity or swept rotor area and costs of windpower for the wind turbines investigated. Nevertheless there are arguments for the statement that large scale wind turbines will be relatively more economic in the future. Danish wind turbine manufacturers only produce tree-bladed, stall- or pitch regulated wind turbines with constant rotational speed. In Holland, Germany and UK two-bladed wind turbines and turbines with variable speed has been introduced. Still the new concepts are less economic, but not without future interest. (au)

  6. Comparative study of the behavior of wind-turbines in a wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Garcia, Javier; Manuel, Fernando; Jimenez, Angel [Universidad Politecnica de Madrid (UPM), Madrid (Spain). Departamento de Ingenieria Energetica y Fluidomecanica, Laboratorio de Mecanica de Fluidos; Moreno, Fermin [Comision Nacional de la Energia, Madrid (Spain); Costa, Alexandre [Energia Eolica, Division de Energias Renovables, CIEMAT, Madrid (Spain)

    2007-10-15

    The Sotavento wind farm is an experimental wind farm which has different types of wind turbines. It is located in an area whose topography is moderately complex, and where wake effects can be significant. One of the objectives of Sotavento wind farm is to compare the performances of the different machines; particularly regarding power production, maintenance and failures. However, because of wakes and topography, the different machines are not working under identical conditions. Two linearized codes have been used to estimate topography effects: UPMORO and WAsP. For wind directions in which topography is abrupt, the non-linear flow equations have been solved with the commercial code FLUENT, although the results are only qualitatively used. For wake effects, the UPMPARK code has been applied. As a result, the incident velocity over each wind turbine is obtained, and the power production is estimated by means of the power curve of each machine. Experimental measurements give simultaneously the wind characteristics at the measuring stations, the wind velocity, at the nacelle anemometer, and the power production of each wind turbine. These experimental results are employed to validate the numerical predictions. The main objective of this work is to deduce and validate a relationship between the wind characteristics measured in the anemometers and the wind velocity and the power output in each machine. (author)

  7. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    Science.gov (United States)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  8. Building a Practical Natural Laminar Flow Design Capability

    Science.gov (United States)

    Campbell, Richard L.; Lynde, Michelle N.

    2017-01-01

    A preliminary natural laminar flow (NLF) design method that has been developed and applied to supersonic and transonic wings with moderate-to-high leading-edge sweeps at flight Reynolds numbers is further extended and evaluated in this paper. The modular design approach uses a knowledge-based design module linked with different flow solvers and boundary layer stability analysis methods to provide a multifidelity capability for NLF analysis and design. An assessment of the effects of different options for stability analysis is included using pressures and geometry from an NLF wing designed for the Common Research Model (CRM). Several extensions to the design module are described, including multiple new approaches to design for controlling attachment line contamination and transition. Finally, a modification to the NLF design algorithm that allows independent control of Tollmien-Schlichting (TS) and cross flow (CF) modes is proposed. A preliminary evaluation of the TS-only option applied to the design of an NLF nacelle for the CRM is performed that includes the use of a low-fidelity stability analysis directly in the design module.

  9. Design of an Electric Propulsion System for SCEPTOR

    Science.gov (United States)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  10. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    Science.gov (United States)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  11. MOD-0A 200 kW wind turbine generator design and analysis report

    Science.gov (United States)

    Anderson, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.

    1980-01-01

    The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented.

  12. MOD-5A wind turbine generator program design report: Volume 1: Executive Summary

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator covering work performed between July 1980 and June 1984 is discussed. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 1, the Executive Summary, summarizes all phases of the MOD-5A program. The performance and cost of energy generated by the MOD-5A are presented. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation, power generation, and control and instrumentation subsystems - is described briefly. The early phases of the MOD-5A program, during which the design was analyzed and optimized, and new technologies and materials were developed, are discussed. Manufacturing, quality assurance, and safety plans are presented. The volume concludes with an index of volumes 2 and 3.

  13. Design and Analysis of Wind Turbine Blade Hub using Aluminium Alloy AA 6061-T6

    Science.gov (United States)

    Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y. J. N. V.; Sohaib, S. Md.

    2017-05-01

    This work presents the design and analysis of horizontal axis wind turbine blade hub using different material. The hub is very crucial part of the wind turbine, which experience the loads from the blades and the loads were transmitted to the main shaft. At present wind turbine is more expensive and weights more than a million pounds, with the nacelle, rotor hub and blades accounting for most of the weight. In this work Spheroidal graphite cast iron GGG 40.3 is replaced by aluminium alloy 6061-T6 to enhance the casting properties and also to improve the strength-weight ratio. This transition of material leads to reduction in weight of the wind turbine. All the loads caused by wind and extreme loads on the blades are transferred to the hub. Considering the IEC 61400-1 standard for defining extreme loads on the hub the stress and deflection were calculated on the hub by using Finite element Analysis. Result obtained from ANSYS is compared and discussed with the existing design.

  14. Concept design and coupled dynamic response analysis on 6-MW spar-type floating offshore wind turbine

    Science.gov (United States)

    Meng, Long; Zhou, Tao; He, Yan-ping; Zhao, Yong-sheng; Liu, Ya-dong

    2017-10-01

    Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) of a 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system.

  15. Numerical investigation of interactions between marine atmospheric boundary layer and offshore wind farm

    Science.gov (United States)

    Lyu, Pin; Chen, Wenli; Li, Hui; Shen, Lian

    2017-11-01

    In recent studies, Yang, Meneveau & Shen (Physics of Fluids, 2014; Renewable Energy, 2014) developed a hybrid numerical framework for simulation of offshore wind farm. The framework consists of simulation of nonlinear surface waves using a high-order spectral method, large-eddy simulation of wind turbulence on a wave-surface-fitted curvilinear grid, and an actuator disk model for wind turbines. In the present study, several more precise wind turbine models, including the actuator line model, actuator disk model with rotation, and nacelle model, are introduced into the computation. Besides offshore wind turbines on fixed piles, the new computational framework has the capability to investigate the interaction among wind, waves, and floating wind turbines. In this study, onshore, offshore fixed pile, and offshore floating wind farms are compared in terms of flow field statistics and wind turbine power extraction rate. The authors gratefully acknowledge financial support from China Scholarship Council (No. 201606120186) and the Institute on the Environment of University of Minnesota.

  16. Coupling and reduction of the HAWC equations

    DEFF Research Database (Denmark)

    Nim, E.

    2001-01-01

    This report contains a description of a general method for coupling and reduction of the so-called HAWC equations, which constitute the basis equations of motion of the aeroelastic model HAWC used widely by research institutes and industrial companies formore than the ten years. The principal aim....... In addition, the method enables the reduction of the number of degrees of freedom of the structure in order to increase the calculation efficiency and improve thecondition of the system.......This report contains a description of a general method for coupling and reduction of the so-called HAWC equations, which constitute the basis equations of motion of the aeroelastic model HAWC used widely by research institutes and industrial companies formore than the ten years. The principal aim...... of the work has been to enable the modelling wind turbines with large displacements of the blades in order to predict phenomena caused by geometric non-linear effects. However, the method can also be applied tomodel the nacelle/shaft structure of a turbine more detailed than the present HAWC model...

  17. Seismic Loading for FAST: May 2011 - August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Asareh, M. A.; Prowell, I.

    2012-08-01

    As more wind farms are constructed in seismically active regions, earthquake loading increases in prominence for design and analysis of wind turbines. Early investigation of seismic load tended to simplify the rotor and nacelle as a lumped mass on top of the turbine tower. This simplification allowed the use of techniques developed for conventional civil structures, such as buildings, to be easily applied to wind turbines. However, interest is shifting to more detailed models that consider loads for turbine components other than the tower. These improved models offer three key capabilities in consideration of base shaking for turbines: 1) The inclusion of aerodynamics and turbine control; 2) The ability to consider component loads other than just tower loads; and 3) An improved representation of turbine response in higher modes by reducing modeling simplifications. Both experimental and numerical investigations have shown that, especially for large modern turbines, it is important to consider interaction between earthquake input, aerodynamics, and operational loads. These investigations further show that consideration of higher mode activity may be necessary in the analysis of the seismic response of turbines. Since the FAST code is already capable of considering these factors, modifications were developed that allow simulation of base shaking. This approach allows consideration of this additional load source within a framework, the FAST code that is already familiar to many researchers and practitioners.

  18. Lidar-based Research and Innovation at DTU Wind Energy – a Review

    International Nuclear Information System (INIS)

    Mikkelsen, T

    2014-01-01

    As wind turbines during the past decade have increased in size so have the challenges met by the atmospheric boundary-layer meteorologists and the wind energy society to measure and characterize the huge-volume wind fields surpassing and driving them. At the DTU Wind Energy test site ''Østerild'' for huge wind turbines, the hub-height of a recently installed 8 MW Vestas V164 turbine soars 143 meters up above the ground, and its rotor of amazing 164 meters in diameter make the turbine tips flicker 225 meters into the sky. Following the revolution in photonics-based telecommunication at the turn of the Millennium new fibre-based wind lidar technologies emerged and DTU Wind Energy, at that time embedded within Rise National Laboratory, began in collaboration with researchers from wind lidar companies to measure remote sensed wind profiles and turbulence structures within the atmospheric boundary layer with the emerging, at that time new, all-fibre-based 1.55 μ coherent detection wind lidars. Today, ten years later, DTU Wind Energy routinely deploys ground-based vertical profilers instead of met masts for high-precision measurements of mean wind profiles and turbulence profiles. At the departments test site ''Høvsøre'' DTU Wind Energy also routinely calibrate and accredit wind lidar manufactures wind lidars. Meanwhile however, new methodologies for power curve assessment based on ground-based and nacelle based lidars have also emerged. For improving the turbines power curve assessments and for advancing their control with feed-forward wind measurements experience has also been gained with wind lidars installed on turbine nacelles and integrated into the turbines rotating spinners. A new mobile research infrastructure WindScanner.dk has also emerged at DTU Wind Energy. Wind and turbulence fields are today scanned from sets of three simultaneously in space and time synchronized scanning lidars. One set consists of three fast

  19. Computational Investigations of Inboard Flow Separation and Mitigation Techniques on Multi-Megawatt Wind Turbines

    Science.gov (United States)

    Chow, Raymond

    , reaching a comparable increase of 1.4% by a trailing edge thickness of 15%c. Decreasing inboard twist only acted to increase thrust without increasing power capture any further at U infinity = 11 m/s. While increasing inboard blade twist decreased power, but decreased thrust at even a higher rate. Vortex generators were not successively configured to significantly improve power capture in this study. Two of the three configurations examined actually decreased power capture and increased the separation region. The results found in this study are not believed to be representative of a properly sized and located array of VGs. The presence of the nose cone and nacelle body at the hub of the rotor is found to have a minimal effect on the power and thrust of the overall rotor. The downstream wake structure however is changed by the nacelle, potentially useful for wake tailoring when turbines are closely spaced together.

  20. Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    This paper presents the modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator. The hybrid turbine captures the offshore wind energy and tidal current energy simultaneously and stores the excess energy in hydraulic accumulator prior to electricity generation. Two hydraulic pumps installed respectively in wind and tidal turbine nacelles are used to transform the captured mechanical energy into hydraulic energy. To extract the maximal power from wind and tidal current, standard torque controls are achieved by regulating the displacements of the hydraulic pumps. To meet the output power demand, a Proportion Integration Differentiation (PID) controller is designed to distribute the hydraulic energy between the accumulator and the Pelton turbine. A simulation case study based on combining a 5 MW offshore wind turbine and a 1 MW tidal current turbine is undertaken. Case study demonstrates that the hybrid generation system not only captures all the available wind and tidal energy and also delivers the desired generator power precisely through the accumulator damping out all the power fluctuations from the wind and tidal speed disturbances. Energy and exergy analyses show that the energy efficiency can exceed 100% as the small input speeds are considered, and the exergy efficiency has the consistent change trends with demand power. Further more parametric sensitivity study on hydraulic accumulator shows that there is an inversely proportional relationship between accumulator and hydraulic equipments including the pump and nozzle in terms of dimensions. - Highlights: • A hybrid wind-tidal turbine is presented. • Hydraulic accumulator stores/releases the surplus energy. • Standard torque controls extract the maximal power from wind and tidal. • Generator outputs meet the electricity demand precisely. • Parametric sensitivity study on accumulator is implemented.

  1. Navier-Stokes Aerodynamic Simulation of the V-22 Osprey on the Intel Paragon MPP

    Science.gov (United States)

    Vadyak, Joseph; Shrewsbury, George E.; Narramore, Jim C.; Montry, Gary; Holst, Terry; Kwak, Dochan (Technical Monitor)

    1995-01-01

    The paper will describe the Development of a general three-dimensional multiple grid zone Navier-Stokes flowfield simulation program (ENS3D-MPP) designed for efficient execution on the Intel Paragon Massively Parallel Processor (MPP) supercomputer, and the subsequent application of this method to the prediction of the viscous flowfield about the V-22 Osprey tiltrotor vehicle. The flowfield simulation code solves the thin Layer or full Navier-Stoke's equation - for viscous flow modeling, or the Euler equations for inviscid flow modeling on a structured multi-zone mesh. In the present paper only viscous simulations will be shown. The governing difference equations are solved using a time marching implicit approximate factorization method with either TVD upwind or central differencing used for the convective terms and central differencing used for the viscous diffusion terms. Steady state or Lime accurate solutions can be calculated. The present paper will focus on steady state applications, although time accurate solution analysis is the ultimate goal of this effort. Laminar viscosity is calculated using Sutherland's law and the Baldwin-Lomax two layer algebraic turbulence model is used to compute the eddy viscosity. The Simulation method uses an arbitrary block, curvilinear grid topology. An automatic grid adaption scheme is incorporated which concentrates grid points in high density gradient regions. A variety of user-specified boundary conditions are available. This paper will present the application of the scalable and superscalable versions to the steady state viscous flow analysis of the V-22 Osprey using a multiple zone global mesh. The mesh consists of a series of sheared cartesian grid blocks with polar grids embedded within to better simulate the wing tip mounted nacelle. MPP solutions will be shown in comparison to equivalent Cray C-90 results and also in comparison to experimental data. Discussions on meshing considerations, wall clock execution time

  2. Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque

    Directory of Open Access Journals (Sweden)

    Zili Zhang

    2014-11-01

    Full Text Available Lateral tower vibrations of offshore wind turbines are normally lightly damped, and large amplitude vibrations induced by wind and wave loads in this direction may significantly shorten the fatigue life of the tower. This paper proposes the modeling and control of lateral tower vibrations in offshore wind turbines using active generator torque. To implement the active control algorithm, both the mechanical and power electronic aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind turbine model with generator and pitch controllers is derived using the Euler–Lagrangian approach. The model displays important features of wind turbines, such as mixed moving frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain vibrations, as well as aerodynamic damping present in different modes of motions. The load transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the interaction between the generator torque and the lateral tower vibration are presented in a generalized manner. A three-dimensional rotational sampled turbulence field is generated and applied to the rotor, and the tower is excited by a first order wave load in the lateral direction. Next, a simple active control algorithm is proposed based on active generator torques with feedback from the measured lateral tower vibrations. A full-scale power converter configuration with a cascaded loop control structure is also introduced to produce the feedback control torque in real time. Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator are considered using the same time series for the wave and turbulence loadings. Results show that by using active generator torque control, lateral tower vibrations can be significantly mitigated for

  3. Aerodynamic shape optimization directed toward a supersonic transport using sensitivity analysis

    Science.gov (United States)

    Baysal, Oktay

    1995-01-01

    This investigation was conducted from March 1994 to August 1995, primarily, to extend and implement the previously developed aerodynamic design optimization methodologies for the problems related to a supersonic transport design. These methods had demonstrated promise to improve the designs (more specifically, the shape) of aerodynamic surfaces, by coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA) with surface definition methods from Computer Aided Design (CAD). The present extensions of this method and their supersonic implementations have produced wing section designs, delta wing designs, cranked-delta wing designs, and nacelle designs, all of which have been reported in the open literature. Despite the fact that these configurations were highly simplified to be of any practical or commercial use, they served the algorithmic and proof-of-concept objectives of the study very well. The primary cause for the configurational simplifications, other than the usual simplify-to-study the fundamentals reason, were the premature closing of the project. Only after the first of the originally intended three-year term, both the funds and the computer resources supporting the project were abruptly cut due to their severe shortages at the funding agency. Nonetheless, it was shown that the extended methodologies could be viable options in optimizing the design of not only an isolated single-component configuration, but also a multiple-component configuration in supersonic and viscous flow. This allowed designing with the mutual interference of the components being one of the constraints all along the evolution of the shapes.

  4. New Tools Being Developed for Engine- Airframe Blade-Out Structural Simulations

    Science.gov (United States)

    Lawrence, Charles

    2003-01-01

    One of the primary concerns of aircraft structure designers is the accurate simulation of the blade-out event. This is required for the aircraft to pass Federal Aviation Administration (FAA) certification and to ensure that the aircraft is safe for operation. Typically, the most severe blade-out occurs when a first-stage fan blade in a high-bypass gas turbine engine is released. Structural loading results from both the impact of the blade onto the containment ring and the subsequent instantaneous unbalance of the rotating components. Reliable simulations of blade-out are required to ensure structural integrity during flight as well as to guarantee successful blade-out certification testing. The loads generated by these analyses are critical to the design teams for several components of the airplane structures including the engine, nacelle, strut, and wing, as well as the aircraft fuselage. Currently, a collection of simulation tools is used for aircraft structural design. Detailed high-fidelity simulation tools are used to capture the structural loads resulting from blade loss, and then these loads are used as input into an overall system model that includes complete structural models of both the engines and the airframe. The detailed simulation (shown in the figure) includes the time-dependent trajectory of the lost blade and its interactions with the containment structure, and the system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes are typically used, and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine s turbomachinery. To develop and validate these new tools with test data, the NASA Glenn Research Center has teamed with GE Aircraft Engines, Pratt & Whitney, Boeing Commercial Aircraft, Rolls-Royce, and MSC.Software.

  5. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects

    Directory of Open Access Journals (Sweden)

    Eva Segura

    2017-11-01

    Full Text Available The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy. The methodology has been applied (together with a sensibility analysis to the particular case of a farm composed of first generation tidal energy converters in one of the Channel Island Races, the Alderney Race, in the U.K., and the results have been attained by means of the computation of engineering indexes, such as the net present value, the internal rate of return, the discounted payback period and the levelized cost of energy, which indicate that the proposed project is economically viable for all the case studies.

  6. Technique for Selecting Optimum Fan Compression Ratio based on the Effective Power Plant Parameters

    Directory of Open Access Journals (Sweden)

    I. I. Kondrashov

    2016-01-01

    Full Text Available Nowadays, civilian aircrafts occupy the major share of global aviation industry market. As to medium and long - haul aircrafts, turbofans with separate exhaust streams are widely used. Here, fuel efficiency is the main criterion of this engine. The paper presents the research results of the mutual influence of fan pressure ratio and bypass ratio on the effective specific fuel consumption. Shows the increasing bypass ratio to be a rational step for reducing the fuel consumption. Also considers the basic features of engines with a high bypass ratio. Among the other working process parameters, fan pressure ratio and bypass ratio are the most relevant for consideration as they are the most structural variables at a given level of technical excellence. The paper presents the dependence of the nacelle drag coefficient on the engine bypass ratio. For computation were adopted the projected parameters of prospective turbofans to be used in the power plant of the 180-seat medium-haul aircraft. Computation of the engine cycle was performed in Mathcad using these data, with fan pressure ratio and bypass ratio being varied. The combustion chamber gas temperature, the overall pressure ratio and engine thrust remained constant. Pressure loss coefficients, the efficiency of the engine components and the amount of air taken for cooling also remained constant. The optimal parameters corresponding to the minimum effective specific fuel consumption were found as the result of computation. The paper gives recommendations for adjusting optimal parameters, depending on the considered external factors, such as weight of engine and required fuel reserve. The obtained data can be used to estimate parameters of future turbofan engines with high bypass ratio.

  7. 1:50 Scale Testing of Three Floating Wind Turbines at MARIN and Numerical Model Validation Against Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Dagher, Habib [Univ. of Maine, Orno, ME (United States); Viselli, Anthony [Univ. of Maine, Orno, ME (United States); Goupee, Andrew [Univ. of Maine, Orno, ME (United States); Allen, Christopher [Univ. of Maine, Orno, ME (United States)

    2017-08-15

    The primary goal of the basin model test program discussed herein is to properly scale and accurately capture physical data of the rigid body motions, accelerations and loads for different floating wind turbine platform technologies. The intended use for this data is for performing comparisons with predictions from various aero-hydro-servo-elastic floating wind turbine simulators for calibration and validation. Of particular interest is validating the floating offshore wind turbine simulation capabilities of NREL’s FAST open-source simulation tool. Once the validation process is complete, coupled simulators such as FAST can be used with a much greater degree of confidence in design processes for commercial development of floating offshore wind turbines. The test program subsequently described in this report was performed at MARIN (Maritime Research Institute Netherlands) in Wageningen, the Netherlands. The models considered consisted of the horizontal axis, NREL 5 MW Reference Wind Turbine (Jonkman et al., 2009) with a flexible tower affixed atop three distinct platforms: a tension leg platform (TLP), a spar-buoy modeled after the OC3 Hywind (Jonkman, 2010) and a semi-submersible. The three generic platform designs were intended to cover the spectrum of currently investigated concepts, each based on proven floating offshore structure technology. The models were tested under Froude scale wind and wave loads. The high-quality wind environments, unique to these tests, were realized in the offshore basin via a novel wind machine which exhibits negligible swirl and low turbulence intensity in the flow field. Recorded data from the floating wind turbine models included rotor torque and position, tower top and base forces and moments, mooring line tensions, six-axis platform motions and accelerations at key locations on the nacelle, tower, and platform. A large number of tests were performed ranging from simple free-decay tests to complex operating conditions with

  8. Full-field ultrasonic inspection for a composite sandwich plate skin-core debonding detection using laser-based ultrasonics

    Science.gov (United States)

    Chong, See Yenn; Victor, Jared J.; Todd, Michael D.

    2017-04-01

    In this paper, a full-field ultrasonic guided wave method is proposed to inspect a composite sandwich specimen made for an aircraft engine nacelle. The back skin/core interface of the specimen is built with two fabricated disbond defects (diameters of 12.7 mm and 25.4 mm) by removing areas of the adhesive used to bond the back skin to the core. A laser ultrasonic interrogation system (LUIS) incorporated with a disbond detection algorithm is developed. The system consists of a 1-kHz laser ultrasonic scanning system and a single fixed ultrasonic sensor to interrogate ultrasonic guided waves in the sandwich specimen. The interest area of 400 mm × 400 mm is scanned at a 0.5 mm scan interval. The corresponding full-field ultrasonic data is obtained and generated in the three-dimensional (3-D) space-time domain. Then, the 3-D full-field ultrasonic data is Fourier transformed and the ultrasonic frequency spectra are analyzed to determine the dominant frequency that is sensitive to the disbond defects. Continuous wavelet transform (CWT) based on fast Fourier transform (FFT) is implemented as a single-frequency bandpass filter to filter the full-field ultrasonic data in the 3-D space-time domain at the selected dominant frequency. The LUIS has shown the ability to detect the disbond with diameters of 11 mm and 23 mm which match to the pre-determined disbond sizes well. For future research, a robust signal processing algorithm and a model-based matched filter will be investigated to make the detection process autonomous and improve detectability

  9. MicroMAPS CO Measurements over North America and Europe during Summer-Fall 2004

    Science.gov (United States)

    Connors, Vickie S.; Hopkins, Patrick E.; Reichle, Henry G., Jr.; Morrow, William H.; McMillan, Wallace; Sandy, Mary L.

    2006-01-01

    The MicroMAPS instrument is a nadir-viewing, gas filter-correlated radiometer which operating in the 4.67 micrometer fundamental band of carbon monoxide. Originally designed and built for a space mission, this CO remote sensor is being flown in support of satellite validation and science instrument demonstrations for potential UAV applications. The MicroMAPS instrument system, as flown on Proteus, was designed by a senior student design project in the Aerospace Engineering Department, Virginia Tech, in Blacksburg, VA. and then revised by Systems Engineers at NASA Langley. The final instrument system was integrated and tested at NASA LaRC, in partnership with Scaled Composites and Virginia Space Grant Consortium (VSGC). VSGC supervised the fabrication of the nacelle that houses the instrument system on the right rear tail boom of Proteus. Full system integration and flight testing was performed at Scaled Composites, in Mojave, in June 2004. Its successful performance enabled participation in four international science missions on Proteus: in 2004, INTEX -NA over eastern North America in July, ADRIEX over the Mediterranean region and EAQUATE over the United Kingdom region in September,and TWP-ICE over Darwin, Australia and the surrounding oceans in Jan-Feb 2006. These flights resulted in nearly 300 hours of data. In parallel with the engineering developments, theoretical radiative transfer models were developed specifically for the MicroMAPS instrument system at the University of Virginia, Mechanical Engineering Department by a combined undergraduate and graduate student team. With technical support from Resonance Ltd. in June 2005, the MicroMAPS instrument was calibrated for the conditions under which the Summer-Fall 2004 flights occurred. The analyses of the calibration data, combined with the theoretical radiative transfer models, provide the first data reduction for the science flights reported here. These early results and comparisons with profile data from the

  10. Computational Aerodynamic Simulations of a 1215 ft/sec Tip Speed Transonic Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1215 ft/sec tip speed transonic fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which for this model did not include a split flow path with core and bypass ducts. As a result, it was only necessary to adjust fan rotational speed in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the flow fields at all operating conditions reveals no excessive boundary layer separations or related secondary-flow problems.

  11. Computational Aerodynamic Simulations of an 840 ft/sec Tip Speed Advanced Ducted Propulsor Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between

  12. Four-jet impingement: Noise characteristics and simplified acoustic model

    International Nuclear Information System (INIS)

    Brehm, C.; Housman, J.A.; Kiris, C.C.; Barad, M.F.; Hutcheson, F.V.

    2017-01-01

    Highlights: • Large eddy simulation of unique four jet impingement configuration. • Characterization of flow features using POD, FFT, and wavelet decomposition. • Noise source identification utilizing causality method. • Development of simplified acoustic model utilizing equivalent source method. • Comparison with experimental data from BENS experiment. - Abstract: The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order weighted essentially non-oscillatory scheme. Although these types of impinging jet configurations have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortical flow structures in the center of the four-jet impingement region. The causality method based on Lighthills acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a simplified acoustic model of the four-jet impingement device by utilizing the equivalent source method. Finally, three linear acoustic four-jet impingement models of the four-jet impingement device are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data.

  13. Numerical solution of the helmholtz equation for the superellipsoid via the galerkin method

    Directory of Open Access Journals (Sweden)

    Hy Dinh

    2013-01-01

    Full Text Available The objective of this work was to find the numerical solution of the Dirichlet problem for the Helmholtz equation for a smooth superellipsoid. The superellipsoid is a shape that is controlled by two parameters. There are some numerical issues in this type of an analysis; any integration method is affected by the wave number k, because of the oscillatory behavior of the fundamental solution. In this case we could only obtain good numerical results for super ellipsoids that were more shaped like super cones, which is a narrow range of super ellipsoids. The formula for these shapes was: $x=cos(xsin(y^{n},y=sin(xsin(y^{n},z=cos(y$ where $n$ varied from 0.5 to 4. The Helmholtz equation, which is the modified wave equation, is used in many scattering problems. This project was funded by NASA RI Space Grant for testing of the Dirichlet boundary condition for the shape of the superellipsoid. One practical value of all these computations can be getting a shape for the engine nacelles in a ray tracing the space shuttle. We are researching the feasibility of obtaining good convergence results for the superellipsoid surface. It was our view that smaller and lighter wave numbers would reduce computational costs associated with obtaining Galerkin coefficients. In addition, we hoped to significantly reduce the number of terms in the infinite series needed to modify the original integral equation, all of which were achieved in the analysis of the superellipsoid in a finite range. We used the Green's theorem to solve the integral equation for the boundary of the surface. Previously, multiple surfaces were used to test this method, such as the sphere, ellipsoid, and perturbation of the sphere, pseudosphere and the oval of Cassini Lin and Warnapala , Warnapala and Morgan .

  14. Transformer inrush current reduction through sequential energization for wind farm applications

    Energy Technology Data Exchange (ETDEWEB)

    Abdulsalam, S.; Xu, W. [Alberta Univ., Edmonton, AB (Canada)

    2008-07-01

    Wind power is considered as one of the fastest growing technologies in the power industry. The electrical configuration of a wind farm consists of long spans of medium voltage collector feeders. Each wind generator is connected to the collector circuit/feeder through either a pad mount oil filled, or a nacelle-mounted dry type transformer. All collector feeders connect to a single collector substation where the connection to the high-voltage transmission is established through a step up transformer. With a large number of wind generators per feeder, large inrush current will flow due to simultaneous transformer energization which can cause high voltage sag at the point of common coupling. Wind farms are generally located in unpopulated remote areas where no access to strong network connection is feasible. It is common to have the PCC on a relatively weak location on the sub-transmission/distribution network. In order to meet interconnection standards requirements, the amount of voltage sag due to the energization of a number of transformers needs to be evaluated. This paper presented an effective solution to the mitigation of inrush currents and associated voltage sag for wind farm applications. The paper presented a diagram of a typical configuration of a wind farm electrical distribution system and also described the analytical methodologies for the evaluation of inrush current level together with simulation results. A simplified analysis and sizing criteria for the associated neutral resistor size was presented. It was concluded that the scheme could significantly reduce inrush current level when a large number of transformers are simultaneously energized. The presented application eliminates the need to sectionalize feeders, thereby simplifying them for the energization process. 6 refs., 5 figs.

  15. Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust. [conducted in the Langley 14 by 22 foot subsonic wind tunnel

    Science.gov (United States)

    Applin, Zachary T.; Jones, Kenneth M.; Gile, Brenda E.; Quinto, P. Frank

    1994-01-01

    A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.

  16. Baseline Design of a Hurricane-Resilient Wind Turbine (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, R.; Robertson, A.; Schreck, S.; Maples, B.; Anderson, M.; Finucane, Z.; Raina, A.

    2014-10-01

    Under U.S. Department of Energy-sponsored research FOA 415, the National Renewable Energy Laboratory led a team of research groups to produce a complete design of a large wind turbine system to be deployable in the western Gulf of Mexico region. As such, the turbine and its support structure would be subjected to hurricane-loading conditions. Among the goals of this research was the exploration of advanced and innovative configurations that would help decrease the levelized cost of energy (LCOE) of the design, and the expansion of the basic IEC design load cases (DLCs) to include hurricane environmental conditions. The wind turbine chosen was a three-bladed, downwind, direct-drive, 10-MW rated machine. The rotor blade was optimized based on an IEC load suite analysis. The drivetrain and nacelle components were scaled up from a smaller sized turbine using industry best practices. The tubular steel tower was sized using ultimate load values derived from the rotor optimization analysis. The substructure is an innovative battered and raked jacket structure. The innovative turbine has also been modeled within an aero-servo-hydro-elastic tool, and future papers will discuss results of the dynamic response analysis for select DLCs. Although multiple design iterations could not be performed because of limited resources in this study, and are left to future research, the obtained data will offer a good indication of the expected LCOE for large offshore wind turbines to be deployed in subtropical U.S. waters, and the impact design innovations can have on this value.

  17. ACCUWIND - Accurate wind speed measurements in wind energy - Summary report[Cup and sonic anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Friis Pedersen, T.; Dahlberg, J.Aa.; Cuerva, A.; Mouzakis, F.; Busche, P.; Eecen, P.; Sanz-Andres, A.; Franchini, S.; Markkilde Petersen, S.

    2006-07-15

    The cup anemometer is at present the standard instrument used for mean wind speed measurement in wind energy. It is being applied in high numbers around the world for wind energy assessments. It is also applied exclusively for accredited power performance measurements for certification and verification purposes, and for purposes of optimisation in research and development. The revised IEC standard on power performance measurements has now included requirements for classification of cup anemometers. The basis for setting up such requirements of cup anemometers is two EU projects SITEPARIDEN and CLASSCUP from which the proposed classification method for cup anemometers was developed for the IEC standard. While cup anemometers at present are the standard anemometer being used for average wind speed measurements, sonic anemometers have been developed significantly over the last years, and prices have come down. The application of sonic anemometers may increase in wind energy if they prove to have comparable or better operational characteristics compared to cup anemometers, and if similar requirements to sonic anemometers are established as for cup anemometers. Sonic anemometers have historically been used by meteorologists for turbulence measurements, but have also found a role on wind turbine nacelles for wind speed and yaw control purposes. The report on cup and sonic anemometry deals with establishment of robustness in assessment and classification by focus on methods and procedures for analysis of characteristics of cup and sonic anemometers. The methods and procedures provide a platform, hopefully for use in meeting the requirements of the IEC standard on power performance measurements, as well as for development of improved instruments. (au)

  18. Visualizing Flutter Mechanism as Traveling Wave Through Animation of Simulation Results for the Semi-Span Super-Sonic Transport Wind-Tunnel Model

    Science.gov (United States)

    Christhilf, David M.

    2014-01-01

    It has long been recognized that frequency and phasing of structural modes in the presence of airflow play a fundamental role in the occurrence of flutter. Animation of simulation results for the long, slender Semi-Span Super-Sonic Transport (S4T) wind-tunnel model demonstrates that, for the case of mass-ballasted nacelles, the flutter mode can be described as a traveling wave propagating downstream. Such a characterization provides certain insights, such as (1) describing the means by which energy is transferred from the airflow to the structure, (2) identifying airspeed as an upper limit for speed of wave propagation, (3) providing an interpretation for a companion mode that coalesces in frequency with the flutter mode but becomes very well damped, (4) providing an explanation for bursts of response to uniform turbulence, and (5) providing an explanation for loss of low frequency (lead) phase margin with increases in dynamic pressure (at constant Mach number) for feedback systems that use sensors located upstream from active control surfaces. Results from simulation animation, simplified modeling, and wind-tunnel testing are presented for comparison. The simulation animation was generated using double time-integration in Simulink of vertical accelerometer signals distributed over wing and fuselage, along with time histories for actuated control surfaces. Crossing points for a zero-elevation reference plane were tracked along a network of lines connecting the accelerometer locations. Accelerometer signals were used in preference to modal displacement state variables in anticipation that the technique could be used to animate motion of the actual wind-tunnel model using data acquired during testing. Double integration of wind-tunnel accelerometer signals introduced severe drift even with removal of both position and rate biases such that the technique does not currently work. Using wind-tunnel data to drive a Kalman filter based upon fitting coefficients to

  19. Fluid-structure interaction modeling of wind turbines: simulating the full machine

    Science.gov (United States)

    Hsu, Ming-Chen; Bazilevs, Yuri

    2012-12-01

    In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.

  20. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper

    Science.gov (United States)

    Sun, C.; Jahangiri, V.

    2018-05-01

    Offshore wind turbines suffer from excessive bi-directional vibrations due to wind-wave misalignment and vortex induced vibrations. However, most of existing research focus on unidirectional vibration attenuation which is inadequate for real applications. The present paper proposes a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the tower and nacelle dynamic response in the fore-aft and side-side directions. An analytical model of the wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades, the tower and the 3d-PTMD is modeled. Aerodynamic loading is computed using the Blade Element Momentum method where the Prandtls tip loss factor and the Glauert correction are considered. JONSWAP spectrum is adopted to generate wave data. Wave loading is computed using Morisons equation in collaboration with the strip theory. Via a numerical search approach, the design formula of the 3d-PTMD is obtained and examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine model under misaligned wind, wave and seismic loading. Dual linear tuned mass dampers (TMDs) deployed in the fore-aft and side-side directions are utilized for comparison. It is found that the 3d-PTMD with a mass ratio of 2 % can improve the mitigation of the root mean square and peak response by around 10 % when compared with the dual linear TMDs in controlling the bi-directional vibration of the offshore wind turbines under misaligned wind, wave and seismic loading.

  1. Infrared Images of Boundary Layer Transition on the D8 Transport Configuration in the LaRC 14- by 22-Foot Subsonic Tunnel

    Science.gov (United States)

    Mason, Michelle L.; Gatlin, Gregory M.

    2015-01-01

    Grit, trip tape, or trip dots are routinely applied on the leading-edge regions of the fuselage, wings, tails or nacelles of wind tunnel models to trip the flow from laminar to turbulent. The thickness of the model's boundary layer is calculated for nominal conditions in the wind tunnel test to determine the effective size of the trip dots, but the flow over the model may not transition as intended for runs with different flow conditions. Temperature gradients measured with an infrared camera can be used to detect laminar to turbulent boundary layer transition on a wind tunnel model. This non-intrusive technique was used in the NASA Langley 14- by 22-Foot Subsonic Tunnel to visualize the behavior of the flow over a D8 transport configuration model. As the flow through the wind tunnel either increased to or decreased from the run conditions, a sufficient temperature difference existed between the air and the model to visualize the transition location (due to different heat transfer rates through the laminar and the turbulent boundary layers) for several runs in this test. Transition phenomena were visible without active temperature control in the atmospheric wind tunnel, whether the air was cooler than the model or vice-versa. However, when the temperature of the model relative to the air was purposely changed, the ability to detect transition in the infrared images was enhanced. Flow characteristics such as a wing root horseshoe vortex or the presence of fore-body vortical flows also were observed in the infrared images. The images of flow features obtained for this study demonstrate the usefulness of current infrared technology in subsonic wind tunnel tests.

  2. A real-time deflection monitoring system for wind turbine blades using a built-in laser displacement sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong-Cheol; Giri, Paritosh; Lee, Jung-Ryul [Korea Chonbuk National Univ., Jeonbuk (Korea, Republic of). Dept. of Aerospace Engineering and LANL-CBNU Engineering Inst.

    2012-07-01

    Renewable energy is considered a good alternative to deal with the issues related to fossil fuel and environmental pollution. Wind energy as one of such renewable energy alternatives has seen a substantial growth. With commercially viable global wind power potential, wind energy penetration is further expected to rise, and so will the related problems. One of the issues is the collision of wind blade and tower during operation. To improve safety during operation, to minimize the risk of sudden failure or total breakdown, and to ensure reliable power generation and reduce wind turbine life cycle costs, a structural health monitoring (SHM) technology is required. This study proposes a single laser displacement sensor (LDS) system, where all of the rotating blades could be evaluated effectively. The system is cost-effective as well, as the system costs only a mere thousand dollars. If the blade bolt loosening occurs, it causes deflection in the affected blade. In a similar manner, nacelle tilt or mass loss damage in the blade will result in change of blade's position and the proposed system can identify such problems with ease. With increased demand of energy, the sizes of wind blades are getting bigger and bigger due to which people are installing wind turbines very high above the ground level or offshore. It is impractical to monitor the deflection through wired connection in these cases and hence can be replaced by a wireless solution. This wireless solution is achieved using Zigbee technology which operates in the industrial, scientific and medical (ISM) radio bands, typically 2.4 GHz, 915 MHz and 868 MHz. The output from the LDS is fed to the microcontroller which acts as an analog to digital converter which in turn is connected to the Zigbee transceiver module, which transmits the data. At the other end, the Zigbee reads the data and displays on the PC from where user can monitor the condition of wind blades. (orig.)

  3. Evaluation of Offshore Wind Turbine Tower Dynamics with Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Begum Yurdanur Dagli

    2018-01-01

    Full Text Available A dynamic behaviour of a cylindirical wind tower with variable cross section is investigated under environmental and earthquake forces. The ground acceleration term is represented by a simple cosine function to investigate both normal and parallel components of the earthquake motions located near ground surface. The function of earthquake force is simplified to apply Rayleigh’s energy method. Wind forces acting on above the water level and wave forces acting on below this level are utilized in computations considering earthquake effect for entire structure. The wind force is divided into two groups: the force acting on the tower and the forces acting on the rotor nacelle assembly (RNA. The drag and the inertial wave forces are calculated with water particle velocities and accelerations due to linear wave theory. The resulting hydrodynamic wave force on the tower in an unsteady viscous flow is determined using the Morison equation. The displacement function of the physical system in which dynamic analysis is performed by Rayleigh’s energy method is obtained by the single degree of freedom (SDOF model. The equation of motion is solved by the fourth-order Runge–Kutta method. The two-way FSI (fluid-structure interaction technique was used to determine the accuracy of the numerical analysis. The results of computational fluid dynamics and structural mechanics are coupled in FSI analysis by using ANSYS software. Time-varying lateral displacements and the first natural frequency values which are obtained from Rayleigh’s energy method and FSI technique are compared. The results are presented by graphs. It is observed from these graphs that the Rayleigh model can be an alternative way at the prelimanary stage of the structural analysis with acceptable accuracy.

  4. Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper

    Science.gov (United States)

    Hu, Yaqi; He, Erming

    2017-12-01

    Floating wind turbines are subjected to more severe structural loads than fixed-bottom wind turbines due to additional degrees of freedom (DOFs) of their floating foundations. It's a promising way of using active structural control method to improve the structural responses of floating wind turbines. This paper investigates an active vibration control strategy for a barge-type floating wind turbine by setting a stroke-limited hybrid mass damper (HMD) in the turbine's nacelle. Firstly, a contact nonlinear modeling method for the floating wind turbine with clearance between the HMD and the stroke limiters is presented based on Euler-Lagrange's equations and an active control model of the whole system is established. The structural parameters are validated for the active control model and an equivalent load coefficient method is presented for identifying the wind and wave disturbances. Then, a state-feedback linear quadratic regulator (LQR) controller is designed to reduce vibration and loads of the wind turbine, and two optimization methods are combined to optimize the weighting coefficients when considering the stroke of the HMD and the active control power consumption as constraints. Finally, the designed controllers are implemented in high fidelity simulations under five typical wind and wave conditions. The results show that active HMD control strategy is shown to be achievable and the designed controllers could further reduce more vibration and loads of the wind turbine under the constraints of stroke limitation and power consumption. "V"-shaped distribution of the TMD suppression effect is inconsistent with the Weibull distribution in practical offshore floating wind farms, and the active HMD control could overcome this shortcoming of the passive TMD.

  5. Damage Detection Response Characteristics of Open Circuit Resonant (SansEC) Sensors

    Science.gov (United States)

    Dudley, Kenneth L.; Szatkowski, George N.; Smith, Laura J.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Wang, Chuantong; Ticatch, Larry A.; Mielnik, John J.

    2013-01-01

    The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, commercial entities, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into "smart" vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ. NASA Langley Research Center (LaRC) is developing a composite aircraft skin damage detection method and system based on open circuit SansEC (Sans Electric Connection) sensor technology. Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage structures, empennage structures, control surfaces and aircraft skins. SansEC sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect various types of damage in composite materials. The source cause of the in-service damage (lightning strike, impact damage, material fatigue, etc.) to the aircraft composite is not relevant. The sensor will detect damage independent of the cause

  6. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    Energy Technology Data Exchange (ETDEWEB)

    Luquet, David; Marchiano, Régis; Coulouvrat, François, E-mail: francois.coulouvrat@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris (France)

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  7. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  8. An Examination of the Effect of Boundary Layer Ingestion on Turboelectric Distributed Propulsion Systems

    Science.gov (United States)

    Felder, James L.; Kim, Huyn Dae; Brown, Gerald V.; Chu, Julio

    2011-01-01

    A Turboelectric Distributed Propulsion (TeDP) system differs from other propulsion systems by the use of electrical power to transmit power from the turbine to the fan. Electrical power can be efficiently transmitted over longer distances and with complex topologies. Also the use of power inverters allows the generator and motors speeds to be independent of one another. This decoupling allows the aircraft designer to place the core engines and the fans in locations most advantageous for each. The result can be very different installation environments for the different devices. Thus the installation effects on this system can be quite different than conventional turbofans where the fan and core both see the same installed environments. This paper examines a propulsion system consisting of two superconducting generators, each driven by a turboshaft engine located so that their inlets ingest freestream air, superconducting electrical transmission lines, and an array of superconducting motor driven fan positioned across the upper/rear fuselage area of a hybrid wing body aircraft in a continuous nacelle that ingests all of the upper fuselage boundary layer. The effect of ingesting the boundary layer on the design of the system with a range of design pressure ratios is examined. Also the impact of ingesting the boundary layer on off-design performance is examined. The results show that when examining different design fan pressure ratios it is important to recalculate of the boundary layer mass-average Pt and MN up the height for each inlet height during convergence of the design point for each fan design pressure ratio examined. Correct estimation of off-design performance is dependent on the height of the column of air measured from the aircraft surface immediately prior to any external diffusion that will flow through the fan propulsors. The mass-averaged Pt and MN calculated for this column of air determine the Pt and MN seen by the propulsor inlet. Since the height

  9. Failure Investigation of WB-57 Aircraft Engine Cowling

    Science.gov (United States)

    Martinez, J. E.; Gafka, T.; Figert, J.

    2014-01-01

    The NASA Johnson Space Center (JSC) in Houston, Texas is the home of the NASA WB-57 High Altitude Research Program. Three fully operational WB-57 aircraft are based near JSC at Ellington Field. The aircraft have been flying research missions since the early 1960's, and continue to be an asset to the scientific community with professional, reliable, customer-oriented service designed to meet all scientific objectives. The NASA WB-57 Program provides unique, high-altitude airborne platforms to US Government agencies, academic institutions, and commercial customers in order to support scientific research and advanced technology development and testing at locations around the world. Mission examples include atmospheric and earth science, ground mapping, cosmic dust collection, rocket launch support, and test bed operations for future airborne or spaceborne systems. During the return from a 6 hour flight, at 30,000 feet, in the clean configuration, traveling at 175 knots indicated airspeed, in un-accelerated flight with the auto pilot engaged, in calm air, the 2-man crew heard a mechanical bang and felt a slight shudder followed by a few seconds of high frequency vibration. The crew did not notice any other abnormalities leading up to, or for the remaining 1 hour of flight and made an uneventful landing. Upon taxi into the chocks, the recovery ground crew noticed the high frequency long wire antenna had become disconnected from the vertical stabilizer and was trailing over the left inboard wing, and that the left engine upper center removable cowling panel was missing, with noticeable damage to the left engine inboard cowling fixed structure. The missing cowling panel was never recovered. Each engine cowling panel is attached to the engine nacelle using six bushings made of 17-4 PH steel. The cylinder portions of four of the six bushings were found still attached to the aircraft (Fig 1). The other two bushings were lost with the panel. The other four bushings exhibited

  10. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow

  11. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    Science.gov (United States)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan

  12. An application of ensemble/multi model approach for wind power production forecast.

    Science.gov (United States)

    Alessandrini, S.; Decimi, G.; Hagedorn, R.; Sperati, S.

    2010-09-01

    The wind power forecast of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast is based on a mesoscale meteorological models that provides the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. The corrected wind data are then used as input in the wind farm power curve to obtain the power forecast. These computations require historical time series of wind measured data (by an anemometer located in the wind farm or on the nacelle) and power data in order to be able to perform the statistical analysis on the past. For this purpose a Neural Network (NN) is trained on the past data and then applied in the forecast task. Considering that the anemometer measurements are not always available in a wind farm a different approach has also been adopted. A training of the NN to link directly the forecasted meteorological data and the power data has also been performed. The normalized RMSE forecast error seems to be lower in most cases by following the second approach. We have examined two wind farms, one located in Denmark on flat terrain and one located in a mountain area in the south of Italy (Sicily). In both cases we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by using two or more models (RAMS, ECMWF deterministic, LAMI, HIRLAM). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error of at least 1% compared to the singles models approach. Moreover the use of a deterministic global model, (e.g. ECMWF deterministic

  13. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    International Nuclear Information System (INIS)

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-01-01

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  14. Automated in situ monitoring of migratory birds at Germany's first offshore wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Coppack, Timothy; Kulemeyer, Christoph; Schulz, Axel; Steuri, Thomas; Liechti, Felix

    2011-07-01

    Full text: Offshore wind farms may negatively affect migrating birds, especially at night, by increased photo tactic attraction and risk of collision. Under favourable weather conditions (clear skies, tail wind) the majority of migrants probably fly well above the reach of wind turbine blades. Under unfavourable conditions (sea fog, precipitation, head wind), however, nocturnal migrants could get attracted by brightly lit wind farms, and the risk of collision would hence increase. To assess these potential effects, migration rates and collision probabilities need to be empirically quantified at existing wind farms. This is not an easy task, given the setting and dimension of an offshore wind farm and the sheer quantity and diversity of small-bodied birds potentially passing by. Nocturnal passerine migrants are impossible to count accurately over extended periods with observational methods, and even classic radar technology fails to pro-vide hard-wired information. Complementing the 'Standards for Environmental Impact Assessment' issued by Germany.s Federal Maritime and Hydrographic Agency (BSH), we have developed and installed a novel radar system (BirdScan) on the research platform FINO 1, situated around 50 km offshore next to the wind farm 'alpha ventus' in the German North Sea. BirdScan operates on the basis of defined detection volumes (fixed radar beam), allowing a precise quantification of passerine and non-passerine radar echoes. Our study design includes alternating measurements within and outside the wind farm in order to assess avoidance and/or photo tactic aggregation behaviour of migrants under various weather situations. At the same time, we are investigating the photo tactic attraction of birds at a smaller spatial scale using motion-controlled infrared cameras directly mounted on the nacelle and shaft of a wind turbine. Through this approach, disoriented birds (and even bats) can be automatically ground-proofed and set in

  15. Design-order, non-conformal low-Mach fluid algorithms using a hybrid CVFEM/DG approach

    Science.gov (United States)

    Domino, Stefan P.

    2018-04-01

    A hybrid, design-order sliding mesh algorithm, which uses a control volume finite element method (CVFEM), in conjunction with a discontinuous Galerkin (DG) approach at non-conformal interfaces, is outlined in the context of a low-Mach fluid dynamics equation set. This novel hybrid DG approach is also demonstrated to be compatible with a classic edge-based vertex centered (EBVC) scheme. For the CVFEM, element polynomial, P, promotion is used to extend the low-order P = 1 CVFEM method to higher-order, i.e., P = 2. An equal-order low-Mach pressure-stabilized methodology, with emphasis on the non-conformal interface boundary condition, is presented. A fully implicit matrix solver approach that accounts for the full stencil connectivity across the non-conformal interface is employed. A complete suite of formal verification studies using the method of manufactured solutions (MMS) is performed to verify the order of accuracy of the underlying methodology. The chosen suite of analytical verification cases range from a simple steady diffusion system to a traveling viscous vortex across mixed-order non-conformal interfaces. Results from all verification studies demonstrate either second- or third-order spatial accuracy and, for transient solutions, second-order temporal accuracy. Significant accuracy gains in manufactured solution error norms are noted even with modest promotion of the underlying polynomial order. The paper also demonstrates the CVFEM/DG methodology on two production-like simulation cases that include an inner block subjected to solid rotation, i.e., each of the simulations include a sliding mesh, non-conformal interface. The first production case presented is a turbulent flow past a high-rate-of-rotation cube (Re, 4000; RPM, 3600) on like and mixed-order polynomial interfaces. The final simulation case is a full-scale Vestas V27 225 kW wind turbine (tower and nacelle omitted) in which a hybrid topology, low-order mesh is used. Both production simulations

  16. Prediction of dynamic loads and induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Aagaard Madsen, H. [Risoe National Lab. (Denmark); Bjoerck, A. [Aeronautical Research Inst. of Sweden (Sweden); Enevoldsen, P. [Bonus Energy A/S (Denmark); Oeye, S. [The Technical Univ. of Denmark (Denmark); Ganander, H. [Teknikgruppen AB (Sweden); Winkelaar, D. [Netherlands Energy Research Foundation (Netherlands)

    1998-05-01

    Results from research in an EC Joule-III project and from national projects are presented. The objectives are improvement of design methods for stall regulated wind turbines with emphasis on stall induced vibrations and dynamic stall. The primary concern is limitation of the edgewise vibrations in the fundamental blade natural mode shape, which have caused trouble on modern wind turbines of approximate size 500 kW nominal power and 40 m rotor diameter. A theoretical study of quasi-steady aerodynamics confirms that the vibrations are driven basically by energy supplied from the aerodynamic forces during stalled operation. This energy exchange is equivalent to negative aerodynamic damping. The theoretical approach identifies the main parameters controlling the phenomenon. These parameters describe the steady and the dynamic airfoil characteristics, the overall aerodynamic layout of the blade, e.g. chord length and twist, the structural properties of the blade, e.g. structural damping and properties controlling the resulting vibration direction. Furthermore, full aeroelastic calculations and comparison with measurements show that the properties of the supporting structure, i.e. the main shaft, the nacelle and the tower, are important, as the global vibration of the rotor on its support may exchange energy with the blade vibration, when the blade natural frequency is close to one of the frequencies of the coupled rotor tilt-yaw mode shapes, usually denoted the global rotor whirl frequencies. It is confirmed that the influence of changing the primary design parameters can be determined by use of qualified aeroelastic calculations. Presented design guidelines therefore build on both the simple quasi-steady models, which can be used for the preliminary choice of the design variables mentioned above, and on full aeroelastic calculations. The aeroelastic calculations refine the design basis and should be used for choosing the final design variables and for final

  17. Wakes behind wind turbines. Studies on tip vortex evolution and stability

    Energy Technology Data Exchange (ETDEWEB)

    Odemark, Ylva

    2012-07-01

    The increased fatigue loads and decreased power output of a wind turbine placed in the wake of another turbine is a well-known problem when building new wind power farms. In order to better estimate the total power output of a wind power farm, knowledge about the development and stability of wind turbine wakes is crucial. In the present thesis, the wake behind a small-scale model turbine was investigated experimentally in a wind tunnel. The velocity in the wake was measured with hot-wire anemometry, for different free stream velocities and tip speed ratios. To characterize the behaviour of the model turbine, the power output, thrust force and rotational frequency of the model were also measured. These results were then compared to calculations using the Blade Element Momentum (BEM) method. New turbine blades for the model was constructed using the same method, in order to get an estimate of the distribution of the lift and drag forces along the blades. This information is needed for comparisons with certain numerical simulations, which however remains to be performed.By placing the turbine at different heights in a turbulent boundary layer, the effects of forest turbulence on wind turbine outputs (power and thrust) could also be investigated.The evolution of the tip vortices shed from the turbine blades was studied by performing velocity measurements around the location of the tip vortex breakdown. The vortices' receptivity to disturbances was then studied by introducing a disturbance in the form of two pulsed jets, located in the rear part of the nacelle. In order to introduce a well-defined disturbance and perform phase-locked measurements, a new experimental setup was constructed and successfully tested for two different disturbance frequencies. The mean stream wise velocity and the stream wise turbulence intensity was found to scale well with the free stream velocity and the spreading of the wake was found to be proportional to the square root of the

  18. Research in aeroelasticity EFP-2007

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2008-07-15

    This report contains results from the EFP2007 project 'Program for Research in Applied Aeroelasticity'. The main results from this project are: 1) The rotor aerodynamics were computed using different types of models with focus on the flow around the tip. The results showed similar trend for all models. 2) Comparison of 3D CFD computations with and without inflow shear showed that the integrated rotor thrust and power were largely identical in the two situations. 3) The influence of tower shadow with and without inflow shear showed significant differences compared to BEMcomputations, which gives cause for further investigation. 4) 3D CFD computations showed that the flow in the region of the nacelle anemometer measured the flow angle in the wake with errors up to as much as 7 deg. relative to the freestream flow angle. 5) As long as the flow over a blade remains attached there is little difference between 2-D and 3-D flow. However, at separation an increased lift is observed close to the rotational axis. 6) A correlation based transition model has been implemented in the incompressible EllipSys2D/3D Navier-Stokes solver. Computations on airfoils and rotors showed good agreement and distinct improvement in the drag predictions compared to using fully turbulent computations. 7) Comparing the method of Dynamic Wake Meandering (DWM) and IEC, the IECmodel seems conservative regarding fatigue and extreme loads for the yaw, driving torque and flapwise bending, whereas the loads on tower and blade torsion are non-conservative. 8) An experimental method for measuring transition point and energy spectra in airfoil boundary layers using microphones has been developed. 9) A robust and automatic method for detecting transition based on microphone measurement on airfoil surfaces has been developed. 10) Transition points and the corresponding instabilities have clearly been observed in airfoil boundary layers. 11) Predictions of the transition points on airfoils using

  19. 风力发电高塔系统风致随机动力响应分析%Stochastic dynamic analysis of wind turbine systems under wind loads

    Institute of Scientific and Technical Information of China (English)

    贺广零; 李杰

    2011-01-01

    Wind energy development is an effective way to solve problems such as energy shortage and environmental pollution, so it is very useful to accurately compute the stochastic dynamic response of wind turbine systems under wind loads. Firstly< a new method termed as generalized probability density evolution method (GPDEM) is presented in the paper. The GPDEM has been proved to be of high accuracy and efficiency in most kinds of stochastic analysis of dynamical systems. Associated with the physical model of stochastic wind field and the integrated finite element model consisting of the rotor, the nacelle. The tower and the foundation, it is very hopeful to apply the GPDEM in stochastic dynamic analysis of wind turbine systems. Then, a 1. 25 MW wind turbine system subject to wind loads is investigated in detail, and the dynamic responses and the stochastic ones are also compared. The results demonstrate that the randomness of wind velocities places a great influence on the stochastic dynamic analysis of wind turbine systems.%介绍了一种高精度且高效的随机动力系统分析方法-广义概率密度演化方法.基于广义概率密度演化方法,结合随机脉动风场物理模型和“桨叶-机舱-塔体-基础”一体化有限元模型,分别对1.25 MW风力发电高钢塔和钢筋混凝土风力发电高塔进行了风致随机动力响应分析,并将分析结果同确定性动力响应分析结果进行比较.研究表明,随机性对风力发电高塔系统结构风致动力响应分析的影响非常显著.

  20. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    Energy Technology Data Exchange (ETDEWEB)

    Martin Wilde, Principal Investigator

    2012-12-31

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational

  1. A Synchronized Sensor Array for Remote Monitoring of Avian and Bat Interactions with Offshore Renewable Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Suryan, Robert [Oregon State Univ., Corvallis, OR (United States). Department of Fisheries and Wildlife; Albertani, Roberto [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial, and Manufacturing Engineering; Polagye, Brian [Univ. of Washington, Seattle, WA (United States). Department of Mechanical Engineering, Northwest National Marine Renewable Energy Center

    2016-07-15

    Wind energy production in the U.S. is projected to increase to 35% of our nation’s energy by 2050. This substantial increase in the U.S. is only a portion of the global wind industry growth, as many countries strive to reduce greenhouse gas emissions. A major environmental concern and potential market barrier for expansion of wind energy is bird and bat mortality from impacts with turbine blades, towers, and nacelles. Carcass surveys are the standard protocol for quantifying mortality at onshore sites. This method is imperfect, however, due to survey frequency at remote sites, removal of carcasses by scavengers between surveys, searcher efficiency, and other biases as well as delays of days to weeks or more in obtaining information on collision events. Furthermore, carcass surveys are not feasible at offshore wind energy sites. Near-real-time detection and quantification of interaction rates is possible at both onshore and offshore wind facilities using an onboard, integrated sensor package with data transmitted to central processing centers. We developed and experimentally tested an array of sensors that continuously monitors for interactions (including impacts) of birds and bats with wind turbines. The synchronized array includes three sensor nodes: (1) vibration (accelerometers and contact microphones), (2) optical (visual and infrared spectrum cameras), and (3) bioacoustics (acoustic and ultrasonic microphones). Accelerometers and contact acoustic microphones are placed at the root of each blade to detect impact vibrations and sound waves propagating through the structure. On-board data processing algorithms using wavelet analysis detect impact signals exceeding background vibration. Stereo-visual and infrared cameras were placed on the nacelle to allow target tracking, distance, and size calculations. On-board image processing and target detection algorithms identify moving targets within the camera field of view. Bioacoustic recorders monitor vocalizations

  2. Purification by high vacuum fusion and progressive solidification of uranium from electrolytic origin; Purification par fusion sous vide eleve et solidification progressive d'uranium d'origine electrolytique

    Energy Technology Data Exchange (ETDEWEB)

    Poeydomenge, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-01-15

    grain observed, so-called secondary recrystallisation. in appendix, the method for measuring the electrical resistance by induction (with direct current)is studied from the fundamental and experimental point of view. The author applied it to the particular case of uranium for measuring the low-temperature resistance of the bars from the same which solidified first to the least pure ended the ingot. (author) [French] Dans le cadre de recherches generales sur la purification de l'uranium par fusion de zone, on a entrepris de determiner le degre de purification que l'on pourrait atteindre par une simple solidification progressive a vitesse et direction soigneusement controlees d'un uranium de purete nucleaire courante. Cet uranium de purete intermediaire fournirait un materiau de depart approprie au mode de purification ultime qu'est la fusion a zone verticale, dite ''flottante''. Dans ce but, des lingots d'uranium d'origine electrolytique ont ete refondus sous vide (2 a 5 x 10{sup -6} mm) dans une longue nacelle en UO{sub 2} apres une monte lente en temperature pour eliminer le maximum de gaz et d'impuretes volatiles. Ce degazage et cette volatilisation d'impuretes sont completes par maintien prolonge a haute temperature du bais liquide. Celui-ci est ensuite solidifie d'une extremite a l'autre de la nacelle par deplacement a vitesse lente et constante du front de solidification de facon a obtenir une repartition des impuretes selon les lois etablies par PFANN. Differentes methodes experimentales ont permis de montrer que le metal solidifie en premier lieu est nettement plus pur que celui de la partie solidifie a l'extremite opposee du lingot. Le degre de purification du metal en tete du lingot a ete apprecie, soit quantitativement par mesure du rapport des resistivites electriques a la temperature ambiante et a celle de l'azote liquide, soit qualitativement par l'examen de la structure micrographique et par l'etude de la recristallisation du metal. D'une part, le metal

  3. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation (Invited)

    Science.gov (United States)

    Xie, S.; Archer, C. L.

    2013-12-01

    -wake and reaches its maximum at about x/D ~ 5, then it gradually decreases further downstream. In the far-wake, the added turbulence intensity is primarily dependent on the induction factor and the ambient turbulence: it increases with the induction factor and ambient turbulence and it decays exponentially downstream. An analysis of the added TKE budget shows that production by shear and advection by the mean flow dominate throughout the wake, whereas dissipation and turbulent transport are less important. In the near-wake, TKE is entrained from the upper regions of the annular shear layer into the center of the wake. The nacelle causes a significant increase of production, advection, and dissipation in the near-wake. Wind shear and momentum fluxes are reduced in the lower part of the wake, thus TKE production is reduced at the bottom-tip level. In summary, we find that the WiTTS model, although applied to a simplified case of neutral stability with a single wind turbine, was able to offer new insights into wake properties, including non-symmetric wake growth and reduced vertical mixing near the ground.

  4. Flexible Micropost Arrays for Shear Stress Measurement

    Science.gov (United States)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  5. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    possibilities. The Boeing N2 hybrid-wing-body (HWB) is used as a baseline aircraft for this study. The two pylon mounted conventional turbofans are replaced by two wing-tip mounted turboshaft engines, each driving a superconducting generator. Both generators feed a common electrical bus which distributes power to an array of superconducting motor-driven fans in a continuous nacelle centered along the trailing edge of the upper surface of the wing-body. A key finding was that traditional inlet performance methodology has to be modified when most of the air entering the inlet is boundary layer air. A very thorough and detailed propulsion/airframe integration (PAI) analysis is required at the very beginning of the design process since embedded engine inlet performance must be based on conditions at the inlet lip rather than freestream conditions. Examination of a range of fan pressure ratios yielded a minimum Thrust-specific-fuel-consumption (TSFC) at the aerodynamic design point of the vehicle (31,000 ft /Mach 0.8) between 1.3 and 1.35 FPR. We deduced that this was due to the higher pressure losses prior to the fan inlet as well as higher losses in the 2-D inlets and nozzles. This FPR is likely to be higher than the FPR that yields a minimum TSFC in a pylon mounted engine. 1

  6. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-10

    more than 101,000 full-time workers at the end of 2016. For wind projects recently installed in the U.S., domestically manufactured content is highest for nacelle assembly (>90%), towers (65-80%), and blades and hubs (50-70%), but is much lower (<20%) for most components internal to the turbine. -Continued strong growth in wind capacity is anticipated in the near term: With federal tax incentives still available, though declining, various forecasts for the domestic market show expected wind power capacity additions averaging more than 9,000 MW/year from 2017 to 2020.

  7. Industrializing Offshore Wind Power with Serial Assembly and Lower-cost Deployment - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Willett [Univ. of Delaware, Newark, DE (United States)

    2017-12-11

    . That design is, in brief: a conventional turbine and tubular tower is mounted on a tripod jacket, in turn atop three suction buckets. Blades are mounted on the tower, not on the hub. The entire structure is built in port, from the bottom up, then assembled structures are queued in the port for deployment. During weather windows, the fully-assembled structures are lifted off the quay, lashed to the vessel, and transported to the deployment site. The vessel analyzed is a shear leg crane vessel with dynamic positioning like the existing Gulliver, or it could be a US-built crane barge. On site, the entire structure is lowered to the bottom by the crane vessel, then pumping of the suction buckets is managed by smaller service vessels. Blades are lifted into place by small winches operated by workers in the nacelle without lift vessel support. Advantages of the selected design include: cost and time at sea of the expensive lift vessel are significantly reduced; no jack up vessel is required; the weather window required for each installation is shorter; turbine structure construction is continuous with a queue feeding the weather-dependent installation process; pre-installation geotechnical work is faster and less expensive; there are no sound impacts on marine mammals, thus minimal spotting and no work stoppage Industrializing Offshore Wind Power 6 of 96 9 for mammal passage; the entire structure can be removed for decommissioning or major repairs; the method has been validated for current turbines up to 10 MW, and a calculation using simple scaling shows it usable up to 20 MW turbines.

  8. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    Directory of Open Access Journals (Sweden)

    M. M. Pedersen

    2017-11-01

    Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the

  9. Development of the microphone array measurement technique for application to cryogenic wind tunnels; Entwicklung der Mikrofonarraymesstechnik fuer die experimentelle Anwendung in kryogenen Windkanaelen

    Energy Technology Data Exchange (ETDEWEB)

    Ahlefeldt, Thomas

    2013-02-01

    this model showed very good agreement in that the u{sup 6} power law was shown to apply. The important outcome of this validation experiment was that the data measured in the cryogenic environment let to meaningful experimental results. In the demonstration experiment the sound radiation of an airplane half model in a high-lift configuration in a cryogenic wind tunnel was examined with a large microphone array, which consisted of 144 microphones. Aeroacoustic sources were localised at ambient as well as at cryogenic temperatures on different areas of the wing, such as, for example, at the leading edge flap, the trailing flap tip or the Krueger's flap. The radiated sound showed a dependence on the Reynolds number for the whole model as well as for different source areas. This was in particular the case for two source areas: First, dominant tones were identified in the vicinity of the leading edge, but which then disappeared with a rise of the Reynolds number. Second, a narrow band source could be seen on the turbulence generator on the nacelle, for which a scaling to the Mach number with M{sup 6} and a systematic dependence on the Reynolds- and Strouhal numbers could be shown. To sum up, the results of the investigation on the half model demonstrated successfully the applicability of the measurement technique developed within the scope of this work.

  10. SPATIALLY-EXPLICIT BAT IMPACT SCREENING TOOL FOR WIND TURBINE SITING

    Energy Technology Data Exchange (ETDEWEB)

    Versar, Inc.; Exponent, Inc.

    2013-10-28

    As the U.S. seeks to increase energy production from renewable energy sources, development of wind power resources continues to grow. One of the most important ecological issues restricting wind energy development, especially the siting of wind turbines, is the potential adverse effect on bats. High levels of bat fatality have been recorded at a number of wind energy facilities, especially in the eastern United States. The U.S. Department of Energy contracted with Versar, Inc., and Exponent to develop a spatially-explicit site screening tool to evaluate the mortality of bats resulting from interactions (collisions or barotrauma) with wind turbines. The resulting Bat Vulnerability Assessment Tool (BVAT) presented in this report integrates spatial information about turbine locations, bat habitat features, and bat behavior as it relates to possible interactions with turbines. A model demonstration was conducted that focuses on two bat species, the eastern red bat (Lasiurus borealis) and the Indiana bat (Myotis sodalis). The eastern red bat is a relatively common tree-roosting species that ranges broadly during migration in the Eastern U.S., whereas the Indiana bat is regional species that migrates between a summer range and cave hibernacula. Moreover, Indiana bats are listed as endangered, and so the impacts to this species are of particular interest. The model demonstration used conditions at the Mountaineer Wind Energy Center (MWEC), which consists of 44 wind turbines arranged in a linear array near Thomas, West Virginia (Tucker County), to illustrate model functions and not to represent actual or potential impacts of the facility. The turbines at MWEC are erected on the ridge of Backbone Mountain with a nacelle height of 70 meters and a collision area of 72 meters (blade height) or 4,071 meters square. The habitat surrounding the turbines is an Appalachian mixed mesophytic forest. Model sensitivity runs showed that bat mortality in the model was most sensitive to

  11. Clemson University Wind Turbine Drivetrain Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tuten, James Maner [Clemson Univ., SC (United States); Haque, Imtiaz [Clemson Univ., SC (United States); Rigas, Nikolaos [Clemson Univ., SC (United States)

    2016-03-30

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the United States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development of these

  12. Preparation of plutonium hexafluoride. Recovery of plutonium from waste dross (1962); Preparation de l'hexafluorure de plutonium. Recuperation du plutonium des scories d'elaboration (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Gendre, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    facteurs physiques sur la vitesse de fluoration du tetrafluorure de plutonium solide par le fluor. Dans un appareil a four horizontal et circulation de fluor a la pression atmospherique de 520 deg. C, avec un debit de fluor pur de 9 l.h{sup -1}, il est possible de transformer une charge de 3 g de tetrafluorure en hexafluorure avec un taux de transformation d'environ 100 pour cent et un rendement de recuperation superieur a 90 pour cent, en 4 a 5 h. La vitesse de fluoration est fonction de la temperature du debit de fluor, de la surface de la nacelle, de l'epaisseur de la couche de tetrafluorure et du temps de reaction. Elle ne depend pas de la diffusion du fluor dans le Solide mais est commandee par la reaction a l'interface gaz-solide et suit la loi cinetique (1 - T{sub T}){sup 1/3} = kt + 1. L'existence de fluorures intermediaires, en particulier Pu{sub 4} F{sub 17}, est confirmee par une cassure de la droite d'Arrhenius vers 370 deg. C, par des differences dans les vitesses de fluoration au sein de la couche de tetrafluorure et par des variations reversibles de coloration. La transformation en hexafluorure s'accompagne d'une purification vis-a-vis des elements etrangers entrant dans la composition de plutonium initial. Recuperation du plutonium des scories d'elaboration: L'etude est basee sur la transformation en hexafluorure gazeux des grains de plutonium occlus dans les scories d'elaboration, cet hexafluorure devant fournir par decomposition thermique un tetrafluorure directement recyclable au stade elaboration. - Dans les conditions envisagees, ce procede n'est pas utilisable industriellement. Apres broyage, une Reparation par milieu dense (iodure de methylene) permet de separer une scorie enrichie en plutonium (75 pour cent du Pu dans 2,6 pour cent du poids des scories) et une scorie pauvre. Par fluoration prolongee (16 h) des diverses portions recueillies, il est possible de recuperer environ 80 pour cent du plutonium. Un appareillage de traitement base sur la