WorldWideScience

Sample records for na-cooled lmr cores

  1. Safety aspects of LMR [liquid metal-cooled reactor] core design

    International Nuclear Information System (INIS)

    Cahalan, J.E.

    1986-01-01

    Features contributing to increased safety margins in liquid metal-cooled reactor (LMR) design are identified. The technical basis is presented for the performance of a pool-type reactor system with an advanced metallic alloy fuel in unprotected accidents. Results are presented from analyses of anticipated transients without scram, including loss-of-flow (LOF), transient overpower (TOP), and loss-of-heat-sink (LOHS) accidents

  2. Preliminary Validation of the MATRA-LMR Code Using Existing Sodium-Cooled Experimental Data

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Kim, Sangji

    2014-01-01

    The main objective of the SFR prototype plant is to verify TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. The fuel design limit is highly dependent on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, an accurate temperature calculation in each subassembly is highly important to assure a safe and reliable operation of the reactor systems. The current core thermalhydraulic design is mainly performed using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code, which has been already validated using the existing sodium-cooled experimental data. In addition to the SLTHEN code, a detailed analysis is performed using the MATRA-LMR (Multichannel Analyzer for Transient and steady-state in Rod Array-Liquid Metal Reactor) code. In this work, the MATRA-LMR code is validated for a single subassembly evaluation using the previous experimental data. The MATRA-LMR code has been validated using existing sodium-cooled experimental data. The results demonstrate that the design code appropriately predicts the temperature distributions compared with the experimental values. Major differences are observed in the experiments with the large pin number due to the radial-wise mixing difference

  3. Development of core design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim Young In; Kim, Young Il; Kim, Y. G.; Kim, S. J.; Song, H.; Kim, T. K.; Kim, W. S.; Hwang, W.; Lee, B. O.; Park, C. K.; Joo, H. K.; Yoo, J. W.; Kang, H. Y.; Park, W. S

    2000-05-01

    For the development of KALIMER (150 MWe) core conceptual design, design evolution and optimization for improved economics and safety enhancement was performed in the uranium metallic fueled equilibrium core design which uses U-Zr binary fuel not in excess of 20 percent enrichment. Utilizing results of the uranium ,metallic fueled core design, the breeder equilibrium core design with breeding ratio being over 1.1 was developed. In addition, utilizing LMR's excellent neutron economy, various core concepts for minor actinide burnup, inherent safety, economics and non-proliferation were realized and its optimization studies were performed. A code system for the LMR core conceptual design has been established through the implementation of needed functions into the existing codes and development of codes. To improve the accuracy of the core design, a multi-dimensional nodal transport code SOLTRAN, a three-dimensional transient code analysis code STEP, MATRA-LMR and ASSY-P for T/H analysis are under development. Through the automation of design calculations for efficient core design, an input generator and several interface codes have been developed. (author)

  4. Development of core design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; In, Kim Young; Kim, Young Il; Kim, Y G; Kim, S J; Song, H; Kim, T K; Kim, W S; Hwang, W; Lee, B O; Park, C K; Joo, H K; Yoo, J W; Kang, H Y; Park, W S

    2000-05-01

    For the development of KALIMER (150 MWe) core conceptual design, design evolution and optimization for improved economics and safety enhancement was performed in the uranium metallic fueled equilibrium core design which uses U-Zr binary fuel not in excess of 20 percent enrichment. Utilizing results of the uranium ,metallic fueled core design, the breeder equilibrium core design with breeding ratio being over 1.1 was developed. In addition, utilizing LMR's excellent neutron economy, various core concepts for minor actinide burnup, inherent safety, economics and non-proliferation were realized and its optimization studies were performed. A code system for the LMR core conceptual design has been established through the implementation of needed functions into the existing codes and development of codes. To improve the accuracy of the core design, a multi-dimensional nodal transport code SOLTRAN, a three-dimensional transient code analysis code STEP, MATRA-LMR and ASSY-P for T/H analysis are under development. Through the automation of design calculations for efficient core design, an input generator and several interface codes have been developed. (author)

  5. KALIMER-600-clad Core Fuel Assembly Calculation using MATRA-LMR (V2.0) Code

    International Nuclear Information System (INIS)

    Kim, Young Gyun; Kim, Young Il

    2006-12-01

    Since the sodium boiling point is very high, maximum cladding and pin temperatures are used for design limit condition in sodium cooled liquid metal reactor. It is necessary to predict accurately the temperature distribution in the core and in the subassemblies to increase the sodium coolant efficiency. Based on the MATRA code, which is developed for PWR analysis, MATRA-LMR has been developed for SFR. The major modifications are: the sodium properties table is implemented as subprogram in the code, Heat transfer coefficients are changed for SFR, te pressure drop correlations are changed for more accurate calculations, which are Novendstern, Chiu-Rohsenow-Todreas, and Cheng-Todreas correlations. This This report describes briefly code structure and equations of MATRA-LMR (Version 2.0), explains input data preparation and shows some calculation results for the KALIMER-600-clad core fuel assembly for which has been performed the conceptual design of the core in the year 2006

  6. Steady state thermal hydraulic analysis of LMR core using COBRA-K code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Kwang; Kim, Young Gyun; Kim Young In; Kim Young Cheol

    1997-02-01

    A thermal hydraulics analysis code COBRA-K is being developed by the KAERI LMR core design technology development team. COBRA-K is a part of the integrated computation system for LMR core design and analysis, the K-CORE system. COBRA-K is supposed to predict the flow and temperature distributions in LMR core. COBRA-K is an extension of the previously published COBRA-IV-I code with several functional improvements. Specially COBRA-K has been improved to analyze single and multi-assembly, and whole-core in the transient condition. This report describes the overall features of COBRA-K and gives general input descriptions. The 19 pin assembly experimental data of ORNL were used to verify the accuracy of this code for the steady state analysis. The comparative results show good agreements between the calculated and the measured data. And COBRA-K can be used to predict flow and temperature distributions for the LMR core design. (author). 7 refs., 6 tabs., 13 figs.

  7. Development of MATRA-LMR code α-version for LMR subchannel analysis

    International Nuclear Information System (INIS)

    Kim, Won Seok; Kim, Young Gyun; Kim, Young Gin

    1998-05-01

    Since the sodium boiling point is very high, maximum cladding and pin temperature are used for design limit condition in sodium cooled liquid metal reactor. It is necessary to predict accurately the core temperature distribution to increase the sodium coolant efficiency. Based on the MATRA code, which is developed for PWR analysis, MATRA-LMR is being developed for LMR. The major modification are as follows : A) The sodium properties table is implemented as subprogram in the code. B) Heat transfer coefficients are changed for LMR C) The pressure drop correlations are changed for more accurate calculations, which are Novendstern, Chiu-Rohsenow-Todreas, and Cheng-Todreas correlations. To assess the development status of MATRA-LMR code, calculations have been performed for ORNL 19 pin and EBR-II 61 pin tests. MATRA-LMR calculation results are also compared with the results obtained by the ALTHEN code, which uses more simplied thermal hydraulic model. The MATRA-LMR predictions are found to agree well to the measured values. The differences in results between MATRA-LMR and SLTHEN have occurred because SLTHEN code uses the very simplied thermal-hydraulic model to reduce computing time. MATRA-LMR can be used only for single assembly analysis, but it is planned to extend for multi-assembly calculation. (author). 18 refs., 8 tabs., 14 figs

  8. Evaluation of a hanging core support concept for LMR application

    International Nuclear Information System (INIS)

    Burelbach, J.P.; Cha, B.K.; Huebotter, P.R.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.; Wu, T.S.

    1985-01-01

    The paper describes an innovative design concept for a liquid metal reactor (LMR) core support structure (CSS). A hanging core support structure is described and analyzed. The design offers inherent safety features, constructability advantages, and potential cost reductions. Some safety considerations are examined which include the in-service inspection (ISI), the backup support system and the structural behavior in a hypothetical case of a broken beam in the core support structure

  9. Development of subchannel analysis code MATRA-LMR for KALIMER subassembly thermal-hydraulics

    International Nuclear Information System (INIS)

    Won-Seok Kim; Young-Gyun Kim

    2000-01-01

    In the sodium cooled liquid metal reactors, the design limit are imposed on the maximum temperatures of claddings and fuel pins. Thus an accurate prediction of core coolant/fuel temperature distribution is essential to the LMR core thermal-hydraulic design. The detailed subchannel thermal-hydraulic analysis code MATRA-LMR (Multichannel Analyzer for Steady States and Transients in Rod Arrays for Liquid Metal Reactors) is being developed for KALIMER core design and analysis, based on COBRA-IV-i and MATRA. The major modifications and improvements implemented into MATRA-LMR are as follows: a) nonuniform axial noding capability, b) sodium properties calculation subprogram, c) sodium coolant heat transfer correlations, and d) most recent pressure drop correlations, such as Novendstern, Chiu-Rohsenow-Todreas and Cheng-Todreas. To assess the development status of this code, the benchmark calculations were performed with the ORNL 19 pin tests and EBR-II seven-assembly SLTHEN calculation results. The calculation results of MATRA-LMR for ORNL 19-pin assembly tests and EBR-II 91-pin experiments were compared to the measurements, and to SABRE4 and SLTHEN code calculation results, respectively. In this comparison, the differences are found among the three codes because of the pressure drop and the thermal mixing modellings. Finally, the major technical results of the conceptual design for the KALIMER 98.03 core have been compared with the calculations of MATRA-LMR, SABRE4 and SLTHEN codes. (author)

  10. Neutronic studies of the long life core concept: Part 1, Design and performance of 1000 MWe uranium oxide fueled low power density LMR cores

    International Nuclear Information System (INIS)

    Orechwa, Y.

    1987-04-01

    The parametric behavior of some key neutronic performance parameters for low power density LMR cores fueled with uranium oxide is investigated. The results are compared to reference homogeneous and heterogeneous cores with normal fuel management and Pu fueling. It can be concluded that with respect to minimizing the initial fissile mass and thereby economizing on the inventory costs and carrying charges, the superior neutron economy of the LMR fuel cycle is best exploited through normal fuel management with Pu recycling. In the once-through mode the LMR fuel cycle has disadvantages due to a higher fissile inventory and is not competitive with the LWR fuel cycle

  11. Development of Core Design Technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Il; Hong, S. G.; Jang, J. W. (and others)

    2007-06-15

    This report describes the contents of core design technology and computer code system development performed during 2005 and 2006 on the objects of nuclear proliferation resistant core and nuclear fuel basic key technology development security. Also, it is including the future application plans for the results and the developed methodology, important information and the materials acquired in this period. Two core designs with single enrichment were considered for the KALIMER-600 during the first year : 1) the first core uses the non-fuel rods such as B4C, ZrH1.8, and dummy rods, 2) the core using different cladding thickness for each core region (inner, middle, and outer cores) without non-fuel rods to flatten the power distribution. In particular, the latter design was intended to simplify the fuel assembly design by eliminating the heterogeneity. It was found that the proposed design satisfy all of the Gen IV SFR design goals on the cycle length longer than 18 EFPM, fuel discharge burnup larger than 80GWd/t, sodium void worth, conversion ratio, reactivity burnup swing and so on. For this object reactor, the structure integrity outside of reactor is confirmed for the radiation exposure during the plant life according to the result of shielding design and evaluation. The transmutation capability and the core characteristics of sodium cooled fast reactor was also evaluated according to the change of MA amount. The reactivity coefficients for the BN-600 reactor with MA fueled are calculated and the results are compared and evaluated with other participants results. Even though the discrepancies between the results of participants are somewhat large but the K-CORE results are close to the average within a standard deviation. To have the capability of 3-dimensional core dynamic analysis such as analyzing power distribution and reactivity variations according to the asymmetric insertion/withdrawal of control rods, the calculation module for core dynamic parameters was

  12. Assessment of MATRA-LMR-FB with the SHRT-17 Core Subassembly Data

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won-Pyo; Yoo, Jin Yoo; Lee, Seung Won; Seong, Seung Hwan; Ahn, Sang June; Choi, Chi-Woong; Lee, Kwi Lim; Jeong, Jae-Ho; Jeong, Taekyeong; Ha, Kwi-Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Since the MATRA-LMRFB code is scheduled to be applied to a partial flow blockage analysis in a PGSFR (Prototype Generation IV Sodium-cooled Fast Reactor) subassembly, code verification is an essential part for the design review. Most of its verification efforts have been devoted to local sub-channel blockages, and thus the predictions were compared to those of other codes as well as experimental data. Verifications using pin bundles with a wire-wrap spacer had to be concentrated to 19-pin bundles, because available experimental data for such a bundle were relatively affluent in world-wide literatures. Therefore, more assessments with diverse pin numbers are necessary for MATRA-LMR-FB to be a more reliable code. Thus far, MATRA-LMR-FB has been applied to a 37-pin subassembly with wire-wrap spacers at most. In this regard, the present comparative study using data produced from the SHRT-17 which was carried out in a 61-pin test subassembly (XX09) placed in the EBR-II (Experimental Breeder Reactor II) core will be a meaningful demonstration for its extensive applicability. The power operation of the EBR-II was begun by ANL (Argonne National Lab.) in 1964 and the SHRT program was carried out in EBR-II between 1984 and 1986 in order to provide not only test data for validation of the computer codes but also demonstration of a passive reactor shutdown and decay heat removal in response of the protected and unprotected transients. The EBR-II SHRT-17 test data were used to demonstrate the prediction capability of MATRA-LMRFB on a radial distribution of the subassembly outlet temperatures during the steady state.

  13. Assessment of MATRA-LMR-FB with the SHRT-17 Core Subassembly Data

    International Nuclear Information System (INIS)

    Chang, Won-Pyo; Yoo, Jin Yoo; Lee, Seung Won; Seong, Seung Hwan; Ahn, Sang June; Choi, Chi-Woong; Lee, Kwi Lim; Jeong, Jae-Ho; Jeong, Taekyeong; Ha, Kwi-Seok

    2015-01-01

    Since the MATRA-LMRFB code is scheduled to be applied to a partial flow blockage analysis in a PGSFR (Prototype Generation IV Sodium-cooled Fast Reactor) subassembly, code verification is an essential part for the design review. Most of its verification efforts have been devoted to local sub-channel blockages, and thus the predictions were compared to those of other codes as well as experimental data. Verifications using pin bundles with a wire-wrap spacer had to be concentrated to 19-pin bundles, because available experimental data for such a bundle were relatively affluent in world-wide literatures. Therefore, more assessments with diverse pin numbers are necessary for MATRA-LMR-FB to be a more reliable code. Thus far, MATRA-LMR-FB has been applied to a 37-pin subassembly with wire-wrap spacers at most. In this regard, the present comparative study using data produced from the SHRT-17 which was carried out in a 61-pin test subassembly (XX09) placed in the EBR-II (Experimental Breeder Reactor II) core will be a meaningful demonstration for its extensive applicability. The power operation of the EBR-II was begun by ANL (Argonne National Lab.) in 1964 and the SHRT program was carried out in EBR-II between 1984 and 1986 in order to provide not only test data for validation of the computer codes but also demonstration of a passive reactor shutdown and decay heat removal in response of the protected and unprotected transients. The EBR-II SHRT-17 test data were used to demonstrate the prediction capability of MATRA-LMRFB on a radial distribution of the subassembly outlet temperatures during the steady state

  14. Validation of CONTAIN-LMR code for accident analysis of sodium-cooled fast reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.; Hering, W.; Schikorr, M.; Stieglitz, R. [Inst. for Neutron Physic and Reactor Technology, Karlsruhe Inst. of Technology, Campus Nord (Germany)

    2012-07-01

    CONTAIN-LMR 1 is an analytical tool for the containment performance of sodium cooled fast reactors. In this code, the modelling for the sodium fire is included: the oxygen diffusion model for the sodium pool fire, and the liquid droplet model for the sodium spray fire. CONTAIN-LMR is also able to model the interaction of liquid sodium with concrete structure. It may be applicable to different concrete compositions. Testing and validation of these models will help to qualify the simulation results. Three experiments with sodium performed in the FAUNA facility at FZK have been used for the validation of CONTAIN-LMR. For pool fire tests, calculations have been performed with two models. The first model consists of one gas cell representing the volume of the burn compartment. The volume of the second model is subdivided into 32 coupled gas cells. The agreement between calculations and experimental data is acceptable. The detailed pool fire model shows less deviation from experiments. In the spray fire, the direct heating from the sodium burning in the media is dominant. Therefore, single cell modeling is enough to describe the phenomena. Calculation results have reasonable agreement with experimental data. Limitations of the implemented spray model can cause the overestimation of predicted pressure and temperature in the cell atmosphere. The ability of the CONTAIN-LMR to simulate the sodium pool fire accompanied by sodium-concrete reactions was tested using the experimental study of sodium-concrete interactions for construction concrete as well as for shielding concrete. The model provides a reasonably good representation of chemical processes during sodium-concrete interaction. The comparison of time-temperature profiles of sodium and concrete shows, that the model requires modifications for predictions of the test results. (authors)

  15. Preliminary validation of the MATRA-LMR-FB code for the flow blockage in a subassembly

    International Nuclear Information System (INIS)

    Jeong, H. Y.; Ha, K. S.; Kwon, Y. M.; Chang, W. P.; Lee, Y. B.; Heo, S.

    2005-01-01

    To analyze the flow blockage in a subassembly of a Liquid Metal-cooled Reactor (LMR), the MATRA-LMR-FB code has been developed and validated for the existing experimental data. Compared to the MATRA-LMR code, which had been successfully applied for the core thermal-hydraulic design of KALIMER, the MATRA-LMR-FB code includes some advanced modeling features. Firstly, the Distributed Resistance Model (DRM), which enables a very accurate description of the effects of wire-wrap and blockage in a flow path, is developed for the MATRA-LMR-FB code. Secondly, the hybrid difference method is used to minimize the numerical diffusion especially at the low flow region such as recirculating wakes after blockage. In addition, the code is equipped with various turbulent mixing models to describe the active mixing due to the turbulent motions as accurate as possible. For the validation of the MATRA-LMR-FB code the ORNL THORS test and KOS 169-pin test are analyzed. Based on the analysis results for the temperature data, the accuracy of the code is evaluated quantitatively. The MATRA-LMR-FB code predicts very accurately the exit temperatures measured in the subassembly with wire-wrap. However, the predicted temperatures for the experiment with spacer grid show some deviations from the measured. To enhance the accuracy of the MATRA-LMR-FB for the flow path with grid spacers, it is suggested to improve the models for pressure loss due to spacer grid and the modeling method for blockage itself. The developed MATRA-LMR-FB code is evaluated to be applied to the flow blockage analysis of KALIMER-600 which adopts the wire-wrapped subassemblies

  16. SASSYS-1 modelling of RVACS/RACS heat removal in an LMR

    International Nuclear Information System (INIS)

    Dunn, F.E.

    1987-01-01

    The SASSYS-1 LMR systems analysis code contains a model for transient analysis of heat removal by a RVACS (Reactor Vessel Auxiliary Cooling System) or a RACS (Reactor Air Cooling System) in an LMR (Liquid Metal Reactor). This air-side RVACS/RACS model is coupled with the sodium-side primary loop thermal hydraulics model in SASSYS-1 to give a complete treatment of the problem. Application of this model to an unprotected loss-of-flow event in the PRISM rector shows that in the long run the RVACS cooling is sufficient to prevent unacceptably high system temperatures in this case

  17. Recent developments in the CONTAIN-LMR code

    International Nuclear Information System (INIS)

    Murata, K.K.

    1990-01-01

    Through an international collaborative effort, a special version of the CONTAIN code is being developed for integrated mechanistic analysis of the conditions in liquid metal reactor (LMR) containments during severe accidents. The capabilities of the most recent code version, CONTAIN LMR/1B-Mod.1, are discussed. These include new models for the treatment of two condensables, sodium condensation on aerosols, chemical reactions, hygroscopic aerosols, and concrete outgassing. This code version also incorporates all of the previously released LMR model enhancements. The results of an integral demonstration calculation of a sever core-melt accident scenario are given to illustrate the features of this code version. 11 refs., 7 figs., 1 tab

  18. CONTAIN LMR/1B-Mod.1, A computer code for containment analysis of accidents in liquid-metal-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Murata, K.K.; Carroll, D.E.; Bergeron, K.D.; Valdez, G.D.

    1993-01-01

    The CONTAIN computer code is a best-estimate, integrated analysis tool for predicting the physical, chemical, and radiological conditions inside a nuclear reactor containment building following the release of core material from the primary system. CONTAIN is supported primarily by the U. S. Nuclear Regulatory Commission (USNRC), and the official code versions produced with this support are intended primarily for the analysis of light water reactors (LWR). The present manual describes CONTAIN LMR/1B-Mod. 1, a code version designed for the analysis of reactors with liquid metal coolant. It is a variant of the official CONTAIN 1.11 LWR code version. Some of the features of CONTAIN-LMR for treating the behavior of liquid metal coolant are in fact present in the LWR code versions but are discussed here rather than in the User's Manual for the LWR versions. These features include models for sodium pool and spray fires. In addition to these models, new or substantially improved models have been installed in CONTAIN-LMR. The latter include models for treating two condensables (sodium and water) simultaneously, sodium atmosphere and pool chemistry, sodium condensation on aerosols, heat transfer from core-debris beds and to sodium pools, and sodium-concrete interactions. A detailed description of each of the above models is given, along with the code input requirements

  19. Liquid metal reactor development. Development of LMR design technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Cheol; Kim, Y I; Kim, Y G; Kim, E K; Song, H; Chung, H T; Sim, Y S; Min, B T; Kim, Y S; Wi, M H; Yoo, B; Lee, J H; Lee, H Y; Kim, J B; Koo, G H; Hahn, D H; Na, B C; Hwang, W; Nam, C; Ryu, W S; Lim, G S; Kim, D H; Kim, J D; Gil, C S

    1997-07-01

    This project was performed in five parts, the scope and contents of which are as follows: The nuclear data processing system was established and the KFS group constant library was improved and verified. Basic computation system was constructed by either developing or adding its function. Input/output (I/O) interface processing was developed to establish an integrated calculation system for LMR core nuclear rand thermal-hydraulic design and analysis. An experimental data analysis was performed to validate the constructed core neutronic calculation system. Using the established core calculation system and design technology, preliminary core design and performance analysis on the domestic LMR core design concept were carried out. To develop the basic technology of the LMR system analysis, LMR system behavior characteristics evaluation, thermal -fluid system analysis in the reactor pool, preliminary overall plant analysis and computer codes development have been performed. A porous model and simple one-dimensional model have been evaluated for the reactor pool analysis. The evaluation of the residual heat removal system on different design concepts has been also conducted. For the development of high temperature structural analysis, the heat transfer and thermal stress analyses were performed using finite element program with user subroutine that has been developed with an implementation of the Chaboche constitutive model for inelastic analysis capability, and the evaluation of creep-fatigue and ratcheting behavior of high temperature structure was carried out using this program. for development of the seismic isolation system and to predict the shear behavior for the laminated rubber bearing were established. And the behavior tests of isolation bearing and rubber specimens were carried out, and the seismic response tests for the isolation model structure were performed using the 30 ton shaking table. (author). 369 refs., 119 tabs., 320 figs.

  20. Liquid metal reactor development. Development of LMR design technology

    International Nuclear Information System (INIS)

    Kim, Young Cheol; Kim, Y. I.; Kim, Y. G.; Kim, E. K.; Song, H.; Chung, H. T.; Sim, Y. S.; Min, B. T.; Kim, Y. S.; Wi, M. H.; Yoo, B.; Lee, J. H.; Lee, H. Y.; Kim, J. B.; Koo, G. H.; Hahn, D. H.; Na, B. C.; Hwang, W.; Nam, C.; Ryu, W. S.; Lim, G. S.; Kim, D. H.; Kim, J. D.; Gil, C. S.

    1997-07-01

    This project was performed in five parts, the scope and contents of which are as follows: The nuclear data processing system was established and the KFS group constant library was improved and verified. Basic computation system was constructed by either developing or adding its function. Input/output (I/O) interface processing was developed to establish an integrated calculation system for LMR core nuclear rand thermal-hydraulic design and analysis. An experimental data analysis was performed to validate the constructed core neutronic calculation system. Using the established core calculation system and design technology, preliminary core design and performance analysis on the domestic LMR core design concept were carried out. To develop the basic technology of the LMR system analysis, LMR system behavior characteristics evaluation, thermal -fluid system analysis in the reactor pool, preliminary overall plant analysis and computer codes development have been performed. A porous model and simple one-dimensional model have been evaluated for the reactor pool analysis. The evaluation of the residual heat removal system on different design concepts has been also conducted. For the development of high temperature structural analysis, the heat transfer and thermal stress analyses were performed using finite element program with user subroutine that has been developed with an implementation of the Chaboche constitutive model for inelastic analysis capability, and the evaluation of creep-fatigue and ratcheting behavior of high temperature structure was carried out using this program. for development of the seismic isolation system and to predict the shear behavior for the laminated rubber bearing were established. And the behavior tests of isolation bearing and rubber specimens were carried out, and the seismic response tests for the isolation model structure were performed using the 30 ton shaking table. (author). 369 refs., 119 tabs., 320 figs

  1. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  2. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  3. A review of the core catcher design in LMR

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Hahn, Do Hee

    2001-08-01

    The overwhelming emphasis in reactor safety is on the prevention of core meltdown. Moreover, although there have been several accidents that have resulted in some fuel melting, to date there have been no accidents severe enough to cause the syndrome of core collapse, reactor vessel melt-through, containment penetration, and dispersal into the ground. Nevertheless, a number of proposals have been made for the design of core catcher systems to control or stop the motion of the molten core mass should such an accident take place. Core catchers may differ in both their location within the reactor system and in the mechanism that is used to cool and control the motion of the core debris. In this report the classification, configuration and main features of the core catcher are described. And also, The core catcher design technologies and processes are presented. Finally the core catcher provisions in constructed and planned LMRs (Liquid Metal Reactors) are summarized and the preliminary assessment on the core catcher installation in KALIMER is presented

  4. LMFBR Ultra Long Life Cores

    International Nuclear Information System (INIS)

    Schmidt, J.E.; Doncals, R.A.; Porter, C.A.; Gundy, L.M.

    1986-01-01

    The Ultra Long Life Core is an attractive and innovative design approach with several extremely beneficial attributes. Long Life cores are applicable to the full range of LMR plant sizes resulting in lifetimes up to 30 years. Core life is somewhat limited for smaller plant sizes, however significant benefits of this approach still exist for all plant sizes. The union of long life cores and the complementary inherent safety technology offer a means of utilizing the well-proven oxide fuel in a system with unsurpassed safety capability. A further benefit is that the uranium fuel cycle can be used in long life cores, especially for initial LMR plant deployment, thereby eliminating the need for reprocessing prior to starting LMR plant construction in the U.S. Finally the long life core significantly reduces power costs. With inherent safety capability designed into an LMR and with the ULLC fuel cycle, power costs competitive with light water plants are achievable while offering improved operational flexibility derived through extending refueling intervals

  5. Assessment calculation of MARS-LMR using EBR-II SHRT-45R

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.; Ha, K.S.

    2016-10-15

    Highlights: • Neutronic and thermal-hydraulic behavior predicted by MARS-LMR is validated with EBR-II SHRT-45R test data. • Decay heat model of ANS-94 give better prediction of the fission power. • The core power is well predicted by reactivity feedback during initial transient, however, the predicted power after approximately 200 s is over-estimated. The study of the reactivity feedback model of the EBR-II is necessary for the better calculation of the power. • Heat transfer between inter-subassemblies is the most important parameter, especially, a low flow and power subassembly, like non-fueled subassembly. - Abstract: KAERI has designed a prototype Gen-IV SFR (PGSFR) with metallic fuel. And the safety analysis code for the PGSFR, MARS-LMR, is based on the MARS code, and supplemented with various liquid metal related features including sodium properties, heat transfer, pressure drop, and reactivity feedback models. In order to validate the newly developed MARS-LMR, KAERI has joined the International Atomic Energy Agency (IAEA) coordinated research project (CRP) on “Benchmark Analysis of an EBR-II Shutdown Heat Removal Test (SHRT)”. Argonne National Laboratory (ANL) has technically supported and participated in this program. One of benchmark analysis tests is SHRT-45R, which is an unprotected loss of flow test in an EBR-II. So, sodium natural circulation and reactivity feedbacks are major phenomena of interest. A benchmark analysis was conducted using MARS-LMR with original input data provided by ANL. MARS-LMR well predicts the core flow and power change by reactivity feedbacks in the core. Except the results of the XX10, the temperature and flow in the XX09 agreed well with the experiments. Moreover, sensitivity tests were carried out for a decay heat model, reactivity feedback model, inter-subassembly heat transfer, internal heat structures and so on, to evaluate their sensitivity and get a better prediction. The decay heat model of ANS-94 shows

  6. Assessment calculation of MARS-LMR using EBR-II SHRT-45R

    International Nuclear Information System (INIS)

    Choi, C.; Ha, K.S.

    2016-01-01

    Highlights: • Neutronic and thermal-hydraulic behavior predicted by MARS-LMR is validated with EBR-II SHRT-45R test data. • Decay heat model of ANS-94 give better prediction of the fission power. • The core power is well predicted by reactivity feedback during initial transient, however, the predicted power after approximately 200 s is over-estimated. The study of the reactivity feedback model of the EBR-II is necessary for the better calculation of the power. • Heat transfer between inter-subassemblies is the most important parameter, especially, a low flow and power subassembly, like non-fueled subassembly. - Abstract: KAERI has designed a prototype Gen-IV SFR (PGSFR) with metallic fuel. And the safety analysis code for the PGSFR, MARS-LMR, is based on the MARS code, and supplemented with various liquid metal related features including sodium properties, heat transfer, pressure drop, and reactivity feedback models. In order to validate the newly developed MARS-LMR, KAERI has joined the International Atomic Energy Agency (IAEA) coordinated research project (CRP) on “Benchmark Analysis of an EBR-II Shutdown Heat Removal Test (SHRT)”. Argonne National Laboratory (ANL) has technically supported and participated in this program. One of benchmark analysis tests is SHRT-45R, which is an unprotected loss of flow test in an EBR-II. So, sodium natural circulation and reactivity feedbacks are major phenomena of interest. A benchmark analysis was conducted using MARS-LMR with original input data provided by ANL. MARS-LMR well predicts the core flow and power change by reactivity feedbacks in the core. Except the results of the XX10, the temperature and flow in the XX09 agreed well with the experiments. Moreover, sensitivity tests were carried out for a decay heat model, reactivity feedback model, inter-subassembly heat transfer, internal heat structures and so on, to evaluate their sensitivity and get a better prediction. The decay heat model of ANS-94 shows

  7. A condensed review of the core catcher in the LMR

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Hahn, Do hee

    2001-03-01

    The overwhelming emphasis in reactor safety is on the prevention of core meltdown. Moreover, although there have been several accidents that have resulted in some fuel melting, to date there have been no accidents severe enough to cause the syndrome of core collapse, reactor vessel melt-through, containment penetration, and dispersal into the ground. Nevertheless, a number of proposals have been made for the design of core catcher systems to control or stop the motion of the molten core mass should such an accident take place. Core catchers may differ in both their location within the reactor system and in the mechanism that is used to cool and control the motion of the core debris. In this report the classification, configuration and main features of the core catcher are described. And also, the core catcher provisions in constructed and planned LMRs (Liquid Metal Reactors) are summarized

  8. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  9. STEP- A three-dimensional nodal diffusion code for LMR's

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Il; Kim, Taek Kyum [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    STEP is a three-dimensional multigroup nodal diffusion code for the neutronics analysis of the LMR core. STEP employs DIF3D and HEXNOD nodal methods. In DIF3D, one-dimensional fluxes are approximated by polynomials while HEXNOD analytically solves transverse-integrated one-dimensional diffusion equations. The nodal equations are solved using a conventional fission source iteration procedure accelerated by coarse-mesh rebalancing and asymptotic extrapolation. At each fission source iteration, the interface currents for each group are computed by solving the response matrix equations with a known group source term. These partial currents are used to updata flux moments. This solution is accomplished by inner iteration, a series of sweeps through the spatial mesh. Inner iterations are performed by sweeping the axial mesh plane in a standard red-black checkerboard ordering, i.e. the odd-numbered planes are processed during the first pass, followed by the even-numbered planes on the second pass. On each plane, the nodes are swept in the four-color checkerboard ordering. STEP accepts microscopic cross section data from the CCCC standard interface file ISOTXS currently used for the neutronics analysis of LMR's at KAERI as well as macroscopic cross section data. Material cross sections are obtained by summing the product of atom densities and microscopic cross sections over all isotopes comprising the material. Energy is released from both fission ad capture. The thermal-hydraulics model calculates average fuel and coolant temperatures. STEP takes account of feedback effects from both fuel temperature and coolant temperature changes. The thermal-hydraulics model is a conservative, single channel model where there is no heat transfer between assemblies. Thus, STEP gives conservative results which, however, are of useful information for core design and can be useful tool for neutronics analysis of LMR core design and will be used for the base program of a future

  10. The development of technologies of safety analysis for LMR ('03)

    International Nuclear Information System (INIS)

    Lee, Y. B.; Suk, S. D.; Chang, W. P.; Kwon, Y. M.; Jeong, H. Y.; Ha, K. W.; Heo, S.

    2004-03-01

    The developmental objectives of the project, 'The development of safety analysis techniques in LMR', are the code development for the subchannel blockage analysis, the code development for the system transient analysis, the code development for the HCDA(Hypothetical Core Disruptive Accident) analysis, the preliminary safety analysis for KALIMER-600 equipped with the components of new concepts, and the establishment of data base. The purpose of the analysis for subchannel blockage in the subassembly of LMR is to represent quantitatively that the maximum damage due to the accident is within the safety criteria. The computational program should be developed to simulate the thermal hydraulic phenomena and to verify the safety of LMR for the accident. For the purpose, the hybrid scheme has been implemented into the MATRA-LMR code based on the upwind scheme to analyze the various flow fields occurred in the subchannel blockage accident. The turbulent mixing models using the CFX code were assessed to compute more precisely the heat transfer between subchannels. Through this assessment, empirical correction factors of 1.7 for the heat conduction, 0.006 for the turbulent mixing coefficient were obtained. The distributed resistance model instead of wire forcing function has been developed to represent the more exact flow field due to wire-wrap. Other models, such as heat conductor model and various turbulent mixing model, have been implemented into the MATRA-LMR. The ORNL THORS 19-Pin FFM-5B tests have been assessed to validate above new models using the improved MATRA-LMR. The results using MATRA-LMR were well agreed with the experimental data. The subchannel blockage accidents which assumed to be occurred at the three locations for the conceptual plant of KALIMER-600 have been analysed according to blockage size using the MATRA-LMR code. The results of calculations for the design basis events which 6 subchannels were blocked showed the margins of the 290 7.dog. C up to the

  11. Development of a risk-based in-service inspection program for an LMR

    International Nuclear Information System (INIS)

    King, R.W.; Buschman, H.W.

    1996-01-01

    The emerging application of risk-based assessment technology to the operation and maintenance of nuclear power plants holds considerable promise for improving efficiency and reducing operating costs. Experimental Breeder Reactor II (EBR-II) is a liquid-metal-cooled fast reactor (LMR) that operated for 30 yr before shutting down in September 1994 due to program termination. Prior to the shutdown of EBR-II, an in-service inspection (ISI) program was developed that exploited certain advantages of the LMR design. For example, it demonstrated passive response to plant upset events, low-pressure primary coolant, and compatibility of the coolant and reactor materials. This ISI program was based on work currently being done by an American Society of Mechanical Engineers (ASME) Research Task Force on Risk-Based Inspection

  12. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  13. Core catcher cooling for a gas-cooled fast breeder

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  14. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  15. The development of technologies of safety analysis for LMR ('03)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. B.; Suk, S. D.; Chang, W. P.; Kwon, Y. M.; Jeong, H. Y.; Ha, K. W.; Heo, S

    2004-03-01

    The developmental objectives of the project, 'The development of safety analysis techniques in LMR', are the code development for the subchannel blockage analysis, the code development for the system transient analysis, the code development for the HCDA(Hypothetical Core Disruptive Accident) analysis, the preliminary safety analysis for KALIMER-600 equipped with the components of new concepts, and the establishment of data base. The purpose of the analysis for subchannel blockage in the subassembly of LMR is to represent quantitatively that the maximum damage due to the accident is within the safety criteria. The computational program should be developed to simulate the thermal hydraulic phenomena and to verify the safety of LMR for the accident. For the purpose, the hybrid scheme has been implemented into the MATRA-LMR code based on the upwind scheme to analyze the various flow fields occurred in the subchannel blockage accident. The turbulent mixing models using the CFX code were assessed to compute more precisely the heat transfer between subchannels. Through this assessment, empirical correction factors of 1.7 for the heat conduction, 0.006 for the turbulent mixing coefficient were obtained. The distributed resistance model instead of wire forcing function has been developed to represent the more exact flow field due to wire-wrap. Other models, such as heat conductor model and various turbulent mixing model, have been implemented into the MATRA-LMR. The ORNL THORS 19-Pin FFM-5B tests have been assessed to validate above new models using the improved MATRA-LMR. The results using MATRA-LMR were well agreed with the experimental data. The subchannel blockage accidents which assumed to be occurred at the three locations for the conceptual plant of KALIMER-600 have been analysed according to blockage size using the MATRA-LMR code. The results of calculations for the design basis events which 6 subchannels were blocked showed the margins of the 290 7.dog. C

  16. Whole Core Thermal-Hydraulic Design of a Sodium Cooled Fast Reactor Considering the Gamma Energy Transport

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Back, Min Ho; Park, Won Seok; Kim, Sang Ji

    2012-01-01

    Since a fuel cladding failure is the most important parameter in a core thermal-hydraulic design, the conceptual design stage only involves fuel assemblies. However, although non-fuel assemblies such as control rod, reflector, and B4C generate a relatively smaller thermal power compared to fuel assemblies, they also require independent flow allocation to properly cool down each assembly. The thermal power in non-fuel assemblies is produced from both neutron and gamma energy, and thus the core thermal-hydraulic design including non-fuel assemblies should consider an energy redistribution by the gamma energy transport. To design non-fuel assemblies, the design-limiting parameters should be determined considering the thermal failure modes. While fuel assemblies set a limiting factor with cladding creep temperature to prevent a fission product ejection from the fuel rods, non-fuel assemblies restrict their outlet temperature to minimize thermally induced stress on the upper internal structure (UIS). This work employs a heat generation distribution reflecting both neutron and gamma transport. The whole core thermal-hydraulic design including fuel and non-fuel assemblies is then conducted using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code. The other procedures follow from the previous conceptual design

  17. Emergency core cooling device

    International Nuclear Information System (INIS)

    Suzaki, Kiyoshi; Inoue, Akihiro.

    1979-01-01

    Purpose: To improve core cooling effect by making the operation region for a plurality of water injection pumps more broader. Constitution: An emergency reactor core cooling device actuated upon failure of recycling pipe ways is adapted to be fed with cooling water through a thermal sleeve by way of a plurality of water injection pump from pool water in a condensate storage tank and a pressure suppression chamber as water feed source. Exhaust pipes and suction pipes of each of the pumps are connected by way of switching valves and the valves are switched so that the pumps are set to a series operation if the pressure in the pressure vessel is high and the pumps are set to a parallel operation if the pressure in the pressure vessel is low. (Furukawa, Y.)

  18. Warming rays in cluster cool cores

    Science.gov (United States)

    Colafrancesco, S.; Marchegiani, P.

    2008-06-01

    Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool cores. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster cores that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “warming rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters

  19. Fast Flux Test Facility core system

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, R.B.; Leggett, R.D.; Pitner, A.L.; Waltar, A.E.

    1990-11-01

    A review of Liquid Metal Reactor (LMR) core system accomplishments provides an excellent road map through the maze of issues that faced reactor designers 10 years ago. At that time relatively large uncertainties were associated with fuel pin and fuel assembly performance, irradiation of structural materials, and performance of absorber assemblies. The extensive core systems irradiation program at the US Department of Energy's Fast Flux Test Facility (FFTF) has addressed each of these principal issues. As a result of the progress made, the attention of long-range LMR planners and designers can shift away from improving core systems and focus on reducing capital costs to ensure the LMR can compete economically in the 21st century with other nuclear reactor concepts. 3 refs., 6 figs., 1 tab

  20. The R and D issues necessary to achieve the safety design of commercialized liquid-metal cooled fast reactors

    International Nuclear Information System (INIS)

    Shoji, Kotake; Koji, Dozaki; Shigenobu, Kubo; Yoshio, Shimakawa; Hajime, Niwa; Masakazu, Ichimiya

    2002-01-01

    Within the framework of the feasibility study on commercialized fast reactor cycle systems (hereafter described as F/S), the safety design principle is investigated and several kinds of design studies are now in progress. Among the designs for liquid-metal cooled fast reactor (LMR), the advanced loop type sodium cooled fast reactor (FR) is one of the promising candidate as future commercialized LMR. In this paper, the safety related research and development (R and D) issues necessary to achieve the safety design are described along the defence-in-depth principle, taking account of not only the system characteristics of the advanced loop concepts but also design studies and R and D experiences so far. Safety issues related to the hypothetical core disruptive accidents (CDA) are emphasized both from the prevention and mitigation. A re-criticality free core concept with a special fuel assembly is pursued by performing both analytical and experimental efforts, in order to realize the rational design and to establish easy-to-understand safety logic. Sodium related issues are also given to ensure plant availability and to enhance the acceptability to the public. (authors)

  1. Comparison of oxide- and metal-core behavior during CRBRP [Clinch River Breeder Reactor Plant] station blackout

    International Nuclear Information System (INIS)

    Polkinghorne, S.T.; Atkinson, S.A.

    1986-01-01

    A resurrected concept that could significantly improve the inherently safe response of Liquid-Metal cooled Reactors (LMRs) during severe undercooling transients is the use of metallic fuel. Analytical studies have been reported on for the transient behavior of metal-fuel cores in innovative, inherently safe LMR designs. This paper reports on an analysis done, instead, for the Clinch River Breeder Reactor Plant (CRBRP) design with the only innovative change being the incorporation of a metal-fuel core. The SSC-L code was used to simulate a protected station blackout accident in the CRBRP with a 943 MWt Integral Fast Reactor (IFR) metal-fuel core. The results, compared with those for the oxide-fueled CRBRP, show that the margin to boiling is greater for the IFR core. However, the cooldown transient is more severe due to the faster thermal response time of metallic fuel. Some additional calculations to assess possible LMR design improvements (reduced primary system pressure losses, extended flow coastdown) are also discussed. 8 refs., 13 figs., 2 tabs

  2. AGN Heating in Simulated Cool-core Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Ruszkowski, Mateusz [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bryan, Greg L., E-mail: yuanlium@umich.edu [Department of Astronomy, Columbia University, Pupin Physics Laboratories, New York, NY 10027 (United States)

    2017-10-01

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss. However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.

  3. A 3.55 keV line from DM →a→γ: predictions for cool-core and non-cool-core clusters

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P.; Powell, Andrew J. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2015-01-13

    We further study a scenario in which a 3.55 keV X-ray line arises from decay of dark matter to an axion-like particle (ALP), that subsequently converts to a photon in astrophysical magnetic fields. We perform numerical simulations of Gaussian random magnetic fields with radial scaling of the magnetic field magnitude with the electron density, for both cool-core 'Perseus' and non-cool-core 'Coma' electron density profiles. Using these, we quantitatively study the resulting signal strength and morphology for cool-core and non-cool-core clusters. Our study includes the effects of fields of view that cover only the central part of the cluster, the effects of offset pointings on the radial decline of signal strength and the effects of dividing clusters into annuli. We find good agreement with current data and make predictions for future analyses and observations.

  4. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  5. Overview of advanced LMR design in the US

    International Nuclear Information System (INIS)

    Wade, D.C.

    1988-01-01

    The current generation of US advanced LMR conceptual designs have resulted from a goal to address the economic and institutional issues facing the US nuclear industry in the late 70's and early 80's. They are focused technically on achieving passive safety characteristics and favorable capital and operating costs. The design strategies which have been taken were motivated as well by the coal to favorably impact the institutional and public perception regimes regarding safety, diversion, nonproliferation, and waste. The rationales and tradeoffs influencing the resulting design decisions are discussed in this paper, with a focus on core design issues. 1 fig

  6. Blind post-test analysis of Phenix End-of-Life natural circulation test with the MARS-LMR

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Kwi Seok; Kwon, Young Min; Chang, Won Pyo; Suk, Su Dong; Lee, Kwi Lim

    2010-01-01

    KAERI is developing a system analysis code, MARS-LMR, for the application to a sodium-cooled fast reactor (SFR). This code will be used as a basic tool in the design and analysis of future SFR systems in Korea. Before wide application of a system analysis code, it is required to verify and validate the code models through analyses for appropriate experimental data or analytical results. The MARS-LMR code has been developed from MARS code which had been well verified and validated for a pressurized water reactor (PWR) system. The MARS-LMR code shares the same form of governing equations and solution schemes with MARS code, which eliminates the need of independent verification procedure. However, it is required to validate the applicability of the code to an SFR system because it adopts some dedicated heat transfer models, pressure drop models, and material properties models for a sodium system. Phenix is a medium-sized pool-type SFR successfully operated for 35 years since 1973. This reactor reached its final shutdown in February 2009. An international program of Phenix end-of-life (EOL) test was followed and some valuable information was obtained from the test, which will be useful for the validation of SFR system analysis code. In the present study, the performance of MARS-LMR code is evaluated through a blind calculation with the boundary conditions measured in the real test. The post-test analysis results are also compared with the test data generated in the test

  7. Analysis of Phenix end-of-life natural convection test with the MARS-LMR code

    International Nuclear Information System (INIS)

    Jeong, H. Y.; Ha, K. S.; Lee, K. L.; Chang, W. P.; Kim, Y. I.

    2012-01-01

    The end-of-life test of Phenix reactor performed by the CEA provided an opportunity to have reliable and valuable test data for the validation and verification of a SFR system analysis code. KAERI joined this international program for the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main objectives of this study were to evaluate the capability of existing SFR system analysis code MARS-LMR and to identify any limitation of the code. The analysis was performed in three stages: pre-test analysis, blind posttest analysis, and final post-test analysis. In the pre-test analysis, the design conditions provided by the CEA were used to obtain a prediction of the test. The blind post-test analysis was based on the test conditions measured during the tests but the test results were not provided from the CEA. The final post-test analysis was performed to predict the test results as accurate as possible by improving the previous modeling of the test. Based on the pre-test analysis and blind test analysis, the modeling for heat structures in the hot pool and cold pool, steel structures in the core, heat loss from roof and vessel, and the flow path at core outlet were reinforced in the final analysis. The results of the final post-test analysis could be characterized into three different phases. In the early phase, the MARS-LMR simulated the heat-up process correctly due to the enhanced heat structure modeling. In the mid phase before the opening of SG casing, the code reproduced the decrease of core outlet temperature successfully. Finally, in the later phase the increase of heat removal by the opening of the SG opening was well predicted with the MARS-LMR code. (authors)

  8. A study on the characteristics of the decay heat removal capacity for a large thermal rated LMR design

    International Nuclear Information System (INIS)

    Uh, J. H.; Kim, E. K.; Kim, S. O.

    2003-01-01

    The design characteristics and the decay heat removal capacity according to the type of DHR (Decay Heat Removal) system in LMR are quantitatively analyzed, and the general relationship between the rated core thermal power and decay heat removal capacity is created in this study. Based on these analyses results, a feasibility of designing a larger thermal rating KALIMER plant is investigated in view of decay heat removal capacity, and DRC (Direct Reactor Cooling) type DHR system which rejects heat from the reactor pool to air is proper to satisfy the decay heat removal capacity for a large thermal rating plant above 1,000 MWth. Some defects, however, including the heat loss under normal plant operation and the lack of reliance associated with system operation should be resolved in order to adopt the total passive concept. Therefore, the new concept of DHR system for a larger thermal rating KALIMER design, named as PDRC (passive decay heat removal circuit), is established in this study. In the newly established concept of PDRC, the Na-Na heat exchanger is located above the sodium cold pool and is prevented from the direct sodium contact during normal operation. This total passive feature has the superiority in the aspect of the minimizing the normal heat loss and the increasing the operation reliance of DHR system by removing either any operator action or any external operation signal associated with system operation. From this study, it is confirmed that the new concept of PDRC is useful to the designing of a large thermal rating power plant of KALIMER-600 in view of decay heat removal capability

  9. Effect of blanket assembly shuffling on LMR neutronic performance

    International Nuclear Information System (INIS)

    Khalil, H.; Fujita, E.K.

    1987-01-01

    Neutronic analyses of advanced liquid-metal reactors (LMRs) have generally been performed with assemblies in different batches scatter-loaded but not shuffled among the core lattice positions between cycles. While this refueling approach minimizes refueling time, significant improvements in thermal performance are believed to be achievable by blanket assembly shuffling. These improvements, attributable to mitigation of the early-life overcooling of the blankets, include reductions in peak clad temperatures and in the temperature gradients responsible for thermal striping. Here the authors summarize results of a study performed to: (1) assess whether the anticipated gains in thermal performance can be realized without sacrificing core neutronic performance, particularly the burnup reactivity swing rho/sub bu/, which determines the rod ejection worth; (2) determine the effect of various blanket shuffling operations on reactor performance; and (3) determine whether shuffling strategies developed for an equilibrium (plutonium-fueled) core can be applied during the transition from an initial uranium-fueled core as is being considered in the US advanced LMR program

  10. A state-of-the-art report on LMR structural materials

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kuk, I. H.; Jang, J. S.; Kim, D. W.; Lee, C. K.; Kim, S. H.; Kim, W. G.; Park, S. D.; Chung, M. G.; Han, C. H.

    1998-03-01

    This state-of-the-art report is reviewed the R and D documents for designing and constructing the Monju LMR pilot plant in Japan, that has analyzed the LMR technologies and materials. This report especially has focused on the introduction in LMR systems, components, operating conditions, environmental aspects and structural materials to help understanding LMR materials research as a guide instruction. Japan had designed the Monju reactor using their own design code for high temperature analysis of LMR integrity, based on ASME Boiler and Pressure Vessel Code and Code Case N-47. A material database has been established from the test results of Japanese materials to evaluate the structural integrity in high temperature. The improved stainless steel for LMR integrity and economy has been developed in Japan and characterized to produce a database with international co-works. Mod. 9Cr-1Mo and 9Cr-2Mo steels have been developed for the heat transfer tubes in steam generator to improve the creep rupture behavior by reducing carbon content to resist welding cracks, and adding minor elements such as Nb and V to stabilize the carbide in high temperature region. The sodium environmental effects have determined that the degree of influence on high temperature properties should not be important because of reducing environment of sodium, but the quantitative analysis of the sodium effects has been studied to evaluate the long-term structural integrity during the LMR operating life. (author). 26 refs., 9 tabs., 14 figs

  11. Emergency reactor core cooling facility

    International Nuclear Information System (INIS)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka.

    1996-01-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  12. Emergency reactor core cooling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro; Iwata, Yasutaka

    1996-11-01

    The present invention provides an emergency reactor core cooling device for a BWR type nuclear power plant. Namely, D/S pit (gas/water separator storage pool) water is used as a water source for the emergency reactor core cooling facility upon occurrence of loss of coolant accidents (LOCA) by introducing the D/S pit water to the emergency reactor core cooling (ECCS) pump. As a result, the function as the ECCS facility can be eliminated from the function of the condensate storage tank which has been used as the ECCS facility. If the function is unnecessary, the level of quality control and that of earthquake resistance of the condensate storage tank can be lowered to a level of ordinary facilities to provide an effect of reducing the cost. On the other hand, since the D/S pit as the alternative water source is usually a facility at high quality control level and earthquake resistant level, there is no problem. The quality of the water in the D/S pit can be maintained constant by elevating pressure of the D/S pit water by a suppression pool cleanup (SPCU) pump to pass it through a filtration desalter thereby purifying the D/S pit water during the plant operation. (I.S.)

  13. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    Energy Technology Data Exchange (ETDEWEB)

    Pablo Rubiolo, Principal Investigator

    2003-03-21

    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

  14. MELCOR/CONTAIN LMR Implementation Report - FY16 Progress.

    Energy Technology Data Exchange (ETDEWEB)

    Louie, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humphries, Larry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    This report describes the progress of the CONTAIN - LMR sodium physics and chemistry models to be implemented in MELCOR 2.1. In the past three years , the implementation included the addition of sodium equations of state and sodium properties from two different sources. The first source is based on the previous work done by Idaho National Laboratory by modifying MELCOR to include liquid lithium equation of state as a working fluid to model the nuclear fusion safety research. The second source uses properties generated for the SIMMER code. The implemented modeling has been tested and results are reported in this document. In addition, the CONTAIN - LMR code was derived from an early version of the CONTAIN code, and many physical models that were developed since this early version of CONTAIN are not available in this early code version. Therefore, CONTAIN 2 has been updated with the sodium models in CONTAIN - LMR as CONTAIN2 - LMR, which may be used to provide code-to-code comparison with CONTAIN - LMR and MELCOR when the sodium chemistry models from CONTAIN - LMR have been completed. Both the spray fire and pool fire chemistry routines from CONTAIN - LMR have been integrated into MELCOR 2.1, and debugging and testing are in progress. Because MELCOR only models the equation of state for liquid and gas phases of the coolant, a modeling gap still exists when dealing with experiments or accident conditions that take place when the ambient temperature is below the freezing point of sodium. An alternative method is under investigation to overcome this gap . We are no longer working on the separate branch from the main branch of MELCOR 2.1 since the major modeling of MELCOR 2.1 has been completed. At the current stage, the newly implemented sodium chemistry models will be a part of the main MELCOR release version (MELCOR 2.2). This report will discuss the accomplishments and issues relating to the implementation. Also, we will report on the planned completion of all

  15. A comparative design study of PB-BI cooled reactor cores with forced and natural convection cooling

    International Nuclear Information System (INIS)

    Mizuno, Tomoyasu; Enuma, Yasuhiro; Tanji, Mikio

    2003-01-01

    A comparative core design study is performed on Pb-Bi cooled reactors with forced and natural convection (FC and NC) cooling. Major interests of the study are core performance and core safety features. The designed core concepts with nitride fuel achieve reasonable breeding capability. The results of unprotected event analyses such as UTOP and ULOF show that both of concepts have possible features to withstand unprotected events due to negative reactivity feedback by Doppler effect, control rod drive line expansion, etc. These results lead to a conclusion that both of concepts have possible capability as one of future promising core concepts. A FC cooling core concept has more advantage if fuel recycle viewpoint is emphasized. (author)

  16. Heat removal capability of core-catcher with inclined cooling channels

    International Nuclear Information System (INIS)

    Suzuki, Y.; Tahara, M.; Kurita, T.; Hamazaki, R.; Morooka, S.

    2009-01-01

    A core-catcher is one of the mitigation systems that provide functions of molten corium cooling and stabilization during a severe accident. Toshiba has been developing a compact core-catcher to be placed at the lower drywell floor in the containment vessel for the next generation BWR as well as near term ABWR. This paper presents the evaluation of heat removal capability of the core-catcher with inclined cooling channels, our verification status and plan. The heat removal capability of the core-catcher is analyzed by using the newly developed two-phase flow analysis code which incorporates drift flux parameters for inclined channels and the CHF correlation obtained from SULTAN tests. Effects of geometrical parameters such as the inclination and the gap size of the cooling channel on the heat removal capability are also evaluated. These results show that the core-catcher has sufficient capability to cool the molten corium during a severe accident. Based on the analysis, it has been shown that the core-catcher has an efficient capability of heat removal to cool the molten corium. (author)

  17. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  18. Development of fluid I and C systems design technology for LMR

    International Nuclear Information System (INIS)

    Sim, Yoon Sub; Kim, S. O.; Kim, Y. S.

    2002-04-01

    LMR can make the utilization of the uranium resources much more efficiently and reduce the storage load of high level nuclear waste but the technology for designing the systems of LMR was not secured domestically. Based on this technical requirement, research was made for the LMR system technology and a conceptual design for the fluid and IC systems for the LMR was developed and established. Also required computer code systems for the analysis and design of the systems were developed. Design requirements for each system were revised, analysis was made for various system design features, performance, sodium-water reaction, and operation stability. The developed codes were verified against experimental data produced locally and acquired through international cooperation

  19. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition

    NARCIS (Netherlands)

    Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J. M.; Thunnissen, Andy-Mark W. H.

    2009-01-01

    LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here,

  20. Design of the Natural Circulation Loop and Implementation of DOWTHERM A Properties into MARS-LMR Code

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Park, Seong Dae; Kang, Sarah; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Molten Salt Reactor (MSR), which is one of the generation IV reactors, has an advantage in these requirements. MSR uses a molten salt mixture as the primary coolant, or the fuel itself and it operates on high temperature, so it doesn't need pressurizing. Also, liquid state fuel has an advantage for pyro-processing with easy separation of fission products. These fission products also have relatively short half-lives compared to those of the existing reactors. With these characteristics, MSR can have inherent safety in both direct and indirect sides. Also, MSR can operate at high temperature range, so that it can have the high efficiency to produce electricity. Therefore, research of MSR is meaningful for developing advanced nuclear reactors. FLiBe which is a mixture of lithium fluoride (LiF) and beryllium fluoride (BeF{sub 2}) is used as a primary coolant in MSR and LMR (Liquid Metal cooled Reactor). It has superiority over conventional liquid metal coolant like sodium, because it doesn't react with air or water. thermos-physical properties of DOWTHERM A for MARS-LMR code were made by modifying stg file of existing one. It was based on the process of Moore using 6 output parameters such as specific volume, internal energy, thermal expansion coefficient, isothermal compressibility, specific heat and entropy. With generated stg file (stgdowa.f90) and input file, tpf file (tpfdowa) which includes fluid property tables for MARS-LMR simulation was obtained. For the verification, this tpf file with execution file will be applied to the input deck of our natural circulation design. This work will contribute to researching and developing of MSR and LMR.

  1. Operation method and operation control device for emergency core cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Shoichiro; Takahashi, Toshiyuki; Fujii, Tadashi [Hitachi Ltd., Tokyo (Japan); Mizutani, Akira

    1996-05-07

    The present invention provides a method of reducing continuous load capacity of an emergency cooling system of a BWR type reactor and a device reducing a rated capacity of an emergency power source facility. Namely, the emergency core cooling system comprises a first cooling system having a plurality of power source systems based on a plurality of emergency power sources and a second cooling system having a remaining heat removing function. In this case, when the first cooling system is operated the manual starting under a predetermined condition that an external power source loss event should occur, a power source division different from the first cooling system shares the operation to operate the secondary cooling system simultaneously. Further, the first cooling system is constituted as a high pressure reactor core water injection system and the second cooling system is constituted as a remaining heat removing system. With such a constitution, a high pressure reactor core water injection system for manual starting and a remaining heat removing system of different power source division can be operated simultaneously before automatic operation of the emergency core cooling system upon loss of external power source of a nuclear power plant. (I.S.)

  2. Validation of intermediate heat and decay heat exchanger model in MARS-LMR with STELLA-1 and JOYO tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Ha, Kwiseok; Hong, Jonggan; Yeom, Sujin; Eoh, Jaehyuk [Sodium-cooled Fast Reactor Design Division, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Jeong, Hae-yong, E-mail: hyjeong@sejong.ac.kr [Department of Nuclear Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2016-11-15

    Highlights: • The capability of the MARS-LMR for heat transfer through IHX and DHX is evaluated. • Prediction of heat transfer through IHXs and DHXs is essential in the SFR analysis. • Data obtained from the STELLA-1 and the JOYO test are analyzed with the MARS-LMR. • MARS-LMR adopts the Aoki’s correlation for tube side and Graber-Rieger’s for shell. • The performance of the basic models and other available correlations is evaluated. • The current models in MARS-LMR show best prediction for JOYO and STELLA-1 data. - Abstract: The MARS-LMR code has been developed by the Korea Atomic Energy Research Institute (KAERI) to analyze transients in a pool-type sodium-cooled fast reactor (SFR). Currently, KAERI is developing a prototype Gen-IV SFR (PGSFR) with metallic fuel. The decay heat exchangers (DHXs) and the intermediate heat exchangers (IHXs) were designed as a sodium-sodium counter-flow tube bundle type for decay heat removal system (DHRS) and intermediate heat transport system (IHTS), respectively. The IHX and DHX are important components for a heat removal function under normal and accident conditions, respectively. Therefore, sodium heat transfer models for the DHX and IHX heat exchangers were added in MARS-LMR. In order to validate the newly added heat transfer model, experimental data were obtained from the JOYO and STELLA-1 facilities were analyzed. JOYO has two different types of IHXs: type-A (co-axial circular arrangement) and type-B (triangular arrangement). For the code validation, 38 and 39 data points for type A and type B were selected, respectively. A DHX performance test was conducted in STELLA-1, which is the test facility for heat exchangers and primary pump in the PGSFR. The DHX test in STELLA-1 provided eight data points for a code validation. Ten nodes are used in the heat transfer region is used, based on the verification test for the heat transfer models. RMS errors for JOYO IHX type A and type B of 19.1% and 4.3% are obtained

  3. Mechanical properties of LMR structural materials at high temperature

    International Nuclear Information System (INIS)

    Kim, D. W.; Kuk, I. H.; Ryu, W. S. and others

    1999-03-01

    Austenitic stainless is used for the structural material of liquid metal reactor (LMR) because of good mechanical properties at high temperature. Stainless steel having more resistant to temperature by adding minor element has been developing for operating the LMR at higher temperature. Of many elements, nitrogen is a prospective element to modify type 316L(N) stainless steel because nitrogen is the most effective element for solid solution and because nitrogen retards the precipitation of carbide at grain boundary. Ti, Nb, and V are added to improve creep properties by stabilizing the carbides through forming MC carbide. Testing techniques of tensile, fatigue, creep, and creep-fatigue at high temperature are difficult. Moreover, testing times for creep and creep-fatigue tests are very long up to several tens of thousands hours because creep and creep-fatigue phenomena are time-dependent damage mechanism. So, it is hard to acquire the material data for designing LMR systems during a limited time. In addition, the integrity of LMR structural materials at the end of LMR life has to be predicted from the laboratory data tested during the short term because there is no data tested during 40 years. Therefore, the effect of elements on mechanical properties at high temperature was reviewed in this study and many methods to predict the long-term behaviors of structural materials by simulated modelling equation is shown in this report. (author). 32 refs., 9 tabs., 38 figs

  4. Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations

    Science.gov (United States)

    Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.

    2009-12-01

    Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.

  5. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  6. MELCOR/CONTAIN LMR Implementation Report. FY14 Progress

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, Larry L; Louie, David L.Y.

    2014-10-01

    This report describes the preliminary implementation of the sodium thermophysical properties and the design documentation for the sodium models of CONTAIN-LMR to be implemented into MELCOR 2.1. In the past year, the implementation included two separate sodium properties from two different sources. The first source is based on the previous work done by Idaho National Laboratory by modifying MELCOR to include liquid lithium equation of state as a working fluid to model the nuclear fusion safety research. To minimize the impact to MELCOR, the implementation of the fusion safety database (FSD) was done by utilizing the detection of the data input file as a way to invoking the FSD. The FSD methodology has been adapted currently for this work, but it may subject modification as the project continues. The second source uses properties generated for the SIMMER code. Preliminary testing and results from this implementation of sodium properties are given. In this year, the design document for the CONTAIN-LMR sodium models, such as the two condensable option, sodium spray fire, and sodium pool fire is being developed. This design document is intended to serve as a guide for the MELCOR implementation. In addition, CONTAIN-LMR code used was based on the earlier version of CONTAIN code. Many physical models that were developed since this early version of CONTAIN may not be captured by the code. Although CONTAIN 2, which represents the latest development of CONTAIN, contains some sodium specific models, which are not complete, the utilizing CONTAIN 2 with all sodium models implemented from CONTAIN-LMR as a comparison code for MELCOR should be done. This implementation should be completed in early next year, while sodium models from CONTAIN-LMR are being integrated into MELCOR. For testing, CONTAIN decks have been developed for verification and validation use.

  7. Preliminary design of a borax internal core-catcher for a gas cooled fast reactor

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schumacher, G.

    1976-09-01

    Preliminary thermal calculations show that a core-catcher appears to be feasible, which is able to cope with the complete meltdown of the core and blankets of a 1,000 MWe GCFR. This core-catcher is based on borax (Na 2 B 4 O 7 ) as dissolving material of the oxide fuel and of the fission products occuring in oxide form. The borax is contained in steel boxes forming a 2.1 meter thick slab on the base of the reactor cavity inside the prestressed concrete reactor vessel, just underneath the reactor core. The fission products are dispersed in the pool formed by the liquid borax. The heat power density in the pool is conveniently reduced and the resulting heat fluxes at the borders of the pool can be safely carried away through the PCRV liner and its water cooling system. (orig.) [de

  8. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.

    Science.gov (United States)

    Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J M; Thunnissen, Andy-Mark W H

    2009-01-21

    LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with Hoechst 33342 and daunomycin. LmrR shows a common topology containing a typical beta-winged helix-turn-helix domain with an additional C-terminal helix involved in dimerization. Its dimeric organization is highly unusual with a flat-shaped hydrophobic pore at the dimer centre serving as a multidrug-binding site. The drugs bind in a similar manner with their aromatic rings sandwiched in between the indole groups of two dimer-related tryptophan residues. Multidrug recognition is facilitated by conformational plasticity and the absence of drug-specific hydrogen bonds. Combined analyses using site-directed mutagenesis, fluorescence-based drug binding and protein-DNA gel shift assays reveal an allosteric coupling between the multidrug- and DNA-binding sites of LmrR that most likely has a function in the induction mechanism.

  9. Safety of next generation power reactors

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address

  10. A preliminary safety analysis for the prototype Gen IV Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Lim; Ha, Kwi Seok; Jeong, Jae Ho; Choi, Chi Woong; Jeong, Tae Kyeong; Ahn, Sang June; Lee, Seung Won; Chang, Won Pyo; Kang, Seok Hun; Yoo, Jae Woon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the in-vessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents.

  11. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  12. Core Seismic Tests for a Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H

    2007-01-15

    This report describes the results of the comparison of the core seismic responses between the test and the analysis for the reduced core mock-up of a sodium-cooled fast reactor to verify the FAMD (Fluid Added Mass and Damping) code and SAC-CORE (Seismic Analysis Code for CORE) code, which implement the application algorithm of a consistent fluid added mass matrix including the coupling terms. It was verified that the narrow fluid gaps between the duct assemblies significantly affect the dynamic characteristics of the core duct assemblies and it becomes stronger as a number of duct increases within a certain level. As conclusion, from the comparison of the results between the tests and the analyses, it is verified that the FAMD code and the SAC-CORE code can give an accurate prediction of a complex core seismic behavior of the sodium-cooled fast reactor.

  13. Gap and impact of LMR [Liquid Metal Reactor] piping systems and reactor components

    International Nuclear Information System (INIS)

    Ma, D.C.; Gvildys, J.; Chang, Y.W.

    1987-01-01

    Because of high operation temperature, the LMR (Liquid Metal Reactor) plant is characterized by the thin-walled piping and components. Gaps are often present to allow free thermal expansion during normal plant operation. Under dynamic loadings, such as seismic excitation, if the relative displacement between the components exceeds the gap distance, impacts will occur. Since the components and piping become brittle over their design lifetime, impact is of important concern for it may lead to fractures of components and other serious effects. This paper deals with gap and impact problems in the LMR reactor components and piping systems. Emphasis is on the impacts due to seismic motion. Eight sections are contained in this paper. The gap and impact problems in LMR piping systems are described and a parametric study is performed on the effects of gap-induced support nonlinearity on the dynamics characteristics of the LMR piping systems. Gap and impact problems in the LMR reactor components are identified and their mathematical models are illustrated, and the gap and impact problems in the seismic reactor scram are discussed. The mathematical treatments of various impact models are also described. The uncertainties in the current seismic impact analyses of LMR components and structures are presented. An impact test on a 1/10-scale LMR thermal liner is described. The test results indicated that several clusters of natural modes can be excited by the impact force. The frequency content of the excited modes depends on the duration of the impact force; the shorter the duration, the higher the frequency content

  14. MARS-LMR modeling for the post-test analysis of Phenix End-of-Life natural circulation

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Kwi Seok; Chang, Won Pyo; Lee, Kwi Lim

    2011-01-01

    For a successful design and analysis of Sodium cooled Fast Reactor (SFR), it is required to have a reliable and well-proven system analysis code. To achieve this purpose, KAERI is enhancing the modeling capability of MARS code by adding the SFR-specific models such as pressure drop model, heat transfer model and reactivity feedback model. This version of MARS-LMR will be used as a basic tool in the design and analysis of future SFR systems in Korea. Before wide application of MARS-LMR code, it is required to verify and validate the code models through analyses for appropriate experimental data or analytical results. The end-of-life test of Phenix reactor performed by the CEA provided a unique opportunity to have reliable test data which is very valuable in the validation and verification of a SFR system analysis code. The KAERI joined this international program of the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main test of natural circulation was completed in 2009. Before the test the KAERI performed the pre-test analysis based on the design condition provided by the CEA. Then, the blind post-test analysis was also performed based on the test conditions measured during the test before the CEA provide the final test results. Finally, the final post-test analysis was performed recently to predict the test results as accurate as possible. This paper introduces the modeling approach of the MARS-LMR used in the final post-test analysis and summarizes the major results of the analysis

  15. SAF-BRET-FMEF: a developmental LMR fuel cycle facility

    International Nuclear Information System (INIS)

    Stradley, J.G.; Yook, H.R.; Gerber, E.W.; Lerch, R.E.; Rice, L.H.

    1985-01-01

    The SAF-BRET-FMEF complex represents a versatile fuel cycle facility for processing LMR fuel. While originally conceived for processing FFTF and CRBRP fuel, it represents a facility where LMR fuel from the first generation of innovative LMRs could be processed. The cost of transporting fuel from the LMR to the Hanford site would have to be assessed when the LMR site is identified. The throughput of BRET was set at 15 MTHM/yr during conceptual design of the facility, a rate which was adequate to process all of the fuel from FFTF and fuel and blanket material from CRBRP. The design is currently being reevaluated to see if BRET could be expanded to approx.35 MTHM/yr to process fuel and blanket material from approx.1300 MWe generating capacity of the innovative LMRs. This expanded throughput is possible by designing the equipment for an instantaneous throughput of 0.2 MTHM/d, and by selected additional modifications to the facility (e.g., expansion of shipping and receiving area, and addition of a second entry tunnel transporter), and by the fact that the LMR fuel assemblies contain more fuel than the FFTF assemblies (therefore, fewer assemblies must be handled for the same throughput). The estimated cost of such an expansion is also being assessed. As stated previously, the throughput of SAF and Fuel Assembly could be made to support typical LMRs at little additional cost. The throughput could be increased to support the fuel fabrication requirements for 1300 MWe generating capacity of the innovative LMRs. This added capacity may be achieved by increasing the number of operating shifts, and is affected by variables such as fuel design, fuel enrichment, and plutonium isotopic composition

  16. Identification of an Efflux Transporter LmrB Regulating Stress Response and Extracellular Polysaccharide Synthesis in Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-06-01

    Full Text Available Efflux transporters have been implicated in regulating bacterial virulence properties such as resistance to antibiotics, biofilm formation and colonization. The pathogenicity of Streptococcus mutans, the primary etiologic agent of human dental caries, relies on the bacterium’s ability to form biofilms on tooth surface. However, the studies on efflux transporters in S. mutans are scare and the function of these transporters remained to be clarified. In this study, we identified an efflux transporter (LmrB in S. mutans through cloning the lmrB gene into Escherichia coli. Introducing lmrB into E. coli conferred a multidrug-resistant phenotype and resulted in higher EtBr efflux activity which could be suppressed by efflux inhibitor. To explore whether LmrB was involved in S. mutans virulence properties regulation, we constructed the lmrB inactivation mutant and examined the phenotypes of the mutant. It was found that LmrB deficiency resulted in increased IPS storage and prolonged acid production. Enhanced biofilm formation characterized by increased extracellular polysaccharides (EPS production and elevated resistance to hydrogen peroxide and antimicrobials were also observed in lmrB mutant. To gain a better understanding of the global role of LmrB, a transcriptome analysis was performed using lmrB mutant strain. The expression of 107 genes was up- or down-regulated in the lmrB mutant compared with the wild type. Notably, expression of genes in several genomic islands was differentially modulated, such as stress-related GroELS and scnRK, sugar metabolism associated glg operons and msmREFGK transporter. The results presented here indicate that LmrB plays a vital global role in the regulation of several important virulence properties in S. mutans.

  17. 78 FR 64027 - Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors

    Science.gov (United States)

    2013-10-25

    ... comments were received. A companion guide, DG-1277, ``Initial Test Program of Emergency Core Cooling... NUCLEAR REGULATORY COMMISSION [NRC-2011-0129] Preoperational Testing of Emergency Core Cooling... (RG), 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors...

  18. Isolated core vs. superficial cooling effects on virtual maze navigation.

    Science.gov (United States)

    Payne, Jennifer; Cheung, Stephen S

    2007-07-01

    Cold impairs cognitive performance and is a common occurrence in many survival situations. Altered behavior patterns due to impaired navigation abilities in cold environments are potential problems in lost-person situations. We investigated the separate effects of low core temperature and superficial cooling on a spatially demanding virtual navigation task. There were 12 healthy men who were passively cooled via 15 degrees C water immersion to a core temperature of 36.0 degrees C, then transferred to a warm (40 degrees C) water bath to eliminate superficial shivering while completing a series of 20 virtual computer mazes. In a control condition, subjects rested in a thermoneutral (approximately 35 degrees C) bath for a time-matched period before being transferred to a warm bath for testing. Superficial cooling and distraction were achieved by whole-body immersion in 35 degree water for a time-matched period, followed by lower leg immersion in 10 degree C water for the duration of the navigational tests. Mean completion time and mean error scores for the mazes were not significantly different (p > 0.05) across the core cooling (16.59 +/- 11.54 s, 0.91 +/- 1.86 errors), control (15.40 +/- 8.85 s, 0.82 +/- 1.76 errors), and superficial cooling (15.19 +/- 7.80 s, 0.77 +/- 1.40 errors) conditions. Separately reducing core temperature or increasing cold sensation in the lower extremities did not influence performance on virtual computer mazes, suggesting that navigation is more resistive to cooling than other, simpler cognitive tasks. Further research is warranted to explore navigational ability at progressively lower core and skin temperatures, and in different populations.

  19. Development of explicit solution scheme for the MATRA-LMR code and test calculation

    International Nuclear Information System (INIS)

    Jeong, H. Y.; Ha, K. S.; Chang, W. P.; Kwon, Y. M.; Jeong, K. S.

    2003-01-01

    The local blockage in a subassembly of a liquid metal reactor is of particular importance because local sodium boiling could occur at the downstream of the blockage and integrity of the fuel clad could be threatened. The explicit solution scheme of MATRA-LMR code is developed to analyze the flow blockage in a subassembly of a liquid metal cooled reactor. In the present study, the capability of the code is extended to the analysis of complete blockage of one or more subchannels. The results of the developed solution scheme shows very good agreement with the results obtained from the implicit scheme for the experiments of flow channel without any blockage. The applicability of the code is also evaluated for two typical experiments in a blocked channel. Through the sensitivity study, it is shown that the explicit scheme of MATRA-LMR predicts the flow and temperature profile after blockage reasonably if the effect of wire is suitably modeled. The simple assumption in wire-forcing function is effective for the un-blocked case or for the case of blockage with lower velocity. A different type of wire-forcing function describing the velocity reduction after blockage or an accurate distributed resistance model is required for more improved predictions

  20. Reactor core cooling device for nuclear power plant

    International Nuclear Information System (INIS)

    Tsuda, Masahiko.

    1992-01-01

    The present invention concerns a reactor core cooling facility upon rupture of pipelines in a BWR type nuclear power plant. That is, when rupture of pipelines should occur in the reactor container, an releasing safety valve operates instantly and then a depressurization valve operates to depressurize the inside of a reactor pressure vessel. Further, an injection valve of cooling water injection pipelines is opened and cooling water is injected to cool the reactor core from the time when the pressure is lowered to a level capable of injecting water to the pressure vessel by the static water head of a pool water as a water source. Further, steams released from the pressure vessel and steams in the pressure vessel are condensed in a high pressure/low pressure emergency condensation device and the inside of the reactor container is depressurized and cooled. When the reactor is isolated, since the steams in the pressure vessel are condensed in the state that the steam supply valve and the return valve of a steam supply pipelines are opened and a vent valve is closed, the reactor can be maintained safely. (I.S.)

  1. Method of injecting cooling water in emergency core cooling system (ECCS) of PWR type reactor

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Adachi, Michihiro; Tasaka, Kanji; Suzuki, Mitsuhiro.

    1979-01-01

    Purpose: To provide a cooling water injection method in an ECCS, which can perform effective cooling of the reactor core. Method: In a method of injecting cooling water in an ECCS as a countermeasure against a rupture accident of a pwr type reactor, cooling water in the first pressure storage injection system is injected into the upper plenum of the reactor pressure vessel at a set pressure of from 50 to 90 atg. and a set temperature of from 80 to 200 0 C, cooling water in the second pressure storage injection system is injected into the lower plenum of the reactor pressure vessel at a pressure of from 25 to 60 atg. which is lower than the set pressure and a temperature less than 60 0 C, and further in combination with these procedures, cooling water of less than 60 0 C is injected into a high-temperature side piping, in the high-pressure injection system of upstroke of 100 atg. by means of a pump and the low-pressure injection system of upstroke of 20 atg. also by means of a pump, thereby cooling the reactor core. (Aizawa, K.)

  2. Core test reactor shield cooling system analysis

    International Nuclear Information System (INIS)

    Larson, E.M.; Elliott, R.D.

    1971-01-01

    System requirements for cooling the shield within the vacuum vessel for the core test reactor are analyzed. The total heat to be removed by the coolant system is less than 22,700 Btu/hr, with an additional 4600 Btu/hr to be removed by the 2-inch thick steel plate below the shield. The maximum temperature of the concrete in the shield can be kept below 200 0 F if the shield plug walls are kept below 160 0 F. The walls of the two ''donut'' shaped shield segments, which are cooled by the water from the shield and vessel cooling system, should operate below 95 0 F. The walls of the center plug, which are cooled with nitrogen, should operate below 100 0 F. (U.S.)

  3. MELCOR/CONTAIN LMR Implementation Report-Progress FY15

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, Larry L.; Louie, David

    2016-01-01

    This report describes the progress of the CONTAIN-LMR sodium physics and chemistry models to be implemented in to MELCOR 2.1. It also describes the progress to implement these models into CONT AIN 2 as well. In the past two years, the implementation included the addition of sodium equations of state and sodium properties from two different sources. The first source is based on the previous work done by Idaho National Laborat ory by modifying MELCOR to include liquid lithium equation of state as a working fluid to mode l the nuclear fusion safety research. The second source uses properties generated for the SIMMER code. Testing and results from this implementation of sodium pr operties are given. In addition, the CONTAIN-LMR code was derived from an early version of C ONTAIN code. Many physical models that were developed sin ce this early version of CONTAIN are not captured by this early code version. Therefore, CONTAIN 2 is being updated with the sodium models in CONTAIN-LMR in or der to facilitate verification of these models with the MELCOR code. Although CONTAIN 2, which represents the latest development of CONTAIN, now contains ma ny of the sodium specific models, this work is not complete due to challenges from the lower cell architecture in CONTAIN 2, which is different from CONTAIN- LMR. This implementation should be completed in the coming year, while sodi um models from C ONTAIN-LMR are being integrated into MELCOR. For testing, CONTAIN decks have been developed for verification and validation use. In terms of implementing the sodium m odels into MELCOR, a separate sodium model branch was created for this document . Because of massive development in the main stream MELCOR 2.1 code and the require ment to merge the latest code version into this branch, the integration of the s odium models were re-directed to implement the sodium chemistry models first. This change led to delays of the actual implementation. For aid in the future implementation of sodium

  4. The role of internal and external control for mitigating or preventing LMR accidents

    International Nuclear Information System (INIS)

    Waltar, A.E.; Padilla, A.; Seeman, S.E.

    1986-01-01

    Considerable enthusiasm is building within the Liquid Metal Coolant Reactor (LMR) community that LMR's can be designed to be inherently safe. A test program is currently underway at FFTF to provide data intended to support such contentions. An equally important program is to develop computer aids for operators which are sufficiently acceptable that the inherent safety feature of the plant need not be challenged. A balanced development of these approaches to achieve safe, reliable, and economically competitive power from an LMR is the subject matter of this paper

  5. Conceptual core designs for a 1200 MWe sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Joo, H. K.; Lee, K. B.; Yoo, J. W.; Kim, Y. I.

    2008-01-01

    The conceptual core design for a 1200 MWe sodium cooled fast reactor is being developed under the framework of the Gen-IV SFR development program. To this end, three core concepts have been tested during the development of a core concept: a core with an enrichment split fuel, a core with a single-enrichment fuel with a region-wise varying clad thickness, and a core with a single-enrichment fuel with non-fuel rods. In order to optimize a conceptual core configuration which satisfies the design targets, a sensitivity study of the core design parameters has been performed. Two core concepts, the core with an enrichment-split fuel and the core with a single-enrichment fuel with a region-wise varying clad thickness, have been proposed as the candidates of the conceptual core for a 1200 MWe sodium cooled fast reactor. The detailed core neutronic, fuel behavior, thermal, and safety analyses will be performed for the proposed candidate core concepts to finalize the core design concept. (authors)

  6. Testing the Large-scale Environments of Cool-core and Non-cool-core Clusters with Clustering Bias

    Energy Technology Data Exchange (ETDEWEB)

    Medezinski, Elinor; Battaglia, Nicholas; Cen, Renyue; Gaspari, Massimo; Strauss, Michael A.; Spergel, David N. [Department of Astrophysical Sciences, 4 Ivy Lane, Princeton, NJ 08544 (United States); Coupon, Jean, E-mail: elinorm@astro.princeton.edu [Department of Astronomy, University of Geneva, ch. dEcogia 16, CH-1290 Versoix (Switzerland)

    2017-02-10

    There are well-observed differences between cool-core (CC) and non-cool-core (NCC) clusters, but the origin of this distinction is still largely unknown. Competing theories can be divided into internal (inside-out), in which internal physical processes transform or maintain the NCC phase, and external (outside-in), in which the cluster type is determined by its initial conditions, which in turn leads to different formation histories (i.e., assembly bias). We propose a new method that uses the relative assembly bias of CC to NCC clusters, as determined via the two-point cluster-galaxy cross-correlation function (CCF), to test whether formation history plays a role in determining their nature. We apply our method to 48 ACCEPT clusters, which have well resolved central entropies, and cross-correlate with the SDSS-III/BOSS LOWZ galaxy catalog. We find that the relative bias of NCC over CC clusters is b = 1.42 ± 0.35 (1.6 σ different from unity). Our measurement is limited by the small number of clusters with core entropy information within the BOSS footprint, 14 CC and 34 NCC clusters. Future compilations of X-ray cluster samples, combined with deep all-sky redshift surveys, will be able to better constrain the relative assembly bias of CC and NCC clusters and determine the origin of the bimodality.

  7. Testing the Large-scale Environments of Cool-core and Non-cool-core Clusters with Clustering Bias

    International Nuclear Information System (INIS)

    Medezinski, Elinor; Battaglia, Nicholas; Cen, Renyue; Gaspari, Massimo; Strauss, Michael A.; Spergel, David N.; Coupon, Jean

    2017-01-01

    There are well-observed differences between cool-core (CC) and non-cool-core (NCC) clusters, but the origin of this distinction is still largely unknown. Competing theories can be divided into internal (inside-out), in which internal physical processes transform or maintain the NCC phase, and external (outside-in), in which the cluster type is determined by its initial conditions, which in turn leads to different formation histories (i.e., assembly bias). We propose a new method that uses the relative assembly bias of CC to NCC clusters, as determined via the two-point cluster-galaxy cross-correlation function (CCF), to test whether formation history plays a role in determining their nature. We apply our method to 48 ACCEPT clusters, which have well resolved central entropies, and cross-correlate with the SDSS-III/BOSS LOWZ galaxy catalog. We find that the relative bias of NCC over CC clusters is b = 1.42 ± 0.35 (1.6 σ different from unity). Our measurement is limited by the small number of clusters with core entropy information within the BOSS footprint, 14 CC and 34 NCC clusters. Future compilations of X-ray cluster samples, combined with deep all-sky redshift surveys, will be able to better constrain the relative assembly bias of CC and NCC clusters and determine the origin of the bimodality.

  8. Liquid metal reactor development -Studies on safety measure of LMR coolant

    International Nuclear Information System (INIS)

    Hwang, Sung Tae; Choi, Yoon Dong; Park, Jin Hoh; Kwon, Sun Kil; Choi, Jong Hyun; Cho, Byung Ryul; Kim, Tae Joon; Kwon, Sang Woon; Jung, Kyung Chae; Kim, Byung Hoh; Hong, Soon Bok; Jung, Ji Yung

    1995-07-01

    A study on the safety measures of LMR coolant showed the results as follows; 1. LMR coolant safety measure. A. Analysis and improvement of sodium fire code. B. Analysis of sodium fire phenomena. 2. Sodium fire aerosol characteristics. It was carried out conceptual design and basic design for sodium fire facility of medium size composed of sodium supply tank, sodium reactor vessel, sodium fire aerosol filter system and scrubbing column, and drain tank etc. 3. Sodium purification technology. A. Construction of calibration loop. (1) Design of sodium loop for the calibration of the equipment. (2) Construction of sodium loop including test equipments and other components. B. Na-analysis technology. (1) Oxygen concentration determination by the wet method. (2) Cover gas purification preliminary experiment. 4. The characteristics of sodium-water reaction. A. Analysis of the micro and small leak phenomena. (1) Manufacture of the micro-leak test apparatus. B. Analysis of large leak events. (1) Development of preliminary code for analysis of initial spike pressure. (2) Sample calculation and comparison with previous works. C. Development of test facility for large leak event evaluation. (1) Conceptional and basic design for the water and sodium-water test facility. D. Technology development for water leak detection system. (1) Investigations for the characteristics of active acoustic detection system. (2) Testing of the characteristics of hydrogen leak detection system. 171 figs, 29 tabs, 3 refs. (Author)

  9. Liquid metal reactor development -Studies on safety measure of LMR coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tae; Choi, Yoon Dong; Park, Jin Hoh; Kwon, Sun Kil; Choi, Jong Hyun; Cho, Byung Ryul; Kim, Tae Joon; Kwon, Sang Woon; Jung, Kyung Chae; Kim, Byung Hoh; Hong, Soon Bok; Jung, Ji Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A study on the safety measures of LMR coolant showed the results as follows; 1. LMR coolant safety measure. A. Analysis and improvement of sodium fire code. B. Analysis of sodium fire phenomena. 2. Sodium fire aerosol characteristics. It was carried out conceptual design and basic design for sodium fire facility of medium size composed of sodium supply tank, sodium reactor vessel, sodium fire aerosol filter system and scrubbing column, and drain tank etc. 3. Sodium purification technology. A. Construction of calibration loop. (1) Design of sodium loop for the calibration of the equipment. (2) Construction of sodium loop including test equipments and other components. B. Na-analysis technology. (1) Oxygen concentration determination by the wet method. (2) Cover gas purification preliminary experiment. 4. The characteristics of sodium-water reaction. A. Analysis of the micro and small leak phenomena. (1) Manufacture of the micro-leak test apparatus. B. Analysis of large leak events. (1) Development of preliminary code for analysis of initial spike pressure. (2) Sample calculation and comparison with previous works. C. Development of test facility for large leak event evaluation. (1) Conceptional and basic design for the water and sodium-water test facility. D. Technology development for water leak detection system. (1) Investigations for the characteristics of active acoustic detection system. (2) Testing of the characteristics of hydrogen leak detection system. 171 figs, 29 tabs, 3 refs. (Author).

  10. Spitzer mid-infrared spectra of cool-core galaxy clusters

    NARCIS (Netherlands)

    de Messières, G.E.; O'Connell, R.W.; McNamara, B.R.; Donahue, M.; Nulsen, P.E.J.; Voit, G.M.; Wise, M.W.; Smith, B.; Higdon, J.; Higdon, S.; Bastian, N.

    2010-01-01

    We have obtained mid-infrared spectra of nine cool-core galaxy clusters with the Infrared Spectrograph aboard the Spitzer Space Telescope. X-ray, ultraviolet and optical observations have demonstrated that each of these clusters hosts a cooling flow which seems to be fueling vigorous star formation

  11. Development of fluid and I and C system design technology for LMR('03)

    International Nuclear Information System (INIS)

    Kim, Seong O; Sim, Yoon Sub; Choi, Seok Ki; Wi, Myung Hwan; Eoh, Jae Hyuk; Kim, Eui Kwang; Hur, Seop; Kim, Dong Hoon; Seong, Sung Hwan

    2004-02-01

    Based on the system design capability developed so far, our new unique reactor design concept was developed. The features are solving of a problem which existing sodium cooled reactor had, and improvement of economy and safety. Through the work, Some results were achieved, simplicity of KALIMER-600 structures, development of passive safety concept which is applicable to large sized plant, development of unique IHTS/SG combined design concept which can remove the possibility of SWR event, and optimization method of major components. Along with these results, analysis methods and computer codes, which are necessary for new design concept reactor, were developed for the self-reliance of domestic LMR technology by developing them without foreign assistance

  12. Evaluation of advanced cooling therapy's esophageal cooling device for core temperature control.

    Science.gov (United States)

    Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Kulstad, Erik

    2016-05-01

    Managing core temperature is critical to patient outcomes in a wide range of clinical scenarios. Previous devices designed to perform temperature management required a trade-off between invasiveness and temperature modulation efficiency. The Esophageal Cooling Device, made by Advanced Cooling Therapy (Chicago, IL), was developed to optimize warming and cooling efficiency through an easy and low risk procedure that leverages heat transfer through convection and conduction. Clinical data from cardiac arrest, fever, and critical burn patients indicate that the Esophageal Cooling Device performs very well both in terms of temperature modulation (cooling rates of approximately 1.3°C/hour, warming of up to 0.5°C/hour) and maintaining temperature stability (variation around goal temperature ± 0.3°C). Physicians have reported that device performance is comparable to the performance of intravascular temperature management techniques and superior to the performance of surface devices, while avoiding the downsides associated with both.

  13. Unlimited cooling capacity of the passive-type emergency core cooling system of the MARS reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Caira, M.; Naviglio, A.; Sorabella, L.

    1995-01-01

    The MARS nuclear plant is equipped with a 600 MWth PWR type nuclear steam supply system, with completely innovative engineered core safeguards. The most relevant innovative safety system of this plant is its Emergency Core Cooling System, which is completely passive (with only one non static component). The Emergency Core Cooling System (ECCS) of the MARS reactor is natural-circulation, passive-type, and its intervention follows a core flow decrease, whatever was the cause. The operation of the system is based on a cascade of three fluid systems, functionally interfacing through heat exchangers; the first fluid system is connected to the reactor vessel and the last one includes an atmospheric-pressure condenser, cooled by external air. The infinite thermal capacity of the final heat sink provides the system an unlimited autonomy. The capability and operability of the system are based on its integrity and on the integrity of the primary coolant boundary (both of them are permanently enclosed in a pressurized containment; 100% redundancy is also foreseen) and on the operation of only one non static component (a check valve), with 400% redundancy. In the paper, all main thermal hydraulic transients occurring as a consequence of postulated accidents are analysed, to verify the capability of the passive-type ECCS to intervene always in time, without causing undue conditions of reduced coolability of the core (DNB, etc.), and to verify its capability to guarantee a long-term (indefinite) coolability of the core without the need of any external intervention. (author)

  14. Simulation of Two-Phase Natural Circulation Loop for Core Cather Cooling Using Air Water

    International Nuclear Information System (INIS)

    Revankar, S. T.; Huang, S. F.; Song, K. W.; Rhee, B. W.; Park, R. J.; Song, J. H.

    2012-01-01

    A closed loop natural circulation system employs thermally induced density gradients in single phase or two-phase liquid form to induce circulation of the working fluid thereby obviating the need for any mechanical moving parts such as pumps and pump controls. This increases the reliability and safety of the cooling system and reduces installation, operation and maintenance costs. That is the reason natural circulation cooling has been considered in advanced reactor core cooling and in engineered safety systems. Natural circulation cooling has been proposed to remove reactor decay heat by external vessel cooling for in-vessel core retention during sever accident scenario. Recently in APR1400 reactor core catcher design natural circulation cooling is proposed to stabilize and cool the corium ejected from the reactor vessel following core melt and breach of reactor vessel. The natural circulation flow is similar to external vessel cooling where water flows through an inclined narrow gap below hot surface and is heated to produce boiling. The two-phase natural circulation enables cooling of the corium pool collected on core catcher. Due to importance of this problem this paper focuses simulation of the two-phase natural circulation through inclined gap using air-water system. Scaling criteria for air-water loop are derived that enable simulation of the flow regimes and natural circulation flow rates in such systems using air-water system

  15. Design characteristics of metallic fuel rod on its in-LMR performance

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Fuel design is a key feature to assure LMR safety goals. To date, a large effort had been devoted to develop metallic fuels at ANL's experimental breeder reactor (EBR-II). The major design and performance parameters investigated include; thermal conductivity and temperature profile; smear density; axial plenum; FCMI and cladding deformation including creep, and fission gas release. In order to evaluate the sensitivity of each parameter, in-LMR performances of metallic fuels are not only reviewed by the experiment results in literatures, but also key design characteristics according to the variation of metallic fuel rod design parameters are analyzed by using the MACSIS code which simulates in-reactor behaviors of metal fuel rod. In this study, key design characteristics and the criteria which must be considered to design fuel rod in LMR, are proposed and discussed. (author). 14 refs., 4 figs

  16. RBMK-1500 accident management for loss of long-term core cooling

    International Nuclear Information System (INIS)

    Uspuras, E.; Kaliatka, A.

    2001-01-01

    Results of the Level 1 probabilistic safety assessment of the Ignalina NPP has shown that in topography of the risk, transients dominate above the accidents with LOCAs and failure of the core long-term cooling are the main factors to frequency of the core damage. Previous analyses have shown, that after initial event, as a rule, the reactivity control, as well as short-term and intermediate cooling are provided. However, the acceptance criteria of the long-term cooling are not always carried out. It means that from this point of view the most dangerous accident scenarios are the scenarios related to loss of the core long-term cooling. On the other hand, the transition to the core condition due to loss of the long-term cooling specifies potential opportunities for the management of the accident consequences. Hence, accident management for the mitigation of the accident consequences should be considered and developed. The most likely initiating event, which probably leads to the loss of long term cooling accident, is station blackout. The station blackout is the loss of normal electrical power supply for local needs with an additional failure on start-up of all diesel generators. In the case of loss of electrical power supply MCPs, the circulating pumps of the service water system and MFWPs are switched-off. At the same time, TCV of both turbines are closed. Failure of diesel generators leads to the non-operability of the ECCS long-term cooling subsystem. It means the impossibility to feed MCC by water. The analysis of the station blackout for Ignalina NPP was performed using RELAP5 code. (author)

  17. Fundamental design bases for independent core cooling in Swedish nuclear power reactors

    International Nuclear Information System (INIS)

    Jelinek, Tomas

    2015-01-01

    New regulations on design and construction of nuclear power plants came into force in 2005. The need of an independent core cooling system and if the regulations should include such a requirement was discussed. The Swedish Radiation Safety authority (SSM) decided to not include such a requirement because of open questions about the water balance and started to investigate the consequences of an independent core cooling system. The investigation is now finished and SSM is also looking at the lessons learned from the accident in Fukushima 2011. One of the most important measures in the Swedish national action plan is the implementation of an independent core cooling function for all Swedish power plants. SSM has investigated the basic design criteria for such a function where some important questions are the level of defence in depth and the acceptance criteria. There is also a question about independence between the levels of defence in depth that SSM have included in the criteria. Another issue that has to be taken into account is the complexity of the system and the need of automation where independence and simplicity are very strong criteria. In the beginning of 2014 a memorandum was finalized regarding fundamental design bases for independent core cooling in Swedish nuclear power reactors. A decision based on this memorandum with an implementation plan will be made in the first half of 2014. Sweden is also investigating the possibility to have armed personnel on site, which is not allowed currently. The result from the investigation will have impact on the possibility to use mobile equipment and the level of protection of permanent equipment. In this paper, SSM will present the memorandum for design bases for independent core cooling in Swedish nuclear power reactors that was finalized in March 20147 that also describe SSM's position regarding independence and automation of the independent core cooling function. This memorandum describes the Swedish

  18. The first high resolution image of coronal gas in a starbursting cool core cluster

    Science.gov (United States)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  19. Shielding analysis of the LMR in-vessel fuel storage experiments

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1994-01-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this paper were conducted at the Oak Ridge National Laboratory's Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present paper describes the 2- and 3-D calculations and results corresponding to a limited subset of those IVFS experiments in which the US LMR program had a particular interest

  20. LMR steam generator blowdown with RETRAN

    International Nuclear Information System (INIS)

    Wei, T.Y.C.

    1985-01-01

    One of the transients being considered in the FSAR Chapter 15 analyses of anticipated LMR transients is the fast blowdown of a steam generator upon inadvertent actuation of the liquid metal/water reaction mitigation system. For the blowdown analysis, a stand-alone steam generator model for the IFR plant was constructed using RETRAN

  1. Emergency core cooling system in BWR type reactors

    International Nuclear Information System (INIS)

    Takizawa, Yoji

    1981-01-01

    Purpose: To rapidly recover the water level in the reactor upon occurrence of slight leakages in the reactor coolant pressure boundary, by promoting the depressurization in the reactor to thereby rapidly increase the high pressure core spray flow rate. Constitution: Upon occurrence of reactor water level reduction, a reactor isolation cooling system and a high pressure core spray system are actuated to start the injection of coolants into a reactor pressure vessel. In this case, if the isolation cooling system is failed to decrease the flow rate in a return pipeway, flow rate indicators show a lower value as compared with a predetermined value. The control device detects it and further confirms the rotation of a high pressure spray pump to open a valve. By the above operation, coolants pumped by the high pressure spray pump is flown by way of a communication pipeway to the return pipeway and sprayed from the top of the pressure vessel. This allows the vapors on the water surface in the pressure vessel to be cooled rapidly and increases the depressurization effects. (Horiuchi, T.)

  2. Liquid metal reactor development

    International Nuclear Information System (INIS)

    Cho, Man; Kim, Yeong Cheol; Kim, Shi Hwan; Choi, Yeong Myeong; Sho, Dong Seop; Kim, Yeong In; Park, Joo Hwan; Kim, Yeong Kyoon; Song, Hoon; Kim, Yeong In; Cho, Chang Yeon; Cho, Seok Hong; Lee, Dong Jin; Kim, Jong Sook; Jeon, Hyeong Ryeon; Kim, Jeong Do; Kim, Deok In; Lee, Ui Jin; Kil, Chung Seop; Choi, Yeong Rok; Moon, Kap Seok; Yoo, Bong; Lee, Hyeong Yeon; Seo, Uk Hwan; Lee, Jae Han; Park, Yeon Pyo; Nam, Ho Yoon; Kim, Yong Ik; Min, Byeong Tae; Choi, Seok Ki; Kim, Yoo Kon; Lee, Yong Beom; Hwang, Jong Seon; An, Do Hui; Kang, Hui Seok; Choi, Byeong Hae; Kang, Yeong Hwan; Ryoo, Uh Seok; Joo, Ki Nam; Kim, Dae Hwan; Ji, Shee Hwan; Park, Deok Keun; Kim, Seong Soo; Maeng, Wan Yeong; Park, Shee Jin; Kim, Yeong Seok; Jang, Moon Hui; Hong, Joon Hwa; Han, Jeong Ho; No, Kyee Ho; Park, Ji Yeon; Jeong, Yong Hwan; Lee, Deok Hyeon; Jeong, Chung Hwan; Cho, Shee Hyeon; Kim, Dong Hwa; Seong, Ki Ung; Lee, Ki Yeong; Kim, Ui Kwang; Hong, Sang Hee

    1993-05-01

    On this year the study was performed in two parts : The establishment of LMR development plan, and the development of LMR coolant technology 1. The establishment of LMR technologies, the domestic political and technical environment, economics and technical maturity were duly considered for comparative analysis. In this year technologies specific to LMRs and technologies common to both PWRs and LMRs were identified to understand the inter-relationships between those two categorized technologies. Including those two categories, an overall LMR technology tree was drawn up taking into consideration technologies and tasks necessary to the pool type design of the primary and secondary cooling systems. And technology options that should be thoroughly evaluated their comparative feasibilities and applicabilities in trade-off study were derived as a preliminary procedure for the selection of the reactor type. 2. The development of LMR coolant technology. Many relevant basic technologies should be developed for LMR to have the inherent safety characteristics and to be economical. Since the sodium(Na) being used as the coolant in LMR has several thermo-hydraulic characteristics differing from water, the sodium handling technique which provides the maximum utilization of the thermo-hydraulic merits of the sodium and the protection measures against its defects is one of the most important technologies for the development of LMR. In the present study many problems associated with the establishment of the technology for measuring and controlling the impurity in the Na-facility have been investigated. The conceptual design of the purity control system in the Na-facility and related purity control system have been also made. The test-run of the Na-loop facility constructed last year has been performed, which provided the technology necessary for operation and repair of the Na-facility

  3. Evaluation of long-term post-accident core cooling of Three Mile Island Unit 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-04-15

    On the basis of current understanding of the accident scenario and available data, the staff reports here on its evaluation of the condition of the core and the core flow resistance as it might affect ability to cool the core by natural circulation. The natural circulation cooling capability of TMI-2 for the estimated core flow resistance and a variety of other conditions is evaluated and a comparison of the Base Case and off-nominal plant configurations is presented. The potential for and effects of natural convection core cooling are addressed, and the staff recommendations for reactor performance acceptance criteria upon initiation of natural convection are presented.

  4. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D.

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well

  5. Development of safety analysis technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Kim, K. D. [and others

    2000-05-01

    The analysis methodologies as well as the analysis computer code system for the transient, HCDA, and containment performance analyses, which are required for KALIMER safety analyses, have been developed. The SSC-K code has been developed based on SSC-L which is an analysis code for loop type LMR, by improving models necessary for the KALIMER system analysis, and additional models have been added to the code. In addition, HCDA analysis model has been developed and the containment performance analysis code has been also improved. The preliminary basis for the safety analysis has been established, and the preliminary safety analyses for the key design features have been performed. In addition, a state-of-art analysis for LMR PSA and overseas safety and licensing requirements have been reviewed. The design database for the systematic management of the design documents as well as design processes has been established as well.

  6. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...

  7. Structural design aspects of innovative designs under development in the current US Liquid Metal-Cooled Reactor program

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1986-01-01

    The US Liquid Metal-Cooled Reactor (LMR) program has been restructured and is now focussed on the development of innovative plant designs which emphasize shorter construction times, increased use of passive, inherently safe features, cost-competitiveness with LWR plants, and minimization of safety-related systems. These changes have a considerable effect on the structural design aspects of the LMR plant. These structural problems and their solutions now under study form the main focus of this paper. (orig.)

  8. Vibrational characterization of hexagonal duct core assemblies under various support conditions

    International Nuclear Information System (INIS)

    Bartholf, L.W.; Julyk, L.J.; Ryan, J.A.

    1989-03-01

    Analysis of the dynamic response of advanced Liquid Metal Reactor (LMR) core internals to seismic excitation requires a significant number of simplifying assumptions and idealizations to economically meet the constraints of present-day computer limitations. Fluid coupling and nonlinearities associated with inter-assembly lateral support stiffness and clearances of a large cluster of core internal assemblies are some of the factors that complicate the analytical procedure (Moran, 1976). Well defined test data were needed to quantify these and other uncertainties associated with the use of analytical or numerical computer codes used in the seismic design and analysis of reactor cores. The purpose of the present experimental program was to supplement existing data, such as reported in (Sasaki and Muto, 1983), by developing vibrational characteristics of core assemblies over a range of parameters relative to LMR conceptual designs. The parameters selected for this program were variations in number and location of restraints, restraint-pad to duct-load-pad clearances, and input forcing frequency and g-level. Feature tests were conducted to characterize load pad stiffness and coefficient of restitution, and to calibrate load pads to measure inter-assembly across-flat impact loads. Simulated full-size LMR hexagonal duct core assemblies were used in vibration tests. A single assembly and a row of five assemblies were tested in air to establish modal characteristics and forced response behavior. 2 refs., 7 figs., 1 tab

  9. A comparative study of MATRA-LMR/FB with CFD on a fuel assembly in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jin; Chang, Won-Pyo; Jeong, Jae-Ho; Ha, Kwi-Seok; Lee, Kwi-Lim; Lee, Seung Won; Choi, Chiwoong; Ahn, Sang-Jun [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Some of its models were modified to be eligible for the analysis of the SFR sub-channel blockage with the wire-wrapped pins. The wire-forcing-function used in the MATRA-LMR, which allocates a forced flow with an empirical correlation for the flow effect of the wire-wrap, was replaced with the Distributed Resistance Model. The Distributed Resistance Model has generally been believed to represent the effect more realistically than the wire-forcing-function. A semi-implicit numerical method was applied to resolve a flow reversal problem, which could not be handled by the former fully implicit method. A code-to-code comparison study was also performed as part of an effort to supplement the qualification. Although MATRA-LMR-FB was qualified based on available experimental data including a code-to-code comparative analysis, it was still hard to say that the level of confidence was enough to apply it to the SFR design with full satisfaction. Additional studies are therefore needed to supplement the qualification of MATRA-LMR-FB. In this study, a code-to-code comparative study was conducted as part of an effort to supplement the qualification of MATRA-LMR-FB. The comparison between MATRA-LMR-FB and the CFD code, CFX, was carried out on a 91-pin fuel assembly based on a 217 pin fuel assembly in a PGSFR to assess the MATRA-LMR-FB prediction capability.

  10. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling... for public comment draft regulatory guide (DG), DG-1277, ``Initial Test Program of Emergency Core..., entitled, ``Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors,'' is...

  11. Natural convection cooling of LEU cores for Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Khan, L.A.; Bokhari, I.H.; Akhtar, K.M.

    1991-08-01

    The first high power and equilibrium LEU cores of PARR-1 have been analysed to assess the maximum operating power based on natural convection cooling, need for forced cooling to remove the decay heat and to estimate safety margins that commensurate with the predetermined power limit. Computer code NATCON and standard correlations have been used for the analysis. The parameters studied includes coolant velocity, temperature distribution in the core, heat fluxes at onset of nucleate boiling, pulsed boiling and burnup. (author)

  12. Thermal-hydraulic evaluation study of the effectiveness of emergency core cooling system for light water reactors

    International Nuclear Information System (INIS)

    Sobajima, Makoto

    1985-08-01

    In order to evaluate the core cooling capability of the emergeny core cooling system, which is a safety guard system of light water reactors for a loss-of-coolant accident, a variety of large scale test were performed. Through the results, many phenomena were investigated and the predictabity of analytical codes were examined. The tests conducted were a single-vessel blowdown test, emergency core cooling test in a PWR simulation facility, spray cooling test for a BWR, large scale reflood test and a separate effect test on countercurrent flow. These test results were examined to clarify thermal-hydraulic phenomena and the effect of various test parameters and were utilized to improve predictability of the analytical codes. Some models for flow behavior in the upper core were also developed. By evaluating the effectiveness of various emergency core cooling system configurations, more effective cooling system than the current one was proposed and demonstrated. (author)

  13. In pursuit of zero risk for LMR [liquid metal reactor] accidents

    International Nuclear Information System (INIS)

    Waltar, A.E.; Armstrong, G.R.; Martin, F.J.; Muhlestein, L.D.

    1986-01-01

    LMR programs are moving towards facility designs that are inherently safe. This movement is resulting in extremely low probabilities for entering the regime of severe accidents. When these probabilities are added to the respective consequences, the resulting risk is also seen to be moving toward lower and lower values. The preliminary risk estimates being achieved by the US LMR Advanced Concepts Programs are well within US NRC guidelines and to some may be seen as approaching zero. This paper presents some aspects and results of the work being performed that supports this trend

  14. Gravity driven emergency core cooling experiments with the PACTEL facility

    International Nuclear Information System (INIS)

    Munther, R.; Kalli, H.; Kouhia, J.

    1996-01-01

    PACTEL (Parallel Channel Test Loop) is an experimental out-of-pile facility designed to simulated the major components and system behaviour of a commercial Pressurized Water Reactor (PWR) during different postulated LOCAs and transients. The reference reactor to the PACTEL facility is Loviisa type WWER-440. The recently made modifications enable experiments to be conducted also on the passive core cooling. In these experiments the passive core cooling system consisted of one core makeup tank (CMT) and pressure balancing lines from the pressurizer and from a cold leg connected to the top of the CMT in order to maintain the tank in pressure equilibrium with the primary system during ECC injection. The line from the pressurizer to the core makeup tank was normally open. The ECC flow was provided from the CMT located at a higher elevation than the main part of the primary system. A total number of nine experiments have been performed by now. 4 refs, 7 figs, 3 tabs

  15. Gravity driven emergency core cooling experiments with the PACTEL facility

    Energy Technology Data Exchange (ETDEWEB)

    Munther, R; Kalli, H [University of Technology, Lappeenranta (Finland); Kouhia, J [Technical Research Centre of Finland, Lappeenranta (Finland)

    1996-12-01

    PACTEL (Parallel Channel Test Loop) is an experimental out-of-pile facility designed to simulated the major components and system behaviour of a commercial Pressurized Water Reactor (PWR) during different postulated LOCAs and transients. The reference reactor to the PACTEL facility is Loviisa type WWER-440. The recently made modifications enable experiments to be conducted also on the passive core cooling. In these experiments the passive core cooling system consisted of one core makeup tank (CMT) and pressure balancing lines from the pressurizer and from a cold leg connected to the top of the CMT in order to maintain the tank in pressure equilibrium with the primary system during ECC injection. The line from the pressurizer to the core makeup tank was normally open. The ECC flow was provided from the CMT located at a higher elevation than the main part of the primary system. A total number of nine experiments have been performed by now. 4 refs, 7 figs, 3 tabs.

  16. Core of a liquid-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Wright, J.R.; McFall, A.

    1975-01-01

    The core of a liquid-cooled nuclear reactor, e.g. of a sodium-cooled fast reactor, is protected in such a way that the recoil wave resulting from loss of coolant in a cooling channel and caused by released gas is limited to a coolant inlet chamber of this cooling channel. The channels essentially consist of the coolant inlet chamber and a fuel chamber - with a fission gas storage plenum - through which the coolant flows. Between the two chambers, a locking device within a tube is provided offering a much larger flow resistance to the backflow of gas or coolant than in flow direction. The locking device may be a hydraulic countertorque control system, e.g. a valvular line. Other locking devices have got radially helical vanes running around an annular flow space. Furthermore, the locking device may consist of a number of needles running parallel to each other and forming a circular grid. Though it can be expanded by the forward flow - the needles are spreading - , it acts as a solid barrier for backflows. (TK) [de

  17. observer-based diagnostics and monitoring of vibrations in nuclear reactor core cooling system

    International Nuclear Information System (INIS)

    Siry, S.A K.

    2007-01-01

    analysis and diagnostics of vibration in industrial systems play a significant rule to prevent severe severe damages . drive shaft vibration is a complicated phenomenon composed of two independent forms of vibrations, translational and torsional. translational vibration measurements in case of the reactor core cooling system are introduced. the system under study consists of the three phase induction motor, flywheel, centrifugal pump, and two coupling between motor-flywheel, and flywheel-pump. this system structure is considered to be one where the blades are pegged into the discs fitting into the shafts. a non-linear model to simulate vibration in the reactor core cooling system will be introduced. simulation results of an operating reactor core cooling system using the actual parameters will be presented to validate the accuracy and reliability of the proposed analytical method the accuracy in analyzing the results depends on the system model. the shortcomings of the conventional model will be avoided through the use of that accurate nonlinear model which improve the simulation of the reactor core cooling system

  18. Implementation of the TDCR liquid scintillation method at CNEA-LMR, Argentina.

    Science.gov (United States)

    Arenillas, Pablo; Cassette, Philippe

    2006-01-01

    During the last two years, a triple-to-double coincidence ratio (TDCR) system was assembled and adjusted at the CNEA-LMR, Argentina. The new counting system will add complementary capabilities to the absolute measurements section of the CNEA-LMR. This work describes its implementation and validation. Several checks and a set of beta-emitting standard solutions were used in order to perform the validation experiments. In preliminary measurements, a 3H LNHB solution with reference activity concentration of (119.7+/-0.9) kBq/g on 11 November 2003 was used. The CNEA-LMR TDCR counter gave, at the same reference date, an activity concentration of (120+/-1) kBq/g. Results and improvements are presented in detail. Concerning the asymmetry of the system, the quantum efficiency of the three photomultiplier tubes was studied for different operating conditions of the focusing voltage. The counter also includes an automatic system to change the efficiency by defocusing the photomultipliers and on the other hand, it was coupled to a HPGe detector to also measure beta-gamma coincidences.

  19. Implementation of the TDCR liquid scintillation method at CNEA-LMR, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, Pablo [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Cassette, Philippe [Laboratoire National Henri Becquerel, LNE-LNHB, 91191, Gif sur Yvette cedex (France)

    2006-10-15

    During the last two years, a triple-to-double coincidence ratio (TDCR) system was assembled and adjusted at the CNEA-LMR, Argentina. The new counting system will add complementary capabilities to the absolute measurements section of the CNEA-LMR. This work describes its implementation and validation. Several checks and a set of beta-emitting standard solutions were used in order to perform the validation experiments. In preliminary measurements, a {sup 3}H LNHB solution with reference activity concentration of (119.7{+-}0.9) kBq/g on 11 November 2003 was used. The CNEA-LMR TDCR counter gave, at the same reference date, an activity concentration of (120{+-}1) kBq/g. Results and improvements are presented in detail. Concerning the asymmetry of the system, the quantum efficiency of the three photomultiplier tubes was studied for different operating conditions of the focusing voltage. The counter also includes an automatic system to change the efficiency by defocusing the photomultipliers and on the other hand, it was coupled to a HPGe detector to also measure beta-gamma coincidences.

  20. Implementation of the TDCR liquid scintillation method at CNEA-LMR, Argentina

    International Nuclear Information System (INIS)

    Arenillas, Pablo; Cassette, Philippe

    2006-01-01

    During the last two years, a triple-to-double coincidence ratio (TDCR) system was assembled and adjusted at the CNEA-LMR, Argentina. The new counting system will add complementary capabilities to the absolute measurements section of the CNEA-LMR. This work describes its implementation and validation. Several checks and a set of beta-emitting standard solutions were used in order to perform the validation experiments. In preliminary measurements, a 3 H LNHB solution with reference activity concentration of (119.7±0.9) kBq/g on 11 November 2003 was used. The CNEA-LMR TDCR counter gave, at the same reference date, an activity concentration of (120±1) kBq/g. Results and improvements are presented in detail. Concerning the asymmetry of the system, the quantum efficiency of the three photomultiplier tubes was studied for different operating conditions of the focusing voltage. The counter also includes an automatic system to change the efficiency by defocusing the photomultipliers and on the other hand, it was coupled to a HPGe detector to also measure beta-gamma coincidences

  1. Analysis of Phenix End-of-Life asymmetry test with multi-dimensional pool modeling of MARS-LMR code

    International Nuclear Information System (INIS)

    Jeong, H.-Y.; Ha, K.-S.; Choi, C.-W.; Park, M.-G.

    2015-01-01

    Highlights: • Pool behaviors under asymmetrical condition in an SFR were evaluated with MARS-LMR. • The Phenix asymmetry test was analyzed one-dimensionally and multi-dimensionally. • One-dimensional modeling has limitation to predict the cold pool temperature. • Multi-dimensional modeling shows improved prediction of stratification and mixing. - Abstract: The understanding of complicated pool behaviors and its modeling is essential for the design and safety analysis of a pool-type Sodium-cooled Fast Reactor. One of the remarkable recent efforts on the study of pool thermal–hydraulic behaviors is the asymmetrical test performed as a part of Phenix End-of-Life tests by the CEA. To evaluate the performance of MARS-LMR code, which is a key system analysis tool for the design of an SFR in Korea, in the prediction of thermal hydraulic behaviors during an asymmetrical condition, the Phenix asymmetry test is analyzed with MARS-LMR in the present study. Pool regions are modeled with two different approaches, one-dimensional modeling and multi-dimensional one, and the prediction results are analyzed to identify the appropriateness of each modeling method. The prediction with one-dimensional pool modeling shows a large deviation from the measured data at the early stage of the test, which suggests limitations to describe the complicated thermal–hydraulic phenomena. When the pool regions are modeled multi-dimensionally, the prediction gives improved results quite a bit. This improvement is explained by the enhanced modeling of pool mixing with the multi-dimensional modeling. On the basis of the results from the present study, it is concluded that an accurate modeling of pool thermal–hydraulics is a prerequisite for the evaluation of design performance and safety margin quantification in the future SFR developments

  2. Provision of reliable core cooling in vessel-type boiling reactors

    International Nuclear Information System (INIS)

    Alferov, N.S.; Balunov, B.F.; Davydov, S.A.

    1987-01-01

    Methods for providing reliable core cooling in vessel-type boiling reactors with natural circulation for heat supply are analysed. The solution of this problem is reduced to satisfaction of two conditions such as: water confinement over the reactor core necessary in case of an accident and confinement of sufficient coolant flow rate through the bottom cross section of fuel assemblies for some time. The reliable fuel element cooling under conditions of a maximum credible accident (brittle failure of a reactor vessel) is shown to be provided practically in any accident, using the safety vessel in combination with the application of means of standard operation and minimal composition and capacity of ECCS

  3. Lichtenstein Mesh Repair (LMR) v/s Modified Bassini's Repair (MBR) + Lichtenstein Mesh Repair of Direct Inguinal Hernias in Rural Population - A Comparative Study.

    Science.gov (United States)

    Patil, Santosh M; Gurujala, Avinash; Kumar, Ashok; Kumar, Kuthadi Sravan; Mithun, Gorre

    2016-02-01

    Lichtenstein's tension free mesh hernioplasty is the commonly done open technique for inguinal hernias. As our hospital is in rural area, majority of patients are labourers, open hernias are commonly done. The present study was done by comparing Lichtenstein Mesh Repair (LMR) v/s Modified Bassini's repair (MBR) + Lichtenstein mesh repair (LMR) of direct Inguinal Hernias to compare the technique of both surgeries and its outcome like postoperative complications and recurrence rate. A comparative randomized study was conducted on patients reporting to MNR hospital, sangareddy with direct inguinal hernias. A total of fifty consecutive patients were included in this study of which, 25 patients were operated by LMR and 25 patients were operated by MBR+LMR and followed up for a period of two years. The outcomes of the both techniques were compared. Study involved 25 each of Lichtenstein's mesh repair (LMR) and modified bassini's repair (MBR) + LMR, over a period of 2 years. The duration of surgery for lichtenstein mesh repair is around 34.56 min compared to LMR+MBR, which is 47.56 min which was statistically significant (p-value is MBR group in POD 1, but not statistically significant (p-value is 0.0949) and from POD 7 the pain was almost similar in both groups. The recurrence rate is 2% for LMR and 0% for MBR+LMR. LMR+MBR was comparatively better than only LMR in all direct inguinal hernias because of low recurrence rate (0%) and low postoperative complications, which showed in our present study.

  4. Reactor-core isolation cooling system with dedicated generator

    International Nuclear Information System (INIS)

    Nazareno, E.V.; Dillmann, C.W.

    1992-01-01

    This patent describes a nuclear reactor complex. It comprises a dual-phase nuclear reactor; a main turbine for converting phase-conversion energy stored by vapor into mechanical energy for driving a generator; a main generator for converting the mechanical energy into electricity; a fluid reservoir external to the reactor; a reactor core isolation cooling system with several components at least some of which require electrical power. It also comprises an auxiliary pump for pumping fluid from the reservoir into the reactor pressure vessel; an auxiliary turbine for driving the pump; control means for regulating the rotation rate of the auxiliary turbine; cooling means for cooling the control means; and an auxiliary generator coupled to the auxiliary turbine for providing at least a portion of the electrical power required by the components during a blackout condition

  5. Study of risk reduction by improving operation of reactor core isolation cooling system

    International Nuclear Information System (INIS)

    Watanabe, Yamato; Tazai, Ayuko; Yamagishi, Shohei; Muramatsu, Ken; Muta, Hitoshi

    2014-01-01

    The Fukushima Daiichi nuclear power plant fell into a station blackout (SBO) due to the earthquake and tsunami in which most of the core cooling systems were disabled. In the units 2 and 3, water injection to the core was performed only by water injection system with turbine driven pumps. In particular, it is inferred from observed plant parameters that the reactor core isolation cooling system (RCIC) continued its operation much longer than it was originally expected (8 hours). Since the preparation of safety measures did not work, the reactor core damaged. With a view to reduce risk of station blackout events in a BWR by accident management, this study investigated the efficacy of operation procedures that takes advantage of RCIC which can be operated with only equipment inside reactor building and does not require an AC power source. The efficacy was assessed in this study by two steps. The first step is a thermal hydraulic analysis with the RETRAN3D code to estimate the potential extension of duration of core cooling by RCIC and the second step is the estimation of time required for recovery of off-site power from experiences at nuclear power stations under the 3.11 earthquake. This study showed that it is possible to implement more reliable measures for accident termination and to greatly reduce the risk of SBO by the installation of accident management measures with use of RCIC for extension of core cooling under SBO conditions. (author)

  6. Emergency core cooling systems

    International Nuclear Information System (INIS)

    Kubokoya, Takashi; Okataku, Yasukuni.

    1984-01-01

    Purpose: To maintain the fuel soundness upon loss of primary coolant accidents in a pressure tube type nuclear reactor by injecting cooling heavy water at an early stage, to suppress the temperature of fuel cans at a lower level. Constitution: When a thermometer detects the temperature rise and a pressure gauge detects that the pressure for the primary coolants is reduced slightly from that in the normal operation upon loss of coolant accidents in the vicinity of the primary coolant circuit, heavy water is caused to flow in the heavy water feed pipeway by a controller. This enables to inject the heavy water into the reactor core in a short time upon loss of the primary coolant accidents to suppress the temperature rise in the fuel can thereby maintain the fuel soundness. (Moriyama, K.)

  7. Core design studies on various forms of coolants and fuel materials. 2. Studies on liquid heavy metal and gas cooled cores, small cores and evaluation of 4-type cores

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Sakashita, Yoshiyuki; Naganuma, Masayuki; Takaki, Naoyuki; Mizuno, Tomoyasu; Ikegami, Tetsuo

    2001-01-01

    Alternative concepts to sodium cooled fast reactors, such as heavy metal liquid cooled reactors and gas cooled fast reactors were studied in Phase-1 of the feasibility studies, aiming at simplification of the system, high thermal efficiency and enhancing safety. Fuel and core specifications and nuclear characteristics were surveyed to meet the targets for commercialization of fast reactor cycle. Nuclear characteristics of small fast reactor cores were also surveyed from the perspective of the possibility of multi-purpose use and dispersed power stations. The key points of the design study for each concept in Phase-2 were summarized from the aspect of the screening of the candidates for FR commercialization. (author)

  8. Forced-convection boiling tests performed in parallel simulated LMR fuel assemblies

    International Nuclear Information System (INIS)

    Rose, S.D.; Carbajo, J.J.; Levin, A.E.; Lloyd, D.B.; Montgomery, B.H.; Wantland, J.L.

    1985-01-01

    Forced-convection tests have been carried out using parallel simulated Liquid Metal Reactor fuel assemblies in an engineering-scale sodium loop, the Thermal-Hydraulic Out-of-Reactor Safety facility. The tests, performed under single- and two-phase conditions, have shown that for low forced-convection flow there is significant flow augmentation by thermal convection, an important phenomenon under degraded shutdown heat removal conditions in an LMR. The power and flows required for boiling and dryout to occur are much higher than decay heat levels. The experimental evidence supports analytical results that heat removal from an LMR is possible with a degraded shutdown heat removal system

  9. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    Science.gov (United States)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  10. Lichtenstein Mesh Repair (LMR) v/s Modified Bassini’s Repair (MBR) + Lichtenstein Mesh Repair of Direct Inguinal Hernias in Rural Population – A Comparative Study

    Science.gov (United States)

    Patil, Santosh M; Kumar, Ashok; Kumar, Kuthadi Sravan; Mithun, Gorre

    2016-01-01

    Introduction Lichtenstein’s tension free mesh hernioplasty is the commonly done open technique for inguinal hernias. As our hospital is in rural area, majority of patients are labourers, open hernias are commonly done. The present study was done by comparing Lichtenstein Mesh Repair (LMR) v/s Modified Bassini’s repair (MBR) + Lichtenstein mesh repair (LMR) of direct Inguinal Hernias to compare the technique of both surgeries and its outcome like postoperative complications and recurrence rate. Materials and Methods A comparative randomized study was conducted on patients reporting to MNR hospital, sangareddy with direct inguinal hernias. A total of fifty consecutive patients were included in this study of which, 25 patients were operated by LMR and 25 patients were operated by MBR+LMR and followed up for a period of two years. The outcomes of the both techniques were compared. Results Study involved 25 each of Lichtenstein’s mesh repair (LMR) and modified bassini’s repair (MBR) + LMR, over a period of 2 years. The duration of surgery for lichtenstein mesh repair is around 34.56 min compared to LMR+MBR, which is 47.56 min which was statistically significant (p-value is MBR group in POD 1, but not statistically significant (p-value is 0.0949) and from POD 7 the pain was almost similar in both groups. The recurrence rate is 2% for LMR and 0% for MBR+LMR. Conclusion LMR+MBR was comparatively better than only LMR in all direct inguinal hernias because of low recurrence rate (0%) and low postoperative complications, which showed in our present study. PMID:27042517

  11. Update Knowledge Base for Long-term Core Cooling Reliability

    International Nuclear Information System (INIS)

    Agrell, Maria; Sandervag, Oddbjoern; Amri, Abdallah; ); Bang, Young S.; Blomart, Philippe; Broecker, Annette; Pointner, Winfried; Ganzmann, Ingo; Lenogue, Bruno; Guzonas, David; Herer, Christophe; Mattei, Jean-Marie; Tricottet, Matthieu; Masaoka, Hideaki; Soltesz, Vojtech; Tarkiainen, Seppo; Ui, Atsushi; Villalba, Cristina; Zigler, Gilbert

    2013-11-01

    This revision of the Knowledge Base for Emergency Core Cooling System Recirculation Reliability (NEA/CSNI/R (95)11) describes the current status (late 2012) of the knowledge base on emergency core cooling system (ECCS) and containment spray system (CSS) suction strainer performance and long-term cooling in operating power reactors. New reactors, such as the AP1000, EPR and APR1400 that are under construction in some Organization for Economic Co-operation and Development (OECD) member countries, are not addressed in detail in this revision. The containment sump (also known as the emergency or recirculation sump in pressurized water reactors (PWRs) and pressurized heavy water reactors (PHWRs) or the suppression pools or wet wells in boiling water reactors (BWRs)) and associated ECCS strainers are parts of the ECCS in both reactor types. All nuclear power plants (NPPs) are required to have an ECCS that is capable of mitigating a design basis accident (DBA). The containment sump collects reactor coolant, ECCS injection water, and containment spray solutions, if applicable, after a loss-of-coolant accident (LOCA). The sump serves as the water source to support long-term recirculation for residual heat removal, emergency core cooling, and containment atmosphere clean-up. This water source, the related pump suction inlets, and the piping between the source and inlets are important safety-related components. In addition, if fibrous material is deposited at the fuel element spacers, core cooling can be endangered. The performance of ECCS/CSS strainers was recognized many years ago as an important regulatory and safety issue. One of the primary concerns is the potential for debris generated by a jet of high-pressure coolant during a LOCA to clog the strainer and obstruct core cooling. The issue was considered resolved for all reactor types in the mid-1990s and the OECD/NEA/CSNI published report NEA/CSNI/R(95)11 in 1996 to document the state of knowledge of ECCS performance

  12. Neutron spectrum effects on TRU recycling in Pb-Bi cooled fast reactor core

    International Nuclear Information System (INIS)

    Kim, Yong Nam; Kim, Jong Kyung; Park, Won Seok

    2003-01-01

    This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction

  13. Recent improvements in modelling fission gas release and rod deformation on metallic fuel in LMR

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung-Oon; Kim, Young Jin

    2000-01-01

    Metallic fuel design is a key feature to assure LMR core safety goals. To date, a large effort has been devoted to the development of the MACSIS code for metallic fuel rod design and the evaluation of operational limits under irradiation conditions. The updated models of fission gas release, fuel core swelling, and rod deformation are incorporated into the correspondence routines in MACSIS MOD1. The MACSIS MOD1 which is a new version of MACSIS, has been partly benchmarked on FGR, fuel swelling and rod deformation comparing with the results of U-Zr and U-Pu-Zr metal fuels irradiated in LMRs. The MACSIS MOD1 predicts, relatively well, the absolute magnitudes and trends of the gas release and rod deformations depending on burn-up, and it gives better agreement with the experimental data than the previous predictions of MACSIS and the results of the empirical model

  14. Analysis of loss of coolant accident and emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Kiyoharu; Kobayashi, Kenji; Hayata, Kunihisa; Tasaka, Kanji; Shiba, Masayoshi

    1977-01-01

    In this paper, the analysis for the performance evaluation of emergency core cooling system is described, which is the safety protection device to the loss of coolant accidents due to the break of primary cooling pipings of light water reactors. In the LOCA analysis for the performance evaluation of ECCS, it must be shown that a reactor core keeps the form which can be cooled with the ECCS in case of LOCA, and the overheat of the core can be prevented. Namely, the shattering of fuel cladding tubes is never to occur, and for the purpose, the maximum temperature of Zircaloy 2 or 4 cladding tubes must be limited to 1200 deg C, and the relative thickness of oxide film must be below 15%. The calculation for determining the temperature of cladding tubes in case of the LOCA in BWRs and PWRs is explained. First, the primary cooling system, the ECCS and the related installations of BWRs and PWRs are outlined. The code systems for LOCA/ECCS analysis are divid ed into several steps, such as blowdown process, reflooding process and heatup calculation. The examples of the sensitivity analysis of the codes are shown. The LOCA experiments carried out so far in Japan and foreign countries and the LOCA analysis of a BWR with RELAP-4J code are described. The guidance for the performance evaluation of ECCS was established in 1975 by the Reactor Safety Deliberation Committee in Japan, and the contents are quoted. (Kako, I.)

  15. Current and future research on corrosion and thermalhydraulic issues of HLM cooled reactors and on LMR fuels for fast reactor systems

    International Nuclear Information System (INIS)

    Knebel, J.U.; Konings, R.J.M.

    2002-01-01

    Heavy liquid metals (HLM) such as lead (Pb) or lead-bismuth eutectic (Pb-Bi) are currently investigated world-wide as coolant for nuclear power reactors and for accelerator driven systems (ADS). Besides the advantages of HLM as coolant and spallation material, e.g. high boiling point, low reactivity with water and air and a high neutron yield, some technological issues, such as high corrosion effects in contact with steels and thermalhydraulic characteristics, need further experimental investigations and physical model improvements and validations. The paper describes some typical HLM cooled reactor designs, which are currently considered, and outlines the technological challenges related to corrosion, thermalhydraulic and fuel issues. In the first part of the presentation, the status of presently operated or planned test facilities related to corrosion and thermalhydraulic questions will be discussed. First approaches to solve the corrosion problem will be given. The approach to understand and model thermalhydraulic issues such as heat transfer, turbulence, two-phase flow and instrumentation will be outlined. In the second part of the presentation, an overview will be given of the advanced fuel types that are being considered for future liquid metal reactor (LMR) systems. Advantages and disadvantages will be discussed in relation to fabrication technology and fuel cycle considerations. For the latter, special attention will be given to the partitioning and transmutation potential. Metal, oxide and nitride fuel materials will be discussed in different fuel forms and packings. For both parts of the presentation, an overview of existing co-operations and networks will be given and the needs for future research work will be identified. (authors)

  16. Experience with lifetime limits for EBR-II core components

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Smith, R.N.; Golden, G.H.

    1987-01-01

    The Experimental Breeder Reactor No. 2 (EBR-II) is operated for the US Department of Energy by Argonne National Laboratory and is located on the Idaho National Engineering Laboratory where most types of American reactor were originally tested. EBR-II is a complete electricity-producing power plant now in its twenty-fourth year of successful operation. During this long history the reactor has had several concurrent missions, such as demonstration of a closed Liquid-Metal Reactor (LMR) fuel cycle (1964-69); as a steady-state irradiation facility for fuels and materials (1970 onwards); for investigating effects of operational transients on fuel elements (from 1981); for research into the inherent safety aspects of metal-fueled LMR's (from 1983); and, most recently, for demonstration of the Integral Fast Reactor (IFR) concept using U-Pu-Zr fuels. This paper describes experience gained at EBR-II in defining lifetime limits for LMR core components, particularly fuel elements

  17. THE GROWTH OF COOL CORES AND EVOLUTION OF COOLING PROPERTIES IN A SAMPLE OF 83 GALAXY CLUSTERS AT 0.3 < z < 1.2 SELECTED FROM THE SPT-SZ SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Bautz, M. W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Vikhlinin, A.; Stalder, B.; Ashby, M. L. N.; Bayliss, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); De Haan, T. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Lin, H. W. [Caddo Parish Magnet High School, Shrevport, LA 71101 (United States); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bocquet, S.; Desai, S. [Department of Physics, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Cho, H. M. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Clocchiatti, A., E-mail: mcdonald@space.mit.edu [Departamento de Astronomia y Astrosifica, Pontificia Universidad Catolica (Chile); and others

    2013-09-01

    We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare these properties to those for local cluster samples. We find no significant evolution from z {approx} 0 to z {approx} 1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profile in the inner {approx}100 kpc has not changed dramatically since z {approx} 1, implying that feedback must be providing nearly constant energy injection to maintain the observed ''entropy floor'' at {approx}10 keV cm{sup 2}. While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density ({rho}{sub g,0}/{rho}{sub crit}) increasing by an order of magnitude from z {approx} 1 to z {approx} 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, {approx}150 M{sub Sun} yr{sup -1} cooling flow that is unable to cool below entropies of 10 keV cm{sup 2} and, instead, accumulates in the cluster center. We estimate that cool cores began to assemble in these massive systems at z{sub cool}=1.0{sup +1.0}{sub -0.2}, which represents the first constraints on the onset of cooling in galaxy cluster cores. At high redshift (z {approx}> 0.75), galaxy clusters may be classified as ''cooling flows

  18. Develoment of pressure drop calculation modules for a wire-wrapped LMR subassembly

    International Nuclear Information System (INIS)

    Kim, Young Gyun; Lim, Hyun Jin; Kim, Won Seok; Kim, Young Il

    2000-06-01

    Pressure drop calculation modules for a wire-wrapped LMR subassembly was been developed. This report summarizes present information on pressure drop calculation modules for inlet hole, lower part and upper part of a wire-wrapped LMR subassembly which was developed using simple formulas of sudden expansion and sudden contraction. A case calculation study was done using design data of a KALIMER driver fuel subassembly. And the total pressure drop in the driver fuel subassembly, except for the bundle part, was calculated as 0.13 MPa, which is in the reasonable pressure drop range. The developed modules will be integrated in the total subassembly pressure drop calculation code with further improvements

  19. Advanced Small-Safe Long-Life Lead Cooled Reactor Cores for Future Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyeong; Hong, Ser Gi [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    One of the reasons for use of the lead or lead-bismuth alloy coolants is the high boiling temperature that avoids the possibility of coolant voiding. Also, these coolants are compatible with air, steam, and water. Therefore, intermediate coolant loop is not required as in the sodium cooled reactors 3. Lead is considered to be more attractive coolant than lead-bismuth alloy because of its higher availability, lower price, and much lower amount of polonium activity by factor of 104 relatively to lead. On the other hand, lead has higher melting temperature of 601K than that of lead-bismuth (398K), which narrows the operating temperature range and also leads to the possibility of freezing and blockage in fresh cores. Neutronically, the lead and lead-bismuth have very similar characteristics to each other. The lead-alloy coolants have lower moderating power and higher scattering without increasing moderation for neutrons below 0.5MeV, which reduces the leakage of the neutrons through the core and provides an excellent reflecting capability for neutrons. Due to the above features of lead or lead-alloy coolants, there have been lots of studies on the small lead cooled core designs. In this paper, small-safe long-life lead cooled reactor cores having high discharge burnup are designed and neutronically analyzed.. The cores considered in this work rates 110MWt (36.7MWe). In this work, the long-life with high discharge burnup was achieved by using thorium or depleted uranium blanket loaded in the central region of the core. Also, we considered a reference core having no blanket for the comparison. This paper provides the detailed neutronic analyses for these small long-life cores and the detailed analyses of the reactivity coefficients and the composition changes in blankets. The results of the core design and analyses show that our small long-life cores can be operated without refueling over their long-lives longer than 45EFPYs (Effective Full Power Year). In this work

  20. Core melt retention and cooling concept of the ERP

    Energy Technology Data Exchange (ETDEWEB)

    Weisshaeupl, H [SIEMENS/KWU, Erlangen (Germany); Yvon, M [Nuclear Power International, Paris (France)

    1996-12-01

    For the French/German European Pressurized Water Reactor (EPR) mitigative measures to cope with the event of a severe accident with core melt down are considered already at the design stage. Following the course of a postulated severe accident with reactor pressure vessel melt through one of the most important features of a future design must be to stabilize and cool the melt within the containment by dedicated measures. This measures should - as far as possible - be passive. One very promising solution for core melt retention seems to be a large enough spreading of the melt on a high temperature resistant protection layer with water cooling from above. This is the favorite concept for the EPR. In dealing with the retention of a molten core outside of the RPV several ``steps`` from leaving the RPV to finally stabilize the melt have to gone through. These steps are: collection of the melt; transfer of the melt; distribution of the melt; confining; cooling and stabilization. The technical features for the EPR solution of a large spreading of the melt are: Dedicated spreading chamber outside the reactor pit (area about 150 m{sup 2}); high temperature resistant protection layers (e.g. Zirconia bricks) at the bottom and part of the lateral structures (thus avoiding melt concrete interaction); reactor pit and spreading compartment are connected via a discharge channel which has a slope to the spreading area and is closed by a steel plate, which will resist the core melt for a certain time in order to allow a collection of the melt; the spreading compartments is connected with the In-Containment Refuelling Water Storage Tank (IRWST) with pipes for water flooding after spreading. These pipes are closed and will only be opened by the hot melt itself. It is shown how the course of the different steps mentioned above is processed and how each of these steps is automatically and passively achieved. (Abstract Truncated)

  1. Inactivation of a putative efflux pump (LmrB) in Streptococcus mutans results in altered biofilm structure and increased exopolysaccharide synthesis: implications for biofilm resistance.

    Science.gov (United States)

    Liu, Jia; Zhang, Jianying; Guo, Lihong; Zhao, Wei; Hu, Xiaoli; Wei, Xi

    2017-07-01

    Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.

  2. Evaluation of the gravity-injection capability for core cooling after a loss-of-SDC event

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Bang, Young Seok; Kim, Hho Jung

    1999-01-01

    In order to evaluate the gravity-drain capability to maintain core cooling after a loss-of-shutdown-cooling event during shutdown operation, the plant conditions of the Young Gwang Units 3 and 4 were reviewed. The six cases of possible gravity-drain paths using the water of the refueling water storage tank (RWST) were identified and the thermal hydraulic analyses were performed using RELAP5/MOD3.2 code. The core cooling capability was dependent on the gravity-drain paths and the drain rate. In the cases with the injection path and opening on the different leg side, the system was well depressurized after gravity-injection and the core boiling was successfully prevented for a long-term transient. However, in the cases with the injection path and opening on the cold leg side, the core coolant continued boiling although the system pressure remains atmospheric after gravity-injection because the cold water injected from the RWST was bypassed the core region. In the cases with the higher pressurizer opening than the RWST water level, the system was also pressurized by the water-hold in the pressurizer and the core was uncovered because the gravity-injection from the RWST stopped due to the high system pressure. In addition, from the sensitivity study on the gravity-injection flow rates, it was found that about 54 kg/s of RWST drain rate was required to maintain the core cooling. Those analysis results would provide useful information to operators coping with the event

  3. Functional design for the integration of BMNI/LMR

    International Nuclear Information System (INIS)

    Van Westerlaak, P.J.M.; Oldenburger, A.A.

    1995-04-01

    The aim of the Project Integration of Monitoring networks (PIM) is to realize one modular monitoring network configuration which can supply sufficient radiological data to both the National Institute of Public Health and Environment (RIVM) and the contingency organization of the Dutch Ministry of Internal Affairs. This monitoring network configuration is called the National Monitoring network Radioactivity (NMR) and is a combination of the BMNI (Internal Affairs Monitoring network Nuclear Accidents) and LMR (also translated as National Monitoring network Radioactivity). In this report only attention is paid to the coupling of the BMNI and LMR on the level of data as part of the realization of the NMR. After an overview of the existing situation the requirements for an integrated monitoring network system are outlined. Differences between NMR and BMNI and possible solutions to overcome those differences are discussed next. Subsequently the modular NMR system is described, along with a brief overview of interfaces with other information systems. Finally, attention is paid to the data structure, necessary equipment and computer programs, quality control, and the planning of the development and implementation of the monitoring system. 12 figs., 3 tabs., 19 refs

  4. Academic Globalization: Universality of Cross-Cultural And Cross-Disciplinary LMR Perspectives

    Directory of Open Access Journals (Sweden)

    Marta Szabo White

    2010-10-01

    Full Text Available The contribution of this paper suggests that previous research underscoring cross-cultural differences may be misleading, when in fact it is cross-professional rather than cross-cultural differences that should be emphasized. Employing the LMR framework, this paper concludes that business or non-business predisposition has a more direct impact on one's individual cultural profile than does nationality. Regardless of culture, persons involved in business are characterized primarily by linear-active modes of communication, and persons not involved in business typically employ less linear and more multi-active/hybrid modes of communication. The linkages among individual characteristics, communication styles, work behaviors, and the extent to which the LMR constructs can facilitate and predict leadership, negotiating styles, individual behaviors, etc. are central to academic globalization and preparing global business leaders.

  5. Emergency core cooling systems in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1981-12-01

    This report contains the responses by the Advisory Committee on Nuclear Safety to three questions posed by the Atomic Energy Control Board concerning the need for Emergency Core Cooling Systems (ECCS) in CANDU nuclear power plants, the effectiveness requirement for such systems, and the extent to which experimental evidence should be available to demonstrate compliance with effectiveness standards

  6. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers

    International Nuclear Information System (INIS)

    Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    We report on the influence of core NA on thermal-induced mode instabilities (MI) in high power fiber amplifiers. The influence of core NA and the V-parameter on MI has been investigated numerically. It shows that core NA has a larger influence on MI for fibers with a smaller core-cladding-ratio, and the influence of core NA on the threshold is more obvious when the amplifiers are pumped at 915 nm. The dependence of the threshold on the V-parameter revealed that the threshold increases linearly as the V-parameter decreases when the V-parameter is larger than 3.5, and the threshold shows an exponential increase as the V-parameter decreases when the V-parameter is less than 3.5. We also discussed the effect of linewidth on MI, which indicates that the influence of linewidth can be neglected for a linewidth smaller than 1 nm when the fiber core NA is smaller than 0.07 and the fiber length is shorter than 20 m. Fiber amplifiers with different core NA were experimentally analyzed, which agreed with the theoretical predictions. (letter)

  7. Shivering heat production and body fat protect the core from cooling during body immersion, but not during head submersion: a structural equation model.

    Science.gov (United States)

    Pretorius, Thea; Lix, Lisa; Giesbrecht, Gordon

    2011-03-01

    Previous studies showed that core cooling rates are similar when only the head or only the body is cooled. Structural equation modeling was used on data from two cold water studies involving body-only, or whole body (including head) cooling. Exposure of both the body and head increased core cooling, while only body cooling elicited shivering. Body fat attenuates shivering and core cooling. It is postulated that this protection occurs mainly during body cooling where fat acts as insulation against cold. This explains why head cooling increases surface heat loss with only 11% while increasing core cooling by 39%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Thermal performance of fresh mixed-oxide fuel in a fast flux LMR [liquid metal reactor

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, R.B.

    1985-01-01

    A test was designed and irradiated to provide power-to-melt (heat generation rate necessary to initiate centerline fuel melting) data for fresh mixed-oxide UO 2 -PuO 2 fuel irradiated in a fast neutron flux under prototypic liquid metal reactor (LMR) conditions. The fuel pin parameters were selected to envelope allowable fabrication ranges and address mass production of LMR fuel using sintered-to-size techniques. The test included fuel pins with variations in fabrication technique, pellet density, fuel-to-cladding gap, Pu concentration, and fuel oxygen-to-metal ratios. The resulting data base has reestablished the expected power-to-melt in mixed-oxide fuels during initial reactor startup when the fuel temperatures are expected to be the highest. Calibration of heat transfer models of fuel pin performance codes with these data are providing more accurate capability for predicting steady-state thermal behavior of current and future mixed-oxide LMR fuels

  9. Core design of a high breeding fast reactor cooled by supercritical pressure light water

    Energy Technology Data Exchange (ETDEWEB)

    Someya, Takayuki, E-mail: russell@ruri.waseda.jp; Yamaji, Akifumi

    2016-01-15

    Highlights: • Core design concept of supercritical light water cooled fast breeding reactor is developed. • Compound system doubling time (CSDT) is applied for considering an appropriate target of breeding performance. • Breeding performance is improved by reducing fuel rod diameter of the seed assembly. • Core pressure loss is reduced by enlarging the coolant channel area of the seed assembly. - Abstract: A high breeding fast reactor core concept, cooled by supercritical pressure light water has been developed with fully-coupled neutronics and thermal-hydraulics core calculations, which takes into account the influence of core pressure loss to the core neutronics characteristics. Design target of the breeding performance has been determined to be compound system doubling time (CSDT) of less than 50 years, by referring to the relationship of energy consumption and economic growth rate of advanced countries such as the G7 member countries. Based on the past design study of supercritical water cooled fast breeder reactor (Super FBR) with the concept of tightly packed fuel assembly (TPFA), further improvement of breeding performance and reduction of core pressure loss are investigated by considering different fuel rod diameters and coolant channel geometries. The sensitivities of CSDT and the core pressure loss with respect to major core design parameters have been clarified. The developed Super FBR design concept achieves fissile plutonium surviving ratio (FPSR) of 1.028, compound system doubling time (CSDT) of 38 years and pressure loss of 1.02 MPa with positive density reactivity (negative void reactivity). The short CSDT indicates high breeding performance, which may enable installation of the reactors at a rate comparable to energy growth rate of developed countries such as G7 member countries.

  10. STAR FORMATION EFFICIENCY IN THE COOL CORES OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    McDonald, Michael; Veilleux, Sylvain; Mushotzky, Richard; Reynolds, Christopher; Rupke, David S. N.

    2011-01-01

    We have assembled a sample of high spatial resolution far-UV (Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel) and Hα (Maryland-Magellan Tunable Filter) imaging for 15 cool core galaxy clusters. These data provide a detailed view of the thin, extended filaments in the cores of these clusters. Based on the ratio of the far-UV to Hα luminosity, the UV spectral energy distribution, and the far-UV and Hα morphology, we conclude that the warm, ionized gas in the cluster cores is photoionized by massive, young stars in all but a few (A1991, A2052, A2580) systems. We show that the extended filaments, when considered separately, appear to be star forming in the majority of cases, while the nuclei tend to have slightly lower far-UV luminosity for a given Hα luminosity, suggesting a harder ionization source or higher extinction. We observe a slight offset in the UV/Hα ratio from the expected value for continuous star formation which can be modeled by assuming intrinsic extinction by modest amounts of dust (E(B - V) ∼ 0.2) or a top-heavy initial mass function in the extended filaments. The measured star formation rates vary from ∼0.05 M sun yr -1 in the nuclei of non-cooling systems, consistent with passive, red ellipticals, to ∼5 M sun yr -1 in systems with complex, extended, optical filaments. Comparing the estimates of the star formation rate based on UV, Hα, and infrared luminosities to the spectroscopically determined X-ray cooling rate suggests a star formation efficiency of 14 +18 -8 %. This value represents the time-averaged fraction, by mass, of gas cooling out of the intracluster medium, which turns into stars and agrees well with the global fraction of baryons in stars required by simulations to reproduce the stellar mass function for galaxies. This result provides a new constraint on the efficiency of star formation in accreting systems.

  11. Nuclear reactor core support incorporating also a cooling fluid flow system

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1975-01-01

    A description is given of a core bearing plate with several modular intake units having cooling fluid intake openings on their lower extensions, and on their upper ends located above the bearing plate, at least one fuel assembly which is thus in communication with the area under the bearing plate through the modular intake unit. The means for introducing the cooling fluid into the reactor vessel area are located under the bearing plate. The lower ends of the modular intake have ribs arranged essentially on a plane and join together with openings provided between the seals, in such a manner that the ribs form a barrier. The cooling fluid intake openings are located above this barrier, so that the cooling fluid is compelled to cross it before penetrating into the modular intake units [fr

  12. Design of a PWR emergency core cooling simulator loop

    International Nuclear Information System (INIS)

    Melo, C.A. de.

    1982-12-01

    The preliminary design of a PWR Emergency Core Cooling Simulator Loop for investigations of the phenomena involved in a postulated Loss-of-Coolant Accident, during the Reflooding Phase, is presented. The functions of each component of the loop, the design methods and calculations, the specification of the instrumentation, the system operation sequence, the materials list and a cost assessment are included. (Author) [pt

  13. Sensitivity Analysis of Uncertainty Parameter based on MARS-LMR Code on SHRT-45R of EBR II

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seok-Ju; Kang, Doo-Hyuk; Seo, Jae-Seung [System Engineering and Technology Co., Daejeon (Korea, Republic of); Bae, Sung-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Hae-Yong [Sejong University, Seoul (Korea, Republic of)

    2016-10-15

    In order to assess the uncertainty quantification of the MARS-LMR code, the code has been improved by modifying the source code to accommodate calculation process required for uncertainty quantification. In the present study, a transient of Unprotected Loss of Flow(ULOF) is selected as typical cases of as Anticipated Transient without Scram(ATWS) which belongs to DEC category. The MARS-LMR input generation for EBR II SHRT-45R and execution works are performed by using the PAPIRUS program. The sensitivity analysis is carried out with Uncertainty Parameter of the MARS-LMR code for EBR-II SHRT-45R. Based on the results of sensitivity analysis, dominant parameters with large sensitivity to FoM are picked out. Dominant parameters selected are closely related to the development process of ULOF event.

  14. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  15. Evaluation of moderately cooled pure NaI as a scintillator for position-sensitive PET detectors

    International Nuclear Information System (INIS)

    Wear, J.A.; Karp, J.S.; Haigh, A.T.; Freifelder, R.

    1996-01-01

    A new evaluation of pure NaI has been performed to determine if moderate cooling would lead to better performance than that of existing, activated NaI(Tl) position-sensitive detectors, particularly at high countrates. Using a freezer, an initial effort was performed to cool the crystal assembly to -90 C (183 K). At this temperature, pure NaI has a decay constant of 35 nsec, a light output which is about 20% that of room temperature NaI(Tl), and an energy resolution of 15%. For the PET applications the signal of room temperature (25 C) NaI(Tl) is normally pulse clipped, reducing the light output to 40% of the unclipped signal and yielding an energy resolution of 10.5%. Since the long decay of NaI(Tl) causes it to suffer more significantly than pure NaI from pre-pulse pileup, the difference in energy resolution between the two crystals at high countrates will be reduced. Also, a significantly shorter trigger deadtime with pure NaI will lead to a reduction in coincidence deadtime losses in PET. Computer simulations of large-area crystals operating at high countrates have been performed to quantify their trigger deadtime behavior and position resolution as a function of light output and pulse decay time. Having gained experience with the practical issues of cooling large crystals, measurements of position resolution have been performed with a NaI bar detector of similar geometry to the NaI(Tl) detectors in use in the PENN-PET scanner

  16. First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster

    Science.gov (United States)

    Savini, F.; Bonafede, A.; Brüggen, M.; van Weeren, R.; Brunetti, G.; Intema, H.; Botteon, A.; Shimwell, T.; Wilber, A.; Rafferty, D.; Giacintucci, S.; Cassano, R.; Cuciti, V.; de Gasperin, F.; Röttgering, H.; Hoeft, M.; White, G.

    2018-05-01

    Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.

  17. Safeguarding of emergency core cooling in case of loss-of-coolant accidents with insulation material release

    International Nuclear Information System (INIS)

    Pointner, W.; Broecker, A.

    2012-01-01

    The report on safeguarding of emergency core cooling in case of loss-of-coolant accidents with insulation material release covers the following issues: assessment of the relevant status for PWR, evaluation of the national and international (USA, Canada, France) status, actualization of recommendations, transferability from PWR to BWR. Generic studies on the core cooling capability in case of insulation material release in BWR-type reactors were evaluated.

  18. Experiment of IEA-R1 reactor core cooling by air convection after pool water loss accident

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Baptista Filho, Benedito Dias

    2000-01-01

    This paper presents a study of a Emergency Core Cooling to be applied to the IEA-R1 reactor. This system must have the characteristics of passive action, with water spraying over the core, and feeding by gravity from elevated reservoirs. In the evaluation, this system must demonstrate that when the reservoirs are emptied, the core cooling must assure to be fulfilled by air natural convection. This work presents the results of temperature distribution in a test section with plates electrically heated simulation the heat generation conditions on the most heated reactor element

  19. Role of FFTF in assessing structural feedbacks and inherent safety of LMR's

    International Nuclear Information System (INIS)

    Padilla, A.; Omberg, R.P.; O'Dell, L.D.; Harris, R.A.; Nguyen, D.H.; Waltar, A.E.

    1985-03-01

    The possibility of developing reactor designs with inherent safety characteristics sufficient to provide ''walk away'' safety is receiving additional emphasis in the LMR program. A key element in this effort is the recognition that LMR's possess safety characteristics above and beyond those employed in past safety review processes. Some of these additional safety characteristics are due to reactivity feedback effects caused by small structural movements during hypothetical severe design transients. The effect of these characteristics upon the behavior of the FFTF under such transients has been assessed and is discussed in this paper. The paper also presents a preliminary test matrix which might allow experimental verification of the structural reactivity feedback effects. Such experimental verification should be very useful to innovative designers seeking to optimize inherent safety. 8 refs., 1 fig., 2 tabs

  20. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki [Nuclear Research Group, FMIPA, Bandung Institute of Technology Jl. Ganesha 10, Bandung 40132 (Indonesia); Miura, Ryosuke; Takaki, Naoyuki [Department of Nuclear Safety Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan); Sekimoto, H. [Emerritus Prof. of Research Laboratory for Nuclear Reactors, Tokyo Inst. of Technology (Japan)

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  1. Rhapsody-G simulations I: the cool cores, hot gas and stellar content of massive galaxy clusters

    International Nuclear Information System (INIS)

    Hahn, Oliver; Martizzi, Davide; Wu, Hao-Yi

    2017-01-01

    We present the rhapsody-g suite of cosmological hydrodynamic zoom simulations of 10 massive galaxy clusters at the M vir ~10 15 M ⊙ scale. These simulations include cooling and subresolution models for star formation and stellar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool-core dichotomy arises naturally, and the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal active galactic nuclei feedback. For cluster scaling relations, we find that the simulations match well the M 500 –Y 500 scaling of Planck Sunyaev–Zeldovich clusters but deviate somewhat from the observed X-ray luminosity and temperature scaling relations in the sense of being slightly too bright and too cool at fixed mass, respectively. Stars are produced at an efficiency consistent with abundance-matching constraints and central galaxies have star formation rates consistent with recent observations. In conclusion, while our simulations thus match various key properties remarkably well, we conclude that the shortcomings strongly suggest an important role for non-thermal processes (through feedback or otherwise) or thermal conduction in shaping the intracluster medium.

  2. The development of code for the analysis of the flow blockage of rod bundles of LMR

    International Nuclear Information System (INIS)

    Ha, Q. S.; Jeong, H. Y.; Jang, W. P.; Lee, Y. B.

    2003-01-01

    A partial flow blockage within a fuel assembly in liquid metal reactor may result in localized boiling or a failure of the fuel cladding. Thus, the precise analysis for the phenomenon is required for a safe design of LMR. To take account of the effects of the surfaces of rod and wire spacer on the fluid, the distributed resistance model was implemented into the MATRA-LMR code, which is important to the analysis for flow blockage. Also central differencing scheme for the velocities is used in the flow with the lRel less than 2 and for the enthalpies with the lPel less than 2. Diffusion terms are added to the equations of momentum and energy. The validation calculation was carried out against to the experiment of FFM series tests and the results using MATRA-LMR with the distributed resistance model and above hybrid scheme well agree with the experimental data

  3. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  4. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S and 4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S and 4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  5. The core design of ALFRED, a demonstrator for the European lead-cooled reactors

    International Nuclear Information System (INIS)

    Grasso, G.; Petrovich, C.; Mattioli, D.; Artioli, C.; Sciora, P.; Gugiu, D.; Bandini, G.; Bubelis, E.; Mikityuk, K.

    2014-01-01

    Highlights: • The design for the lead fast reactor is conceived in a comprehensive approach. • Neutronic, thermal-hydraulic, and transient analyses show promising results. • The system is designed to withstand even design extension conditions accidents. • Activation products in lead, including polonium, are evaluated. - Abstract: The European Union has recently co-funded the LEADER (Lead-cooled European Advanced DEmonstration Reactor) project, in the frame of which the preliminary designs of an industrial size lead-cooled reactor (1500 MW th ) and of its demonstrator reactor (300 MW th ) were developed. The latter is called ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) and its core, as designed and characterized in the project, is presented here. The core parameters have been fixed in a comprehensive approach taking into account the main technological constraints and goals of the system from the very beginning: the limiting temperature of the clad and of the fuel, the Pu enrichment, the achievement of a burn-up of 100 GWd/t, the respect of the integrity of the system even in design extension conditions (DEC). After the general core design has been fixed, it has been characterized from the neutronic point of view by two independent codes (MCNPX and ERANOS), whose results are compared. The power deposition and the reactivity coefficient calculations have been used respectively as input for the thermal-hydraulic analysis (TRACE, CFD and ANTEO codes) and for some preliminary transient calculations (RELAP, CATHARE and SIM-LFR codes). The results of the lead activation analysis are also presented (FISPACT code). Some issues of the core design are to be reviewed and improved, uncertainties are still to be evaluated, but the verifications performed so far confirm the promising safety features of the lead-cooled fast reactors

  6. The core design of ALFRED, a demonstrator for the European lead-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, G., E-mail: giacomo.grasso@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Petrovich, C., E-mail: carlo.petrovich@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Mattioli, D., E-mail: davide.mattioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Artioli, C., E-mail: carlo.artioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Sciora, P., E-mail: pierre.sciora@cea.fr [CEA (Alternative Energies and Atomic Energy Commission), DEN, DER, 13108 St Paul lez Durance (France); Gugiu, D., E-mail: daniela.gugiu@nuclear.ro [RATEN-ICN (Institute for Nuclear Research), Cod 115400 Mioveni, Str. Campului, 1, Jud. Arges (Romania); Bandini, G., E-mail: giacomino.bandini@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Bubelis, E., E-mail: evaldas.bubelis@kit.edu [KIT (Karlsruhe Institute of Technology), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K., E-mail: konstantin.mikityuk@psi.ch [PSI (Paul Scherrer Institute), OHSA/D11, 5232 Villigen PSI (Switzerland)

    2014-10-15

    Highlights: • The design for the lead fast reactor is conceived in a comprehensive approach. • Neutronic, thermal-hydraulic, and transient analyses show promising results. • The system is designed to withstand even design extension conditions accidents. • Activation products in lead, including polonium, are evaluated. - Abstract: The European Union has recently co-funded the LEADER (Lead-cooled European Advanced DEmonstration Reactor) project, in the frame of which the preliminary designs of an industrial size lead-cooled reactor (1500 MW{sub th}) and of its demonstrator reactor (300 MW{sub th}) were developed. The latter is called ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) and its core, as designed and characterized in the project, is presented here. The core parameters have been fixed in a comprehensive approach taking into account the main technological constraints and goals of the system from the very beginning: the limiting temperature of the clad and of the fuel, the Pu enrichment, the achievement of a burn-up of 100 GWd/t, the respect of the integrity of the system even in design extension conditions (DEC). After the general core design has been fixed, it has been characterized from the neutronic point of view by two independent codes (MCNPX and ERANOS), whose results are compared. The power deposition and the reactivity coefficient calculations have been used respectively as input for the thermal-hydraulic analysis (TRACE, CFD and ANTEO codes) and for some preliminary transient calculations (RELAP, CATHARE and SIM-LFR codes). The results of the lead activation analysis are also presented (FISPACT code). Some issues of the core design are to be reviewed and improved, uncertainties are still to be evaluated, but the verifications performed so far confirm the promising safety features of the lead-cooled fast reactors.

  7. Development of MARS-LMR and Steady-state Calculation for KALIMER-600

    Energy Technology Data Exchange (ETDEWEB)

    Ha, K. S.; Jeong, H. Y.; Chang, W. P.; Lee, Y. B.; Jo, C. H

    2007-05-15

    MARS code which has been developed by coupling the RELAP and COBRA-TF in Korea Atomic Energy Research Institute has been improved in the aspects of hydraulically multi-dimensional modeling and data processing of common block using a dynamic memory allocation of FORTRAN. To use the code in the area of safety analysis of liquid metal reactor, several parts of the code have to be improved further. (1) Sodium property table including dynamic properties, such as, conductivity and viscosity, was generated to fit for the MARS code. (2) The heat transfer correlations for the liquid metal were implemented in the code. (3) The models describing the flow resistance by wire-wrap spacer in the core of LMR were applied. A MARS input data for KALIMER-600 is generated and steady-state calculation at the rated power is successfully performed. The input data can be used as a base input deck for the various transient analysis of a of PHTS, IHTS, and Tertiary system with minor revision of initial conditions and control system models.

  8. Aseismic study of high temperature gas-cooled reactor core with block-type fuel, 3

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1985-01-01

    A two-dimensional horizontal seismic experiment with single axis and simultaneous two-axes excitations was performed to obtain the core seismic design data on the block-type high temperature gas-cooled reactor. Effects of excitation directions and core side support stiffness on characteristics of core displacements and reaction forces of support were revealed. The values of the side reaction forces are the largest in the excitation of flat-to-flat of hexagonal block. Preload from the core periphery to the core center are effective to decrease core displacements and side reaction forces. (author)

  9. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  10. Shivering heat production and core cooling during head-in and head-out immersion in 17 degrees C water.

    Science.gov (United States)

    Pretorius, Thea; Cahill, Farrell; Kocay, Sheila; Giesbrecht, Gordon G

    2008-05-01

    Many cold-water scenarios cause the head to be partially or fully immersed (e.g., ship wreck survival, scuba diving, cold-water adventure swim racing, cold-water drowning, etc.). However, the specific effects of head cold exposure are minimally understood. This study isolated the effect of whole-head submersion in cold water on surface heat loss and body core cooling when the protective shivering mechanism was intact. Eight healthy men were studied in 17 degrees C water under four conditions: the body was either insulated or exposed, with the head either out of the water or completely submersed under the water within each insulated/exposed subcondition. Submersion of the head (7% of the body surface area) in the body-exposed condition increased total heat loss by 11% (P < 0.05). After 45 min, head-submersion increased core cooling by 343% in the body-insulated subcondition (head-out: 0.13 +/- 0.2 degree C, head-in: 0.47 +/- 0.3 degree C; P < 0.05) and by 56% in the body-exposed subcondition (head-out: 0.40 +/- 0.3 degree C and head-in: 0.73 +/- 0.6 degree C; P < 0.05). In both body-exposed and body-insulated subconditions, head submersion increased the rate of core cooling disproportionally more than the relative increase in total heat loss. This exaggerated core-cooling effect is consistent with a head cooling induced reduction of the thermal core, which could be stimulated by cooling of thermosensitive and/or trigeminal receptors in the scalp, neck, and face. These cooling effects of head submersion are not prevented by shivering heat production.

  11. The effect of lower body cooling on the changes in three core temperature indices

    International Nuclear Information System (INIS)

    Basset, F A; Cahill, F; Handrigan, G; DuCharme, M B; Cheung, S S

    2011-01-01

    Rectal (T re ), ear canal (T ear ) and esophageal (T es ) temperatures have been used in the literature as core temperature indices in humans. The aim of the study was to investigate if localized lower body cooling would have a different effect on each of these measurements. We hypothesized that prolonged lower body surface cooling will result in a localized cooling effect for the rectal temperature not reflected in the other core measurement sites. Twelve participants (mean ± SD; 26.8 ± 6.0 years; 82.6 ± 13.9 kg; 179 ± 10 cm, BSA = 2.00 ± 0.21 m 2 ) attended one experimental session consisting of sitting on a rubberized raft floor surface suspended in 5 °C water in a thermoneutral air environment (∼21.5 ± 0.5 °C). Experimental conditions were (a) a baseline phase during which participants were seated for 15 min in an upright position on an insulated pad (1.408 K . m 2 . W −1 ); (b) a cooling phase during which participants were exposed to the cooling surface for 2 h, and (c) an insulation phase during which the baseline condition was repeated for 1 h. Temperature data were collected at 1 Hz, reduced to 1 min averages, and transformed from absolute values to a change in temperature from baseline (15 min average). Metabolic data were collected breath-by-breath and integrated over the same temperature epoch. Within the baseline phase no significant change was found between the three indices of core temperature. By the end of the cooling phase, T re was significantly lower (Δ = −1.0 ± 0.4 °C) from baseline values than from T ear (Δ = −0.3 ± 0.3 °C) and T es (Δ = −0.1 ± 0.3 °C). T re continued to decrease during the insulation phase from Δ −1.0 ± 0.4 °C to as low as Δ −1.4 ± 0.5 °C. By the end of the insulation phase T re had slightly risen back to Δ −1.3 ± 0.4 °C but remained significantly different from baseline values and from the other two core measures. Metabolic data showed no variation throughout the experiment. In

  12. Status of LMR fuel development in the United States of America

    International Nuclear Information System (INIS)

    Leggett, R.D.; Walters, L.C.

    1993-01-01

    Three fuel systems oxide, metal, and carbide are shown to be reliable to high burnup and a fourth system, nitride, is shown to have promise for LMR applications. The excellent steady state performance of the oxide and metal driver fuels for FFTF and EBR-II, respectively, supported by the experience base on tens of thousands of test pins is provided. Achieving 300 MWd/kg in the oxide fuel system through the use of low swelling cladding and duct materials and the Integral Fast Reactor (IFR) concept that utilizes metallic fuel are described. Arguments for economic viability are presented. Responses to operational transients and severe over-power events are shown to have large safety margins and run-beyond-cladding-breach (RBCB), is shown to be non-threatening to LMR reactor system. Results from a joint U.S.-Swiss carbide test that operated successfully at high power and burnup in FFTF are also presented. (orig.)

  13. Status of LMR fuel development in the United States of America

    International Nuclear Information System (INIS)

    Leggett, R.D.; Walters, L.C.

    1992-01-01

    Three fuel systems - oxide, metal and carbide - are shown to be reliable to high burnup and a fourth system, nitride, is shown to have promise for LMR applications. The excellent steady state performance of the oxide and metal driver fuels for FFTF and EBR-II, respectively, as well as that of tens of thousands of test pins is provided. Achieving 300 MWd/kg in the oxide fuel system through the use of low swelling cladding and duct materials is described and arguments for economic viability are presented. Responses to operational transients and severe overpower events are shown to have large safety margins and run beyond cladding breach, RBCB, likewise, is shown to be nonthreatening to LMR reactor systems. The Integral Fast Reactor (IFR) concept that utilizes metallic fuel and the commercial viability of this concept are discussed. Results from a joint US-Swiss carbide test that operated successfully at high power and burnup in FFTF are also presented

  14. Implementation of new core cooling monitoring system for light water reactors - BCCM (Becker Core Cooling Monitor)

    International Nuclear Information System (INIS)

    Coville, Patrick; Eliasson, Bengt; Stromqvist, Erik; Ward, Olav; Fox, Georges; Ashjian, D. T.

    1998-01-01

    Core cooling monitors are key instruments to protect reactors from large accidents due to loss of coolant. Sensors presented here are based on resistance thermometry. Temperature dependent resistance is powered by relatively high and constant current. Value of this resistance depends on thermal exchange with coolant and when water is no more surrounding the sensors a large increase of temperature is immediately generated. The same instrument can be operated with low current and will measure the local temperature up to 1260 o C in case of loss of coolant accident. Sensors are manufactured with very few components and materials already qualified for long term exposure to boiling or pressurized water reactors environment. Prototypes have been evaluated in a test loop up to 160 bars and in the Barsebaeck-1 reactor. Industrial sensors are now in operation in reactor Oskarshamn 2. (author)

  15. The State-of-the-Art Report on the Liquid Metal Reactor

    International Nuclear Information System (INIS)

    Hahn, Do Hee; Kim, Yeong Il; Kim, Seong O; Lee, Jae Han; Lee, Yong Bum

    2006-03-01

    The status of the sodium cooled metal fuel core technology and the design methodology were described. The preliminary design concepts of the metal fuel core were established for KALIMER. A systematic study on the development fluid and I and C system has been carried out, and the conceptual design of NSSS of the 150MWe and 600MWe LMRs such as the design of PHTS, IHTS, RHRS, SGS and related technology with BOP is established together with the computational technology. The development of detection system of the sodium-water reaction, core blockage and the conceptual design of the control system of large capacity LMR are being carried. The important technological areas for mechanical structure design of LMR are high temperature thin structure design, seismic isolation design, In-Service- Inspection technology, and the economic design. The highlighted performances for the safety analysis were the developments of the containment analysis code CONTAIN-LMR-K, the safety analysis code SSC-K and the flow blockage analysis code. The safety criteria were set up, the safety analysis for the equilibrium core, the HCDA analysis, and the containment performance analysis were performed. The recent SSC-K 1.3 version turns out to be reliable after the indirect verification throughout qualitative/quantitative assessments

  16. Influence of detergents on the activity of the ABC transporter LmrA

    NARCIS (Netherlands)

    Infed, Nacera; Hanekop, Nils; Driessen, Arnold J. M.; Smits, Sander H. J.; Schmitt, Lutz

    The ABC transporter LmrA from Lactococcus lactis has been intensively studied and a role in multidrug resistance was proposed. Here, we performed a comprehensive detergent screen to analyze the impact of detergents for a successful solubilization, purification and retention of functional properties

  17. Effect of pipe insulation losses on a loss-of-heat sink accident for an LMR

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.; Wood, P.M.

    1985-01-01

    The efficacy of pipe radiation losses as a heat sink during LOHS in a loop-type LMR plant is investigated. The Super System Code (SSC), which was modified to include pipe radiation losses, was used to simulate such an LOHS in an LMR plant. In order to enhance these losses, the pipes were assumed to be insulated by rock wool, a material whose thermal conductivity increases with increasing temperature. A transient was simulated for a total of eight days, during which the coolant temperatures peaked well below saturation conditions and then declined steadily. The coolant flow rate in the loop remained positive throughout the transient

  18. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure

  19. NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.

    Science.gov (United States)

    Cheng, Liyuan; Zhou, Xuegang; Zhong, Hong; Deng, Xuliang; Cai, Qing; Yang, Xiaoping

    2014-01-01

    A kind of core-shell nanofibers containing sodium fluoride (NaF) was produced and used as reinforcing materials for dimethacrylate-based dental restorative resins in this study. The core-shell nanofibers were prepared by coaxial-electrospinning with polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) solutions as core and shell fluids, respectively. The produced PAN-PMMA nanofibers varied in fiber diameter and the thickness of PMMA shell depending on electrospinning parameters. NaF-loaded nanofibers were obtained by incorporating NaF nanocrystals into the core fluid at two loadings (0.8 or 1.0wt.%). Embedment of NaF nanocrystals into the PAN core did not damage the core-shell structure. The addition of PAN-PMMA nanofibers into Bis-GMA/TEGDMA clearly showed the reinforcement due to the good interfacial adhesion between fibers and resin. The flexural strength (Fs) and flexural modulus (Ey) of the composites decreased slightly as the thickness of PMMA shell increasing. Sustained fluoride releases with minor initial burst release were achieved from NaF-loaded core-shell nanofibers and the corresponding composites, which was quite different from the case of embedding NaF nanocrystals into the dental resin directly. The study demonstrated that NaF-loaded PAN-PMMA core-shell nanofibers were not only able to improve the mechanical properties of restorative resin, but also able to provide sustained fluoride release to help in preventing secondary caries. © 2013.

  20. Application of reliability-centered maintenance to boiling water reactor emergency core cooling systems fault-tree analysis

    International Nuclear Information System (INIS)

    Choi, Y.A.; Feltus, M.A.

    1995-01-01

    Reliability-centered maintenance (RCM) methods are applied to boiling water reactor plant-specific emergency core cooling system probabilistic risk assessment (PRA) fault trees. The RCM is a technique that is system function-based, for improving a preventive maintenance (PM) program, which is applied on a component basis. Many PM programs are based on time-directed maintenance tasks, while RCM methods focus on component condition-directed maintenance tasks. Stroke time test data for motor-operated valves (MOVs) are used to address three aspects concerning RCM: (a) to determine if MOV stroke time testing was useful as a condition-directed PM task; (b) to determine and compare the plant-specific MOV failure data from a broad RCM philosophy time period compared with a PM period and, also, compared with generic industry MOV failure data; and (c) to determine the effects and impact of the plant-specific MOV failure data on core damage frequency (CDF) and system unavailabilities for these emergency systems. The MOV stroke time test data from four emergency core cooling systems [i.e., high-pressure coolant injection (HPCI), reactor core isolation cooling (RCIC), low-pressure core spray (LPCS), and residual heat removal/low-pressure coolant injection (RHR/LPCI)] were gathered from Philadelphia Electric Company's Peach Bottom Atomic Power Station Units 2 and 3 between 1980 and 1992. The analyses showed that MOV stroke time testing was not a predictor for eminent failure and should be considered as a go/no-go test. The failure data from the broad RCM philosophy showed an improvement compared with the PM-period failure rates in the emergency core cooling system MOVs. Also, the plant-specific MOV failure rates for both maintenance philosophies were shown to be lower than the generic industry estimates

  1. Summary of advanced LMR [Liquid Metal Reactor] evaluations: PRISM [Power Reactor Inherently Safe Module] and SAFR [Sodium Advanced Fast Reactor

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G.

    1989-10-01

    In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) [Berglund, 1987] and the Sodium Advanced Fast Reactor (SAFR) [Baumeister, 1987], were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the ''inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II [NED, 1986]. The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs

  2. The role of SASSYS-1 in LMR [Liquid Metal Reactor] safety analysis

    International Nuclear Information System (INIS)

    Dunn, F.E.; Wei, T.Y.C.

    1988-01-01

    The SASSYS-1 liquid metal reactor systems analysis computer code is currently being used as the principal tool for analysis of reactor plant transients in LMR development projects. These include the IFR and EBR-II Projects at Argonne National Laboratory, the FFTF project at Westinghouse-Hanford, the PRISM project at General Electric, the SAFR project at Rockwell International, and the LSPB project at EPRI. The SASSYS-1 code features a multiple-channel thermal-hydraulics core representation coupled with a point kinetics neutronics model with reactivity feedback, all combined with detailed one-dimensional thermal-hydraulic models of the primary and intermediate heat transport systems, including pipes, pumps, plena, valves, heat exchangers and steam generators. In addition, SASSYS-1 contains detailed models for active and passive shutdown and emergency heat rejection systems and a generalized plant control system model. With these models, SASSYS-1 provides the capability to analyze a wide range of transients, including normal operational transients, shutdown heat removal transients, and anticipated transients without scram events. 26 refs., 16 figs

  3. Emergency core cooling system

    International Nuclear Information System (INIS)

    Sato, Akira; Kobayashi, Masahide.

    1983-01-01

    Purpose: To enable a stable operation of an emergency core cooling system by preventing the system from the automatic stopping at an abnormally high level of the reactor water during its operation. Constitution: A pump flow rate signal and a reactor water level signal are used and, when the reactor water level is increased to a predetermined level, the pump flow rate is controlled by the reactor water level signal instead of the flow rate signal. Specifically, when the reactor water level is gradually increased by the water injection from the pump and exceeds a setting signal for the water level, the water level deviation signal acts as a demand signal for the decrease in the flow rate of the pump and the output signal from the water level controller is also decreased depending on the control constant. At a certain point, the output signal from the water level controller becomes smaller than the output signal from the flow rate controller. Thus, the output signal from the water level controller is outputted as the output signal for the lower level preference device. In this way, the reactor water level and the pump flow rate can be controlled within a range not exceeding the predetermined pump flow rate. (Horiuchi, T.)

  4. Post-implementation review of inadequate core cooling instrumentation

    International Nuclear Information System (INIS)

    Anderson, J.L.; Anderson, R.L.; Hagen, E.W.; Morelock, T.C.; Huang, T.L.; Phillips, L.E.

    1988-01-01

    Studies of Three Mile Island (TMI) accident identified the need for additional instrumentation to detect inadequate core cooling (ICC) in nuclear power plants. Industry studies by plant owners and reactor vendors supported the conclusion that improvements were needed to help operators diagnose the approach to or existence of ICC and to provide more complete information for operator control of safety injection, flow to minimize the consequences of such an accident. In 1980, the US Nuclear Regulatory Commission (NRC) required further studies by the industry and described ICC instrumentation design requirements that included human factors and environmental considerations. On December 10, 1982, NRC issued to Babcock and Wilcox (BandW) licensees' orders for Modification of License and transmitted to all pressurized water reactor (PWR) licensees Generic Letter 82-28 to inform them of the revised NRC requirements. The instrumentation requirements for detection of ICC include upgraded subcooling margin monitors (SMMs), upgraded core exit thermocouples (CETs), and installation of a reactor coolant inventory tracking system (RCITS)

  5. Aspects of unconventional cores for large sodium cooled power reactors; evaluation of a literature survey

    International Nuclear Information System (INIS)

    Kiefhaber, E.

    1978-10-01

    The report gives an overview of a literature study on the application of unconventional cores for sodium cooled fast reactors. Different types of unconventional cores (heterogeneous cores, pancake cores, moderated cores and others) are compared with conventional cores, which are characterized by a cylindrical geometry with two or three fissile zones surrounded by an axial and a radial blanket. The main parameters of interest in this comparison are the neutronic parameters sodium void and Doppler effect, the breeding properties and the steel damage. Consequences for the core safety and the overall plant design are also mentioned

  6. A design method to isothermalize the core of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takano, M.; Sawa, K.

    1987-01-01

    A practical design method is developed to isothermalize the core of block-type high-temperature gas-cooled reactors (HTGRs). Isothermalization plays an important role in increasing the design margin on fuel temperature. In this method, the fuel enrichment and the size and boron content of the burnable poison rod are determined over the core blockwise so that the axially exponential and radially flat power distribution are kept from the beginning to the end of core life. The method enables conventional HTGRs to raise the outlet gas temperature without increasing the maximum fuel temperature

  7. Analysis and prevention of water hammer for the emergency core cooling system

    International Nuclear Information System (INIS)

    Zhao Jun

    2008-01-01

    Emergency core cooling system (ECCS) is an engineered safety feature of nuclear power plant. If the water hammer happens during ECCS injection, the piping system may be broken. It will cause loss of ECC system and affect the safety of reactor core. Based on the functions and characteristics of ECCS and the theory of water hammer, the paper analyzed the potential risk of water hammer in ECCS in Qinshan III, and proposed modifications to prevent the water-hammer damage during ECCS injection. (authors)

  8. Operation and Licensing of Mixed Cores in Water Cooled Reactors

    International Nuclear Information System (INIS)

    2013-11-01

    Nuclear fuel is a highly complex material that is subject to continuous development and is produced by a range of manufacturers. During operation of a nuclear power plant, the nuclear fuel is subject to extreme conditions of temperature, corroding environment and irradiation, and many different designs of fuel have been manufactured with differing fuel materials, cladding materials and assembly structure to ensure these conditions. The core of an operating power plant can contain hundreds of fuel assemblies, and where there is more than a single design of a fuel assembly in the core, whether through a change of fuel vendor, introduction of an improved design or for some other reason, the core is described as a mixed core. The task of ensuring that the different assembly types do not interact in a harmful manner, causing, for example, differing flow resistance resulting in under cooling, is an important part of ensuring nuclear safety. This report has compiled the latest information on the operational experience of mixed cores and the tools and techniques that are used to analyse the core operation and demonstrate that there are no safety related problems with its operation. This publication is a result of a technical meeting in 2011 and a series of consultants meetings

  9. Reassessment of debris ingestion effects on emergency core cooling-system pump performance

    International Nuclear Information System (INIS)

    Sciacca, F.W.; Rao, D.V.

    2004-01-01

    A study sponsored by the United States (US) Nuclear Regulatory Commission (NRC) was performed to reassess the effects of ingesting loss of coolant accident (LOCA) generated materials into emergency core cooling system (ECCS) pumps and the subsequent impact of this debris on the pumps' ability to provide long-term cooling to the reactor core. ECCS intake systems have been designed to screen out large post-LOCA debris materials. However, small-sized debris can penetrate these intake strainers or screens and reach critical pump components. Prior NRC-sponsored evaluations of possible debris and gas ingestion into ECCS pumps and attendant impacts on pump performance were performed in the early 1980's. The earlier study focused primarily on pressurised water reactor (PWR) ECCS pumps. This issue was revisited both to factor in our improved knowledge of LOCA generated debris and to address specifically both boiling water reactor (BWR) and PWR ECCS pumps. This study discusses the potential effects of ingested debris on pump seals, bearing assemblies, cyclone debris separators, and seal cooling water subsystems. This assessment included both near-term (less than one hour) and long-term (greater than one hour) effects introduced by the postulated LOCA. The work reported herein was performed during 1996-1997. (authors)

  10. Development of safety analysis technology for LMR

    International Nuclear Information System (INIS)

    Lee, Y. B.; Kwon, Y. M.; Suk, S. D.

    2005-03-01

    The MATRA-LMR-FB has been developed internally for the damage prevention as well as the safety assessment during a channel blockage accident and, as a the result, the quality of the code becomes comparable to that developed in the leading countries. For a code-to-code comparison, KAERI could have access to the SASSYS-1 through a bilateral collaboration between KAERI and ANL. The study could bring into the reliability improvements both on the reactivity models in the SSC-K and on the SSC-K prediction capability. It finally leads to the completion of the SSC-K version 1.3 resulting from the qualitative and quantitative code-to-code comparison. The preliminary analysis for a metal fueled LMR could also become possible with the MELT-III and the VENUS-II, which had originally been developed for the HCDA analysis with an oxidized fuel, by developing the relevant models For the development of the safety evaluation technology, the safety limits have been set up, and the analyses of the internal and external channel blockages in an assembly have also been performed. Besides, the more reliable analysis results on the key design concepts could be obtained by way of the methodology improvement resulting from the qualitative and quantitative comparison study. For an efficient and systematic control of the main project, the integration of the developed technologies and the establishment of their data base have been pursued. It has gone through the development of the process control with taking account of interfaces among the sub-projects, the overall coordination of the developed technologies, the data base for the design products, and so on

  11. Application of a steam injector for passive emergency core cooling during a station blackout

    International Nuclear Information System (INIS)

    Heinze, D.; Behnke, L.; Schulenberg, T.

    2012-01-01

    One of the basic protection targets of reactor safety is the safe heat removal during normal operation but also following shut-down. Since the reactor accident in Fukushima an optimization of the plant robustness in case of beyond-design accident is performed. Special attention is given to the increase of time available for starting appropriate measures for emergency core cooling in case of a station blackout. The state-of the art in engineering and research is presented. Investigations on the applicability of a steam injector for passive emergency core cooling during a station blackout in BWR-type reactors have progressed, experiments on dynamic behavior of the injector are described. A precise design with respect to the thermal hydraulic boundary conditions has been performed.

  12. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs

  13. LMR design concepts for transuranic management in low sodium void worth cores

    International Nuclear Information System (INIS)

    Hill, R.N.

    1991-01-01

    The fuel cycle processing techniques and hard neutron spectrum of the integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also allow a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. (author)

  14. Utilization of control rod drive (CRD) system for long term core cooling

    International Nuclear Information System (INIS)

    Huerta B, A.

    1991-01-01

    In this paper we consider an application of Probabilistic Risk Assessment (PRA) to risk management. Foreseeable risk management strategies to prevent core damage are constrained by the availability of first line systems as well as support systems. The actual trend in the evaluation of risk management options can be performed in a number of ways. An example is the identification of back-up systems which could be used to perform the same safety functions. In this work we deal with the evaluation of the feasibility, for BWR's, to use the Control Rod Drive system to maintain an adequate reactor core long term cooling in some accident sequences. This preliminary evaluation is carried out as a part of the Internal Events Analysis for Laguna Verde Nuclear Power Plant (LVNPP) that is currently under way by the Mexican Nuclear Regulatory Body. This analysis addresses the evaluation and incorporation of all the systems, including the safety related and the back-up non safety related systems, that are available for the operator in order to prevent core damage. As a part of this analysis the containment venting capability is also evaluated as a back-up of the containment heat removal function. This will prevent the primary containment overpressurization and loss of certain core cooling systems. A selection of accident sequences in which the Control Rod Drive system could be used to mitigate the accident and prevent core damage are discussed. A personal computer transient analysis code is used to carry out thermohydraulic simulations in order to evaluate the Control Rod Drive system performance, the corresponding results are presented. Finally, some preliminary conclusions are drawn. (author). 9 refs, 5 figs

  15. MORECA: A computer code for simulating modular high-temperature gas-cooled reactor core heatup accidents

    International Nuclear Information System (INIS)

    Ball, S.J.

    1991-10-01

    The design features of the modular high-temperature gas-cooled reactor (MHTGR) have the potential to make it essentially invulnerable to damage from postulated core heatup accidents. This report describes the ORNL MORECA code, which was developed for analyzing postulated long-term core heatup scenarios for which active cooling systems used to remove afterheat following the accidents can be assumed to the unavailable. Simulations of long-term loss-of-forced-convection accidents, both with and without depressurization of the primary coolant, have shown that maximum core temperatures stay below the point at which any significant fuel failures and fission product releases are expected. Sensitivity studies also have been done to determine the effects of errors in the predictions due both to uncertainties in the modeling and to the assumptions about operational parameters. MORECA models the US Department of Energy reference design of a standard MHTGR

  16. Emergency core cooling system for LMFBR type reactors

    International Nuclear Information System (INIS)

    Tamano, Toyomi; Fukutomi, Shigeki.

    1980-01-01

    Purpose: To enable elimination of decay heat in an LMFBR type reactor by securing natural cycling force in any state and securing reactor core cooling capacity even when both an external power supply and an emergency power supply are failed in emergency case. Method: Heat insulating material portion for surrounding a descent tube of a steam drum provided at high position for obtaining necessary flow rate for flowing resistance is removed from heat transmitting surface of a recycling type steam generator to provide a heat sink. That is, when both an external power supply and an emergency power supply are failed in emergency, the heat insulator at part of a steam generator recycling loop is removed to produce natural cycling force between it and the heat transmitting portion of the steam generator as a heat source for the heat sink so as to secure the flow rate of the recycling loop. When the power supply is failed in emergency, the heat removing capacity of the steam generator is secured so as to remove the decay heat produced in the reactor core. (Yoshihara, H.)

  17. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  18. Thermohydraulics in a high-temperature gas-cooled reactor primary loop during early phases of unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Hsu, C.J.

    1983-01-01

    In High Temperature Gas Cooled Reactor (HTGR) siting considerations, the Unrestricted Core Heatup Accidents (UCHA) are considered as accidents of highest consequence, corresponding to core meltdown accidents in light water reactors. Initiation of such accidents can be, for instance, due to station blackout, resulting in scram and loss of all main loop forced circulation, with none of the core auxiliary cooling system loops being started. The result is a slow but continuing core heatup, extending over days. During the initial phases of such UCHA scenarios, the primary loop remains pressurized, with the system pressure slowly increasing until the relief valve setpoint is reached. The major objectives of the work described here were to determine times to depressurization as well as approximate loop component temperatures up to depressurization

  19. Safety analysis of RSG-GAS Silicide core using one line cooling system

    International Nuclear Information System (INIS)

    Endiah-Puji-Hastuti

    2003-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor has been determined and to continuing this program, steady state and transient analysis were done. The analysis was done by means of a core thermal hydraulic code, COOLOD-N, and PARET. The codes solves core thermal hydraulic equation at steady state conditions and transient, respectively. By using silicide core data and coast down flow rate as the input, thermal hydraulics parameters such as fuel cladding and fuel meat temperatures as well as safety margin against flow instability were calculated. Imposing the safety criteria to the results of steady state and transient analysis, maximum permissible power for this operation was obtained as much as 17.1 MW

  20. Effects of an LMR-based partitioning-transmutation system on US nuclear fuel cycle health risk

    International Nuclear Information System (INIS)

    Michaels, G.E.; Reich, W.J.

    1992-01-01

    Health risks for the current US nuclear fuel cycle and for an illustrative partitioning and transmutation (P-T) fuel cycle based on Liquid Metal Reactor (LMR) technology are calculated and compared. Health risks are calculated for all non-reactor fuel cycle steps, including reprocessing, transportation, and high-level waste (HLW) disposal. Uranium mining and milling health risks have been updated to include recent occupational injury and death statistics, and the radiological health risk to the general public posed by the uranium mining overburden. In addition, the radiological health risks for transportation have been updated to include latent cancer fatalities associated with both normal transport and accidents. Given the assumptions of the study, it is shown that the deployment of an LMR-based P-T system is expected to reduce overall nuclear fuel cycle health risk

  1. Integrated intra-subassembly treatment in the SASSYS-1 LMR systems analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, F.

    1992-09-01

    This report discusses a hot channel treatment which has been added to the SASSYS-1 LMR systems analysis code by providing for a multiple pin treatment of each of one or more subassemblies. This is an explicit calculation of intra-subassembly effects, not a hot-channel adjustment to a calculated average channel. Thus, the code can account for effects such as transient flow redistribution, both within a subassembly and among subassemblies. The code now provides a total integrated thermal hydraulic treatment including a multiple pin treatment within subassemblies, a multi-channel treatment of the whole core, and models for the primary coolant loops, the intermediate coolant loops, the steam generators, and the balance of plant. Currently the multiple-pin option is only implemented for single-phase calculations. It is not applicable after the onset of boiling or pin disruption. The new multiple pin treatment is being verified with detailed temperature data from instrumented subassemblies in EBR-II, both steady-state and transient, with special emphasis on passive safety tests such as SHRT-45. For the SHRT-45 test, excellent agreement is obtained between code predictions and experimental measurements of coolant temperatures.

  2. Integrated intra-subassembly treatment in the SASSYS-1 LMR systems analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, F.

    1992-01-01

    This report discusses a hot channel treatment which has been added to the SASSYS-1 LMR systems analysis code by providing for a multiple pin treatment of each of one or more subassemblies. This is an explicit calculation of intra-subassembly effects, not a hot-channel adjustment to a calculated average channel. Thus, the code can account for effects such as transient flow redistribution, both within a subassembly and among subassemblies. The code now provides a total integrated thermal hydraulic treatment including a multiple pin treatment within subassemblies, a multi-channel treatment of the whole core, and models for the primary coolant loops, the intermediate coolant loops, the steam generators, and the balance of plant. Currently the multiple-pin option is only implemented for single-phase calculations. It is not applicable after the onset of boiling or pin disruption. The new multiple pin treatment is being verified with detailed temperature data from instrumented subassemblies in EBR-II, both steady-state and transient, with special emphasis on passive safety tests such as SHRT-45. For the SHRT-45 test, excellent agreement is obtained between code predictions and experimental measurements of coolant temperatures.

  3. Passive device for emergency core cooling of pressurized water reactors. Pasivno ustrojstvo za bezopasnost na vodo-voden atomen reaktor

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, D

    1984-02-28

    The device proposed ensures additional margin of reactor subcriticality in case of post-accident emergency core cooling (ECC), using concentrated solution of chemical absorber and hot water from the secondary circuit. It consists of: a) a differential cylinder with a differential piston in it, with a lid and a seal, connected to a pipeline for secondary coolant; b) a pipeline for the secondary coolant; c) a volume between the lid and the piston for the secondary coolant from the steam generator; d) a discharge pipeline with a check valve of seal type connecting the inner volume of the differential cylinder to the discharge line; and e) a pipeline from the high-pressure volume of the differential cylinder filled with concentrated chemical absorber solution, to one of the main circulation loops. The device permits ECC innovation of the operating non-standard nuclear power plants with PWR type reactors.

  4. Thermohydraulics in a high-temperature gas-cooled reactor prestressed-concrete reactor vessel during unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Araj, K.

    1983-01-01

    The hypothetical accident considered for siting considerations in High Temperature Gas-Cooled Reactors (HTGR) is the so called Unrestricted Core Heatup Accident (UCHA), in which all forced circulation is lost at initiation, and none of the auxillary cooling loops can be started. The result is a gradual slow core heatup, extending over days. Whether the liner cooling system (LCS) operates during this time is of crucial importance. If it does not, the resulting concrete decomposition of the prestressed concrete reactor vessel (PCRV) will ultimately cause containment building (CB) failure after about 6 to 10 days. The primary objective of the work described here was to establish for such accident conditions the core temperatures and approximate fuel failure rates, to check for potential thermal barrier failures, and to follow the PCRV concrete temperatures, as well as PCRV gas releases from concrete decomposition. The work was done for the General Atomic Corporation Base Line Zero reactor of 2240 MW(t). Most results apply at least qualitatively also to other large HTGR steam cycle designs

  5. Trends vs. reactor size of passive reactivity shutdown and control performance

    International Nuclear Information System (INIS)

    Wade, D.C.; Fujita, E.K.

    1987-01-01

    For LMR concepts, the goal of passive reactivity shutdown has been approached in the US by designing the reactors for favorable relationships among the power, power/flow, and inlet temperature coefficients of reactivity, for high internal conversion ratio (yielding small burnup control swing), and for a primary pump coastdown time appropriately matched to the delayed neutron hold back of power decay upon negative reactivity input. The use of sodium bonded metallic fuel pins has facilitated the achievement of the massive shutdown design goals as a consequence of their high thermal conductivity and high effective heavy metal density. Alternately, core designs based on derated oxide pins may be able to achieve the passive shutdown features at the cost of larger core volume and increased initial fissile inventory. For LMR concepts, the passive decay heat removal goal of inherent safety has been approached in US designs by use of pool layouts, larger surface to volume ratio of the reactor vessel with natural draft air cooling of the vessel surface, elevations and redans which promote natural circulation through the core, and thermal mass of the pool contents sufficient to absorb that initial transient decay heat which exceeds the natural draft air cooling capacity. This paper describes current US ''inherently safe'' reactor design

  6. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Ha; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O{sub 2} and (U,TRU)O{sub 2} which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O{sub 2}, (Th,Pu)O{sub 2} and (Th,TRU)O{sub 2}, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  7. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Jin Ha; Kim, Myung Hyun

    2016-01-01

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O_2 and (U,TRU)O_2 which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O_2, (Th,Pu)O_2 and (Th,TRU)O_2, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  8. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  9. THE RELATION BETWEEN COOL CLUSTER CORES AND HERSCHEL-DETECTED STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rawle, T. D.; Egami, E.; Rex, M.; Fiedler, A.; Haines, C. P.; Pereira, M. J.; Portouw, J.; Walth, G. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Smith, G. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Altieri, B.; Valtchanov, I. [Herschel Science Centre, ESAC, ESA, P.O. Box 78, Villanueva de la Canada, 28691 Madrid (Spain); Perez-Gonzalez, P. G. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Van der Werf, P. P. [Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Zemcov, M., E-mail: trawle@as.arizona.edu [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-03-01

    We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 {mu}m), we calculate the obscured star formation rate (SFR). 22{sup +6.2}{sub -5.3}% of the BCGs are detected in the far-infrared, with SFR = 1-150 M{sub Sun} yr{sup -1}. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing H{alpha} emission is also correlated with obscured star formation. For all but the most luminous BCGs (L{sub TIR} > 2 Multiplication-Sign 10{sup 11} L{sub Sun }), only a small ({approx}<0.4 mag) reddening correction is required for SFR(H{alpha}) to agree with SFR{sub FIR}. The relatively low H{alpha} extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss.

  10. Sodium-cooled fast reactor core designs for transmutation of MHR spent fuel

    International Nuclear Information System (INIS)

    Hong, S. G.; Kim, Y. H.; Venneri, F.

    2010-01-01

    In this paper, the core design analyses of sodium cooled fast reactors (SFR) are performed for the effective transmutation of the DB (Deep Burn)-MHR (Modular Helium Reactor). In this concept, the spent fuels of DB-MHR are transmuted in SFRs with a closed fuel cycle after TRUs from LWR are first incinerated in a DB-MHR. We introduced two different type SFR core designs for this purpose, and evaluated their core performance parameters including the safety-related parameters. In particular, the cores are designed to have lower transmutation rate relatively to our previous work so as to make the fuel characteristics more feasible. The first type cores which consist of two enrichment regions are typical homogeneous annular cores and they rate 900 MWt power. On the other hand, the second type cores which consist of a central non-fuel region and a single enrichment fuel region rate relatively higher power of 1500 MWt. For these cores, the moderator rods (YH 1.8 ) are used to achieve less positive sodium void worth and the more negative Doppler coefficient because the loading of DB-MHR spent fuel leads to the degradation of these safety parameters. The analysis results show that these cores have low sodium void worth and negative reactivity coefficients except for the one related with the coolant expansion but the coolant expansion reactivity coefficient is within the typical range of the typical SFR cores. (authors)

  11. Analysis of expediency to set regulators of high-pressure emergency core cooling system of WWER 1000 (B-320)

    International Nuclear Information System (INIS)

    Skalozubov, V.I.; Komarov, Yu.A.; Tikhonova, G.G.; Nikiforov, S.N.; Bogodist, V.V.; Fol'tov, I.M.; Khadzh Faradzhallakh Dabbakh, A.

    2011-01-01

    The work shows that setting regulative valves in high-pressure emergency core cooling system of WWER 1000/B-320 can be effective only involving the additional tuning to account traverse speed of operating elements of regulator and configuration of the systems providing cooling of primary loop.

  12. New Sodium Cooled Long-Life Cores with Axially Multi-Driver Regions

    International Nuclear Information System (INIS)

    Hyun, Hae Ri; Hong, Ser Gi

    2014-01-01

    In this concept of long-life core (they are sometimes called B-B (Breed and Burn)), tall blanket is placed above the relatively short driver fuel. In the initial stage of burning, the power by fission is mostly generated in the driver region and it moves into the blanket region. The power and flux distributions that are highly peaked in the axial direction propagates slowly from the driver into the blanket region. This concept of long-life core fully utilizes the breeding of blanket in the fast spectra and it can achieve very high burnup of fuel. In this work, we introduce new sodium cooled longlife cores rating 600MWe (1800MWt). In these cores, the driver regions are heterogeneously placed into blanket region so as to achieve stabilized and less peaked axial power distribution as depletion proceeds. At present, our study is focused on only two axial driver regions but this concept can be easily extended onto the multi-driver region concept. The cores designed in this paper have two axial driver regions so as to have stabilized and less peaked axial power distributions as depletion proceeds. The results of the core design and analyses show that the cores have very long-lives longer than -49EFPYs and high discharge burnup higher than 200GWD/kg. Additionally, we considered a long-life core having no blanket. As expected, it was shown that these cores have stabilized and less peaked axial power distribution as the fuel depletes. However, the study shows that the cores having two driver regions still show high initial peaking of the axial power distributions and the core can be optimized by changing the driver fuel height

  13. Emergency cooling method and system for gas-cooled nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1982-01-01

    For emergency cooling of gas-cooled fast breeder reactors (GSB), which have a core consisting of a fission zone and a breeding zone, water is sprayed out of nozzles on to the core from above in the case of an incident. The water which is not treated with boron is taken out of a reservoir in the form of a storage tank in such a maximum quantity that the cooling water gathering in the space below the core rises at most up to the lower edge of the fission zone. (orig./GL) [de

  14. Failure Mode and Effects Analysis (FMEA) of the Emergency Core Cooling System (ECCS) for a Westinghouse type 312, three loop pressurized water reactor

    International Nuclear Information System (INIS)

    Shopsky, W.E.

    1977-01-01

    The Emergency Core Cooling System (ECCS) is a Safeguards System designed to cool the core in the unlikely event of a Loss-of-Coolant Accident (LOCA) in the primary reactor coolant system as well as to provide additional shutdown capability following a steam break accident. The system is designed for a high reliability of providing emergency coolant and shutdown reactivity to the core for all anticipated occurrences of such accidents. The ECCS by performing its intended function assures that fuel and clad damage is minimized during accident conditions thus reducing release of fission products from the fuel. The ECCS is designed to perform its function despite sustaining a single failure by the judicious use of equipment and flow path redundancy within and outside the containment structure. By the use of an analytic tool, a Failure Mode and Effects Analysis (FMEA), it is shown that the ECCS is in compliance with the Single Failure Criterion established for active failures of fluid systems during short and long term cooling of the reactor core following a LOCA or steam break accident. An analysis was also performed with regards to passive failure of ECCS components during long-term cooling of the core following an accident. The design of the ECCS was verified as being able to tolerate a single passive failure during long-term cooling of the reactor core following an accident. The FMEA conducted qualitatively demonstrates the reliability of the ECCS (concerning active components) to perform its intended safety function

  15. Design, Fabrication and Integration of a NaK-Cooled Circuit

    International Nuclear Information System (INIS)

    Garber, Anne; Godfroy, Thomas

    2006-01-01

    The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed for use with a eutectic mixture of sodium potassium (NaK), was redesigned for use with lithium. Due to a shift in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature circuit include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This paper summarizes the integration and preparations for the fill of the pumped NaK circuit. (authors)

  16. Cooling system of the core of a nuclear reactor while it is being stopped or normally operating

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1986-01-01

    The present invention proposes a cooling system with intermediate gas flow which ensures the reactor core cooling when the primary pumps are stopped either directly by means of main heat-exchange circuits ensuring normally the reactor operation, or by means of separated loops, these ones being able so to operate in an autonomous way for they produce their own electricity needs and also an excedent which is added to the power plant production. The cooling circuit and the heat exchanger are described in detail [fr

  17. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  18. Power distribution monitoring system in the boiling water cooled reactor core

    International Nuclear Information System (INIS)

    Leshchenko, Yu.I.; Sadulin, V.P.; Semidotskij, I.I.

    1987-01-01

    Consideration is being given to the system of physical power distribution monitoring, used during several years in the VK-50 tank type boiling water cooled reactor. Experiments were conducted to measure the ratios of detector prompt and activation currents, coefficients of detector relative sensitivity with respect to neutrons and effective cross sections of 103 Rh interaction with thermal and epithermal neutrons. Mobile self-powered detectors (SPD) with rhodium emitters are used as the power distribution detectors in the considered system. All detectors move simultaneously with constant rate in channels, located in fuel assembly central tubes, when conducting the measurements. It is concluded on the basis of analyzing the obtained data, that investigated system with calibrated SPD enables to monitor the absolute power distribution in fuel assemblies under conditions of boiling water cooled reactor and is independent of thermal engineering measurements conducted by in core instruments

  19. Graphites and composites irradiations for gas cooled reactor core structures

    International Nuclear Information System (INIS)

    Van der Laan, J.G.; Vreeling, J.A.; Buckthorpe, D.E.; Reed, J.

    2008-01-01

    Full text of publication follows. Material investigations are undertaken as part of the European Commission 6. Framework Programme for helium-cooled fission reactors under development like HTR, VHTR, GCFR. The work comprises a range of activities, from (pre-)qualification to screening of newly designed materials. The High Flux Reactor at Petten is the main test bed for the irradiation test programmes of the HTRM/M1, RAPHAEL and ExtreMat Integrated Projects. These projects are supported by the European Commission 5. and 6. Framework Programmes. To a large extent they form the European contribution to the Generation-IV International Forum. NRG is also performing a Materials Test Reactor project to support British Energy in preparing extended operation of their Advanced Gas-cooled Reactors (AGR). Irradiations of commercial and developmental graphite grades for HTR core structures are undertaken in the range of 650 to 950 deg C, with a view to get data on physical and mechanical properties that enable engineering design. Various C- and SiC-based composite materials are considered for support structures or specific components like control rods. Irradiation test matrices are chosen to cover commercial materials, and to provide insight on the behaviour of various fibre and matrix types, and the effects of architecture and manufacturing process. The programme is connected with modelling activities to support data trending, and improve understanding of the material behaviour and micro-structural evolution. The irradiation programme involves products from a large variety of industrial and research partners, and there is strong interaction with other high technology areas with extreme environments like space, electronics and fusion. The project on AGR core structures graphite focuses on the effects of high dose neutron irradiation and simultaneous radiolytic oxidation in a range of 350 to 450 deg C. It is aimed to provide data on graphite properties into the parameter space

  20. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  1. The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines

    NARCIS (Netherlands)

    Putman, M; van Veen, HW; Degener, JE; Konings, WN

    2001-01-01

    The active efflux of toxic compounds by (multi)drug transporters is one of the mechanisms that bacteria have developed to resist cytotoxic drugs. The authors describe the role of the lactococcal secondary multidrug transporter LmrP in the resistance to a broad range of clinically important

  2. Kinetic isotope effects in the CH4 + H→CH3 + H2 system. Predictions of the LMR six-body potential-energy reaction hypersurface

    International Nuclear Information System (INIS)

    Marriott, T.D.

    1976-01-01

    Scope of Study: The purpose of this study was two-fold. First, it served to test, in part, the usefulness of the LMR six-body potential-energy surface (LMR-PES) for transition-state theory predictions of the kinetic isotope effects for both the forward and reverse reactions of CH 4 + H reversible CH 3 + H 2 . In this regard the agreement between experimental and theoretical isotope effects, assuming the former to be accurate, provides information about the accuracy of the curvature of the potential energy surface for motion both parallel and perpendicular to the reaction coordinate. Second, these isotope effects were used to assess the validity of a number of qualitative and semi-quantitative interpretations of kinetic isotope effects developed in physical organic chemistry with regard to this reaction system. The force constants and geometries obtained numerically from the LMR-PES were found to produce reasonable harmonic approximations to the reactant normal mode frequencies. Neglecting tunneling, the LMR-PES reasonably reproduces the experimental k/sub H//k/sub D/ values for the reactions CH 4 + H(D), CH 3 + HD(DH) and CD 2 + HD(DH). Since previous theoretical treatments of primary deuterium kinetic isotope effects have neglected the bending normal mode frequencies, a semi-quantitative study of the effect of neglecting bending frequencies on the VP, EXC, and ZPE elements as well as the transition-state theory kinetic isotope effects was performed. The Swain-Schaad relationship between primary deuterium and tritium kinetic isotope effects was shown to hold to a reasonable degree of accuracy for the LMR-PES reaction system. A relationship between 13-carbon and 14-carbon kinetic isotope effects similar to the Swain-Schaad relationship was derived

  3. Conceptual core design study for Japan sodium-cooled fast reactor: Review of sodium void reactivity worth evaluation

    International Nuclear Information System (INIS)

    Ohki, Shigeo

    2012-01-01

    The conceptual core design study for a large-scale Japan sodium-cooled fast reactor (JSFR) have been carried out in the framework of the FaCT project. The reference “High-internal conversion” core can satisfy the requirements for enhanced safety, as well as achieving economic competitiveness. In order to increase the design reliability, more rigorous uncertainty evaluation is important. Development of the verification and validation methodology of the core neutronic design method is currently underway. (author)

  4. A low cost liquid metal reactor design

    International Nuclear Information System (INIS)

    Arnold, W.H.; Anderson, C.A.; Mangus, J.D.

    1984-01-01

    A new, compact Liquid Metal Reactor (LMR) plant arrangement designed by Westinghouse, featuring factory-fabricated modules and an integrated fuel cycle facility, has made it possible to project a commercially competitive LMR plant for the near future. This innovative liquid metal-cooled plant design will allow a combination of capital, fuel, operation and maintenance costs that could be lower than today's fossil-fueled or light water reactor plant costs, and incorporate features which enhance public safety even beyond current high standards. Following early core loadings, the plant feeds only on depleted uranium. No shipment of fuel is required. And the plant can be tailored to produce enough plutonium to meet its need or to provide fuel for other nuclear plants

  5. The Role of Cerenkov Radiation in the Pressure Balance of Cool Core Clusters of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lieu, Richard [Department of Physics, University of Alabama, Huntsville, AL 35899 (United States)

    2017-03-20

    Despite the substantial progress made recently in understanding the role of AGN feedback and associated non-thermal effects, the precise mechanism that prevents the core of some clusters of galaxies from collapsing catastrophically by radiative cooling remains unidentified. In this Letter, we demonstrate that the evolution of a cluster's cooling core, in terms of its density, temperature, and magnetic field strength, inevitably enables the plasma electrons there to quickly become Cerenkov loss dominated, with emission at the radio frequency of ≲350 Hz, and with a rate considerably exceeding free–free continuum and line emission. However, the same does not apply to the plasmas at the cluster's outskirts, which lacks such radiation. Owing to its low frequency, the radiation cannot escape, but because over the relevant scale size of a Cerenkov wavelength the energy of an electron in the gas cannot follow the Boltzmann distribution to the requisite precision to ensure reabsorption always occurs faster than stimulated emission, the emitting gas cools before it reheats. This leaves behind the radiation itself, trapped by the overlying reflective plasma, yet providing enough pressure to maintain quasi-hydrostatic equilibrium. The mass condensation then happens by Rayleigh–Taylor instability, at a rate determined by the outermost radius where Cerenkov radiation can occur. In this way, it is possible to estimate the rate at ≈2 M {sub ⊙} year{sup −1}, consistent with observational inference. Thus, the process appears to provide a natural solution to the longstanding problem of “cooling flow” in clusters; at least it offers another line of defense against cooling and collapse should gas heating by AGN feedback be inadequate in some clusters.

  6. The development of emergency core cooling systems in the PWR, BWR, and HWR Candu type of nuclear power plants

    International Nuclear Information System (INIS)

    Mursid Djokolelono.

    1976-01-01

    Emergency core cooling systems in the PWR, BWR, and HWR-Candu type of nuclear power plant are reviewed. In PWR and BWR the emergency cooling can be catagorized as active high pressure, active low pressure, and a passive one. The PWR uses components of the shutdown cooling system: whereas the BWR uses components of pressure suppression contaiment. HWR Candu also uses the shutdown cooling system similar to the PWR except some details coming out from moderator coolant separation and expensive cost of heavy water. (author)

  7. Minor actinide transmutation in a board type sodium cooled breed and burn reactor core

    International Nuclear Information System (INIS)

    Zheng, Meiyin; Tian, Wenxi; Zhang, Dalin; Qiu, Suizheng; Su, Guanghui

    2015-01-01

    Highlights: • A 1250 MWt board type sodium cooled breed and burn reactor core is further designed. • MCNP–ORIGEN coupled code MCORE is applied to perform neutronics and depletion calculation. • Transmutation efficiency and neutronic safety parameters are compared under different MA weight fraction. - Abstract: In this paper, a board type sodium cooled breed and burn reactor core is further designed and applied to perform minor actinide (MA) transmutation. MA is homogeneously loaded in all the fuel sub-assemblies with a weight fraction of 2.0 wt.%, 4.0 wt.%, 6.0 wt.%, 8.0 wt.%, 10.0 wt.% and 12.0 wt.%, respectively. The transmutation efficiency, transmutation amount, power density distribution, neutron fluence distribution and neutronic safety parameters, such as reactivity, Doppler feedback, void worth and delayed neutron fraction, are compared under different MA weight fraction. Neutronics and depletion calculations are performed based on the self-developed MCNP–ORIGEN coupled code with the ENDF/B-VII data library. In the breed and burn reactor core, a number of breeding sub-assemblies are arranged in the inner core in a board type way (scatter load) to breed, and a number of absorbing sub-assemblies are arranged in the inner side of the outer core to absorb neutrons and reduce power density in this area. All the fuel sub-assemblies (ignition and breeding sub-assemblies) are shuffled from outside in. The core reached asymptotically steady state after about 22 years, and the average and maximum discharged burn-up were about 17.0% and 35.3%, respectively. The transmutation amount increased linearly with the MA weight fraction, while the transmutation rate parabolically varied with the MA weight fraction. Power density in ignition sub-assembly positions increased with the MA weight fraction, while decreased in breeding sub-assembly positions. Neutron fluence decreased with the increase of MA weight fraction. Generally speaking, the core reactivity and void

  8. LMR [liquid metal reactor] centrifugal pump coastdowns

    International Nuclear Information System (INIS)

    Dunn, F.E.; Malloy, D.J.

    1987-01-01

    A centrifugal pump model which describes the interrelationships of the pump discharge flowrate, pump speed, shaft torque and dynamic head has been implemented based upon existing models. Specifically, the pump model is based upon the dimensionless-homologous pump theory of Wylie and Streeter. Given data from a representative pump, homologous theory allows one to predict the transient characteristics of similarly sized pumps. This homologous pump model has been implemented into both the one-dimensional SASSYS-1 systems analysis code and the three-dimensional COMMIX-1A code. Comparisons have been made both against other pump models (CRBR) and actual pump coastdown data (EBR-II and FFTF). Agreement with this homologous pump model has been excellent. Additionally, these comparisons indicate the validity of applying the medium size pump data of Wylie and Streeter to a range of typical LMR centrifugal pumps

  9. Calculation of the neutron noise induced by periodic deformations of a large sodium-cooled fast reactor core

    International Nuclear Information System (INIS)

    Zylbersztejn, F.; Tran, H.N.; Pazsit, I.; Filliatre, P.; Jammes, C.

    2014-01-01

    The subject of this paper is the calculation of the neutron noise induced by small-amplitude stationary radial variations of the core size (core expansion/compaction, also called core flowering) of a large sodium-cooled fast reactor. The calculations were performed on a realistic model of the European Sodium Fast Reactor (ESFR) core with a thermal output of 3600 MW(thermal), using a multigroup neutron noise simulator. The multigroup cross sections and their fluctuations that represent the core geometry changes for the neutron noise calculations were generated by the code ERANOS. The space and energy dependences of the noise source represented by the core expansion/compaction and the induced neutron noise are calculated and discussed. (authors)

  10. Feasibility of maintaining natural convection mode core cooling in research reactor power upgrades

    International Nuclear Information System (INIS)

    Ha, J.J.; Belhadj, M.; Aldemir, T.; Christensen, R.N.

    1987-01-01

    Two operational concerns for natural convection coooled research reactors using plate type fuels are: 1) pool top 16 N activity (PTNA), and 2) nucleate boiling in core channels. The feasibility assessment of a power upgrade while maintaining natural convection mode core cooling requires addressing these operational concerns. Previous studies have shown that: a) The conventional technique for reducing PTNA by plume dispersion may not be effective in a large power upgrade of research reactors with small pools. b) Currently used correlations to predict onset of nucleate boiling (ONB) in thin, rectangular core channels are not valid for low-velocity, upward flows such as encountered in natural convection cooling. The PTNA depends on the velocity distribution in the reactor pool. COMMIX-1A code is used to determine the three-dimensional velocity fields in The Ohio State University Research Reactor (OSURR) pool as a function of varying design conditions, following a power upgrade to 500 kW with LEU fuel. It is shown that a sufficiently deep stagnant water layer can be created below the pool top by properly choosing the disperser flow rate. The ONB heat flux is experimentally determined for channel gaps and upward flow velocities in the range 2mm-4mm and 3-16 cm/sec., respectively. Two alternatives to plume dispersion for reducing PTNA and a new correlation to determine the ONB heat flux in thin, rectangular channels under low-velocity, upward flow conditions are proposed. (Author)

  11. Development of mechanical structure design technology for LMR

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Bong; Lee, Jae Han; Joo, Young Sang [and others

    2000-05-01

    In this project, fundamentals for conceptual design of mechanical structure system for LMR are independently established. The research contents are as follow; at first, conceptual design for SSC, design integration of interfaces, design consistency to keep functions and interfaces by developing arrangement of reactor system and 3 dimensional concept drawings, development and revision of preliminary design requirements and structural design basis, and evaluation of structural integrity for SSC following structural design criteria to check the conceptual design to be proper, at second, development of high temperature structure design and analysis technology and establishment of high temperature structural analysis codes and scheme, development of seismic isolation design concept to reduce seismic design loads to SCC and establishment of seismic analysis codes and scheme.

  12. Development of mechanical structure design technology for LMR

    International Nuclear Information System (INIS)

    Yoo, Bong; Lee, Jae Han; Joo, Young Sang

    2000-05-01

    In this project, fundamentals for conceptual design of mechanical structure system for LMR are independently established. The research contents are as follow; at first, conceptual design for SSC, design integration of interfaces, design consistency to keep functions and interfaces by developing arrangement of reactor system and 3 dimensional concept drawings, development and revision of preliminary design requirements and structural design basis, and evaluation of structural integrity for SSC following structural design criteria to check the conceptual design to be proper, at second, development of high temperature structure design and analysis technology and establishment of high temperature structural analysis codes and scheme, development of seismic isolation design concept to reduce seismic design loads to SCC and establishment of seismic analysis codes and scheme

  13. Core debris cooling with flooded vessel or core-catcher. Heat exchange coefficients under natural convection

    International Nuclear Information System (INIS)

    Rouge, S.; Seiler, J.M.

    1994-09-01

    External cooling by natural water circulation is necessary for molten core retention in LWR lower head or in a core-catcher. Considering the expected heat flux levels (between 0.2 to 1.5 MW/m 2 ) film boiling should be avoided. This rises the question of the knowledge of the level of the critical heat flux for the considered geometries and flow paths. The document proposes a state of the art of the research in this field. Mainly small scale experiments have been performed in a very recent past. These experiments are not sufficient to extrapolate to large scale reactor structures. Limited large scale experimental results exist. These results together with some theoretical investigations show that external cooling by natural water circulation may be considered as a reasonable objective of severe accident R and D. Recently (in fact since the beginning of 1994) new results are available from large scale experiments (CYBL, ULPU 2000, SULTAN). These results indicate that CHF larger than 1 MW/m 2 can be obtained under natural water circulation conditions. In this report, emphasis is given to the pursuit of finding predictive models for the critical heat flux in large, naturally convective channels with thick walls. This theoretical understanding is important for the capability to extrapolate to different situations (various geometries, flow paths....). The outcome of this research should be the ability to calculate Boundary Layer Boiling situations (2D), channelling boiling situations (1D) and related CHF conditions. However, a more straightforward approach can be used for the analysis of specific designs. Today there are already some CHF data available for hemispherical geometry and these data can be used before a mechanistic understanding is achieved

  14. Core Design and Deployment Strategy of Heavy Water Cooled Sustainable Thorium Reactor

    Directory of Open Access Journals (Sweden)

    Naoyuki Takaki

    2012-08-01

    Full Text Available Our previous studies on water cooled thorium breeder reactor based on matured pressurized water reactor (PWR plant technology concluded that reduced moderated core by arranging fuel pins in a triangular tight lattice array and using heavy water as coolant is appropriate for achieving better breeding performance and higher burn-up simultaneously [1–6]. One optimum core that produces 3.5 GW thermal energy using Th-233U oxide fuel shows a breeding ratio of 1.07 and averaged burn-up of about 80 GWd/t with long cycle length of 1300 days. The moderator to fuel volume ratio is 0.6 and required enrichment of 233U for the fresh fuel is about 7%. The coolant reactivity coefficient is negative during all cycles despite it being a large scale breeder reactor. In order to introduce this sustainable thorium reactor, three-step deployment scenario, with intermediate transition phase between current light water reactor (LWR phase and future sustainer phase, is proposed. Both in transition phase and sustainer phase, almost the same core design can be applicable only by changing fissile materials mixed with thorium from plutonium to 233U with slight modification in the fuel assembly design. Assuming total capacity of 60 GWe in current LWR phase and reprocessing capacity of 800 ton/y with further extensions to 1600 ton/y, all LWRs will be replaced by heavy water cooled thorium reactors within about one century then thorium reactors will be kept operational owing to its potential to sustain fissile fuels while reprocessing all spent fuels until exhaustion of massive thorium resource.

  15. Application of consistent fluid added mass matrix to core seismic

    International Nuclear Information System (INIS)

    Koo, K. H.; Lee, J. H.

    2003-01-01

    In this paper, the application algorithm of a consistent fluid added mass matrix including the coupling terms to the core seismic analysis is developed and installed at SAC-CORE3.0 code. As an example, we assumed the 7-hexagon system of the LMR core and carried out the vibration modal analysis and the nonlinear time history seismic response analysis using SAC-CORE3.0. Used consistent fluid added mass matrix is obtained by using the finite element program of the FAMD(Fluid Added Mass and Damping) code. From the results of the vibration modal analysis, the core duct assemblies reveal strongly coupled vibration modes, which are so different from the case of in-air condition. From the results of the time history seismic analysis, it was verified that the effects of the coupled terms of the consistent fluid added mass matrix are significant in impact responses and the dynamic responses

  16. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  17. Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-02-01

    Full Text Available The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF4:Yb3+/Ln3+@CaF2 (Ln = Er, Ho, Tm upconversion nanocrystals (UCNCs based on the newly established host lattice of sodium lutetium fluoride (NaLuF4. We exploited the liquid-solid-solution method to synthesize the NaLuF4 core of pure cubic phase and the thermal decomposition approach to expitaxially grow the calcium fluoride (CaF2 shell onto the core UCNCs, yielding cubic core/shell nanocrystals with a size of 15.6 ± 1.2 nm (the core ~9 ± 0.9 nm, the shell ~3.3 ± 0.3 nm. We showed that those core/shell UCNCs could emit activator-defined multicolor emissions up to about 772 times more efficient than the core nanocrystals due to effective suppression of surface-related quenching effects. Our results provide a new paradigm on heterogeneous core/shell structure for enhanced multicolor upconversion photoluminescence from colloidal nanocrystals.

  18. Study of the mechanisms for the emergency cooling of the core of the Radioisotope Producing Reator (RPR)

    International Nuclear Information System (INIS)

    Lacerda, F.C.

    1987-01-01

    The mechanisms for the emergency cooling of the core of the Radioisotope Producing Reactor (R.P.R.) are studied, in particular the thermal-hydraulic behaviour of the coolant after reactor shut-down. The coolant operates bd convection, and flows downward through the core passing into beel-shaped plenum that encloses the core and proceeding across the primary cooling loop. When the reactor is shut-down, the coolant flow undergoes a transient period until the steady state of natural convection is reached, after which the coolant flows upwards from the lower plenum. A plocking valve will be installed at the exit of the lower plenum, which will automatically shut in case of an accident that will involve the loss of flow in the primary circuit. The present work aims at evaluating the contribution of natural convection by natural recirculation in the core when the blocking valve is close, and via the external coolant circuit when the blocking valve is open. In particular, we study the natural self-regulating mechanisms of extraction of the heat generated by the fission product after reactor shut-down. (author) [pt

  19. Supervisory control in a distributed, hierarchical architecture for a multimodular LMR

    International Nuclear Information System (INIS)

    Otaduy, P.J.; Brittain, C.R.; Rovere, L.A.

    1989-01-01

    This paper describes the directions and present status of the research in supervisory control for multimodular nuclear plants being conducted at Oak Ridge National Laboratory (ORNL) as part of US Department of Energy's (DOE) Advanced Controls Program. First, the hierarchical supervisory control structure envisioned for a Power Reactor Inherently Safe Module (PRISM) multimodular LMR is discussed. Next, the architecture of the supervisory module closest to the process actuators and its implementation for demonstration in a network of CPU's are presented. 12 refs., 3 figs

  20. Reactor core of light water-cooled reactor

    International Nuclear Information System (INIS)

    Miwa, Jun-ichi; Aoyama, Motoo; Mochida, Takaaki.

    1996-01-01

    In a reactor core of a light water cooled reactor, the center of the fuel rods or moderating rods situated at the outermost circumference among control rods or moderating rods are connected to divide a lattice region into an inner fuel region and an outer moderator region. In this case, the area ratio of the moderating region to the fuel region is determined to greater than 0.81 for every cross section of the fuel region. The moderating region at the outer side is increased relative to the fuel rod region at the inner side while keeping the lattice pitch of the fuel assembly constant, thereby suppressing the increase of an absolute value of a void reactivity coefficient which tends to be caused when using MOX fuels as a fuel material, by utilizing neutron moderation due to a large quantity of coolants at the outer side of the fuel region. The void reactivity coefficient can be made substantially equal with that of uranium fuel assembly without greatly reducing a plutonium loading amount or without greatly increasing linear power density. (N.H.)

  1. Core cooling and thermal responses during whole-head, facial, and dorsal immersion in 17 degrees C water.

    Science.gov (United States)

    Pretorius, Thea; Gagnon, Dominique D; Giesbrecht, Gordon G

    2010-10-01

    This study isolated the effects of dorsal, facial, and whole-head immersion in 17 degrees C water on peripheral vasoconstriction and the rate of body core cooling. Seven male subjects were studied in thermoneutral air (approximately 28 degrees C). On 3 separate days, they lay prone or supine on a bed with their heads inserted through the side of an adjustable immersion tank. Following 10 min of baseline measurements, the water level was raised such that the water immersed the dorsum, face, or whole head, with the immersion period lasting 60 min. During the first 30 min, the core (esophageal) cooling rate increased from dorsum (0.29 ± 0.2 degrees C h-1) to face (0.47 ± 0.1 degrees C h-1) to whole head (0.69 ± 0.2 degrees C h(-1)) (p whole-head immersion (114 ± 52% h(-1)) than in either facial (51 ± 47% h-1) or dorsal (41 ± 55% h(-1)) immersion (p whole-head (120.5 ± 13 kJ), facial (86.8 ± 17 kJ), and dorsal (46.0 ± 11 kJ) immersion (p whole head elicited a higher rate of vasoconstriction, the face did not elicit more vasoconstriction than the dorsum. Rather, the progressive increase in core cooling from dorsal to facial to whole-head immersion simply correlates with increased heat loss.

  2. Subchannel analysis of a small ultra-long cycle fast reactor core

    International Nuclear Information System (INIS)

    Seo, Han; Kim, Ji Hyun; Bang, In Cheol

    2014-01-01

    Highlights: • The UCFR-100 is small-sized one of 60 years long-life nuclear reactors without refueling. • The design safety limits of the UCFR-100 are evaluated using MATRA-LMR. • The subchannel results are below the safety limits of general SFR design criteria. - Abstract: Thermal-hydraulic evaluation of a small ultra-long cycle fast reactor (UCFR) core is performed based on existing safety regulations. The UCFR is an innovative reactor newly designed with long-life core based on the breed-and-burn strategy and has a target electric power of 100 MWe (UCFR-100). Low enriched uranium (LEU) located at the bottom region of the core play the role of igniter to operate the UCFR for 60 years without refueling. A metallic form is selected as a burning fuel region material after the LEU location. HT-9 and sodium are used as cladding and coolant materials, respectively. In the present study, MATRA-LMR, subchannel analysis code, is used for evaluating the safety design limit of the UCFR-100 in terms of fuel, cladding, and coolant temperature distributions in the core as design criteria of a general fast reactor. The start-up period (0 year of operation), the middle of operating period (30 years of operation), and the end of operating cycle (60 years of operation) are analyzed and evaluated. The maximum cladding surface temperature (MCST) at the BOC (beginning of core life) is 498 °C on average and 551 °C when considering peaking factor, while the MCST at the MOC (middle of core life) is 498 °C on average and 548 °C in the hot channel, respectively, and the MCST at the EOC (end of core life) is 499 °C on average and 538 °C in the hot channel, respectively. The maximum cladding surface temperature over the long cycle is found at the BOC due to its high peaking factor. It is found that all results including fuel rods, cladding, and coolant exit temperature are below the safety limit of general SFR design criteria

  3. Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

    Directory of Open Access Journals (Sweden)

    Li Yuquan

    2017-02-01

    Full Text Available The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA, the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility—the advanced core-cooling mechanism experiment (ACME—was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA transient. Two comparison test groups—a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI line break—were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the

  4. Comparative experiments to assess the effects of accumulator nitrogen injection on passive core cooling during small break LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Li, YuQuan; Hao, Botao; Zhong, Jia; Wan Nam [State Nuclear Power Technology R and D Center, South Park, Beijing Future Science and Technology City, Beijing (China)

    2017-02-15

    The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility—the advanced core-cooling mechanism experiment (ACME)—was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups—a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break—were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative

  5. Multi-dimensional approach of MARS-LMR for the analysis of Phenix End-of-Life natural circulation test

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Kwi Seok; Chang, Won Pyo; Lee, Kwi Lim

    2012-01-01

    Phenix is one of the important prototype sodium-cooled fast reactors (SFR) in nuclear reactor development history. It had been operated successfully for 35 years by the French Commissariat a l'energie atomique (CEA) and the Electricite de France (EdF) achieving its original objectives of demonstrating a fast breeder reactor technology and of playing the role of irradiation facility for innovative fuels and materials. After its final shutdown in 2009, CEA launched the Phenix End-of-life (EOL) test program. It provided a unique opportunity to generate reliable test data which is inevitable in the validation and verification of a SFR system analysis code. KAERI joined this international collaboration program of IAEA CRP and has performed the pretest analysis and post-test analysis utilizing the one-dimensional modeling of the MARS-LMR code, which had been developed by KAERI for the transient analysis of SFR systems. Through the previous studies, it has been identified that there are some limitations in the modeling of complicated thermal-hydraulic behaviors in the large pool volumes with the one-dimensional modeling. Recently, KAERI performed the analysis of Phenix EOL natural circulation test with multi-dimensional pool modeling, which is detailed below

  6. Multi-dimensional approach of MARS-LMR for the analysis of Phenix End-of-Life natural circulation test

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Yong; Ha, Kwi Seok; Chang, Won Pyo; Lee, Kwi Lim [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Phenix is one of the important prototype sodium-cooled fast reactors (SFR) in nuclear reactor development history. It had been operated successfully for 35 years by the French Commissariat a l'energie atomique (CEA) and the Electricite de France (EdF) achieving its original objectives of demonstrating a fast breeder reactor technology and of playing the role of irradiation facility for innovative fuels and materials. After its final shutdown in 2009, CEA launched the Phenix End-of-life (EOL) test program. It provided a unique opportunity to generate reliable test data which is inevitable in the validation and verification of a SFR system analysis code. KAERI joined this international collaboration program of IAEA CRP and has performed the pretest analysis and post-test analysis utilizing the one-dimensional modeling of the MARS-LMR code, which had been developed by KAERI for the transient analysis of SFR systems. Through the previous studies, it has been identified that there are some limitations in the modeling of complicated thermal-hydraulic behaviors in the large pool volumes with the one-dimensional modeling. Recently, KAERI performed the analysis of Phenix EOL natural circulation test with multi-dimensional pool modeling, which is detailed below

  7. Spontaneous stabilization of HTGRs without reactor scram and core cooling—Safety demonstration tests using the HTTR: Loss of reactivity control and core cooling

    Energy Technology Data Exchange (ETDEWEB)

    Takamatsu, Kuniyoshi, E-mail: takamatsu.kuniyoshi@jaea.go.jp; Yan, Xing L.; Nakagawa, Shigeaki; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-05-01

    It is well known that a High-Temperature Gas-cooled Reactor (HTGR) has superior safety characteristics; for example, an HTGR has a self-control system that uses only physical phenomena against various accidents. Moreover, the large heat capacity and low power density of the core result in very slow temperature transients. Therefore, an HTGR serves inherently safety features against loss of core cooling accidents such as the Tokyo Electric Power Co., Inc. (TEPCO)’s Fukushima Daiichi Nuclear Power Station (NPS) disaster. Herein we would like to demonstrate the inherent safety features using the High-Temperature Engineering Test Reactor (HTTR). The HTTR is the first HTGR in Japan with a thermal power of 30 MW and a maximum reactor outlet coolant temperature of 950 °C; it was built at the Oarai Research and Development Center of Japan Atomic Energy Agency (JAEA). In this study, an all-gas-circulator trip test was analyzed as a loss of forced cooling (LOFC) test with an initial reactor power of 9 MW to demonstrate LOFC accidents. The analytical results indicate that reactor power decreases from 9 MW to 0 MW owing to the negative reactivity feedback effect of the core, even if the reactor shutdown system is not activated. The total reactivity decreases for 2–3 h and then gradually increases in proportion to xenon reactivity; therefore, the HTTR achieves recritical after an elapsed time of 6–7 h, which is different from the elapsed time at reactor power peak occurrence. After the reactor power peak occurs, the total reactivity oscillates several times because of the negative reactivity feedback effect and gradually decreases to zero. Moreover, the new conclusions are as follows: the greater the amount of residual heat removed from the reactor core, the larger the stable reactor power after recriticality owing to the heat balance of the reactor system. The minimum reactor power and the reactor power peak occurrence are affected by the neutron source. The greater the

  8. Thermohydraulic characteristics analysis of natural convective cooling mode on the steady state condition of upgraded JRR-3 core, using COOLOD-N code

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Watanabe, Shukichi; Ando, Hiroei; Sudo, Yukio; Ikawa, Hiromasa.

    1987-03-01

    This report describes the results of the steady state thermohydraulic analysis of upgraded JRR-3 core under natural convective cooling mode, using COOLOD-N code. In the code, function to calculate flow-rate under natural convective cooling mode, and a heat transfer package have been newly added to the COOLOD code which has been developed in JAERI. And this report describes outline of the COOLOD-N code. The results of analysis show that the thermohydraulics of upgraded JRR-3 core, under natural convective cooling mode have enough margine to ONB temperature, DNB heat flux and occurance of blisters in fuel meats, which are design criterion of upgraded JRR-3. (author)

  9. Sodium-cooled fast reactor (SFR) fuel assembly design with graphite-moderating rods to reduce the sodium void reactivity coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Hyuck; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr; Park, Hae Min; Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr

    2014-12-15

    Highlights: • The graphite rod-inserted SFR fuel assembly is proposed to achieve low sodium void reactivity. • The neutronics/thermal-hydraulics analyses are performed for the proposed SFR cores. • The sodium void reactivity is improved about 960–1030 pcm compared to reference design. - Abstract: The concept of a graphite-moderating rod-inserted sodium-cooled fast reactor (SFR) fuel assembly is proposed in this study to achieve a low sodium void reactivity coefficient. Using this concept, two types of SFR cores are analyzed; the proposed SFR type 1 core has new SFR fuel assemblies at the inner/mid core regions while the proposed SFR type 2 core has a B{sub 4}C absorber sandwich in the middle of the active core region as well as new SFR fuel assemblies at the inner/mid core regions. For the proposed SFR core designs, neutronics and thermal-hydraulic analyses are performed using the DIF3D, REBUS3, and the MATRA-LMR codes. In the neutronics analysis, the sodium void reactivity coefficient is obtained in various void situations. The two types of proposed core designs reduce the sodium void reactivity coefficient by about 960–1030 pcm compared to the reference design. However, the TRU enrichment for the proposed SFR core designs is increased. In the thermal hydraulic analysis, the temperature distributions are calculated for the two types of proposed core designs and the mass flow rate is optimized to satisfy the design constraints for the highest power generating assembly. The results of this study indicate that the proposed SFR assembly design concept, which adopts graphite-moderating rods which are inserted into the fuel assembly, can feasibly minimize the sodium void reactivity coefficient. Single TRU enrichment and an identical fuel slug diameter throughout the SFR core are also achieved because the radial power peak can be flattened by varying the number of moderating rods in each core region.

  10. Core catcher for nuclear reactor core meltdown containment

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Bowman, F.L.

    1978-01-01

    A bed of graphite particles is placed beneath a nuclear reactor core outside the pressure vessel but within the containment building to catch the core debris in the event of failure of the emergency core cooling system. Spray cooling of the debris and graphite particles together with draining and flooding of coolant fluid of the graphite bed is provided to prevent debris slump-through to the bottom of the bed

  11. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.

    Science.gov (United States)

    Christian, Meganne L; Aguey-Zinsou, Kondo-François

    2012-09-25

    Owing to its high storage capacity (10.8 mass %), sodium borohydride (NaBH(4)) is a promising hydrogen storage material. However, the temperature for hydrogen release is high (>500 °C), and reversibility of the release is unachievable under reasonable conditions. Herein, we demonstrate the potential of a novel strategy leading to high and stable hydrogen absorption/desorption cycling for NaBH(4) under mild pressure conditions (4 MPa). By an antisolvent precipitation method, the size of NaBH(4) particles was restricted to a few nanometers (hydrogen at 400 °C. Further encapsulation of these nanoparticles upon reaction of nickel chloride at their surface allowed the synthesis of a core--shell nanostructure, NaBH(4)@Ni, and this provided a route for (a) the effective nanoconfinement of the melted NaBH(4) core and its dehydrogenation products, and (b) reversibility and fast kinetics owing to short diffusion lengths, the unstable nature of nickel borohydride, and possible modification of reaction paths. Hence at 350 °C, a reversible and steady hydrogen capacity of 5 mass % was achieved for NaBH(4)@Ni; 80% of the hydrogen could be desorbed or absorbed in less than 60 min, and full capacity was reached within 5 h. To the best of our knowledge, this is the first time that such performances have been achieved with NaBH(4). This demonstrates the potential of the strategy in leading to major advancements in the design of effective hydrogen storage materials from pristine borohydrides.

  12. Dual functional NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ core-shell nanoparticles for cell temperature sensing and imaging

    Science.gov (United States)

    Shi, Zengliang; Duan, Yue; Zhu, Xingjun; Wang, Qiwei; Li, DongDong; Hu, Ke; Feng, Wei; Li, Fuyou; Xu, Chunxiang

    2018-03-01

    Lanthanide-doped up-conversion nanoparticles (UCNPs) provide a remote temperature sensing approach to monitoring biological microenvironments. In this research, the UCNPs of NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ with hexagonal (β)-phase were synthesized and applied in cell temperature sensing as well as imaging after surface modification with meso-2, 3-dimercaptosuccinic acid. In the core-shell UCNPs, Yb3+ ions were introduced as energy transfer media between sensitizers of Nd3+ and activators of Er3+ to improve Er3+emission and prevent their quenching behavior due to multiple energy levels of Nd3+. Under the excitations of 808 nm and 980 nm lasers, the NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ nanoparticles exhibited an efficient green band with two emission peaks at 525 nm and 545 nm, respectively, which originated from the transitions of 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 for Er3+ ions. We demonstrate that an occurrence of good logarithmic linearity exists between the intensity ratio of these two emission peaks and the reciprocal of the inside or outside temperature of NIH-3T3 cells. A better thermal stability is proved through temperature-dependent spectra with a heating-cooling cycle. The obtained viability of NIH-3T3 cells is greater than 90% after incubations of about 12 and 24 (h), and they possess a lower cytotoxicity of UCNPs. This work provides a method for monitoring the cell temperature and its living state from multiple dimensions including temperature response, cell images and visual up-conversion fluorescent color.

  13. Mapping the particle acceleration in the cool core of the galaxy cluster RX J1720.1+2638

    International Nuclear Information System (INIS)

    Giacintucci, S.; Markevitch, M.; Brunetti, G.; Venturi, T.; ZuHone, J. A.; Mazzotta, P.; Bourdin, H.

    2014-01-01

    We present new deep, high-resolution radio images of the diffuse minihalo in the cool core of the galaxy cluster RX J1720.1+2638. The images have been obtained with the Giant Metrewave Radio Telescope at 317, 617, and 1280 MHz and with the Very Large Array at 1.5, 4.9, and 8.4 GHz, with angular resolutions ranging from 1'' to 10''. This represents the best radio spectral and imaging data set for any minihalo. Most of the radio flux of the minihalo arises from a bright central component with a maximum radius of ∼80 kpc. A fainter tail of emission extends out from the central component to form a spiral-shaped structure with a length of ∼230 kpc, seen at frequencies 1.5 GHz and below. We find indication of a possible steepening of the total radio spectrum of the minihalo at high frequencies. Furthermore, a spectral index image shows that the spectrum of the diffuse emission steepens with increasing distance along the tail. A striking spatial correlation is observed between the minihalo emission and two cold fronts visible in the Chandra X-ray image of this cool core. These cold fronts confine the minihalo, as also seen in numerical simulations of minihalo formation by sloshing-induced turbulence. All these observations favor the hypothesis that the radio-emitting electrons in cluster cool cores are produced by turbulent re-acceleration.

  14. Surrogates based multi-criteria predesign methodology of Sodium-cooled Fast Reactor cores – Application to CFV-like cores

    Energy Technology Data Exchange (ETDEWEB)

    Fabbris, Olivier [CEA DEN/DER/SESI, 13108 Saint-Paul-Lez-Durance (France); Dardour, Saied, E-mail: saied.dardour@cea.fr [CEA DEN/DER/SESI, 13108 Saint-Paul-Lez-Durance (France); Blaise, Patrick [CEA DEN/DER/SPEX, 13108 Saint-Paul-Lez-Durance (France); Ferrasse, Jean-Henry [Aix-Marseille Université, CNRS, ECM, M2P2 UMR 7340, 13451 Marseille (France); Saez, Manuel [CEA DEN/DER/SESI, 13108 Saint-Paul-Lez-Durance (France)

    2016-08-15

    Highlights: • We developed an ERANOS calculation scheme to evaluate the neutronics of CFV cores. • We used this scheme to simulate a number if cores within a predefined study space. • Simulation results were used to build surrogate models describing CFV neutronics. • These models were used to carry on global sensitivity analyses. • The methodology helped identify the most important core design parameters. - Abstract: The Sodium-cooled Fast Reactor (SFR) core predesign process is commonly realized on the basis of expert advices and local parametric studies. As such, in-deep knowledge of physical phenomena avoids an important number of expensive simulations. However, the study space is explored only partially. To ease the computational burden metamodels, or surrogate models, can be used, to quickly evaluate the performances of a wide set of different cores, individually defined by a set of parameters (pellet diameter, fissile height…), in the study space. This paper presents the development of a simplified neutronics ERANOS reference core calculation scheme that is then implemented in the construction of the Design of Experiment (DOE) database. The surrogate models for SFR CFV-like cores performances are developed, biases and uncertainties are quantified against the CFV-v1 version. Global Sensitivity Analysis also allowed highlighting antagonist performances for the design and to propose two alternative core configurations. A broadened application of the method with an optimization of a CFV-like core is also detailed. The Pareto front of the seven selected performance parameters has been studied using eleven surrogate models, based on Artificial Neural Network (ANN). The optimization demonstrates that the CFV-v1, designed using Best Estimate codes, under given performance constraints, is Pareto optimal: no other configuration is highlighted from the Multi-Objective Optimization (MOO) study. Further MOO analysis, including a specific study on impact of new

  15. Surrogates based multi-criteria predesign methodology of Sodium-cooled Fast Reactor cores – Application to CFV-like cores

    International Nuclear Information System (INIS)

    Fabbris, Olivier; Dardour, Saied; Blaise, Patrick; Ferrasse, Jean-Henry; Saez, Manuel

    2016-01-01

    Highlights: • We developed an ERANOS calculation scheme to evaluate the neutronics of CFV cores. • We used this scheme to simulate a number if cores within a predefined study space. • Simulation results were used to build surrogate models describing CFV neutronics. • These models were used to carry on global sensitivity analyses. • The methodology helped identify the most important core design parameters. - Abstract: The Sodium-cooled Fast Reactor (SFR) core predesign process is commonly realized on the basis of expert advices and local parametric studies. As such, in-deep knowledge of physical phenomena avoids an important number of expensive simulations. However, the study space is explored only partially. To ease the computational burden metamodels, or surrogate models, can be used, to quickly evaluate the performances of a wide set of different cores, individually defined by a set of parameters (pellet diameter, fissile height…), in the study space. This paper presents the development of a simplified neutronics ERANOS reference core calculation scheme that is then implemented in the construction of the Design of Experiment (DOE) database. The surrogate models for SFR CFV-like cores performances are developed, biases and uncertainties are quantified against the CFV-v1 version. Global Sensitivity Analysis also allowed highlighting antagonist performances for the design and to propose two alternative core configurations. A broadened application of the method with an optimization of a CFV-like core is also detailed. The Pareto front of the seven selected performance parameters has been studied using eleven surrogate models, based on Artificial Neural Network (ANN). The optimization demonstrates that the CFV-v1, designed using Best Estimate codes, under given performance constraints, is Pareto optimal: no other configuration is highlighted from the Multi-Objective Optimization (MOO) study. Further MOO analysis, including a specific study on impact of new

  16. Flow distribution experimental study on the emergency core cooling system of the IEA-R1m - IPEN-CNEN/SP - Brazil

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Baptista Filho, Benedito Dias; Ting, Daniel Kao Sun

    1999-01-01

    This paper presents a brief description of Emergency Core Cooling System designed by the IEA-R1m Reactor and the experimental results of flow distribution over the core. Several parameters were evaluated, such as: relative position of spray header to the reactor core; type and quantity of spray nozzles; spray nozzles position on spray header; and total spray flow. The main conclusions are presented. (author)

  17. Two-phase flow experiments in emergency core cooling feed through the hot leg for developing numerical models

    International Nuclear Information System (INIS)

    Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.

    2006-01-01

    When a leakage, a 'loss-of-coolant accident', occurs in a light water reactor, the emergency cooling system is able to supply large amounts of coolant to ensure residual heat removal. This supply can be routed through a special emergency cooling pipe, the 'scoop', into the horizontal section of the main coolant pipe, the 'hot leg'. At the same time, hot steam from the superheated, partly voided core flows against the coolant. This gives rise to a two-phase flow in the opposite direction. A factor of primary interest in this situation is whether the coolant supplied by the emergency cooling system will reach the reactor core. The research project is being conducted in order to compute the rate of water supply by numerical methods. The WENKA test facility has been designed and built at the Karlsruhe Research Center to verify numerical calculations. It can be used to study the fluid dynamics phenomena expected to arise in emergency coolant feeding into the hot leg; the necessary local data can be determined experimentally. An extensive database for validating the numerical calculations is then available to complete the experimental work. (orig.)

  18. A Feasibility Study on Core Cooling of Reduced-Moderation PWR for the Large Break LOCA

    International Nuclear Information System (INIS)

    Hiroyuki Yoshida; Akira Ohnuki; Hajime Akimoto

    2002-01-01

    A design study of a reduced-moderation water reactor (RMWR) with tight lattice core is being carried out at the Japan Atomic Energy Research Institute (JAERI) as one candidate for future reactors. The concept is developed to achieve a conversion ratio greater than unity using the tight lattice core (volume ratio of moderator to fuel is around 0.5 and the gap spacing between the fuel rods is remarkably narrower than in a reactor currently operated). Under such tight configuration, the core thermal margin becomes smaller and should be evaluated in a normal operation and also during the reflood phase in a large break loss-of-coolant accident (LBLOCA) for PWR type reactors. In this study, we have performed a feasibility evaluation on core cooling of reduced moderation PWR for the LBLOCA (200% break). The evaluation was performed for the primary system after the break by the REFLA/TRAC code. The core thermal output of the reduced moderation PWR is 2900 MWt, the gap between adjacent fuel rods is 1 mm, and heavy water is used as the moderator and coolant. The present design adopts seed fuel assemblies (MOX fuel) and several blanket fuel assemblies. In the blanket fuel assemblies, power density is lower than that of the seed fuel assemblies. Then, we set a channel box to each fuel assembly in order to adjust the flow rate in each assembly, because the possibility that the coolant boils in the seed fuel assemblies is very high. The pressure vessel diameter is bigger in comparison with a current PWR and core height is smaller than the current one. The current 4-loop PWR system is used, and, however, to fit into the bigger pressure vessel volume (about 1.5 times), we set up the capacity of the accumulator (1.5 times of the current PWR). Although the maximum clad temperature reached at about 1200 K in the position of 0.6 m from the lower core support plate, it is sufficiently lower than the design criteria of the current PWR (1500 K). The core cooling of the reduced moderation

  19. Coolant void effect investigation - case of a na-cooled fast reactor

    International Nuclear Information System (INIS)

    Glinatsis, G.; Gugiu, D.

    2013-01-01

    In the frame of the last EURATOM-FP7 Program, a large sized Sodium-cooled FR (SFR) has been studied. Mixed carbides fuel (U, Pu)C has been adopted for the backup core solution and important work has been also performed in order to obtain an ''optimised'' backup configuration ''close'' to the reference one, which is fueled by mixed oxides fuel (U, Pu)Ox. The peculiarity of both core designs (the reference configuration and the optimised backup configuration) is the adoption of a 60 cm Plenum zone in the upper part of each fuel assembly (FA), that is filled by coolant, in order to mitigate (when emptied) the core positive coolant void effect. This paper presents some results of a detailed study of the coolant void effect for the above SFR with mixed carbides core. Many aspects, like geometric heterogeneity, the burnup state, the operating conditions, etc., have been taken into consideration in order to obtain information about the ''propagation'' and the behaviour of the coolant void effect itself. The performed study investigates also the coolant void effect consequences on some reactivity coefficients, which are important for a safe behaviour of the reactor. The investigation consisted in the steady state simulations of the reactor on different operating conditions in Monte Carlo approach. (authors)

  20. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  1. Concept Design of a Gravity Core Cooling Tank as a Passive Residual Heat Removal System for a Research Reactor

    International Nuclear Information System (INIS)

    Lee, Kwonyeong; Chi, Daeyoung; Kim, Seong Hoon; Seo, Kyoungwoo; Yoon, Juhyeon

    2014-01-01

    A core downward flow is considered to use a plate type fuel because it is benefit to install the fuel in the core. If a flow inversion from a downward to upward flow in the core by a natural circulation is introduced within a high heat flux region of residual heat, the fuel fails instantly due to zero flow. Therefore, the core downward flow should be sufficiently maintained until the residual heat is in a low heat flux region. In a small power research reactor, inertia generated by a flywheel of the PCP can maintain a downward flow shortly and resolve the problem of a flow inversion. However, a high power research reactor more than 10 MW should have an additional method to have a longer downward flow until a low heat flux. Usually, other research reactors have selected an active residual heat removal system as a safety class. But, an active safety system is difficult to design and expensive to construct. A Gravity Core Cooling Tank (GCCT) beside the reactor pool with a Residual Heat Removal Pipe connecting two pools was developed and designed preliminarily as a passive residual heat removal system for an open-pool type research reactor. It is very simple to design and cheap to construct. Additionally, a non-safety, but active residual heat removal system is applied with the GCCT. It is a Pool Water Cooling and Purification System. It can improve the usability of the research reactor by removing the thermal waves, and purify the reactor pool, the Primary Cooling System, and the GCCT. Moreover, it can reduce the pool top radiation level

  2. Recent Advances on the Understanding of Structural and Composition Evolution of LMR Cathodes for Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA (United States); Zheng, Jianming; Xiao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Wang, Chong-Min, E-mail: chongmin.wang@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA (United States); Zhang, Ji-Guang, E-mail: chongmin.wang@pnnl.gov [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-06-08

    Lithium-and-manganese-rich (LMR) cathode materials have been regarded as very promising for lithium (Li)-ion battery applications. However, their practical application is still limited by several barriers such as their limited electrochemical stability and rate capability. In this work, we present recent progress on the understanding of structural and compositional evolution of LMR cathode materials, with an emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li[Li{sub 0.2}Ni{sub 0.2}Mn{sub 0.6}]O{sub 2} as a typical example, we clearly illustrate the structural characteristics of pristine materials and their dependence on the material-processing history, cycling-induced structural degradation/chemical partition, and their correlation with electrochemical performance degradation. The fundamental understanding that resulted from this work may also guide the design and preparation of new cathode materials based on the ternary system of transitional metal oxides.

  3. Numerical simulation of passive heat removal under severe core meltdown scenario in a sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    David, Dijo K.; Mangarjuna Rao, P., E-mail: pmr@igcar.gov.in; Nashine, B.K.; Selvaraj, P.; Chellapandi, P.

    2015-09-15

    Highlights: • PAHR in SFR under large core relocation to in-vessel core catcher is numerically analyzed. • A 1-D thermal conduction model and a 2-D axisymmetric CFD model are developed for turbulent natural convection phenomenon. • The side pool (cold pool) was found out to be instrumental in storing heat and dissipating it to the heat sink. • Single tray type in-vessel core catcher is found to be thermally effective under one-fourth core relocation. - Abstract: A sequence of highly unlikely events leading to significant meltdown of the Sodium cooled Fast Reactor (SFR) core can cause the failure of reactor vessel if the molten fuel debris settles at the bottom of the reactor main vessel. To prevent this, pool type SFRs are usually provided with an in-vessel core catcher above the bottom wall of the main vessel. The core catcher should collect, retain and passively cool these debris by facilitating decay heat removal by natural convection. In the present work, the heat removal capability of the existing single tray core catcher design has been evaluated numerically by analyzing the transient development of natural convection loops inside SFR pool. A 1-D heat diffusion model and a simplified 2-D axi-symmetric CFD model are developed for the same. Maximum temperature of the core catcher plate evaluated for different core meltdown scenarios using these models showed that there is much higher heat removal potential for single tray in-vessel SFR core catcher compared to the design basis case of melting of 7 subassemblies under total instantaneous blockage of a subassembly. The study also revealed that the side pool of cold sodium plays a significant role in decay heat removal. The maximum debris bed temperature attained during the initial hours of PAHR does not depend much on when the Decay Heat Exchanger (DHX) gets operational, and it substantiates the inherent safety of the system. The present study paves the way for better understanding of the thermal

  4. Gas-cooled Fast Reactor (GFR) fuel and In-Core Fuel Management

    International Nuclear Information System (INIS)

    Weaver, K.D.; Sterbentz, J.; Meyer, M.; Lowden, R.; Hoffman, E.; Wei, T.Y.C.

    2004-01-01

    The Gas-Cooled Fast Reactor (GCFR) has been chosen as one of six candidates for development as a Generation IV nuclear reactor based on: its ability to fully utilize fuel resources; minimize or reduce its own (and other systems) actinide inventory; produce high efficiency electricity; and the possibility to utilize high temperature process heat. Current design approaches include a high temperature (2 850 C) helium cooled reactor using a direct Brayton cycle, and a moderate temperature (550 C - 650 C) helium or supercritical carbon dioxide (S-CO 2 ) cooled reactor using direct or indirect Brayton cycles. These design choices have thermal efficiencies that approach 45% to 50%, and have turbomachinery sizes that are much more compact compared to steam plants. However, there are challenges associated with the GCFR, which are the focus of current research. This includes safety system design for decay heat removal, development of high temperature/high fluence fuels and materials, and development of fuel cycle strategies. The work presented here focuses on the fuel and preliminary in-core fuel management, where advanced ceramic-ceramic (cercer) dispersion fuels are the main focus, and average burnups to 266 M Wd/kg appear achievable for the reference Si C/(U,TRU)C block/plate fuel. Solid solution (pellet) fuel in composite ceramic clad (Si C/Si C) is also being considered, but remains as a backup due to cladding fabrication challenges, and high centerline temperatures in the fuel. (Author)

  5. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    International Nuclear Information System (INIS)

    DeVault, G.P.; Bell, C.R.

    1985-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed

  6. Thermohydraulics of emergency core cooling in light water reactors

    International Nuclear Information System (INIS)

    1989-10-01

    This report, by a group of experts of the OECD-NEA Committee on the Safety of Nuclear Installations, reviews the current state-of-knowledge in the field of emergency core cooling (ECC) for design-basis, loss-of-coolant accidents (LOCA) and core uncover transients in pressurized- and boiling-water reactors. An overview of the LOCA scenarios and ECC phenomenology is provided for each type of reactor, together with a brief description of their ECC systems. Separate-effects and integral-test facilities, which contribute to understanding and assessing the phenomenology, are reviewed together with similarity and scaling compromises. All relevant LOCA phenomena are then brought together in the form of tables. Each phenomenon is weighted in terms of its importance to the course of a LOCA, and appraised for the adequacy of its data base and analytical modelling. This qualitative procedure focusses attention on the modelling requirements of dominant LOCA phenomena and the current capabilities of the two-fluid models in two-phase flows. This leads into the key issue with ECC: quantitative code assessment and the application of system codes to predict with a well defined uncertainty the behaviour of a nuclear power plant. This issue, the methodologies being developed for code assessment and the question of how good is good enough are discussed in detail. Some general conclusions and recommendations for future research activities are provided

  7. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  8. Neutronic design for a 100MWth Small modular natural circulation lead or lead-alloy cooled fast reactors core

    International Nuclear Information System (INIS)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q.

    2015-01-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW th natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  9. Thermal-hydraulic analysis of the OSURR pool for power upgrade with natural convection core cooling

    International Nuclear Information System (INIS)

    Ha, J.J.; Aldemir, T.

    1988-01-01

    Natural convection mode core cooling will be maintained in the LEU conversion/power upgrade of The Ohio State University Research Reactor (OSURR) to 250-500 kW. The pool water will be cooled by a water-glycol-air and a water-water heat exchanger. A plume disperser will be installed in the pool to minimize evaporation from the pool top and to maintain the dose rate due to N-16 activity within allowable levels. The minimization of the pool heat removal system operation costs necessitates maximizing the inlet temperature to the water-glycol-air heat exchanger. For the maximization process, the change in the pool temperature and velocity fields have to be investigated as a function of: location and orientation of the heat removal system components and the plume disperser in the pool; mass flow rate through the plume disperser. The velocity and temperature fields in the pool are determined using COMMIX-1A. The computational system model accounts for the presence of all the pool components (i.e. core, thermal column, beam ports, ion chamber, guide tubes, rabbit, neutron source etc.). The results show that: (1) Both the heat removal system inlet point and the plume disperser have to be located close to the top of the core. (2) Using a disperser system consisting of several pipes may be more feasible than a single unit. (3) For high disperser flow, the disperser jet has to be almost parallel to the top of the core to prevent flow reversal in coolant channels. (4) More than one disperser system may be necessary to create an inversion layer in the pool

  10. Real-time LMR control parameter generation using advanced adaptive synthesis

    International Nuclear Information System (INIS)

    King, R.W.; Mott, J.E.

    1990-01-01

    The reactor ''delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups. A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to +/-1%. 5 refs., 7 figs

  11. A fast converging CFD model for thermal hydraulic analysis of gas cooled reactor cores

    International Nuclear Information System (INIS)

    Chen, Gary; Anghaie, Samim

    1999-01-01

    A computational fluid dynamics (CFD) approach to the solution of Navier-Stokes equations for the thermal and flow fields of gas cooled reactor cores is presented. An implicit-explicit MacCormack method based on finite volume discretization scheme, in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve axisymmetric, thin-layer Navier-Stokes equations. This numerical method requires only the inversion of block bidiagonal systems rather than block tridiagonal systems, thus yielding savings in computer time and storage requirements. A two-layer algebraic eddy viscosity turbulence model is used in this study. The effects of turbulence are simulated in terms of the eddy viscosity coefficient, which is calculated for an inner and an outer region separately. An enthalpy-rebalancing scheme is implemented to allow the convergence solutions to be obtained with the application of a wall heat flux. The detailed computational analysis developed in this work is used to evaluate many different Nusselt number equations, property corrections, and axial distance corrections. The calculation based on this CFD model is compared with other published results. The good agreement indicates the usefulness of the presented model for the prediction of flow and temperature distributions for gas cooled reactor cores. (author)

  12. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes

    International Nuclear Information System (INIS)

    Stauff, N.E.; Kim, T.K.; Taiwo, T.A.; Buiron, L.; Rimpault, G.; Brun, E.; Lee, Y.K.; Pataki, I.; Kereszturi, A.; Tota, A.; Parisi, C.; Fridman, E.; Guilliard, N.; Kugo, T.; Sugino, K.; Uematsu, M.M.; Ponomarev, A.; Messaoudi, N.; Lin Tan, R.; Kozlowski, T.; Bernnat, W.; Blanchet, D.; Brun, E.; Buiron, L.; Fridman, E.; Guilliard, N.; Kereszturi, A.; Kim, T.K.; Kozlowski, T.; Kugo, T.; Lee, Y.K.; Lin Tan, R.; Messaoudi, N.; Parisi, C.; Pataki, I.; Ponomarev, A.; Rimpault, G.; Stauff, N.E.; Sugino, K.; Taiwo, T.A.; Tota, A.; Uematsu, M.M.; Monti, S.; Yamaji, A.; Nakahara, Y.; Gulliford, J.

    2016-01-01

    One of the foremost Generation IV International Forum (GIF) objectives is to design nuclear reactor cores that can passively avoid damage of the reactor when control rods fail to scram in response to postulated accident initiators (e.g. inadvertent reactivity insertion or loss of coolant flow). The analysis of such unprotected transients depends primarily on the physical properties of the fuel and the reactivity feedback coefficients of the core. Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS), the Sodium Fast Reactor core Feed-back and Transient response (SFR-FT) Task Force was proposed to evaluate core performance characteristics of several Generation IV Sodium-cooled Fast Reactor (SFR) concepts. A set of four numerical benchmark cases was initially developed with different core sizes and fuel types in order to perform neutronic characterisation, evaluation of the feedback coefficients and transient calculations. Two 'large' SFR core designs were proposed by CEA: those generate 3 600 MW(th) and employ oxide and carbide fuel technologies. Two 'medium' SFR core designs proposed by ANL complete the set. These medium SFR cores generate 1 000 MW(th) and employ oxide and metallic fuel technologies. The present report summarises the results obtained by the WPRS for the neutronic characterisation benchmark exercise proposed. The benchmark definition is detailed in Chapter 2. Eleven institutions contributed to this benchmark: Argonne National Laboratory (ANL), Commissariat a l'energie atomique et aux energies alternatives (CEA of Cadarache), Commissariat a l'energie atomique et aux energies alternatives (CEA of Saclay), Centre for Energy Research (CER-EK), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Nuclear Technology and Energy Systems (IKE), Japan Atomic Energy Agency (JAEA), Karlsruhe Institute of Technology (KIT

  13. Time constants and transfer functions for a homogeneous 900 MWt metallic fueled LMR

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Nodal transfer functions are calculated for a 900 MWt U10Zr-fueled sodium cooled reactor. From the transfer functions the time constants, feedback reactivity transfer function coefficients, and power coefficients can be determined. These quantities are calculated for core fuel, upper and lower axial reflector steel, radial blanket fuel, radial reflector steel, and B 4 C rod shaft expansion effect. The quantities are compared to the analogous quantities of a 60 MWt metallic-fueled sodium cooled Experimental Breeder Reactor II configuration. 8 refs., 2 figs., 6 tabs

  14. Post-accident cooling capacity analysis of the AP1000 passive spent fuel pool cooling system

    International Nuclear Information System (INIS)

    Su Xia

    2013-01-01

    The passive design is used in AP1000 spent fuel pool cooling system. The decay heat of the spent fuel is removed by heating-boiling method, and makeup water is provided passively and continuously to ensure the safety of the spent fuel. Based on the analysis of the post-accident cooling capacity of the spent fuel cooling system, it is found that post-accident first 72-hour cooling under normal refueling condition and emergency full-core offload condition can be maintained by passive makeup from safety water source; 56 hours have to be waited under full core refueling condition to ensure the safety of the core and the spent fuel pool. Long-term cooling could be conducted through reserved safety interface. Makeup measure is available after accident and limited operation is needed. Makeup under control could maintain the spent fuel at sub-critical condition. Compared with traditional spent fuel pool cooling system design, the AP1000 design respond more effectively to LOCA accidents. (authors)

  15. Emergency core cooling system sump chemical effects on strainer head loss

    International Nuclear Information System (INIS)

    Edwards, M.K.; Qiu, L.; Guzonas, D.A.

    2010-01-01

    Chemical precipitates formed in the recovery water following a Loss of Coolant Accident (LOCA) have the potential to increase head loss across the Emergency Core Cooling System (ECCS) strainer, and could lead to cavitation of the ECCS pumps, pump failure and loss of core cooling. AECL, as a strainer vendor and research organization, has been involved in the investigation of chemical effects on head loss for its CANDU® and Pressurized Water Reactor (PWR) customers. The chemical constituents of the recovery sump water depend on the combination of chemistry control additives and the corrosion and dissolution products from metals, concrete, and insulation materials. Some of these dissolution and corrosion products (e.g., aluminum and calcium) may form significant quantities of precipitates. The presence of chemistry control additives such as sodium hydroxide, trisodium phosphate and boric acid can significantly influence the precipitates formed. While a number of compounds may be shown to be thermodynamically possible under the conditions assumed for precipitation, kinetic factors play a large role in the morphology of precipitates. Precipitation is also influenced by insulation debris, which can trap precipitates and act as nucleation sites for heterogeneous precipitation. This paper outlines the AECL approach to resolving the issue of chemical effects on ECCS strainer head loss, which included modeling, bench top testing and reduced-scale testing; the latter conducted using a temperature-controlled variable-flow closed-loop test rig that included an AECL Finned Strainer® test section equipped with a differential pressure transmitter. Models of corrosion product release and the effects of precipitates on head loss will also be presented. Finally, this paper discusses the precipitates found in test debris beds and presents a possible method for chemical effects head loss modeling. (author)

  16. The effects of aging on Boiling Water Reactor core isolation cooling system

    International Nuclear Information System (INIS)

    Lee, Bom Soon.

    1994-01-01

    A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling system in commercial Boiling Water Reactors. This study is part of the Nuclear Plant Aging Research program sponsored by the US Nuclear Regulatory Commission. The failure data, from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failure causes

  17. Inter-subchannel heat transfer modeling for a subchannel analysis of liquid metal-cooled reactors

    International Nuclear Information System (INIS)

    Hae-Yong, Jeong; Kwi-Seok, Ha; Young-Min, Kwon; Yong-Bum, Lee; Dohee, Hahn

    2007-01-01

    In a subchannel approach, the temperature, pressure and velocity in a subchannel are averaged, and one representative thermal-hydraulic condition specifies the state of a subchannel. To enhance the predictability of a subchannel analysis code, it is required to model the inter-subchannel heat transfer between the adjacent subchannels as accurately as possible. One of the critical parameters which determine the thermal-hydraulic behavior of the coolant in subchannels is the heat conduction between two neighboring sub-channels. This portion of a heat transfer becomes more important in the design of an LMR (Liquid Metal-cooled Reactor) because of the high heat capacity of the liquid metal coolant. The other important part of heat transfer is the mixing of flow as a form of cross flow. Especially, the turbulent mixing caused by the eddy motion of fluid across the gap between the subchannels enhances the exchange of the momentum and the energy through the gap with no net transport of the mass. Major results of recent efforts on these modeling have been implemented in a subchannel analysis code MATRA-LMR-FB. The analysis shows that the accuracy of a subchannel analysis code is improved by enhancing the models describing the conduction heat transfer and the cross-flow mixing, especially at low flow rate. (authors)

  18. Investigation of primary cooling water chemistry following the partial meltdown of Pu-Be neutron source in Tehran Research Reactor Core (TRR)

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hossein, E-mail: hkhalafi@aeoi.org.i [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-03-15

    Research highlights: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry. Water chemistry of primary cooling before, during and after of above incident was compared. Training importance. Management of nuclear incident and accident. - Abstract: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry was main aim of this study. Leaving the neutron source in the core after reactor power exceeds a few hundred Watts was the main reason for its partial meltdown. Water chemistry of primary cooling before, during and after of above incident was compared. Activity of some radio-nuclides such as Ba-140, La-140, I-131, I-132, Te-132 and Xe-135 increased. Other radio-nuclides such as Nd-147, Xe-133, Sr-91, I-133 and I-135 are also detected which were not existed before this incident.

  19. Design evaluation of emergency core cooling systems using Axiomatic Design

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Gyunyoung [Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)]. E-mail: gheo@mit.edu; Lee, Song Kyu [Korea Advanced Institute of Science and Technology, Department of Nuclear and Quantum Engineering, 373-1 Guseong-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2007-01-15

    In designing nuclear power plants (NPPs), the evaluation of safety is one of the important issues. As a measure for evaluating safety, this paper proposes a methodology to examine the design process of emergency core cooling systems (ECCSs) in NPPs using Axiomatic Design (AD). This is particularly important for identifying vulnerabilities and creating solutions. Korean Advanced Power Reactor 1400 MWe (APR1400) adopted the ECCS, which was improved to meet the stronger safety regulations than that of the current Optimized Power Reactor 1000 MWe (OPR1000). To improve the performance and safety of the ECCS, the various design strategies such as independency or redundancy were implemented, and their effectiveness was confirmed by calculating core damage frequency. We suggest an alternative viewpoint of evaluating the deployment of design strategies in terms of AD methodology. AD suggests two design principles and the visualization tools for organizing design process. The important benefit of AD is that it is capable of providing suitable priorities for deploying design strategies. The reverse engineering driven by AD has been able to show that the design process of the ECCS of APR1400 was improved in comparison to that of OPR1000 from the viewpoint of the coordination of design strategies.

  20. Radiative heat transfer in the Na mist dispersion over the hot surface of liquid Na in the cooling system of nuclear reactor

    International Nuclear Information System (INIS)

    Kunitomo, T.; Shafey, H.M.

    1980-01-01

    The analysis has been carried out for the radiative heat transfer in the Na mist dispersion enclosed between the hot surface of liquid Na at temperature Tsub(n) and the cold surface of Na deposit at Tsub(c). The model selected for the present study represents the Na mist formed in a sodium cooled fast breeder reactor in which the condensed liquid particles are dispersed in the mixture of the Ar cover gas and the Na vapor. The analysis is based on replacing the inhomogeneous dispersing medium by three discrete homogeneous layers, and formulating the transfer equation for the monochromatic radiation in each layer according to the Chandrasekhar theory. The numerical calculations of the radiative qsub(r) and convective qsub(c) heat transfers have been performed for the wave length range lambda=1.6-30 μm and are compared. The qsub(r) has the same order of magnitude as the qsub(c) for all conditions of the mist dispersions. Both qsub(r) and qsub(c) increase by nearly equal rates with the increase of Tsub(H) and decrease by different rates with increasing Tsub(c). Variations of the particle diameter of the Na mist do not change substantially the qsub(r). Both qsub(r) and qsub(c) decrease slightly with the increase in the total thickness of the Na mist dispersion

  1. Core configuration of a gas-cooled reactor as a tritium production device for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, H., E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, H.; Nakao, Y. [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Shimakawa, S.; Goto, M.; Nakagawa, S. [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur 54100 (Malaysia)

    2014-05-01

    The performance of a high-temperature gas-cooled reactor as a tritium production device is examined, assuming the compound LiAlO{sub 2} as the tritium-producing material. A gas turbine high-temperature reactor of 300 MWe nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations are carried out. To load sufficient Li into the core, LiAlO{sub 2} is loaded into the removable reflectors that surround the ring-shaped fuel blocks in addition to the burnable poison insertion holes. It is shown that module high-temperature gas-cooled reactors with a total thermal output power of 3 GW can produce almost 8 kg of tritium in a year.

  2. Emergency cooling of presurized water reactor

    International Nuclear Information System (INIS)

    Sykora, D.

    1981-01-01

    The method described of emergency core cooling in the pressurized water reactor is characterized by the fact that water is transported to the disturbed primary circuit or direct to the reactor by the action of the energy and mass of the steam and/or liquid phase of the secondary circuit coolant, which during emergency core cooling becomes an emergency cooling medium. (B.S.)

  3. EFFECT OF ACTIVE COOLING AND α-2 ADRENOCEPTOR ANTAGONISM ON CORE TEMPERATURE IN ANESTHETIZED BROWN BEARS (URSUS ARCTOS).

    Science.gov (United States)

    Ozeki, Larissa Mourad; Caulkett, Nigel; Stenhouse, Gordon; Arnemo, Jon M; Fahlman, Åsa

    2015-06-01

    Hyperthermia is a common complication during anesthesia of bears, and it can be life threatening. The objective of this study was to evaluate the effectiveness of active cooling on core body temperature for treatment of hyperthermia in anesthetized brown bears (Ursus arctos). In addition, body temperature after reversal with atipamezole was also evaluated. Twenty-five adult and subadult brown bears were captured with a combination of zolazepam-tiletamine and xylazine or medetomidine. A core temperature capsule was inserted into the bears' stomach or 15 cm into their rectum or a combination of both. In six bears with gastric temperatures≥40.0°C, an active cooling protocol was performed, and the temperature change over 30 min was analyzed. The cooling protocol consisted of enemas with 2 L of water at approximately 5°C/100 kg of body weight every 10 min, 1 L of intravenous fluids at ambient temperature, water or snow on the paws or the inguinal area, intranasal oxygen supplementation, and removing the bear from direct sunlight or providing shade. Nine bears with body temperature>39.0°C that were not cooled served as control for the treated animals. Their body temperatures were recorded for 30 min, prior to administration of reversal. At the end of the anesthetic procedure, all bears received an intramuscular dose of atipamezole. In 10 bears, deep rectal temperature change over 30 min after administration of atipamezole was evaluated. The active cooling protocol used in hyperthermic bears significantly decreased their body temperatures within 10 min, and it produced a significantly greater decrease in their temperature than that recorded in the control group.

  4. HEDL FACILITIES CATALOG 400 AREA

    Energy Technology Data Exchange (ETDEWEB)

    MAYANCSIK BA

    1987-03-01

    The purpose of this project is to provide a sodium-cooled fast flux test reactor designed specifically for irradiation testing of fuels and materials and for long-term testing and evaluation of plant components and systems for the Liquid Metal Reactor (LMR) Program. The FFTF includes the reactor, heat removal equipment and structures, containment, core component handling and examination, instrumentation and control, and utilities and other essential services. The complex array of buildings and equipment are arranged around the Reactor Containment Building.

  5. Nuclear reactor with several cores

    International Nuclear Information System (INIS)

    Swars, H.

    1977-01-01

    Several sodium-cooled cores in separate vessels with removable closures are placed in a common reactor tank. Each individual vessel is protected against the consequences of an accident in the relevant core. Maintenance devices and inlet and outlet pipes for the coolant are also arranged within the reactor tank. The individual vessels are all enclosed by coolant in a way that in case of emergency cooling or refuelling each core can be continued to be cooled by means of the coolant loops of the other cores. (HP) [de

  6. Seismic response of high temperature gas-cooled reactor core with block-type fuel, (2)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1980-01-01

    For the aseismic design of a high temperature gas-cooled reactor (HTGR) with block-type fuel, it is necessary to predict the motion and force of core columns and blocks. To reveal column vibration characteristics in three-dimensional space and impact response, column vibration tests were carried out with a scale model of a one-region section (seven columns) of the HTGR core. The results are as follows: (1) the column has a soft spring characteristic based on stacked blocks connected with loose pins, (2) the column has whirling phenomena, (3) the compression spring force simulating the gas pressure has the effect of raising the column resonance frequency, and (4) the vibration behavior of the stacked block column and impact response of the surrounding columns show agreement between experiment and analysis. (author)

  7. Study on the seismic verification test program on the experimental multi-purpose high-temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Taketani, K.; Aochi, T.; Yasuno, T.; Ikushima, T.; Shiraki, K.; Honma, T.; Kawamura, N.

    1978-01-01

    The paper describes a program of experimental research necessary for qualitative and quantitative determination of vibration characteristics and aseismic safety on structure of reactor core in the multipurpose high temperature gas-cooled experimental reactor (VHTR Experimental Reactor) by the Japan Atomic Energy Research Institute

  8. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    International Nuclear Information System (INIS)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations

  9. THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1984-07-01

    The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures in the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.

  10. Performance Evaluation of the Concept of Hybrid Heat Pipe as Passive In-core Cooling Systems for Advanced Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Kim, Kyung Mo; Kim, In Guk; Bang, In Cheol

    2015-01-01

    As an arising issue for inherent safety of nuclear power plant, the concept of hybrid heat pipe as passive in-core cooling systems was introduced. Hybrid heat pipe has unique features that it is inserted in core directly to remove decay heat from nuclear fuel without any changes of structures of existing facilities of nuclear power plant, substituting conventional control rod. Hybrid heat pipe consists of metal cladding, working fluid, wick structure, and neutron absorber. Same with working principle of the heat pipe, heat is transported by phase change of working fluid inside metal cask. Figure 1 shows the systematic design of the hybrid heat pipe cooling system. In this study, the concept of a hybrid heat pipe was introduced as a Passive IN-core Cooling Systems (PINCs) and demonstrated for internal design features of heat pipe containing neutron absorber. Using a commercial CFD code, single hybrid heat pipe model was analyzed to evaluate thermal performance in designated operating condition. Also, 1-dimensional reactor transient analysis was done by calculating temperature change of the coolant inside reactor pressure vessel using MATLAB. As a passive decay heat removal device, hybrid heat pipe was suggested with a concept of combination of heat pipe and control rod. Hybrid heat pipe has distinct feature that it can be a unique solution to cool the reactor when depressurization process is impossible so that refueling water cannot be injected into RPV by conventional ECCS. It contains neutron absorber material inside heat pipe, so it can stop the reactor and at the same time, remove decay heat in core. For evaluating the concept of hybrid heat pipe, its thermal performance was analyzed using CFD and one-dimensional transient analysis. From single hybrid heat pipe simulation, the hybrid heat pipe can transport heat from the core inside to outside about 18.20 kW, and total thermal resistance of hybrid heat pipe is 0.015 .deg. C/W. Due to unique features of long heat

  11. Cooling of Accretion-Heated Neutron Stars

    Science.gov (United States)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  12. Real time thermal hydraulic model for high temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng

    2013-01-01

    A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)

  13. Facile synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell upconversion nanoparticles via successive ion layer adsorption and one-pot reaction technique

    NARCIS (Netherlands)

    Zeng, Q.; Xue, B.; Zhang, Y.; Wang, D.; Liu, X.; Tu, L.; Zhao, H.; Kong, X.; Zhang, H.

    2013-01-01

    The facile one-pot synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell (CS) upconversion nanoparticles (UCNPs) was firstly developed through the successive ion layer adsorption and reaction (SILAR) technique, which represents an attractive alternative to conventional synthesis utilizing the chloride of Ln

  14. Analysis of emergency core cooling capability of direct vessel vertical injection using CFX

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Yu, Yong H.; Suh, Kune Y.

    2003-01-01

    More reliable and efficient safety injection system is of utmost importance in the design of advanced reactors such as the APR1400 (Advanced Power Reactor 1400 MWe). In this work, a new idea is proposed to inject the Emergency Core Cooling (ECC) water utilizing a dedicated nozzle with a vertically downward elbow. The Direct Vessel Injection (DVI) system is located horizontally above the cold leg in the APR1400. However, the horizontal injection method may not always satisfy the ECC penetration requirement into the core on account of rather involved multidimensional thermal and hydraulic phenomena occurring in the annular reactor downcomer such as bypass, impingement, entrainment and sweepout, condensation oscillation, etc. Thus, a novel concept is called for from the reactor safety point of view. The Direct Vessel Vertical Injection (DVVI) system is one of these efforts to penetrate as much the ECC water through the downcomer into the core as is practically achievable. The DVVI system can increase the momentum of the downward flow, thus minimizing the effect of water impingement on the core barrel and the direct bypass though the break. To support the claim of increased downward momentum of flow in the DVVI system, computational fluid dynamics analyses were performed using CFX. The new concept of the DVVI system, which can certainly help increase the core thermal margin, is found to be more efficient than DVI. If the structural problem in the manufacturing process is properly solved, this concept can safely be applied in the advanced nuclear reactor design

  15. Experimental and numerical CHT-investigations of cooling structures formed by lost cores in cast housings for optimal heat transfer

    Science.gov (United States)

    Kohlstädt, S.; Vynnycky, M.; Gebauer-Teichmann, A.

    2018-05-01

    This paper investigates the cooling performance of six different lost core designs for automotive cast houses with regard to their cooling efficiency. For this purpose, the conjugate heat transfer (CHT) solver, chtMultiregion, of the freely available CFD-toolbox OpenFOAM in its implementation of version 2.3.1 is used. The turbulence contribution to the Navier-Stokes equations is accounted for by using the RANS Menter SST k - ω model. The results are validated for one of the geometries by comparing with experimental data. Of the six investigated cooling structures, the one that forces the fluid flow to change its direction the most produces the lowest temperatures on the surface of the cast housing. This good cooling performance comes at the price of the highest pressure loss in the cooling fluid and hence increased pump power. It is also found that the relationship between performance and pressure drop is by no means generally linear. Slight changes in the design can lead to a structure which cools almost as well, but at much decreased pressure loss. Regarding the absolute values, the simulations showed that the designed cooling structures are suitable for handling the cooling requirements in the particular applications and that the maximum temperature stays below the critical limits of the electronic components.

  16. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V., E-mail: vasudha.verma@physics.uu.se [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Barbot, L.; Filliatre, P. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Hellesen, C. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Jammes, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Svärd, S. Jacobsson [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2017-07-11

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment. - Highlights: • Studied possibility of using SPNDs as in-core detectors in SFRs. • Study done to detect local power profile changes when reactor is at nominal power. • SPND with a Pt-emitter gives measurable prompt current of the order of 600 nA/m. • Dominant proportion of prompt response is maintained throughout the operation. • Detector signal gives dynamic information on the power fluctuations.

  17. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    Science.gov (United States)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  18. Analysis of the dynamic behaviour of the low-pressure emergency core cooling system tank at Paks NPP

    International Nuclear Information System (INIS)

    1999-01-01

    The low pressure emergency core cooling system tanks (LP ECCS) at WWER-440/V213 units have unique worm-shaped geometry. Analytical and experimental investigations were performed to make an adequate basis for seismic assessment of the worm-shaped tank. The full scale dynamic tests results are presented in comparison with shaking table model experiments and analytical studies. (author)

  19. Analysis of the dynamic behaviour of the low pressure emergency core cooling system tank at Paks NPP

    International Nuclear Information System (INIS)

    Tamas, K.

    2001-01-01

    The low pressure emergency core cooling system tanks (LP ECCS) at WWER-440/V213 units have unique worm-shaped geometry. Analytical and experimental investigations were performed to make an adequate basis for seismic assessment of the worm-shaped tank. The full scale dynamic tests results are presented in comparison with shaking table model experiments and analytical studies. (author)

  20. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  1. Failure analysis of medical Linac (LMR-15)

    International Nuclear Information System (INIS)

    Kato, Kiyotaka; Nakamura, Katsumi; Ogihara, Kiyoshi; Takahashi, Katsuhiko; Sato, Kazuhisa.

    1994-01-01

    In August 1978, Linac (LMR-15, Z4 Toshiba) was installed at our hospital and in use for 12 years up to September 1990. Recently, we completed working and failure records on this apparatus during the 12-year period, for the purpose of their analysis in the basis of reliability engineering. The results revealed operation rate of 97.85% on the average, mean time between failures (MTBF) from 40-70 hours about the beginning of its working to 280 hours for 2 years before renewal and practically satisfactory values of mean life of parts of life such as magnetron, thyratron and electron gun; the above respective values proved to be above those reported by other literature. On the other hand, we classified, by occurring system, the contents of failures in the apparatus and determined the number of failures and the temperature and humidities in case of failures to examine the correlation between the working environment and failure. The results indicated a change in humidity to gain control of failures in the dosimetric system, especially the monitoring chamber and we could back up the strength of the above correlation from a coefficient of correlation value of 0.84. (author)

  2. Effect of Bath Temperature on Cooling Performance of Molten Eutectic NaNO3-KNO3 Quench Medium for Martempering of Steels

    Science.gov (United States)

    Pranesh Rao, K. M.; Narayan Prabhu, K.

    2017-10-01

    Martempering is an industrial heat treatment process that requires a quench bath that can operate without undergoing degradation in the temperature range of 423 K to 873 K (150 °C to 600 °C). The quench bath is expected to cool the steel part from the austenizing temperature to quench bath temperature rapidly and uniformly. Molten eutectic NaNO3-KNO3 mixture has been widely used in industry to martemper steel parts. In the present work, the effect of quench bath temperature on the cooling performance of a molten eutectic NaNO3-KNO3 mixture has been studied. An Inconel ASTM D-6200 probe was heated to 1133 K (860 °C) and subsequently quenched in the quench bath maintained at different temperatures. Spatially dependent transient heat flux at the metal-quenchant interface for each bath temperature was calculated using inverse heat conduction technique. Heat transfer occurred only in two stages, namely, nucleate boiling and convective cooling. The mean peak heat flux ( q max) decreased with increase in quench bath temperature, whereas the mean surface temperature corresponding to q max and mean surface temperature at the start of convective cooling stage increased with increase in quench bath temperature. The variation in normalized cooling parameter t 85 along the length of the probe increased with increase in quench bath temperature.

  3. Characterization of the electronic and magnetic structure of multifunctional NaREF{sub 4} (RE = rare earth) core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Lilli; Kuepper, Karsten [Physics Department, University of Osnabrueck (Germany); Rinkel, Thorben; Haase, Markus [Institute of Chemistry, University of Osnabrueck (Germany); Chrobak, Artur [Institute of Physics, University of Silesia (Poland)

    2014-07-01

    Rare earth (RE) based nanoparticles of type NaREF{sub 4} have attracted lot of attention in the last few years due to their upconverting luminescence. Here, we want to concentrate on electronic and magnetic properties of NaREF{sub 4}/NaGdF{sub 4} nanocrystals, since the magnetic behaviour of these fluorescent nanoparticles are of utmost importance from fundamental and applicative point of view as well. Hexagonal β-phase nanocrystals (3-22 nm) were prepared and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). A detailed study of the electronic structure and magnetic coupling phenomena of the different core-shell nanoparticles is performed using X-ray photoelectron spectroscopy (XPS), magnetometry (SQUID) and X-ray magnetic circular dichroism (XMCD). First SQUID measurements of NaEuF{sub 4}/NaGdF{sub 4} core-shell nanoparticles show butterfly shaped hysteresis loops at low temperature (2 K) in contrast to superparamagnetic behaviour observed for the corresponding ''pure'' NaEuF{sub 4} and NaGdF{sub 4} nanoparticles.

  4. Neutronic design for a 100MW{sub th} Small modular natural circulation lead or lead-alloy cooled fast reactors core

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Chen, H.; Zhang, H.; Chen, Z.; Zeng, Q., E-mail: shchshch@ustc.edu.cn, E-mail: hlchen1@ustc.edu.cn, E-mail: kulah@mail.ustc.edu.cn, E-mail: zchen214@mail.ustc.edu.cn, E-mail: zengqin@ustc.edu.cn [Univ. of Science and Technology of China, School of Nuclear Science and Technology, Hefei, Anhui (China)

    2015-07-01

    Lead or lead-alloy cooled fast reactor with good fuel proliferation and nuclear waste transmutation capability, as well as high security and economy, is a great potential for the development of fourth-generation nuclear energy systems. Small natural circulation reactor is an important technical route lead cooled fast reactors industrial applications, which has been chosen as one of the three reference technical for solution lead or lead-alloy cooled fast reactors by GIF lead-cooled fast reactor steering committee. The School of Nuclear Science and Technology of USTC proposed a small 100MW{sub th} natural circulation lead cooled fast reactor concept called SNCLFR-100 based realistic technology. This article describes the SNCLFR-100 reactor of the overall technical program, core physics calculation and analysis. The results show that: SNCLFR-100 with good neutronic and safety performance and relevant design parameters meet the security requirements with feasibility. (author)

  5. Uncertainty Evaluation of the SFR Subchannel Thermal-Hydraulic Modeling Using a Hot Channel Factors Analysis

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Cho, Chung Ho; Kim, Sang Ji

    2011-01-01

    In an SFR core analysis, a hot channel factors (HCF) method is most commonly used to evaluate uncertainty. It was employed to the early design such as the CRBRP and IFR. In other ways, the improved thermal design procedure (ITDP) is able to calculate the overall uncertainty based on the Root Sum Square technique and sensitivity analyses of each design parameters. The Monte Carlo method (MCM) is also employed to estimate the uncertainties. In this method, all the input uncertainties are randomly sampled according to their probability density functions and the resulting distribution for the output quantity is analyzed. Since an uncertainty analysis is basically calculated from the temperature distribution in a subassembly, the core thermal-hydraulic modeling greatly affects the resulting uncertainty. At KAERI, the SLTHEN and MATRA-LMR codes have been utilized to analyze the SFR core thermal-hydraulics. The SLTHEN (steady-state LMR core thermal hydraulics analysis code based on the ENERGY model) code is a modified version of the SUPERENERGY2 code, which conducts a multi-assembly, steady state calculation based on a simplified ENERGY model. The detailed subchannel analysis code MATRA-LMR (Multichannel Analyzer for Steady-State and Transients in Rod Arrays for Liquid Metal Reactors), an LMR version of MATRA, was also developed specifically for the SFR core thermal-hydraulic analysis. This paper describes comparative studies for core thermal-hydraulic models. The subchannel analysis and a hot channel factors based uncertainty evaluation system is established to estimate the core thermofluidic uncertainties using the MATRA-LMR code and the results are compared to those of the SLTHEN code

  6. Experimental analysis of ex-vessel core catcher cooling system performance for EU-APR1400 during severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Song, K. W.; Park, H. S.; Revankar, S. T. [POSTECH, Pohang (Korea, Republic of); Kim, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the coolant channel which has a unique design and large scale flow paths, natural circulation is passively activated by buoyancy driven force. Since two-phase flow behavior in a large scale channel is different from that in a small scale channel, the two-phase flow affecting the cooling capability is difficult to be predicted in the large channel. Therefore, cooling experiment in the core catcher coolant path is necessary. Cooling Experiment - Passive Ex-vessel corium retaining and Cooling System(CE-PECS) is constructed in full scale(in height and width) slice of half prototype. It actually simulates steam-water flow in the coolant channel for different decay heat condition of the corium. In this study, thermal power considering of total amount of decay heat 190 kW which corresponds to 40MW of thermal power in the prototype is loaded on the top wall of the CE-PECS coolant channel. Natural circulation flow rate and pressure drops at the two-phase region are measured in various power level. Temperatures of heater block and working fluid in various position along the flow path enable to calculate heat fluxes and heat transfer coefficients distribution. These results are used for evaluating heat removal capability of core catcher facility. Two-phase natural circulation experiment is carried out in CE-PECS facility. Based on the prototypic condition, 190 kW of total power is supplied to the top of the coolant path. Uniform distribution of heat load on the downward facing heater bock produces -300 kW/m2 at 100 % power ratio. Although the experiment should consider the heat loss and heat flux uniformity, several noticeable conclusions have been made as followings; 1. Mass flow rate and two-phase pressure drop are measured in various power conditions. 2. Slightly inclined top wall at the downstream of the channel shows better heat exchange performance than horizontal top wall because enhanced convection due to the increase of void fraction improves local cooling. This

  7. Reactor core design optimization of the 200 MWt Pb-Bi cooled fast reactor for hydrogen production

    International Nuclear Information System (INIS)

    Bahrum, Epung Saepul; Su'ud, Zaki; Waris, Abdul; Fitriyani, Dian; Wahjoedi, Bambang Ari

    2008-01-01

    In this study reactor core geometrical optimization of 200 MWt Pb-Bi cooled long life fast reactor for hydrogen production has been conducted. The reactor life time is 20 years and the fuel type is UN-PuN. Geometrical core configurations considered in this study are balance, pancake and tall cylindrical cores. For the hydrogen production unit we adopt steam membrane reforming hydrogen gas production. The optimum operating temperature for the catalytic reaction is 540degC. Fast reactor design optimization calculation was run by using FI-ITB-CHI software package. The design criteria were restricted by the multiplication factor that should be less than 1.002, the average outlet coolant temperature 550degC and the maximum coolant outlet temperature less than 700degC. By taking into account of the hydrogen production as well as corrosion resulting from Pb-Bi, the balance cylindrical geometrical core design with diameter and height of the active core of 157 cm each, the inlet coolant temperature of 350degC and the coolant flow rate of 7000 kg/s were preferred as the best design parameters. (author)

  8. Failed fuel identification techniques for liquid-metal cooled reactors

    International Nuclear Information System (INIS)

    Lambert, J.D.B.; Gross, K.C.; Mikaili, R.; Frank, S.M.; Cutforth, D.C.; Angelo, P.L.

    1995-01-01

    The Experimental Breeder Reactor II (EBR-II), located in Idaho and operated for the US Department of Energy by Argonne National Laboratory, has been used as an irradiation testbed for LMR fuels and components for thirty years. During this time many endurance tests have been carried out with experimental LMR metal, oxide, carbide and nitride fuel elements, in which cladding failures were intentionally allowed to occur. This paper describes methods that have been developed for the detection, identification and verification of fuel failures

  9. Diferentes cores de armadilhas adesivas na cultura da alface hidropônica

    Directory of Open Access Journals (Sweden)

    Regina da Silva Borba

    2014-07-01

    Full Text Available O trabalho teve como objetivo avaliar qual a cor mais atrativa para os insetos-praga mosca-minadora (Liriomyza trifolii e tripes (Thrips tabaci. O experimento foi desenvolvido na empresa BioPlanta Hidroponia situada em Ivoti/RS, no período de 07/02/2012 a 03/04/2012, na cultura da alface, variedade Mouse, cultivada em ambiente protegido. Foram confeccionadas em cartelas plásticas de 10 x 15 cm, armadilhas nas cores amarela, branco, azul e verde, tendo sua superfície coberta por cola entomológica. Foram dispostas 12 repetições aleatórias de cada cor, sendo que cada mesa de cultivo hidropônico recebeu quatro cartelas de cores distintas. Foi feita a contagem dos insetos coletados semanalmente durante 9 semanas e os dados analisados pelo Programa Winstat 2.0 e as médias comparadas pelo Teste de Duncan, em nível de 5% de probabilidade de erro. As armadilhas de coloração amarela se mostraram mais atrativas para L. trifolii, enquanto a coloração azul se mostrou mais atrativa para T. tabaci.

  10. Specialists' meeting on gas-cooled reactor core and high temperature instrumentation, Windermere, UK, 15-17 June 1982. Summary report

    International Nuclear Information System (INIS)

    1982-09-01

    The Specialists' Meeting on ''Gas-Cooled Reactor Core and High Temperature Instrumentation'' was held at the Beech Hill Hotel, Windermere in England on June 15-17 1982. The meeting was sponsored by the IAEA on the recommendation of the International Working Group on Gas Cooled Reactors and was hosted by the Windscale Nuclear Power Development Laboratories of the UKAEA. The meeting was attended by 43 participants from Belgium, France, Federal Republic of Germany, Japan, United Kingdom of Great Britain and Northern Ireland and the United States of America. The objective of the meeting was to provide a forum, both formal and informal, for the exchange and discussion of technical information relating to instrumentation being used or under development for the measurement of core parameters, neutron flux, temperature, coolant flow etc. in gas cooled reactors. The technical part of the meeting was divided into five subject sessions: (A) Temperature Measurement (B) Neutron Detection Instrumentation (C) HTR Instrumentation - General (D) Gas Analysis and Failed Fuel Detection (E) Coolant Mass Flow and Leak Detection. A total of twenty-five papers were presented by the participants on behalf of their organizations during the meeting. A programme of the meeting and list of participants are given in appendices to this report

  11. Modelling of thermohydraulic emergency core cooling phenomena

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Andreani, M.; Lewis, M.J.

    1990-10-01

    The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs

  12. NaYF4:Er,Yb/Bi2MoO6 core/shell nanocomposite: A highly efficient visible-light-driven photocatalyst utilizing upconversion

    International Nuclear Information System (INIS)

    Sun, Yuanyuan; Wang, Wenzhong; Sun, Songmei; Zhang, Ling

    2014-01-01

    Highlights: • Design and synthesis of NaYF 4 :Er,Yb/Bi 2 MoO 6 based on upconversion. • NaYF 4 :Er,Yb/Bi 2 MoO 6 nanocomposite was prepared for the first time. • Core–shell structure benefits the properties. • Upconversion contributed to the enhanced photocatalytic activity. • Helps to understand the functionality of new type photocatalysts. - Abstract: NaYF 4 :Er,Yb/Bi 2 MoO 6 core/shell nanocomposite was designed and prepared for the first time based on upconversion. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectra (DRS). The results revealed that the as-synthesized NaYF 4 :Er,Yb/Bi 2 MoO 6 consisted of spheres with a core diameter of about 26 nm and a shell diameter of around 6 nm. The core was upconversion illuminant NaYF 4 :Er,Yb and the shell was Bi 2 MoO 6 around the core, which was confirmed by EDS. The NaYF 4 :Er,Yb/Bi 2 MoO 6 exhibited higher photocatalytic activity for the photodecomposition of Rhodamine B (RhB) under the irradiation of Xe lamp and green light emitting diode (g-LED). The mechanism of the high photocatalytic activity was discussed by photoluminescence spectra (PL), which is mainly attributed to upconversion of NaYF 4 :Er,Yb in the NaYF 4 :Er,Yb/Bi 2 MoO 6 nanocomposite and the core–shell structure

  13. Unravelling the core microbiome of biofilms in cooling tower systems.

    Science.gov (United States)

    Di Gregorio, L; Tandoi, V; Congestri, R; Rossetti, S; Di Pippo, F

    2017-11-01

    In this study, next generation sequencing and catalyzed reporter deposition fluorescence in situ hybridization, combined with confocal microscopy, were used to provide insights into the biodiversity and structure of biofilms collected from four full-scale European cooling systems. Water samples were also analyzed to evaluate the impact of suspended microbes on biofilm formation. A common core microbiome, containing members of the families Sphingomonadaceae, Comamonadaceae and Hyphomicrobiaceae, was found in all four biofilms, despite the water of each coming from different sources (river and groundwater). This suggests that selection of the pioneer community was influenced by abiotic factors (temperature, pH) and tolerances to biocides. Members of the Sphingomonadaceae were assumed to play a key role in initial biofilm formation. Subsequent biofilm development was driven primarily by light availability, since biofilms were dominated by phototrophs in the two studied 'open' systems. Their interactions with other microbial populations then shaped the structure of the mature biofilm communities analyzed.

  14. Comparison of the SASSYS/SAS4A radial core expansion reactivity feedback model and the empirical correlation for FFTF

    International Nuclear Information System (INIS)

    Wigeland, R.A.

    1987-01-01

    The present emphasis on inherent safety for LMR designs has resulted in a need to represent the various reactivity feedback mechanisms as accurately as possible. The dominant negative reactivity feedback has been found to result from radial expansion of the core for most postulated ATWS events. For this reason, a more detailed model for calculating the reactivity feedback from radial core expansion has been recently developed for use with the SASSYS/SAS4A Code System. The purpose of this summary is to present an extension to the model so that it is more suitable for handling a core restraint design as used in FFTF, and to compare the SASSYS/SAS4A results using this model to the empirical correlation presently being used to account for radial core expansion reactivity feedback to FFTF

  15. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  16. Passive safety testing at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Lucoff, D.M.

    1989-01-01

    During 1986, the Fast Flux Test Facility (FFTF) conducted several tests designed to improve the understanding of the passive safety characteristics of an oxide-fueled liquid-metal reactor (LMR). Static and dynamic tests were performed over a broad range of power, flow, and temperature conditions that extended beyond those for normal operation. Key results of these tests are presented. Stable operation at low power with natural circulation cooling was demonstrated. A passive safety enhancement feature, the gas expansion module (GEM) was developed specifically to offset the large amount of cooldown reactivity that needs to be controlled in an oxide-fueled LMR undergoing an unprotected loss-of-flow accident. Nine GEMs were built and successfully tested in FFTF. With the reactor at 50% power (200 MW (thermal)), the main coolant pumps were turned off and the normal control rod scram response was inhibited. The GEMs and inherent core reactivity feedback mechanisms took the core subcritical with a modest peak coolant temperature transient that reached 85 degrees C above the pretransient value and always maintained a >400 degrees C margin to the sodium boiling point (910 degrees C)

  17. Compact sodium cooled nuclear power plant with fast core (KNK II- Karlsruhe), Safety Report

    International Nuclear Information System (INIS)

    1977-09-01

    After the operation of the KNK plant with a thermal core (KNK I), the installation of a fast core (KNK II) had been realized. The planning of the core and the necessary reconstruction work was done by INTERATOM. Owner and customer was the Nuclear Research Center Karlsruhe (KfK), while the operating company was the Kernkraftwerk-Betriebsgesellschaft mbH (KBG) Karlsruhe. The main goals of the KNK II project and its special experimental test program were to gather experience for the construction, the licensing and operation of future larger plants, to develop and to test fuel and absorber assemblies and to further develop the sodium technology and the associated components. The present safety report consists of three parts. Part 1 contains the description of the nuclear plant. Hereby, the reactor and its components, the handling facilities, the instrumentation with the plant protection, the design of the plant including the reactor core and the nominal operation processes are described. Part 2 contains the safety related investigation and measures. This concerns the reactivity accidents, local cooling perturbations, radiological consequences with the surveillance measures and the justification of the choice of structural materials. Part three finally is the appendix with the figures, showing the different buildings, the reactor and its components, the heat transfer systems and the different auxiliary facilities [de

  18. Cooling methods of station blackout scenario for LWR plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The objective of this study is to analyze the cooling method of station blackout scenario for both the BWR and PWR plants by RELAP5 code and to check the validity of the cooling method proposed by the utilities. In the BWR plant cooling scenario, the Reactor Core Isolation Cooling System (RCIC), which is operated with high pressure steam from the reactor, injects cooling water into the reactor to keep the core water level. The steam generated in the core is released into the suppression pool at containment vessel to condense. To restrict the containment vessel pressure rising, the ventilation from the wet-well is operated. The scenario is analyzed by RELAP5 code. In the PWR plant scenario, the primary pressure is decreased by the turbine-driven auxiliary feed water system operated with secondary side steam of the steam generators (SGs). And the core cooling is kept by the natural circulation flow at the primary loop. From the RELAP5 code analysis, it was shown that the primary system cooling was practicable by using the turbine-driven auxiliary feed water system. (author)

  19. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    Science.gov (United States)

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  20. Compendium of ECCS [Emergency Core Cooling Systems] research for realistic LOCA [loss-of-coolant accidents] analysis: Final report

    International Nuclear Information System (INIS)

    1988-12-01

    In the United States, Emergency Core Cooling Systems (ECCS) are required for light water reactors (LWRs) to provide cooling of the reactor core in the event of a break or leak in the reactor piping or an inadvertent opening of a valve. These accidents are called loss-of-coolant accidents (LOCA), and they range from small leaks up to a postulated full break of the largest pipe in the reactor cooling system. Federal government regulations provide that LOCA analysis be performed to show that the ECCS will maintain fuel rod cladding temperatures, cladding oxidation, and hydrogen production within certain limits. The NRC and others have completed a large body of research which investigated fuel rod behavior and LOCA/ECCS performance. It is now possible to make a realistic estimate of the ECCS performance during a LOCA and to quantify the uncertainty of this calculation. The purpose of this report is to summarize this research and to serve as a general reference for the extensive research effort that has been performed. The report: (1) summarizes the understanding of LOCA phenomena in 1974; (2) reviews experimental and analytical programs developed to address the phenomena; (3) describes the best-estimate computer codes developed by the NRC; (4) discusses the salient technical aspects of the physical phenomena and our current understanding of them; (5) discusses probabilistic risk assessment results and perspectives, and (6) evaluates the impact of research results on the ECCS regulations. 736 refs., 412 figs., 66 tabs

  1. Development of fast reactor containment safety analysis code, CONTAIN-LMR. (3) Improvement of sodium-concrete reaction model

    International Nuclear Information System (INIS)

    Kawaguchi, Munemichi; Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya

    2015-01-01

    A computer code, CONTAIN-LMR, is an integrated analysis tool to predict the consequence of severe accident in a liquid metal fast reactor. Because a sodium-concrete reaction behavior is one of the most important phenomena in the accident, a Sodium-Limestone Concrete Ablation Model (SLAM) has been developed and installed into the original CONTAIN code at Sandia National Laboratories (SNL) in the U.S. The SLAM treats chemical reaction kinetics between the sodium and the concrete compositions mechanistically using a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer (B/L) and dehydrated concrete) region, and a wet (hydrated concrete) region, the application is limited to the reaction between sodium and limestone concrete. In order to apply SLAM to the reaction between sodium and siliceous concrete which is an ordinary structural concrete in Japan, the chemical reaction kinetics model has been improved to consider the new chemical reactions between sodium and silicon dioxide. The improved model was validated to analyze a series of sodium-concrete experiments which were conducted in Japan Atomic Energy Agency (JAEA). It has been found that relatively good agreement between calculation and experimental results is obtained and the CONTAIN-LMR code has been validated with regard to the sodium-concrete reaction phenomena. (author)

  2. Fragmentation of molten metal drop with instantaneous contact temperature below the boiling point of Na

    International Nuclear Information System (INIS)

    Inukai, S.; Sugiyama, K.; Nishimura, S.; Kinoshita, I.

    2001-01-01

    The consequence of the core disruptive accidents in metallic-fueled Na-cooled reactors is strongly affected by the feedback reactivity originating in the boiling of Na and the dispersion of molten fuel due to fuel-coolant interactions. The design of the core configuration to promote the dispersion of molten fuel is therefore very important for social acceptance. It has been recognized in this context that metallic fuel has a potentiality to make liquefied fuel with fuel pin tube even in the temperature range below the boiling point of Na. If the liquefied fuel solidified without fuel-coolant interactions in the core region, this event leads the core condition to a pessimistic scenario of re-criticality. As a basic study related to this problem, the present experimental study investigates the possibility of fragmentation of metal drop with instantaneous contact temperature below the boiling point of Na (883 C). The molten Al drop, which has a melting point of 660 C above the operational temperature range of core, was selected as a simulant of liquefied fuel in the present study. Al particles of 5 g or 0.56 g were heated up to the initial temperature ranging from 850 C to 1113 C in a crucible by using an electric heater. The molten Al drop was dropped into a sodium pool adjusted the temperature from 280 C to 499 C. The Al drop at initial temperature sufficiently higher that the boiling point of Na was observed to fragment into pieces under the condition of instantaneous contact temperature below the boiling point of Na. It is confirmed that the fragmentation is caused due to the thermal interactions between the molten Al and the Na entrapped into the drop. (author)

  3. Fragmentation of molten metal drop with instantaneous contact temperature below the boiling point of Na

    Energy Technology Data Exchange (ETDEWEB)

    Inukai, S.; Sugiyama, K. [Hokkaido Univ., Dept. of Nuclear Engineering, Sapporo (Japan); Nishimura, S.; Kinoshita, I. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2001-07-01

    The consequence of the core disruptive accidents in metallic-fueled Na-cooled reactors is strongly affected by the feedback reactivity originating in the boiling of Na and the dispersion of molten fuel due to fuel-coolant interactions. The design of the core configuration to promote the dispersion of molten fuel is therefore very important for social acceptance. It has been recognized in this context that metallic fuel has a potentiality to make liquefied fuel with fuel pin tube even in the temperature range below the boiling point of Na. If the liquefied fuel solidified without fuel-coolant interactions in the core region, this event leads the core condition to a pessimistic scenario of re-criticality. As a basic study related to this problem, the present experimental study investigates the possibility of fragmentation of metal drop with instantaneous contact temperature below the boiling point of Na (883 C). The molten Al drop, which has a melting point of 660 C above the operational temperature range of core, was selected as a simulant of liquefied fuel in the present study. Al particles of 5 g or 0.56 g were heated up to the initial temperature ranging from 850 C to 1113 C in a crucible by using an electric heater. The molten Al drop was dropped into a sodium pool adjusted the temperature from 280 C to 499 C. The Al drop at initial temperature sufficiently higher that the boiling point of Na was observed to fragment into pieces under the condition of instantaneous contact temperature below the boiling point of Na. It is confirmed that the fragmentation is caused due to the thermal interactions between the molten Al and the Na entrapped into the drop. (author)

  4. The ABC-Type Multidrug Resistance Transporter LmrCD Is Responsible for an Extrusion-Based Mechanism of Bile Acid Resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Zaidi, Arsalan Haseeb; Bakkes, Patrick J.; Lubelski, Jacek; Agustiandari, Herfita; Kuipers, Oscar P.; Driessen, Arnold J. M.

    2008-01-01

    Upon prolonged exposure to cholate and other toxic compounds, Lactococcus lactis develops a multidrug resistance phenotype that has been attributed to an elevated expression of the heterodimeric ABC-type multidrug transporter LmrCD. To investigate the molecular basis of bile acid resistance in L.

  5. Cooling methods of station blackout scenario for LWR plants

    International Nuclear Information System (INIS)

    2012-01-01

    The objective of this study is to analyze the cooling method of station blackout scenario for both the BWR and PWR plants by RELAP5 code and to check the validity of the cooling method proposed by the utilities. In the BWR plant cooling scenario, the Reactor Core Isolation Cooling System (RCIC), which is operated with high pressure steam from the reactor, injects cooling water into the reactor to keep the core water level. The steam generated in the core is released into the suppression pool at containment vessel to condense. To restrict the containment vessel pressure rising, the ventilation from the wet-well is operated. The scenario is analyzed by RELAP5 and CONTEMPT-LT code. In the PWR plant scenario, the primary pressure is decreased by the turbine-driven auxiliary feed water system operated with secondary side steam of the steam generators (SGs). And the core cooling is kept by the natural circulation flow at the primary loop. The analytical method of un-uniform flow behavior among the SG U-tubes, which affects the natural circulation flow rate, is developed. (author)

  6. Investigating the Role of Shell Thickness and Field Cooling on Saturation Magnetization and Its Temperature Dependence in Fe3O4/γ-Fe2O3 Core/Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ihab M. Obaidat

    2017-12-01

    Full Text Available Understanding saturation magnetization and its behavior with particle size and temperature are essential for medical applications such magnetic hyperthermia. We report the effect of shell thickness and field cooling on the saturation magnetization and its behavior with temperature in Fe3O4/γ-Fe2O3 core/shell nanoparticles of fixed core diameter (8 nm and several shell thicknesses. X-ray diffraction (XRD analysis and transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM were used to investigate the phase and the morphology of the samples. Selected area electron diffraction (SAED confirmed the core/shell structure and phases. Using a SQUID (San Diego, CA, USA, magnetic measurements were conducted in the temperature range of 2 to 300 K both under zero field-cooling (ZFC and field-cooling (FC protocols at several field-cooling values. In the ZFC state, considerable enhancement of saturation magnetization was obtained with the increase of shell thickness. After field cooling, we observed a drastic enhancement of the saturation magnetization in one sample up to 120 emu/g (50% larger than the bulk value. In both the FC and ZFC states, considerable deviations from the original Bloch’s law were observed. These results are discussed and attributed to the existence of interface spin-glass clusters which are modified by the changes in the shell thickness and the field-cooling.

  7. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  8. A scaling study of the natural circulation flow of the ex-vessel core catcher cooling system of a 1400MW PWR for designing a scale-down test facility

    International Nuclear Information System (INIS)

    Rhee, Bo. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-01-01

    A scaling study on the steady state natural circulation flow along the flow path of the ex-vessel core catcher cooling system of 1400MWe PWR is described. The scaling criteria for reproducing the same thermalhydraulic characteristics of the natural circulation flow as the prototype core catcher cooling system in the scale-down test facility is derived and the resulting natural circulation flow characteristics of the prototype and scale-down facility analyzed and compared. The purpose of this study is to apply the similarity law to the prototype EU-APR1400 core catcher cooling system and the model test facility of this prototype system and derive a relationship between the heating channel characteristics and the down-comer piping characteristics so as to determine the down-comer pipe size and the orifice size of the model test facility. As the geometry and the heating wall heat flux of the heating channel of the model test facility will be the same as those of the prototype core catcher cooling system except the width of the heating channel is reduced, the axial distribution of the coolant quality (or void fraction) is expected to resemble each other between the prototype and model facility. Thus using this fact, the down-comer piping design characteristics of the model facility can be determined from the relationship derived from the similarity law

  9. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  10. Vibration analysis for IHTS piping system of LMR conveying hot liquid sodium

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Hyeong Yeon; Lee, Jae Han

    2001-01-01

    In this paper, the vibration characteristics of IHTS(Intermediate Heat Transfer System) piping system of LMR(Liquid Metal Reactor) conveying hot liquid sodium are investigated to eliminate the pipe supports for economic reasons. To do this, a 3-dimensional straight pipe element and a curved pipe element conveying fluid are formulated using the dynamic stiffness method of the wave approach and coded to be applied to any complex piping system. Using this method, the dynamic characteristics including the natural frequency, the frequency response functions, and the dynamic instability due to the pipe internal flow velocity are analyzed. As one of the design parameters, the vibration energy flow is also analyzed to investigate the disturbance transmission paths for the resonant excitation and the non-resonant excitations

  11. A comparative neutronic analysis of KALIMER breeder core using Na or Pb-Bi coolant

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic study has been conducted on KALIMER breeder core according to the replacement of sodium coolant by Pb-Bi coolant. Since the atomic weight of Pb and Bi is about 9 times heavier than that of Na, the energy loss by neutron colliding with Pb-Bi nucleus will be very small. Therefore, the reactor with Pb-Bi coolant will have a harder neutron spectrum than that with Na coolant. Consequently, the breeding ratio and burnup reactivity swing is expected to be enhanced. In addition, when Pb-Bi coolant is voided, a negative coolant void coefficient can be obtained by the net effects of smaller spectrum hardening and large neutron leakage. As a result, the breeding ratio was increased from 1.18 to 1.23 and burnup reactivity swing was reduced from 631 pcm to 150 pcm. When the coolant in the whole region of active core is voided, the coolant void coefficient was found to be -539 and -264 pcm at BOEC and EOEC, respectively. In the local voided case, the smaller coolant void coefficient was obtained than that of Na coolant. Accordingly, the use of Pb-Bi coolant in KALIMER gives an advantage of higher breeding ratio, smaller burnup reactivity swing and negative coolant void coefficient without any significant degradation of nuclear performance

  12. Status of degraded core issues. Synthesis paper prepared by G. Bandini in collaboration with the NEA task group on degraded core cooling

    International Nuclear Information System (INIS)

    2001-02-01

    The in-vessel evolution of a severe accident in a nuclear reactor is characterised, generally, by core uncover and heat-up, core material oxidation and melting, molten material relocation and debris behaviour in the lower plenum up to vessel failure. The in-vessel core melt progression involves a large number of physical and chemical phenomena that may depend on the severe accident sequence and the reactor type under consideration. Core melt progression has been studied in the last twenty years through many experimental works. Since then, computer codes are being developed and validated to analyse different reactor accident sequences. The experience gained from the TMI-2 accident also constitutes an important source of data. The understanding of core degradation process is necessary to evaluate initial conditions for subsequent phases of the accident (ex-vessel and within the containment), and define accident management strategies and mitigative actions for operating and advanced reactors. This synthesis paper, prepared within the Task Group on Degraded Core Cooling (TG-DCC) of PWG2, contains a brief summary of current views on the status of degraded core issues regarding light water reactors. The in-vessel fission product release and transport issue is not addressed in this paper. The areas with remaining uncertainties and the needs for further experimental investigation and model development have been identified. The early phase of core melt progression is reasonably well understood. Remaining uncertainties may be addressed on the basis of ongoing experimental activities, e.g. on core quenching, and research programs foreseen in the near future. The late phase of core melt progression is less understood. Ongoing research programs are providing additional valuable information on corium molten pool behaviour. Confirmatory research is still required. The pool crust behaviour and material relocation into the lower plenum are the areas where additional research should

  13. The effects of aging on BWR core isolation cooling systems

    International Nuclear Information System (INIS)

    Lee, B.S.

    1994-10-01

    A study was performed to assess the effects of aging on the Reactor Core Isolation Cooling (RCIC) system in commercial Boiling Water Reactors (BWRs). This study is part of the Nuclear Plant Aging Research (NPAR) program sponsored by the US Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. The failure data from national databases, as well as plant specific data were reviewed and analyzed to understand the effects of aging on the RCIC system. This analysis identified important components that should receive the highest priority in terms of aging management. The aging characterization provided information on the effects of aging on component failure frequency, failure modes, and failures causes. Current inspection, surveillance, and monitoring practices were also reviewed

  14. Determination of PWR core water level using ex-core detectors signals

    International Nuclear Information System (INIS)

    Bernal, Alvaro; Abarca, Agustin; Miro, Rafael; Verdu, Gumersindo

    2013-01-01

    The core water level provides relevant neutronic and thermalhydraulic information of the reactor such as power, k eff and cooling ability; in fact, core water level monitoring could be used to predict LOCA and cooling reduction which may deal with core damage. Although different detection equipment is used to monitor several parameters such as the power, core water level monitoring is not an evident task. However, ex-core detectors can measure the fast neutrons leaking the core and several studies demonstrate the existence of a relationship between fast neutron leakage and core water level due to the shielding effect of the water. In addition, new ex-core detectors are being developed, such as silicon carbide semiconductor radiation detectors, monitoring the neutron flux with higher accuracy and in higher temperatures conditions. Therefore, a methodology to determine this relationship has been developed based on a Monte Carlo calculation using MCNP code and applying variance reduction with adjoint functions based on the adjoint flux obtained with the discrete ordinates code TORT. (author)

  15. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Cahalan, J.; Wigeland, R.; Friedel, G.; Kussmaul, G.; Royl, P.; Moreau, J.; Perks, M.

    1990-01-01

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs

  16. Liquid metal reactor core material HT9

    International Nuclear Information System (INIS)

    Kim, S. H.; Kuk, I. H.; Ryu, W. S. and others

    1998-03-01

    A state-of-the art is surveyed on the liquid metal reactor core materials HT9. The purpose of this report is to give an insight for choosing and developing the materials to be applied to the KAERI prototype liquid metal reactor which is planned for the year of 2010. In-core stability of cladding materials is important to the extension of fuel burnup. Austenitic stainless steel (AISI 316) has been used as core material in the early LMR due to the good mechanical properties at high temperatures, but it has been found to show a poor swelling resistance. So many efforts have been made to solve this problem that HT9 have been developed. HT9 is 12Cr-1MoVW steel. The microstructure of HT9 consisted of tempered martensite with dispersed carbide. HT9 has superior irradiation swelling resistance as other BCC metals, and good sodium compatibility. HT9 has also a good irradiation creep properties below 500 dg C, but irradiation creep properties are degraded above 500 dg C. Researches are currently in progress to modify the HT9 in order to improve the irradiation creep properties above 500 dg C. New design studies for decreasing the core temperature below 500 dg C are needed to use HT9 as a core material. On the contrary, decrease of the thermal efficiency may occur due to lower-down of the operation temperature. (author). 51 refs., 6 tabs., 19 figs

  17. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.; Hamilton, H.; Hyland, B. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  18. Lattice cell and full core physics of internally cooled annular fuel in heavy water moderated reactors

    International Nuclear Information System (INIS)

    Armstrong, J.; Hamilton, H.; Hyland, B.

    2013-01-01

    A program is underway at Atomic Energy of Canada Limited (AECL) to develop a new fuel bundle concept to enable greater burnups for PT-HWR (pressure tube heavy water reactor) cores. One option that AECL is investigating is an internally cooled annular fuel (ICAF) element concept. ICAF contains annular cylindrical pellets with cladding on the inner and outer diameters. Coolant flows along the outside of the element and through the centre. With such a concept, the maximum fuel temperature as a function of linear element rating is significantly reduced compared to conventional, solid-rod type fuel. The preliminary ICAF bundle concept considered in this study contains 24 half-metre long internally cooled annular fuel elements and one non-fuelled centre pin. The introduction of the non-fuelled centre pin reduces the coolant void reactivity (CVR), which is the increase in reactivity that occurs on voiding the coolant in accident scenarios. Lattice cell and full core physics calculations of the preliminary ICAF fuel bundle concept have been performed for medium burnups of approximately 18 GWd/tU using WIMS-AECL and reactor fuel simulation program (RFSP). The results will be used to assist in concept configuration optimization. The effects of radial and axial core power distributions, linear element power ratings, refuelling rates and operational power ramps have been analyzed. The results suggest that burnups of greater than 18 GWd/tU can be achieved in current reactor designs. At approximately 18 GWd/tU, expected maximum linear element ratings in a PT-HWR with online-refuelling are approximately 90 kW/m. These conditions would be prohibitive for solid-rod fuel, but may be possible in ICAF fuel given the reduced maximum fuel temperature as a function of linear element rating. (authors)

  19. Prognostic meaning of neutrophil to lymphocyte ratio (NLR) and lymphocyte to monocyte ration (LMR) in newly diagnosed Hodgkin lymphoma patients treated upfront with a PET-2 based strategy.

    Science.gov (United States)

    Romano, Alessandra; Parrinello, Nunziatina Laura; Vetro, Calogero; Chiarenza, Annalisa; Cerchione, Claudio; Ippolito, Massimo; Palumbo, Giuseppe Alberto; Di Raimondo, Francesco

    2018-06-01

    Recent reports identify NLR (the ratio between absolute neutrophils counts, ANC, and absolute lymphocyte count, ALC), as predictor of progression-free survival (PFS) and overall survival (OS) in cancer patients. We retrospectively tested NLR and LMR (the ratio between absolute lymphocyte and monocyte counts) in newly diagnosed Hodgkin lymphoma (HL) patients treated upfront with a PET-2 risk-adapted strategy. NLR and LMR were calculated using records obtained from the complete blood count (CBC) from 180 newly diagnosed HL patients. PFS was evaluated accordingly to Kaplan-Meier method. Higher NLR was associated to advanced stage, increased absolute counts of neutrophils and reduced count of lymphocytes, and markers of systemic inflammation. After a median follow-up of 68 months, PFS at 60 months was 86.6% versus 70.1%, respectively, in patients with NLR ≥ 6 or NLR PET-2 scan (p PET-2 was an independent predictor of PFS in multivariate analysis. Advanced-stage patients (N = 119) were treated according to a PET-2 risk-adapted protocol, with an early switch to BEACOPP regimen in case of PET-2 positivity. Despite this strategy, patients with positive PET-2 still had an inferior outcome, with PFS at 60 months of 84.7% versus 40.1% (negative and positive PET-2 patients, respectively, p PET-2 status and to a lesser extend NLR in advanced stage, while LMR maintained its significance in early stage. By focusing on PET-2 negative patients, we found that patients with NLR ≥ 6.0 or LMR PET-2 scan, NLR and LMR can result in a meaningful prognostic system that needs to be further validated in prospective series including patients treated upfront with PET-2 adapted-risk therapy.

  20. Analysis on small long life reactor using thorium fuel for water cooled and metal cooled reactor types

    International Nuclear Information System (INIS)

    Permana, Sidik

    2009-01-01

    Long-life reactor operation can be adopted for some special purposes which have been proposed by IAEA as the small and medium reactor (SMR) program. Thermal reactor and fast reactor types can be used for SMR and in addition to that program the utilization of thorium fuel as one of the candidate as a 'partner' fuel with uranium fuel which can be considered for optimizing the nuclear fuel utilization as well as recycling spent fuel. Fissile U-233 as the main fissile material for thorium fuel shows higher eta-value for wider energy range compared with other fissile materials of U-235 and Pu-239. However, it less than Pu-239 for fast energy region, but it still shows high eta-value. This eta-value gives the reactor has higher capability for obtaining breeding condition or high conversion capability. In the present study, the comparative analysis on small long life reactor fueled by thorium for different reactor types (water cooled and metal cooled reactor types). Light water and heavy water have been used as representative of water-cooled reactor types, and for liquid metal-cooled reactor types, sodium-cooled and lead-bismuth-cooled have been adopted. Core blanket arrangement as general design configuration, has been adopted which consist of inner blanket region fueled by thorium oxide, and two core regions (inner and out regions) fueled by fissile U-233 and thorium oxide with different percentages of fissile content. SRAC-CITATION and JENDL-33 have been used as core optimization analysis and nuclear data library for this analysis. Reactor operation time can reaches more than 10 years operation without refueling and shuffling for different reactor types and several power outputs. As can be expected, liquid metal cooled reactor types can be used more effective for obtaining long life reactor with higher burnup, higher power density, higher breeding capability and lower excess reactivity compared with water-cooled reactors. Water cooled obtains long life core operation

  1. Draft of standard for graphite core components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Sawa, Kazuhiro; Eto, Motokuni; Kunimoto, Eiji; Shiozawa, Shusaku; Oku, Tatsuo; Maruyama, Tadashi

    2010-01-01

    For the design of the graphite components in the High Temperature Engineering Test Reactor (HTTR), the graphite structural design code for the HTTR etc. were applied. However, general standard systems for the High Temperature Gas-cooled Reactor (HTGR) have not been established yet. The authors had studied on the technical issues which is necessary for the establishment of a general standard system for the graphite components in the HTGR. The results of the study were documented and discussed at a 'Special committee on research on preparation for codes for graphite components in HTGR' at Atomic Energy Society of Japan (AESJ). As a result, 'Draft of Standard for Graphite Core Components in High Temperature Gas-cooled Reactor.' was established. In the draft standard, the graphite components are classified three categories (A, B and C) in the standpoints of safety functions and possibility of replacement. For the components in the each class, design standard, material and product standards, and in-service inspection and maintenance standard are determined. As an appendix of the design standard, the graphical expressions of material property data of 1G-110 graphite as a function of fast neutron fluence are expressed. The graphical expressions were determined through the interpolation and extrapolation of the irradiated data. (author)

  2. Study of core flow distribution for small modular natural circulation lead or lead-alloy cooled fast reactors

    International Nuclear Information System (INIS)

    Chen, Zhao; Zhao, Pengcheng; Zhou, Guangming; Chen, Hongli

    2014-01-01

    Highlights: • A core flow distribution calculation code for natural circulation LFRs was developed. • The comparison study between the channel method and the CFD method was conducted. • The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted. - Abstract: Small modular natural circulation lead or lead-alloy cooled fast reactor (LFR) is a potential candidate for LFR development. It has many attractive advantages such as reduced capital costs and inherent safety. The core flow distribution calculation is an important issue for nuclear reactor design, which will provide important input parameters to thermal-hydraulic analysis and safety analysis. The core flow distribution calculation of a natural circulation LFR is different from that of a forced circulation reactor. In a forced circulation reactor, the core flow distribution can be controlled and adjusted by the pump power and the flow distributor, while in a natural circulation reactor, the core flow distribution is automatically adjusted according to the relationship between the local power and the local resistance feature. In this paper, a non-uniform heated parallel channel flow distribution calculation code was developed and the comparison study between the channel method and the CFD method was carried out to assess the exactness of the developed code. The core flow distribution analysis and optimization design for a 10MW natural circulation LFR was conducted using the developed code. A core flow distribution optimization design scheme for a 10MW natural circulation LFR was proposed according to the optimization analysis results

  3. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench (removal of stored energy from initial temperature to saturation temperature) of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  4. Development of an emergency core cooling system for the converted IEA-R1m research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Walmir Maximo; Baptista Filho, Benedito Dias; Ting, Daniel Kao Sun [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Tecnologia de Reatores]. E-mail: wmtorres@net.ipen.br; bdbfilho@net.ipen.br; dksting@net.ipen.br

    1998-07-01

    This present work describes the development program carried out in the design and construction of the Emergency Core Cooling System for the IEA-R1m Research Reactor, including the system design, the experiments performed to validate the design, manufacturing, installation and commissioning. The experiments were performed in two phases. In the first phase, the spray flow rate and distribution were measured, using a full scale mock-up of the entire core, to establish the spray header geometry and specifications. In the second phase, a test section was fitted with electrically heated plates to simulate the fuel plates. Temperature measurements were carried out to demonstrate the effectiveness of the system to keep the temperatures below the limiting value. The experimental results were shown to the licensing authorities during the certification process. The main difficulties during the system assembly are also described. (author)

  5. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  6. Study of the characteristics of water into sodium leak acoustic noise in LMR steam generator

    International Nuclear Information System (INIS)

    Kim, Tae Joon; Jeong, Kyung Chai; Jeong, Ji Young; Hur, Seop; Nam, Ho Yun

    2005-01-01

    A successful time for detecting a water/steam leak into sodium in the LMR SG (steam generator) at an early phase of a leak origin depends on the fast response and sensitivity of a leak detection system. It is considered, that the acoustic system is intended for a fast detecting of a water/steam into sodium leak of an intermediate flow rate, 1∼10 g/s. This intention of an acoustic system is stipulated by a key impossibility of a fast detecting of an intermediate leak by the present nominal systems on measuring the hydrogen in the sodium and in the cover gas concentration generated at a leak. During the self-wastage of a water/steam into sodium leak in a particular instant, it is usual in 30∼40 minutes from the moment of a leak origin, there is a modification of a leak flow out regime from bubble regime to the steam jet outflow. This evolution occurs as a jump function of the self-wastage of a leak and is escorted by an increase of a leak noise power and qualitative change of a leak noise spectrum. Subject of this study is by means of two experiments, one is an acoustic leak noise analysis of the water into sodium leak results in no damage to the LMR SG tube bundle, and another is for prediction of the frequency band under a high outflow leak condition. We experimented with the Argon gas injection considered with the phenomena of secondary leaks in real

  7. An experimental test facility to support development of the fluoride-salt-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Yoder, Graydon L.; Aaron, Adam; Cunningham, Burns; Fugate, David; Holcomb, David; Kisner, Roger; Peretz, Fred; Robb, Kevin; Wilgen, John; Wilson, Dane

    2014-01-01

    Highlights: • • A forced convection test loop using FLiNaK salt was constructed to support development of the FHR. • The loop is built of alloy 600, and operating conditions are prototypic of expected FHR operation. • The initial test article is designed to study pebble bed heat transfer cooled by FLiNaK salt. • The test facility includes silicon carbide test components as salt boundaries. • Salt testing with silicon carbide and alloy 600 confirmed acceptable loop component lifetime. - Abstract: The need for high-temperature (greater than 600 °C) energy transport systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The fluoride-salt-cooled high-temperature reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the fluoride-salt-cooled high-temperature reactor concept. The facility is capable of operating at up to 700 °C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system, a trace heating system, and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride-salt heat transfer inside a heated pebble bed

  8. VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE

    Directory of Open Access Journals (Sweden)

    NAM-IL TAK

    2013-11-01

    Full Text Available For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR, intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI and the AGREE code of the University of Michigan (U of M. One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.

  9. Fuel element replacement and cooling water radioactivity at the Musashi reactor

    International Nuclear Information System (INIS)

    Nozaki, T.; Honda, T.; Horiuchi, N.; Aizawa, O.; Sato, T.

    1988-01-01

    The Musashi reactor (TRIGA-II, 100kW) has been operated without any serious troubles since 1963. In 1985 the old Al-cladded fuel elements were replaced with new stainless cladded ones in order to insure a long and safe operation. By using a semi-automatic equipment the old fuel elements have been transferred into the bulk-shielding experimental pool, which was remodelled for the spent-fuel storage. In order to reduce the exposure during the transfer work, the old fuel elements were cooled in the core tank for 3 months. After the replacement, the radioactivities in the cooling water have been drastically changed. The activity of Na-24 decreased about one decade, and the activities of Cr-51, Mn-54, Mn-56, Co-58 and Co-60 increased about two decades. At this conference we will report on the following points: (1) semi-automatic equipment for the transportation of the Al-cladded spent fuel, (2) structure of spent-fuel storage pool, and (3) radioactivity change in the cooling water. (author)

  10. A Bayesian reliability study on motorized valves for the emergency core cooling, heat transport isolation and shutdown cooling systems at Gentilly-2 Nuclear Generating Station

    International Nuclear Information System (INIS)

    Smith, J.E.; Rennick, D.F.; Nainer, A.

    1996-01-01

    The objective of this is to examine operational data on 32 motorized valves in the emergency core cooling, shutdown cooling and heat transport isolation systems and determine if the evidence would support a reduction in testing frequency of these valves. The methodology used is to examine the data which has accumulated on motorized valve failures since Gentilly-2 first entered service, compare these data with similar data from other sources, and determine whether the evidence indicate that demand-based, wear out type failure mechanisms play a significant role in the recorded failures. The statistical data are then updated, using a Bayesian updating procedure, to obtain revised time based failure rates and demand based probabilities of failure on demand for the motorized valves. The revised failure rates and probabilities are then applied to the fault tree models for the systems of interest to determine what effects there would be, with the current test intervals and with extended test intervals, on the probability of failure of the systems. (author)

  11. Low-enrichment and long-life Scalable LIquid Metal cooled small Modular (SLIMM-1.2) reactor

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed S., E-mail: mgenk@unm.edu [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Department, University of New Mexico, Albuquerque, NM (United States); Chemical and Biological Engineering Department, University of New Mexico, Albuquerque, NM (United States); Palomino, Luis M.; Schriener, Timothy M. [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States)

    2017-05-15

    Highlights: • Developed low enrichment and natural circulation cooled SLIMM-1.2 SMR for generating 10–100 MW{sub th}. • Neutronics analyses estimate operation life and temperature reactivity feedback. • At 100 MW{sub th}, SLIMM-1.2 operates for 6.3 FPY without refueling. • SLIMM-1.2 has relatively low power peaking and maximum UN fuel temperature < 1400 K. - Abstract: The Scalable LIquid Metal cooled small Modular (SLIMM-1.0) reactor with uranium nitride fuel enrichment of 17.65% had been developed for generating 10–100 MW{sub th} continuously, without refueling for ∼66 and 5.9 full power years, respectively. Natural circulation of in-vessel liquid sodium (Na) cools the core of this fast energy spectrum reactor during nominal operation and after shutdown, with the aid of a tall chimney and an annular Na/Na heat exchanger (HEX) of concentric helically coiled tubes. The HEX at the top of the downcomer maximizes the static pressure head for natural circulation. In addition to the independent emergency shutdown (RSS) and reactor control (RC), the core negative temperature reactivity feedback safely decreases the reactor thermal power, following modest increases in the temperatures of UN fuel and in-vessel liquid sodium. The decay heat is removed from the core by natural circulation of in-vessel liquid sodium, with aid of the liquid metal heat pipes laid along the reactor vessel wall, and the passive backup cooling system (BCS) using natural circulation of ambient air along the outer surface of the guard vessel wall. This paper investigates modifying the SLIMM-1.0 reactor design to lower the UN fuel enrichment. To arrive at a final reactor design (SLIMM-1.2), the performed neutronics and reactivity depletion analyses examined the effects of various design and material choices on both the cold-clean and the hot-clean excess reactivity, the reactivity shutdown margin, the full power operation life at 100 MW{sub th}, the fissile production and depletion, the

  12. Superficial cooling does not decrease core body temperature before, during, or after exercise in an American football uniform.

    Science.gov (United States)

    Lopez, Rebecca M; Eberman, Lindsey E; Cleary, Michelle A

    2012-12-01

    The purpose of this study was to identify the effects of superficial cooling on thermoregulatory responses while exercising in a hot humid environment while wearing an American football uniform. Nine male and female subjects wore a superficial cooling garment while in a cooling (CS) experimental condition or a no cooling (NCS) control condition during an exercise task consisting of warm-up (WU), exercise (EX), and recovery (R). The exercise task simulated an American football conditioning session with subjects wearing a full American football uniform and performing anaerobic and aerobic exercises in a hot humid environment. Subjects were allowed to drink water ad libitum during rest breaks. During the WU, EX, and R periods, core body temperature (T(c)) was measured to assess the effect of the cooling garment. Neither baseline resting before warm-up T(c) nor after warm-up T(c) was significantly different between trials. No significant differences in exercise T(c) between conditions were found. Time to return to baseline T(c) revealed no significant differences between the experimental and control conditions. The authors found that the volume of fluid consumed was 34% less in the experimental condition (711.1 ± 188.0 ml) compared with the control condition (1,077.8 ± 204.8 ml). The findings indicate that the cooling garment was not effective in blunting the rise in T(c) during warm-up, attenuating a rise in T(c) during intermittent exercise, or in increasing a return to baseline T(c) during a resting recovery period in a hot humid environment while wearing an American football uniform.

  13. Experiments on graphite block gaps connected with leak flow in bottom-core structure of experimental very high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Futakawa, Masatoshi; Takizuka, Takakazu; Kaburaki, Hideo; Sanokawa, Konomo

    1984-01-01

    In order to minimize the leak flow rate of an experimental VHTR (a multi-purpose very high-temperature gas-cooled reactor), the graphite blocks are tightened to reduce the gap distance between blocks by core restrainers surrounded outside of the fixed reflectors of the bottom-core structure and seal elements are placed in the gaps. By using a 1/2.75-scale model of the bottom-core structure, the experiments on the following items have been carried out: a relationship between core restraint force and block gap, a relationship between core restraint force and inclined angle of the model, leak flow characteristics of seal elements etc. The conclusions derived from the experiments are as follows: (1) Core restraint force is significantly effective for decreasing the gap distance between hot plenum blocks, but ineffective for the gap between hot plenum block and fixed reflector. (2) Graphite seal element reduces the leak flow rate from the top surface of hot plenum block into plenum region to one-third. (author)

  14. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  15. Safety Research Experiment Facility Project. Conceptual design report. Volume VII. Reactor cooling

    International Nuclear Information System (INIS)

    1975-12-01

    The Reactor Cooling System (RCS) will provide the required cooling during test operations of the Safety Research Experiment Facility (SAREF) reactor. The RCS transfers the reactor energy generated in the core to a closed-loop water storage system located completely inside the reactor containment building. After the reactor core has cooled to a safe level, the stored heat is rejected through intermediate heat exchangers to a common forced-draft evaporative cooling tower. The RCS is comprised of three independent cooling loops of which any two can remove sufficient heat from the core to prevent structural damage to the system components

  16. Emergency cooling device for reactors

    International Nuclear Information System (INIS)

    Inoue, Hisamichi; Naito, Masanori; Sato, Chikara; Chino, Koichi.

    1975-01-01

    Object: To pour high pressure cooling water into a core, when coolant is lost in a boiling water reactor, thereby restraining the rise of fuel cladding. Structure: A control rod guiding pipe, which is moved up and down by a control rod, is mounted on the bottom of a pressure vessel, the control rod guiding pipe being communicated with a high pressure cooling water tank positioned externally of the pressure vessel, and a differential in pressure between the pressure vessel and the aforesaid tank is detected when trouble of coolant loss occurs, and the high pressure cooling water within the tank is poured into the core through the control rod guiding pipe to restrain the rise of fuel cladding. (Kamimura, M.)

  17. The cooling history and the depth of detachment faulting at the Atlantis Massif oceanic core complex

    Science.gov (United States)

    Schoolmeesters, Nicole; Cheadle, Michael J.; John, Barbara E.; Reiners, Peter W.; Gee, Jeffrey; Grimes, Craig B.

    2012-10-01

    Oceanic core complexes (OCCs) are domal exposures of oceanic crust and mantle interpreted to be denuded to the seafloor by large slip oceanic detachment faults. We combine previously reported U-Pb zircon crystallization ages with (U-Th)/He zircon thermochronometry and multicomponent magnetic remanence data to determine the cooling history of the footwall to the Atlantis Massif OCC (30°N, MAR) and help establish cooling rates, as well as depths of detachment faulting and gabbro emplacement. We present nine new (U-Th)/He zircon ages for samples from IODP Hole U1309D ranging from 40 to 1415 m below seafloor. These data paired with U-Pb zircon ages and magnetic remanence data constrain cooling rates of gabbroic rocks from the upper 800 m of the central dome at Atlantis Massif as 2895 (+1276/-1162) °C Myr-1 (from ˜780°C to ˜250°C); the lower 600 m of the borehole cooled more slowly at mean rates of ˜500 (+125/-102) °C Myr-1(from ˜780°C to present-day temperatures). Rocks from the uppermost part of the hole also reveal a brief period of slow cooling at rates of ˜300°C Myr-1, possibly due to hydrothermal circulation to ˜4 km depth through the detachment fault zone. Assuming a fault slip rate of 20 mm/yr (from U-Pb zircon ages of surface samples) and a rolling hinge model for the sub-surface fault geometry, we predict that the 780°C isotherm lies at ˜7 km below the axial valley floor, likely corresponding both to the depth at which the semi-brittle detachment fault roots and the probable upper limit of significant gabbro emplacement.

  18. A study on safety measure of LMR coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Tai; Choi, Y D; Choi, J H; Kim, T J; Jeong, K C; Kwon, S W; Kim, B H; Jeong, J Y; Park, J H; Kim, K R; Jo, B R

    1997-08-01

    A study on safety measures of LMR coolant showed the results as follows: 1. Sodium fire characteristics. A. Sodium pool temp., gas temp., oxygen concentration calculated by flame combustion model were generally higher than those calculated by surface combustion model. B. Basic and detail designs for medium sodium fire test facility were carried out and medium sodium fire test facility was constructed. 2. Sodium/Cover gas purification technology. A. Construction and operation of calibration loop. B. Purification analysis and conceptual design of the packing for a cold trap. 3. Analysis of sodium-water reaction characteristics. We have investigated the characteristics analysis for micro and small leaks phenomena, development of the computer code for analysis of initial and quasi steady-state spike pressures to analyze large leak accident. Also, water mock-up test facility for the analysis of large leak accident phenomena was designed and manufactured. 4. Development of water leak detection technology. Detection signals were appeared when the hydrogen detector is operated to Ar-H{sub 2} gas system. The technology for the passive acoustic detection with respect to large leakage of water into sodium media was reviewed. And water mock-up test equipment and instrument system were designed and constructed. (author). 19 refs., 45 tabs., 52 figs.

  19. A study on safety measure of LMR coolant

    International Nuclear Information System (INIS)

    Hwang, Sung Tai; Choi, Y. D.; Choi, J. H.; Kim, T. J.; Jeong, K. C.; Kwon, S. W.; Kim, B. H.; Jeong, J. Y.; Park, J. H.; Kim, K. R.; Jo, B. R.

    1997-08-01

    A study on safety measures of LMR coolant showed the results as follows: 1. Sodium fire characteristics. A. Sodium pool temp., gas temp., oxygen concentration calculated by flame combustion model were generally higher than those calculated by surface combustion model. B. Basic and detail designs for medium sodium fire test facility were carried out and medium sodium fire test facility was constructed. 2. Sodium/Cover gas purification technology. A. Construction and operation of calibration loop. B. Purification analysis and conceptual design of the packing for a cold trap. 3. Analysis of sodium-water reaction characteristics. We have investigated the characteristics analysis for micro and small leaks phenomena, development of the computer code for analysis of initial and quasi steady-state spike pressures to analyze large leak accident. Also, water mock-up test facility for the analysis of large leak accident phenomena was designed and manufactured. 4. Development of water leak detection technology. Detection signals were appeared when the hydrogen detector is operated to Ar-H 2 gas system. The technology for the passive acoustic detection with respect to large leakage of water into sodium media was reviewed. And water mock-up test equipment and instrument system were designed and constructed. (author). 19 refs., 45 tabs., 52 figs

  20. Estrategias experimentales para el estudio de las propiedades de la proteína Core del virus de la hepatitis C

    Directory of Open Access Journals (Sweden)

    Gonzálo Correa Arango

    2004-03-01

    Full Text Available

    El modelo de infección por el Virus de la Hepatitis C (VHC se ha convertido en el tópico de interés de numerosos equipos de investigación, considerando el alto porcentaje de infección persistente asociada al VHC. En efecto, del 50 al 80% de los pacientes con infección por el VHC, desarrollan infección persistente, que puede evolucionar a cirrosis y carcinoma hepatocelular (HCC. Este modelo presenta dos obstáculos mayores para su estudio: la ausencia de un sistema eficiente de replicación viral in vitro y el limitado número de modelos animales.

    La proteína Core del VHC, además de ser la unidad estructural de la cápside viral, parece estar implicada en las estrategias virales de persistencia y oncogénesis; nuestro grupo ha planteado estrategias experimentales para estudiar algunas de sus propiedades, tales como su capacidad inmunonoduladora en cultivos de cálulas dendríticas humanas, su capacidad de modificar la expresión del ARNm en células HepG2 con expresión transitoria de Core y la presencia de esta proteína en tejido hepático proveniente de pacientes con diagnóstico de HCC; dichas estrategias experimentales han sido:

    Producción de la proteína Core del VHC en el sistema baculovirus y purificación en condiciones nativas para su evaluación en ensayos biológicos.

    Expresión transitoria de la proteína Core del VHC en la línea celular HepG2, mediante transducción con partículas recombinantes del Virus Semliki Forest (SFV.

    Estudio de la expresión de p53

  1. Fort St. Vrain core performance

    International Nuclear Information System (INIS)

    McEachern, D.W.; Brown, J.R.; Heller, R.A.; Franek, W.J.

    1977-07-01

    The Fort St. Vrain High Temperature Gas Cooled Reactor core performance has been evaluated during the startup testing phase of the reactor operation. The reactor is graphite moderated, helium cooled, and uses coated particle fuel and on-line flow control to each of the 37 refueling regions. Principal objectives of startup testing were to determine: core and control system reactivity, radial power distribution, flow control capability, and initial fission product release. Information from the core demonstrates that Technical Specifications are being met, performance of the core and fuel is as expected, flow and reactivity control are predictable and simple for the operator to carry out

  2. Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System

    International Nuclear Information System (INIS)

    Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun

    2013-01-01

    In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena

  3. Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun [Korea Hydro Nuclear Power Co. Ltd, Daejeon (Korea, Republic of)

    2013-05-15

    In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena.

  4. Nuclear design and analysis report for KALIMER breakeven core conceptual design

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Song, Hoon; Lee, Ki Bog; Chang, Jin Wook; Hong, Ser Gi; Kim, Young Gyun; Kim, Yeong Il

    2002-04-01

    During the phase 2 of LMR design technology development project, the breakeven core configuration was developed with the aim of the KALIMER self-sustaining with regard to the fissile material. The excess fissile material production is limited only to the extent of its own requirement for sustaining its planned power operation. The average breeding ratio is estimated to be 1.05 for the equilibrium core and the fissile plutonium gain per cycle is 13.9 kg. The nuclear performance characteristics as well as the reactivity coefficients have been analyzed so that the design evaluation in other activity areas can be made. In order to find out a realistic heavy metal flow evolution and investigate cycle-dependent nuclear performance parameter behaviors, the startup and transition cycle loading strategies are developed, followed by the startup core physics analysis. Driver fuel and blankets are assumed to be shuffled at the time of each reload. The startup core physics analysis has shown that the burnup reactivity swing, effective delayed neutron fraction, conversion ratio and peak linear heat generation rate at the startup core lead to an extreme of bounding physics data for safety analysis. As an outcome of this study, a whole spectrum of reactor life is first analyzed in detail for the KALIMER core. It is experienced that the startup core analysis deserves more attention than the current design practice, before the core configuration is finalized based on the equilibrium cycle analysis alone.

  5. AN X-RAY COOLING-CORE CLUSTER SURROUNDING A LOW-POWER COMPACT STEEP SPECTRUM RADIO SOURCE 1321+045

    International Nuclear Information System (INIS)

    Kunert-Bajraszewska, M.; Siemiginowska, A.; Labiano, A.

    2013-01-01

    We discovered an X-ray cluster in a Chandra observation of the compact steep spectrum (CSS) radio source 1321+045 (z = 0.263). CSS sources are thought to be young radio objects at the beginning of their evolution and can potentially test the cluster heating process. 1321+045 is a relatively low-luminosity source and its morphology consists of two radio lobes on the opposite sides of a radio core with no evidence for jets or hotspots. The optical emission line ratios are consistent with an interstellar medium dominated by active galactic nucleus photoionization with a small contribution from star formation, and no contributions from shocks. Based on these ratios, we classify 1321+045 as a low excitation galaxy (LEG) and suggest that its radioactivity is in a coasting phase. The X-ray emission associated with the radio source is detected with 36.1 ± 8.3 counts, but the origin of this emission is highly uncertain. The current X-ray image of the cluster does not show any signatures of a radio source impact on the cluster medium. Chandra detects the cluster emission at >3σ level out to ∼60'' (240 kpc). We obtain the best-fit beta model parameters of the surface brightness profile of β = 0.58 ± 0.2 and a core radius of 9.4 +1.1 -0.9 arcsec. The average temperature of the cluster is equal to kT = 4.4 +0.5 -0.3 keV, with a temperature and cooling profile indicative of a cooling core. We measure the cluster luminosity L (0.5-2 k eV) = 3 × 10 44 erg s –1 and mass 1.5 × 10 14 M ☉

  6. AN X-RAY COOLING-CORE CLUSTER SURROUNDING A LOW-POWER COMPACT STEEP SPECTRUM RADIO SOURCE 1321+045

    Energy Technology Data Exchange (ETDEWEB)

    Kunert-Bajraszewska, M. [Torun Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, NCU, Grudziacka 5, 87-100 Torun (Poland); Siemiginowska, A. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Labiano, A., E-mail: magda@astro.uni.torun.pl [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir km. 4, E-28850 Torrejon de Ardoz, Madrid (Spain)

    2013-07-20

    We discovered an X-ray cluster in a Chandra observation of the compact steep spectrum (CSS) radio source 1321+045 (z = 0.263). CSS sources are thought to be young radio objects at the beginning of their evolution and can potentially test the cluster heating process. 1321+045 is a relatively low-luminosity source and its morphology consists of two radio lobes on the opposite sides of a radio core with no evidence for jets or hotspots. The optical emission line ratios are consistent with an interstellar medium dominated by active galactic nucleus photoionization with a small contribution from star formation, and no contributions from shocks. Based on these ratios, we classify 1321+045 as a low excitation galaxy (LEG) and suggest that its radioactivity is in a coasting phase. The X-ray emission associated with the radio source is detected with 36.1 {+-} 8.3 counts, but the origin of this emission is highly uncertain. The current X-ray image of the cluster does not show any signatures of a radio source impact on the cluster medium. Chandra detects the cluster emission at >3{sigma} level out to {approx}60'' (240 kpc). We obtain the best-fit beta model parameters of the surface brightness profile of {beta} = 0.58 {+-} 0.2 and a core radius of 9.4{sup +1.1}{sub -0.9} arcsec. The average temperature of the cluster is equal to kT = 4.4{sup +0.5}{sub -0.3} keV, with a temperature and cooling profile indicative of a cooling core. We measure the cluster luminosity L{sub (0.5-2{sub keV)}} = 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and mass 1.5 Multiplication-Sign 10{sup 14} M{sub Sun}.

  7. Cooling of pressurized water nuclear reactor vessels

    International Nuclear Information System (INIS)

    Curet, H.D.

    1978-01-01

    The improvement of pressurized water nuclear reactor vessels comprising flow dividers providing separate and distinct passages for the flow of core coolant water from each coolant water inlet, the flow dividers being vertically disposed in the annular flow areas provided by the walls of the vessel, the thermal shield (if present), and the core barrel is described. In the event of rupture of one of the coolant water inlet lines, water, especially emergency core coolant water, in the intact lines is thus prevented from by-passing the core by circumferential flow around the outermost surface of the core barrel and is instead directed so as to flow vertically downward through the annulus area between the vessel wall and the core barrel in a more normal manner to increase the probability of cooling of the core by the available cooling water in the lower plenum, thus preventing or delaying thermal damage to the core, and providing time for other appropriate remedial or damage preventing action by the operator

  8. Unsteady thermal analysis of gas-cooled fast reactor core

    International Nuclear Information System (INIS)

    Lakkis, I.A.

    1993-01-01

    This thesis presents numerical analysis of transient heat transfer in an equivalent coolant-fuel rod cell of a typical gas cooled, fast nuclear reactor core. The transient performance is assumed to follow a complete sudden loss of coolant starting from steady state operation. Steady state conditions are obtained from solving a conduction problem in the fuel rod and a parabolic turbutent convection problem in the coolant section. The coupling between the two problems is accomplished by ensuring continuity of the thermal conditions at the interface between the fuel rod and the coolant. to model turbulence, the mixing tenght theory is used. Various fuel rod configurations have been tested for optimal transient performance. Actually, the loss of coolant accident occurs gradually at an exponential rate. Moreover, a time delay before shutting down the reactor by insertion of control rods usually exists. It is required to minimize maximum steady state cladding temperature so that the time required to reach its limiting value during transient state is maximum. This will prevent the escape of radioactive gases that endanger the environment and the public. However, the case considered here is a limiting case representing what could actually happen in the worst probable accident. So, the resutls in this thesis are very indicative regarding selection of the fuel rode configuration for better transient performance in case of accidents in which complete loss of collant occurs instantaneously

  9. COMMIX analysis of four constant flow thermal upramp experiments performed in a thermal hydraulic model of an advanced LMR

    International Nuclear Information System (INIS)

    Yarlagadda, B.S.

    1989-04-01

    The three-dimensional thermal hydraulics computer code COMMIX-1AR was used to analyze four constant flow thermal upramp experiments performed in the thermal hydraulic model of an advanced LMR. An objective of these analyses was the validation of COMMIX-1AR for buoyancy affected flows. The COMMIX calculated temperature histories of some thermocouples in the model were compared with the corresponding measured data. The conclusions of this work are presented. 3 refs., 5 figs

  10. AGR core safety assessment methodologies

    International Nuclear Information System (INIS)

    McLachlan, N.; Reed, J.; Metcalfe, M.P.

    1996-01-01

    To demonstrate the safety of its gas-cooled graphite-moderated AGR reactors, nuclear safety assessments of the cores are based upon a methodology which demonstrates no component failures, geometrical stability of the structure and material properties bounded by a database. All AGRs continue to meet these three criteria. However, predictions of future core behaviour indicate that the safety case methodology will eventually need to be modified to deal with new phenomena. A new approach to the safety assessment of the cores is currently under development, which can take account of these factors while at the same time providing the same level of protection for the cores. This approach will be based on the functionality of the core: unhindered movement of control rods, continued adequate cooling of the fuel and the core, continued ability to charge and discharge fuel. (author). 5 figs

  11. EXCURS: a computing programme for analysis of core transient behaviour in a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Saito, Shinzo

    1977-09-01

    In the code EXCURS developed for core transient behaviour calculation of a sodium-cooled fast reactor, a one-channel model is used to represent thermal behaviour of the reactor core. Calculations are made for three different channels; i.e. average, hot and hottest. In the average channel the power density and coolant velocity are equal to the mean values of the whole core. In the hot channel, a maximum power density of the core and a specific coolant velocity are introduced. In the hottest channel, engineering hot channel factors are considered to the hot channel. A one-point neutron kinetics equation with six delayed neutron groups is used to calculate the time-dependent power behaviour. Externally introduced reactivity effect and control rod movement in the case of a scram are taken into account. In the feedback effects evaluated on the basis of the average channel temperatures are considered Doppler effect, fuel axial expansion, cladding expansion, coolant expansion and structure expansion. The decay heat after reactor scram is also considered. Heat balance is taken in each cross section, neglecting the axial heat transfer except for the coolant region. Temperature dependence of the physical properties of materials is considered by second-order polynomials approximation, and also the fuel melting process. Each channel can be divided into a maximum of 20 regions in both radially and axially. The reactor core transient behaviour due to reactivity insertion or loss-of-coolant flow can be studied by EXCURS. The calculated results are plotted optionally by connected code EXPLOT. (auth.)

  12. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae-Joon, E-mail: rjpark@kaeri.re.kr; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-03-15

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m{sup 2} s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  13. Detailed evaluation of two phase natural circulation flow in the cooling channel of the ex-vessel core catcher for EU-APR1400

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Rhee, Bo-Wook; Kim, Hwan Yeol

    2016-01-01

    Highlights: • Ex-vessel core catcher of PECS is installed in EU-APR1400. • CE-PECS has been conducted to test a cooling capability of the PECS. • Two phase flow in CE-PECS and PECS was analyzed using RELAP5/MOD3. • RELAP5 results are very similar to the CE-PECS data. • The super-step design is suitable for steam injection into the downcomer in PECS. - Abstract: The ex-vessel core catcher of the PECS (Passive Ex-vessel corium retaining and Cooling System) is installed to retain and cool down the corium in the reactor cavity of the EU (European Union)-APR (Advanced Power Reactor) 1400. A verification experiment on the cooling capability of the PECS has been conducted in the CE (Cooling Experiment)-PECS. Simulations of a two-phase natural circulation flow using the RELAP5/MOD3 computer code in the CE-PECS and PECS have been conducted to predict the two-phase flow characteristics, to determine the natural circulation mass flow rate in the cooling channel, and to evaluate the scaling in the experimental design of the CE-PECS. Particularly from a comparative study of the prototype PECS and the scaled test facility of the CE-PECS, the orifice loss coefficient in the CE-PECS was found to be 6 to maintain the coolant circulation mass flux, which is approximately 273.1 kg/m"2 s. The RELAP5 results on the coolant circulation mass flow rate are very similar to the CE-PECS experimental results. An increase in the coolant injection temperature and the heat flux lead to an increase in the coolant circulation mass flow rate. In the base case simulation, a lot of vapor was injected into the downcomer, which leads to an instability of the two-phase natural circulation flow. A super-step design at a downcomer inlet is suitable to prevent vapor injection into the downcomer piping.

  14. Nuclear reactor core catcher

    International Nuclear Information System (INIS)

    1977-01-01

    A nuclear reactor core catcher is described for containing debris resulting from an accident causing core meltdown and which incorporates a method of cooling the debris by the circulation of a liquid coolant. (U.K.)

  15. Review of the Technical Status on the Debris Bed Cooling Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Kwang; Cho, Chung Ho; Lee, Yong Bum

    2007-09-15

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. In this study, review of the technical status on the debris bed cooling model was carried out for in-vessel retention of the core debris0.

  16. Review of the Technical Status on the Debris Bed Cooling Model

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Cho, Chung Ho; Lee, Yong Bum

    2007-09-01

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. In this study, review of the technical status on the debris bed cooling model was carried out for in-vessel retention of the core debris

  17. Molten core material holding device in a nuclear reactor

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Tanaka, Nobuo; Takahashi, Katsuro.

    1985-01-01

    Purpose: To improve the function of cooling to hold molten core materials in a molten core material holding device. Constitution: Plenum structures are formed into a pan-like configuration, in which liners made of metal having high melting point and relatively high heat conductivity such as tantalum, tungsten, rhenium or alloys thereof are integrally appended to hold and directly cool the molten reactor core materials. Further, a plurality of heat pipes, passing through the plenum structures, facing the cooling portion thereof to the coolants at the outer side and immersing the heating portion into the molten core materials fallen to deposit in the inner liners are disposed radially. Furthermore, heat pipes embodded in the plenum structure are disposed in the same manner below the liners. Thus, the plenum structures and the molten reactor core materials can be cooled at a high efficiency. (Seki, T.)

  18. Prediction, analysis and solution of flow inversion phenomenon in a typical MTR reactor with upward core cooling

    International Nuclear Information System (INIS)

    El-Morshedy, Salah El-Din

    2010-01-01

    Research reactors of power greater than 20 MW are usually designed to be cooled with upward coolant flow direction inside the reactor core. This is mainly to prevent flow inversion problems following a pump coast down. However, in some designs and under certain operating conditions, flow inversion phenomenon is predicted. In the present work, the best-estimate Material Testing Reactors Thermal-Hydraulic Analysis program (MTRTHA) is used to simulate a typical MTR reactor behavior with upward cooling under a hypothetical case of loss of off-site power. The flow inversion phenomenon is predicted under certain decay heat and/or pool temperature values below the design values. The reactor simulation under loss of off-site power is performed for two cases namely; two-flap valves open and one flap-valve fails to open. The model results for the flow inversion phenomenon prediction is analyzed and a solution of the problem is suggested. (orig.)

  19. Three core concepts for producing uranium-233 in commercial pressurized light water reactors for possible use in water-cooled breeder reactors

    International Nuclear Information System (INIS)

    Conley, G.H.; Cowell, G.K.; Detrick, C.A.; Kusenko, J.; Johnson, E.G.; Dunyak, J.; Flanery, B.K.; Shinko, M.S.; Giffen, R.H.; Rampolla, D.S.

    1979-12-01

    Selected prebreeder core concepts are described which could be backfit into a reference light water reactor similar to current commercial reactors, and produce uranium-233 for use in water-cooled breeder reactors. The prebreeder concepts were selected on the basis of minimizing fuel system development and reactor changes required to permit a backfit. The fuel assemblies for the prebreeder core concepts discussed would occupy the same space envelope as those in the reference core but contain a 19 by 19 array of fuel rods instead of the reference 17 by 17 array. An instrument well and 28 guide tubes for control rods have been allocated to each prebreeder fuel assembly in a pattern similar to that for the reference fuel assemblies. Backfit of these prebreeder concepts into the reference reactor would require changes only to the upper core support structure while providing flexibility for alternatives in the type of fuel used

  20. Apparatus for controlling nuclear core debris

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  1. Apparatus for controlling nuclear core debris

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    Disclosed is an apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling

  2. Thermal and flow design of helium-cooled reactors

    International Nuclear Information System (INIS)

    Melese, G.; Katz, R.

    1984-01-01

    This book continues the American Nuclear Society's series of monographs on nuclear science and technology. Chapters of the book include information on the first-generation gas-cooled reactors; HTGR reactor developments; reactor core heat transfer; mechanical problems related to the primary coolant circuit; HTGR design bases; core thermal design; gas turbines; process heat HTGR reactors; GCFR reactor thermal hydraulics; and gas cooling of fusion reactors

  3. Temperature profiles of different cooling methods in porcine pancreas procurement.

    Science.gov (United States)

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  4. The Merging Galaxy Cluster A520 - A Broken-Up Cool Core, A Dark Subcluster, and an X-Ray Channel

    Science.gov (United States)

    Wang, Qian H.S.; Markevitch, Maxim; Giacintucci, Simona

    2016-01-01

    We present results from a deep Chandra X-ray observation of a merging galaxy cluster A520. A high-resolution gas temperature map reveals a long trail of dense, cool clumpsapparently the fragments of a cool core that has been stripped from the infalling subcluster by ram pressure. The clumps should still be connected by the stretched magnetic field lines. The observed temperature variations imply that thermal conductivity is suppressed by a factor greater than 100 across the presumed direction of the magnetic field (as found in other clusters), and is also suppressed along the field lines by a factor of several. Two massive clumps in the periphery of A520, visible in the weak-lensing mass map and the X-ray image, have apparently been completely stripped of gas during the merger, but then re-accreted the surrounding high-entropy gas upon exit from the cluster. The mass clump that hosted the stripped cool core is also re-accreting hotter gas. An X-ray hydrostatic mass estimate for the clump that has the simplest geometry agrees with the lensing mass. Its current gas mass to total mass ratio is very low, 1.5 percent to 3 percent, which makes it a "dark subcluster." We also found a curious low X-ray brightness channel (likely a low-density sheet in projection) going across the cluster along the direction of an apparent secondary merger. The channel may be caused by plasma depletion in a region of an amplified magnetic field (with plasma Beta approximately equal to 10-20). The shock in A520 will be studied in a separate paper.

  5. Coolability of severely degraded CANDU cores

    International Nuclear Information System (INIS)

    Meneley, D.A.; Blahnik, C.; Rogers, J.T.; Snell, V.G.; Mijhawan, S.

    1995-07-01

    Analytical and experimental studies have shown that the separately cooled moderator in a CANDU reactor provides an effective heat sink in the event of a loss-of-coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintains the integrity of the fuel channels, therefore terminating this severe accident short of severe core damage. Nevertheless, there is a probability, however low, that the moderator heat sink could fail in such an accident. The pioneering work of Rogers (1984) for such a severe accident using simplified models showed that the fuel channels would fail and a bed of dry, solid debris would be formed at the bottom of the calandria which would heat up and eventually melt. However, the molten pool of core material would be retained in the calandria vessel, cooled by the independently cooled shield-tank water, and would eventually re solidify. Thus, the calandria vessel would act inherently as a core-catcher as long as the shield tank integrity is maintained. The present paper reviews subsequent work on the damage to a CANDU core under severe accident conditions and describes an empirically based mechanistic model of this process. It is shown that, for such severe accident sequences in a CANDU reactor, the end state following core disassembly consists of a porous bed of dry solid, coarse debris, irrespective of the initiating event and the core disassembly process. (author). 48 refs., 3 tabs., 18 figs

  6. What are the advantages of a three body model with core excitation for 21Ne and 21Na?

    International Nuclear Information System (INIS)

    Nunes, F.M.; Thompson, I.J.

    2004-01-01

    21 Ne and 21 Na are well bound nuclei and there is a large amount of data available up to considerable excitation energy, and this imposes a severe test on the structure models. Preliminary results for the structure of these nuclei based on three body models ( 21 Ne= 16 O+α+n and 21 Na= 16 O+α+p) are presented. Three-body calculations without core excitation produce the positive parity states in fair agreement with experiment, while slightly overbinding the systems. As expected, these models fail to reproduce the low lying negative parity states, which are predicted by shell model to have mainly core excited configurations. As a first step we have included the 3 - state of 16 O in our model. Convergence issues will be discussed. Results suggest that more excited states may be required to describe the system

  7. New ADAC centre cools and heats environmental-friendly. Concrete core tempering; Neue ADAC-Zentrale kuehlt und heizt umweltvertraeglich. Betonkerntemperierung

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2010-12-15

    At present, the new centre of the General German Automobile Association (ADAC) arises in Munich's suburb Sendling/Westpark. In summer 2011, nearly 2,400 coworkers of ADAC so far distributed over six locations in Munich shall work together in the new office building. So that they feel well in this new building, Rehau AG (Rehau, Federal Republic of Germany) supplies an environmental-friendly heating and cooling of the building by means of concrete core tempering.

  8. Recuperation of the energy released in the G-1, an air-cooled graphite reactor core

    International Nuclear Information System (INIS)

    Chambadal, P.; Pascal, M.

    1955-01-01

    The CEA (in his five-year setting plan) has objective among others, the realization of the two first french reactors moderated with graphite. The construction of the G-1 reactor in Marcoule, first french plutonic core, is achieved so that it will diverge in the beginning of 1956 and reach its full power in the beginning of the second semester of the same year. In this report we will detail the specificities of the reactor and in particular its cooling and energy recuperation system. The G-1 reactor being essentially intended to allow the french technicians to study the behavior of an energy installation supply taking its heat in a nuclear source as early as possible. (M.B.) [fr

  9. The Effect of Topaz Irradiation to the Quality of Cooling Water Reactor GA Siwabessy

    International Nuclear Information System (INIS)

    Elisabeth Ratnawati; Kawkab Mustofa; Arif Hidayat

    2012-01-01

    Topaz irradiation which applied both inside and outside the reactor core is one utilization of the reactor GA Siwabessy. Topaz consists of silicon clusters containing a combination of aluminum, fluorine and hydroxyl, and impurities. The results of the qualitative analysis of the topaz before irradiation detected europium (Eu-152), potassium (K-40) and sodium (Na-24). While the post-irradiation of topaz detected europium (Eu), cobalt (Co), cesium (Cs), tantalum (Ta), scandium (Sc), iron (Fe), Selenium (Se) and potassium (K). These elements might affect the quality of the cooling water. But the results of the qualitative analysis that were carried out to the primary cooling water did not reveal any elements similar to the elements contained in topaz impurities. Most likely this is because most impurities have been caught by the resin trap in purification systems, because of the results of the analysis of the dirt on the resin trap contained elements similar to the impurities Fe and Co topaz. The purification system makes quality primary cooling water is maintained. From the result shows that chemically the quality of primary cooling water is not affected by the topaz irradiation. (author)

  10. Shape optimization of a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Schmitt, D.; Allaire, G.; Pantz, O.; Pozin, N.

    2013-01-01

    Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth. Usual optimization methods for core conception are based on a parametric description of a given core design. New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints. First studies show that these methods could be applied to sodium cooled core conception. In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a given realistic core layout. Its characteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas. (authors)

  11. Presentación diferencial de ARN mensajeros e identificación del gen selenocisteína liasa en células de carcinoma hepatocelular con expresión transitoria de la proteína core del virus de la hepatitis C.

    Directory of Open Access Journals (Sweden)

    Jesús Orlando Yepes

    2006-06-01

    Full Text Available Introducción. El virus de la hepatitis C se asocia a diversas hepatopatías como hepatitis aguda, hepatitis crónica, esteatosis, cirrosis y carcinoma hepatocelular. Numerosos estudios han explorado mecanismos virales implicados en el establecimiento de la infección persistente y en las propiedades oncogénicas e inmunomoduladoras de la proteína core del virus de la hepatitis C. Las investigaciones orientadas a evaluar los cambios en la expresión de genes celulares endógenos inducidos por la proteína core son importantes para identificar genes candidatos responsables de los mecanismos de patogenicidad del virus de la hepatitis C. Objetivos. Comparar perfiles de expresión e identificar genes celulares endógenos en la línea celular derivada de carcinoma hepatocelular humano, HepG2, con expresión transitoria de la proteína core del virus de la hepatitis C. Materiales y métodos. Se utilizó la técnica de presentación diferencial de ARN mensajero por RT-PCR en células HepG2 con y sin expresión transitoria de la proteína core del virus de la hepatitis C o de la proteína verde fluorescente, obtenidas previamente con el sistema de expresión del Semliki Forest Virus, mediante transducción de partículas recombinantes rSFVCore o rSFV-GFP. Resultados. Se observaron diferencias en las intensidades de las bandas de ARNm expresadas en células HepG2 transducidas con rSFV-Core comparadas con células sin transducir y trasducidas con rSFV-GFP. Un ARNm de 258 pb expresado diferencialmente en células HepG2 transducidas con rSFV-Core fue clonado e identificado como selenocisteína liasa. Conclusión. Los resultados confirman que la expresión de la proteína core del virus de la hepatitis C se asocia con cambios en la expresión de ARN mensajeros específicos, incluido al gen selenocisteina liasa, el cual puede estar involucrado en la fisiopatología del carcinoma hepatocelular.

  12. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  13. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure.

    Science.gov (United States)

    Wang, Yan; Cheng, Yi-Shen; Yu, Ming-Gao; Li, Yao; Cao, Jian-Liang; Zheng, Li-Gang; Yi, Hong-Wei

    2017-08-05

    The NaHCO 3 /red-mud (RM) composite powders were successfully prepared by the solvent-anti-solvent method for methane explosion suppression. The RM was used as a carrier, and the NaHCO 3 was used as a loaded inhibitor. The NaHCO 3 /RM composite powders showed a special core-shell structure and excellent endothermic performance. The suppression properties of NaHCO 3 /RM composite for 9.5% CH 4 explosion were tested in a 20L spherical explosion vessel and a 5L Perspex duct. The results showed that the NaHCO 3 /RM composite powders displayed a much better suppression property than the pure RM or NaHCO 3 powders. The loading amount of NaHCO 3 has an intensive influence on the inhibition property of NaHCO 3 /RM composite powders. The best loaded content of NaHCO 3 is 35%. It exhibited significant inhibitory effect that the explosion max-pressure declined 44.9%, the max-pressure rise rate declined 96.3% and the pressure peak time delayed 366.7%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    Science.gov (United States)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  15. Coolability of severely degraded CANDU cores. Revised

    International Nuclear Information System (INIS)

    Meneley, D.A.; Blahnik, C.; Rogers, J.T.; Snell, V.G.; Nijhawan, S.

    1996-01-01

    Analytical and experimental studies have shown that the separately cooled moderator in a CANDU reactor provides an effective heat sink in the event of a loss-of-coolant accident (LOCA) accompanied by total failure of the emergency core cooling system (ECCS). The moderator heat sink prevents fuel melting and maintains the integrity of the fuel channels, therefore terminating this severe accident short of severe core damage. Nevertheless, there is a probability, however low, that the moderator heat sink could fail in such an accident. The pioneering work of Rogers (1984) for such a severe accident using simplified models showed that the fuel channels would fail and a bed of dry, solid debris would be formed at the bottom of the calandria which would heat up and eventually melt. However, the molten pool of core material would be retained in the calandria vessel, cooled by the independently cooled shield-tank water, and would eventually resolidify. Thus, the calandria vessel would act inherently as a 'core-catcher' as long as the shield tank integrity is maintained. The present paper reviews subsequent work on the damage to a CANDU core under severe accident conditions and describes an empirically based mechanistic model of this process. It is shown that, for such severe accident sequences in a CANDU reactor, the end state following core disassembly consists of a porous bed of dry solid, coarse debris, irrespective of the initiating event and the core disassembly process. (author)

  16. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  17. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi

    International Nuclear Information System (INIS)

    Wadt, W.R.; Hay, P.J.

    1985-01-01

    A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP's are derived from all-electron numerical Hartree--Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP's are generated from the relativistic Hartree--Fock atomic wave functions of Cowan which incorporate the Darwin and mass--velocity terms. Energy-optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP's. Comparisons between all-electron and valence-electron ECP calculations are presented for NaF, NaCl, Cl 2 , Cl 2 - , Br 2 , Br 2 - , and Xe 2 + . The results show that the average errors introduced by the ECP's are generally only a few percent

  18. Hydraulic analysis of emergency core cooling system of reactor RP-10

    International Nuclear Information System (INIS)

    Gallardo Padilla, Alberto; Moreyra, Geraldo Lazaro; Nieto Malpartida, Manuel

    2002-01-01

    For design of the Emergency Core Cooling System (ECCS) of reactor RP-10 from Peru is very important the hydraulic analysis of this system. In this paper, based on a basic design of the ECCS are showed the conservation equations, the parabolic movement, being deduced from them the equations to evaluate regarding the time the variables to consider in the design: level of the emergency water in the reserve tank, flow, reaches of sprinkle, etc. In this analysis is considered a quasi-stationary flow for simplify the calculation. The developed model was implemented in a computer program denominated ECCSRP10, in language Fortran 77, whose results are shown in form graph. From analysis of results we can conclude that for the system of pipe of the ECCS the appropriate diameter is of 2 , and that the maximum flow possible to give is of 5 m 3 /h for to assure a minimum time of refrigeration of 150000 seconds. Experimental tests were made in a prototype of the pipe system being demonstrated that the obtained results of the simplified calculation agree with the values registered with a global approach of 10%. (author)

  19. Nuclear reactor core flow baffling

    International Nuclear Information System (INIS)

    Berringer, R.T.

    1979-01-01

    A flow baffling arrangement is disclosed for the core of a nuclear reactor. A plurality of core formers are aligned with the grids of the core fuel assemblies such that the high pressure drop areas in the core are at the same elevations as the high pressure drop areas about the core periphery. The arrangement minimizes core bypass flow, maintains cooling of the structure surrounding the core, and allows the utilization of alternative beneficial components such as neutron reflectors positioned near the core

  20. Methodology for thermal hydraulic conceptual design and performance analysis of KALIMER core

    International Nuclear Information System (INIS)

    Young-Gyun Kim; Won-Seok Kim; Young-Jin Kim; Chang-Kue Park

    2000-01-01

    This paper summarizes the methodology for thermal hydraulic conceptual design and performance analysis which is used for KALIMER core, especially the preliminary methodology for flow grouping and peak pin temperature calculation in detail. And the major technical results of the conceptual design for the KALIMER 98.03 core was shown and compared with those of KALIMER 97.07 design core. The KALIMER 98.03 design core is proved to be more optimized compared to the 97.07 design core. The number of flow groups are reduced from 16 to 11, and the equalized peak cladding midwall temperature from 654 deg. C to 628 deg. C. It was achieved from the nuclear and thermal hydraulic design optimization study, i.e. core power flattening and increase of radial blanket power fraction. Coolant flow distribution to the assemblies and core coolant/component temperatures should be determined in core thermal hydraulic analysis. Sodium flow is distributed to core assemblies with the overall goal of equalizing the peak cladding midwall temperatures for the peak temperature pin of each bundle, thus pin cladding damage accumulation and pin reliability. The flow grouping and the peak pin temperature calculation for the preliminary conceptual design is performed with the modules ORFCE-F60 and ORFCE-T60 respectively. The basic subchannel analysis will be performed with the SLTHEN code, and the detailed subchannel analysis will be done with the MATRA-LMR code which is under development for the K-Core system. This methodology was proved practical to KALIMER core thermal hydraulic design from the related benchmark calculation studies, and it is used to KALIMER core thermal hydraulic conceptual design. (author)

  1. Analysis of Two Phase Natural Circulation Flow in the Cooling Channel of the PECS

    Energy Technology Data Exchange (ETDEWEB)

    Park, R. J; Ha, K. S; Rhee, B. W; Kim, H. Y [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Decay heat and sensible heat of the relocated and spread corium are removed by the natural circulation flow at the bottom and side wall of the core catcher and the top water cooling of the corium. The coolant in the inclined channel absorbs the decay heat and sensible heat transferred from the corium through the structure of the core catcher body and flows up to the pool as a two phase mixture. On the other hand, some of the pool water will flow into the inlet of the downcomer piping, and will flow into the inclined cooling channel of the core catcher by gravity. As shown in Fig. 1, the engineered cooling channel is designed to provide effective long-term cooling and stabilization of the corium mixture in the core catcher body while facilitating steam venting in the PECS. To maintain the integrity of the ex-vessel core catcher, however, it is necessary that the coolant be sufficiently circulated along the inclined cooling channel to avoid CHF (Critical Heat Flux) on the heating surface of the cooling channel. For this reason, a verification experiment on the cooling capability of the EU-APR1400 core catcher has been performed in the CE (Cooling Experiment)-PECS facility at KAERI. Preliminary simulations of two-phase natural circulation in the CE-PECS were performed to predict two-phase flow characteristics and to determine the natural circulation mass flow rate in the flow channel. In this study, simulations of two-phase natural circulation in a real core catcher of the PECS have been performed to determine the natural circulation mass flow rate in the flow channel using the RELAP5/MOD3 computer code.

  2. Pre-conceptual core design of a small modular fast reactor cooled by supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baolin; Cao, Liangzhi; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, No 28, Xianning West Road, Xi’an 710049, Shaanxi (China); Yuan, Xianbao, E-mail: ztsbaby@163.com [School of Nuclear Science and Technology, Xi’an Jiaotong University, No 28, Xianning West Road, Xi’an 710049, Shaanxi (China); College of Mechanical & Power Engineering, China Three Gorges University, No 8, Daxue Road, Yichang 443002, Hubei (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China)

    2016-04-15

    Abstracts: A Small Modular fast reactor cooled by Supercritical CO{sub 2} (SMoSC) is pre-conceptually designed through three-dimensional coupled neutronics/thermal-hydraulics analysis. The power rating of the SMoSC is designed to be 300 MW{sub th} to meet the energy demand of small electrical grids. The excellent thermal properties of supercritical CO{sub 2} (S-CO{sub 2}) are employed to obtain a high thermal efficiency of about 40% with an electric output of 120 MWe. MOX fuel is utilized in the core design to improve fuel efficiency. The tube-in-duct (TID) assembly is applied to get lower coolant volume fraction and reduce the positive coolant void reactivity. According to the coupled neutronics/thermal-hydraulics calculations, the coolant void reactivity is kept negative throughout the whole core life. With a specific power density of 9.6 kW/kg and an average discharge burnup of 70.1 GWd/tHM, the SmoSC can be operated for 20 Effective Full Power Years (EFPYs) without refueling.

  3. Cooling Characteristic Analysis of Transformer's Radiator

    International Nuclear Information System (INIS)

    Kim, Hyun Jae; Yang, Si Won; Kim, Won Seok; Kweon, Ki Yeoung; Lee, Min Jea

    2007-01-01

    A transformer is a device that changes the current and voltage by electricity induced between coil and core steel, and it is composed of metals and insulating materials. In the core of the transformer, the thermal load is generated by electric loss and the high temperature can make the break of insulating. So we must cool down the temperature of transformer by external radiators. According to cooling fan's usage, there are two cooling types, OA(Oil Natural Air Natural) and FA(Oil Natural Air Forced). For this study , we used Fluent 6.2 and analyzed the cooling characteristic of radiator. we calculated 1-fin of detail modeling that is similar to honeycomb structure and multi-fin(18-fin) calculation for OA and FA types. For the sensitivity study, we have different positions(side, under) of cooling fans for forced convection of FA type. The calculation results were compared with the measurement data which obtained from 135.45/69kV ultra transformer flowrate and temperature test. The aim of the study is to assess the Fluent code prediction on the radiator calculation and to use the data for optimizing transformer radiator design

  4. Towards a spectroscopically accurate set of potentials for heavy hydride laser cooling candidates: Effective core potential calculations of BaH

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Keith; McLaughlin, Brendan M.; Lane, Ian C., E-mail: i.lane@qub.ac.uk [School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG (United Kingdom)

    2016-04-14

    BaH (and its isotopomers) is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of a highly accurate ab initio {sup 2}Σ{sup +} potential for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction is tested and taken to the Complete Basis Set (CBS) limit. It is shown that the calculated molecular constants using a 46 electron effective core-potential and even-tempered augmented polarized core-valence basis sets (aug-pCVnZ-PP, n = 4 and 5) but only including three active electrons in the MRCI calculation are in excellent agreement with the available experimental values. The predicted dissociation energy D{sub e} for the X{sup 2}Σ{sup +} state (extrapolated to the CBS limit) is 16 895.12 cm{sup −1} (2.094 eV), which agrees within 0.1% of a revised experimental value of <16 910.6 cm{sup −1}, while the calculated r{sub e} is within 0.03 pm of the experimental result.

  5. R + D work on gas-cooled breeder development

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Jacobs, G.; Meyer, L.; Rehme, K.; Schumacher, G.; Wilhelm, D.

    1978-01-01

    The development work for the gas-cooled breeder in the Karlsruhe Nuclear Research Center may be assigned to two different groups: a) Investigations on fuel elements. b) Studies concerning the safety of gas-cooled fast breeder reactors. To the first group there belongs the work related to the: - heat transfer between fuel elements and coolant gas, - influence of increased content of water vapor in helium or the fuel rods. The second group concerns: - establishing a computer code for transient calculations in the primary and secondary circuit of a gas-cooled fast breeder reactor, - steam reactivity coefficients, - the core destruction phase of hypothetical accidents, - the core-catcher using borax. (orig./RW) [de

  6. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  7. Man-portable personal cooling garment based on vacuum desiccant cooling

    International Nuclear Information System (INIS)

    Yang Yifan; Stapleton, Jill; Diagne, Barbara Thiané; Kenny, Glen P.; Lan, Christopher Q.

    2012-01-01

    A man-portable personal cooling garment based on the concept of vacuum desiccant cooling (VDC) was developed. It was demonstrated with cooling pads that a cooling capacity of 373.1 W/m 2 could be achieved in an ambient environment of 37 °C. Tests with human subjects wearing prototype cooling garments consisting of 12 VDC pads with an overall weight of 3.4 kg covering 0.4 m 2 body surface indicate that the garment could maintain a core temperature substantially lower than the control when the workload was walking on a treadmill of 2% inclination at 3 mph. The exercise was carried out in an environment of 40 °C and 50% relative humidity (RH) for 60 min. Tests also showed that the VDC garment could effectively reduce the metabolic heat accumulation in body with subject wearing heavily insulated nuclear, biological and chemical (NBC) suit working in the heat and allow the participant to work safely for 60 min, almost doubling the safe working time of the same participant when he wore NBC suit only. - Highlights: ► Heat stress mitigation is important for workers health, safety, and performance. ► Vacuum desiccant cooling (VDC) a novel concept for personal cooling. ► VDC garment man-portable and more efficient than commercial ice/pad vest. ► VDC garment suitable for personal cooling with NBC suit.

  8. Device and method of cooling control rod drives

    International Nuclear Information System (INIS)

    Togashi, Hidetoshi; Mase, Noriaki; Matsumura, Yuichi.

    1985-01-01

    Purpose: To prevent the generation of local temperature rise depending on the reactor core position of the control rod drives and control the temperature to an averaged state in BWR type reactors. Method: Control rod drives having a large charging length of the housing in the pressure vessel involve such a factor that the temperature of the control rod drives is increased by the synergistic effect due to the radiation heat from the reactor core and to the unevenness of the cooling water flow rate, which renders an appropriate temperature control difficult for the reactor core position. A cooling water flow rate controlling device having a restriction mechanism is disposed on the cooling water feed path for each of the hydraulic control units of the control rod drives, so that flow rate to the control rod drives is increased at the center of the reactor core and decreased at the periphery thereof. As a result, average temperature state can be set, temperature increase due to cloggings can be prevented and the thermal effect can be eliminated to thereby improve the reliability. (Moriyama, K.)

  9. Cooling Performance of ALIP according to the Air or Sodium Cooling Type

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Huee-Youl; Yoon, Jung; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    ALIP pumps the liquid sodium by Lorentz force produced by the interaction of induced current in the liquid metal and their associated magnetic field. Even though the efficiency of the ALIP is very low compared to conventional mechanical pumps, it is very useful due to the absence of moving parts, low noise and vibration level, simplicity of flow rate regulation and maintenance, and high temperature operation capability. Problems in utilization of ALIP concern a countermeasure for elevation of internal temperature of the coil due to joule heating and how to increase magnetic flux density of Na channel gap. The conventional ALIP usually used cooling methods by circulating the air or water. On the other hand, GE-Toshiba developed a double stator pump adopting the sodium-immersed self-cooled type, and it recovered the heat loss in sodium. Therefore, the station load factor of the plant could be reduced. In this study, the cooling performance with cooling types of ALIP is analyzed. We developed thermal analysis models to evaluate the cooling performance of air or sodium cooling type of ALIP. The cooling performance is analyzed for operating parameters and evaluated with cooling type. 1-D and 3-D thermal analysis model for IHTS ALIP was developed, and the cooling performance was analyzed for air or sodium cooling type. The cooling performance for air cooling type was better than sodium cooling type at higher air velocity than 0.2 m/s. Also, the air temperature of below 270 .deg. demonstrated the better cooling performance as compared to sodium.

  10. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    El Ganaoui, K.

    2006-09-01

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  11. DETERMINATION OF RADIATOR COOLING SURFACE

    Directory of Open Access Journals (Sweden)

    A. I. Yakubovich

    2009-01-01

    Full Text Available The paper proposes a methodology for calculation of a radiator cooling surface with due account of heat transfer non-uniformity on depth of its core. Calculation of radiator cooling surfaces of «Belarus-1221» and «Belarus-3022» tractors has been carried out in the paper. The paper also advances standard size series of radiators for powerful «Belarus» tractor type.

  12. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  13. Effect of in-core instrumentation mounting location on external reactor vessel cooling

    International Nuclear Information System (INIS)

    Suh, Jungsoo; Ha, Huiun

    2017-01-01

    Highlights: • Numerical simulations were conducted for the evaluation of an IVR-ERVC application. • The ULPU-V experiment was simulated for the validation of numerical method. • The effect of ICI mounting location on an IVR-ERVC application was investigated. • TM-ICI is founded to be superior to BM-ICI for successful application of IVR-ERVC. - Abstract: The effect of in-core instrumentation (ICI) mounting location on the application of in-vessel corium retention through external reactor vessel cooling (IVR-ERVC), used to mitigate severe accidents in which the nuclear fuel inside the reactor vessel becomes molten, was investigated. Numerical simulations of the subcooled boiling flow within an advanced pressurized-water reactor (PWR) in IVR-ERVC applications were conducted for the cases of top-mounted ICI (TM-ICI) and bottom-mounted ICI (BM-ICI), using the commercially available computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the RPI model were used for turbulence closure and subcooled flow boiling, respectively. To validate the numerical method for IVR applications, numerical simulations of ULPU-V experiments were also conducted. The BM-ICI reactor vessel was modeled using a simplified design of an advanced PWR with BM-ICI; the TM-ICI counterpart was modeled by removing the ICI parts from the original geometry. It was found that TM-ICI was superior to BM-ICI for successful application of IVR-ERVC. For the BM-ICI case, the flow field was complicated because of the existence of ICIs and a significant temperature gradient was observed near the ICI nozzles on the lower part of the reactor vessel, where the ICIs were attached. These observations suggest that the existence of ICI below the reactor vessel hinders reactor vessel cooling.

  14. Experimental study of in-and-ex-vessel melt cooling during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Baik; Yoo, K J; Park, C K; Seok, S D; Park, R J; Yi, S J; Kang, K H; Ham, Y S; Cho, Y R; Kim, J H; Jeong, J H; Shin, K Y; Cho, J S; Kim, D H

    1997-07-01

    After code damage during a severe accident in a nuclear reactor, the degraded core has to be cooled down and the decay heat should be removed in order to cease the accident progression and maintain a stable state. The cooling of core melt is divided into in-vessel and ex-vessel cooling depending on the location of molten core which is dependent on the timing of vessel failure. Since the cooling mechanism varies with the conditions of molten core and surroundings and related phenomena, it contains many phenomenological uncertainties so far. In this study, an experimental study for verification of in-vessel corium cooling and several separate effect experiments for ex-vessel cooling are carried out to verify in- and ex-vessel cooling phenomena and finally to develop the accident management strategy and improve engineered reactor design for the severe accidents. SONATA-IV (Simulation of Naturally Arrested Thermal Attack in Vessel) program is set up for in-vessel cooling and a progression of the verification experiment has been done, and an integral verification experiment of the containment integrity for ex-vessel cooling is planned to be carried out based on the separate effect experiments performed in the first phase. First phase study of SONATA-IV is proof of principle experiment and it is composed of LALA (Lower-plenum Arrested Vessel Attack) experiment to find the gap between melt and the lower plenum during melt relocation and to certify melt quenching and CHFG (Critical Heat Flux in Gap) experiment to certify heat transfer mechanism in an artificial gap. As separate effect experiments for ex-vessel cooling, high pressure melt ejection experiment related to the initial condition for debris layer formation in the reactor cavity, crust formation and heat transfer experiment in the molten pool and molten core concrete interaction experiment are performed. (author). 150 refs., 24 tabs., 127 figs.

  15. Special power supply and control system for the gas-cooled fast reactor-core flow test loop

    International Nuclear Information System (INIS)

    Hudson, T.L.

    1981-09-01

    The test bundle in the Gas-Cooled Fast Reactor-Core Flow Test Loop (GCFR-CFTL) requires a source of electrical power that can be controlled accurately and reliably over a wide range of steady-state and transient power levels and skewed power distributions to simulate GCFR operating conditions. Both ac and dc power systems were studied, and only those employing silicon-controlled rectifiers (SCRs) could meet the requirements. This report summarizes the studies, tests, evaluations, and development work leading to the selection. it also presents the design, procurement, testing, and evaluation of the first 500-kVa LMPL supply. The results show that the LMPL can control 60-Hz sine wave power from 200 W to 500 kVA

  16. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    Science.gov (United States)

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  17. Python bindings for C++ using PyROOT/cppyy: the experience from PyCool in COOL

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The COOL software is used by the ATLAS and LHCb experiments to handle the time variation and versioning of their conditions data, using a variety of different relational database technologies. While the COOL core libraries are written in C++ and are integrated in the experiment C++ frameworks, a package offering Python bindings of the COOL C++ APIs, PyCool, is also provided and has been an essential component of the ATLAS conditions data management toolkit for over 10 years. Almost since the beginning, the implementation of PyCool has been based on ROOT to generate Python bindings for C++, initially using Reflex and PyROOT in ROOT5 and more recently using clang and cppyy in ROOT6. This presentation will describe the PyCool experience with using ROOT to generate Python bindings for C++, throughout the many evolutions of the underlying technology.

  18. Control of radioactive material transport in sodium-cooled reactors

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1980-03-01

    The Radioactivity Control Technology (RCT) program was established by the Department of Energy to develop and demonstrate methods to control radionuclide transport to ex-core regions of sodium-cooled reactors. This radioactive material is contained within the reactor heat transport system with any release to the environment well below limits established by regulations. However, maintenance, repair, decontamination, and disposal operations potentially expose plant workers to radiation fields arising from radionuclides transported to primary system components. This paper deals with radioactive material generated and transported during steady-state operation, which remains after 24 Na decay. Potential release of radioactivity during postulated accident conditions is not discussed. The control methods for radionuclide transport, with emphasis on new information obtained since the last Environmental Control Symposium, are described. Development of control methods is an achievable goal

  19. Study on core flow distribution of the reference core design Mark-III of experimental multi-purpose VHTR

    International Nuclear Information System (INIS)

    Satoh, Sadao; Arai, Taketoshi; Miyamoto, Yoshiaki; Hirano, Mitsumasa

    1977-01-01

    Concerning the coolant flow distribution between fuel channels and other flow paths in the core, designated as Reference Core Mark-III of the Multi-purpose Experimental Very High Temperature Reactor, thermal analysis has been made of the control rods and other steel structures around the core to find the coolant flow rates (bypass flow) necessary to cool them to their safe operating temperatures. Calculations showed that adequate cooling could be achieved in the Mark-III Core by the bypass flow of 8% of the total reactor coolant flow, 4% each for the control-rod channels and for other structures. The thermal and coolant flow design bases, including the assumption of a 10% bypass flow, were thus confirmed to first approximation. (auth.)

  20. Thermal calculations for water cooled research reactors

    International Nuclear Information System (INIS)

    Fabrega, S.

    1979-01-01

    The formulae and the more important numerical data necessary for thermic calculations on the core of a research reactor, cooled with low pressure water, are presented. Most of the problems met by the designer and the operator are dealt with (calculations margins, cooling after shut-down). Particular cases are considered (gas release, rough walls, asymmetric cooling slabs etc.), which are not generally envisaged in works on general thermics

  1. Apparatus for controlling molten core debris

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1972-01-01

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures

  2. Strategy for thermometry via Tm³⁺-doped NaYF₄ core-shell nanoparticles.

    Science.gov (United States)

    Zhou, Shaoshuai; Jiang, Guicheng; Li, Xinyue; Jiang, Sha; Wei, Xiantao; Chen, Yonghu; Yin, Min; Duan, Changkui

    2014-12-01

    Optical thermometers usually make use of the fluorescence intensity ratio of two thermally coupled energy levels, with the relative sensitivity constrained by the limited energy gap. Here we develop a strategy by using the upconversion (UC) emissions originating from two multiplets with opposite temperature dependences to achieve higher relative temperature sensitivity. We show that the intensity ratio of the two UC emissions, ³F(2,3) and ¹G₄, of Tm³⁺ in β-NaYF₄:20%Yb³⁺, 0.5%Tm³⁺/NaYF₄:1%Pr³⁺ core-shell nanoparticles under 980 nm laser excitation exhibits high relative temperature sensitivity between 350 and 510 K, with a maximum of 1.53%  K⁻¹ at 417 K. This demonstrates the validity of the strategy, and that the studied material has the potential for high-performance optical thermometry.

  3. Data report on spray cooling test by ROSA-III, (1)

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Murata, Hideo; Shiba, Masayoshi

    1980-03-01

    A separate effect test on spray cooling was carried out using one core channel of ROSA-III BWR LOCA test facility. This report describes a heating experiment in the series of runs. (1) The cooling from top of the core by spray easily causes countercurrent flow limit due to the vaparization of falling water itself, so it becomes in effective. (2) The cooling by falling water is irregular and unstable. Therefore, the cooling by the falling water is not to be relied on. (3) CCFL at porous plate is hard to occur, compared with single pipe. A quantitative study of this is desired to evaluate reflooding rate. Some suggestions for ROSA-III design are also made. (author)

  4. Applicability of PRISM PRA Methodology to the Level II Probabilistic Safety Analysis of KALIMER-600 (I) (Core Damage Event Tree Analysis Part)

    International Nuclear Information System (INIS)

    Park, S. Y.; Kim, T. W.; Ha, K. S.; Lee, B. Y.

    2009-03-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing liquid metal reactor (LMR) design technologies under a National Nuclear R and D Program. Nevertheless, there is no experience of the PSA domestically for a fast reactor with the metal fuel. Therefore, the objective of this study is to establish the methodologies of risk assessment for the reference design of KALIMER-600 reactor. An applicability of the PSA of the PRISM plant to the KALIMER-600 has been studied. The study is confined to a core damage event tree analysis which is a part of a level 2 PSA. Assuming that the accident types, which can be developed from level 1 PSA, are same as the PRISM PRA, core damage categories are defined and core damage event trees are developed for the KALIMER-600 reactor. Fission product release fractions of the core damage categories and branch probabilities of the core damage event trees are referred from the PRISM PRA temporarily. Plant specific data will be used during the detail analysis

  5. Specialists' meeting on instrumentation for supervision of core cooling in FBRs, Kalpakkam, India, 12-15 December 1989

    International Nuclear Information System (INIS)

    1991-03-01

    The purpose of the meeting was to provide a forum to discuss instrumentation provisions required for the assurance of core cooling in all operating conditions covering needs for both global and local supervision. The presentations by the participants were divided into four topical sessions: national position papers, operating experience, advanced measurement techniques, signal processing techniques. Twenty specialists from six countries and the IAEA took part in the meeting. Fifteen papers were presented. A separate abstract was prepared for each of these papers. After the formal sessions were completed, a final discussion session was held and general conclusions and recommendations were reached. Refs, figs and tabs

  6. Emergency reactor cooling systems for the experimental VHTR

    International Nuclear Information System (INIS)

    Mitake, Susumu; Suzuki, Katsuo; Miyamoto, Yoshiaki; Tamura, Kazuo; Ezaki, Masahiro.

    1983-03-01

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  7. Bypass Flow and Hot Spot Analysis for PMR200 Block-Core Design with Core Restraint Mechanism

    International Nuclear Information System (INIS)

    Lim, Hong Sik; Kim, Min Hwan

    2009-01-01

    The accurate prediction of local hot spot during normal operation is important to ensure core thermal margin in a very high temperature gas-cooled reactor because of production of its high temperature output. The active cooling of the reactor core determining local hot spot is strongly affected by core bypass flows through the inter-column gaps between graphite blocks and the cross gaps between two stacked fuel blocks. The bypass gap sizes vary during core life cycle by the thermal expansion at the elevated temperature and the shrinkage/swelling by fast neutron irradiation. This study is to investigate the impacts of the variation of bypass gaps during core life cycle as well as core restraint mechanism on the amount of bypass flow and thus maximum fuel temperature. The core thermo fluid analysis is performed using the GAMMA+ code for the PMR200 block-core design. For the analysis not only are some modeling features, developed for solid conduction and bypass flow, are implemented into the GAMMA+ code but also non-uniform bypass gap distribution taken from a tool calculating the thermal expansion and the shrinkage/swell of graphite during core life cycle under the design options with and without core restraint mechanism is used

  8. Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors.

    Science.gov (United States)

    Zheng, Shuhong; Chen, Weibo; Tan, Dezhi; Zhou, Jiajia; Guo, Qiangbing; Jiang, Wei; Xu, Cheng; Liu, Xiaofeng; Qiu, Jianrong

    2014-06-07

    We report that non-contact self-referencing temperature sensors can be realized with the use of core-shell nanostructures. These lanthanide-based nanothermometers (NaGdF4:Yb(3+)/Tm(3+)@Tb(3+)/Eu(3+)) exhibit higher sensitivity in a wide range from 125 to 300 K based on two emissions of Tb(3+) at 545 nm and Eu(3+) at 615 nm under near-infrared laser excitation.

  9. OPTICAL LINE EMISSION IN BRIGHTEST CLUSTER GALAXIES AT 0 < z < 0.6: EVIDENCE FOR A LACK OF STRONG COOL CORES 3.5 Gyr AGO?

    International Nuclear Information System (INIS)

    McDonald, Michael

    2011-01-01

    In recent years the number of known galaxy clusters beyond z ∼> 0.2 has increased drastically with the release of multiple catalogs containing >30,000 optically detected galaxy clusters over the range 0 0.3, hinting at an earlier epoch of strong cooling. We compare the evolution of emission-line nebulae to the X-ray-derived cool core (CC) fraction from the literature over the same redshift range and find overall agreement, with the exception that an upturn in the strong CC fraction is not observed at z > 0.3. The overall agreement between the evolution of CCs and optical line emission at low redshift suggests that emission-line surveys of galaxy clusters may provide an efficient method of indirectly probing the evolution of CCs and thus provide insights into the balance of heating and cooling processes at early cosmic times.

  10. Availability analysis of the AP600 passive core cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Syarip, M [National Atomic Energy Research Agency, Yogyakarta (Indonesia); Subki, I R [BATAN Head Office, Jakarta (Indonesia); Canton, M H [Westinghouse Electric Corp. (United States)

    1996-12-01

    The reliability analysis of the AP600 Passive Core Cooling System (PXS) has been done. The fault tree analysis method was used for the quantitative analysis. The PXS can be grouped to several sub-systems i.e.: Reactor Coolant System (RCS) Injection Subsystem, Emergency Core Decay Heat Removal Subsystem, and Containment Sump pH Control Subsystem. The quantitative analysis results indicates that the system unavailability is highly dependent on the valves configuration of the Automatic Depressurization System (ADS). If the ADS valves is arranged in Option-1, the system unavailability is 2.347E-03, this means that the yearly contribution to plant down time can be estimated to be about 20.56 hours per year. Whereas, by using Option-2 of fourth stage ADS valves, the system unavailability is reduced to be 9.877E-04 or 8.65 hours per year and this value is consistent with the allocated goal value (8.0 hours per year). The ADS contributes 66.89% to the system unavailability if it is arranged in Option-1, and will reduced to be about 21.21% if its fourth stages are arranged in Option-2. If the ADS is not included as a subsystem of the PXS (relocate to RCS as a subsystem of RCS), then the PXS unavailability will be reduced to about 7.784E-04 or 6.82 hours per year; this is less then the allocated goal value. The major contributors to the system unavailability are mostly dominated by Stage-4 ADS valves (air piston operated valves and squib valves), inservice testing valves of ADS (solenoid operated valves), solenoid valves of Nitrogen Supply to Accumulator, and Passive Residual Heat Removal actuation valves (air operated valves). It is recommended that those valves be analyzed more detail to gain the improvement in its reliability. It is also recommended that the fourth stage of ADS valves should be arranged according to Option-2, i.e. one 10-inch normally open motor operated gate valve in series with one 10-inch normally closed squib valve. (author). 13 refs, 3 figs, 3 tabs.

  11. Heat and Mass Transfer of Vacuum Cooling for Porous Foods-Parameter Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2014-01-01

    Full Text Available Based on the theory of heat and mass transfer, a coupled model for the porous food vacuum cooling process is constructed. Sensitivity analyses of the process to food density, thermal conductivity, specific heat, latent heat of evaporation, diameter of pores, mass transfer coefficient, viscosity of gas, and porosity were examined. The simulation results show that the food density would affect the vacuum cooling process but not the vacuum cooling end temperature. The surface temperature of food was slightly affected and the core temperature is not affected by the changed thermal conductivity. The core temperature and surface temperature are affected by the changed specific heat. The core temperature and surface temperature are affected by the changed latent heat of evaporation. The core temperature is affected by the diameter of pores. But the surface temperature is not affected obviously. The core temperature and surface temperature are not affected by the changed gas viscosity. The parameter sensitivity of mass transfer coefficient is obvious. The core temperature and surface temperature are affected by the changed mass transfer coefficient. In all the simulations, the end temperature of core and surface is not affected. The vacuum cooling process of porous medium is a process controlled by outside process.

  12. Data Acquisition System Design for Advanced Core-Cooling Mechanism Experiment

    International Nuclear Information System (INIS)

    Zhang, Ziyang; Tian, Fang; Zhang, Tao; Wang, Shen

    2011-01-01

    Data Acquisition System (DAS) design for Advanced Core-Cooling Mechanism Experiment(ACME) is studied in the paper. DAS is an important connection between test facility and result analysis. Firstly, it introduces DAS and its design requirement for ACME. Nearly one thousand data resources need record in ACME. They have different types and acquisition frequencies. In order to record these data, a large scale and high speed layered data acquisition system is developed. Secondly, it discusses the DAS design for ACME, including the analog signal adjusting circuits, clock circuit design, sampling frequencies, data storage and transmission by large database system, anti-interference and etc. Analog signal adjusting circuits are necessary to deal with different kinds of input data to gain standard data resources. Some data change slowly and others change in several seconds according to the test performed on ACME. So it is difficult to use uniform sampling frequencies, and a layered data acquisition system is introduced. A large database is built to store data for ACME test, which keeps data safer and makes subsequent data handling more convenient. A database hot backup is also applied to ensure data safety. The software of DAS is built by Labview, which can provide intuitionist result and friendly interface. Another important function of DAS is the ACME safety protection. Finally, the characteristics and improvement of DAS for ACME is analyzed compared to other test facility. Besides friendly user interface, DAS of ACME can also assure higher data precision and sampling frequency

  13. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  14. Gas-cooled fast reactor safety

    International Nuclear Information System (INIS)

    Rickard, C.L.; Simon, R.H.; Buttemer, D.R.

    1977-01-01

    Initial conceptual design work on the GCFR began in the USA in the early 1960s and since the later 1960s has proceeded with considerable international cooperation. A 300 MWe GCFR demonstration plant employing three main cooling loops is currently being developed at General Atomic. A major preapplication licensing review of this demonstration plant was initiated in 1971 leading in 1974 to publication of a Safety Evaluation Report by the USAEC Directorate of Licensing. The preapplication review is continuing by addressing areas of concern identified in this report such that a major part of the work necessary to support the actual licensing of a GCFR demonstration plant has been established. The safety performance of the GCFR demonstration plant is based upon its inherent safety characteristics among which are the single phase and chemically inert coolant which is not activated and has a low reactivity worth, the negative core power and temperature reactivity coefficients and the small and negative steam reactivity worth. Recent studies of larger core designs indicate that as the reactor size increases central fuel, clad and coolant reactivity worths decrease and the Doppler coefficient becomes more negative. These inherent safety characteristics are complemented by safety design features such as enclosing the entire primary coolant system within a prestressed concrete pressure vessel (PCRV), providing two independent and diverse shutdown systems and residual heat removal (RHR) systems, limiting the worth of control rods to less than $1, employing pressure-equalized fuel rods, a core supported rigidly at its upper end and otherwise unrestrained and coolant downflow within the core to enhance debris removal should local melting occur. The structurally redundant PCRV design allows the potential depressurization leak area to be controlled and, since the PCRV is located within a containment building, coolant is present even after a depressurization accident and each RHR

  15. HANARO cooling features: design and experience

    International Nuclear Information System (INIS)

    Park, Cheol; Chae, Hee-Taek; Han, Gee-Yang; Jun, Byung-Jin; Ahn, Guk-Hoon

    1999-01-01

    In order to achieve the safe core cooling during normal operation and upset conditions, HANARO adopted an upward forced convection cooling system with dual containment arrangements instead of the forced downward flow system popularly used in the majority of forced convection cooling research reactors. This kind of upward flow system was selected by comparing the relative merits of upward and downward flow systems from various points of view such as safety, performance, maintenance. However, several operational matters which were not regarded as serious at design come out during operation. In this paper are presented the design and operational experiences on the unique cooling features of HANARO. (author)

  16. Gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at simplying gas-cooled nuclear reactors. For the cooling gas, the reactor is provided with a main circulation system comprising one or several energy conversion main groups such as gas turbines, and an auxiliary circulation system comprising at least one steam-generating boiler heated by the gas after its passage through the reactor core and adapted to feed a steam turbine with motive steam. The invention can be applied to reactors the main groups of which are direct-cycle gas turbines [fr

  17. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  18. Heat removal performance of auxiliary cooling system for the high temperature engineering test reactor during scrams

    International Nuclear Information System (INIS)

    Takeda, Takeshi; Tachibana, Yukio; Iyoku, Tatsuo; Takenaka, Satsuki

    2003-01-01

    The auxiliary cooling system of the high temperature engineering test reactor (HTTR) is employed for heat removal as an engineered safety feature when the reactor scrams in an accident when forced circulation can cool the core. The HTTR is the first high temperature gas-cooled reactor in Japan with reactor outlet gas temperature of 950 degree sign C and thermal power of 30 MW. The auxiliary cooling system should cool the core continuously avoiding excessive cold shock to core graphite components and water boiling of itself. Simulation tests on manual trip from 9 MW operation and on loss of off-site electric power from 15 MW operation were carried out in the rise-to-power test up to 20 MW of the HTTR. Heat removal characteristics of the auxiliary cooling system were examined by the tests. Empirical correlations of overall heat transfer coefficients were acquired for a helium/water heat exchanger and air cooler for the auxiliary cooling system. Temperatures of fluids in the auxiliary cooling system were predicted on a scram event from 30 MW operation at 950 degree sign C of the reactor outlet coolant temperature. Under the predicted helium condition of the auxiliary cooling system, integrity of fuel blocks among the core graphite components was investigated by stress analysis. Evaluation results showed that overcooling to the core graphite components and boiling of water in the auxiliary cooling system should be prevented where open area condition of louvers in the air cooler is the full open

  19. Seismic analysis of a large pool-type LMR [liquid metal reactor

    International Nuclear Information System (INIS)

    Wang, C.Y.; Gvildys, J.

    1989-01-01

    This paper describes the seismic study of a 450-MWe liquid metal reactor (LMR) under 0.3-g SSE ground excitation. Two calculations were performed using the new design configuration. They deal with the seismic response of the reactor vessel, the guard vessel and support skirt, respectively. In both calculations, the stress and displacement fields at important locations of those components are investigated. Assessments are also made on the elastic and inelastic structural capabilities for other beyond-design basis seismic loads. Results of the reactor vessel analysis reveal that the maximum equivalent stress is only about half of the material yield stress. For the guard vessel and support skirt, the stress level is very small. Regarding the analysis if inelastic structural capability, solutions of the Newmark-Hall ductility modification method show that the reactor vessel can withstand seismics with ground ZPAs ranging from 1.015 to 1.31 g, which corresponds to 3.37 to 4.37 times the basic 0.3-g SSE. Thus, the reactor vessel and guard vessel are strong enough to resist seismic loads. 4 refs., 10 figs., 5 tabs

  20. Improving safety margin of LWRs by rethinking the emergency core cooling system criteria and safety system capacity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Kim, Bokyung, E-mail: bkkim2@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2016-10-15

    Highlights: • Zircaloy embrittlement criteria can increase to 1370 °C for CP-ECR lower than 13%. • The draft ECCS criteria of U.S. NRC allow less than 5% in power margin. • The Japanese fracture-based criteria allow around 5% in power margin. • Increasing SIT inventory is effective in assuring safety margin for power uprates. - Abstract: This study investigates the engineering compatibility between emergency core cooling system criteria and safety water injection systems, in the pursuit of safety margin increase of light water reactors. This study proposes an acceptable temperature increase to 1370 °C as long as equivalent cladding reacted calculated by the Cathcart–Pawel equation is below 13%, after an extensive literature review. The influence of different ECCS criteria on the safety margin during large break loss of coolant accident is investigated for OPR-1000 by the system code MARS-KS, implemented with the KINS-REM method. The fracture-based emergency core cooling system (ECCS) criteria proposed in this study are shown to enable power margins up to 10%. In the meantime, the draft U.S. NRC’s embrittlement criteria (burnup-sensitive) and Japanese fracture-based criteria are shown to allow less than 5%, and around 5% of power margins, respectively. Increasing safety injection tank (SIT) water inventory is the key, yet convenient, way of assuring safety margin for power increase. More than 20% increase in the SIT water inventory is required to allow 15% power margins, for the U.S. NRC’s burnup-dependent embrittlement criteria. Controlling SIT water inventory would be a useful option that could allow the industrial desire to pursue power margins even under the recent atmosphere of imposing stricter ECCS criteria for the considerable burnup effects.

  1. A compact, inherently safe liquid metal reactor plant concept for terrestrial defense power applications

    International Nuclear Information System (INIS)

    Magee, P.M.; Dubberley, A.E.; Lutz, D.E.; Palmer, R.S.

    1987-01-01

    A compact, inherently safe, liquid metal reactor concept based on the GE PRISM innovative LMR design has been developed for terrestrial defense power applications in the 2-50 MWe range. The concept uses a small, sodium-cooled, U-5%Zr metal fueled reactor contained within two redundant steel vessels. The core is designed to operate at a low power density and temperature (925 F) and can operate 30 years without refueling. One two primary coolant loops, depending upon the plant size, transport heat from the core to sodium-to-air, double-wall heat exchangers. Power is produced by a gas turbine operated in a closed ''bottoming'' cycle that employs intercoolers between the compressor stages and a recuperator. Inherent safety is provided by passive means only; operator action is not required to ensure plant safety even for events normally considered Beyond Design Basis Accidents. In addition to normal shutdown heat removal via the sodium-to-air heat exchangers, the design utilizes an inherently passive radiant vessel auxiliary cooling system similar to that designed for PRISM. The use of an air cycle gas turbine eliminates the cost and complexity of the sodium-water reactor pressure relief system required for a steam cycle sodium-cooled reactor

  2. Eletroestimulação e core training sobre dor e arco de movimento na lombalgia

    Directory of Open Access Journals (Sweden)

    Fernando Campbell Bordiak

    Full Text Available INTRODUÇÃO: Eletrotermofototerapia e cinesioterapia são opções para o tratamento de lombalgias. Exercícios voltados para a musculatura paravertebral visam ao aumento de força e arco de movimento (ADM. A eletroestimulação neuromuscular (EENM incrementa a função muscular. OBJETIVOS: Apurar a influência da EENM associada a um programa de core training (CT sobre a lombalgia inespecífica crônica, com as variáveis de dor e ADM da coluna vertebral. MATERIAIS E MÉTODOS: Foi realizado ensaio clínico controlado randomizado duplo cego, com 27 pacientes atendidos na Clínica-Escola FIT-UGF, com diagnóstico médico relacionado a lombalgias. Foram formados dois grupos aleatoriamente: controle ativo (CORE; n = 13 e experimental (CORE + EENM; n = 14. O questionário de McGill e a fotogrametria foram aplicados antes da primeira e após a última sessão de tratamentos para medir dor e ADM, respectivamente. RESULTADOS: Os grupos eram homogêneos quanto à dor inicial (p = 0,99; a dor final do grupo CORE + EENM foi significativamente menor que a do grupo CORE (p = 0,03; a dor final do grupo CORE não apresentou diferença significativa em relação à inicial (p = 0,93; a dor final do grupo CORE + EENM foi significativamente menor que a inicial (p = 0,00. O ADM não apresentou diferença significativa intragrupos e intergrupos (p = 0,10. CONCLUSÃO: A aplicação de EENM em região lombar após CT foi eficaz, causando diminuição significativa da lombalgia inespecífica. Entretanto, não ocorreu diferença significativa do ADM entre os grupos.

  3. Physics considerations in the design of liquid metal reactors for transuranium element consumption

    International Nuclear Information System (INIS)

    Khalil, H.; Hill, R.; Fujita, E.; Wade, D.

    1992-01-01

    The management of transuranic nuclides in liquid metal reactors (LMR's) is considered based on the use of the Integral Fast Reactor (IFR) concept. Unique features of the IFR fuel cycle with respect to transuranic management are identified. These features are exploited together with the hard spectrum of LMR's to demonstrate the neutronic feasibility of a wide range of transuranic management options ranging from efficient breeding to pure consumption. Core physics aspects of the development of a low sodium void worth transuranic burner concept are described. Neutronics performance parameters and reactivity feedback characteristics estimated for this core concept are presented

  4. Producción y purificación de la proteína core del virus de la hepatitis C en el sistema de expresión del baculovirus para ensayos biológicos.

    Directory of Open Access Journals (Sweden)

    Ivonne Rubio

    2005-03-01

    Full Text Available Introducción. La infección por el virus de la hepatitis C (VHC se caracteriza por la alta frecuencia de infección persistente. La capacidad del VHC para inducir alteraciones en la función de las células del sistema inmune, específicamente en las células dendríticas, parece ser una de las estrategias virales implicada en el establecimiento de la infección persistente. Esta estrategia parece estar mediada en gran parte por una de las proteínas estructurales codificada por el genoma del VHC, la proteína Core, unidad estructural de la cápside viral. Objetivo. Una de las limitantes para la evaluación de las propiedades de Core es la obtención y la purificación de la proteína nativa (191 aa. El objetivo de este estudio fue la producción y la purificación de la proteína Core completa en un sistema eucariote para evaluar las propiedades de la proteína en cultivos de células dendríticas humanas. Resultados. En este estudio se logró la producción de la proteína Core completa en el sistema de expresión de baculovirus y su purificación por la técnica de separación por punto isoeléctrico y electroelución. La pureza de la proteína obtenida se confirmó por Western blot y tinción con plata. Estos análisis mostraron dos bandas únicas correspondientes a las isoformas p23 y p21 de la proteína Core, previamente descritas en la literatura. Conclusiones. La proteína obtenida posee varias de las condiciones de la proteína Core nativa, como peso molecular, isoformas y localización subcelular. Los procedimientos descritos en este artículo son aplicables a proteínas asociadas a membranas producidas en sistemas de expresión eucarióticos.

  5. Full MOX core for PWRs

    International Nuclear Information System (INIS)

    Puill, A.; Aniel-Buchheit, S.

    1997-01-01

    Plutonium management is a major problem of the back end of the fuel cycle. Fabrication costs must be reduced and plant operation simplified. The design of a full MOX PWR core would enable the number of reactors devoted to plutonium recycling to be reduced and fuel zoning to be eliminated. This paper is a contribution to the feasibility studies for achieving such a core without fundamental modification of the current design. In view of the differences observed between uranium and plutonium characteristics it seems necessary to reconsider the safety of a MOX-fuelled PWR. Reduction of the control worth and modification of the moderator density coefficient are the main consequences of using MOX fuel in a PWR. The core reactivity change during a draining or a cooling is thus of prime interest. The study of core global draining leads to the following conclusion: only plutonium fuels of very poor quality (i.e. with low fissile content) cannot be used in a 900 MWe PWR because of a positive global voiding reactivity effect. During a cooling accident, like an spurious opening of a secondary-side valve, the hypothetical return to criticality of a 100% MOX core controlled by means of 57 control rod clusters (made of hafnium-clad B 4 C rods with a 90% 10 B content) depends on the isotopic plutonium composition. But safety criteria can be complied with for all isotopic compositions provided the 10 B content of the soluble boron is increased to a value of 40%. Core global draining and cooling accidents do not present any major obstacle to the feasibility of a 100% MOX PWR, only minor hardware modifications will be required. (author)

  6. Thermal response of core and central-cavity components of a high-temperature gas-cooled reactor in the absence of forced convection coolant flow

    International Nuclear Information System (INIS)

    Whaley, R.L.; Sanders, J.P.

    1976-09-01

    A means of determining the thermal responses of the core and the components of a high-temperature gas-cooled reactor after loss of forced coolant flow is discussed. A computer program, using a finite-difference technique, is presented together with a solution of the confined natural convection. The results obtained are reasonable and demonstrate that the computer program adequately represents the confined natural convection

  7. The neutronic and fuel cycle performance of interchangeable 3500 MWth metal and oxide fueled LMRs

    International Nuclear Information System (INIS)

    Fujita, E.K.; Wade, D.C.

    1990-01-01

    This study summarizes the neutronic and fuel cycle analysis performed at Argonne National Laboratory for an oxide and a metal fueled 3500 MWth LMR. These reactor designs formed the basis for a joint US/European study of LMR ATWS events. The oxide and metal core designs were developed to meet reactor performance specifications that are constrained by requirements for core loading interchangeability and for a small burnup reactivity swing. Differences in the computed performance parameters of the oxide and metal cores, arising from basic differences in their neutronic characteristics, are identified and discussed. It is shown that metal and oxide cores designed to the same ground rules exhibit many similar performance characteristics; however, they differ substantially in reactivity coefficients, control strategies, and fuel cycle options. 12 refs., 2 figs., 12 tabs

  8. CHANDRA OBSERVATION OF ABELL 1142: A COOL-CORE CLUSTER LACKING A CENTRAL BRIGHTEST CLUSTER GALAXY?

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuanyuan; Weeren, Reinout van [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buote, David A. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Gastaldello, Fabio, E-mail: yuanyuan.su@cfa.harvard.edu [INAF-IASF-Milano, Via E. Bassini 15, I-20133 Milano (Italy)

    2016-04-10

    Abell 1142 is a low-mass galaxy cluster at low redshift containing two comparable brightest cluster galaxies (BCGs) resembling a scaled-down version of the Coma Cluster. Our Chandra analysis reveals an X-ray emission peak, roughly 100 kpc away from either BCG, which we identify as the cluster center. The emission center manifests itself as a second beta-model surface brightness component distinct from that of the cluster on larger scales. The center is also substantially cooler and more metal-rich than the surrounding intracluster medium (ICM), which makes Abell 1142 appear to be a cool-core cluster. The redshift distribution of its member galaxies indicates that Abell 1142 may contain two subclusters, each of which contain one BCG. The BCGs are merging at a relative velocity of ≈1200 km s{sup −1}. This ongoing merger may have shock-heated the ICM from ≈2 keV to above 3 keV, which would explain the anomalous L{sub X}–T{sub X} scaling relation for this system. This merger may have displaced the metal-enriched “cool core” of either of the subclusters from the BCG. The southern BCG consists of three individual galaxies residing within a radius of 5 kpc in projection. These galaxies should rapidly sink into the subcluster center due to the dynamical friction of a cuspy cold dark matter halo.

  9. Development of small, fast reactor core designs using lead-based coolant

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Hill, R. N.; Khalil, H. S.; Wade, D. C.

    1999-01-01

    A variety of small (100 MWe) fast reactor core designs are developed, these include compact configurations, long-lived (15-year fuel lifetime) cores, and derated, natural circulation designs. Trade studies are described which identify key core design issues for lead-based coolant systems. Performance parameters and reactivity feedback coefficients are compared for lead-bismuth eutectic (LBE) and sodium-cooled cores of consistent design. The results of these studies indicate that the superior neutron reflection capability of lead alloys reduces the enrichment and burnup swing compared to conventional sodium-cooled systems; however, the discharge fluence is significantly increased. The size requirement for long-lived systems is constrained by reactivity loss considerations, not fuel burnup or fluence limits. The derated lead-alloy cooled natural circulation cores require a core volume roughly eight times greater than conventional compact systems. In general, reactivity coefficients important for passive safety performance are less favorable for the larger, derated configurations

  10. Neutron dynamics of fast-spectrum dedicated cores for waste transmutation

    International Nuclear Information System (INIS)

    Massara, S.

    2002-04-01

    Among different scenarios achieving minor actinide transmutation, the possibility of double strata scenarios with critical, fast spectrum, dedicated cores must be checked and quantified. In these cores, the waste fraction has to be at the highest level compatible with safety requirements during normal operation and transient conditions. As reactivity coefficients are poor in such critical cores (low delayed neutron fraction and Doppler feed-back, high coolant void coefficient), their dynamic behaviour during transient conditions must be carefully analysed. Three nitride-fuel configurations have been analysed: two liquid metal-cooled (sodium and lead) and a particle-fuel helium-cooled one. A dynamic code, MAT4 DYN, has been developed during the PhD thesis, allowing the study of loss of flow, reactivity insertion and loss of coolant accidents, and taking into account two fuel geometries (cylindrical and spherical) and two thermal-hydraulics models for the coolant (incompressible for liquid metals and compressible for helium). Dynamics calculations have shown that if the fuel nature is appropriately chosen (letting a sufficient margin during transients), this can counterbalance the bad state of reactivity coefficients for liquid metal-cooled cores, thus proving the interest of this kind of concept. On the other side, the gas-cooled core dynamics is very badly affected by the high value of the helium void coefficient (which is a consequence of the choice of a hard spectrum), this effect being amplified by the very low thermal inertia of particle-fuel design. So, a new kind of concept should be considered for a helium-cooled fast-spectrum dedicated core. (authors)

  11. Uncertainty Evaluation of Reactivity Coefficients for a large advanced SFR Core Design

    International Nuclear Information System (INIS)

    Khamakhem, Wassim; Rimpault, Gerald

    2008-01-01

    Sodium Cooled Fast Reactors are currently being reshaped in order to meet Generation IV goals on economics, safety and reliability, sustainability and proliferation resistance. Recent studies have led to large SFR cores for a 3600 MWth power plants, cores which exhibit interesting features. The designs have had to balance between competing aspects such as sustainability and safety characteristics. Sustainability in neutronic terms is translated into positive breeding gain and safety into rather low Na void reactivity effects. The studies have been done on two SFR concepts using oxide and carbide fuels. The use of the sensitivity theory in the ERANOS determinist code system has been used. Calculations have been performed with different sodium evaluations: JEF2.2, ERALIB-1 and the most recent JEFF3.1 and ENDF/B-VII in order to make a broad comparison. Values for the Na void reactivity effect exhibit differences as large as 14% when using the different sodium libraries. Uncertainties due to nuclear data on the reactivity coefficients were performed with BOLNA variances-covariances data, the Na Void Effect uncertainties are near to 12% at 1σ. Since, the uncertainties are far beyond the target accuracy for a design achieving high performance, two directions are envisaged: the first one is to perform new differential measurements or in a second attempt use integral experiments to improve effectively the nuclear data set and its uncertainties such as performed in the past with ERALIB1. (authors)

  12. Thermal-spectrum recriticality energetics

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.

    1993-12-01

    Large computer codes have been created in the past to predict the energy release in hypothetical core disruptive accidents (CDA), postulated to occur in liquid metal reactors (LMR). These codes, such as SIMMER, are highly specific to LMR designs. More recent attention has focused on thermal-spectrum criticality accidents, such as for fuel storage basins and waste tanks containing fissile material. This paper resents results from recent one-dimensional kinetics simulations, performed for a recriticality accident in a thermal spectrum. Reactivity insertion rates generally are smaller than in LMR CDAs, and the energetics generally are more benign. Parametric variation of input was performed, including reactivity insertion and initial temperature

  13. Casting core for a cooling arrangement for a gas turbine component

    Science.gov (United States)

    Lee, Ching-Pang; Heneveld, Benjamin E

    2015-01-20

    A ceramic casting core, including: a plurality of rows (162, 166, 168) of gaps (164), each gap (164) defining an airfoil shape; interstitial core material (172) that defines and separates adjacent gaps (164) in each row (162, 166, 168); and connecting core material (178) that connects adjacent rows (170, 174, 176) of interstitial core material (172). Ends of interstitial core material (172) in one row (170, 174, 176) align with ends of interstitial core material (172) in an adjacent row (170, 174, 176) to form a plurality of continuous and serpentine shaped structures each including interstitial core material (172) from at least two adjacent rows (170, 174, 176) and connecting core material (178).

  14. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  15. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  16. ACUTE CARDIOVASCULAR EFFECTS OF FIREFIGHTING AND ACTIVE COOLING DURING REHABILITATION

    Science.gov (United States)

    Burgess, Jefferey L.; Duncan, Michael D.; Hu, Chengcheng; Littau, Sally R.; Caseman, Delayne; Kurzius-Spencer, Margaret; Davis-Gorman, Grace; McDonagh, Paul F.

    2012-01-01

    Objectives To determine the cardiovascular and hemostatic effects of fire suppression and post-exposure active cooling. Methods Forty-four firefighters were evaluated prior to and after a 12 minute live-fire drill. Next, 50 firefighters undergoing the same drill were randomized to post-fire forearm immersion in 10°C water or standard rehabilitation. Results In the first study, heart rate and core body temperature increased and serum C-reactive protein decreased but there were no significant changes in fibrinogen, sE-selectin or sL-selectin. The second study demonstrated an increase in blood coagulability, leukocyte count, factors VIII and X, cortisol and glucose, and a decrease in plasminogen and sP-selectin. Active cooling reduced mean core temperature, heart rate and leukocyte count. Conclusions Live-fire exposure increased core temperature, heart rate, coagulability and leukocyte count; all except coagulability were reduced by active cooling. PMID:23090161

  17. Results of postirradiation examination of the in-pile blockage experiments MOL-7C/4 and MOL-7C/5

    International Nuclear Information System (INIS)

    Weimar, P.; Schleisiek, K.

    1991-01-01

    The Mol-7C in-pile local blockage experiments are performed in the BR-2 reactor at Mol, Belgium as a joint project of Kernforchungszentrum Karlsruhe (KfK) and Studiecentrum voor Kernenergie/Centre d'Etude de l'Energie Nuclearire-Mol. The main objective is to investigate the consequences of local cooling disturbances in liquid-metal-cooled reactor (LMR) fuel subassemblies. In the tests Mol-7C/4 and MOL-7C/5, fuel pins from KNK II are used with a burnup of 5 and 1.7%, respectively. An active central porous blockage is used to simulate the cooling disturbance. During irradiation, the blockage causes significant local damage, including melting of cladding and fuel. Extensive postirradiation examinations (PIE) are performed to investigate the extent of damage. In this paper a description and interpretation of results of the destructive PIE performed at the Hot Cells Laboratory at KfK is given, along with some conclusions related to LMR safety

  18. NPR and ANSI Containment Study Using Passive Cooling Techniques

    International Nuclear Information System (INIS)

    Shin, J. J.; Iotti, R. C.; Wright, R. F.

    1993-01-01

    Passive containment cooling study of NPR (New Production Reactor) and ANSI (Advanced Neutron Source) following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally. All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified Contempt code Contempt-Npr. In order to verify proper heat transfer coefficient, temperature, heat flux and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and halt foot (1.7m) diameter outer cylinder. Comparison of Contempt-Npr and WGOTHIC was done for reduced scale Npr. It is concluded that Npr and ANSI containments can be passively cooled with air alone without extended cooling surfaces or passive water spray

  19. Estimation on the Pressure Loss of the Conceptual Primary Cooling System and Design of the Primary Cooling Pump for a Research Reactor

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Oh, Jae Min; Park, Jong Hark; Chae, Hee Taek; Seo, Jae Kwang; Park, Cheon Tae; Yoon, Ju Hyeon; Lee, Doo Jeong

    2009-01-01

    A new conceptual primary cooling system (PCS) for a research reactor has been designed for an adequate cooling to the reactor core which has various powers ranging from 30MW through 80MW. The developed primary cooling system consisted of decay tanks, pumps, heat exchangers, vacuum breakers, some isolation and check valves, connection piping, and instruments. Because the system flow rate should be determined by the thermal hydraulic design analysis for the core, the heads to design the primary cooling pumps (PCPs) in a PCS will be estimated by the variable system flow rates. The heads of the part of a research reactor vessel was evaluated by the previous study. The various pressure losses of the PCS can be calculated by the dimensional analysis of the pipe flow and the head loss coefficient of the components. The purpose of this research is to estimate the various pressure losses and to design the PCPs

  20. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  1. Calculation of ex-core detector weighting functions for a sodium-cooled tru burner mockup using MCNP5

    International Nuclear Information System (INIS)

    Pham Nhu Viet Ha; Min Jae Lee; Sunghwan Yun; Sang Ji Kim

    2015-01-01

    Power regulation systems of fast reactors are based on the signals of excore detectors. The excore detector weighting functions, which establish correspondence between the core power distribution and detector signal, are very useful for detector response analyses, e.g., in rod drop experiments. This paper presents the calculation of the weighting functions for a TRU burner mockup of the Korean Prototype Generation-IV Sodium-cooled Fast Reactor (named BFS-76-1A) using the MCNP5 multi-group adjoint capability. For generation of the weighting functions, all fuel assemblies were considered and each of them was divided into ten horizontal layers. Then the weighting functions for individual fuel assembly horizontal layers, the assembly weighting functions, and the shape annealing functions at RCP (Reactor Critical Point) and at conditions under which a control rod group was fully inserted into the core while other control rods at RCP were determined and evaluated. The results indicate that the weighting functions can be considered relatively insensitive to the control rods position during the rod drop experiments and therefore those weighting values at RCP can be applied to the dynamic rod worth simulation for the BFS-76-1A. (author)

  2. Limits on turbulent propagation of energy in cool-core clusters of galaxies

    Science.gov (United States)

    Bambic, C. J.; Pinto, C.; Fabian, A. C.; Sanders, J.; Reynolds, C. S.

    2018-07-01

    We place constraints on the propagation velocity of bulk turbulence within the intracluster medium of three clusters and an elliptical galaxy. Using Reflection Grating Spectrometer measurements of turbulent line broadening, we show that for these clusters, the 90 per cent upper limit on turbulent velocities when accounting for instrumental broadening is too low to propagate energy radially to the cooling radius of the clusters within the required cooling time. In this way, we extend previous Hitomi-based analysis on the Perseus cluster to more clusters, with the intention of applying these results to a future, more extensive catalogue. These results constrain models of turbulent heating in active galactic nucleus feedback by requiring a mechanism which can not only provide sufficient energy to offset radiative cooling but also resupply that energy rapidly enough to balance cooling at each cluster radius.

  3. RF cavity using liquid dielectric for tuning and cooling

    Science.gov (United States)

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  4. Industry Application ECCS / LOCA Integrated Cladding/Emergency Core Cooling System Performance: Demonstration of LOTUS-Baseline Coupled Analysis of the South Texas Plant Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vaghetto, Rodolfo [Texas A & M Univ., College Station, TX (United States); Vanni, Alessandro [Texas A & M Univ., College Station, TX (United States); Neptune, Kaleb [Texas A & M Univ., College Station, TX (United States)

    2017-06-01

    Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance during LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.

  5. ROSA-V/LSTF vessel top head LOCA tests SB-PV-07 and SB-PV-08 with break sizes of 1.0 and 0.1% and operator recovery actions for core cooling

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Takeda, Takeshi; Nakamura, Hideo

    2010-02-01

    A series of break size parameter tests (SB-PV-07 and SB-PV-08) were conducted at the Large Scale Test Facility (LSTF) of ROSA-V Program by simulating a vessel top small break loss-of-coolant accident (SBLOCA) at a pressurized water reactor (PWR). Typical phenomena to the vessel top break LOCA and effectiveness of operator recovery actions on core cooling were studied under an assumption of total failure of high pressure injection (HPI) system. The LSTF simulates a 4-loop 3423 MWt PWR by a full-height, full-pressure and 1/48 volume scaling two-loop system. Typical phenomena of vessel top break LOCA are clarified for the cases with break sizes of 1.0 and 0.1% cold leg break equivalent. The results from a 0.5% top break LOCA test (SB-PV-02) in the early ROSA-IV Program was referred during discussion. Operator actions of HPI recovery in the 1.0% top break test and steam generator (SG) depressurization in the 0.1% top break test were initiated when temperature at core exit thermocouple (CET) reached 623 K during core boil-off. Both operator actions resulted in immediate recovery of core cooling. Based on the obtained data, several thermal-hydraulic phenomena were discussed further such as relations between vessel top head water level and steam discharge at the break, and between coolant mass inventory transient and core heat-up and quench behavior, and CET performances to detect core heat-up under influences of three-dimensional (3D) steam flows in the core and core exit. (author)

  6. Heavy liquid metal cooled FBR. Results 2003

    International Nuclear Information System (INIS)

    Hayahune, Hiroki; Enuma, Yasuhiro; Soman, Yoshindo; Konomura, Mamoru; Mizuno, Tomoyasu

    2004-08-01

    Concepts of the reactor, SG and main coolant pump have been studied considering maintainability and aseismic capability, which is a medium size pool type lead-bismuth cooled reactor. The results are following. (1) Reconsideration of reactor design concepts concerning maintainability: In pursuit of good reactor maintainability, the structural concepts of SG, UIS and core support structures have been changed to be drawn up above the upper area of the reactor system. After a few decade of interval, lead-bismuth inventory in the reactor vessel shall be fully drained for easy ISI operation of in-vessel main components such as core support structures. From the viewpoint of the reactor aseismic capability, the axial length of reactor vessel was reduced and the reactor vessel support location was changed from the top handing to the circumference of the vessel. (2) SG concept selection in conjunction with a compact reactor vessel: The concept of SG consisting of a once through type with helical coil tube is selected. 6 units of a small scale SG are arranged on a reactor roof deck along the peripheral direction, in addition to 3 units of a centrifugal mechanical pump. (3) Aseismic structural integrity of the reactor components: Aseismic structural integrity of the reactor vessel, core support structures, UIS, FHM, SG and the main pumps has been vigorously examined respectively. These components besides FHM could keep the aseismic structural integrity for strong S2 earthquake under the design condition. FHM could also keep the integrity for S1 earthquake. (4) Safety evaluation: Thermal transients following loss of flow type accident due to plant total blackout and typical manual reactor trip incident, have been evaluated to assure the pant safety design, by analyzing thermal hydraulic behavior of transients concerning core flow rate and temperatures of the plant cooling system. Loss of flow accident due to plant total blackout: The reactor coolant pumps shall be tripped and

  7. Emergency cooling apparatus for reactor

    International Nuclear Information System (INIS)

    Sakaguchi, S.

    1975-01-01

    A nuclear reactor is described which has the core surrounded by coolant and an inert cover gas all sealed within a container, an emergency cooling apparatus employing a detector that will detect cover gas or coolant, particularly liquid sodium, leaking from the container of the reactor, to release a heat exchange material that is inert to the coolant, which heat exchange material is cooled during operation of the reactor. The heat exchange material may be liquid niitrogen or a combination of spheres and liquid nitrogen, for example, and is introduced so as to contact the coolant that has leaked from the container quickly so as to rapidly cool the coolant to prevent or extinguish combustion. (Official Gazette)

  8. Development of thermohydraulic codes for modeling liquid metal boiling in LMR fuel subassemblies

    International Nuclear Information System (INIS)

    Sorokin, G.A.; Avdeev, E.F.; Zhukov, A.V.; Bogoslovskaya, G.P.; Sorokin, A.P.

    2000-01-01

    An investigation into the reactor core accident cooling, which are associated with the power grow up or switch off circulation pumps in the event of the protective equipment comes into action, results in the problem of liquid metal boiling heat transfer. Considerable study has been given over the last 30 years to alkaline metal boiling including researches of heat transfer, boiling patterns, hydraulic resistance, crisis of heat transfer, initial heating up, boiling onset and instability of boiling. The results of these investigations have shown that the process of liquid metal boiling has substantial features in comparison with water boiling. Mathematical modeling of two phase flows in fast reactor fuel subassemblies have been developed intensively. Significant success has been achieved in formulation of two phase flow through the pin bundle and in their numerical realization. Currently a set of codes for thermohydraulic analysis of two phase flows in fast reactor subassembly have been developed with 3D macrotransfer governing equations. These codes are used for analysis of boiling onset and liquid metals boiling in fuel subassemblies during loss-of-coolant accidents, of warming up of reactor core, of blockage of some part of flow cross section in fuel subassembly. (author)

  9. Data on test results of vessel cooling system of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Saikusa, Akio; Nakagawa, Shigeaki; Fujimoto, Nozomu; Tachibana, Yukio; Iyoku, Tatsuo

    2003-02-01

    High Temperature Engineering Test Reactor (HTTR) is the first graphite-moderated helium gas cooled reactor in Japan. The rise-to-power test of the HTTR started on September 28, 1999 and thermal power of the HTTR reached its full power of 30 MW on December 7, 2001. Vessel Cooling System (VCS) of the HTTR is the first Reactor Cavity Cooling System (RCCS) applied for High Temperature Gas Cooled Reactors. The VCS cools the core indirectly through the reactor pressure vessel to keep core integrity during the loss of core flow accidents such as depressurization accident. Minimum heat removal of the VCS to satisfy its safety requirement is 0.3MW at 30 MW power operation. Through the performance test of the VCS in the rise-to-power test of the HTTR, it was confirmed that the VCS heat removal at 30 MW power operation was higher than 0.3 MW. This paper shows outline of the VCS and test results on the VCS performance. (author)

  10. Melt cooling by bottom flooding. The COMET core-catcher concept

    International Nuclear Information System (INIS)

    Foit, Jerzy Jan; Alsmeyer, Hans; Tromm, Walter; Buerger, Manfred; Journeau, Christophe

    2009-01-01

    The COMET concept has been developed to cool an ex-vessel corium melt in case of a hypothetical severe accident leading to vessel melt-through. After erosion of a sacrificial concrete layer the melt is passively flooded by bottom injection of coolant water. The open porosities and large surface that are generated during melt solidification form a porous permeable structure that is permanently filled with the evaporating water and thus allows an efficient short-term as well as long-term removal of the decay heat. The advantages of this concept are the fast cool-down and complete solidification of the melt within less than one hour typically. This stops further release of fission products from the corium. A drawback may be the fast release of steam during the quenching process. Several experimental series have been performed by FZK (Germany) to test and optimise the functionality of the different variants of the COMET concept. Thermite generated melts of iron and aluminium oxide were used. The large scale COMET-H test series with sustained inductive heating includes nine experiments performed with an array of water injection channels embedded in a sacrificial concrete layer. Variation of the water inlet pressure and melt height showed that melts up to 50 cm height can be safely cooled with an overpressure of the coolant water of 0.2 bar. The CometPC concept is based on cooling by flooding the melt from the bottom through layers of porous, water filled concrete. The third variant of the COMET design, CometPCA, uses a layer of porous, water filled concrete CometPCA from which flow channels protrude into the layer of sacrificial concrete. This modified concept combines the advantages of the original COMET concept with flow channels and the high resistance of a water-filled porous concrete layer against downward melt attack. Four large scale CometPCA experiments (FZK, Germany) have demonstrated an efficient cooling of melts up to 50 cm height using the recommended water

  11. Lead-cooled flexible conversion ratio fast reactor

    International Nuclear Information System (INIS)

    Nikiforova, Anna; Hejzlar, Pavel; Todreas, Neil E.

    2009-01-01

    Lead-cooled reactor systems capable of accepting either zero or unity conversion ratio cores depending on the need to burn actinides or operate in a sustained cycle are presented. This flexible conversion ratio reactor is a pool-type 2400 MWt reactor coupled to four 600 MWt supercritical CO 2 (S-CO 2 ) power conversion system (PCS) trains through intermediate heat exchangers. The cores which achieve a power density of 112 kW/l adopt transuranic metallic fuel and reactivity feedbacks to achieve inherent shutdown in anticipated transients without scram, and lead coolant in a pool vessel arrangement. Decay heat removal is accomplished using a reactor vessel auxiliary cooling system (RVACS) complemented by a passive secondary auxiliary cooling system (PSACS). The transient simulation of station blackout (SBO) using the RELAP5-3D/ATHENA code shows that inherent shutdown without scram can be accommodated within the cladding temperature limit by the enhanced RVACS and a minimum (two) number of PSACS trains. The design of the passive safety systems also prevents coolant freezing in case all four of the PSACS trains are in operation. Both cores are also shown able to accommodate unprotected loss of flow (ULOF) and unprotected transient overpower (UTOP) accidents using the S-CO 2 PCS.

  12. Raman scattering and lattice stability of NaAlH{sub 4} and Na{sub 3}AlH{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan)], E-mail: hiroshi@numse.nagoya-u.ac.jp; Morisaku, N.; Li, Y.; Komiya, K.; Rong, R.; Shinzato, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Sekine, R. [Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan); Morinaga, M. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan)

    2007-10-31

    In situ Raman spectroscopy measurements have been performed during the decomposition of NaAlH{sub 4} in order to investigate the transition from the four-coordinated complex anion, [AlH{sub 4}]{sup -}, in NaAlH{sub 4} to the six-coordinated complex anion, [AlH{sub 6}]{sup 3-}, in Na{sub 3}AlH{sub 6}. Also, the local geometry and the Al-H vibrations are analyzed theoretically by the first-principle calculations of the electronic structures. It is found that the Raman sift at 1765 cm{sup -1} for the Al-H stretching vibration in NaAlH{sub 4} shifts towards the higher frequency side, 1801 cm{sup -1} upon melting. This Raman spectrum for the liquid phase recovers to the original position when it is cooled down to room temperature before Na{sub 3}AlH{sub 6} start to appear. The Raman peak around 1800 cm{sup -1} is still observed after the decomposition of NaAlH{sub 4} occurs to precipitate Na{sub 3}AlH{sub 6}. However, this peak does not recover to its original position by cooling, but still persists in the sample cooled down to room temperature. From these results, the intermediate transition state during the decomposition of NaAlH{sub 4} into Na{sub 3}AlH{sub 6} is discussed. In addition, it is shown from a series of calculation that the highest frequency of the Al-H vibration correlates with the shortest Al-H bond length in the MAlH{sub 4}-type and its derivative complex hydrides.

  13. A core management system for JRR-3

    International Nuclear Information System (INIS)

    Soyama, Kazuhiko; Tsuruta, Harumichi; Ichikawa, Hiroki; Nemoto, Hiroyuki.

    1991-05-01

    Japan Research Reactor No.3 (JRR-3) was upgraded to the thermal output with 20 MW by replacing the core, cooling system and utilization facilities. It is a water moderated and cooled, pool type reactor using 20% enriched U · Alx fuel. A core management system for JRR-3 has been made. This code system can manage of reactivity, power distribution and burn up in consideration of the position of control rod, fuel arrangement and operation pattern. This report is the user's manual of this code system. (author)

  14. Reproducing cultural identity in negotiating nuclear power: the Union of Concerned Scientists and emergency core cooling

    International Nuclear Information System (INIS)

    Downey, G.L.

    1988-01-01

    This paper advances the concept of 'cultural identity' to account for the nexus between structure and practice in technological negotiations. It describes how the formation of the Union of Concerned Scientists (UCS), and that group's subsequent discourse and nonverbal actions, both reproduced the established identities of group members and contributed to negotiations that reconstituted those identities. In particular, UCS claims about emergency core-cooling systems in nuclear plants were congruent with the combination of a shared ideology, the social interests of Massachusetts Institute of Technology faculty, and established principles of engineering design. The cultural analysis of identity reproduction shows the opposition between cognitive and social phenomena to be a significant distinction framing action in Western culture. The analysis also suggests that new attention be given to the relationship between the constitutive and reproductive functions of discourse and nonverbal action. (author)

  15. Reproducing cultural identity in negotiating nuclear power: the Union of Concerned Scientists and emergency core cooling

    Energy Technology Data Exchange (ETDEWEB)

    Downey, G L

    1988-05-01

    This paper advances the concept of 'cultural identity' to account for the nexus between structure and practice in technological negotiations. It describes how the formation of the Union of Concerned Scientists (UCS), and that group's subsequent discourse and nonverbal actions, both reproduced the established identities of group members and contributed to negotiations that reconstituted those identities. In particular, UCS claims about emergency core-cooling systems in nuclear plants were congruent with the combination of a shared ideology, the social interests of Massachusetts Institute of Technology faculty, and established principles of engineering design. The cultural analysis of identity reproduction shows the opposition between cognitive and social phenomena to be a significant distinction framing action in Western culture. The analysis also suggests that new attention be given to the relationship between the constitutive and reproductive functions of discourse and nonverbal action.

  16. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2012-09-15

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  17. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    International Nuclear Information System (INIS)

    Sun, K.

    2012-09-01

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  18. Decrement in manual arm performance during whole body cooling.

    Science.gov (United States)

    Giesbrecht, G G; Bristow, G K

    1992-12-01

    Six subjects performed three manual arm tasks: 1) prior to immersion in 8 degrees C water; 2) soon after immersion to the neck, but prior to any decrease in core temperature; and 3) every 15 min until core temperatures decreased 2-4.5 degrees C. The tasks were speed of flexion and extension of the fingers, handgrip strength and manual dexterity. There was no immediate effect of cold immersion; however, all scores decreased significantly after core temperature decreased 0.5 degrees C. Further decrease in core temperature was associated with a progressive impairment of performance, although at a slower rate than during the first 0.5 degrees C decrease. Flexion and extension of the fingers was affected relatively more than handgrip strength or manual dexterity. Decrement in performance is a result of peripheral cooling on sensorimotor function with a probable additional effect of central cooling on cerebral function.

  19. Industry Application Emergency Core Cooling System Cladding Acceptance Criteria Early Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngblood, Robert W. [FPoliSolutions LLC, Murrysville, PA (United States); Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Frepoli, Cesare [FPoliSolutions LLC, Murrysville, PA (United States); Yurko, Joseph P. [FPoliSolutions LLC, Murrysville, PA (United States); Swindlehurst, Gregg [GS Nuclear Consulting, Charlotte, NC (United States); Zoino, Angelo [Univ. of Rome Tor Vergata (Italy)

    2015-09-01

    The U. S. NRC is currently proposing rulemaking designated as “10 CFR 50.46c” to revise the loss-of-coolant-accident (LOCA)/emergency core cooling system (ECCS) acceptance criteria to include the effects of higher burnup on cladding performance as well as to address other technical issues. The NRC is also currently resolving the public comments with the final rule expected to be issued in April 2016. The impact of the final 50.46c rule on the industry may involve updating of fuel vendor LOCA evaluation models, NRC review and approval, and licensee submittal of new LOCA evaluations or re-analyses and associated technical specification revisions for NRC review and approval. The rule implementation process, both industry and NRC activities, is expected to take 4-6 years following the rule effective date. As motivated by the new rule, the need to use advanced cladding designs may be a result. A loss of operational margin may result due to the more restrictive cladding embrittlement criteria. Initial and future compliance with the rule may significantly increase vendor workload and licensee cost as a spectrum of fuel rod initial burnup states may need to be analyzed to demonstrate compliance. Consequently, there will be an increased focus on licensee decision making related to LOCA analysis to minimize cost and impact, and to manage margin. The proposed rule would apply to a light water reactor and to all cladding types.

  20. Gas cooled fast reactor benchmarks for JNC and Cea neutronic tools assessment

    International Nuclear Information System (INIS)

    Rimpault, G.; Sugino, K.; Hayashi, H.

    2005-01-01

    In order to verify the adequacy of JNC and Cea computational tools for the definition of GCFR (gas cooled fast reactor) core characteristics, GCFR neutronic benchmarks have been performed. The benchmarks have been carried out on two different cores: 1) a conventional Gas-Cooled fast Reactor (EGCR) core with pin-type fuel, and 2) an innovative He-cooled Coated-Particle Fuel (CPF) core. Core characteristics being studied include: -) Criticality (Effective multiplication factor or K-effective), -) Instantaneous breeding gain (BG), -) Core Doppler effect, and -) Coolant depressurization reactivity. K-effective and coolant depressurization reactivity at EOEC (End Of Equilibrium Cycle) state were calculated since these values are the most critical characteristics in the core design. In order to check the influence due to the difference of depletion calculation systems, a simple depletion calculation benchmark was performed. Values such as: -) burnup reactivity loss, -) mass balance of heavy metals and fission products (FP) were calculated. Results of the core design characteristics calculated by both JNC and Cea sides agree quite satisfactorily in terms of core conceptual design study. Potential features for improving the GCFR computational tools have been discovered during the course of this benchmark such as the way to calculate accurately the breeding gain. Different ways to improve the accuracy of the calculations have also been identified. In particular, investigation on nuclear data for steel is important for EGCR and for lumped fission products in both cores. The outcome of this benchmark is already satisfactory and will help to design more precisely GCFR cores. (authors)

  1. Method and apparatus for emergency cooling of a nuclear power plant

    International Nuclear Information System (INIS)

    Naito, Masanori; Chino, Koichi; Sato, Chikara; Inoue, Hisamichi.

    1978-01-01

    Purpose: To improve the cooling effect of spray water by eliminating the flow control effect for spray water due to increase in the steam pressure and flowing the entire spray water into the reactor core. Constitution: Upon emergency cooling of a reactor core by spraying coolants from above at the loss of coolant accident in a nuclear power plant, coolant is sprayed in a state where the temperature upon flowing into the reactor core is below the saturated temperature after heat exchange with vapors rising from the core. This enables to apply spray water always at a temperature and a flow rate in the range of whole volume falling irrespective of the water temperature in a pressure suppression pool. (Furukawa, Y.)

  2. VizieR Online Data Catalog: Cool-core clusters with Chandra obs. (Andrade-Santos+, 2017)

    Science.gov (United States)

    Andrade-Santos, F.; Jones, C.; Forman, W. R.; Lovisari, L.; Vikhlinin, A.; van Weeren, R. J.; Murray, S. S.; Arnaud, M.; Pratt, G. W.; Democles, J.; Kraft, R.; Mazzotta, P.; Bohringer, H.; Chon, G.; Giacintucci, S.; Clarke, T. E.; Borgani, S.; David, L.; Douspis, M.; Pointecouteau, E.; Dahle, H.; Brown, S.; Aghanim, N.; Rasia, E.

    2018-02-01

    The main goal of this work is to compare the fraction of cool-core (CC) clusters in X-ray-selected and SZ-selected samples. The first catalog of 189 SZ clusters detected by the Planck mission was released in early 2011 (Planck Collaboration 2011, VIII/88/esz). A Chandra XVP (X-ray Visionary Program--PI: Jones) and HRC Guaranteed Time Observations (PI: Murray) combined to form the Chandra-Planck Legacy Program for Massive Clusters of Galaxies. For each of the 164 ESZ Planck clusters at z<=0.35, we obtained Chandra exposures sufficient to collect at least 10000 source counts. The X-ray sample used here is an extension of the Voevodkin & Vikhlinin (2004ApJ...601..610V) sample. This sample contains 100 clusters and has an effective redshift depth of z<0.3. All have Chandra observations. Of the 100 X-ray-selected clusters, 49 are also in the ESZ sample, and 47 are in the HIFLUGCS (Reiprich & Boehringer 2002ApJ...567..716R) catalog. (2 data files).

  3. Intrinsically secure fast reactors with dense cores

    International Nuclear Information System (INIS)

    Slessarev, Igor

    2007-01-01

    Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as

  4. Pre-analysis of Phenix End-of-Life Thermal-hydraulic tests with the MARS-LMR Code

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Kwi Seok; Kwon, Young Min; Chang, Won Pyo; Suk, Su Dong; Lee, Yong Bum

    2009-01-01

    A prototype SFR, PHENIX has been operated by the French Commissariat a l'energie atomique (CEA) and the Electricite de France (EdF) since 1973. Through the successful operation for 35 years, PHENIX has achieved its original objective to demonstrate a fast breeder reactor technology and also played an important role as an irradiation facility for innovative fuels and materials. Since its first operation, PHENIX has accumulated about 4,300 equivalent full power days (EFPDs) of operational experience and it reached its final shutdown in 2009. Before the decommissioning of PHENIX, the CEA started a PHENIX end-of-life (EOL) test program and opened it for international collaboration to share the valuable information from the test. The KAERI joined this program to utilize the unique opportunity to validate its SFR system analysis code, MARS-LMR which will be a basic tool in future SFR development

  5. Benchmark physics tests in the metallic-fuelled assembly ZPPR-15

    International Nuclear Information System (INIS)

    McFarlane, H.F.; Brumbach, S.B.; Carpenter, S.G.; Collins, P.J.

    1987-01-01

    In the last two years a shift in emphasis to inherent safety and economic competitiveness has led to a resurgence in US interest in metallic-alloy fuels for LMRs. Argonne National Laboratory initiated an extensive testing program for metallic-fuelled LMR technology that has included benchmark physics as one component. The tests done in the ZPPR-15 Program produced the first physics results in over 20 years for a metal-composition LMR core

  6. Design configuration of GCFR core assemblies

    International Nuclear Information System (INIS)

    LaBar, M.P.; Lee, G.E.; Meyer, R.J.

    1980-05-01

    The current design configurations of the core assemblies for the gas-cooled fast reactor (GCFR) demonstration plant reactor core conceptual design are described. Primary emphasis is placed upon the design innovations that have been incorporated in the design of the core assemblies since the establishment of the initial design of an upflow GCFR core. A major feature of the design configurations is that they are prototypical of core assemblies for use in commercial plants; a larger number of the same assemblies would be used in a commercial plant

  7. Numerical Analyses of a single-phase natural convection system for Molten Flibe using MARS-FLIBE code

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sarah; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    These advantages make the MSR attractive and to be one of the six candidates for the Generation IV Reactor. Therefore, the researches related to the MSR are being conducted. To analyze the molten salt-cooled systems in the laboratory, this study generated the properties of molten salt using MARS-LMR. In this research, the implemented salts were Flibe (LiF-BeF{sub 2}) in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. Table 1 indicates the comparison of thermal properties of various coolants in nuclear power plants. Molten salt was added to the MARS-LMR code to support the analysis of Flibe-cooled systems. The molten salt includes LiF-BeF{sub 2} in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. MARS-LMR code for liquid metals uses the soft sphere model based on Monte Carlo calculations for particles interacting with pair potentials. Although MARS was originally intended for a safety analysis of light water reactor, Flibe properties were newly added to this code as so-called MARS-FLIBE which is applicable for Flibe-cooled systems. By using this thermodynamic property table file, the thermal hydraulic systems of Flibe can be simulated for numerical and parametric studies. In this study, the natural convection phenomena in the rectangular natural convection loop and IVR-ERVC in APR 1400 were simulated. Through the simulations in Flibe-cooled systems, the temperature distribution and mass flowrate of Flibe can be calculated and the heat transfer coefficients of Flibe in natural convection loop will be calculated by adding the related heat transfer correlations in the MARS-FLIBE code. MARS-FLIBE code will be used to predict and design of Flibe-cooled systems.

  8. Fuel Summary for Peach Bottom Unit 1 High-Temperature Gas-Cooled Reactor Cores 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Karel I. Kingrey

    2003-04-01

    This fuel summary report contains background and summary information for the Peach Bottom Unit 1, High-Temperature, Gas-Cooled Reactor Cores 1 and 2. This report contains detailed information about the fuel in the two cores, the Peach Bottom Unit 1 operating history, nuclear parameters, physical and chemical characteristics, and shipping and storage canister related data. The data in this document have been compiled from a large number of sources and are not qualified beyond the qualification of the source documents. This report is intended to provide an overview of the existing data pertaining to spent fuel management and point to pertinent reference source documents. For design applications, the original source documentation must be used. While all referenced sources are available as records or controlled documents at the Idaho National Engineering and Environmental Laboratory (INEEL), some of the sources were marked as informal or draft reports. This is noted where applicable. In some instances, source documents are not consistent. Where they are known, this document identifies those instances and provides clarification where possible. However, as stated above, this document has not been independently qualified and such clarifications are only included for information purposes. Some of the information in this summary is available in multiple source documents. An effort has been made to clearly identify at least one record document as the source for the information included in this report.

  9. Development of Long-term Cooling Operation Strategy with H-SIT

    International Nuclear Information System (INIS)

    Jeon, In Seop; Kang, Hyun Gook

    2016-01-01

    In the current nuclear power plants (NPPs), most of the critical safety functions are provided by many active safety systems. Long-term cooling of core is an ultimate goal of all mitigation actions for plant safety and feed and bleed (F and B) operation strategy is one of long-term cooling strategies in conventional pressurized water reactor (PWR). The important point of F and B operation is that, in conventional mitigation strategy, injection for feed operation is performed by only high pressure injection (HPSI) pump. Low pressure injection (LPSI) pump such as shut down cooling pump (SCP) cannot be used for F and B operation. Thus, when F and B operation is needed, if high-pressure injection pump fails, core should be damaged. In this study, F and B operation strategy with LPSI and H-SIT is developed. This is a new concept for the long-term cooling operation. If this strategy is applied, low pressure injection pump can be successfully used for F and B operation thus operator has the additional mitigation way. As this strategy make plant safe even though HPSI and PAFS are both failed, it can effectively enhance the plant safety. For this strategy two RCGVSs and two POSRVs are needed as a depressurization system for bleed operation and only one LPSI is enough for feed operation. H-SIT operation is also needed to make up core inventory during bleed operation. For this operation, four H-SITs have to be used to make up core safely. Based on the risk analysis using PSA method, if this strategy is applied, core damage frequency is 1.868e-6 which declined 7 percent from original model.

  10. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  11. Liquid metal cooled fast breeder nuclear reactors

    International Nuclear Information System (INIS)

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  12. ANISOTROPIC THERMAL CONDUCTION AND THE COOLING FLOW PROBLEM IN GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Parrish, Ian J.; Sharma, Prateek; Quataert, Eliot

    2009-01-01

    We examine the long-standing cooling flow problem in galaxy clusters with three-dimensional magnetohydrodynamics simulations of isolated clusters including radiative cooling and anisotropic thermal conduction along magnetic field lines. The central regions of the intracluster medium (ICM) can have cooling timescales of ∼200 Myr or shorter-in order to prevent a cooling catastrophe the ICM must be heated by some mechanism such as active galactic nucleus feedback or thermal conduction from the thermal reservoir at large radii. The cores of galaxy clusters are linearly unstable to the heat-flux-driven buoyancy instability (HBI), which significantly changes the thermodynamics of the cluster core. The HBI is a convective, buoyancy-driven instability that rearranges the magnetic field to be preferentially perpendicular to the temperature gradient. For a wide range of parameters, our simulations demonstrate that in the presence of the HBI, the effective radial thermal conductivity is reduced to ∼<10% of the full Spitzer conductivity. With this suppression of conductive heating, the cooling catastrophe occurs on a timescale comparable to the central cooling time of the cluster. Thermal conduction alone is thus unlikely to stabilize clusters with low central entropies and short central cooling timescales. High central entropy clusters have sufficiently long cooling times that conduction can help stave off the cooling catastrophe for cosmologically interesting timescales.

  13. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat.

    Science.gov (United States)

    Cotter, J D; Sleivert, G G; Roberts, W S; Febbraio, M A

    2001-04-01

    Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (Pcooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.

  14. Au@NaYF{sub 4}:Tb{sup 3+} core@shell nanostructures: Synthesis and construction of luminescence resonance energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yan; Liu, Guixia, E-mail: liuguixia22@163.com; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2016-03-15

    Luminescence resonance energy transfer (LRET) system can be constructed using NaYF{sub 4}:Tb{sup 3+} luminescence nanocrystals and gold nanoparticles (AuNPs) served as energy donor and acceptor, respectively. The AuNPs modified by cetyltrimethylammonium bromide (CTAB) were synthesized first and NaYF{sub 4}:Tb{sup 3+} shells encapsulated Au cores via a hydrothermal method. The synthesized materials were well characterized by X-ray diffraction (XRD), Fourier-transform infrared spectra (FT-IR), Transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), UV–vis absorption spectra (UV–vis) and photoluminescence (PL) measurement. The results indicate that the synthesized Au@NaYF{sub 4}:Tb{sup 3+} core–shell nanoparticles have spherical morphology with a size of 80–90 nm and the shell layers of NaYF{sub 4}:Tb{sup 3+} nanocrystals have pure cubic structure. The luminescence properties of Au@NaYF{sub 4}:Tb{sup 3+} core–shell nanoparticles are same as those of NaYF{sub 4}:Tb{sup 3+} particles. The LRET process was realized using the core–shell nanoarchitectures due to the absorption spectrum of AuNPs matches well with the major emission peaks of Tb{sup 3+} ions. The LRET experiments have successfully verified the energy transfer between NaYF{sub 4}:Tb{sup 3+} nanocrystals and AuNPs. Additionally, the emission intensities of Tb{sup 3+} ions and the content of AuNPs exhibited a fair linear correlation.

  15. Effects of debris generated by chemical reactions on head loss through emergency-core cooling-system strainers

    International Nuclear Information System (INIS)

    Howe, K.; Ghosh, A.; Maji, A.K.; Letellier, B.C.; Johns, R.; Chang, T.Y.

    2004-01-01

    The effect of debris generated during a loss of coolant accident (LOCA) on the emergency core cooling system (ECCS) strainers has been studied via numerous avenues over the last several years. The research described in this manuscript examines the generation and effect of secondary materials -- not debris generated in the LOCA itself, but materials created by chemical reactions between exposed surfaces/debris and cooling system water. The secondary materials studied in the research were corrosion products from exposed metallic surfaces and paint chips that may precipitate out of solution, with a focus on the corrosion products of aluminium, iron, and zinc. The processes of corrosion and leaching of metals with subsequent precipitation is important because: (1) the surface area of exposed metal inside containment represents a large potential source term, even for slow chemical reactions; the chemical composition of the cooling system water (boric acid, lithium, etc.) may affect corrosion or precipitation in ways that have not been studied thoroughly in the past; and (3) an eyewitness report of the presence of gelatinous material in the Three Mile Island containment pool after the 1979 accident suggests the formation of a secondary material that has not been examined under the generic safety issue (GSI)-191 research program. This research was limited in scope and consisted only of small-scale tests. Several key questions were investigated: (1) do credible corrosion mechanisms exist for leaching metal ions from bulk solid surfaces or from zinc-based paint chips, and if so, what are the typical rate constants? (2) can corrosion products accumulate in the containment pool water to the extent that they might precipitate as new chemical species at pH and temperatures levels that are relevant to the LOCA accident sequence? and (3) how do chemical precipitants affect the head loss across an existing fibrous debris bed? A full report of the research is available. (authors)

  16. Safety Analysis for PHTS Integrity by the failure of the IHTS function in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jun; Chang, Won-Pyo; Ha, Kwi-Seok; Kang, Seok Hun; Choi, Chi-Woong; Lee, Kwi Lim; Lee, Seung Won; Jeong, Jae-Ho; Kim, Jin Su; Jeong, Taekyeong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, the failure of the heat removal function of the IHTS by the SWR event is assumed. The integrity of the PHTS is analyzed by MARS-LMR code. A sodium is used as a reactor coolant to transfer the core heat to the turbine. It rigorously reacts with a water or steam in chemical and generates the high pressure waves and high temperature reaction heat. While it has an excellent characteristics as a coolant, there is an event to be necessarily considered in the sodium cooled fast reactor design. The Sodium-Water Reaction(SWR) event can be occurred due to the rupture of steam generator tubes. This event threaten the integrity of the Primary Heat Transfer System(PHTS). It is categorized to the loss of heat sink events, which are undercooling the Primary Heat Transfer System(PHTS). In PGSFR, the SWR event can be occurred in the SG. The PHTS is analyzed to the respects of the integrity of the fuel and cladding using the MARS-LMR code. From the analysis results, the peak temperature of the fuel and cladding have a sufficient margin to the safety acceptance criteria 1,237 .deg. C and 1,075 .deg. C, respectively.

  17. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    Science.gov (United States)

    Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz

    2017-12-01

    The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  18. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Grodzki Marcin

    2017-12-01

    Full Text Available The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an ‘early design’ variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit. A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  19. Approaches to measurement of thermal-hydraulic parameters in liquid-metal-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1983-01-01

    This lecture considers instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, and sodium purity. It is divided into three major parts: (1) measurement requirements for sodium cooled reactor systems, (2) in-core and out-of-core measurements in liquid metal systems, and (3) performance measurements of water steam generators

  20. Comparison of facility characteristics between SCTF Core-I and Core-II

    International Nuclear Information System (INIS)

    Adachi, Hiromichi; Iwamura, Takamichi; Sobajima, Makoto; Ohnuki, Akira; Abe, Yutaka; Murao, Yoshio.

    1990-08-01

    The Slab Core Test Facility (SCTF) was constructed to investigate two-dimensional thermal-hydraulics in the core and fluid behavior of carryover water out of the core including its feed-back effect to the core behavior mainly during the reflood phase of a large break loss-of-coolant accident (LOCA) of a pressurized water reactor (PWR). Since three simulated cores are used in the SCTF Test Program and the design of these three cores are slightly different one by one, repeatability test is required to justify a direct comparison of data obtained with different cores. In the present report, data of Test S2-13 (Run 618) obtained with SCTF Core-II were compared with those of Test S1-05 (Run 511) obtained with the Core-I, which were performed under the forced-flooding condition. Thermal-hydraulic behaviors in these two tests showed quite similar characteristics of both system behavior and two-dimensional core behaviors. Therefore, the test data obtained from the two cores can be compared directly with each other. After the turnaround of clad temperatures, however, some differences were found in upper plenum water accumulation and resultant two-dimensional core cooling behaviors such as quench front propagation from bottom to top of the core. (author)