WorldWideScience

Sample records for n-terminal penultimate residue

  1. Unusual chemical properties of N-terminal histidine residues of glucagon and vasoactive intestinal peptide

    International Nuclear Information System (INIS)

    Hefford, M.A.; Evans, R.M.; Oda, G.; Kaplan, H.

    1985-01-01

    An N-terminal histidine residue of a protein or peptide has two functional groups, viz., an alpha-amino group and an imidazole group. A new procedure, based on the competitive labeling approach described by Duggleby and Kaplan has been developed by which the chemical reactivity of each functional group in such a residue can be determined as a function of pH. Only very small amounts of material are required, which makes it possible to determine the chemical properties in dilute solution or in proteins and polypeptides that can be obtained in only minute quantities. With this approach, the reactivity of the alpha-amino group of histidylglycine toward 1-fluoro-2,4-dinitrobenzene gave an apparent pK /sub a/ value of 7.64 +/- 0.07 at 37 degrees C, in good agreement with a value of 7.69 +/- 0.02 obtained by acid-base titration. However, the reactivity of the imidazole function gave an apparent pK /sub a/ value of 7.16 +/- 0.07 as compared to the pK /sub a/ value of 5.85 +/- 0.01 obtained by acid-base titration. Similarly, in glucagon and vasoactive intestinal peptide (VIP), apparent pKa values of 7.60 +/- 0.04 and 7.88 +/- 0.18, respectively, were obtained for the alpha-amino of their N-terminal histidine, and pKa values of 7.43 +/- 0.09 and 7.59 +/- 0.18 were obtained for the imidazole function

  2. Feline Immunodeficiency Virus Vif N-Terminal Residues Selectively Counteract Feline APOBEC3s.

    Science.gov (United States)

    Gu, Qinyong; Zhang, Zeli; Cano Ortiz, Lucía; Franco, Ana Cláudia; Häussinger, Dieter; Münk, Carsten

    2016-12-01

    Feline immunodeficiency virus (FIV) Vif protein counteracts feline APOBEC3s (FcaA3s) restriction factors by inducing their proteasomal degradation. The functional domains in FIV Vif for interaction with FcaA3s are poorly understood. Here, we have identified several motifs in FIV Vif that are important for selective degradation of different FcaA3s. Cats (Felis catus) express three types of A3s: single-domain A3Z2, single-domain A3Z3, and double-domain A3Z2Z3. We proposed that FIV Vif would selectively interact with the Z2 and the Z3 A3s. Indeed, we identified two N-terminal Vif motifs (12LF13 and 18GG19) that specifically interacted with the FcaA3Z2 protein but not with A3Z3. In contrast, the exclusive degradation of FcaA3Z3 was regulated by a region of three residues (M24, L25, and I27). Only a FIV Vif carrying a combination of mutations from both interaction sites lost the capacity to degrade and counteract FcaA3Z2Z3. However, alterations in the specific A3s interaction sites did not affect the cellular localization of the FIV Vif protein and binding to feline A3s. Pulldown experiments demonstrated that the A3 binding region localized to FIV Vif residues 50 to 80, outside the specific A3 interaction domain. Finally, we found that the Vif sites specific to individual A3s are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in the FIV Vif of pumas. Our data support a complex model of multiple Vif-A3 interactions in which the specific region for selective A3 counteraction is discrete from a general A3 binding domain. Both human immunodeficiency virus (HIV) and feline immunodeficiency virus (FIV) Vif proteins counteract their host's APOBEC3 restriction factors. However, these two Vif proteins have limited sequence homology. The molecular interaction between FIV Vif and feline APOBEC3s are not well understood. Here, we identified N-terminal FIV Vif sites that regulate the selective interaction of Vif with either feline APOBEC3Z

  3. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    International Nuclear Information System (INIS)

    Kurooka, Hisanori; Sugai, Manabu; Mori, Kentaro; Yokota, Yoshifumi

    2013-01-01

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite

  4. Penultimate interpretation.

    Science.gov (United States)

    Neuman, Yair

    2010-10-01

    Interpretation is at the center of psychoanalytic activity. However, interpretation is always challenged by that which is beyond our grasp, the 'dark matter' of our mind, what Bion describes as ' O'. O is one of the most central and difficult concepts in Bion's thought. In this paper, I explain the enigmatic nature of O as a high-dimensional mental space and point to the price one should pay for substituting the pre-symbolic lexicon of the emotion-laden and high-dimensional unconscious for a low-dimensional symbolic representation. This price is reification--objectifying lived experience and draining it of vitality and complexity. In order to address the difficulty of approaching O through symbolization, I introduce the term 'Penultimate Interpretation'--a form of interpretation that seeks 'loopholes' through which the analyst and the analysand may reciprocally save themselves from the curse of reification. Three guidelines for 'Penultimate Interpretation' are proposed and illustrated through an imaginary dialogue. Copyright © 2010 Institute of Psychoanalysis.

  5. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    Science.gov (United States)

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Shiheido, Hirokazu, E-mail: shiheido@ak.med.kyoto-u.ac.jp; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.

  7. Importance of the content and localization of tyrosine residues for thyroxine formation within the N-terminal part of human thyroglobulin

    NARCIS (Netherlands)

    den Hartog, M. T.; Sijmons, C. C.; Bakker, O.; Ris-Stalpers, C.; de Vijlder, J. J.

    1995-01-01

    Thyroxine (T4) is formed by coupling of iodinated tyrosine residues within thyroglobulin (TG). In mature TG, some iodinated tyrosine residues are involved preferentially in T4 formation. In order to investigate the specific role of various tyrosine residues in T4 formation, N-terminal TG fragments

  8. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice.

    Science.gov (United States)

    Eigenbrod, Sabina; Frick, Petra; Bertsch, Uwe; Mitteregger-Kretzschmar, Gerda; Mielke, Janina; Maringer, Marko; Piening, Niklas; Hepp, Alexander; Daude, Nathalie; Windl, Otto; Levin, Johannes; Giese, Armin; Sakthivelu, Vignesh; Tatzelt, Jörg; Kretzschmar, Hans; Westaway, David

    2017-01-01

    Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1-4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain.

  9. N-terminal aliphatic residues dictate the structure, stability, assembly, and small molecule binding of the coiled-coil region of cartilage oligomeric matrix protein.

    Science.gov (United States)

    Gunasekar, Susheel K; Asnani, Mukta; Limbad, Chandani; Haghpanah, Jennifer S; Hom, Wendy; Barra, Hanna; Nanda, Soumya; Lu, Min; Montclare, Jin Kim

    2009-09-15

    The coiled-coil domain of cartilage oligomeric matrix protein (COMPcc) assembles into a homopentamer that naturally recognizes the small molecule 1,25-dihydroxyvitamin D(3) (vit D). To identify the residues critical for the structure, stability, oligomerization, and binding to vit D as well as two other small molecules, all-trans-retinol (ATR) and curcumin (CCM), here we perform an alanine scanning mutagenesis study. Ten residues lining the hydrophobic pocket of COMPcc were mutated into alanine; of the mutated residues, the N-terminal aliphatic residues L37, L44, V47, and L51 are responsible for maintaining the structure and function. Furthermore, two polar residues, T40 and Q54, within the N-terminal region when converted into alanine improve the alpha-helical structure, stability, and self-assembly behavior. Helical stability, oligomerization, and binding appear to be linked in a manner in which mutations that abolish helical structure and assembly bind poorly to vit D, ATR, and CCM. These results provide not only insight into COMPcc and its functional role but also useful guidelines for the design of stable, pentameric coiled-coils capable of selectively storing and delivering various small molecules.

  10. The conserved residue Arg46 in the N-terminal heptad repeat domain of HIV-1 gp41 is critical for viral fusion and entry.

    Directory of Open Access Journals (Sweden)

    Xiaoyi Wang

    Full Text Available During the process of HIV-1 fusion with the target cell, the N-terminal heptad repeat (NHR of gp41 interacts with the C-terminal heptad repeat (CHR to form fusogenic six-helix bundle (6-HB core. We previously identified a crucial residue for 6-HB formation and virus entry--Lys63 (K63 in the C-terminal region of NHR (aa 54-70, which forms a hydrophobic cavity. It can form an important salt bridge with Asp121 (D121 in gp41 CHR. Here, we found another important conserved residue for virus fusion and entry, Arg46 (R46, in the N-terminal region of NHR (aa 35-53, which forms a hydrogen bond with a polar residue, Asn43 (N43, in NHR, as a part of the hydrogen-bond network. R46 can also form a salt bridge with a negatively charged residue, Glu137 (E137, in gp41 CHR. Substitution of R46 with the hydrophobic residue Ala (R46A or the negatively charged residue Glu (R46E resulted in disruption of the hydrogen bond network, breakage of the salt bridge and reduction of 6-HB's stability, leading to impairment of viral fusion and decreased inhibition of N36, an NHR peptide. Similarly, CHR peptide C34 with substitution of E137 for Ala (E137A or Arg (E137R also exhibited reduced inhibitory activity against HIV-1 infection and HIV-1-mediated cell-to-cell fusion. These results suggest that the positively charged residue R46 and its hydrogen bond network, together with the salt bridge between R46 and E137, are important for viral fusion and entry and may therefore serve as a target for designing novel HIV fusion/entry inhibitors.

  11. Ionic interaction of myosin loop 2 with residues located beyond the N-terminal part of actin probed by chemical cross-linking.

    Science.gov (United States)

    Pliszka, Barbara; Martin, Brian M; Karczewska, Emilia

    2008-02-01

    To probe ionic contacts of skeletal muscle myosin with negatively charged residues located beyond the N-terminal part of actin, myosin subfragment 1 (S1) and actin split by ECP32 protease (ECP-actin) were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have found that unmodified S1 can be cross-linked not only to the N-terminal part, but also to the C-terminal 36 kDa fragment of ECP-actin. Subsequent experiments performed on S1 cleaved by elastase or trypsin indicate that the cross-linking site in S1 is located within loop 2. This site is composed of Lys-636 and Lys-637 and can interact with negatively charged residues of the 36 kDa actin fragment, most probably with Glu-99 and Glu-100. Cross-links are formed both in the absence and presence of MgATP.P(i) analog, although the addition of nucleotide decreases the efficiency of the cross-linking reaction.

  12. Involvement of tyrosine residues, N-terminal amino acids, and beta-alanine in insect cuticular sclerotization.

    Science.gov (United States)

    Andersen, Svend Olav

    2007-09-01

    During sclerotization of insect cuticle the acyldopamines, N-acetyldopamine (NADA) and N-beta-alanyldopamine (NBAD), are oxidatively incorporated into the cuticular matrix, thereby hardening and stabilizing the material by forming crosslinks between the proteins in the cuticular matrix and by forming polymers filling the intermolecular spaces in the cuticle. Sclerotized cuticle from the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor, was hydrolyzed in dilute hydrochloric acid, and from the hydrolysates some components presumably degradation products of cuticular crosslinks were isolated. In two of the components, the sidechain of 3,4-dihydroxyacetophenone was linked to the amino groups of glycine and beta-alanine, respectively, and in the third component to the phenolic group of tyrosine. These three compounds, glycino-dihydroxyacetophenone, beta-alanino-dihydroxyacetophenone, and O-tyrosino-dihydroxyacetophenone, as well as the previously reported compound, lysino-dihydroxyacetophenone [Andersen, S.O., Roepstorff, P., 2007. Aspects of cuticular sclerotization in the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor. Insect Biochem. Mol. Biol. 37, 223-234], are suggested to be degradation products of cuticular crosslinks, in which amino acid residues formed linkages to both the alpha- and beta-positions of the sidechain of acyldopamines.

  13. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK.

    Science.gov (United States)

    Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M

    2014-08-22

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker.

    Science.gov (United States)

    Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João M; Belizário, José E

    2017-12-01

    Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD 198 ↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (k cat /K M ) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.

  15. Mouse-hamster chimeric prion protein (PrP) devoid of N-terminal residues 23-88 restores susceptibility to 22L prions, but not to RML prions in PrP-knockout mice.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp 0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp 0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp 0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice, compared with RML- and 22L-inoculated Prnp 0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.

  16. Towards the N-terminal acetylome

    DEFF Research Database (Denmark)

    Zhang, Xumin; Højrup, Peter

    2013-01-01

    Protein N-terminal acetylation (N(α)-acetylation) is observed widely from prokaryotes to eukaryotes. It gains increased importance in biological field, due to its multiple roles in many aspects of the protein life, such as assembly, stability, activity, and location. Today, mass spectrometry (MS...

  17. Carbamylation of N-terminal proline.

    Science.gov (United States)

    Olajuyigbe, Folasade M; Demitri, Nicola; Ajele, Joshua O; Maurizio, Elisa; Randaccio, Lucio; Geremia, Silvano

    2010-09-09

    Protein carbamylation is of great concern both in vivo and in vitro. Here, we report the first structural characterization of a protein carbamylated at the N-terminal proline. The unexpected carbamylation of the α-amino group of the least reactive codified amino acid has been detected in high-resolution electron density maps of a new crystal form of the HIV-1 protease/saquinavir complex. The carbamyl group is found coplanar to the proline ring with a trans conformation. The reaction of N-terminal with cyanate ion derived from the chaotropic agent urea was confirmed by mass spectra analysis on protease single crystals. Implications of carbamylation process in vitro and in vivo are discussed.

  18. N-terminal protein processing: A comparative proteogenomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bonissone, Stefano; Gupta, Nitin; Romine, Margaret F.; Bradshaw, Ralph A.; Pevzner, Pavel A.

    2013-01-01

    N-Terminal Methionine Excision (NME) is a universally conserved mechanism with the same specificity across all life forms that removes the first Methionine in proteins when the second residue is Gly, Ala, Ser, Cys, Thr, Pro, or Val. In spite of its necessity for proper cell functioning, the functional role of NME remains unclear. In 1988, Arfin and Bradshaw connected NME with the N-end protein degradation rule and postulated that the role of NME is to expose the stabilizing residues with the goal to resist protein degradation. While this explanation (that treats 7 stabilizing residues in the same manner) has become the de facto dogma of NME, comparative proteogenomics analysis of NME tells a different story. We suggest that the primary role of NME is to expose only two (rather than seven) amino acids Ala and Ser for post-translational modifications (e.g., acetylation) rather than to regulate protein degradation. We argue that, contrary to the existing view, NME is not crucially important for proteins with 5 other stabilizing residue at the 2nd positions that are merely bystanders (their function is not affected by NME) that become exposed to NME because their sizes are comparable or smaller than the size of Ala and Ser.

  19. The N-terminal tail of hERG contains an amphipathic α-helix that regulates channel deactivation.

    Directory of Open Access Journals (Sweden)

    Chai Ann Ng

    Full Text Available The cytoplasmic N-terminal domain of the human ether-a-go-go related gene (hERG K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s by which the N-terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N-terminal 135 residues of hERG contains a previously described Per-Arnt-Sim (PAS domain (residues 26-135 as well as an amphipathic α-helix (residues 13-23 and an initial unstructured segment (residues 2-9. Deletion of residues 2-25, only the unstructured segment (residues 2-9 or replacement of the α-helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α-helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N-terminal α-helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel.

  20. New OprM structure highlighting the nature of the N-terminal anchor

    Directory of Open Access Journals (Sweden)

    Laura eMONLEZUN

    2015-07-01

    Full Text Available Among the different mechanisms used by bacteria to resist antibiotics, active efflux plays a major role. In gram-negative bacteria, active efflux is carried out by tripartite efflux pumps that form a macromolecular assembly spanning both membranes of the cellular wall. At the outer membrane level, a well-conserved Outer Membrane Factor (OMF protein acts as an exit duct, but its sequence varies greatly among different species. The OMFs share a similar tri-dimensional structure that includes a beta-barrel pore domain that stabilizes the channel within the membrane. In addition, OMFs are often subjected to different N-terminal post-translational modifications, such as an acylation with a lipid. The role of additional N-terminal anchors is all the more intriguing since it is not always required among the OMFs family. Understanding this optional post-translational modification could open new research lines in the field of antibiotics resistance. In E. coli, it has been shown that CusC is modified with a tri-acylated lipid, whereas TolC does not show any. In the case of OprM from Pseudomonas aeruginosa, the N-terminal modification remains a matter of debate, therefore, we used several approaches to investigate this issue. As definitive evidence, we present a new X ray structure at 3.8Å resolution that was solved in a new space group, making it possible to model the N-terminal residue as a palmitylated cysteine.

  1. Copper(II) Binding Sites in N-Terminally Acetylated α-Synuclein: A Theoretical Rationalization.

    Science.gov (United States)

    Ramis, Rafael; Ortega-Castro, Joaquín; Vilanova, Bartolomé; Adrover, Miquel; Frau, Juan

    2017-08-03

    The interactions between N-terminally acetylated α-synuclein and Cu(II) at several binding sites have been studied with DFT calculations, specifically with the M06 hybrid functional and the ωB97X-D DFT-D functional. In previous experimental studies, Cu(II) was shown to bind several α-synuclein residues, including Met1-Asp2 and His50, forming square planar coordination complexes. Also, it was determined that a low-affinity binding site exists in the C-terminal domain, centered on Asp121. However, in the N-terminally acetylated protein, present in vivo, the Met1 site is blocked. In this work, we simplify the representation of the protein by modeling each experimentally found binding site as a complex between an N-terminally acetylated α-synuclein dipeptide (or several independent residues) and a Cu(II) cation, and compare the results with a number of additional, structurally analogous sites not experimentally found. This way of representing the binding sites, although extremely simple, allows us to reproduce experimental results and to provide a theoretical rationale to explain the preference of Cu(II) for certain sites, as well as explicit geometrical structures for the complexes formed. These results are important to understand the interactions between α-synuclein and Cu(II), one of the factors inducing structural changes in the protein and leading to aggregated forms of it which may play a role in neurodegeneration.

  2. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Marcianò, G.; Huang, D. T., E-mail: d.huang@beatson.gla.ac.uk [Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland (United Kingdom)

    2016-01-22

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  3. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    International Nuclear Information System (INIS)

    Marcianò, G.; Huang, D. T.

    2016-01-01

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding

  4. The N-terminal region of the dopamine D2 receptor, a rhodopsin-like GPCR, regulates correct integration into the plasma membrane and endocytic routes

    Science.gov (United States)

    Cho, DI; Min, C; Jung, KS; Cheong, SY; Zheng, M; Cheong, SJ; Oak, MH; Cheong, JH; Lee, BK; Kim, KM

    2012-01-01

    BACKGROUND AND PURPOSE Functional roles of the N-terminal region of rhodopsin-like GPCR family remain unclear. Using dopamine D2 and D3 receptors as a model system, we probed the roles of the N-terminal region in the signalling, intracellular trafficking of receptor proteins, and explored the critical factors that determine the functionality of the N-terminal region. EXPERIMENTAL APPROACH The N-terminal region of the D2 receptor was gradually shortened or switched with that of the D3 receptor or a non-specific sequence (FLAG), or potential N-terminal glycosylation sites were mutated. Effects of these manipulations on surface expression, internalization, post-endocytic behaviours and signalling were determined. KEY RESULTS Shortening the N-terminal region of the D2 receptor enhanced receptor internalization and impaired surface expression and signalling; ligand binding, desensitization and down-regulation were not affected but their association with a particular microdomain, caveolae, was disrupted. Replacement of critical residues within the N-terminal region with the FLAG epitope failed to restore surface expression but partially restored the altered internalization and signalling. When the N-terminal regions were switched between D2 and D3 receptors, cell surface expression pattern of each receptor was switched. Mutations of potential N-terminal glycosylation sites inhibited surface expression but enhanced internalization of D2 receptors. CONCLUSIONS AND IMPLICATIONS Shortening of N-terminus or mutation of glycosylation sites located within the N-terminus enhanced receptor internalization but impaired the surface expression of D2 receptors. The N-terminal region of the D2 receptor, in a sequence-specific manner, controls the receptor's conformation and integration into the plasma membrane, which determine its subcellular localization, intracellular trafficking and signalling properties. PMID:22117524

  5. NetAcet: prediction of N-terminal acetylation sites

    DEFF Research Database (Denmark)

    Kiemer, Lars; Bendtsen, Jannick Dyrløv; Blom, Nikolaj

    2005-01-01

    Summary: We present here a neural network based method for prediction of N-terminal acetylation-by far the most abundant post-translational modification in eukaryotes. The method was developed on a yeast dataset for N-acetyltransferase A (NatA) acetylation, which is the type of N-acetylation for ......Summary: We present here a neural network based method for prediction of N-terminal acetylation-by far the most abundant post-translational modification in eukaryotes. The method was developed on a yeast dataset for N-acetyltransferase A (NatA) acetylation, which is the type of N...

  6. Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.

    Science.gov (United States)

    Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio

    2016-04-19

    Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.

    Science.gov (United States)

    Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki

    2017-12-01

    Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.

  8. Dimeric structure of the N-terminal domain of PriB protein from Thermoanaerobacter tengcongensis solved ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Liebschner, Dorothee [National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); Brzezinski, Krzysztof [National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); University of Bialystok, 15-399 Bialystok (Poland); Dauter, Miroslawa [Argonne National Laboratory, Argonne, IL 60439 (United States); Dauter, Zbigniew, E-mail: dauter@anl.gov [National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States); Nowak, Marta; Kur, Józef; Olszewski, Marcin, E-mail: dauter@anl.gov [Gdansk University of Technology, 80-952 Gdansk (Poland); National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2012-12-01

    The N-terminal domain of the PriB protein from the thermophilic bacterium T. tengcongensis (TtePriB) was expressed and its crystal structure has been solved at the atomic resolution of 1.09 Å by direct methods. PriB is one of the components of the bacterial primosome, which catalyzes the reactivation of stalled replication forks at sites of DNA damage. The N-terminal domain of the PriB protein from the thermophilic bacterium Thermoanaerobacter tengcongensis (TtePriB) was expressed and its crystal structure was solved at the atomic resolution of 1.09 Å by direct methods. The protein chain, which encompasses the first 104 residues of the full 220-residue protein, adopts the characteristic oligonucleotide/oligosaccharide-binding (OB) structure consisting of a five-stranded β-barrel filled with hydrophobic residues and equipped with four loops extending from the barrel. In the crystal two protomers dimerize, forming a six-stranded antiparallel β-sheet. The structure of the N-terminal OB domain of T. tengcongensis shows significant differences compared with mesophile PriBs. While in all other known structures of PriB a dimer is formed by two identical OB domains in separate chains, TtePriB contains two consecutive OB domains in one chain. However, sequence comparison of both the N-terminal and the C-terminal domains of TtePriB suggests that they have analogous structures and that the natural protein possesses a structure similar to a dimer of two N-terminal domains.

  9. Structure of a tropomyosin N-terminal fragment at 0.98 Å resolution

    International Nuclear Information System (INIS)

    Meshcheryakov, Vladimir A.; Krieger, Inna; Kostyukova, Alla S.; Samatey, Fadel A.

    2011-01-01

    The crystal structure of the N-terminal fragment of the short nonmuscle α-tropomyosin has been determined at a resolution of 0.98 Å. Tropomyosin (TM) is an elongated two-chain protein that binds along actin filaments. Important binding sites are localized in the N-terminus of tropomyosin. The structure of the N-terminus of the long muscle α-TM has been solved by both NMR and X-ray crystallography. Only the NMR structure of the N-terminus of the short nonmuscle α-TM is available. Here, the crystal structure of the N-terminus of the short nonmuscle α-TM (αTm1bZip) at a resolution of 0.98 Å is reported, which was solved from crystals belonging to space group P3 1 with unit-cell parameters a = b = 33.00, c = 52.03 Å, α = β = 90, γ = 120°. The first five N-terminal residues are flexible and residues 6–35 form an α-helical coiled coil. The overall fold and the secondary structure of the crystal structure of αTM1bZip are highly similar to the NMR structure and the atomic coordinates of the corresponding C α atoms between the two structures superimpose with a root-mean-square deviation of 0.60 Å. The crystal structure validates the NMR structure, with the positions of the side chains being determined precisely in our structure

  10. Specificity of N-terminal methionyl peptidase: analysis by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Kasper, T.J.; Boissel, J.P.; Bunn, H.F.

    1987-01-01

    The start site of eukaryotic translation is normally an AUG codon. The corresponding N-terminal methionine is most often removed when the nascent chain reaches about 30 residues. Data from a survey of 1764 eukaryotic protein sequences suggest that the residue adjacent to the initiator Met determines Met cleavage. In order to investigate the mechanism of this reaction, the authors have prepared oligonucleotide-directed mutants of human β-globin from gapped heteroduplexes of a T3/T7 plasmid containing a globin cDNA clone. To date, the authors have produced mutants encoding for 15 of 19 possible amino acid replacements at position 1 in the β-globin chain. These mutants have been confirmed by dideoxy sequencing, transcribed in vitro, and translated in a rabbit reticulocyte lysate in the presence of 35 S-methionine. Labeled translation products were then isolated by cation exchange HPLC, and tryptic peptides were analyzed by RP-HPLC. Thus far, this structural analysis has shown that for β-1 Val, Ala, and Ser, the initiator Met is cleaved, whereas for β-1 Lys, Met, Glu, Trp, Asn, Tyr, and Glu, initiator Met is retained. For β-1 Leu initiator Met is cleaved with a frequency of about 50%. These results are consistent with the data obtained from the previous survey. The expression of site-directed mutants in a cell-free system can also be used to investigate other N-terminal processing events, such as acetylation and myristylation

  11. Fine tuning of the catalytic activity of colicin E7 nuclease domain by systematic N-terminal mutations

    Czech Academy of Sciences Publication Activity Database

    Németh, E.; Körtvélyesi, T.; Thulstrup, P. W.; Christensen, H. E. M.; Kožíšek, Milan; Nagata, K.; Czene, A.; Gyurcsik, B.

    2014-01-01

    Roč. 23, č. 8 (2014), s. 1113-1122 ISSN 0961-8368 Grant - others:Seventh Framework Programme of the European Union(XE) FP7-312284; OPPC(CZ) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 Keywords : DNA cleavage * flow linear dichroism * isothermal calorimetry * positively charged N-terminal residues * Zn2+ binding Subject RIV: CE - Biochemistry Impact factor: 2.854, year: 2014

  12. Diacylglycerol Acyltransferase 1 Is Regulated by Its N-Terminal Domain in Response to Allosteric Effectors.

    Science.gov (United States)

    Caldo, Kristian Mark P; Acedo, Jeella Z; Panigrahi, Rashmi; Vederas, John C; Weselake, Randall J; Lemieux, M Joanne

    2017-10-01

    Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of Brassica napus DGAT1 (BnaDGAT1 1-113 ) regulates activity based on acyl-CoA/CoA levels. The N-terminal domain is not necessary for acyltransferase activity and is composed of an intrinsically disordered region and a folded segment. We show that the disordered region has an autoinhibitory function and a dimerization interface, which appears to mediate positive cooperativity, whereas the folded segment of the cytosolic region was found to have an allosteric site for acyl-CoA/CoA. Under increasing acyl-CoA levels, the binding of acyl-CoA with this noncatalytic site facilitates homotropic allosteric activation. Enzyme activation, on the other hand, is prevented under limiting acyl-CoA conditions (low acyl-CoA-to-CoA ratio), whereby CoA acts as a noncompetitive feedback inhibitor through interaction with the same folded segment. The three-dimensional NMR solution structure of the allosteric site revealed an α-helix with a loop connecting a coil fragment. The conserved amino acid residues in the loop interacting with CoA were identified, revealing details of this important regulatory element for allosteric regulation. Based on these results, a model is proposed illustrating the role of the N-terminal domain of BnaDGAT1 as a positive and negative modulator of TAG biosynthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  14. Hydroxyl Radical-Mediated Novel Modification of Peptides: N-Terminal Cyclization through the Formation of α-Ketoamide.

    Science.gov (United States)

    Lee, Seon Hwa; Kyung, Hyunsook; Yokota, Ryo; Goto, Takaaki; Oe, Tomoyuki

    2015-01-20

    The hydroxyl radical-mediated oxidation of peptides and proteins constitutes a large group of post-translational modifications that can result in structural and functional changes. These oxidations can lead to hydroxylation, sulfoxidation, or carbonylation of certain amino acid residues and cleavage of peptide bonds. In addition, hydroxyl radicals can convert the N-terminus of peptides to an α-ketoamide via abstraction of the N-terminal α-hydrogen and hydrolysis of the ketimine intermediate. In the present study, we identified N-terminal cyclization as a novel modification mediated by a hydroxyl radical. The reaction of angiotensin (Ang) II (DRVYIHPF) and the hydroxyl radical generated by the Cu(II)/ascorbic acid (AA) system or UV/hydrogen peroxide system produced N-terminal cyclized-Ang II (Ang C) and pyruvamide-Ang II (Ang P, CH3COCONH-RVYIHPF). The structure of Ang C was confirmed by mass spectrometry and comparison to an authentic standard. The subsequent incubation of isolated Ang P in the presence of Cu(II)/AA revealed that Ang P was the direct precursor of Ang C. The proposed mechanism involves the formation of a nitrogen-centered (aminyl) radical, which cyclizes to form a five-membered ring containing the alkoxy radical. The subsequent β-scission reaction of the alkoxyl radical results in the cleavage of the terminal CH3CO group. The initial aminyl radical can be stabilized by chelation to the Cu(II) ions. The affinity of Ang C toward the Ang II type 1 receptor was significantly lower than that of Ang II or Ang P. Ang C was not further metabolized by aminopeptidase A, which converts Ang II to Ang III. Hydroxyl radical-mediated N-terminal cyclization was also observed in other Ang peptides containing N-terminal alanine, arginine, valine, and amyloid β 1-11 (DAEFRHDSGYE).

  15. Novel Insights into Structure-Activity Relationships of N-Terminally Modified PACE4 Inhibitors.

    Science.gov (United States)

    Kwiatkowska, Anna; Couture, Frédéric; Levesque, Christine; Ly, Kévin; Beauchemin, Sophie; Desjardins, Roxane; Neugebauer, Witold; Dory, Yves L; Day, Robert

    2016-02-04

    PACE4 plays important roles in prostate cancer cell proliferation. The inhibition of this enzyme has been shown to slow prostate cancer progression and is emerging as a promising therapeutic strategy. In previous work, we developed a highly potent and selective PACE4 inhibitor, the multi-Leu (ML) peptide, an octapeptide with the sequence Ac-LLLLRVKR-NH2 . Here, with the objective of developing a useful compound for in vivo administration, we investigate the effect of N-terminal modifications. The inhibitory activity, toxicity, stability, and cell penetration properties of the resulting analogues were studied and compared to the unmodified inhibitor. Our results show that the incorporation of a polyethylene glycol (PEG) moiety leads to a loss of antiproliferative activity, whereas the attachment of a lipid chain preserves or improves it. However, the lipidated peptides are significantly more toxic when compared with their unmodified counterparts. Therefore, the best results were achieved not by the N-terminal extension but by the protection of both ends with the d-Leu residue and 4-amidinobenzylamide, which yielded the most stable inhibitor, with an excellent activity and toxicity profile. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation and Analysis of N-Terminal Chemokine Receptor Sulfopeptides Using Tyrosylprotein Sulfotransferase Enzymes.

    Science.gov (United States)

    Seibert, Christoph; Sanfiz, Anthony; Sakmar, Thomas P; Veldkamp, Christopher T

    2016-01-01

    In most chemokine receptors, one or multiple tyrosine residues have been identified within the receptor N-terminal domain that are, at least partially, modified by posttranslational tyrosine sulfation. For example, tyrosine sulfation has been demonstrated for Tyr-3, -10, -14, and -15 of CCR5, for Tyr-3, -14, and -15 of CCR8, and for Tyr-7, -12, and -21 of CXCR4. While there is evidence for several chemokine receptors that tyrosine sulfation is required for optimal interaction with the chemokine ligands, the precise role of tyrosine sulfation for chemokine receptor function remains unclear. Furthermore, the function of the chemokine receptor N-terminal domain in chemokine binding and receptor activation is also not well understood. Sulfotyrosine peptides corresponding to the chemokine receptor N-termini are valuable tools to address these important questions both in structural and functional studies. However, due to the lability of the sulfotyrosine modification, these peptides are difficult to obtain using standard peptide chemistry methods. In this chapter, we provide methods to prepare sulfotyrosine peptides by enzymatic in vitro sulfation of peptides using purified recombinant tyrosylprotein sulfotransferase (TPST) enzymes. In addition, we also discuss alternative approaches for the generation of sulfotyrosine peptides and methods for sulfopeptide analysis. © 2016 Elsevier Inc. All rights reserved.

  17. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.

    Science.gov (United States)

    Kaur, Gurmeet; Subramanian, Srikrishna

    2017-10-18

    Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.

  18. The first N-terminal unprotected (Gly-Aib)n peptide: H-Gly-Aib-Gly-Aib-OtBu.

    Science.gov (United States)

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2015-12-01

    Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α-aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N-terminal protected. Deprotection of the N- or C-terminus of peptides may alter the hydrogen-bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl-α-aminoisobutyrylglycyl-α-aminoisobutyric acid tert-butyl ester, C16H30N4O5, describes the first N-terminal-unprotected (Gly-Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N-H group of Aib4. This hydrogen bond is found in all tetrapeptides and N-terminal-protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry-related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right-handed helical region (and the left-handed helical region for the inverted molecule) and reverses the screw sense in the last two residues.

  19. Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films

    DEFF Research Database (Denmark)

    Plasencia, Inés; Keough, Kevin M W; Perez-Gil, Jesus

    2005-01-01

    Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C is ins......Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP...... or anionic phospholipid monolayers. The peptide expands the pi-A compression isotherms of interfacial phospholipid/peptide films, and perturbs the lipid packing of phospholipid films during compression-driven liquid-expanded to liquid-condensed lateral transitions, as observed by epifluorescence microscopy....... These results demonstrate that the sequence of the SP-C N-terminal region has intrinsic ability to interact with, insert into, and perturb the structure of zwitterionic and anionic phospholipid films, even in the absence of the palmitic chains attached to this segment in the native protein. This effect has been...

  20. Investigation of functional aspects of the N-terminal region of elongation factor Tu from Escherichia coli using a protein engineering approach

    DEFF Research Database (Denmark)

    Laurberg, M; Mansilla, Francisco; Clark, Brian F. C.

    1998-01-01

    The function of the N-terminal region of elongation factor Tu is still unexplained. Until recently, it has not been visible in electron density maps from x-ray crystallography studies, but the presence of several well conserved basic residues suggest that this part of the molecule is of structural...

  1. The N-terminal 33 amino acid domain of Siva-1 is sufficient for nuclear localization

    International Nuclear Information System (INIS)

    Chen, J.Y.; Yang, L.X.; Huang, Z.F.

    2013-01-01

    Siva-1 induces apoptosis in multiple pathological processes and plays an important role in the suppression of tumor metastasis, protein degradation, and other functions. Although many studies have demonstrated that Siva-1 functions in the cytoplasm, a few have found that Siva-1 can relocate to the nucleus. In this study, we found that the first 33 amino acid residues of Siva-1 are required for its nuclear localization. Further study demonstrated that the green fluorescent protein can be imported into the nucleus after fusion with these 33 amino acid residues. Other Siva-1 regions and domains showed less effect on Siva-1 nuclear localization. By site-mutagenesis of all of these 33 amino acid residues, we found that mutants of the first 1-18 amino acids affected Siva-1 nuclear compartmentalization but could not complete this localization independently. In summary, we demonstrated that the N-terminal 33 amino acid residues were sufficient for Siva-1 nuclear localization, but the mechanism of this translocation needs additional investigation

  2. The N-terminal 33 amino acid domain of Siva-1 is sufficient for nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.Y.; Yang, L.X. [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Huang, Z.F. [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou (China); Key Laboratory of Tropical Diseases Control, Sun Yat-sen University, Ministry of Education in China, Guangzhou (China)

    2013-12-02

    Siva-1 induces apoptosis in multiple pathological processes and plays an important role in the suppression of tumor metastasis, protein degradation, and other functions. Although many studies have demonstrated that Siva-1 functions in the cytoplasm, a few have found that Siva-1 can relocate to the nucleus. In this study, we found that the first 33 amino acid residues of Siva-1 are required for its nuclear localization. Further study demonstrated that the green fluorescent protein can be imported into the nucleus after fusion with these 33 amino acid residues. Other Siva-1 regions and domains showed less effect on Siva-1 nuclear localization. By site-mutagenesis of all of these 33 amino acid residues, we found that mutants of the first 1-18 amino acids affected Siva-1 nuclear compartmentalization but could not complete this localization independently. In summary, we demonstrated that the N-terminal 33 amino acid residues were sufficient for Siva-1 nuclear localization, but the mechanism of this translocation needs additional investigation.

  3. Identification of succinimide sites in proteins by N-terminal sequence analysis after alkaline hydroxylamine cleavage.

    Science.gov (United States)

    Kwong, M. Y.; Harris, R. J.

    1994-01-01

    Under favorable conditions, Asp or Asn residues can undergo rearrangement to a succinimide (cyclic imide), which may also serve as an intermediate for deamidation and/or isoaspartate formation. Direct identification of such succinimides by peptide mapping is hampered by their lability at neutral and alkaline pH. We determined that incubation in 2 M hydroxylamine, 0.2 M Tris buffer, pH 9, for 2 h at 45 degrees C will specifically cleave on the C-terminal side of succinimides without cleavage at Asn-Gly bonds; yields are typically approximately 50%. N-terminal sequence analysis can then be used to identify an internal sequence generated by cleavage of the succinimide, hence identifying the succinimide site. PMID:8142891

  4. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain

    Science.gov (United States)

    Harper, J. F.; Hong, B.; Hwang, I.; Guo, H. Q.; Stoddard, R.; Huang, J. F.; Palmgren, M. G.; Sze, H.; Evans, M. L. (Principal Investigator)

    1998-01-01

    To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.

  5. Crystal Structure of the N-terminal Domain of the Group B Streptococcus Alpha C Protein

    Energy Technology Data Exchange (ETDEWEB)

    Auperin,T.; Bolduc, G.; Baron, M.; Heroux, A.; Filman, D.; Madoff, L.; Hogle, J.

    2005-01-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis, and meningitis among neonates and an important cause of morbidity among pregnant women and immunocompromised adults. Invasive diseases due to GBS are attributed to the ability of the pathogen to translocate across human epithelial surfaces. The alpha C protein (ACP) has been identified as an invasin that plays a role in internalization and translocation of GBS across epithelial cells. The soluble N-terminal domain of ACP (NtACP) blocks the internalization of GBS. We determined the 1.86-{angstrom} resolution crystal structure of NtACP comprising residues Ser{sup 52} through Leu{sup 225} of the full-length ACP. NtACP has two domains, an N-terminal {beta}-sandwich and a C-terminal three-helix bundle. Structural and topological alignments reveal that the {beta}-sandwich shares structural elements with the type III fibronectin fold (FnIII), but includes structural elaborations that make it unique. We have identified a potential integrin-binding motif consisting of Lys-Thr-Asp{sup 146}, Arg{sup 110}, and Asp{sup 118}. A similar arrangement of charged residues has been described in other invasins. ACP shows a heparin binding activity that requires NtACP. We propose a possible heparin-binding site, including one surface of the three-helix bundle, and nearby portions of the sandwich and repeat domains. We have validated this prediction using assays of the heparin binding and cell-adhesion properties of engineered fragments of ACP. This is the first crystal structure of a member of the highly conserved Gram-positive surface alpha-like protein family, and it will enable the internalization mechanism of GBS to be dissected at the atomic level.

  6. Structure of a tropomyosin N-terminal fragment at 0.98 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Meshcheryakov, Vladimir A. [Okinawa Institute of Science and Technology, Okinawa (Japan); Krieger, Inna [Texas A& M University, College Station, Texas (United States); Kostyukova, Alla S. [Robert Wood Johnson Medical School, Piscataway, New Jersey (United States); Samatey, Fadel A., E-mail: f.a.samatey@oist.jp [Okinawa Institute of Science and Technology, Okinawa (Japan)

    2011-09-01

    The crystal structure of the N-terminal fragment of the short nonmuscle α-tropomyosin has been determined at a resolution of 0.98 Å. Tropomyosin (TM) is an elongated two-chain protein that binds along actin filaments. Important binding sites are localized in the N-terminus of tropomyosin. The structure of the N-terminus of the long muscle α-TM has been solved by both NMR and X-ray crystallography. Only the NMR structure of the N-terminus of the short nonmuscle α-TM is available. Here, the crystal structure of the N-terminus of the short nonmuscle α-TM (αTm1bZip) at a resolution of 0.98 Å is reported, which was solved from crystals belonging to space group P3{sub 1} with unit-cell parameters a = b = 33.00, c = 52.03 Å, α = β = 90, γ = 120°. The first five N-terminal residues are flexible and residues 6–35 form an α-helical coiled coil. The overall fold and the secondary structure of the crystal structure of αTM1bZip are highly similar to the NMR structure and the atomic coordinates of the corresponding C{sup α} atoms between the two structures superimpose with a root-mean-square deviation of 0.60 Å. The crystal structure validates the NMR structure, with the positions of the side chains being determined precisely in our structure.

  7. Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes.

    Science.gov (United States)

    Nguyen, Khoa; Garcia, Alvaro; Sani, Marc-Antoine; Diaz, Dil; Dubey, Vikas; Clayton, Daniel; Dal Poggetto, Giovanni; Cornelius, Flemming; Payne, Richard J; Separovic, Frances; Khandelia, Himanshu; Clarke, Ronald J

    2018-06-01

    The Na + ,K + -ATPase, which is present in the plasma membrane of all animal cells, plays a crucial role in maintaining the Na + and K + electrochemical potential gradients across the membrane. Recent studies have suggested that the N-terminus of the protein's catalytic α-subunit is involved in an electrostatic interaction with the surrounding membrane, which controls the protein's conformational equilibrium. However, because the N-terminus could not yet be resolved in any X-ray crystal structures, little information about this interaction is so far available. In measurements utilising poly-l-lysine as a model of the protein's lysine-rich N-terminus and using lipid vesicles of defined composition, here we have identified the most likely origin of the interaction as one between positively charged lysine residues of the N-terminus and negatively charged headgroups of phospholipids (notably phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state 31 P and 2 H NMR using these N-terminal fragments as well as MD simulations it appears that the membrane interaction arises from lysine residues prior to the conserved LKKE motif of the N-terminus. The MD simulations indicate that the strength of the interaction varies significantly between different enzyme conformations. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Structure of the EMMPRIN N-terminal domain 1: Dimerization via [beta]-strand swapping

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jinquan; Teplyakov, Alexey; Obmolova, Galina; Malia, Thomas; Wu, Sheng-Jiun; Beil, Eric; Baker, Audrey; Swencki-Underwood, Bethany; Zhao, Yonghong; Sprenkle, Justin; Dixon, Ken; Sweet, Raymond; Gilliland, Gary L.; (Centocor)

    2010-09-27

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as Hab18G, CD147, Basigin, M6, and neurothelin, is a membrane glycoprotein expressed on the surface of various cell types and many cancer cells. EMMPRIN stimulates adjacent fibroblasts and tumor cells to produce matrix metalloproteinases and plays an important role in tumor invasion and metastasis, angiogenesis, spermatogensis and fertilization, cell-cell adhesion and communication, and other biological processes (reviewed in Ref. 1 and references therein). It was demonstrated that the EMMPRIN extracellular domain (ECD), which structurally belongs to the IgG superfamily, can form homo-oligomers in a cis dependent manner and the N-terminal domain 1 (residues 22-101) was necessary and sufficient to mediate this interaction. The crystal structure of the ECD of recombinant human EMMPRIN (Hab18G/CD147) expressed in E. coli was reported at 2.8 {angstrom} resolution (Yu et al. 2008). The construct consists of residues 22-205 of the mature protein and has both an N-terminal IgC2 domain (ND1, residues 22-101) and a C-terminal IgC2 domain (ND2, residues 107-205). The two domains are joined by a five amino acid residue linker that constitutes a flexible hinge between the two domains. The crystal form has four copies of the molecule in the asymmetric unit, each of which has a different inter-domain angle that varies from 121{sup o} to 144{sup o}. The two domains each have a conserved disulfide bridge and both are comprised of two {beta}-sheets formed by strands EBA and GFCC, and DEBA and AGFCC for ND1 and ND2, respectively. Based on the crystal packing in this structure, the authors proposed that lateral packing between the two IgG domains of EMMPRIN ECD represents a potential mechanism for cell adhesion. Here we report the 2.0-{angstrom} crystal structure of the N-terminal domain of EMMPRIN ECD (ND1) expressed in mammalian cells. The overall structure of the domain is very similar to that in the full length

  9. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease Npro

    International Nuclear Information System (INIS)

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H.

    2014-01-01

    Pestivirus N pro is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N pro blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N pro' s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N pro -GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N pro proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N pro' s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N pro does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N pro' s autoproteolysis is studied using N pro -GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N pro prefers small amino acids with non-branched beta carbons at the P1 position

  10. Tor forms a dimer through an N-terminal helical solenoid with a complex topology

    Science.gov (United States)

    Baretić, Domagoj; Berndt, Alex; Ohashi, Yohei; Johnson, Christopher M.; Williams, Roger L.

    2016-04-01

    The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended `railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit.

  11. N-terminal truncation enables crystallization of the receptor-binding domain of the FedF bacterial adhesin

    Energy Technology Data Exchange (ETDEWEB)

    De Kerpel, Maia; Van Molle, Inge [Department of Ultrastructure, Vrije Universiteit Brussel (VUB), Flanders Interuniversity Institute for Biotechnology (VIB), Pleinlaan 2, 1050 Brussels (Belgium); Brys, Lea [Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Flanders Interuniversity Institute for Biotechnology (VIB), Pleinlaan 2, 1050 Brussels (Belgium); Wyns, Lode; De Greve, Henri; Bouckaert, Julie, E-mail: bouckaej@vub.ac.be [Department of Ultrastructure, Vrije Universiteit Brussel (VUB), Flanders Interuniversity Institute for Biotechnology (VIB), Pleinlaan 2, 1050 Brussels (Belgium)

    2006-12-01

    The N-terminal receptor-binding domain of the FedF adhesin from enterotoxigenic E. coli has been crystallized. This required the deletion of its first 14 residues, which are also cleaved off naturally. FedF is the two-domain tip adhesin of F18 fimbriae from enterotoxigenic Escherichia coli. Bacterial adherence, mediated by the N-terminal receptor-binding domain of FedF to carbohydrate receptors on intestinal microvilli, causes diarrhoea and oedema disease in newly weaned piglets and induces the secretion of Shiga toxins. A truncate containing only the receptor-binding domain of FedF was found to be further cleaved at its N-terminus. Reconstruction of this N-terminal truncate rendered FedF amenable to crystallization, resulting in crystals with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a = 36.20, b = 74.64, c = 99.03 Å that diffracted to beyond 2 Å resolution. The binding specificity of FedF was screened for on a glycan array, exposing 264 glycoconjugates, to identify specific receptors for cocrystallization with FedF.

  12. X-ray crystal structure of the N-terminal region of Moloney murine leukemia virus integrase and its implications for viral DNA recognition: N-Terminal Region of M-MuLV Integrase

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Rongjin [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Aiyer, Sriram [Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Cote, Marie L. [Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway New Jersey 08854; Xiao, Rong [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Jiang, Mei [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Acton, Thomas B. [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Roth, Monica J. [Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Montelione, Gaetano T. [Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854; Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway New Jersey 08854

    2017-02-03

    The retroviral integrase (IN) carries out the integration of a dsDNA copy of the viral genome into the host DNA, an essential step for viral replication. All IN proteins have three general domains, the N-terminal domain (NTD), the catalytic core domain, and the C-terminal domain. The NTD includes an HHCC zinc finger-like motif, which is conserved in all retroviral IN proteins. Two crystal structures of Moloney murine leukemia virus (M-MuLV) IN N-terminal region (NTR) constructs that both include an N-terminal extension domain (NED, residues 1–44) and an HHCC zinc-finger NTD (residues 45–105), in two crystal forms are reported. The structures of IN NTR constructs encoding residues 1–105 (NTR1–105) and 8–105 (NTR8–105) were determined at 2.7 and 2.15 Å resolution, respectively and belong to different space groups. While both crystal forms have similar protomer structures, NTR1–105 packs as a dimer and NTR8–105 packs as a tetramer in the asymmetric unit. The structure of the NED consists of three anti-parallel β-strands and an α-helix, similar to the NED of prototype foamy virus (PFV) IN. These three β-strands form an extended β-sheet with another β-strand in the HHCC Zn2+ binding domain, which is a unique structural feature for the M-MuLV IN. The HHCC Zn2+ binding domain structure is similar to that in HIV and PFV INs, with variations within the loop regions. Differences between the PFV and MLV IN NEDs localize at regions identified to interact with the PFV LTR and are compared with established biochemical and virological data for M-MuLV. Proteins 2017; 85:647–656.

  13. The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation.

    Directory of Open Access Journals (Sweden)

    Anders Friberg

    2015-05-01

    Full Text Available Epstein-Barr virus (EBV is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2 is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.

  14. Pollen record of the penultimate glacial period in Yuchi Basin, Central Taiwan

    Science.gov (United States)

    Lai, Hsiao-Yin; Liew, Ping-Mei

    2010-05-01

    Pollen records of the penultimate glacial period are scare not only in Taiwan, but also in East Asia area. Hence, this study intends to provide a new pollen record from a site, Yuchi Basin, in central Taiwan, which may improve our knowledge of the penultimate glacial period. The sediment core, CTN6, was drilled in the northern part of Yuchi Basin. The core is 29.4 m in length and the sampling interval is 10 cm. In total, 86 samples are processed for pollen analysis. Three pollen zones (I,II and III) are determined according to the ratio of arboreal pollens (AP) and non-arboreal pollens (NAP). Because of the scarcity of dating data, pollen assemblages compared with previous pollen records at peripheral areas is utilized to estimate the ages of each pollen zone. AP dominate (60%) Zone I and III, which consist mainly of Cyclobalanopsis-Castanopsis. Thus, Zone I may mark the MIS 5 because of a Cyclobalanopsis-Castanopsis dominant condition. In Zone II, the increase in NAP and pollen of Taxodiaceae and decrease in pollens of Cyclobalanopsis-Castanopsis indicates the penultimate glacial period, i.e. MIS 6. In contrast to the evergreen broadleaved forest found there today, the herbs occupied the basin in Zone II, indicating a relatively dry climate condition than present. Furthermore, during the penultimate glacial period, the climate condition of early part is wetter, evidenced by a higher AP/NAP in Zone IIb. Finally, comparing with the last glacial period in Toushe, we suggest that the penultimate glacial period is drier due to the lower AP/NAP.

  15. Mutational analysis of Escherichia coli elongation factor Tu in search of a role for the N-terminal region

    DEFF Research Database (Denmark)

    Mansilla, Francisco; Knudsen, Charlotte Rohde; Laurberg, M

    1998-01-01

    We have mutated lysine 2 and arginine 7 in elongation factor Tu from Escherichia coli separately either to alanine or glutamic acid. The aim of the work was to reveal the possible interactions between the conserved N-terminal part of the molecule, which is rich in basic residues and aminoacyl...... this activity. Furthermore, arginine 7 seems to play a role in regulating the binding of GTP. The three-dimensional structure of the ternary complex, EF-Tu:GTP:Phe-tRNAPhe, involving Thermus aquaticus EF-Tu and yeast Phe-tRNA(Phe), shows that Arg7 is in a position which permits salt bridge formation with Asp284...

  16. Neurospora tryptophan synthase: N-terminal analysis and the sequence of the pyridoxal phosphate active site peptide

    International Nuclear Information System (INIS)

    Pratt, M.L.; Hsu, P.Y.; DeMoss, J.A.

    1986-01-01

    Tryptophan synthase (TS), which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein requiring pyridoxal phosphate (B6P) for two of its three distinct enzyme activities. TS from Neurospora has a blocked N-terminal, is a homodimer of 150 KDa and binds one mole of B6P per mole of subunit. The authors shown the N-terminal residue to be acyl-serine. The B6P-active site of holoenzyme was labelled by reduction of the B6P-Schiff base with [ 3 H]-NaBH 4 , and resulted in a proportionate loss of activity in the two B6P-requiring reactions. SDS-polyacrylamide gel electrophoresis of CNBr-generated peptides showed the labelled, active site peptide to be 6 KDa. The sequence of this peptide, purified to apparent homogeneity by a combination of C-18 reversed phase and TSK gel filtration HPLC is: gly-arg-pro-gly-gln-leu-his-lys-ala-glu-arg-leu-thr-glu-tyr-ala-gly-gly-ala-gln-ile-xxx-leu-lys-arg-glu-asp-leu-asn-his-xxx-gly-xxx-his-/sub ***/-ile-asn-asn-ala-leu. Although four residues (xxx, /sub ***/) are unidentified, this peptide is minimally 78% homologous with the corresponding peptide from yeast TS, in which residue (/sub ***/) is the lysine that binds B6P

  17. PrP N-terminal domain triggers PrPSc-like aggregation of Dpl

    International Nuclear Information System (INIS)

    Erlich, Paul; Cesbron, Jean-Yves; Lemaire-Vieille, Catherine; Curt, Aurelie; Andrieu, Jean-Pierre; Schoehn, Guy; Jamin, Marc; Gagnon, Jean

    2008-01-01

    Transmissible spongiform encephalopathies are fatal neurodegenerative disorders thought to be transmitted by self-perpetuating conformational conversion of a neuronal membrane glycoprotein (PrP C , for 'cellular prion protein') into an abnormal state (PrP Sc , for 'scrapie prion protein'). Doppel (Dpl) is a protein that shares significant biochemical and structural homology with PrP C . In contrast to its homologue PrP C , Dpl is unable to participate in prion disease progression or to achieve an abnormal PrP Sc -like state. We have constructed a chimeric mouse protein, composed of the N-terminal domain of PrP C (residues 23-125) and the C-terminal part of Dpl (residues 58-157). This chimeric protein displays PrP-like biochemical and structural features; when incubated in presence of NaCl, the α-helical monomer forms soluble β-sheet-rich oligomers which acquire partial resistance to pepsin proteolysis in vitro, as do PrP oligomers. Moreover, the presence of aggregates akin to protofibrils is observed in soluble oligomeric species by electron microscopy

  18. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    International Nuclear Information System (INIS)

    Magzoub, Mazin; Sandgren, Staffan; Lundberg, Pontus; Oglecka, Kamila; Lilja, Johanna; Wittrup, Anders; Goeran Eriksson, L.E.; Langel, Ulo; Belting, Mattias; Graeslund, Astrid

    2006-01-01

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases

  19. N-terminal pro brain natriuretic peptide as a cardiac biomarker in Japanese hemodialysis patients.

    Science.gov (United States)

    Shimizu, Minako; Doi, Shigehiro; Nakashima, Ayumu; Naito, Takayuki; Masaki, Takao

    2018-03-01

    This study examined the clinical significance of N-terminal pro brain natriuretic peptide level as a cardiac marker in Japanese hemodialysis patients. This was a multicenter cross-sectional study involving 1428 Japanese hemodialysis patients. Ultrasonic cardiography data at post-hemodialysis were obtained from 395 patients. We examined whether serum N-terminal pro brain natriuretic peptide levels were associated with cardiac parameters and assessed cut-off values and investigated factors associated with a reduced ratio of N-terminal pro brain natriuretic peptide levels pre- and post-hemodialysis. Multivariate logistic regression analysis showed that pre- and post-hemodialysis N-terminal pro brain natriuretic peptide levels were associated with left ventricular hypertrophy on electrocardiogram (odds ratio: 3.10; p N-terminal pro brain natriuretic peptide levels were also significantly associated with ejection fraction on urine chorionic gonadotrophin (ultrasonic cardiography; odds ratio: 35.83; p N-terminal pro brain natriuretic peptide reduction ratio during a hemodialysis session correlated with Kt/V, membrane area, membrane type, modality, body weight gain ratio, treatment time, and ultrafiltration rate with multiple linear regression ( R: 0.53; p N-terminal pro brain natriuretic peptide are associated with the presence of left ventricular hypertrophy in this population. The post-hemodialysis N-terminal pro brain natriuretic peptide level is a useful marker for systolic dysfunction.

  20. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    Energy Technology Data Exchange (ETDEWEB)

    Gottipati, Keerthi; Acholi, Sudheer [Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0647 (United States); Ruggli, Nicolas [Institute of Virology and Immunology, CH-3147 Mittelhäusern (Switzerland); Choi, Kyung H., E-mail: kychoi@utmb.edu [Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0647 (United States)

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  1. Analysis of the Varicella-Zoster Virus IE62 N-Terminal Acidic Transactivating Domain and Its Interaction with the Human Mediator Complex▿

    OpenAIRE

    Yamamoto, Shinobu; Eletsky, Alexander; Szyperski, Thomas; Hay, John; Ruyechan, William T.

    2009-01-01

    The varicella-zoster virus major transactivator, IE62, contains a potent N-terminal acidic transcriptional activation domain (TAD). Our experiments revealed that the minimal IE62 TAD encompasses amino acids (aa) 19 to 67. We showed that the minimal TAD interacts with the human Mediator complex. Site-specific mutations revealed residues throughout the minimal TAD that are important for both activation and Mediator interaction. The TAD interacts directly with aa 402 to 590 of the MED25 subunit,...

  2. N-terminal nesprin-2 variants regulate β-catenin signalling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiuping; Minaisah, Rose-Marie; Ferraro, Elisa; Li, Chen; Porter, Lauren J.; Zhou, Can; Gao, Fang; Zhang, Junyi; Rajgor, Dipen; Autore, Flavia; Shanahan, Catherine M.; Warren, Derek T., E-mail: derek.warren@kcl.ac.uk

    2016-07-15

    The spatial compartmentalisation of biochemical signalling pathways is essential for cell function. Nesprins are a multi-isomeric family of proteins that have emerged as signalling scaffolds, herein, we investigate the localisation and function of novel nesprin-2 N-terminal variants. We show that these nesprin-2 variants display cell specific distribution and reside in both the cytoplasm and nucleus. Immunofluorescence microscopy revealed that nesprin-2 N-terminal variants colocalised with β-catenin at cell-cell junctions in U2OS cells. Calcium switch assays demonstrated that nesprin-2 and β-catenin are lost from cell-cell junctions in low calcium conditions whereas emerin localisation at the NE remained unaltered, furthermore, an N-terminal fragment of nesprin-2 was sufficient for cell-cell junction localisation and interacted with β-catenin. Disruption of these N-terminal nesprin-2 variants, using siRNA depletion resulted in loss of β-catenin from cell-cell junctions, nuclear accumulation of active β-catenin and augmented β-catenin transcriptional activity. Importantly, we show that U2OS cells lack nesprin-2 giant, suggesting that the N-terminal nesprin-2 variants regulate β-catenin signalling independently of the NE. Together, these data identify N-terminal nesprin-2 variants as novel regulators of β-catenin signalling that tether β-catenin to cell-cell contacts to inhibit β-catenin transcriptional activity. - Highlights: • N-terminal nesprin-2 variants display cell specific expression patterns. • N-terminal spectrin repeats of nesprin-2 interact with β-catenin. • N-terminal nesprin-2 variants scaffold β-catenin at cell-cell junctions.. • Nesprin-2 variants play multiple roles in β-catenin signalling.

  3. Characterization of an extensin-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1.

    Science.gov (United States)

    Feng, Tao; Nyffenegger, Christian; Højrup, Peter; Vidal-Melgosa, Silvia; Yan, Kok-Phen; Fangel, Jonatan Ulrik; Meyer, Anne S; Kirpekar, Finn; Willats, William G; Mikkelsen, Jørn D

    2014-12-01

    Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing, thermal stability, substrate targets, and cleavage patterns. Prt1 is an autoprocessing protease with an N-terminal signal pre-peptide and a pro-peptide which has to be removed in order to activate the protease. The sequential cleavage of the N-terminus was confirmed by mass spectrometry (MS) fingerprinting and N-terminus analysis. The optimal reaction conditions for the activity of Prt1 on azocasein were at pH 6.0, 50 °C. At these reaction conditions, K M was 1.81 mg/mL and k cat was 1.82 × 10(7) U M(-1). The enzyme was relatively stable at 50 °C with a half-life of 20 min. Ethylenediaminetetraacetic acid (EDTA) treatment abolished activity; Zn(2+) addition caused regain of the activity, but Zn(2+)addition decreased the thermal stability of the Prt1 enzyme presumably as a result of increased proteolytic autolysis. In addition to casein, the enzyme catalyzed degradation of collagen, potato lectin, and plant extensin. Analysis of the cleavage pattern of different substrates after treatment with Prt1 indicated that the protease had a substrate cleavage preference for proline in substrate residue position P1 followed by a hydrophobic residue in residue position P1' at the cleavage point. The activity of Prt1 against plant cell wall structural proteins suggests that this enzyme might become an important new addition to the toolbox of cell-wall-degrading enzymes for biomass processing.

  4. Nickel Ligation of the N-Terminal Amine of HypA Is Required for Urease Maturation in Helicobacter pylori.

    Science.gov (United States)

    Hu, Heidi Q; Johnson, Ryan C; Merrell, D Scott; Maroney, Michael J

    2017-02-28

    The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant, L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA-UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.

  5. Antral content, secretion and peripheral metabolism of N-terminal progastrin fragments

    DEFF Research Database (Denmark)

    Goetze, Jens Peter; Hansen, Carsten Palnaes; Rehfeld, Jens F

    2006-01-01

    OBJECTIVES: In addition to the acid-stimulatory gastrins, progastrin also release N-terminal fragments. In order to examine the cellular content, secretion and peripheral metabolism of these fragments, we developed an immunoassay specific for the N-terminal sequence of human progastrin. RESULTS......-terminal progastrin fragments. The basal concentration of N-terminal fragments in normal human plasma was almost 30-fold higher than that of the amidated, acid-stimulatory gastrins (286 pmol/l versus 9.8 pmol/l, n=26, P...-35 in circulation was 30 min, and a pig model revealed the kidneys and the vasculature to the head as the primary sites of degradation. CONCLUSION: The cellular and circulatory concentration profiles of N-terminal progastrin fragments differ markedly from those of the acid-stimulatory gastrins. The high basal...

  6. Insights into Penultimate Interglacial-Glacial Climate Change on Vegetation History at Lake Van, Turkey

    Science.gov (United States)

    Pickarski, N.; Litt, T.

    2017-12-01

    A new detailed pollen and oxygen isotope record of the penultimate interglacial-glacial cycle (ca. 250-129 ka; MIS 7-6), has been generated from the sediment core at Lake Van, Turkey. The integration of all available proxies (pollen, microscopic charcoal, δ18Obulk, and XRF) shows three temperate intervals of high effective soil moisture availability. This is evidenced by the predominance of oak steppe-forested landscapes similar to the present interglacial vegetation in this sensitive semiarid region. The wettest/warmest stage, as indicated by highest temperate tree percentages, can be broadly correlated with MIS 7c, while the amplitude of the tree population maximum during the oldest penultimate interglacial (MIS 7e) appears to be reduced due to warm but drier climatic conditions. A detailed comparison of the penultimate interglacial complex (MIS 7) to the last interglacial (MIS 5e) and the current interglacial (MIS 1) provides a vivid illustration of possible differences in the successive climatic cycles. Intervening periods of treeless vegetation (MIS 7d, 7a) were predominated by steppe elements. The occurrence of Artemisia and Chenopodiaceae during MIS 7d indicates very dry and cold climatic conditions, while higher temperate tree percentages (mainly deciduous Quercus) points to relatively humid and mild conditions throughout MIS 7b. Despite the general dominance of dry and cold desert-steppe vegetation during the penultimate glacial (MIS 6), this period can be divided into two parts: an early stage (ca. 193-157 ka) with higher oscillations in tree percentages and a later stage (ca. 157-131 ka) with lower tree percentages and subdued oscillations. Furthermore, we are able to identify the MIS 6e event (ca. 179-159 ka), which reveals clear climate variability due to rapid alternation in the vegetation cover. In comparison with long European pollen archives, speleothem isotope records from the Near East, and global climate parameters, the new high

  7. Investigating the DNA-binding ability of GATA-1-N-terminal zinc finger

    International Nuclear Information System (INIS)

    Wong, R.; Newton, A.; Crossley, M.; Mackay, J.

    2001-01-01

    Erythroid transcription factor GATA-1 interacts with both DNA and other proteins through its zinc finger domains (ZnFs). While it has been known for me time that the C-terminal ZnF binds DNA at GATA sites, only recently has it been observed that the N-terminal finger (NF) is capable of interacting with GATC sites. Further, a number of naturally occurring mutations in NF (V205M, G208S, R216Q, D218G) that lead to anaemia and thrombocytopenia have been identified. We are interested in characterising the NF-DNA interaction and determining the effects of mutation upon this interaction. Using nuclear magnetic resonance (NMR) spectroscopy, we have observed an interaction between recombinant NF and a 16-mer DNA duplex containing a core GATC sequence. This result forms the basis from which residues in NF involved in DNA binding can be identified, and work is being carried out to improve the quality of the NMR data with the aim of determining the solution structure of the NF-DNA complex. The DNA-binding affinity of both wild-type and mutant NFs mentioned above is also being investigated using isothermal titration calorimetry. These data suggest that the strength of the interaction between NF and the 16-mer DNA duplex is in the sub-micromolar range, and comparisons between the DNA-binding affinities of the NF mutants are being made. Together, these studies will help us to understand how GATA-1 acts as a transcriptional regulator and how mutations in NF domain of GATA-1 may lead to blood disorders

  8. The N-terminal tropomyosin- and actin-binding sites are important for leiomodin 2's function.

    Science.gov (United States)

    Ly, Thu; Moroz, Natalia; Pappas, Christopher T; Novak, Stefanie M; Tolkatchev, Dmitri; Wooldridge, Dayton; Mayfield, Rachel M; Helms, Gregory; Gregorio, Carol C; Kostyukova, Alla S

    2016-08-15

    Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2-knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43-90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124-201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly-merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends. © 2016 Ly, Moroz, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Resequencing data provide no evidence for a human bottleneck in Africa during the penultimate glacial period.

    Science.gov (United States)

    Sjödin, Per; E Sjöstrand, Agnès; Jakobsson, Mattias; Blum, Michael G B

    2012-07-01

    Based on the accumulation of genetic, climatic, and fossil evidence, a central theory in paleoanthropology stipulates that a demographic bottleneck coincided with the origin of our species Homo Sapiens. This theory proposes that anatomically modern humans--which were only present in Africa at the time--experienced a drastic bottleneck during the penultimate glacial age (130-190 kya) when a cold and dry climate prevailed. Two scenarios have been proposed to describe the bottleneck, which involve either a fragmentation of the range occupied by humans or the survival of one small group of humans. Here, we analyze DNA sequence data from 61 nuclear loci sequenced in three African populations using Approximate Bayesian Computation and numerical simulations. In contrast to the bottleneck theory, we show that a simple model without any bottleneck during the penultimate ice age has the greatest statistical support compared with bottleneck models. Although the proposed bottleneck is ancient, occurring at least 130 kya, we can discard the possibility that it did not leave detectable footprints in the DNA sequence data except if the bottleneck involves a less than a 3-fold reduction in population size. Finally, we confirm that a simple model without a bottleneck is able to reproduce the main features of the observed patterns of genetic variation. We conclude that models of Pleistocene refugium for modern human origins now require substantial revision.

  10. N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana.

    Science.gov (United States)

    Willems, Patrick; Ndah, Elvis; Jonckheere, Veronique; Stael, Simon; Sticker, Adriaan; Martens, Lennart; Van Breusegem, Frank; Gevaert, Kris; Van Damme, Petra

    2017-06-01

    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Cyclization of the N-Terminal X-Asn-Gly Motif during Sample Preparation for Bottom-Up Proteomics

    DEFF Research Database (Denmark)

    Zhang, Xumin; Højrup, Peter

    2010-01-01

    We, herein, report a novel -17 Da peptide modification corresponding to an N-terminal cyclization of peptides possessing the N-terminal motif of X-Asn-Gly. The cyclization occurs spontaneously during sample preparation for bottom-up proteomics studies. Distinct from the two well-known N-terminal ......We, herein, report a novel -17 Da peptide modification corresponding to an N-terminal cyclization of peptides possessing the N-terminal motif of X-Asn-Gly. The cyclization occurs spontaneously during sample preparation for bottom-up proteomics studies. Distinct from the two well-known N......-terminal cyclizations, cyclization of N-terminal glutamine and S-carbamoylmethylcysteine, it is dependent on pH instead of [NH(4)(+)]. The data set from our recent study on large-scale N(α)-modified peptides revealed a sequence requirement for the cyclization event similar to the well-known deamidation of Asn to iso...

  12. The thyroxine-binding site of human apolipoprotein-A-I: Location in the N-terminal domain

    International Nuclear Information System (INIS)

    Benvenga, S.; Cahnmann, H.J.; Robbins, J.

    1991-01-01

    We tested the ability of nine monoclonal antibodies (MAb) against human apolipoprotein-A-I (apoA-I), the 28.3-kDa major apoprotein of high density lipoproteins (HDL), to inhibit its photoaffinity labeling with [125I]T4. Two forms were evaluated: isolated lipid-free apoA-I (Sigma or Calbiochem) and lipid-complexed apoA-I [HDL2, (density, 1.063-1.125 g/ml) and HDL3 (density, 1.125-1.210 g/ml)]. After labeling with 0.5 nM [125I]T4 in the presence of MAb or normal mouse IgG, the products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent densitometric quantitation of radioactivity associated with the 28.3-kDa band. Group I MAbs, namely those having epitopes in the N-terminal portion of apoA-I, include MAb 16 (epitopes at residues 1-16), 4 and 14 (residues 1-86), and 18 (residues 98-105); group II includes MAbs 7,10, 15, and 17 (epitopes at residues 87-148); group III includes MAb 9 (residues 149-243). All group I MAbs inhibited [125I]T4 binding to isolated apoA-I with this order of potency: MAb 16 greater than MAb 14 greater than MAb 4 greater than MAb 18. In the case of lipid-associated apoA-I, the pattern of hierarchy was variable, presumably related to the known markedly polydisperse nature of HDL, but a constant feature, in contrast to the case of isolated apoA-I, was that MAb 4 was more potent than MAb 14. Group II MAbs gave less than 3% inhibition in both isolated and lipid-complexed apoA-I. Group III MAb 9 either failed to inhibit or gave 18-27% inhibition (one preparation each of HDL2 and HDL3). We conclude that the T4 site of apoA-I is in the N-terminal domain of apoA-I, closer to the epitope for MAb 16 than to that for MAb 18, and that conformational changes occurring when apoA-I is associated with lipids in the HDL particle alter the spatial relationship between some epitopes and the T4 site

  13. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    Science.gov (United States)

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  14. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki; Rhee, David Y.; Connelly, Michele; Sviderskiy, Vladislav O.; Bhasin, Deepak; Chen, Yizhe; Ong, Su-Sien; Chai, Sergio C.; Goktug, Asli N.; Huang, Guochang; Monda, Julie K.; Low, Jonathan; Kim, Ho Shin; Paulo, Joao A.; Cannon, Joe R.; Shelat, Anang A.; Chen, Taosheng; Kelsall, Ian R.; Alpi, Arno F.; Pagala, Vishwajeeth; Wang, Xusheng; Peng, Junmin; Singh , Bhuvanesh; Harper, J. Wade; Schulman, Brenda A.; Guy, R. Kip (MSKCC); (Dundee); (SJCH); (Harvard-Med); (MXPL)

    2017-06-05

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.

  15. Involvement of the N-terminal part of cyclophilin B in the interaction with specific Jurkat T-cell binding sites.

    Science.gov (United States)

    Mariller, C; Haendler, B; Allain, F; Denys, A; Spik, G

    1996-07-15

    Cyclophilin B (CyPB) is secreted in biological fluids such as blood or milk and binds to a specific receptor present on the human lymphoblastic cell line Jurkat and on human peripheral blood lymphocytes. This study was intended to specify the areas of CyPB that are involved in the interaction with the receptor. A synthetic peptide corresponding to the first 24 N-terminal amino acid residues of CyPB was shown to specifically recognize the receptor. Moreover, modification of Arg18 of CyPB by p-hydroxyphenlglyoxal led to a dramatic loss of affinity for the receptor. However, when this residue was replaced by an alanine residue using site-directed mutagenesis, no modification of the binding properties was found, suggesting that Arg18 is not directly involved but is sufficiently close to the interaction site to interfere with the binding when modified. Competitive binding experiments using a chimaeric protein made up of the 24 N-terminal amino acid residues of CyPB fused to the cyclophilin A core sequence confirmed the involvement of this region of CyPB in receptor binding.

  16. Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli MreB.

    Science.gov (United States)

    Saikia, Karabi; Sravani, Yalavarthi Durga; Ramakrishnan, Vibin; Chaudhary, Nitin

    2017-02-23

    Microbial pathogenesis is a serious health concern. The threat escalates as the existing conventional antimicrobials are losing their efficacy against the evolving pathogens. Peptides hold promise to be developed into next-generation antibiotics. Antimicrobial peptides adopt amphipathic structures that could selectively bind to and disrupt the microbial membranes. Interaction of proteins with membranes is central to all living systems and we reasoned that the membrane-binding domains in microbial proteins could be developed into efficient antimicrobials. This is an interesting approach as self-like sequences could elude the microbial strategies of degrading the antimicrobial peptides, one of the mechanisms of showing resistance to antimicrobials. We selected the 9-residue-long membrane-binding region of E. coli MreB protein. The 9-residue peptide (C-terminal amide) and its N-terminal acetylated analog displayed broad-spectrum activity, killing Gram-negative bacteria, Gram-positive bacteria, and fungi. Extension with a tryptophan residue at the N-terminus drastically improved the activity of the peptides with lethal concentrations ≤10 μM against all the organisms tested. The tryptophan-extended peptides caused complete killing of C. albicans as well as gentamicin and methicillin resistant S. aureus at 5 μM concentration. Lipid-binding studies and electron microscopic analyses of the peptide-treated microbes suggest membrane disruption as the mechanism of killing.

  17. The DnaA N-terminal domain interacts with Hda to facilitate replicase clamp-mediated inactivation of DnaA.

    Science.gov (United States)

    Su'etsugu, Masayuki; Harada, Yuji; Keyamura, Kenji; Matsunaga, Chika; Kasho, Kazutoshi; Abe, Yoshito; Ueda, Tadashi; Katayama, Tsutomu

    2013-12-01

    DnaA activity for replication initiation of the Escherichia coli chromosome is negatively regulated by feedback from the DNA-loaded form of the replicase clamp. In this process, called RIDA (regulatory inactivation of DnaA), ATP-bound DnaA transiently assembles into a complex consisting of Hda and the DNA-clamp, which promotes inter-AAA+ domain association between Hda and DnaA and stimulates hydrolysis of DnaA-bound ATP, producing inactive ADP-DnaA. Using a truncated DnaA mutant, we previously demonstrated that the DnaA N-terminal domain is involved in RIDA. However, the precise role of the N-terminal domain in RIDA has remained largely unclear. Here, we used an in vitro reconstituted system to demonstrate that the Asn-44 residue in the N-terminal domain of DnaA is crucial for RIDA but not for replication initiation. Moreover, an assay termed PDAX (pull-down after cross-linking) revealed an unstable interaction between a DnaA-N44A mutant and Hda. In vivo, this mutant exhibited an increase in the cellular level of ATP-bound DnaA. These results establish a model in which interaction between DnaA Asn-44 and Hda stabilizes the association between the AAA+ domains of DnaA and Hda to facilitate DnaA-ATP hydrolysis during RIDA. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER... Lateral   Sclerosis ”   Final  Report:  Project  Period  Sept  2012-­‐Dec  2014     Personnel  List:     Feng,  Yangbo

  19. Characterization, cell-surface expression and ligand-binding properties of different truncated N-terminal extracellular domains of the ionotropic glutamate receptor subunit GluR1.

    Science.gov (United States)

    McIlhinney, R A; Molnár, E

    1996-04-01

    To identify the location of the first transmembrane segment of the GluR1 glutamate receptor subunit artificial stop codons have been introduced into the N-terminal domain at amino acid positions 442, 510, and 563, namely just before and spanning the proposed first two transmembrane regions. The resultant truncated N-terminal fragments of GluR1, termed NT1, NT2, and NT3 respectively were expressed in Cos-7 cells and their cellular distribution and cell-surface expression analysed using an N-terminal antibody to GluR1. All of the fragments were fully glycosylated and were found to be associated with cell membranes but none was secreted. Differential extraction of the cell membranes indicated that both NT1 and NT2 behave as peripheral membrane proteins. In contrast NT3, like the full subunit, has integral membrane protein properties. Furthermore only NT3 is expressed at the cell surface as determined by immunofluorescence and cell-surface biotinylation. Protease protection assays indicated that only NT3 had a cytoplasmic tail. Binding studies using the selective ligand [(3)H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate ([(3)H]AMPA) demonstrated that NT3 does not bind ligand. Together these results indicate that the first transmembrane domain of the GluR1 subunit lies between residues 509 and 562, that the N-terminal domain alone cannot form a functional ligand-binding site and that this domain can be targeted to the cell surface provided that it has a transmembrane-spanning region.

  20. Mutated but Not Deleted Ovine PrP(C) N-Terminal Polybasic Region Strongly Interferes with Prion Propagation in Transgenic Mice.

    Science.gov (United States)

    Khalifé, Manal; Reine, Fabienne; Paquet-Fifield, Sophie; Castille, Johan; Herzog, Laetitia; Vilotte, Marthe; Moudjou, Mohammed; Moazami-Goudarzi, Katayoun; Makhzami, Samira; Passet, Bruno; Andréoletti, Olivier; Vilette, Didier; Laude, Hubert; Béringue, Vincent; Vilotte, Jean-Luc

    2016-02-01

    Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. The N-terminal domain of APJ, a CNS-based coreceptor for HIV-1, is essential for its receptor function and coreceptor activity

    International Nuclear Information System (INIS)

    Zhou Naiming; Zhang Xiaoling; Fan Xuejun; Argyris, Elias; Fang Jianhua; Acheampong, Edward; DuBois, Garrett C.; Pomerantz, Roger J.

    2003-01-01

    The human APJ, a G protein-coupled seven-transmembrane receptor, has been found to be dramatically expressed in the human central nervous system (CNS) and also to serve as a coreceptor for the entry of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV). Studies with animal models suggested that APJ and its natural ligand, apelin, play an important role in the central control of body fluid homeostasis, and in regulation of blood pressure and cardiac contractility. In this study, we characterize the structural and functional determinants of the N-terminal domain of APJ in interactions with its natural ligand and HIV-1 envelope glycoprotein. We demonstrate that the second 10 residues of the N-terminal domain of APJ are critical for association with apelin, while the first 20 amino acids play an important role in supporting cell-cell fusion mediated by HIV-1 gp120. With site-directed mutagenesis, we have identified that the negatively charged amino acid residues Glu20 and Asp23 are involved in receptor and coreceptor functions, but residues Tyr10 and Tyr11 substantially contribute to coreceptor function for both T-tropic (CXCR4) and dual-tropic (CXCR4 and CCR5) HIV-1 isolates. Thus, this study provides potentially important information for further characterizing APJ-apelin functions in vitro and in vivo and designing small molecules for treatment of HIV-1 infection in the CNS

  2. 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of γ-glutamyltranspeptidase homolog for C-C bond cleavage

    Science.gov (United States)

    Zhong, Guannan; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen

    2017-07-01

    γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C-C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria.

  3. The influence of the N-terminal region of antimicrobial peptide pleurocidin on fungal apoptosis.

    Science.gov (United States)

    Choi, Hyemin; Lee, Dong Gun

    2013-10-28

    In our previous study, the 25-mer antimicrobial peptide pleurocidin (Ple) had been thought to induce apoptosis in Candida albicans. This study demonstrated that reactive oxygen species (ROS) production was a major cause of Ple-induced apoptosis. Four truncated analogs were synthesized to understand the functional roles in the N- and C-terminal regions of Ple on the apoptosis. Ple, Ple (4-25), Ple (1-22), and Ple (1-19) produced ROS, including hydroxyl radicals, on the order of [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19)], whereas Ple (7-25) did not induce any ROS production. The results suggested that the N-terminal deletion affected the ROS-inducing activities much more than that of the C-terminal deletion, and net hydrophobicity [Ple > Ple (1-22) > Ple (4-25) > Ple (1-19) > Ple (7-25)] was related to ROS generation rather than other primary factors like net charge. Hence, we focused on the N-terminal-truncated peptides, Ple (4-25) and Ple (7-25), and examined other apoptotic features, including mitochondrial membrane depolarization, caspase activation, phosphatidylserine externalization, and DNA and nuclear fragmentation. The results also confirmed the disappearance of apoptotic activity of Ple (7-25) by the truncation of the N-terminal region (1-6) and the specific activity patterns between Ple and analogs. In conclusion, the N-terminal region of Ple played an important role in apoptosis.

  4. The membranotropic activity of N-terminal peptides from the pore ...

    Indian Academy of Sciences (India)

    The membranotropic activity of N-terminal peptides from the pore-forming proteins sticholysin I and II is modulated by hydrophobic and electrostatic interactions ... Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba; Department of Applied Physics, Institute of Physics, University of São Paulo, São ...

  5. Diagnostic Usefulness of N-terminal Pro-brain Natriuretic Peptide ...

    African Journals Online (AJOL)

    BACKGROUND: N-terminal pro-brain natriuretic peptide (NTproBNP) is useful in the diagnosis and management of adult patients with heart failure. OBJECTIVE: The objective of the study was to determine the usefulness of NT-proBNP in diagnosing congestive heart failure (CHF) in children and its correlation with left ...

  6. Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids.

    Science.gov (United States)

    Zhao, Hui; Jiang, Yanhong; Tian, Yuan; Yang, Dan; Qin, Xuan; Li, Zigang

    2017-01-04

    Cell penetration and nucleus translocation efficiency are important for the cellular activities of peptide therapeutics. For helical peptides stabilized by N-terminal crosslinked aspartic acid, correlations between their penetration efficiency/nucleus translocation and physicochemical properties were studied. An increase in hydrophobicity and isoelectric point will promote cellular uptake and nucleus translocation of stabilized helices.

  7. Localization of the N-terminal domain of cauliflower mosaic virus coat protein precursor

    International Nuclear Information System (INIS)

    Champagne, Julie; Benhamou, Nicole; Leclerc, Denis

    2004-01-01

    Cauliflower mosaic virus (CaMV) open reading frame (ORF) IV encodes a coat protein precursor (pre-CP) harboring an N-terminal extension that is cleaved off by the CaMV-encoded protease. In transfected cells, pre-CP is present in the cytoplasm, while the processed form (p44) of CP is targeted to the nucleus, suggesting that the N-terminal extension might be involved in keeping the pre-CP in the cytoplasm for viral assembly. This study reports for the first time the intracellular localization of the N-terminal extension during CaMV infection in Brassica rapa. Immunogold-labeling electron microscopy using polyclonal antibodies directed to the N-terminal extension of the pre-CP revealed that this region is closely associated with viral particles present in small aggregates, which we called small bodies, adjacent to the main inclusion bodies typical of CaMV infection. Based on these results, we propose a model for viral assembly of CaMV

  8. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain.

    Science.gov (United States)

    Lorentsen, R H; Graversen, J H; Caterer, N R; Thogersen, H C; Etzerodt, M

    2000-04-01

    Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6-15) are shown to be of primary importance in heparin binding.

  9. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG.

    Directory of Open Access Journals (Sweden)

    François P Douillard

    Full Text Available Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped and heterologous (coccoid-shaped expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species.

  10. The N-Terminal GYPSY Motif Is Required for Pilin-Specific Sortase SrtC1 Functionality in Lactobacillus rhamnosus Strain GG

    Science.gov (United States)

    Douillard, François P.; Rasinkangas, Pia; Bhattacharjee, Arnab; Palva, Airi; de Vos, Willem M.

    2016-01-01

    Predominantly identified in pathogenic Gram-positive bacteria, sortase-dependent pili are also found in commensal species, such as the probiotic-marketed strain Lactobacillus rhamnosus strain GG. Pili are typically associated with host colonization, immune signalling and biofilm formation. Comparative analysis of the N-terminal domains of pilin-specific sortases from various piliated Gram-positive bacteria identified a conserved motif, called GYPSY, within the signal sequence. We investigated the function and role of the GYPSY residues by directed mutagenesis in homologous (rod-shaped) and heterologous (coccoid-shaped) expression systems for pilus formation. Substitutions of some of the GYPSY residues, and more specifically the proline residue, were found to have a direct impact on the degree of piliation of Lb. rhamnosus GG. The present findings uncover a new signalling element involved in the functionality of pilin-specific sortases controlling the pilus biogenesis of Lb. rhamnosus GG and related piliated Gram-positive species. PMID:27070897

  11. Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Sheila G. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Grupo de Biofisica e Fisica Aplicada a Medicina, Instituto de Fisica, Universidade Federal de Goias, Campus Samambaia, C.P. 131, 74001-970, Goiania, GO (Brazil); Cristina Nonato, M. [Laboratorio de Cristalografia de Proteinas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe S/N, 14040-903, Ribeirao Preto, SP (Brazil); Costa-Filho, Antonio J., E-mail: ajcosta@ffclrp.usp.br [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Sao-carlense 400, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Av. Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EcDHODH is a membrane-associated enzyme and a promising target for drug design. Black-Right-Pointing-Pointer Enzyme's N-terminal extension is responsible for membrane association. Black-Right-Pointing-Pointer N-terminal works as a molecular lid regulating access to the protein interior. -- Abstract: Dihydroorotate dehydrogenases (DHODHs) are enzymes that catalyze the fourth step of the de novo synthesis of pyrimidine nucleotides. In this reaction, DHODH converts dihydroorotate to orotate, using a flavine mononucleotide as a cofactor. Since the synthesis of nucleotides has different pathways in mammals as compared to parasites, DHODH has gained much attention as a promising target for drug design. Escherichia coli DHODH (EcDHODH) is a family 2 DHODH that interacts with cell membranes in order to promote catalysis. The membrane association is supposedly made via an extension found in the enzyme's N-terminal. In the present work, we used site directed spin labeling (SDSL) to specifically place a magnetic probe at positions 2, 5, 19, and 21 within the N-terminal and thus monitor, by using Electron Spin Resonance (ESR), dynamics and structural changes in this region in the presence of a membrane model system. Overall, our ESR spectra show that the N-terminal indeed binds to membranes and that it experiences a somewhat high flexibility that could be related to the role of this region as a molecular lid controlling the entrance of the enzyme's active site and thus allowing the enzyme to give access to quinones that are dispersed in the membrane and that are necessary for the catalysis.

  12. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26.

    Directory of Open Access Journals (Sweden)

    Eun-Young Won

    Full Text Available Human dual-specificity phosphatase 26 (DUSP26 is a novel target for anticancer therapy because its dephosphorylation of the p53 tumor suppressor regulates the apoptosis of cancer cells. DUSP26 inhibition results in neuroblastoma cell cytotoxicity through p53-mediated apoptosis. Despite the previous structural studies of DUSP26 catalytic domain (residues 61-211, DUSP26-C, the high-resolution structure of its catalytically active form has not been resolved. In this study, we determined the crystal structure of a catalytically active form of DUSP26 (residues 39-211, DUSP26-N with an additional N-terminal region at 2.0 Å resolution. Unlike the C-terminal domain-swapped dimeric structure of DUSP26-C, the DUSP26-N (C152S monomer adopts a fold-back conformation of the C-terminal α8-helix and has an additional α1-helix in the N-terminal region. Consistent with the canonically active conformation of its protein tyrosine phosphate-binding loop (PTP loop observed in the structure, the phosphatase assay results demonstrated that DUSP26-N has significantly higher catalytic activity than DUSP26-C. Furthermore, size exclusion chromatography-multiangle laser scattering (SEC-MALS measurements showed that DUSP26-N (C152S exists as a monomer in solution. Notably, the crystal structure of DUSP26-N (C152S revealed that the N-terminal region of DUSP26-N (C152S serves a scaffolding role by positioning the surrounding α7-α8 loop for interaction with the PTP-loop through formation of an extensive hydrogen bond network, which seems to be critical in making the PTP-loop conformation competent for phosphatase activity. Our study provides the first high-resolution structure of a catalytically active form of DUSP26, which will contribute to the structure-based rational design of novel DUSP26-targeting anticancer therapeutics.

  13. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin

    International Nuclear Information System (INIS)

    Öberg, Christine; Belikov, Sergey

    2012-01-01

    Highlights: ► wt Human histone H1.4 and hH1.4 devoid of N-terminal domain, ΔN-hH1.4, were compared. ► Both histones bind to chromatin, however, ΔN-hH1.4 displays lower binding affinity. ► Interaction of ΔN-hH1.4 with chromatin includes a significant unspecific component. ► N-terminal domain is a determinant of specificity of histone H1 binding to chromatin. -- Abstract: Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30 nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain (ΔN-hH1.4). The ΔN-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that ΔN-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.

  14. N-terminal pro-C-type natriuretic peptide in serum associated with bone destruction in patients with multiple myeloma

    DEFF Research Database (Denmark)

    Mylin, Anne K; Goetze, Jens P; Heickendorff, Lene

    2015-01-01

    AIM: To examine whether N-terminal proCNP concentrations in serum is associated with bone destruction in patients with multiple myeloma. MATERIALS & METHODS: N-terminal proCNP and biochemical bone markers were measured in 153 patients. Radiographic bone disease and skeletal-related events were...

  15. Nuclear import of influenza B virus nucleoprotein: Involvement of an N-terminal nuclear localization signal and a cleavage-protection motif

    International Nuclear Information System (INIS)

    Wanitchang, Asawin; Narkpuk, Jaraspim; Jongkaewwattana, Anan

    2013-01-01

    The nucleoprotein of influenza B virus (BNP) shares several characteristics with its influenza A virus counterpart (ANP), including localization in the host's nucleus. However, while the nuclear localization signal(s) (NLS) of ANP are well characterized, little is known about those of BNP. In this study, we showed that the fusion protein bearing the BNP N-terminus fused with GFP (N70–GFP) is exclusively nuclear, and identified a highly conserved KRXR motif spanning residues 44–47 as a putative NLS. In addition, we demonstrated that residues 3–15 of BNP, though not an NLS, are also crucial for nuclear import. Results from mutational analyses of N70–GFP and the full-length BNP suggest that this region may be required for protection of the N-terminus from proteolytic cleavage. Altogether, we propose that the N-terminal region of BNP contains the NLS and cleavage-protection motif, which together drive its nuclear localization. - Highlights: • The N-terminal region of BNP is required for nuclear accumulation. • The conserved motif at position 44–47 is a putative nuclear localization signal. • The first 15 amino acids of BNP may function as a cleavage-protection motif. • BNP may get access to the nucleus via a mechanism distinct from ANP

  16. Nuclear import of influenza B virus nucleoprotein: Involvement of an N-terminal nuclear localization signal and a cleavage-protection motif

    Energy Technology Data Exchange (ETDEWEB)

    Wanitchang, Asawin; Narkpuk, Jaraspim; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    2013-08-15

    The nucleoprotein of influenza B virus (BNP) shares several characteristics with its influenza A virus counterpart (ANP), including localization in the host's nucleus. However, while the nuclear localization signal(s) (NLS) of ANP are well characterized, little is known about those of BNP. In this study, we showed that the fusion protein bearing the BNP N-terminus fused with GFP (N70–GFP) is exclusively nuclear, and identified a highly conserved KRXR motif spanning residues 44–47 as a putative NLS. In addition, we demonstrated that residues 3–15 of BNP, though not an NLS, are also crucial for nuclear import. Results from mutational analyses of N70–GFP and the full-length BNP suggest that this region may be required for protection of the N-terminus from proteolytic cleavage. Altogether, we propose that the N-terminal region of BNP contains the NLS and cleavage-protection motif, which together drive its nuclear localization. - Highlights: • The N-terminal region of BNP is required for nuclear accumulation. • The conserved motif at position 44–47 is a putative nuclear localization signal. • The first 15 amino acids of BNP may function as a cleavage-protection motif. • BNP may get access to the nucleus via a mechanism distinct from ANP.

  17. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.

    Science.gov (United States)

    Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A

    2014-10-22

    Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.

  18. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial.

    Science.gov (United States)

    Stein, Ruediger; Fahl, Kirsten; Gierz, Paul; Niessen, Frank; Lohmann, Gerrit

    2017-08-29

    Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades and climate scenarios suggest that sea ice may completely disappear during summer within the next about 50-100 years. Here we produce Arctic sea ice biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea ice cover is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major ice sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 ice shelf that covered the entire Arctic Ocean.Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades. Here, using biomarker records, the authors show that permanent sea ice was still present in the central Arctic Ocean during the last interglacial, when high latitudes were warmer than present.

  19. Analysis of improved and original designs of a 16 inch long penultimate stage turbine blade

    International Nuclear Information System (INIS)

    Carnero, A.; Kubiak, J.A.; Mendez, R.

    1994-01-01

    A finite element analysis of 16 inch long penultimate stage (L-1) blade was carried out to evaluate the improved and the original designs. The original design of the blade involved the ''blade-tenon-shroud'' system to make blade groups (6 blades per group). The improved design applied the concept of Integral Shroud Blade (ISB). Thus all the blades made a 360 degree group. The paper presents an application of the finite element analysis method to compute the natural frequencies, steady-state and alternating stresses, deformation due to forces acting on the blades and modal shapes of the blade group. In the case of the improved design it was also necessary to carry out computation of the dynamic response of a 360 degree blade-disk arc. This was to include the effect of the flexible disk fastening where blade and disk interaction were important to identify certain resonant conditions. It was concluded from the finite element results, that the steady-state stresses in the improved blade were lower, and the tangential mode shapes were eliminated. This was a great advantage since in the original design the first tangential mode shape and the higher steady-state stresses in the tenon contributed to the frequent failure of the ''blade-tenon-shroud'' system

  20. N-terminally truncated forms of human cathepsin F accumulate in aggresome-like inclusions.

    Science.gov (United States)

    Jerič, Barbara; Dolenc, Iztok; Mihelič, Marko; Klarić, Martina; Zavašnik-Bergant, Tina; Gunčar, Gregor; Turk, Boris; Turk, Vito; Stoka, Veronika

    2013-10-01

    The contribution of individual cysteine cathepsins as positive mediators of programmed cell death is dependent on several factors, such as the type of stimuli, intensity and duration of the stimulus, and cell type involved. Of the eleven human cysteine cathepsins, cathepsin F is the only cathepsin that exhibits an extended N-terminal proregion, which contains a cystatin-like domain. We predicted that the wild-type human cathepsin F contains three natively disordered regions within the enzyme's propeptide and various amino acid stretches with high fibrillation propensity. Wild-type human cathepsin F and its N-terminally truncated forms, Ala(20)-Asp(484) (Δ(19)CatF), Pro(126)-Asp(484) (Δ(125)CatF), and Met(147)-Asp(484) (Δ(146)CatF) were cloned into the pcDNA3 vector and overexpressed in HEK 293T cells. Wild-type human cathepsin F displayed a clear vesicular labeling and colocalized with the LAMP2 protein, a lysosomal marker. However, all three N-terminally truncated forms of human cathepsin F were recovered as insoluble proteins, suggesting that the deletion of at least the signal peptides (Δ(19)CatF), results in protein aggregation. Noteworthy, they concentrated large perinuclear-juxtanuclear aggregates that accumulated within aggresome-like inclusions. These inclusions showed p62-positive immunoreactivity and were colocalized with the autophagy marker LC3B, but not with the LAMP2 protein. In addition, an approximately 2-3 fold increase in DEVDase activity was not sufficient to induce apoptotic cell death. These results suggested the clearance of the N-terminally truncated forms of human cathepsin F via the autophagy pathway, underlying its protective and prosurvival mechanisms. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Abl N-terminal Cap stabilization of SH3 domain dynamics†

    OpenAIRE

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E.; Engen, John R.

    2008-01-01

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears important for locking the SH3/SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydro...

  2. Accessibility of the Shine-Dalgarno sequence dictates N-terminal codon bias in E. coli

    OpenAIRE

    Shakhnovich, Eugene; Zhang, Wenli; Yan, Jin; Adkar, Bharat; Jacobs, William; Bhattacharyya, Sanchari; Adkar, Bharat

    2018-01-01

    Despite considerable efforts, no physical mechanism has been shown to explain N-terminal codon bias in prokaryotic genomes. Using a systematic study of synonymous substitutions in two endogenous E. coli genes, we show that interactions between the coding region and the upstream Shine-Dalgarno (SD) sequence modulate the efficiency of translation initiation, affecting both intracellular mRNA and protein levels due to the inherent coupling of transcription and translation in E. coli. We further ...

  3. N-terminal Pro-B-type natriuretic peptide: a measure of significant patent cuctus arteriosus

    LENUS (Irish Health Repository)

    OFarombi-Oghuvbu, IO

    2008-01-24

    Background: B type natriuretic peptide (BNP) is a marker for ventricular dysfunction secreted as a pre-prohormone, Pro-B-type natriuretic peptide (ProBNP), and cleaved into BNP and a biologically inactive fragment, N-terminal pro-B-type natriuretic peptide (NT-proBNP). Little is known about the clinical usefulness of NT-proBNP in preterm infants.\\r\

  4. N-terminally truncated POM121C inhibits HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Hideki Saito

    Full Text Available Recent studies have identified host cell factors that regulate early stages of HIV-1 infection including viral cDNA synthesis and orientation of the HIV-1 capsid (CA core toward the nuclear envelope, but it remains unclear how viral DNA is imported through the nuclear pore and guided to the host chromosomal DNA. Here, we demonstrate that N-terminally truncated POM121C, a component of the nuclear pore complex, blocks HIV-1 infection. This truncated protein is predominantly localized in the cytoplasm, does not bind to CA, does not affect viral cDNA synthesis, reduces the formation of 2-LTR and diminished the amount of integrated proviral DNA. Studies with an HIV-1-murine leukemia virus (MLV chimeric virus carrying the MLV-derived Gag revealed that Gag is a determinant of this inhibition. Intriguingly, mutational studies have revealed that the blockade by N-terminally-truncated POM121C is closely linked to its binding to importin-β/karyopherin subunit beta 1 (KPNB1. These results indicate that N-terminally-truncated POM121C inhibits HIV-1 infection after completion of reverse transcription and before integration, and suggest an important role for KPNB1 in HIV-1 replication.

  5. A Conserved Acidic Motif in the N-Terminal Domain of Nitrate Reductase Is Necessary for the Inactivation of the Enzyme in the Dark by Phosphorylation and 14-3-3 Binding1

    Science.gov (United States)

    Pigaglio, Emmanuelle; Durand, Nathalie; Meyer, Christian

    1999-01-01

    It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611–621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-dark transitions. In this study smaller deletions were performed in the N-terminal domain of tobacco NR that removed protein motifs conserved among higher plant NRs. The resulting truncated NR-coding sequences were then fused to the cauliflower mosaic virus 35S RNA promoter and introduced in NR-deficient mutants of the closely related species Nicotiana plumbaginifolia. We found that the deletion of a conserved stretch of acidic residues led to an active NR protein that was more thermosensitive than the wild-type enzyme, but it was relatively insensitive to the inactivation by phosphorylation in the dark. Therefore, the removal of this acidic stretch seems to have the same effects on NR activation state as the deletion of the N-terminal domain. A hypothetical explanation for these observations is that a specific factor that impedes inactivation remains bound to the truncated enzyme. A synthetic peptide derived from this acidic protein motif was also found to be a good substrate for casein kinase II. PMID:9880364

  6. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    International Nuclear Information System (INIS)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-01-01

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication

  7. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    Energy Technology Data Exchange (ETDEWEB)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Cotmore, Susan F. [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Tattersall, Peter [Departments of Laboratory Medicine, Yale University Medical School, New Haven, CT 06510 (United States); Departments of Genetics, Yale University Medical School, New Haven, CT 06510 (United States); Zhao, Haiyan, E-mail: zhaohy@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States); Tang, Liang, E-mail: tangl@ku.edu [Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 (United States)

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  8. Analysis of proteolytic processes and enzymatic activities in the generation of huntingtin n-terminal fragments in an HEK293 cell model.

    Directory of Open Access Journals (Sweden)

    Andrew T N Tebbenkamp

    Full Text Available N-terminal fragments of mutant huntingtin (htt that terminate between residues 90-115, termed cleavage product A or 1 (cp-A/1, form intracellular and intranuclear inclusion bodies in the brains of patients with Huntington's disease (HD. These fragments appear to be proteolytic products of the full-length protein. Here, we use an HEK293 cell culture model to investigate huntingtin proteolytic processing; previous studies of these cells have demonstrated cleavage of htt to cp-A/1 like htt fragments.Recombinant N-terminal htt fragments, terminating at residue 171 (also referred to as cp-B/2 like, were efficiently cleaved to produce cp-A/1 whereas fragments representing endogenous caspase, calpain, and metalloproteinase cleavage products, terminating between residues 400-600, were inefficiently cleaved. Using cysteine-labeling techniques and antibody binding mapping, we localized the C-terminus of the cp-A/1 fragments produced by HEK293 cells to sequences minimally limited by cysteine 105 and an antibody epitope composed of residues 115-124. A combination of genetic and pharmacologic approaches to inhibit potential proteases, including γ-secretase and calpain, proved ineffective in preventing production of cp-A/1.Our findings indicate that HEK293 cells express a protease that is capable of efficiently cleaving cp-B/2 like fragments of htt with normal or expanded glutamine repeats. For reasons that remain unclear, this protease cleaves longer htt fragments, with normal or expanded glutamine expansions, much less efficiently. The protease in HEK293 cells that is capable of generating a cp-A/1 like htt fragment may be a novel protease with a high preference for a cp-B/2-like htt fragment as substrate.

  9. Molecular determinants of interactions between the N-terminal domain and the transmembrane core that modulate hERG K+ channel gating.

    Directory of Open Access Journals (Sweden)

    Jorge Fernández-Trillo

    Full Text Available A conserved eag domain in the cytoplasmic amino terminus of the human ether-a-go-go-related gene (hERG potassium channel is critical for its slow deactivation gating. Introduction of gene fragments encoding the eag domain are able to restore normal deactivation properties of channels from which most of the amino terminus has been deleted, and also those lacking exclusively the eag domain or carrying a single point mutation in the initial residues of the N-terminus. Deactivation slowing in the presence of the recombinant domain is not observed with channels carrying a specific Y542C point mutation in the S4-S5 linker. On the other hand, mutations in some initial positions of the recombinant fragment also impair its ability to restore normal deactivation. Fluorescence resonance energy transfer (FRET analysis of fluorophore-tagged proteins under total internal reflection fluorescence (TIRF conditions revealed a substantial level of FRET between the introduced N-terminal eag fragments and the eag domain-deleted channels expressed at the membrane, but not between the recombinant eag domain and full-length channels with an intact amino terminus. The FRET signals were also minimized when the recombinant eag fragments carried single point mutations in the initial portion of their amino end, and when Y542C mutated channels were used. These data suggest that the restoration of normal deactivation gating by the N-terminal recombinant eag fragment is an intrinsic effect of this domain directed by the interaction of its N-terminal segment with the gating machinery, likely at the level of the S4-S5 linker.

  10. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    Science.gov (United States)

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for

  11. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins

    International Nuclear Information System (INIS)

    Tang, Yanan; Li, Liang

    2013-01-01

    Graphical abstract: -- Highlights: •LC–MS was developed for quantifying protein mixtures containing both intact and N-terminal truncated proteins. • 12 C 2 -Dansylation of the N-terminal amino acid of proteins was done first, followed by microwave-assisted acid hydrolysis. •The released 12 C 2 -dansyl labeled N-terminal amino acid was quantified using 13 C 2 -dansyl labeled amino acid standards. •The method provided accurate and precise results for quantifying intact and N-terminal truncated proteins within 8 h. -- Abstract: The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC–MS) with the use of isotope analog standards

  12. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanan; Li, Liang, E-mail: Liang.Li@ualberta.ca

    2013-08-20

    Graphical abstract: -- Highlights: •LC–MS was developed for quantifying protein mixtures containing both intact and N-terminal truncated proteins. •{sup 12}C{sub 2}-Dansylation of the N-terminal amino acid of proteins was done first, followed by microwave-assisted acid hydrolysis. •The released {sup 12}C{sub 2}-dansyl labeled N-terminal amino acid was quantified using {sup 13}C{sub 2}-dansyl labeled amino acid standards. •The method provided accurate and precise results for quantifying intact and N-terminal truncated proteins within 8 h. -- Abstract: The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC–MS) with the use of isotope analog standards.

  13. The catalytic chain of human complement subcomponent C1r. Purification and N-terminal amino acid sequences of the major cyanogen bromide-cleavage fragments.

    Science.gov (United States)

    Arlaud, G J; Gagnon, J; Porter, R R

    1982-01-01

    1. The a- and b-chains of reduced and alkylated human complement subcomponent C1r were separated by high-pressure gel-permeation chromatography and isolated in good yield and in pure form. 2. CNBr cleavage of C1r b-chain yielded eight major peptides, which were purified by gel filtration and high-pressure reversed-phase chromatography. As determined from the sum of their amino acid compositions, these peptides accounted for a minimum molecular weight of 28 000, close to the value 29 100 calculated from the whole b-chain. 3. N-Terminal sequence determinations of C1r b-chain and its CNBr-cleavage peptides allowed the identification of about two-thirds of the amino acids of C1r b-chain. From our results, and on the basis of homology with other serine proteinases, an alignment of the eight CNBr-cleavage peptides from C1r b-chain is proposed. 4. The residues forming the 'charge-relay' system of the active site of serine proteinases (His-57, Asp-102 and Ser-195 in the chymotrypsinogen numbering) are found in the corresponding regions of C1r b-chain, and the amino acid sequence around these residues has been determined. 5. The N-terminal sequence of C1r b-chain has been extended to residue 60 and reveals that C1r b-chain lacks the 'histidine loop', a disulphide bond that is present in all other known serine proteinases.

  14. Oxidative Unfolding of the Rubredoxin Domain and the Natively Disordered N-terminal Region Regulate the Catalytic Activity of Mycobacterium tuberculosis Protein Kinase G.

    Science.gov (United States)

    Wittwer, Matthias; Luo, Qi; Kaila, Ville R I; Dames, Sonja A

    2016-12-30

    Mycobacterium tuberculosis escapes killing in human macrophages by secreting protein kinase G (PknG). PknG intercepts host signaling to prevent fusion of the phagosome engulfing the mycobacteria with the lysosome and, thus, their degradation. The N-terminal NORS (no regulatory secondary structure) region of PknG (approximately residues 1-75) has been shown to play a role in PknG regulation by (auto)phosphorylation, whereas the following rubredoxin-like metal-binding motif (RD, residues ∼74-147) has been shown to interact tightly with the subsequent catalytic domain (approximately residues 148-420) to mediate its redox regulation. Deletions or mutations in NORS or the redox-sensitive RD significantly decrease PknG survival function. Based on combined NMR spectroscopy, in vitro kinase assay, and molecular dynamics simulation data, we provide novel insights into the regulatory roles of the N-terminal regions. The NORS region is indeed natively disordered and rather dynamic. Consistent with most earlier data, autophosphorylation occurs in our assays only when the NORS region is present and, thus, in the NORS region. Phosphorylation of it results only in local conformational changes and does not induce interactions with the subsequent RD. Although the reduced, metal-bound RD makes tight interactions with the following catalytic domain in the published crystal structures, it can also fold in its absence. Our data further suggest that oxidation-induced unfolding of the RD regulates substrate access to the catalytic domain and, thereby, PknG function under different redox conditions, e.g. when exposed to increased levels of reactive oxidative species in host macrophages. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Characterization of cDNA for human tripeptidyl peptidase II: The N-terminal part of the enzyme is similar to subtilisin

    International Nuclear Information System (INIS)

    Tomkinson, B.; Jonsson, A-K

    1991-01-01

    Tripeptidyl peptidase II is a high molecular weight serine exopeptidase, which has been purified from rat liver and human erythrocytes. Four clones, representing 4453 bp, or 90% of the mRNA of the human enzyme, have been isolated from two different cDNA libraries. One clone, designated A2, was obtained after screening a human B-lymphocyte cDNA library with a degenerated oligonucleotide mixture. The B-lymphocyte cDNA library, obtained from human fibroblasts, were rescreened with a 147 bp fragment from the 5' part of the A2 clone, whereby three different overlapping cDNA clones could be isolated. The deduced amino acid sequence, 1196 amino acid residues, corresponding to the longest open rading frame of the assembled nucleotide sequence, was compared to sequences of current databases. This revealed a 56% similarity between the bacterial enzyme subtilisin and the N-terminal part of tripeptidyl peptidase II. The enzyme was found to be represented by two different mRNAs of 4.2 and 5.0 kilobases, respectively, which probably result from the utilziation of two different polyadenylation sites. Futhermore, cDNA corresponding to both the N-terminal and C-terminal part of tripeptidyl peptidase II hybridized with genomic DNA from mouse, horse, calf, and hen, even under fairly high stringency conditions, indicating that tripeptidyl peptidase II is highly conserved

  16. Expression, crystallization and preliminary X-ray diffraction analysis of the N-terminal domain of nsp2 from avian infectious bronchitis virus

    International Nuclear Information System (INIS)

    Yang, Anqi; Wei, Lei; Zhao, Weiran; Xu, Yuanyuan; Rao, Zihe

    2009-01-01

    The N-terminal domain of nsp2 from avian infectious bronchitis virus has been purified and crystallized. The crystals diffracted to 2.5 Å resolution. Avian infectious bronchitis virus (IBV) is a prototype of the group III coronaviruses and encodes 15 nonstructural proteins which make up the transcription/replication machinery. The nsp2 protein from IBV has a unique and novel sequence and has no experimentally confirmed function in replication, whereas it has been proposed to be crucial for early viral infection and may inhibit the early host immune response. The gene that encodes a double-mutant IBV nsp2 N-terminal domain (residues 9–393 of the polyprotein, with mutations Q132L and L270F) was cloned and expressed in Escherichia coli and the protein was subjected to crystallization trials. The crystals diffracted to 2.5 Å resolution and belonged to space group P6 2 or P6 4 , with unit-cell parameters a = b = 114.2, c = 61.0 Å, α = β = 90, γ = 120°. Each asymmetric unit contained one molecule

  17. Glycosylation of the N-terminal potential N-glycosylation sites in the human α1,3-fucosyltransferase V and -VI (hFucTV and -VI)

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Bross, Peter Gerd; Ørntoft, Torben Falck

    2000-01-01

    Human alpha1,3-fucosyltransferase V and -VI (hFucTV and -VI) each contain four potential N-glycosylation sites (hFucTV: Asn60, Asn105, Asn167 and Asn198 and hFucTVI: Asn46, Asn91, Asn153 and Asn184). Glycosylation of the two N-terminal potential N-glycosylation sites (hFucTV: Asn60, Asn105 and h......FucTVI: Asn46 and Asn91) have never been studied in detail. In the present study, we have analysed the glycosylation of these potential N-glycosylation sites. Initially, we compared the molecular mass of hFucTV and -VI expressed in COS-7 cells treated with tunicamycin with the mass of the proteins...... in untreated cells. The difference in molecular mass between the proteins in treated and untreated cells corresponded to the presence of at least three N-linked glycans. We then made a series of mutants, in which the asparagine residues in the N-terminal potential N-glycosylation sites were replaced...

  18. BtcA, A class IA type III chaperone, interacts with the BteA N-terminal domain through a globular/non-globular mechanism.

    Directory of Open Access Journals (Sweden)

    Chen Guttman

    Full Text Available Bordetella pertussis, the etiological agent of "whooping cough" disease, utilizes the type III secretion system (T3SS to deliver a 69 kDa cytotoxic effector protein, BteA, directly into the host cells. As with other T3SS effectors, prior to its secretion BteA binds BtcA, a 13.9 kDa protein predicted to act as a T3SS class IA chaperone. While this interaction had been characterized for such effector-chaperone pairs in other pathogens, it has yet to be fully investigated in Bordetella. Here we provide the first biochemical proof that BtcA is indeed a class IA chaperone, responsible for the binding of BteA's N-terminal domain. We bring forth extensive evidence that BtcA binds its substrate effector through a dual-interface binding mechanism comprising of non-globular and bi-globular interactions at a moderate micromolar level binding affinity. We demonstrate that the non-globular interactions involve the first 31 N-terminal residues of BteA287 and their removal leads to destabilization of the effector-chaperone complex and lower binding affinities to BtcA. These findings represent an important first step towards a molecular understanding of BteA secretion and cell entry.

  19. Nickel Ligation of the N-Terminal Amine of HypA Is Required for Urease Maturation in Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Heidi Q. [Department; Johnson, Ryan C. [Microbiology; Merrell, D. Scott [Microbiology; Maroney, Michael J. [Department

    2017-02-17

    The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant, L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA–UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.

  20. N-terminal prolactin-derived fragments, vasoinhibins, are proapoptoptic and antiproliferative in the anterior pituitary.

    Science.gov (United States)

    Ferraris, Jimena; Radl, Daniela Betiana; Zárate, Sandra; Jaita, Gabriela; Eijo, Guadalupe; Zaldivar, Verónica; Clapp, Carmen; Seilicovich, Adriana; Pisera, Daniel

    2011-01-01

    The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this

  1. N-terminal prolactin-derived fragments, vasoinhibins, are proapoptoptic and antiproliferative in the anterior pituitary.

    Directory of Open Access Journals (Sweden)

    Jimena Ferraris

    Full Text Available The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry. In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic

  2. KV4.3 N-terminal deletion mutant Δ2–39

    Science.gov (United States)

    Hovind, Laura J; Skerritt, Matthew R

    2011-01-01

    Gating transitions in the KV4.3 N-terminal deletion mutant Δ2–39 were characterized in the absence and presence of KChIP2b. We particularly focused on gating characteristics of macroscopic (open state) versus closed state inactivation (CSI) and recovery. In the absence of KChIP2b Δ2–39 did not significantly alter the steady-state activation “a4” relationship or general CSI characteristics, but it did slow the kinetics of deactivation, macroscopic inactivation and macroscopic recovery. Recovery kinetics (for both WT KV4.3 and Δ2–39) were complicated and displayed sigmoidicity, a process which was enhanced by Δ2–39. Deletion of the proximal N-terminal domain therefore appeared to specifically slow mechanisms involved in regulating gating transitions occurring after the channel open state(s) had been reached. In the presence of KChIP2b Δ2–39 recovery kinetics (from both macroscopic and CSI) were accelerated, with an apparent reduction in initial sigmoidicity. Hyperpolarizing shifts in both “a4” and isochronal inactivation “i” were also produced. KChIP2b-mediated remodeling of KV4.3 gating transitions was therefore not obligatorily dependent upon an intact N-terminus. To account for these effects we propose that KChIP2 regulatory domains exist in KV4.3 α subunit regions outside of the proximal N-terminal. In addition to regulating macroscopic inactivation, we also propose that the KV4.3 N-terminus may act as a novel regulator of deactivation-recovery coupling. PMID:21057209

  3. N-terminal-pro-B-type natriuretic peptide during pharmacological heart rate reduction in hyperthyroidism

    DEFF Research Database (Denmark)

    Schultz, M; Kistorp, C; Corell, P

    2009-01-01

    days. Before treatment, N-terminal-pro-B-type natriuretic peptide was independently associated with thyroid function (free triiodothyronine-index, r=0.64, p=0.001) and the hemoglobin concentration (r=-0.36, p=0.031). The verapamil treatment induced a decrease in parameters reflecting cardiac function......-index decreased from median 319 to 315 arbitrary units (p=0.039) and free triiodothyronine-index increased from 8.6 to 9.9 arbitrary units (p=0.010). No changes in echocardiographic parameters were observed. A decrease in resting heart rate in untreated hyperthyroidism due to verapamil treatment did not result...

  4. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    Science.gov (United States)

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  5. Crystal Structure of the Full-Length Feline Immunodeficiency Virus Capsid Protein Shows an N-Terminal β-Hairpin in the Absence of N-Terminal Proline

    Directory of Open Access Journals (Sweden)

    Christelle Folio

    2017-11-01

    Full Text Available Feline immunodeficiency virus (FIV is a member of the Retroviridae family. It is the causative agent of an acquired immunodeficiency syndrome (AIDS in cats and wild felines. Its capsid protein (CA drives the assembly of the viral particle, which is a critical step in the viral replication cycle. Here, the first atomic structure of full-length FIV CA to 1.67 Å resolution is determined. The crystallized protein exhibits an original tetrameric assembly, composed of dimers which are stabilized by an intermolecular disulfide bridge induced by the crystallogenesis conditions. The FIV CA displays a standard α-helical CA topology with two domains, separated by a linker shorter than other retroviral CAs. The β-hairpin motif at its amino terminal end, which interacts with nucleotides in HIV-1, is unusually long in FIV CA. Interestingly, this functional β-motif is formed in this construct in the absence of the conserved N-terminal proline. The FIV CA exhibits a cis Arg–Pro bond in the CypA-binding loop, which is absent in known structures of lentiviral CAs. This structure represents the first tri-dimensional structure of a functional, full-length FIV CA.

  6. The diagnostic value of plasma N-terminal connective tissue growth factor levels in children with heart failure.

    Science.gov (United States)

    Li, Gang; Song, Xueqing; Xia, Jiyi; Li, Jing; Jia, Peng; Chen, Pengyuan; Zhao, Jian; Liu, Bin

    2017-01-01

    The aim of this study was to assess the diagnostic value of plasma N-terminal connective tissue growth factor in children with heart failure. Methods and results Plasma N-terminal connective tissue growth factor was determined in 61 children, including 41 children with heart failure, 20 children without heart failure, and 30 healthy volunteers. The correlations between plasma N-terminal connective tissue growth factor levels and clinical parameters were investigated. Moreover, the diagnostic value of N-terminal connective tissue growth factor levels was evaluated. Compared with healthy volunteers and children without heart failure, plasma N-terminal connective tissue growth factor levels were significantly elevated in those with heart failure (p0.05), but it obviously improved the ability of diagnosing heart failure in children, as demonstrated by the integrated discrimination improvement (6.2%, p=0.013) and net re-classification improvement (13.2%, p=0.017) indices. Plasma N-terminal connective tissue growth factor is a promising diagnostic biomarker for heart failure in children.

  7. Structural plasticity of the N-terminal capping helix of the TPR domain of kinesin light chain.

    Directory of Open Access Journals (Sweden)

    The Quyen Nguyen

    Full Text Available Kinesin1 plays a major role in neuronal transport by recruiting many different cargos through its kinesin light chain (KLC. Various structurally unrelated cargos interact with the conserved tetratricopeptide repeat (TPR domain of KLC. The N-terminal capping helix of the TPR domain exhibits an atypical sequence and structural features that may contribute to the versatility of the TPR domain to bind different cargos. We determined crystal structures of the TPR domain of both KLC1 and KLC2 encompassing the N-terminal capping helix and show that this helix exhibits two distinct and defined orientations relative to the rest of the TPR domain. Such a difference in orientation gives rise, at the N-terminal part of the groove, to the formation of one hydrophobic pocket, as well as to electrostatic variations at the groove surface. We present a comprehensive structural analysis of available KLC1/2-TPR domain structures that highlights that ligand binding into the groove can be specific of one or the other N-terminal capping helix orientations. Further, structural analysis reveals that the N-terminal capping helix is always involved in crystal packing contacts, especially in a TPR1:TPR1' contact which highlights its propensity to be a protein-protein interaction site. Together, these results underline that the structural plasticity of the N-terminal capping helix might represent a structural determinant for TPR domain structural versatility in cargo binding.

  8. The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qiaozhen; Kim, Dong Hyun; Dereli, Ihsan; Rosenberg, Scott C.; Hagemann, Goetz; Herzog, Franz; Tóth, Attila; Cleveland, Don W.; Corbett, Kevin D.

    2017-06-28

    Proteins of the conserved HORMA domain family, including the spindle assembly checkpoint protein MAD2 and the meiotic HORMADs, assemble into signaling complexes by binding short peptides termed “closure motifs”. The AAA+ ATPase TRIP13 regulates both MAD2 and meiotic HORMADs by disassembling these HORMA domain–closure motif complexes, but its mechanisms of substrate recognition and remodeling are unknown. Here, we combine X-ray crystallography and crosslinking mass spectrometry to outline how TRIP13 recognizes MAD2 with the help of the adapter protein p31comet. We show that p31comet binding to the TRIP13 N-terminal domain positions the disordered MAD2 N-terminus for engagement by the TRIP13 “pore loops”, which then unfold MAD2 in the presence of ATP. N-terminal truncation of MAD2 renders it refractory to TRIP13 action in vitro, and in cells causes spindle assembly checkpoint defects consistent with loss of TRIP13 function. Similar truncation of HORMAD1 in mouse spermatocytes compromises its TRIP13-mediated removal from meiotic chromosomes, highlighting a conserved mechanism for recognition and disassembly of HORMA domain–closure motif complexes by TRIP13.

  9. Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases

    Science.gov (United States)

    Lamb, Brian M.; Mercer, Andrew C.; Barbas, Carlos F.

    2013-01-01

    Transcription activator-like effector (TALE) proteins can be designed to bind virtually any DNA sequence. General guidelines for design of TALE DNA-binding domains suggest that the 5′-most base of the DNA sequence bound by the TALE (the N0 base) should be a thymine. We quantified the N0 requirement by analysis of the activities of TALE transcription factors (TALE-TF), TALE recombinases (TALE-R) and TALE nucleases (TALENs) with each DNA base at this position. In the absence of a 5′ T, we observed decreases in TALE activity up to >1000-fold in TALE-TF activity, up to 100-fold in TALE-R activity and up to 10-fold reduction in TALEN activity compared with target sequences containing a 5′ T. To develop TALE architectures that recognize all possible N0 bases, we used structure-guided library design coupled with TALE-R activity selections to evolve novel TALE N-terminal domains to accommodate any N0 base. A G-selective domain and broadly reactive domains were isolated and characterized. The engineered TALE domains selected in the TALE-R format demonstrated modularity and were active in TALE-TF and TALEN architectures. Evolved N-terminal domains provide effective and unconstrained TALE-based targeting of any DNA sequence as TALE binding proteins and designer enzymes. PMID:23980031

  10. Directed evolution of the TALE N-terminal domain for recognition of all 5' bases.

    Science.gov (United States)

    Lamb, Brian M; Mercer, Andrew C; Barbas, Carlos F

    2013-11-01

    Transcription activator-like effector (TALE) proteins can be designed to bind virtually any DNA sequence. General guidelines for design of TALE DNA-binding domains suggest that the 5'-most base of the DNA sequence bound by the TALE (the N0 base) should be a thymine. We quantified the N0 requirement by analysis of the activities of TALE transcription factors (TALE-TF), TALE recombinases (TALE-R) and TALE nucleases (TALENs) with each DNA base at this position. In the absence of a 5' T, we observed decreases in TALE activity up to >1000-fold in TALE-TF activity, up to 100-fold in TALE-R activity and up to 10-fold reduction in TALEN activity compared with target sequences containing a 5' T. To develop TALE architectures that recognize all possible N0 bases, we used structure-guided library design coupled with TALE-R activity selections to evolve novel TALE N-terminal domains to accommodate any N0 base. A G-selective domain and broadly reactive domains were isolated and characterized. The engineered TALE domains selected in the TALE-R format demonstrated modularity and were active in TALE-TF and TALEN architectures. Evolved N-terminal domains provide effective and unconstrained TALE-based targeting of any DNA sequence as TALE binding proteins and designer enzymes.

  11. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis

    Science.gov (United States)

    Collin-Hansen, C.; Andersen, R. A.; Steinnes, E.

    2003-05-01

    A Cd-binding protein was isolated from the popular edible mushroom Boletus edulis, which is a hyperaccumulator of both Cd and Hg. Wild-growing samples of B. edulis were collected from soils rich in Cd. Cd radiotracer was added to the crude protein preparation obtained from ethanol precipitation of heat-treated cytosol. Proteins were then further separated in two consecutive steps; gel filtration and anion exchange chromatography. In both steps the Cd radiotracer profile showed only one distinct peak, which corresponded well with the profiles of endogenous Cd obtained by atomic absorption spectrophotometry (AAS). Concentrations of the essential elements Cu and Zn were low in the protein fractions high in Cd. N-terminal sequencing performed on the Cd-binding protein fractions revealed a protein with a novel amino acid sequence, which contained aromatic amino acids as well as proline. Both the N-terminal sequencing and spectrofluorimetric analysis with EDTA and ABD-F (4-aminosulfonyl-7-fluoro-2, 1, 3-benzoxadiazole) failed to detect cysteine in the Cd-binding fractions. These findings conclude that the novel protein does not belong to the metallothionein family. The results suggest a role for the protein in Cd transport and storage, and they are of importance in view of toxicology and food chemistry, but also for environmental protection.

  12. Molecular cloning and biologically active production of IpaD N-terminal region.

    Science.gov (United States)

    Hesaraki, Mahdi; Saadati, Mojtaba; Honari, Hossein; Olad, Gholamreza; Heiat, Mohammad; Malaei, Fatemeh; Ranjbar, Reza

    2013-07-01

    Shigella is known as pathogenic intestinal bacteria in high dispersion and pathogenic bacteria due to invasive plasmid antigen (Ipa). So far, a number of Ipa proteins have been studied to introduce a new candidate vaccine. Here, for the first time, we examined whether the N-terminal region of IpaD(72-162) could be a proper candidate for Shigella vaccine. Initially, the DNA sequence coding N-terminal region was isolated by PCR from Shigella dysenteriae type I and cloned into pET-28a expression vector. Then, the heterologous protein was expressed, optimized and purified by affinity Ni-NTA column. Western blot analysis using, His-tag and IpaD(72-162) polyclonal antibodies, confirmed the purity and specificity of the recombinant protein, respectively. Subsequently, the high immunogenicity of the antigen was shown by ELISA. The results of the sereny test in Guinea pigs showed that IpaD(72-162) provides a protective system against Shigella flexneri 5a and S. dysenteriae type I. Copyright © 2013. Published by Elsevier Ltd.

  13. N-terminal pro-atrial natriuretic peptide measurement in plasma suggests covalent modification

    DEFF Research Database (Denmark)

    Hunter, Ingrid; Alehagen, Urban; Dahlström, Ulf

    2011-01-01

    different proANP assays on clinical outcome. METHODS: We examined 474 elderly patients with symptoms of heart failure presenting in a primary healthcare setting. Samples were analyzed with an automated immunoluminometric midregion proANP (MR-proANP) assay and a new processing-independent assay (PIA.......74 (95% CI, 0.66–0.81); P = 0.32]. The prognostic ability to report cardiovascular mortality during a 10-year follow-up revealed AUC values of 0.66 (95% CI, 0.60–0.71) for the proANP PIA and 0.69 (95% CI, 0.63–0.74) for the MR-proANP assay (P = 0.08, for comparing the 2 assays). CONCLUSIONS: Our data......BACKGROUND: The N-terminal fragment of cardiac-derived pro–B-type natriuretic peptide is a glycosylated polypeptide. It is unknown whether N-terminal pro–atrial natriuretic peptide (proANP) fragments are also covalently modified. We therefore evaluated the clinical performance of 2 distinctly...

  14. UV laser-induced histone-DNA crosslinking proceeds via the N-terminal tails

    International Nuclear Information System (INIS)

    Stefanovski, V.; Dimitrov, S.; Angelov, D.; Keskinova, E.; Pashev, I.

    1990-01-01

    The covalent crosslinking of histones to DNA by UV laser irradiation is accomplished solely via the N-terminal part of the molecule. Irradiated isolated calfthymus nuclei are treated with clostripain. The crosslinked protein-DNA complexes are isolated and the presence of each core histone analyzed by dot-immunoassay using antibodies, specific to the central globular domain of the respective histone. The reaction is negative for all core histones i.e. the globular domain is absent. It means that this domain has not been crosslinked to DNA and, once cleaved by clostripain, it has been stripped from DNA during the centrigugation in CsCl. This peculiar property of the crosslinked procedure makes it particularly useful in addressing some yet unanswered questions concerning histone-DNA interactions, such as the interaction of the N-terminal tails with linker DNA, the effect of the transient postsynthetic histone acetylation on its interaction with DNA, etc. These questions are now under study. 1 fig., 6 refs

  15. Critical structural and functional roles for the N-terminal insertion sequence in surfactant protein B analogs.

    Directory of Open Access Journals (Sweden)

    Frans J Walther

    2010-01-01

    Full Text Available Surfactant protein B (SP-B; 79 residues belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., approximately residues 8-25 and 63-78, confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1-7 attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity.FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary alpha-helix and secondary beta-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR, predictive aggregation algorithms, and molecular dynamics (MD and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a "saposin-like" fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B.Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.

  16. Microtubule association of EML proteins and the EML4-ALK variant 3 oncoprotein require an N-terminal trimerization domain.

    Science.gov (United States)

    Richards, Mark W; O'Regan, Laura; Roth, Daniel; Montgomery, Jessica M; Straube, Anne; Fry, Andrew M; Bayliss, Richard

    2015-05-01

    Proteins of the echinoderm microtubule (MT)-associated protein (EMAP)-like (EML) family contribute to formation of the mitotic spindle and interphase MT network. EML1-4 consist of Trp-Asp 40 (WD40) repeats and an N-terminal region containing a putative coiled-coil. Recurrent gene rearrangements in non-small cell lung cancer (NSCLC) fuse EML4 to anaplastic lymphoma kinase (ALK) causing expression of several oncogenic fusion variants. The fusions have constitutive ALK activity due to self-association through the EML4 coiled-coil. We have determined crystal structures of the coiled-coils from EML2 and EML4, which describe the structural basis of both EML self-association and oncogenic EML4-ALK activation. The structures reveal a trimeric oligomerization state directed by a conserved pattern of hydrophobic residues and salt bridges. We show that the trimerization domain (TD) of EML1 is necessary and sufficient for self-association. The TD is also essential for MT binding; however, this property requires an adjacent basic region. These observations prompted us to investigate MT association of EML4-ALK and EML1-ABL1 (Abelson 1) fusions in which variable portions of the EML component are present. Uniquely, EML4-ALK variant 3, which includes the TD and basic region of EML4 but none of the WD40 repeats, was localized to MTs, both when expressed recombinantly and when expressed in a patient-derived NSCLC cell line (H2228). This raises the question of whether the mislocalization of ALK activity to MTs might influence downstream signalling and malignant properties of cells. Furthermore, the structure of EML4 TD may enable the development of protein-protein interaction inhibitors targeting the trimerization interface, providing a possible avenue towards therapeutic intervention in EML4-ALK NSCLC.

  17. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain.

    Science.gov (United States)

    Moparthi, Lavanya; Survery, Sabeen; Kreir, Mohamed; Simonsen, Charlotte; Kjellbom, Per; Högestätt, Edward D; Johanson, Urban; Zygmunt, Peter M

    2014-11-25

    We have purified and reconstituted human transient receptor potential (TRP) subtype A1 (hTRPA1) into lipid bilayers and recorded single-channel currents to understand its inherent thermo- and chemosensory properties as well as the role of the ankyrin repeat domain (ARD) of the N terminus in channel behavior. We report that hTRPA1 with and without its N-terminal ARD (Δ1-688 hTRPA1) is intrinsically cold-sensitive, and thus, cold-sensing properties of hTRPA1 reside outside the N-terminal ARD. We show activation of hTRPA1 by the thiol oxidant 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin) and that electrophilic compounds activate hTRPA1 in the presence and absence of the N-terminal ARD. The nonelectrophilic compounds menthol and the cannabinoid Δ(9)-tetrahydrocannabiorcol (C16) directly activate hTRPA1 at different sites independent of the N-terminal ARD. The TRPA1 antagonist HC030031 inhibited cold and chemical activation of hTRPA1 and Δ1-688 hTRPA1, supporting a direct interaction with hTRPA1 outside the N-terminal ARD. These findings show that hTRPA1 is an intrinsically cold- and chemosensitive ion channel. Thus, second messengers, including Ca(2+), or accessory proteins are not needed for hTRPA1 responses to cold or chemical activators. We suggest that conformational changes outside the N-terminal ARD by cold, electrophiles, and nonelectrophiles are important in hTRPA1 channel gating and that targeting chemical interaction sites outside the N-terminal ARD provides possibilities to fine tune TRPA1-based drug therapies (e.g., for treatment of pain associated with cold hypersensitivity and cardiovascular disease).

  18. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    Science.gov (United States)

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding.

    Science.gov (United States)

    Sandikci, Arzu; Gloge, Felix; Martinez, Michael; Mayer, Matthias P; Wade, Rebecca; Bukau, Bernd; Kramer, Günter

    2013-07-01

    Newly synthesized polypeptides undergo various cotranslational maturation steps, including N-terminal enzymatic processing, chaperone-assisted folding and membrane targeting, but the spatial and temporal coordination of these steps is unclear. We show that Escherichia coli methionine aminopeptidase (MAP) associates with ribosomes through a charged loop that is crucial for nascent-chain processing and cell viability. MAP competes with peptide deformylase (PDF), the first enzyme to act on nascent chains, for binding sites at the ribosomal tunnel exit. PDF has extremely fast association and dissociation kinetics, which allows it to frequently sample ribosomes and ensure the processing of nascent chains after their emergence. Premature recruitment of the chaperone trigger factor, or polypeptide folding, negatively affect processing efficiency. Thus, the fast ribosome association kinetics of PDF and MAP are crucial for the temporal separation of nascent-chain processing from later maturation events, including chaperone recruitment and folding.

  20. Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker

    Directory of Open Access Journals (Sweden)

    Yunlong Si

    2016-12-01

    Full Text Available Galectin-8 (Gal-8 plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of β-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other’s conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay.

  1. Antimicrobial activity of human prion protein is mediated by its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Mukesh Pasupuleti

    Full Text Available BACKGROUND: Cellular prion-related protein (PrP(c is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the "classical" human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-alpha in vitro. CONCLUSIONS: The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.

  2. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif

    Directory of Open Access Journals (Sweden)

    Emmersen Jeppe

    2010-05-01

    Full Text Available Abstract Background Powdery mildew and rust fungi are widespread, serious pathogens that depend on developing haustoria in the living plant cells. Haustoria are separated from the host cytoplasm by a plant cell-derived extrahaustorial membrane. They secrete effector proteins, some of which are subsequently transferred across this membrane to the plant cell to suppress defense. Results In a cDNA library from barley epidermis containing powdery mildew haustoria, two-thirds of the sequenced ESTs were fungal and represented ~3,000 genes. Many of the most highly expressed genes encoded small proteins with N-terminal signal peptides. While these proteins are novel and poorly related, they do share a three-amino acid motif, which we named "Y/F/WxC", in the N-terminal of the mature proteins. The first amino acid of this motif is aromatic: tyrosine, phenylalanine or tryptophan, and the last is always cysteine. In total, we identified 107 such proteins, for which the ESTs represent 19% of the fungal clones in our library, suggesting fundamental roles in haustoria function. While overall sequence similarity between the powdery mildew Y/F/WxC-proteins is low, they do have a highly similar exon-intron structure, suggesting they have a common origin. Interestingly, searches of public fungal genome and EST databases revealed that haustoria-producing rust fungi also encode large numbers of novel, short proteins with signal peptides and the Y/F/WxC-motif. No significant numbers of such proteins were identified from genome and EST sequences from either fungi which do not produce haustoria or from haustoria-producing Oomycetes. Conclusion In total, we identified 107, 178 and 57 such Y/F/WxC-proteins from the barley powdery mildew, the wheat stem rust and the wheat leaf rust fungi, respectively. All together, our findings suggest the Y/F/WxC-proteins to be a new class of effectors from haustoria-producing pathogenic fungi.

  3. C-Jun N-terminal kinase signalling pathway in response to cisplatin.

    Science.gov (United States)

    Yan, Dong; An, GuangYu; Kuo, Macus Tien

    2016-11-01

    Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    Energy Technology Data Exchange (ETDEWEB)

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of Ry

  5. Functional role of the extracellular N-terminal domain of neuropeptide Y subfamily receptors in membrane integration and agonist-stimulated internalization.

    Science.gov (United States)

    Lindner, Diana; Walther, Cornelia; Tennemann, Anja; Beck-Sickinger, Annette G

    2009-01-01

    The N terminus is the most variable element in G protein-coupled receptors (GPCRs), ranging from seven residues up to approximately 5900 residues. For family B and C GPCRs it is described that at least part of the ligand binding site is located within the N terminus. Here we investigated the role of the N terminus in the neuropeptide Y receptor family, which belongs to the class A of GPCRs. We cloned differentially truncated Y receptor mutants, in which the N terminus was partially or completely deleted. We found, that eight amino acids are sufficient for full ligand binding and signal transduction activity. Interestingly, we could show that no specific amino acids but rather the extension of the first transmembrane helix by any residues is sufficient for receptor activity but also for membrane integration in case of the hY(1) and the hY(4) receptors. In contrast, the complete deletion of the N terminus in the hY(2) receptors resulted in a mutant that is fully integrated in the membrane but does not bind the ligand very well and internalizes much slower compared to the wild type receptor. Interestingly, also these effects could be reverted by any N-terminal extension. Accordingly, the most important function of the N termini seems to be the stabilization of the first transmembrane helix to ensure the correct receptor structure, which obviously is essential for ligand binding, integration into the cell membrane and receptor internalization.

  6. N-terminal region of gelsolin induces apoptosis of activated hepatic stellate cells by a caspase-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Budhaditya Mazumdar

    Full Text Available Activated hepatic stellate cells (HSCs are the major source for alteration of extracellular matrix in fibrosis and cirrhosis. Conditioned medium (CM collected from immortalized human hepatocytes (IHH have earlier been shown to be responsible for apoptosis of HSCs. In this study, we have shown that antibodies raised against a peptide derived from a linear B-cell epitope in the N-terminal region of gelsolin identified a gelsolin fragment in IHH CM. Analysis of activated stellate cell death by CM collected from Huh7 cells transfected with plasmids encoding gelsolin deletion mutants suggested that the N-terminal half of gelsolin contained sequences which were responsible for stellate cell death. Further analysis determined that this activity was restricted to a region encompassing amino acids 1-70 in the gelsolin sequence; antibody directed to an epitope within this region was able to neutralize stellate cell death. Gelsolin modulation of cell death using this fragment involved upregulation of TRAIL-R1 and TRAIL-R2, and involved caspase 3 activation by extrinsic pathway. The apoptotic activity of N-terminal gelsolin fragments was restricted to activated but not quiescent stellate cells indicating its potential application in therapeutic use as an anti-fibrotic agent. Gelsolin fragments encompassing N-terminal regions in polypeptides of different molecular sizes were detected by N-terminal peptide specific antiserum in IHH CM immunoprecipitated with chronically HCV infected patient sera, suggesting the presence of autoantibodies generated against N-terminal gelsolin fragments in patients with chronic liver disease.

  7. N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: a case study in latarcins.

    Science.gov (United States)

    Polyansky, Anton A; Vassilevski, Alexander A; Volynsky, Pavel E; Vorontsova, Olga V; Samsonova, Olga V; Egorova, Natalya S; Krylov, Nicolay A; Feofanov, Alexei V; Arseniev, Alexander S; Grishin, Eugene V; Efremov, Roman G

    2009-07-21

    In silico structural analyses of sets of alpha-helical antimicrobial peptides (AMPs) are performed. Differences between hemolytic and non-hemolytic AMPs are revealed in organization of their N-terminal region. A parameter related to hydrophobicity of the N-terminal part is proposed as a measure of the peptide propensity to exhibit hemolytic and other unwanted cytotoxic activities. Based on the information acquired, a rational approach for selective removal of these properties in AMPs is suggested. A proof of concept is gained through engineering specific mutations that resulted in elimination of the hemolytic activity of AMPs (latarcins) while leaving the beneficial antimicrobial effect intact.

  8. Antigenicity and Immunogenicity of RV144 Vaccine AIDSVAX Clade E Envelope Immunogen Is Enhanced by a gp120 N-Terminal Deletion

    Science.gov (United States)

    Liao, Hua-Xin; Tomaras, Georgia D.; Bonsignori, Mattia; Tsao, Chun-Yen; Hwang, Kwan-Ki; Chen, Haiyan; Lloyd, Krissey E.; Bowman, Cindy; Sutherland, Laura; Jeffries, Thomas L.; Kozink, Daniel M.; Stewart, Shelley; Anasti, Kara; Jaeger, Frederick H.; Parks, Robert; Yates, Nicole L.; Overman, R. Glenn; Sinangil, Faruk; Berman, Phillip W.; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Karasavva, Nicos; Rerks-Ngarm, Supachai; Kim, Jerome H.; Michael, Nelson L.; Zolla-Pazner, Susan; Santra, Sampa; Letvin, Norman L.; Harrison, Stephen C.

    2013-01-01

    An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity. PMID:23175357

  9. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites.

    Science.gov (United States)

    Lin, Lianyun; Liu, Chen; Qin, Juan; Wang, Jie; Dong, Shengjie; Chen, Wei; He, Weiyi; Gao, Qingzhi; You, Minsheng; Yuchi, Zhiguang

    2018-01-01

    Ryanodine receptors (RyRs) are large calcium-release channels located in sarcoplasmic reticulum membrane. They play a central role in excitation-contraction coupling of muscle cells. Three commercialized insecticides targeting pest RyRs generate worldwide sales over 2 billion U.S. dollars annually, but the structure of insect RyRs remains elusive, hindering our understanding of the mode of action of RyR-targeting insecticides and the development of insecticide resistance in pests. Here we present the crystal structure of RyR N-terminal domain (NTD) (residue 1-205) at 2.84 Å resolution from the diamondback moth (DBM), Plutella xylostella, a destructive pest devouring cruciferous crops all over the world. Similar to its mammalian homolog, DBM RyR NTD consists of a beta-trefoil folding motif and a flanking alpha helix. Interestingly, two regions in NTD interacting with neighboring domains showed distinguished conformations in DBM relative to mammalian RyRs. Using homology modeling and molecular dynamics simulation, we created a structural model of the N-terminal three domains, showing two unique binding pockets that could be targeted by potential species-specific insecticides. Thermal melt experiment showed that the stability of DBM RyR NTD was higher than mammalian RyRs, probably due to a stable intra-domain disulfide bond observed in the crystal structure. Previously DBM NTD was shown to be one of the two critical regions to interact with insecticide flubendiamide, but isothermal titration calorimetry experiments negated DBM NTD alone as a major binding site for flubendiamide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation

    Directory of Open Access Journals (Sweden)

    Carolina Varela Chavez

    2016-03-01

    Full Text Available Clostridium sordellii lethal toxin (TcsL is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases.

  11. The first occurence of a pleistocenic coral along the Brazilian coast - Age dating of the maximum of the penultimate transgression

    International Nuclear Information System (INIS)

    Martin, L.; Bittencourt, A.C.S.P.; Silva Vilas Boas, G. da

    1982-01-01

    Age dating work on a coral from Olivenca, Bahia, Brazil, has disclosed the first occurrence of a pleistocenic coral along the Brazilian coast. This coral has its top at the present high tide level and is covered by a series of beach-ridges formed after the maximum of the penultimate transgression that rose above present sea level. Five determinations by the Ionium ( 230 Th)/Uranium method produced ages ranging from 116.000 to 142.000 years B.P., indicating that maximum in the area to have taken place 120.000-125.000 years B.P., consistent with its documentation in other parts of the world. At that time, mean sea level was 8 + - 2 m above the present. (Author) [pt

  12. Characterization of an extensin-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1

    DEFF Research Database (Denmark)

    Feng, Tao; Nyffenegger, Christian; Højrup, Peter

    2014-01-01

    Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing...

  13. Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes

    DEFF Research Database (Denmark)

    Nguyen, Khoa; Garcia, Alvaro; Sani, Marc Antoine

    2018-01-01

    phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state 31P and 2...

  14. Intrinsic structural differences in the N-terminal segment of pulmonary surfactant protein SP-C from different species

    DEFF Research Database (Denmark)

    Plasencia, I; Rivas, L; Casals, C

    2001-01-01

    Predictive studies suggest that the known sequences of the N-terminal segment of surfactant protein SP-C from animal species have an intrinsic tendency to form beta-turns, but there are important differences on the probable location of these motifs in different SP-C species. Our hypothesis...

  15. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  16. Cutting edge: HLA-B27 acquires many N-terminal dibasic peptides: coupling cytosolic peptide stability to antigen presentation

    NARCIS (Netherlands)

    Herberts, Carla A.; Neijssen, Joost J.; de Haan, Jolanda; Janssen, Lennert; Drijfhout, Jan Wouter; Reits, Eric A.; Neefjes, Jacques J.

    2006-01-01

    Ag presentation by MHC class I is a highly inefficient process because cytosolic peptidases destroy most peptides after proteasomal generation. Various mechanisms shape the MHC class I peptidome. We define a new one: intracellular peptide stability. Peptides with two N-terminal basic amino acids are

  17. FUNCTIONAL-ANALYSIS OF THE N-TERMINAL PREPEPTIDES OF WATERMELON MITOCHONDRIAL AND GLYOXYSOMAL MALATE-DEHYDROGENASES

    NARCIS (Netherlands)

    LEHNERER, M; KEIZERGUNNIK, [No Value; VEENHUIS, M; GIETL, C

    1994-01-01

    Mitochondrial and glyoxysomal malate dehydrogenase (mMDH; gMDH; L-malate : NAD(+) oxidoreductase; EC 1.1.1.37) of watermelon (Citrullus vulgaris) cotyledons are synthesized with N-terminal cleavable presequences which are shown to specify sorting of the two proteins. The two presequences differ in

  18. Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha

    NARCIS (Netherlands)

    Gietl, Christine; Faber, Klaas Nico; Klei, Ida J. van der; Veenhuis, Marten

    1994-01-01

    We have studied the significance of the N-terminal presequence of watermelon (Citrullus vulgaris) glyoxysomal malate dehydrogenase [gMDH; (S)-malate:NAD+ oxidoreductase; EC 1.1.1.37] in microbody targeting. The yeast Hansenula polymorpha was used as heterologous host for the in vivo expression of

  19. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1-471 of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection.

  20. The outermost N-terminal region of tapasin facilitates folding of major histocompatibility complex class I

    DEFF Research Database (Denmark)

    Røder, Gustav Andreas; Geironson, Linda; Darabi, Anna

    2009-01-01

    ). Using a biochemical peptide-MHC-I-binding assay, recombinant Tpn(1-87) was found to specifically facilitate peptide-dependent folding of HLA-A*0201. Furthermore, we used Tpn(1-87) to generate a monoclonal antibody, alphaTpn(1-87)/80, specific for natural human Tpn and capable of cellular staining of ER......Tapasin (Tpn) is an ER chaperone that is uniquely dedicated to MHC-I biosynthesis. It binds MHC-I molecules, integrates them into peptide-loading complexes, and exerts quality control of the bound peptides; only when an "optimal peptide" is bound will the MHC-I be released and exported to the cell...... surface for presentation to T cells. The exact mechanisms of Tpn quality control and the criteria for being an optimal peptide are still unknown. Here, we have generated a recombinant fragment of human Tpn, Tpn(1-87) (representing the 87 N-terminal and ER-luminal amino acids of the mature Tpn protein...

  1. [Diagnostic values of serum type III procollagen N-terminal peptide in type IV gastric cancer].

    Science.gov (United States)

    Akazawa, S; Fujiki, T; Kanda, Y; Kumai, R; Yoshida, S

    1985-04-01

    Since increased synthesis of collagen has been demonstrated in tissue of type IV gastric cancer, we attempted to distinguish type IV gastric cancer from other cancers by measuring serum levels of type III procollagen N-terminal peptide (type III-N-peptide). Mean serum levels in type IV gastric cancer patients without metastasis were found to be elevated above normal values and developed a tendency to be higher than those in types I, II and III gastric cancer patients without metastasis. Highly positive ratios were found in patients with liver diseases including hepatoma and colon cancer, biliary tract cancer, and esophageal cancer patients with liver, lung or bone metastasis, but only 2 out of 14 of these cancer patients without such metastasis showed positive serum levels of type III-N-peptide. Positive cases in patients with type IV gastric cancer were obtained not only in the group with clinical stage IV but also in the groups with clinical stages II and III. In addition, high serum levels of type III-N-peptide in patients with type IV gastric cancer were seen not only in the cases with liver, lung or bone metastasis but also in cases with disseminated peritoneal metastasis alone. These results suggest that if the serum level of type III-N-peptide is elevated above normal values, type IV gastric cancer should be suspected after ruling out liver diseases, myelofibrosis and liver, lung or bone metastasis.

  2. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    Science.gov (United States)

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  3. The N-terminal, polybasic region is critical for prion protein neuroprotective activity.

    Directory of Open Access Journals (Sweden)

    Jessie A Turnbaugh

    Full Text Available Several lines of evidence suggest that the normal form of the prion protein, PrP(C, exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32-134, called F35. To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23-31, Δ23-111, and Δ23-134 to rescue the phenotype of Tg(F35 mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases.

  4. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences.

    LENUS (Irish Health Repository)

    Ivanov, Ivaylo P

    2011-05-01

    In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5\\' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5\\' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.

  5. Structure of the N-terminal region of Haemophilus Influenzae HI0017: Implications for function

    Energy Technology Data Exchange (ETDEWEB)

    Yu Liping; Mack, Jamey; Hajduk, Phil; Fesik, Stephen W. [Abbott Laboratories, Pharmaceutical Discovery Division, D46Y, AP10/LL (United States)

    2001-06-15

    Haemophilus influenzae is a gram-negative pathogen that causes infections ranging from asymptomatic colonization of the human upper respiratory tract to serious invasive diseases such as meningitis. Although the genome of Haemophilus influenzae has been completely sequenced, the structure and function of many of these proteins are unknown. HI0017 is one of these uncharacterized proteins. Here we describe the three-dimensional solution structure of the N-terminal portion of HI0017 as determined by NMR spectroscopy. The structure consists of a five-stranded antiparallel {beta}-sheet and two short {alpha}-helices. It is similar to the C-terminal domain of Diphtheria toxin repressor (DtxR). The C-terminal portion of HI0017 has an amino acid sequence that closely resembles pyruvate formate-lyase - an enzyme that converts pyruvate and CoA into acetyl-CoA and formate by a radical mechanism. Based on structural and sequence comparisons, we propose that the C-terminus of HI0017 functions as an enzyme with a glycyl radical mechanism, while the N-terminus participates in protein/protein interactions involving an activase (iron-sulfur protein) and/or the substrate.

  6. Structure of the N-terminal region of Haemophilus Influenzae HI0017: Implications for function

    International Nuclear Information System (INIS)

    Yu Liping; Mack, Jamey; Hajduk, Phil; Fesik, Stephen W.

    2001-01-01

    Haemophilus influenzae is a gram-negative pathogen that causes infections ranging from asymptomatic colonization of the human upper respiratory tract to serious invasive diseases such as meningitis. Although the genome of Haemophilus influenzae has been completely sequenced, the structure and function of many of these proteins are unknown. HI0017 is one of these uncharacterized proteins. Here we describe the three-dimensional solution structure of the N-terminal portion of HI0017 as determined by NMR spectroscopy. The structure consists of a five-stranded antiparallel β-sheet and two short α-helices. It is similar to the C-terminal domain of Diphtheria toxin repressor (DtxR). The C-terminal portion of HI0017 has an amino acid sequence that closely resembles pyruvate formate-lyase - an enzyme that converts pyruvate and CoA into acetyl-CoA and formate by a radical mechanism. Based on structural and sequence comparisons, we propose that the C-terminus of HI0017 functions as an enzyme with a glycyl radical mechanism, while the N-terminus participates in protein/protein interactions involving an activase (iron-sulfur protein) and/or the substrate

  7. Biologic variability of N-terminal pro-brain natriuretic peptide in adult healthy cats.

    Science.gov (United States)

    Harris, Autumn N; Estrada, Amara H; Gallagher, Alexander E; Winter, Brandy; Lamb, Kenneth E; Bohannon, Mary; Hanscom, Jancy; Mainville, Celine A

    2017-02-01

    Objectives The biologic variability of N-terminal pro-brain natriuretic peptide (NT-proBNP) and its impact on diagnostic utility is unknown in healthy cats and those with cardiac disease. The purpose of this study was to determine the biologic variation of NT-proBNP within-day and week-to-week in healthy adult cats. Methods Adult cats were prospectively evaluated by complete blood count (CBC), biochemistry, total thyroxine, echocardiography, electrocardiography and blood pressure, to exclude underlying systemic or cardiac disease. Adult healthy cats were enrolled and blood samples were obtained at 11 time points over a 6 week period (0, 2 h, 4 h, 6 h, 8 h, 10 h and at weeks 2, 3, 4, 5 and 6). The intra-individual (coefficient of variation [CV I ]) biologic variation along with index of individuality and reference change values (RCVs) were calculated. Univariate models were analyzed and included comparison of the six different time points for both daily and weekly samples. This was followed by a Tukey's post-hoc adjustment, with a P value of cats. Further research is warranted to evaluate NT-proBNP variability, particularly how serial measurements of NT-proBNP may be used in the diagnosis and management of cats with cardiac disease.

  8. Procollagen III N-terminal Propeptide and Desmosine are Released by Matrix Destruction in Pulmonary Tuberculosis

    Science.gov (United States)

    Seddon, Jo; Kasprowicz, Victoria; Walker, Naomi F.; Yuen, Ho Ming; Sunpath, Henry; Tezera, Liku; Meintjes, Graeme; Wilkinson, Robert J.; Bishai, William R.; Friedland, Jon S.; Elkington, Paul T.

    2013-01-01

    Background. Tuberculosis is transmitted by patients with pulmonary disease. Matrix metalloproteinases (MMPs) drive lung destruction in tuberculosis but the resulting matrix degradation products (MDPs) have not been studied. We investigate the hypothesis that MMP activity generates matrix turnover products as correlates of lung pathology. Methods. Induced sputum and plasma were collected prospectively from human immunodeficiency virus (HIV) positive and negative patients with pulmonary tuberculosis and controls. Concentrations of MDPs and MMPs were analyzed by ELISA and Luminex array in 2 patient cohorts. Results. Procollagen III N-terminal propeptide (PIIINP) was 3.8-fold higher in induced sputum of HIV-uninfected tuberculosis patients compared to controls and desmosine, released during elastin degradation, was 2.4-fold higher. PIIINP was elevated in plasma of tuberculosis patients. Plasma PIIINP correlated with induced sputum MMP-1 concentrations and radiological scores, demonstrating that circulating MDPs reflect lung destruction. In a second patient cohort of mixed HIV seroprevalence, plasma PIIINP concentration was increased 3.0-fold above controls (P tuberculosis patients (P = .001). Receiver operating characteristic analysis utilizing these 2 variables demonstrated an area under the curve of 0.832 (P pulmonary tuberculosis, MMP-driven immunopathology generates matrix degradation products. PMID:23922364

  9. N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine

    Directory of Open Access Journals (Sweden)

    Fernanda G. Versiani

    2013-01-01

    Full Text Available The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1, which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.

  10. The solution structure of the N-terminal zinc finger of GATA-1 reveals a specific binding face for the transcriptional co-factor FOG

    International Nuclear Information System (INIS)

    Kowalski, K.; Czolij, R.; King, G.F.; Crossley, M.; Mackay, J.P.

    1999-01-01

    Zinc fingers (ZnFs) are generally regarded as DNA-binding motifs. However, a number of recent reports have implicated particular ZnFs in the mediation of protein-protein interactions. The N-terminal ZnF of GATA-1 (NF) is one such finger, having been shown to interact with a number of other proteins, including the recently discovered transcriptional co-factor FOG. Here we solve the three-dimensional structure of the NF in solution using multidimensional 1H/15N NMR spectroscopy, and we use 1H/15N spin relaxation measurements to investigate its backbone dynamics. The structure consists of two distorted β-hairpins and a single α-helix, and is similar to that of the C-terminal ZnF of chicken GATA-1. Comparisons of the NF structure with those of other C4-type zinc binding motifs, including hormone receptor and LIM domains, also reveal substantial structural homology. Finally, we use the structure to map the spatial locations of NF residues shown by mutagenesis to be essential for FOG binding, and demonstrate that these residues all lie on a single face of the NF. Notably, this face is well removed from the putative DNA- binding face of the NF, an observation which is suggestive of simultaneous roles for the NF; that is, stabilisation of GATA-1 DNA complexes and recruitment of FOG to GATA-1-controlled promoter regions

  11. Adenovirus fibre shaft sequences fold into the native triple beta-spiral fold when N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif.

    Science.gov (United States)

    Papanikolopoulou, Katerina; Teixeira, Susana; Belrhali, Hassan; Forsyth, V Trevor; Mitraki, Anna; van Raaij, Mark J

    2004-09-03

    Adenovirus fibres are trimeric proteins that consist of a globular C-terminal domain, a central fibrous shaft and an N-terminal part that attaches to the viral capsid. In the presence of the globular C-terminal domain, which is necessary for correct trimerisation, the shaft segment adopts a triple beta-spiral conformation. We have replaced the head of the fibre by the trimerisation domain of the bacteriophage T4 fibritin, the foldon. Two different fusion constructs were made and crystallised, one with an eight amino acid residue linker and one with a linker of only two residues. X-ray crystallographic studies of both fusion proteins shows that residues 319-391 of the adenovirus type 2 fibre shaft fold into a triple beta-spiral fold indistinguishable from the native structure, although this is now resolved at a higher resolution of 1.9 A. The foldon residues 458-483 also adopt their natural structure. The intervening linkers are not well ordered in the crystal structures. This work shows that the shaft sequences retain their capacity to fold into their native beta-spiral fibrous fold when fused to a foreign C-terminal trimerisation motif. It provides a structural basis to artificially trimerise longer adenovirus shaft segments and segments from other trimeric beta-structured fibre proteins. Such artificial fibrous constructs, amenable to crystallisation and solution studies, can offer tractable model systems for the study of beta-fibrous structure. They can also prove useful for gene therapy and fibre engineering applications.

  12. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.

    Science.gov (United States)

    Trosiuk, Tetiana V; Shalak, Vyacheslav F; Szczepanowski, Roman H; Negrutskii, Boris S; El'skaya, Anna V

    2016-02-01

    Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect. © 2015 FEBS.

  13. Suppression of cell death by the secretory form of N-terminal ERC/mesothelin.

    Science.gov (United States)

    Wang, Tegexibaiyin; Kajino, Kazunori; Abe, Masaaki; Tan, Ke; Maruo, Masumi; Sun, Guodong; Hagiwara, Yoshiaki; Maeda, Masahiro; Hino, Okio

    2010-08-01

    ERC/mesothelin is highly expressed in malignant mesothelioma, pancreatic cancer, and ovarian cancer. It is cleaved to a 30 kDa N-terminal secretory form (N-ERC) and a 40 kDa C-terminal membranous form (C-ERC). Several functions have been reported for full-length ERC (full-ERC) and C-ERC/mesothelin, such as in cell adhesion and invasion, stimulation of cell proliferation, and the suppression of cell death. However, there have been no studies to date on the function of secretory N-ERC, despite the fact that it is abundantly secreted into the sera of mesothelioma patients. In this study, we investigated whether N-ERC could function as a secretory factor to stimulate tumor progression. Full-, N, or C-ERC was overexpressed in the human hepatocellular carcinoma cell line Huh7 that lacks endogenous expression of ERC/mesothelin. Changes in the rates of cell proliferation and cell death were determined, and the state of signal transducers was examined using various endpoints: total cell counts, trypan blue exclusion rate, BrdU incorporation rate, TUNEL assay, and the phosphorylation of ERK1/2 and Stat3. In cells overexpressing N-ERC, phosphorylation of ERK1/2 was enhanced and the rate of cell death decreased, leading to the increase of cell number. The culture medium containing the secretory N-ERC also had the activity to increase the number of cells. Our data suggested that one of the full-ERC functions reported previously was mediated by the secretory N-ERC.

  14. Abl N-terminal cap stabilization of SH3 domain dynamics.

    Science.gov (United States)

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E; Engen, John R

    2008-05-27

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that the NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears to be important for locking the SH3 and SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2 kinase linker, providing a unique assay for testing NCap-induced stabilization of the SH3 domain in various constructs. The results showed that the NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2 kinase linker. The stabilization effect was absent in constructs of just the NCap and SH3 but was obvious when the SH2 domain and the SH2 kinase linker were present. These results suggest that interactions between the NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases.

  15. Systemic N-terminal fragments of adrenocorticotropin reduce inflammation- and stress-induced anhedonia in rats.

    Science.gov (United States)

    Markov, Dmitrii D; Yatsenko, Ksenia A; Inozemtseva, Lyudmila S; Grivennikov, Igor A; Myasoedov, Nikolai F; Dolotov, Oleg V

    2017-08-01

    Emerging evidence implicates impaired self-regulation of the hypothalamic-pituitary-adrenal (HPA) axis and inflammation as important and closely related components of the pathophysiology of major depression. Antidepressants show anti-inflammatory effects and are suggested to enhance glucocorticoid feedback inhibition of the HPA axis. HPA axis activity is also negatively self-regulated by the adrenocorticotropic hormone (ACTH), a potent anti-inflammatory peptide activating five subtypes of melanocortin receptors (MCRs). There are indications that ACTH-mediated feedback can be activated by noncorticotropic N-terminal ACTH fragments such as a potent anti-inflammatory MC1/3/4/5R agonist α-melanocyte-stimulating hormone (α-MSH), corresponding to ACTH(1-13), and a MC3/5R agonist ACTH(4-10). We investigated whether intraperitoneal administration of rats with these peptides affects anhedonia, which is a core symptom of depression. Inflammation-related anhedonia was induced by a single intraperitoneal administration of a low dose (0.025mg/kg) of lipopolysaccharide (LPS). Stress-related anhedonia was induced by the chronic unpredictable stress (CUS) procedure. The sucrose preference test was used to detect anhedonia. We found that ACTH(4-10) pretreatment decreased LPS-induced increase in serum corticosterone and tumor necrosis factor (TNF)-α, and a MC3/4R antagonist SHU9119 blocked this effect. Both α-MSH and ACTH(4-10) alleviated LPS-induced anhedonia. In the CUS model, these peptides reduced anhedonia and normalized body weight gain. The data indicate that systemic α-MSH and ACTH(4-10) produce an antidepressant-like effect on anhedonia induced by stress or inflammation, the stimuli that trigger the release of ACTH and α-MSH into the bloodstream. The results suggest a counterbalancing role of circulating melanocortins in depression and point to a new approach for antidepressant treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characterization of niphatenones that inhibit androgen receptor N-terminal domain.

    Directory of Open Access Journals (Sweden)

    Carmen A Banuelos

    Full Text Available Androgen ablation therapy causes a temporary reduction in tumor burden in patients with advanced prostate cancer. Unfortunately the malignancy will return to form lethal castration-recurrent prostate cancer (CRPC. The androgen receptor (AR remains transcriptionally active in CRPC in spite of castrate levels of androgens in the blood. AR transcriptional activity resides in its N-terminal domain (NTD. Possible mechanisms of continued AR transcriptional activity may include, at least in part, expression of constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD. Current therapies that target the AR LBD, would not be effective against these AR variants. Currently no drugs are clinically available that target the AR NTD which should be effective against these AR variants as well as full-length AR. Niphatenones were originally isolated and identified in active extracts from Niphates digitalis marine sponge. Here we begin to characterize the mechanism of niphatenones in blocking AR transcriptional activity. Both enantiomers had similar IC50 values of 6 µM for inhibiting the full-length AR in a functional transcriptional assay. However, (S-niphatenone had significantly better activity against the AR NTD compared to (R-niphatenone. Consistent with niphatenones binding to and inhibiting transactivation of AR NTD, niphatenones inhibited AR splice variant. Niphatenone did not affect the transcriptional activity of the related progesterone receptor, but slightly decreased glucocorticoid receptor (GR activity and covalently bound to GR activation function-1 (AF-1 region. Niphatenone blocked N/C interactions of AR without altering either AR protein levels or its intracellular localization in response to androgen. Alkylation with glutathione suggests that niphatenones are not a feasible scaffold for further drug development.

  17. Plasma N-terminal pro B-type natriuretic peptide concentrations in dogs with pulmonic stenosis.

    Science.gov (United States)

    Kobayashi, Keiya; Hori, Yasutomo; Chimura, Syuuichi

    2014-06-01

    The detailed information between plasma N-terminal pro B-type natriuretic peptide (NT-proBNP) concentrations and dogs with pulmonic stenosis (PS) is still unknown. The aim of the present study was to investigate the clinical utility of measuring plasma NT-proBNP concentrations in dogs with PS and to determine whether plasma NT-proBNP concentration could be used to assess disease severity. This retrospective study enrolled 30 client-owned, untreated dogs with PS (asymptomatic [n=23] and symptomatic [n=7]) and 11 healthy laboratory beagles. Results of physical examination, thoracic radiography and echocardiography were recorded. Plasma NT-proBNP concentrations were measured using commercial laboratories. Compared to the healthy control dogs, cardiothoracic ratio was significantly increased in dogs with both asymptomatic and symptomatic PS. Similarly, the ratio of the main pulmonary artery to aorta was significantly decreased in dogs with both asymptomatic and symptomatic PS. The pulmonic pressure gradient in the symptomatic PS dogs was significantly higher than that in the asymptomatic PS dogs. Plasma NT-proBNP concentration was significantly elevated in the symptomatic PS dogs compared to the healthy control dogs and the asymptomatic PS dogs. Furthermore, the Doppler-derived pulmonic pressure gradient was significantly correlated with the plasma NT-proBNP concentration (r=0.78, r(2)=0.61, P764 pmol/l to identify severe PS had a sensitivity of 76.2% and specificity of 81.8%. The plasma NT-proBNP concentration increased by spontaneous PS, i.e. right-sided pressure overload and can be used as an additional method to assess the severity of PS in dogs.

  18. Structural modeling of the N-terminal signal–receiving domain of IκBα

    Directory of Open Access Journals (Sweden)

    Samira eYazdi

    2015-06-01

    Full Text Available The transcription factor nuclear factor-κB (NF-κB exerts essential roles in many biological processes including cell growth, apoptosis and innate and adaptive immunity. The NF-kB inhibitor (IκBα retains NF-κB in the cytoplasm and thus inhibits nuclear localization of NF-κB and its association with DNA. Recent protein crystal structures of the C-terminal part of IκBα in complex with NF-κB provided insights into the protein-protein interactions but could not reveal structural details about the N-terminal signal receiving domain (SRD. The SRD of IκBα contains a degron, formed following phosphorylation by IκB kinases (IKK. In current protein X-ray structures, however, the SRD is not resolved and assumed to be disordered. Here, we combined secondary structure annotation and domain threading followed by long molecular dynamics (MD simulations and showed that the SRD possesses well-defined secondary structure elements. We show that the SRD contains 3 additional stable α-helices supplementing the six ARDs present in crystallized IκBα. The IκBα/NF-κB protein-protein complex remained intact and stable during the entire simulations. Also in solution, free IκBα retains its structural integrity. Differences in structural topology and dynamics were observed by comparing the structures of NF-κB free and NF-κB bound IκBα-complex. This study paves the way for investigating the signaling properties of the SRD in the IκBα degron. A detailed atomic scale understanding of molecular mechanism of NF-κB activation, regulation and the protein-protein interactions may assist to design and develop novel chronic inflammation modulators.

  19. N-terminal arginines modulate plasma-membrane localization of Kv7.1/KCNE1 channel complexes.

    Directory of Open Access Journals (Sweden)

    Zenawit Girmatsion

    Full Text Available BACKGROUND AND OBJECTIVE: The slow delayed rectifier current (I(Ks is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced I(Ks and atrial fibrillation (a human arrhythmia. Structure-function relationship of the KCNE1 N-terminus for I(Ks modulation is poorly understood and was subject of this study. METHODS: We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy. RESULTS: All KCNE1 constructs physically interacted with Kv7.1. I(Ks resulting from co-expression of Kv7.1 with non-atrial fibrillation '38S' was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions ('38G-3xA' were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct ('Δ1-38'. Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct. CONCLUSIONS: The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of I(Ks. Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex.

  20. Crystallization and preliminary crystallographic studies of the single-chain variable fragment of antibody chA21 in complex with an N-terminal fragment of ErbB2

    International Nuclear Information System (INIS)

    Liu, Yang; Zhou, Huihao; Zhu, Juanjuan; Gao, Yongxiang; Niu, Liwen; Liu, Jing; Teng, Maikun

    2009-01-01

    An antibody–antigen complex consisting of a single-chain variable fragment of the potential therapeutic antibody chA21 and an N-terminal fragment (residues 1–192) of the human ErbB2 extracellular domain was expressed, purified and crystallized. X-ray diffraction data were collected to 2.45 Å resolution. ErbB2 is a transmembrane tyrosine kinase, the overexpression of which causes abnormality and disorder in cell signalling and leads to cell transformation. Previously, an anti-ErbB2 single-chain chimeric antibody chA21 that specifically inhibits the growth of ErbB2-overexpressing cancer cells in vitro and in vivo was developed. Here, an antibody–antigen complex consisting of the single-chain variable fragment (scFv) of chA21 and an N-terminal fragment (residues 1–192, named EP I) of the ErbB2 extracellular domain was crystallized using the sitting-drop vapour-diffusion method. An X-ray diffraction data set was collected to 2.45 Å resolution from a single flash-cooled crystal; the crystal belonged to space group P2 1 2 1 2 1

  1. Solution Structure of the N-Terminal Domain of Mediator Subunit MED26 and Molecular Characterization of Its Interaction with EAF1 and TAF7.

    Science.gov (United States)

    Lens, Zoé; Cantrelle, François-Xavier; Peruzzini, Riccardo; Hanoulle, Xavier; Dewitte, Frédérique; Ferreira, Elisabeth; Baert, Jean-Luc; Monté, Didier; Aumercier, Marc; Villeret, Vincent; Verger, Alexis; Landrieu, Isabelle

    2017-10-13

    MED26 is a subunit of Mediator, a large complex central to the regulation of gene transcription by RNA Polymerase II. MED26 plays a role in the switch between the initiation and elongation phases of RNA Polymerase II-mediated transcription process. Regulation of these steps requires successive binding of MED26 N-terminal domain (NTD) to TATA-binding protein-associated factor 7 (TAF7) and Eleven-nineteen lysine-rich in leukemia-Associated Factor 1 (EAF1). In order to investigate the mechanism of regulation by MED26, MED26-NTD structure was solved by NMR, revealing a 4-helix bundle. EAF1 (239-268) and TAF7 (205-235) peptide interactions were both mapped to the same groove formed by H3 and H4 helices of MED26-NTD. Both interactions are characterized by dissociation constants in the 10-μM range. Further experiments revealed a folding-upon-binding mechanism that leads to the formation of EAF1 (N247-S260) and TAF7 (L214-S227) helices. Chemical shift perturbations and nuclear Overhauser enhancement contacts support the involvement of residues I222/F223 in anchoring TAF7 helix to a hydrophobic pocket of MED26-NTD, including residues L48, W80 and I84. In addition, Ala mutations of charged residues located in the C-terminal disordered part of TAF7 and EAF1 peptides affected the binding, with a loss of affinity characterized by a 10-time increase of dissociation constants. A structural model of MED26-NTD/TAF7 complex shows bi-partite components, combining ordered and disordered segments, as well as hydrophobic and electrostatic contributions to the binding. This study provides molecular detail that will help to decipher the mechanistic basis for the initiation to elongation switch-function mediated by MED26-NTD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Solution structure of the N-terminal domain of a replication restart primosome factor, PriC, in Escherichia coli

    Science.gov (United States)

    Aramaki, Takahiko; Abe, Yoshito; Katayama, Tsutomu; Ueda, Tadashi

    2013-01-01

    In eubacterial organisms, the oriC-independent primosome plays an essential role in replication restart after the dissociation of the replication DNA-protein complex by DNA damage. PriC is a key protein component in the replication restart primosome. Our recent study suggested that PriC is divided into two domains: an N-terminal and a C-terminal domain. In the present study, we determined the solution structure of the N-terminal domain, whose structure and function have remained unknown until now. The revealed structure was composed of three helices and one extended loop. We also observed chemical shift changes in the heteronuclear NMR spectrum and oligomerization in the presence of ssDNA. These abilities may contribute to the PriC-ssDNA complex, which is important for the replication restart primosome. PMID:23868391

  3. Structure of a double hexamer of the Pyrococcus furiosus minichromosome maintenance protein N-terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Martin; Enemark, Eric J.

    2016-06-22

    The crystal structure of the N-terminal domain of thePyrococcus furiosusminichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation.

  4. Autoantibodies to N-terminally truncated GAD improve clinical phenotyping of individuals with adult-onset diabetes: Action LADA 12.

    Science.gov (United States)

    Achenbach, Peter; Hawa, Mohammed I; Krause, Stephanie; Lampasona, Vito; Jerram, Samuel T; Williams, Alistair J K; Bonifacio, Ezio; Ziegler, Anette G; Leslie, R David

    2018-04-04

    Adult-onset type 1 diabetes, in which the 65 kDa isoform of GAD (GAD65) is a major autoantigen, has a broad clinical phenotype encompassing variable need for insulin therapy. This study aimed to evaluate whether autoantibodies against N-terminally truncated GAD65 more closely defined a type 1 diabetes phenotype associated with insulin therapy. Of 1114 participants with adult-onset diabetes from the Action LADA (latent autoimmune diabetes in adults) study with sufficient sera, we selected those designated type 1 (n = 511) or type 2 diabetes (n = 603) and retested the samples in radiobinding assays for human full-length GAD65 autoantibodies (f-GADA) and N-terminally truncated (amino acids 96-585) GAD65 autoantibodies (t-GADA). Individuals' clinical phenotypes were analysed according to antibody binding patterns. Overall, 478 individuals were f-GADA-positive, 431 were t-GADA-positive and 628 were negative in both assays. Risk of insulin treatment was augmented in t-GADA-positive individuals (OR 4.69 [95% CI 3.57, 6.17]) compared with f-GADA-positive individuals (OR 3.86 [95% CI 2.95, 5.06]), irrespective of diabetes duration. Of 55 individuals who were f-GADA-positive but t-GADA-negative, i.e. with antibody binding restricted to the N-terminus of GAD65, the phenotype was similar to type 2 diabetes with low risk of progression to insulin treatment. Compared with these individuals with N-terminal GAD65-restricted GADA, t-GADA-positive individuals were younger at diagnosis (p = 0.005), leaner (p N-terminally truncated GAD65 autoantibodies is associated with the clinical phenotype of autoimmune type 1 diabetes and predicts insulin therapy.

  5. Plasmatic levels of N-terminal pro-atrial natriuretic peptide in preeclamptic patients and healthy normotensive pregnant women.

    Science.gov (United States)

    Reyna-Villasmil, Eduardo; Mejia-Montilla, Jorly; Reyna-Villasmil, Nadia; Mayner-Tresol, Gabriel; Herrera-Moya, Pedro; Fernández-Ramírez, Andreina; Rondón-Tapía, Marta

    2018-05-11

    To compare plasma N-terminal pro-atrial natriuretic peptide concentrations in preeclamptic patients and healthy normotensive pregnant women. A cases-controls study was done with 180 patients at Hospital Central Dr. Urquinaona, Maracaibo, Venezuela, that included 90 preeclamptic patients (group A; cases) and 90 healthy normotensive pregnant women selected with the same age and body mass index similar to group A (group B; controls). Blood samples were collected one hour after admission and prior to administration of any medication in group A to determine plasma N-terminal pro-atrial natriuretic peptide and other laboratory parameters. Plasma N-terminal pro-atrial natriuretic peptide concentrations in group A (mean 1.01 [0.26] pg/mL) showed a significant difference when compared with patients in group B (mean 0.55 [0.07] pg/mL; P<.001]. There was no significant correlation with systolic and diastolic blood pressure values in preeclamptic patients (P=ns). A cut-off value of 0.66ng/mL had an area under the curve of 0.93, sensitivity of 87.8%, specificity of 83.3%, a positive predictive value of 84.0% and a negative predictive value of 87.2%, with a diagnostic accuracy of 85.6%. Preeclamptic patients have significantly higher concentrations of plasma N-terminal pro-atrial natriuretic peptide compared with healthy normotensive pregnant women, with high predictive values for diagnosis. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  6. Studies on Aculeines: Synthetic Strategy to the Fully Protected Protoaculeine B, the N-Terminal Amino Acid of Aculeine B.

    Science.gov (United States)

    Shiozaki, Hiroki; Miyahara, Masayoshi; Otsuka, Kazunori; Miyako, Kei; Honda, Akito; Takasaki, Yuichi; Takamizawa, Satoshi; Tukada, Hideyuki; Ishikawa, Yuichi; Sakai, Ryuichi; Oikawa, Masato

    2018-05-23

    A synthetic strategy for accessing protoaculeine B (1), the N-terminal amino acid of the highly modified peptide toxin aculeine, was developed via the synthesis of the fully protected natural homologue of 1 with a 12-mer poly(propanediamine). The synthesis of mono(propanediamine) analog 2, as well as core amino acid 3, was demonstrated by this strategy. New amino acid 3 induced convulsions in mice; however, compound 2 showed no such activity.

  7. N-Terminal Pro–B-Type Natriuretic Peptide Variability in Stable Dialysis Patients

    Science.gov (United States)

    Hayen, Andrew; Horvath, Andrea R.; Dimeski, Goce; Coburn, Amanda; Johnson, David W.; Hawley, Carmel M.; Campbell, Scott B.; Craig, Jonathan C.

    2015-01-01

    Background and objectives Monitoring N-terminal pro–B-type natriuretic peptide (NT-proBNP) may be useful for assessing cardiovascular risk in dialysis patients. However, its biologic variation is unknown, hindering the accurate interpretation of serial concentrations. The aims of this prospective cohort study were to estimate the within- and between-person coefficients of variation of NT-proBNP in stable dialysis patients, and derive the critical difference between measurements needed to exclude biologic and analytic variation. Design, setting, participants, & measurements Fifty-five prevalent hemodialysis and peritoneal dialysis patients attending two hospitals were assessed weekly for 5 weeks and then monthly for 4 months between October 2010 and April 2012. Assessments were conducted at the same time in the dialysis cycle and entailed NT-proBNP testing, clinical review, electrocardiography, and bioimpedance spectroscopy. Patients were excluded if they became unstable. Results This study analyzed 136 weekly and 113 monthly NT-proBNP measurements from 40 and 41 stable patients, respectively. Results showed that 22% had ischemic heart disease; 9% and 87% had left ventricular systolic and diastolic dysfunction, respectively. Respective between- and within-person coefficients of variation were 153% and 27% for weekly measurements, and 148% and 35% for monthly measurements. Within-person variation was unaffected by dialysis modality, hydration status, inflammation, or cardiac comorbidity. NT-proBNP concentrations measured at weekly intervals needed to increase by at least 46% or decrease by 84% to exclude change due to biologic and analytic variation alone with 90% certainty, whereas monthly measurements needed to increase by at least 119% or decrease by 54%. Conclusions The between-person variation of NT-proBNP was large and markedly greater than within-person variation, indicating that NT-proBNP testing might better be applied in the dialysis population using a

  8. N-terminal pro-B-type natriuretic peptide variability in stable dialysis patients.

    Science.gov (United States)

    Fahim, Magid A; Hayen, Andrew; Horvath, Andrea R; Dimeski, Goce; Coburn, Amanda; Johnson, David W; Hawley, Carmel M; Campbell, Scott B; Craig, Jonathan C

    2015-04-07

    Monitoring N-terminal pro-B-type natriuretic peptide (NT-proBNP) may be useful for assessing cardiovascular risk in dialysis patients. However, its biologic variation is unknown, hindering the accurate interpretation of serial concentrations. The aims of this prospective cohort study were to estimate the within- and between-person coefficients of variation of NT-proBNP in stable dialysis patients, and derive the critical difference between measurements needed to exclude biologic and analytic variation. Fifty-five prevalent hemodialysis and peritoneal dialysis patients attending two hospitals were assessed weekly for 5 weeks and then monthly for 4 months between October 2010 and April 2012. Assessments were conducted at the same time in the dialysis cycle and entailed NT-proBNP testing, clinical review, electrocardiography, and bioimpedance spectroscopy. Patients were excluded if they became unstable. This study analyzed 136 weekly and 113 monthly NT-proBNP measurements from 40 and 41 stable patients, respectively. Results showed that 22% had ischemic heart disease; 9% and 87% had left ventricular systolic and diastolic dysfunction, respectively. Respective between- and within-person coefficients of variation were 153% and 27% for weekly measurements, and 148% and 35% for monthly measurements. Within-person variation was unaffected by dialysis modality, hydration status, inflammation, or cardiac comorbidity. NT-proBNP concentrations measured at weekly intervals needed to increase by at least 46% or decrease by 84% to exclude change due to biologic and analytic variation alone with 90% certainty, whereas monthly measurements needed to increase by at least 119% or decrease by 54%. The between-person variation of NT-proBNP was large and markedly greater than within-person variation, indicating that NT-proBNP testing might better be applied in the dialysis population using a relative-change strategy. Serial NT-proBNP concentrations need to double or halve to confidently

  9. The N-terminal region of eukaryotic translation initiation factor 5A signals to nuclear localization of the protein

    International Nuclear Information System (INIS)

    Parreiras-e-Silva, Lucas T.; Gomes, Marcelo D.; Oliveira, Eduardo B.; Costa-Neto, Claudio M.

    2007-01-01

    The eukaryotic translation initiation factor 5A (eIF5A) is a ubiquitous protein of eukaryotic and archaeal organisms which undergoes hypusination, a unique post-translational modification. We have generated a polyclonal antibody against murine eIF5A, which in immunocytochemical assays in B16-F10 cells revealed that the endogenous protein is preferentially localized to the nuclear region. We therefore analyzed possible structural features present in eIF5A proteins that could be responsible for that characteristic. Multiple sequence alignment analysis of eIF5A proteins from different eukaryotic and archaeal organisms showed that the former sequences have an extended N-terminal segment. We have then performed in silico prediction analyses and constructed different truncated forms of murine eIF5A to verify any possible role that the N-terminal extension might have in determining the subcellular localization of the eIF5A in eukaryotic organisms. Our results indicate that the N-terminal extension of the eukaryotic eIF5A contributes in signaling this protein to nuclear localization, despite of bearing no structural similarity with classical nuclear localization signals

  10. The identification of prothymosin α-like material in vertebrate lymphoid organs by a radioimmunoassay for the N-terminal decapeptide

    International Nuclear Information System (INIS)

    Yialouris, P.P.; Tsitsiloni, O.E.; Haritos, A.A.; Evangelatos, G.P.; Soteriadis-Vlahos, C.; Heimer, E.P.; Felix, A.M.

    1988-01-01

    A radioimmunoassay (RIA) is described for the detection and quantitation of prothymosin α (ProT α), and its N-terminal fragments containing as a minimum the first ten amino acid residues. This range of peptides includes thymosins α 1 (T α 1 ) and α 11 (T α 11 ). Antibodies against T α 1 and the tracer T α 1 (1-10)Tyr 11 ( 125 I), an analogue of the major epitope, were utilized in this RIA. 50% displacement of the ligand was observed with 1.3 pmol of T α 1 and 6.4 pmol of ProT α. The partially homologous parathymosin α (ParaT α) showed less than 2% cross-reactivity with ProT α. Sephacryl S-200 gel filtration separation of the peptides of calf thymus, chicken spleen and trout spleen extracts prepared by a method eliminating proteolysis, combined with the above RIA, showed the presence of a major immunoreactive peak. Its elution volume corresponded to that of rat ProT α (apparent mol. weight 36,000) for both calf (37,000) and chicken (35,000) tissues. In trout it corresponded to a significantly higher molecular weight (62,000). The levels of ProT α-like peptides in calf thymus, chicken spleen and trout spleen were found to be 246, 8.6 and 7.7 μg respectively, of rat ProT α equivalents per gram of fresh tissue. 43 refs.; 5 figs

  11. Aminoacylation of the N-terminal cysteine is essential for Lol-dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals.

    Science.gov (United States)

    Fukuda, Ayumu; Matsuyama, Shin-Ichi; Hara, Takashi; Nakayama, Jiro; Nagasawa, Hiromichi; Tokuda, Hajime

    2002-11-08

    Lipoproteins are present in a wide variety of bacteria and are anchored to membranes through lipids attached to the N-terminal cysteine. The Lol system of Escherichia coli mediates the membrane-specific localization of lipoproteins. Aspartate at position 2 functions as a Lol avoidance signal and causes the retention of lipoproteins in the inner membrane, whereas lipoproteins having residues other than aspartate at position 2 are released from the inner membrane and localized to the outer membrane by the Lol system. Phospholipid:apolipoprotein transacylase, Lnt, catalyzes the last step of lipoprotein modification, converting apolipoprotein into mature lipoprotein. To reveal the importance of this aminoacylation for the Lol-dependent membrane localization, apolipoproteins were prepared by inhibiting lipoprotein maturation. Lnt was also purified and used to convert apolipoprotein into mature lipoprotein in vitro. The release of these lipoproteins was examined in proteoliposomes. We show here that the aminoacylation is essential for the Lol-dependent release of lipoproteins from membranes. Furthermore, lipoproteins with aspartate at position 2 were found to be aminoacylated both in vivo and in vitro, indicating that the lipoprotein-sorting signal does not affect lipid modification.

  12. 1-Oleoyl-2-acetylglycerol stimulates 5-lipoxygenase activity via a putative (phospho)lipid binding site within the N-terminal C2-like domain.

    Science.gov (United States)

    Hörnig, Christina; Albert, Dana; Fischer, Lutz; Hörnig, Michael; Rådmark, Olof; Steinhilber, Dieter; Werz, Oliver

    2005-07-22

    5-Lipoxygenase (5-LO) catalysis is positively regulated by Ca2+ ions and phospholipids that both act via the N-terminal C2-like domain of 5-LO. Previously, we have shown that 1-oleoyl-2-acetylglycerol (OAG) functions as an agonist for human polymorphonuclear leukocytes (PMNL) in stimulating 5-LO product formation. Here we have demonstrated that OAG directly stimulates 5-LO catalysis in vitro. In the absence of Ca2+ (chelated using EDTA), OAG strongly and concentration-dependently stimulated crude 5-LO in 100,000 x g supernatants as well as purified 5-LO enzyme from PMNL. Also, the monoglyceride 1-O-oleyl-rac-glycerol and 1,2-dioctanoyl-sn-glycerol were effective, whereas various phospholipids did not stimulate 5-LO. However, in the presence of Ca2+, OAG caused no stimulation of 5-LO. Also, phospholipids or cellular membranes abolished the effects of OAG. As found previously for Ca2+, OAG renders 5-LO activity resistant against inhibition by glutathione peroxidase activity, and this effect of OAG is reversed by phospholipids. Intriguingly, a 5-LO mutant lacking tryptophan residues (Trp-13, -75, and -102) important for the binding of the 5-LO C2-like domain to phospholipids was not stimulated by OAG. We conclude that OAG directly stimulates 5-LO by acting at a phospholipid binding site located within the C2-like domain.

  13. Fatty acids bind tightly to the N-terminal domain of angiopoietin-like protein 4 and modulate its interaction with lipoprotein lipase.

    Science.gov (United States)

    Robal, Terje; Larsson, Mikael; Martin, Miina; Olivecrona, Gunilla; Lookene, Aivar

    2012-08-24

    Angiopoietin-like protein 4 (Angptl4), a potent regulator of plasma triglyceride metabolism, binds to lipoprotein lipase (LPL) through its N-terminal coiled-coil domain (ccd-Angptl4) inducing dissociation of the dimeric enzyme to inactive monomers. In this study, we demonstrate that fatty acids reduce the inactivation of LPL by Angptl4. This was the case both with ccd-Angptl4 and full-length Angptl4, and the effect was seen in human plasma or in the presence of albumin. The effect decreased in the sequence oleic acid > palmitic acid > myristic acid > linoleic acid > linolenic acid. Surface plasmon resonance, isothermal titration calorimetry, fluorescence, and chromatography measurements revealed that fatty acids bind with high affinity to ccd-Angptl4. The interactions were characterized by fast association and slow dissociation rates, indicating formation of stable complexes. The highest affinity for ccd-Angptl4 was detected for oleic acid with a subnanomolar equilibrium dissociation constant (K(d)). The K(d) values for palmitic and myristic acid were in the nanomolar range. Linoleic and linolenic acid bound with much lower affinity. On binding of fatty acids, ccd-Angptl4 underwent conformational changes resulting in a decreased helical content, weakened structural stability, dissociation of oligomers, and altered fluorescence properties of the Trp-38 residue that is located close to the putative LPL-binding region. Based on these results, we propose that fatty acids play an important role in modulating the effects of Angptl4.

  14. Neurofibrillary tangles and the deposition of a beta amyloid peptide with a novel N-terminal epitope in the brains of wild Tsushima leopard cats.

    Directory of Open Access Journals (Sweden)

    James K Chambers

    Full Text Available Beta amyloid (Aβ deposits are seen in aged individuals in many of the mammalian species that possess the same Aβ amino acid sequence as humans. Conversely, neurofibrillary tangles (NFT, the other hallmark lesion of Alzheimer's disease (AD, are extremely rare in these animals. We detected Aβ deposits in the brains of Tsushima leopard cats (Prionailurus bengalensis euptilurus that live exclusively on Tsushima Island, Japan. Aβ42 was deposited in a granular pattern in the neuropil of the pyramidal cell layer, but did not form argyrophilic senile plaques. These Aβ deposits were not immunolabeled with antibodies to the N-terminal of human Aβ. Sequence analysis of the amyloid precursor protein revealed an amino acid substitution at the 7th residue of the Aβ peptide. In a comparison with other mammalian animals that do develop argyrophilic senile plaques, we concluded that the alternative Aβ amino acid sequence displayed by leopard cats is likely to be related to its distinctive deposition pattern. Interestingly, most of the animals with these Aβ deposits also developed NFTs. The distributions of hyperphosphorylated tau-positive cells and the two major isoforms of aggregated tau proteins were quite similar to those seen in Alzheimer's disease. In addition, the unphosphorylated form of GSK-3β colocalized with hyperphosphorylated tau within the affected neurons. In conclusion, this animal species develops AD-type NFTs without argyrophilic senile plaques.

  15. Synthetic and mechanistic insight into nosylation of glycine residues

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Sølling, Theis Ivan; Strømgaard, Kristian

    2013-01-01

    The Fukuyama-Mitsunobu alkylation procedure is widely used to introduce alkyl substituents to amino groups in general and N-alkylation of peptides in particular. Here we have investigated the procedure in detail for N-alkylation of peptides with N-terminal glycine residues, based on the observati...

  16. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    Science.gov (United States)

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  17. Endoplasmic reticulum protein targeting of phospholamban: a common role for an N-terminal di-arginine motif in ER retention?

    Directory of Open Access Journals (Sweden)

    Parveen Sharma

    2010-07-01

    Full Text Available Phospholamban (PLN is an effective inhibitor of the sarco(endoplasmic reticulum Ca(2+-ATPase, which transports Ca(2+ into the SR lumen, leading to muscle relaxation. A mutation of PLN in which one of the di-arginine residues at positions 13 and 14 was deleted led to a severe, early onset dilated cardiomyopathy. Here we were interested in determining the cellular mechanisms involved in this disease-causing mutation.Mutations deleting codons for either or both Arg13 or Arg14 resulted in the mislocalization of PLN from the ER. Our data show that PLN is recycled via the retrograde Golgi to ER membrane traffic pathway involving COP-I vesicles, since co-immunoprecipitation assays determined that COP I interactions are dependent on an intact di-arginine motif as PLN RDelta14 did not co-precipitate with COP I containing vesicles. Bioinformatic analysis determined that the di-arginine motif is present in the first 25 residues in a large number of all ER/SR Gene Ontology (GO annotated proteins. Mutations in the di-arginine motif of the Sigma 1-type opioid receptor, the beta-subunit of the signal recognition particle receptor, and Sterol-O-acyltransferase, three proteins identified in our bioinformatic screen also caused mislocalization of these known ER-resident proteins.We conclude that PLN is enriched in the ER due to COP I-mediated transport that is dependent on its intact di-arginine motif and that the N-terminal di-arginine motif may act as a general ER retrieval sequence.

  18. Timing and structure of the penultimate deglaciation in north China constrained by a precisely dated stalagmite record

    Science.gov (United States)

    Duan, W.; Cheng, H.; Tan, M.; Li, X.; Edwards, R. L.

    2017-12-01

    The timing and structure of the penultimate deglaciation (Termination II, T-II) is still controversial due to the lack of precise-date and high-resolution paleoclimate documents. This study firstly presents high-precision stalagmite δ18O data encompassing T-II from north China, near the northern limit of the East Asian summer monsoon (EASM), an area sensitive to climate change. An obvious 2200-year long 18O-depleted excursion was identified within T-II, 1500 years later than in south China, mostly indicating it's a hitherto unidentified interstadial event, but the possibility of a local signal linked to karst hydrologic changes cannot be excluded. The sharpest T-II transition occurred at 129.20 ka BP (BP=before AD 1950), consistent with other EASM records but 3000 years later than mid-high-latitudinal cave records in Europe and North America. The different ages between them are attributed to that the original ice sheet melting during T-II did not inhibit the overturning in the Nordic Seas, leaving the heat transport to western Europe unaffected. Furthermore, the rise in EASM after the main T-II transition was interrupted by a significant "pause" in our record, whereas only expressed as a "slowdown" in south Chinese caves, further confirming the higher sensitivity of climate in north China. Compared with the last deglaciation (T-I), this climate pause could be considered as a Younger Dryas (YD)-type event that was shifted into the early stage of the last interglacial period, though its intensity and duration were not as strong as the YD during T-I. Key words: North China stalagmite record Timing and structure Termination II

  19. The N-terminal-truncated recombinant fibrin(ogen)olytic serine protease improves its functional property, demonstrates in vivo anticoagulant and plasma defibrinogenation activity as well as pre-clinical safety in rodent model.

    Science.gov (United States)

    Bora, Bandana; Gogoi, Debananda; Tripathy, Debabrata; Kurkalang, Sillarine; Ramani, Sheetal; Chatterjee, Anupam; Mukherjee, Ashis K

    2018-05-01

    An N-terminal truncated fibrino(geno)lytic serine protease gene encoding a ~42kDa protein from Bacillus cereus strain AB01 was produced by error prone PCR, cloned into pET19b vector, and expressed in E5 coli BL21 DE3 cells. The deletion of 24 amino acid residues from N-terminal of wild-type Bacifrinase improves the catalytic activity of [Bacifrinase (ΔN24)]. The anticoagulant potency of [Bacifrinase (ΔN24)] was comparable to Nattokinase and Warfarin and results showed that its anticoagulant action is contributed by progressive defibrinogenation and antiplatelet activities. Nonetheless, at the tested concentration of 2.0μM [Bacifrinase (ΔN24)] did not show in vitro cytotoxicity or chromosomal aberrations on human embryonic kidney cells-293 (HEK-293) and human peripheral blood lymphocytes (HPBL) cells. [Bacifrinase (ΔN24)], at a dose of 2mg/kg, did not show toxicity, adverse pharmacological effects, tissue necrosis or hemorrhagic effect after 72h of its administration in Swiss albino mice. However, at the tested doses of 0.125 to 0.5mg/kg, it demonstrated significant in anticoagulant effect as well as defibrinogenation after 6h of administration in mice. We propose that [Bacifrinase (ΔN24)] may serve as prototype for the development of potent drug to prevent hyperfibrinogenemia related disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Restricted N-terminal truncation of cardiac troponin T: a novel mechanism for functional adaptation to energetic crisis.

    Science.gov (United States)

    Feng, Han-Zhong; Biesiadecki, Brandon J; Yu, Zhi-Bin; Hossain, M Moazzem; Jin, J-P

    2008-07-15

    The N-terminal variable region of cardiac troponin T (TnT) is a regulatory structure that can be selectively removed during myocardial ischaemia reperfusion by mu-calpain proteolysis. Here we investigated the pathophysiological significance of this post-translational modification that removes amino acids 1-71 of cardiac TnT. Working heart preparations were employed to study rat acute myocardial infarction and transgenic mouse hearts over-expressing the N-terminal truncated cardiac TnT (cTnT-ND). Ex vivo myocardial infarction by ligation of the left anterior descending coronary artery induced heart failure and produced cTnT-ND not only in the infarct but also in remote zones, including the right ventricular free wall, indicating a whole organ response in the absence of systemic neurohumoral mechanisms. Left ventricular pressure overload in mouse working hearts produced increased cTnT-ND in both ventricles, suggesting a role of haemodynamic stress in triggering an acute whole organ proteolytic regulation. Transgenic mouse hearts in which the endogenous intact cardiac TnT was partially replaced by cTnT-ND showed lowered contractile velocity. When afterload increased from 55 mmHg to 90 mmHg, stroke volume decreased in the wild type but not in the transgenic mouse hearts. Correspondingly, the left ventricular rapid-ejection time of the transgenic mouse hearts was significantly longer than that of wild type hearts, especially at high afterload. The restricted deletion of the N-terminal variable region of cardiac troponin T demonstrates a novel mechanism by which the thin filament regulation adapts to sustain cardiac function under stress conditions.

  1. The relationship between N-terminal prosomatostatin, all-cause and cardiovascular mortality in patients with type 2 diabetes mellitus (ZODIAC-35)

    NARCIS (Netherlands)

    van Dijk, Peter R; Landman, Gijs W D; van Essen, Larissa; Struck, Joachim; Groenier, Klaas H; Bilo, Henk J G; Bakker, Stephan J L; Kleefstra, Nanne

    2015-01-01

    BACKGROUND: The hormone somatostatin inhibits growth hormone release from the pituitary gland and is theoretically linked to diabetes and diabetes related complications. This study aimed to investigate the relationship between levels of the stable somatostatin precursor, N-terminal prosomatostatin

  2. The relationship between N-terminal prosomatostatin, all-cause and cardiovascular mortality in patients with type 2 diabetes mellitus (ZODIAC-35)

    NARCIS (Netherlands)

    van Dijk, Peter R; Landman, Gijs W D; van Essen, Larissa; Struck, Joachim; Groenier, Klaas H; Bilo, Henk J G; Bakker, Stephan J L; Kleefstra, Nanne

    2015-01-01

    Background: The hormone somatostatin inhibits growth hormone release from the pituitary gland and is theoretically linked to diabetes and diabetes related complications. This study aimed to investigate the relationship between levels of the stable somatostatin precursor, N-terminal prosomatostatin

  3. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.

    2008-01-01

    set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr......(P)-specific binding partners for peptides corresponding to the extracted motifs. We confirmed numerous previously known interaction motifs and found 15 new interactions mediated by phosphosites not previously known to bind SH2 or PTB. Remarkably, a novel hydrophobic N-terminal motif ((L/V/I)(L/V/I)pY) was identified...

  4. Troponin T and N-terminal pro B-Type natriuretic peptide and presence of coronary artery disease

    DEFF Research Database (Denmark)

    Mouridsen, Mette R; Sajadieh, Ahmad; Carlsen, Christian M

    2015-01-01

    BACKGROUND: We tested the effects of exercise intensity, sampling intervals, degree of coronary artery stenosis, and demographic factors on circulating N-terminal pro B-Type natriuretic peptide (NT-pro-BNP) and cardiac Troponin T (cTnT) in subjects suspected of coronary artery disease (CAD). MATE...... = 0.4067 p = 0.046). CONCLUSIONS: Baseline cTnT and ΔcTnT were found to be independently associated with CAD and also with exercise intensity in stable chest pain subjects. These properties were not identified for NT-pro-BNP....

  5. Identification of a Major Dimorphic Region in the Functionally Critical N-Terminal ID1 Domain of VAR2CSA

    DEFF Research Database (Denmark)

    Doritchamou, Justin; Sabbagh, Audrey; Jespersen, Jakob S

    2015-01-01

    The VAR2CSA protein of Plasmodium falciparum is transported to and expressed on the infected erythrocyte surface where it plays a key role in placental malaria (PM). It is the current leading candidate for a vaccine to prevent PM. However, the antigenic polymorphism integral to VAR2CSA poses...... a challenge for vaccine development. Based on detailed analysis of polymorphisms in the sequence of its ligand-binding N-terminal region, currently the main focus for vaccine development, we assessed var2csa from parasite isolates infecting pregnant women. The results reveal for the first time the presence...

  6. Locus-specific detection of HLA-DQ and -DR antigens by antibodies against synthetic N-terminal octapeptides of the beta chain

    DEFF Research Database (Denmark)

    Deufel, T; Grove, A; Kofod, Hans

    1985-01-01

    Antibodies against synthetic peptides representing the class-II antigen HLA-DR and -DQ beta chain N-terminal sequences were prepared in rabbits. The two octapeptides only share two amino acids and enzyme-linked immuno-assays showed the antisera only to bind to its own antigen. Both peptide antisera...... chains of HLA-DR and -DQ have been prepared by the preparation by the production of antibodies against the N-terminal sequences of each polypeptide....

  7. Protection against β-amyloid neurotoxicity by a non-toxic endogenous N-terminal β-amyloid fragment and its active hexapeptide core sequence.

    Science.gov (United States)

    Forest, Kelly H; Alfulaij, Naghum; Arora, Komal; Taketa, Ruth; Sherrin, Tessi; Todorovic, Cedomir; Lawrence, James L M; Yoshikawa, Gene T; Ng, Ho-Leung; Hruby, Victor J; Nichols, Robert A

    2018-01-01

    High levels (μM) of beta amyloid (Aβ) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C-terminal domain of Aβ, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aβ at low levels (pM-nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N-terminal domain of Aβ. An N-terminal Aβ fragment (1-15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aβ-induced impairments of long-term potentiation. Here, we show the impact of this N-terminal Aβ fragment and a shorter hexapeptide core sequence in the Aβ fragment (Aβcore: 10-15) to protect or reverse Aβ-induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N-terminal Aβ fragment and Aβcore on Aβ-induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108-15) and mouse hippocampal neuron cultures. The protective action of the N-terminal Aβ fragment and Aβcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N-terminal Aβcore were also shown to be fully protective against Aβ-triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N-terminal Aβ fragment, while active stabilized N-terminal Aβcore derivatives offer the potential for therapeutic application. © 2017 International Society for Neurochemistry.

  8. An N-terminal Region of Mot-2 Binds to p53 In Vitro

    Directory of Open Access Journals (Sweden)

    Sunil C. Kaul

    2001-01-01

    Full Text Available The mouse mot-2 protein was earlier shown to bind to the tumor suppressor protein, p53. The mot-2 binding site of p53 was mapped to C-terminal amino acid residues 312–352, which includes the cytoplasmic sequestration domain. In the present study, we have found that both mot-1 and mot-2 bind to p53 in vitro. By using His-tagged deletion mutant proteins, the p53-binding domain of mot-2 was mapped to its Nterminal amino acid residues 253–282, which are identical in mot-1 and mot-2 proteins. Some peptides containing the p53-binding region of mot-2 were able to compete with the full-length protein for p53 binding. The data provided rationale for in vitro binding of mot-1 and mot-2 proteins to p53 and supported the conclusion that inability of mot-1 protein to bind p53 in vivo depends on secondary structure or its binding to other cellular factors. Most interestingly, the p53-binding region of mot-2 was common to its MKT-077, a cationic dye that exhibits antitumor activity, binding region. Therefore it is most likely that MKT-077-induced nuclear translocation and restoration of wild-type p53 function in transformed cells takes place by a competitional mechanism.

  9. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease Npro.

    Science.gov (United States)

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H

    2014-03-01

    Pestivirus N(pro) is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N(pro) blocks the host׳s interferon response by inducing degradation of interferon regulatory factor-3. N(pro׳)s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N(pro)-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N(pro) proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N(pro׳)s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N(pro) does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. N-Terminal Domains in Two-Domain Proteins Are Biased to Be Shorter and Predicted to Fold Faster Than Their C-Terminal Counterparts

    Directory of Open Access Journals (Sweden)

    Etai Jacob

    2013-04-01

    Full Text Available Computational analysis of proteomes in all kingdoms of life reveals a strong tendency for N-terminal domains in two-domain proteins to have shorter sequences than their neighboring C-terminal domains. Given that folding rates are affected by chain length, we asked whether the tendency for N-terminal domains to be shorter than their neighboring C-terminal domains reflects selection for faster-folding N-terminal domains. Calculations of absolute contact order, another predictor of folding rate, provide additional evidence that N-terminal domains tend to fold faster than their neighboring C-terminal domains. A possible explanation for this bias, which is more pronounced in prokaryotes than in eukaryotes, is that faster folding of N-terminal domains reduces the risk for protein aggregation during folding by preventing formation of nonnative interdomain interactions. This explanation is supported by our finding that two-domain proteins with a shorter N-terminal domain are much more abundant than those with a shorter C-terminal domain.

  11. Depletion of the human N-terminal acetyltransferase hNaa30 disrupts Golgi integrity and ARFRP1 localization.

    Science.gov (United States)

    Starheim, Kristian K; Kalvik, Thomas V; Bjørkøy, Geir; Arnesen, Thomas

    2017-04-30

    The organization of the Golgi apparatus (GA) is tightly regulated. Golgi stack scattering is observed in cellular processes such as apoptosis and mitosis, and has also been associated with disruption of cellular lipid metabolism and neurodegenerative diseases. Our studies show that depletion of the human N-α-acetyltransferase 30 (hNaa30) induces fragmentation of the Golgi stack in HeLa and CAL-62 cell lines. The GA associated GTPase ADP ribosylation factor related protein 1 (ARFRP1) was previously shown to require N-terminal acetylation for membrane association and based on its N-terminal sequence, it is likely to be a substrate of hNaa30. ARFRP1 is involved in endosome-to- trans -Golgi network (TGN) traffic. We observed that ARFRP1 shifted from a predominantly cis -Golgi and TGN localization to localizing both Golgi and non-Golgi vesicular structures in hNaa30-depleted cells. However, we did not observe loss of membrane association of ARFRP1. We conclude that hNaa30 depletion induces Golgi scattering and induces aberrant ARFRP1 Golgi localization. © 2017 The Author(s).

  12. Crystallization and preliminary X-ray analysis of the N-terminal domain of human thioredoxin-interacting protein

    International Nuclear Information System (INIS)

    Polekhina, Galina; Ascher, David Benjamin; Kok, Shie Foong; Waltham, Mark

    2011-01-01

    The N-terminal domain of thioredoxin-interacting protein has been expressed, purified and crystallized. The crystals belonged to a monoclinic space group and diffracted to 3 Å resolution using synchrotron radiation. Thioredoxin-interacting protein (TXNIP) is a negative regulator of thioredoxin and its roles in the pathologies of diabetes and cardiovascular diseases have marked it out as a potential drug target. Expression of TXNIP is robustly induced under various stress conditions such as high glucose, heat shock, UV, H 2 O 2 and mechanical stress amongst others. Elevated levels of TXNIP result in the sequestration and inactivation of thioredoxin, leading to cellular oxidative stress. For some time, this was the only known function of TXNIP; however, more recently the protein has been shown to play a role in regulation of glucose uptake and activation of the inflammasome. Based on the primary sequence, TXNIP is remotely related to β-arrestins, which include the visual arrestins. TXNIP has thus been classified as a member of the α-arrestin family, which to date includes five other members. None of the other α-arrestins are known to interact with thioredoxin, although curiously one has been implicated in glucose uptake. In order to gain insight into the structure–function relationships of the α-arrestin protein family, and particularly that of TXNIP, the N-terminal domain of TXNIP has been crystallized. The crystals belonged to a monoclinic space group and diffracted to 3 Å resolution using synchrotron radiation

  13. The N-terminal domain of human DNA helicase Rtel1 contains a redox active iron-sulfur cluster.

    Science.gov (United States)

    Landry, Aaron P; Ding, Huangen

    2014-01-01

    Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN) expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of -248 ± 10 mV (pH 8.0). The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss) and double-stranded (ds) DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1.

  14. The N-Terminal Domain of Human DNA Helicase Rtel1 Contains a Redox Active Iron-Sulfur Cluster

    Directory of Open Access Journals (Sweden)

    Aaron P. Landry

    2014-01-01

    Full Text Available Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of −248 ± 10 mV (pH 8.0. The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss and double-stranded (ds DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1.

  15. Chimeric RXFP1 and RXFP2 receptors highlight the similar mechanism of activation utilizing their N-terminal low density lipoprotein class A modules

    Directory of Open Access Journals (Sweden)

    Shoni eBruell

    2013-11-01

    Full Text Available Relaxin family peptide (RXFP receptors 1 and 2 are unique G-protein coupled receptors in that they contain an N-terminal low density lipoprotein type A (LDLa module which is necessary for receptor activation. The current hypothesis suggests that upon ligand binding the LDLa module interacts with the transmembrane (TM domain of a homodimer partner receptor to induce the active receptor conformations. We recently demonstrated that three residues in the N-terminus of the RXFP1 LDLa module are potentially involved in hydrophobic interactions with the receptor to drive activation. RXFP2 shares two out of three of the residues implicated, suggesting that the two LDLa modules could be interchanged without adversely affecting activity. However, in 2007 it was shown that a chimera consisting of the RXFP1 receptor with its LDLa swapped for that of RXFP2 did not signal. We noticed this construct also contained the RXFP2 region linking the LDLa to the leucine-rich repeats. We therefore constructed chimeric RXFP1 and RXFP2 receptors with their LDLa modules swapped immediately C-terminally to the final cysteine residue of the module, retaining the native linker. In addition, we exchanged the TM domains of the chimeras to explore if matching the LDLa module with the TM domain of its native receptor altered activity. All of the chimeras were expressed at the surface of HEK293T cells with ligand binding profiles similar to the wild-type receptors. Importantly, as predicted, ligand binding was able to induce cAMP based signalling. Chimeras of RXFP1 with the LDLa of RXFP2 demonstrated reduced H2 relaxin potency with the pairing of the RXFP2 TM with the RXFP2 LDLa necessary for full ligand efficacy. In contrast the ligand mediated potencies and efficacies on the RXFP2 chimeras were similar suggesting the RXFP1 LDLa module has similar efficacy on the RXFP2 TM domain. Our studies demonstrate the LDLa modules of RXFP1 and RXFP2 modulate receptor activation via a

  16. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik; Whittaker, Gary R.

    2012-01-01

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  17. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States); Whittaker, Gary R., E-mail: grw7@cornell.edu [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States)

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  18. Two widely expressed plasma membrane H(+)-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine.

    Science.gov (United States)

    Bobik, Krzysztof; Duby, Geoffrey; Nizet, Yannick; Vandermeeren, Caroline; Stiernet, Patrick; Kanczewska, Justyna; Boutry, Marc

    2010-04-01

    The plasma membrane H(+)-ATPases PMA2 and PMA4 are the most widely expressed in Nicotiana plumbaginifolia, and belong to two different subfamilies. Both are activated by phosphorylation of a Thr at the penultimate position and the subsequent binding of 14-3-3 proteins. Their expression in Saccharomyces cerevisiae revealed functional and regulatory differences. To determine whether different regulatory properties between PMA2 and PMA4 exist in plants, we generated two monoclonal antibodies able to detect phosphorylation of the penultimate Thr of either PMA2 or PMA4 in a total protein extract. We also raised Nicotiana tabacum transgenic plants expressing 6-His-tagged PMA2 or PMA4, enabling their individual purification. Using these tools we showed that phosphorylation of the penultimate Thr of both PMAs was high during the early exponential growth phase of an N. tabacum cell culture, and then progressively declined. This decline correlated with decreased 14-3-3 binding and decreased plasma membrane ATPase activity. However, the rate and extent of the decrease differed between the two isoforms. Cold stress of culture cells or leaf tissues reduced the Thr phosphorylation of PMA2, whereas no significant changes in Thr phosphorylation of PMA4 were seen. These results strongly suggest that PMA2 and PMA4 are differentially regulated by phosphorylation. Analysis of the H(+)-ATPase phosphorylation status in leaf tissues indicated that no more than 44% (PMA2) or 32% (PMA4) was in the activated state under normal growth conditions. Purification of either isoform showed that, when activated, the two isoforms did not form hetero-oligomers, which is further support for these two H(+)-ATPase subfamilies having different properties.

  19. N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins.

    Science.gov (United States)

    Das, Rahul K; Crick, Scott L; Pappu, Rohit V

    2012-02-17

    Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs). Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Discovery and development of the N-terminal procollagen type II (NPII) biomarker: a tool for measuring collagen type II synthesis.

    Science.gov (United States)

    Nemirovskiy, O V; Sunyer, T; Aggarwal, P; Abrams, M; Hellio Le Graverand, M P; Mathews, W R

    2008-12-01

    Progression of joint damage in osteoarthritis (OA) is likely to result from an imbalance between cartilage degradation and synthesis processes. Markers reflecting these two components appear to be promising in predicting the rate of OA progression. Both N- and C-terminal propeptides of type II collagen reflect the rates of collagen type II synthesis. The ability to quantify the procollagen peptides in biological fluids would enable a better understanding of OA disease pathology and provide means for assessing the proof of mechanism of anabolic disease modifying OA drugs (DMOADs). A polyclonal antibody that recognizes the sequence GPKGQKGEPGDIKDI in the propeptide region of rat, dog, and human type II collagen was raised in chicken and peptide-affinity purified. The immunoaffinity liquid chromatography mass spectrometry (LC-MS/MS) was used to extensively characterize N-terminal procollagen type II (NPII) peptides found in biological fluids. The novel competition enzyme-linked immunosorbent assay (ELISA) assay was developed to quantitatively measure the NPII peptides. Several peptides ranging from 17 to 41 amino acids with various modifications including hydroxylations on proline and lysine residues, oxidation of lysines to allysines, and attachments of glucose and galactose moieties to hydroxylysines were identified in a simple system such as ex vivo cultures of human articular cartilage (HAC) explants as well as in more complex biological fluids such as human urine and plasma. A competitive ELISA assay has been developed and applied to urine, plasma, and synovial fluid matrices in human, rat and dog samples. A novel NPII assay has been developed and applied to OA and normal human subjects to understand the changes in collagen type II synthesis related to the pathology of OA.

  1. Engineering N-terminal domain of tissue inhibitor of metalloproteinase (TIMP)-3 to be a better inhibitor against tumour necrosis factor-alpha-converting enzyme.

    Science.gov (United States)

    Lee, Meng-Huee; Verma, Vandana; Maskos, Klaus; Nath, Deepa; Knäuper, Vera; Dodds, Philippa; Amour, Augustin; Murphy, Gillian

    2002-01-01

    We previously reported that full-length tissue inhibitor of metalloproteinase-3 (TIMP-3) and its N-terminal domain form (N-TIMP-3) displayed equal binding affinity for tissue necrosis factor-alpha (TNF-alpha)-converting enzyme (TACE). Based on the computer graphic of TACE docked with a TIMP-3 model, we created a number of N-TIMP-3 mutants that showed significant improvement in TACE inhibition. Our strategy was to select those N-TIMP-3 residues that were believed to be in actual contact with the active-site pockets of TACE and mutate them to amino acids of a better-fitting nature. The activities of these mutants were examined by measuring their binding affinities (K(app)(i)) and association rates (k(on)) against TACE. Nearly all mutants at position Thr-2 exhibited slightly impaired affinity as well as association rate constants. On the other hand, some Ser-4 mutants displayed a remarkable increase in their binding tightness with TACE. In fact, the binding affinities of several mutants were less than 60 pM, beyond the sensitivity limits of fluorimetric assays. Further studies on cell-based processing of pro-TNF-alpha demonstrated that wild-type N-TIMP-3 and one of its tight-binding mutants, Ser-4Met, were capable of inhibiting the proteolytic shedding of TNF-alpha. Furthermore, the Ser-4Met mutant was also significantly more active (P<0.05) than the wild-type N-TIMP-3 in its cellular inhibition. Comparison of N-TIMP-3 and full-length TIMP-3 revealed that, despite their identical TACE-interaction kinetics, the latter was nearly 10 times more efficient in the inhibition of TNF-alpha shedding, with concomitant implications for the importance of the TIMP-3 C-terminal domain in vivo. PMID:11988096

  2. Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching Enzyme; Insights of N-Terminal [beta]-Sandwich in Sustrate Specifity and Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha; Garg, Saurabh Kumar; Alam, Mohammad Suhail; Xu, H. Eric; Agrawal, Pushpa; Swaminathan, Kunchithapadam (NU Sinapore); (Van Andel); (IMT-India)

    2010-07-13

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an {alpha}-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1 {yields} 4 bond and making a new 1 {yields} 6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-{angstrom} resolution. MtbGlgBWT contains four domains: N1 {beta}-sandwich, N2 {beta}-sandwich, a central ({beta}/{alpha}){sub 8} domain that houses the catalytic site, and a C-terminal {beta}-sandwich. We have assayed the amylase activity with amylose and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) Mtb{Delta}108GlgB protein. The N1 {beta}-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 {beta}-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and Mtb{Delta}108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1 {yields} 4 bond breakage) and isomerization (1 {yields} 6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and Mtb{Delta}108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (EC{Delta}112GlgB).

  3. N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus

    International Nuclear Information System (INIS)

    Dey, Antu K.; David, Kathryn B.; Ray, Neelanjana; Ketas, Thomas J.; Klasse, Per J.; Doms, Robert W.; Moore, John P.

    2008-01-01

    The native, functional HIV-1 envelope glycoprotein (Env) complex is a trimer of two non-covalently associated subunits: the gp120 surface glycoprotein and the gp41 transmembrane glycoprotein. However, various non-functional forms of Env are present on virus particles and HIV-1-infected cells, some of which probably arise as the native complex decays. The aberrant forms include gp120-gp41 monomers and oligomers, as well as gp41 subunits from which gp120 has dissociated. The presence of non-functional Env creates binding sites for antibodies that do not recognize native Env complexes and that are, therefore, non-neutralizing. Non-native Env forms (monomers, dimers, tetramers and aggregates) can also arise when soluble gp140 proteins, lacking the cytoplasmic and transmembrane domains of gp41, are expressed for vaccine studies. We recently identified five amino acids in the gp41 N-terminal region (I535, Q543, S553, K567 and R588) that promote gp140 trimerization. We have now studied their influence on the function and antigenic properties of JR-FL Env expressed on the surfaces of pseudoviruses and Env-transfected cells. The 5 substitutions in gp41 reduce the expression of non-trimeric gp160s, without affecting trimer levels. Pseudovirions bearing the mutant Env are fully infectious with similar kinetics of Env-mediated fusion. Various non-neutralizing antibodies bind less strongly to the Env mutant, but neutralizing antibody binding is unaffected. Hence the gp41 substitutions do not adversely affect Env structure, supporting their use for making new Env-based vaccines. The mutant Env might also help in studies intended to correlate antibody binding to virus neutralization. Of note is that the 5 residues are much more frequent, individually or collectively, in viruses from subtypes other than B

  4. Structural characterisation of human galectin-4 N-terminal carbohydrate recognition domain in complex with glycerol, lactose, 3′-sulfo-lactose, and 2′-fucosyllactose

    Science.gov (United States)

    Bum-Erdene, Khuchtumur; Leffler, Hakon; Nilsson, Ulf J.; Blanchard, Helen

    2016-01-01

    Galectin-4 is a tandem-repeat galectin with two distinct carbohydrate recognition domains (CRD). Galectin-4 is expressed mainly in the alimentary tract and is proposed to function as a lipid raft and adherens junction stabilizer by its glycan cross-linking capacity. Galectin-4 plays divergent roles in cancer and inflammatory conditions, either promoting or inhibiting each disease progression, depending on the specific pathological condition. The study of galectin-4’s ligand-binding profile may help decipher its roles under specific conditions. Here we present the X-ray structures of human galectin-4 N-terminal CRD (galectin-4N) bound to different saccharide ligands. Galectin-4’s overall fold and its core interactions to lactose are similar to other galectin CRDs. Galectin-4N recognises the sulfate cap of 3′-sulfated glycans by a weak interaction through Arg45 and two water-mediated hydrogen bonds via Trp84 and Asn49. When galectin-4N interacts with the H-antigen mimic, 2′-fucosyllactose, an interaction is formed between the ring oxygen of fucose and Arg45. The extended binding site of galectin-4N may not be well suited to the A/B-antigen determinants, α-GalNAc/α-Gal, specifically due to clashes with residue Phe47. Overall, galectin-4N favours sulfated glycans whilst galectin-4C prefers blood group determinants. However, the two CRDs of galectin-4 can, to a less extent, recognise each other’s ligands. PMID:26828567

  5. An Extended AE-Rich N-Terminal Trunk in Secreted Pineapple Cystatin Enhances Inhibition of Fruit Bromelain and Is Posttranslationally Removed during Ripening1[W][OA

    Science.gov (United States)

    Neuteboom, Leon W.; Matsumoto, Kristie O.; Christopher, David A.

    2009-01-01

    Phytocystatins are potent inhibitors of cysteine proteases and have been shown to participate in senescence, seed and organ biogenesis, and plant defense. However, phytocystatins are generally poor inhibitors of the cysteine protease, bromelain, of pineapple (Ananas comosus). Here, we demonstrated that pineapple cystatin, AcCYS1, inhibited (>95%) stem and fruit bromelain. AcCYS1 is a unique cystatin in that it contains an extended N-terminal trunk (NTT) of 63 residues rich in alanine and glutamate. A signal peptide preceding the NTT is processed in vitro by microsomal membranes giving rise to a 27-kD species. AcCYS1 mRNA was present in roots and leaves but was most abundant in fruit. Using immunofluorescence and immunoelectron microscopy with an AcCYS1-specific antiserum, AcCYS1 was found in the apoplasm. Immunoblot analysis identified a 27-kD protein in fruit, roots, and leaves and a 15-kD species in mature ripe fruit. Ripe fruit extracts proteolytically removed the NTT of 27-kD AcCYS1 in vitro to produce the 15-kD species. Mass spectrometry analysis was used to map the primary cleavage site immediately after a conserved critical glycine-94. The AE-rich NTT was required to inhibit fruit and stem bromelain (>95%), whereas its removal decreased inhibition to 20% (fruit) and 80% (stem) and increased the dissociation equilibrium constant by 1.8-fold as determined by surface plasmon resonance assays. We propose that proteolytic removal of the NTT results in the decrease of the inhibitory potency of AcCYS1 against fruit bromelain during fruit ripening to increase tissue proteolysis, softening, and degradation. PMID:19648229

  6. An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening.

    Science.gov (United States)

    Neuteboom, Leon W; Matsumoto, Kristie O; Christopher, David A

    2009-10-01

    Phytocystatins are potent inhibitors of cysteine proteases and have been shown to participate in senescence, seed and organ biogenesis, and plant defense. However, phytocystatins are generally poor inhibitors of the cysteine protease, bromelain, of pineapple (Ananas comosus). Here, we demonstrated that pineapple cystatin, AcCYS1, inhibited (>95%) stem and fruit bromelain. AcCYS1 is a unique cystatin in that it contains an extended N-terminal trunk (NTT) of 63 residues rich in alanine and glutamate. A signal peptide preceding the NTT is processed in vitro by microsomal membranes giving rise to a 27-kD species. AcCYS1 mRNA was present in roots and leaves but was most abundant in fruit. Using immunofluorescence and immunoelectron microscopy with an AcCYS1-specific antiserum, AcCYS1 was found in the apoplasm. Immunoblot analysis identified a 27-kD protein in fruit, roots, and leaves and a 15-kD species in mature ripe fruit. Ripe fruit extracts proteolytically removed the NTT of 27-kD AcCYS1 in vitro to produce the 15-kD species. Mass spectrometry analysis was used to map the primary cleavage site immediately after a conserved critical glycine-94. The AE-rich NTT was required to inhibit fruit and stem bromelain (>95%), whereas its removal decreased inhibition to 20% (fruit) and 80% (stem) and increased the dissociation equilibrium constant by 1.8-fold as determined by surface plasmon resonance assays. We propose that proteolytic removal of the NTT results in the decrease of the inhibitory potency of AcCYS1 against fruit bromelain during fruit ripening to increase tissue proteolysis, softening, and degradation.

  7. Structure of the N-terminal Gyrase B fragment in complex with ADP⋅Pi reveals rigid-body motion induced by ATP hydrolysis.

    Directory of Open Access Journals (Sweden)

    Frédéric V Stanger

    Full Text Available Type II DNA topoisomerases are essential enzymes that catalyze topological rearrangement of double-stranded DNA using the free energy generated by ATP hydrolysis. Bacterial DNA gyrase is a prototype of this family and is composed of two subunits (GyrA, GyrB that form a GyrA2GyrB2 heterotetramer. The N-terminal 43-kDa fragment of GyrB (GyrB43 from E. coli comprising the ATPase and the transducer domains has been studied extensively. The dimeric fragment is competent for ATP hydrolysis and its structure in complex with the substrate analog AMPPNP is known. Here, we have determined the remaining conformational states of the enzyme along the ATP hydrolysis reaction path by solving crystal structures of GyrB43 in complex with ADP⋅BeF3, ADP⋅Pi, and ADP. Upon hydrolysis, the enzyme undergoes an obligatory 12° domain rearrangement to accommodate the 1.5 Å increase in distance between the γ- and β-phosphate of the nucleotide within the sealed binding site at the domain interface. Conserved residues from the QTK loop of the transducer domain (also part of the domain interface couple the small structural change within the binding site with the rigid body motion. The domain reorientation is reflected in a significant 7 Å increase in the separation of the two transducer domains of the dimer that would embrace one of the DNA segments in full-length gyrase. The observed conformational change is likely to be relevant for the allosteric coordination of ATP hydrolysis with DNA binding, cleavage/re-ligation and/or strand passage.

  8. Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers.

    Directory of Open Access Journals (Sweden)

    Jerome Mauris

    Full Text Available BACKGROUND: Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. CONCLUSIONS/SIGNIFICANCE: These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.

  9. Site-directed mutational analysis of structural interactions of low molecule compounds binding to the N-terminal 8 kDa domain of DNA polymerase β

    International Nuclear Information System (INIS)

    Murakami, Shizuka; Kamisuki, Shinji; Takata, Kei-ichi; Kasai, Nobuyuki; Kimura, Seisuke; Mizushina, Yoshiyuki; Ohta, Keisuke; Sugawara, Fumio; Sakaguchi, Kengo

    2006-01-01

    We previously reported the mode of inhibition of DNA polymerase β (pol. β) by long chain fatty acids and a bile acid, involving binding analyses to the N-terminal 8-kDa DNA binding domain. Here we describe a site-directed mutational analysis in which the key amino acids (L11, K35, H51, K60, L77, and T79), which are direct interaction sites in the domain, were substituted with K, A, A, A, K, and A, respectively. And their pol. β interactions with a C24-long chain fatty acid, nervonic acid (NA), and a bile acid, lithocholic acid (LCA), were investigated by gel mobility shift assay and NMR spectroscopy. In the case of K35A, there was complete loss of DNA binding activity while K60A hardly has any activity. In contrast the other mutations had no appreciable effects. Thus, K35 and K60 are key amino acid sites for binding to template DNA. The DNA binding activities of L11K, H51A, and T79A as well as the wild type were inhibited by NA to the same extent. T79A demonstrated a disturbed interaction with LCA. 1 H- 15 N HSQC NMR analysis indicated that despite their many similarities, the wild-type and the mutant proteins displayed some significant chemical shift differences. Not only were the substituted amino acid residues three-dimensionally shifted, but some amino acids which are positioned far distant from the key amino acids showed a shift. These results suggest that the interaction surface was significantly distorted with the result that LCA could not bind to the domain. These findings confirm our previous biochemical and 3D structural proposals concerning inhibition by NA and LCA

  10. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    Science.gov (United States)

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  11. Direct determination of the rate constant of propagation by pseudo-stationary polymerization technique: screening investigation for the (implicit) penultimate effect

    International Nuclear Information System (INIS)

    Schnoll-Bitai, I.; Friedrich Olaj, O.; Liu Song Yu

    1999-01-01

    The systems styrene-p-methylstyrene, styrene-p-chlorostyrene, methyl methacrylate-p-methylstyrene and methyl methacrylate-p-chlorostyrene were polymerized under pseudo-stationary conditions (rotating sector or pulsed laser) at 25 degree C, 40 degree C and 50 degree C. The respective molecular weight distributions measured by GPC were analysed in order to derive directly the phenomenological rate constant of propagation, κ sub ρ. Copolymer compositions as a function of monomer feed could be described by the terminal model, whereas the kinetic results could only be interpreted in terms of the restricted penultimate model

  12. N-terminal fatty acylated His-dPhe-Arg-Trp-NH(2) tetrapeptides: influence of fatty acid chain length on potency and selectivity at the mouse melanocortin receptors and human melanocytes.

    Science.gov (United States)

    Todorovic, Aleksandar; Holder, Jerry Ryan; Bauzo, Rayna M; Scott, Joseph Walker; Kavanagh, Renny; Abdel-Malek, Zalfa; Haskell-Luevano, Carrie

    2005-05-05

    The melanocortin system is involved in the regulation of a diverse number of physiologically important pathways including pigmentation, feeding behavior, weight and energy homeostasis, inflammation, and sexual function. All the endogenous melanocortin agonist ligands possess the conserved His-Phe-Arg-Trp tetrapeptide sequence that is postulated to be important for melanocortin receptor molecular recognition and stimulation. Previous studies by our laboratory resulted in the discovery that increasing alkyl chain length at the N-terminal "capping" region of the His-dPhe-Arg-Trp-NH(2) tetrapeptide resulted in a 100-fold increased melanocortin receptor agonist potency. This study was undertaken to systematically evaluate the pharmacological effects of increasing N-capping alkyl chain length of the CH(3)(CH(2))(n)CO-His-dPhe-Arg-Trp-NH(2) (n = 6-16) tetrapeptide template. Twelve analogues were synthesized and pharmacologically characterized at the mouse melanocortin receptors MC1R and MC3R-MC5R and human melanocytes known to express the MC1R. These peptides demonstrated melanocortin receptor selectivity profiles different from those of previously published tetrapeptides. The most notable results of enhanced ligand potency (20- to 200-fold) and receptor selectivity were observed at the MC1R. Tetrapeptides that possessed greater than nine alkyl groups were superior to alpha-MSH in terms of the stimulation of human melanocyte tyrosinase activity. Additionally, the n-pentadecanoyl derivative had a residual effect on tyrosinase activity that existed for at least 4 days after the peptide was removed from the human melanocyte culture medium. These data demonstrate the utility, potency, and residual effect of melanocortin tetrapeptides by adding N-terminal fatty acid moieties.

  13. The core of Ure2p prion fibrils is formed by the N-terminal segment in a parallel cross-β structure: evidence from solid-state NMR.

    Science.gov (United States)

    Kryndushkin, Dmitry S; Wickner, Reed B; Tycko, Robert

    2011-06-03

    Intracellular fibril formation by Ure2p produces the non-Mendelian genetic element [URE3] in Saccharomyces cerevisiae, making Ure2p a prion protein. We show that solid-state NMR spectra of full-length Ure2p fibrils, seeded with infectious prions from a specific [URE3] strain and labeled with uniformly (15)N-(13)C-enriched Ile, include strong, sharp signals from Ile residues in the globular C-terminal domain (CTD) with both helical and nonhelical (13)C chemical shifts. Treatment with proteinase K eliminates these CTD signals, leaving only nonhelical signals from the Gln-rich and Asn-rich N-terminal segment, which are also observed in the solid-state NMR spectra of Ile-labeled fibrils formed by residues 1-89 of Ure2p. Thus, the N-terminal segment, or "prion domain" (PD), forms the fibril core, while CTD units are located outside the core. We additionally show that, after proteinase K treatment, Ile-labeled Ure2p fibrils formed without prion seeding exhibit a broader set of solid-state NMR signals than do prion-seeded fibrils, consistent with the idea that structural variations within the PD core account for prion strains. Measurements of (13)C-(13)C magnetic dipole-dipole couplings among (13)C-labeled Ile carbonyl sites in full-length Ure2p fibrils support an in-register parallel β-sheet structure for the PD core of Ure2p fibrils. Finally, we show that a model in which CTD units are attached rigidly to the parallel β-sheet core is consistent with steric constraints. Published by Elsevier Ltd.

  14. Structure and assembly properties of the N-terminal domain of the prion Ure2p in isolation and in its natural context.

    Directory of Open Access Journals (Sweden)

    Luc Bousset

    Full Text Available BACKGROUND: The aggregation of the baker's yeast prion Ure2p is at the origin of the [URE3] trait. The Q- and N-rich N-terminal part of the protein is believed to drive Ure2p assembly into fibrils of amyloid nature and the fibrillar forms of full-length Ure2p and its N-terminal part generated in vitro have been shown to induce [URE3] occurrence when introduced into yeast cells. This has led to the view that the fibrillar form of the N-terminal part of the protein is sufficient for the recruitment of constitutive Ure2p and that it imprints its amyloid structure to full-length Ure2p. RESULTS: Here we generate a set of Ure2p N-terminal fragments, document their assembly and structural properties and compare them to that of full-length Ure2p. We identify the minimal region critical for the assembly of Ure2p N-terminal part into amyloids and show that such fibrils are unable to seed the assembly of full length Ure2p unlike fibrils made of intact Ure2p. CONCLUSION: Our results clearly indicate that fibrillar Ure2p shares no structural similarities with the amyloid fibrils made of Ure2p N-terminal part. Our results further suggest that the induction of [URE3] by fibrils made of full-length Ure2p is likely the consequence of fibrils growth by depletion of cytosolic Ure2p while it is the consequence of de novo formation of prion particles following, for example, titration within the cells of a specific set of molecular chaperones when fibrils made of Ure2p N-terminal domain are introduced within the cytoplasm.

  15. Crystal Structure of the N-Terminal Half of the Traffic Controller UL37 from Herpes Simplex Virus 1

    Energy Technology Data Exchange (ETDEWEB)

    Koenigsberg, Andrea L.; Heldwein, Ekaterina E.; Sandri-Goldin, Rozanne M.

    2017-08-02

    Inner tegument protein UL37 is conserved among all three subfamilies of herpesviruses. Studies of UL37 homologs from two alphaherpesviruses, herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), have suggested that UL37 plays an essential albeit poorly defined role in intracellular capsid trafficking. At the same time, HSV and PRV homologs cannot be swapped, which suggests that in addition to a conserved function, UL37 homologs also have divergent virus-specific functions. Accurate dissection of UL37 functions requires detailed maps in the form of atomic-resolution structures. Previously, we reported the crystal structure of the N-terminal half of UL37 (UL37N) from PRV. Here, we report the crystal structure of HSV-1 UL37N. Comparison of the two structures reveals that UL37 homologs differ in their overall shapes, distributions of surface charges, and locations of projecting loops. In contrast, the previously identified R2 surface region is structurally conserved. We propose that within the N-terminal half of UL37, functional conservation is centered within the R2 surface region, whereas divergent structural elements pinpoint regions mediating virus-specific functions and may engage different binding partners. Together, the two structures can now serve as templates for a structure-guided exploration of both conserved and virus-specific functions of UL37.

    IMPORTANCEThe ability to move efficiently within host cell cytoplasm is essential for replication in all viruses. It is especially important in the neuroinvasive alphaherpesviruses, such as human herpes simplex virus 1 (HSV-1), HSV-2, and veterinarian pseudorabies virus (PRV), that infect the peripheral nervous system and have to travel long distances along axons. Capsid movement in these viruses is controlled by capsid-associated tegument proteins, yet their specific roles have not yet been defined. Systematic exploration of the roles of tegument proteins in capsid trafficking requires

  16. Implication of the oligomeric state of the N-terminal PTX3 domain in cumulus matrix assembly.

    Science.gov (United States)

    Ievoli, Elena; Lindstedt, Ragnar; Inforzato, Antonio; Camaioni, Antonella; Palone, Francesca; Day, Anthony J; Mantovani, Alberto; Salvatori, Giovanni; Salustri, Antonietta

    2011-06-01

    Pentraxin 3 (PTX3) plays a key role in the formation of the hyaluronan-rich matrix of the cumulus oophorus surrounding ovulated eggs that is required for successful fertilization and female fertility. PTX3 is a multimeric protein consisting of eight identical protomers held together by a combination of non-covalent interactions and disulfide bonds. Recent findings suggest that the oligomeric status of PTX3 is important for stabilizing the cumulus matrix. Because the role of PTX3 in the cumulus resides in the unique N-terminal sequence of the protomer, we investigated further this issue by testing the ability of distinct Cys/Ser mutants of recombinant N-terminal region of PTX3 (N(_)PTX3) with different oligomeric arrangement to promote in vitro normal expansion in cumuli from Ptx3-null mice. Here we report that the dimer of the N(_)PTX3 is unable to rescue cumulus matrix organization, and that the tetrameric assembly of the protein is the minimal oligomeric state required for accomplishing this function. We have previously demonstrated that PTX3 binds to HCs of IαI and TSG-6, which are essential for cumulus matrix formation and able to interact with hyaluronan. Interestingly, here we show by solid-phase binding experiments that the dimer of the N(_)PTX3 retains the ability to bind to both IαI and TSG-6, suggesting that the octameric structure of PTX3 provides multiple binding sites for each of these ligands. These findings support the hypothesis that PTX3 contributes to cumulus matrix organization by cross-linking HA polymers through interactions with multiple HCs of IαI and/or TSG-6. The N-terminal PTX3 tetrameric oligomerization was recently reported to be also required for recognition and inhibition of FGF2. Given that this growth factor has been detected in the mammalian preovulatory follicle, we wondered whether FGF2 negatively influences cumulus expansion and PTX3 may also serve in vivo to antagonize its activity. We found that a molar excess of FGF2, above

  17. Substituting Both the N-Terminal and "Cord" Regions of a Xylanase from Aspergillus oryzae to Improve Its Temperature Characteristics.

    Science.gov (United States)

    Li, Chuang; Li, Jianfang; Wang, Rui; Li, Xueqing; Li, Jinping; Deng, Chao; Wu, Minchen

    2018-02-06

    To improve the temperature characteristics of AoXyn11A, a mesophilic glycoside hydrolase family (GHF) 11 xylanase from Aspergillus oryzae CICC40186, its N-terminal and "cord" regions were selected to be substituted by means of the computer-aided analysis and calculation. In brief, one mutant, named ATX11A 41 , possessing the lowest root-mean-square deviation (RMSD) value was designed based on the molecular dynamics (MD) simulation by substituting the N-terminal 41 amino acids of AoXyn11A with the corresponding 42 ones of pXYL11, a thermophilic GHF11 xylanase from Thermobifida fusca. On the basis of the primary structure alignment of pXYL11 with ATX11A 41 (or AoXyn11A), another mutant, named ATX11A 41/cord , was designed by substituting the cord region ( 93 GTYNPGSGG 101 ) of ATX11A 41 with the corresponding one ( 93 GTYRPTG 99 ) of pXYL11. Both mutant-encoding genes, ATx11A 41 and ATx11A 41/cord , were constructed as designed theoretically by a megaprimer PCR technique and were expressed in Pichia pastoris GS115. The specific activities of recombinant (re) AoXyn11A, ATX11A 41 , and ATX11A 41/cord were 2916.7, 2667.6, and 2457.0 U/mg, respectively. The analysis of temperature characteristics displayed that the temperature optimum (T opt ) of reATX11A 41 or reATX11A 41/cord was 65 °C, which was 15 °C higher than that of reAoXyn11A. The thermal inactivation half-life (t 1/2 ) values of reATX11A 41 and reATX11A 41/cord at 60 °C were 55 and 83 min, respectively, whereas that of reAoXyn11A was only 18 min at 50 °C. The melting temperature (T m ) values of reAoXyn11A, reATX11A 41 , and reATX11A 41/cord were 54.2, 66.7, and 71.9 °C, respectively. In conclusion, the above findings indicated that the substitution of both the N-terminal and cord regions of a mesophilic AoXyn11A greatly contributed to its improved temperature characteristics.

  18. N-terminal pro-atrial natriuretic peptide response to acute exercise in depressed patients and healthy controls

    DEFF Research Database (Denmark)

    Krogh, Jesper; Ströhle, Andreas; Westrin, Asa

    2011-01-01

    that patients with depression would have an attenuated N-terminal proANP (NT-proANP) response to acute exercise compared to healthy controls. Secondly, we aimed to assess the effect of antidepressants on NT-proANP response to acute exercise. METHODS: We examined 132 outpatients with mild to moderate depression......BACKGROUND: The dysfunction of hypothalamic-pituitary-adrenal (HPA) axis in major depression includes hyperactivity and reduced feedback inhibition. Atrial natriuretic peptide (ANP) is able to reduce the HPA-axis response to stress and has an anxiolytic effect in rodents and humans. We hypothesized...... (ICD-10) and 44 healthy controls, group matched for age, sex, and BMI. We used an incremental bicycle ergometer test as a physical stressor. Blood samples were drawn at rest, at exhaustion, and 15, 30, and 60min post-exercise. RESULTS: The NT-proANP response to physical exercise differed between...

  19. N-terminal pro-atrial natriuretic peptide response to acute exercise in depressed patients and healthy controls

    DEFF Research Database (Denmark)

    Krogh, Jesper; Ströhle, Andreas; Westrin, Asa

    2011-01-01

    BACKGROUND: The dysfunction of hypothalamic-pituitary-adrenal (HPA) axis in major depression includes hyperactivity and reduced feedback inhibition. Atrial natriuretic peptide (ANP) is able to reduce the HPA-axis response to stress and has an anxiolytic effect in rodents and humans. We hypothesized...... that patients with depression would have an attenuated N-terminal proANP (NT-proANP) response to acute exercise compared to healthy controls. Secondly, we aimed to assess the effect of antidepressants on NT-proANP response to acute exercise. METHODS: We examined 132 outpatients with mild to moderate depression...... (ICD-10) and 44 healthy controls, group matched for age, sex, and BMI. We used an incremental bicycle ergometer test as a physical stressor. Blood samples were drawn at rest, at exhaustion, and 15, 30, and 60min post-exercise. RESULTS: The NT-proANP response to physical exercise differed between...

  20. The mechanism of vault opening from the high resolution structure of the N-terminal repeats of MVP.

    Science.gov (United States)

    Querol-Audí, Jordi; Casañas, Arnau; Usón, Isabel; Luque, Daniel; Castón, José R; Fita, Ignasi; Verdaguer, Nuria

    2009-11-04

    Vaults are ubiquitous ribonucleoprotein complexes involved in a diversity of cellular processes, including multidrug resistance, transport mechanisms and signal transmission. The vault particle shows a barrel-shaped structure organized in two identical moieties, each consisting of 39 copies of the major vault protein MVP. Earlier data indicated that vault halves can dissociate at acidic pH. The crystal structure of the vault particle solved at 8 A resolution, together with the 2.1-A structure of the seven N-terminal domains (R1-R7) of MVP, reveal the interactions governing vault association and provide an explanation for a reversible dissociation induced by low pH. The structural comparison with the recently published 3.5 A model shows major discrepancies, both in the main chain tracing and in the side chain assignment of the two terminal domains R1 and R2.

  1. Endoplasmic Reticulum Export, Subcellular Distribution, and Fibril Formation by Pmel17 Require an Intact N-terminal Domain Junction*

    Science.gov (United States)

    Leonhardt, Ralf M.; Vigneron, Nathalie; Rahner, Christoph; Van den Eynde, Benoît J.; Cresswell, Peter

    2010-01-01

    Pmel17 is a melanocyte/melanoma-specific protein that subcellularly localizes to melanosomes, where it forms a fibrillar matrix that serves for the sequestration of potentially toxic reaction intermediates of melanin synthesis and deposition of the pigment. As a key factor in melanosomal biogenesis, understanding intracellular trafficking and processing of Pmel17 is of central importance to comprehend how these organelles are formed, how they mature, and how they function in the cell. Using a series of deletion and missense mutants of Pmel17, we are able to show that the integrity of the junction between the N-terminal region and the polycystic kidney disease-like domain is highly crucial for endoplasmic reticulum export, subcellular targeting, and fibril formation by Pmel17 and thus for establishing functional melanosomes. PMID:20231267

  2. Structure of the mouse galectin-4 N-terminal carbohydrate-recognition domain reveals the mechanism of oligosaccharide recognition

    Energy Technology Data Exchange (ETDEWEB)

    Krejciríková, Veronika; Pachl, Petr; Fábry, Milan; Malý, Petr; Rezácová, Pavlína; Brynda, Jirí (Czech Academy)

    2011-11-18

    Galectin-4, a member of the tandem-repeat subfamily of galectins, participates in cell-membrane interactions and plays an important role in cell adhesion and modulation of immunity and malignity. The oligosaccharide specificity of the mouse galectin-4 carbohydrate-recognition domains (CRDs) has been reported previously. In this work, the structure and binding properties of the N-terminal domain CRD1 were further investigated and the crystal structure of CRD1 in complex with lactose was determined at 2.1 {angstrom} resolution. The lactose-binding affinity was characterized by fluorescence measurements and two lactose-binding sites were identified: a high-affinity site with a K{sub d} value in the micromolar range (K{sub d1} = 600 {+-} 70 {mu}M) and a low-affinity site with K{sub d2} = 28 {+-} 10 mM.

  3. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  4. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  5. Structural communication between the chromophore-binding pocket and the N-terminal extension in plant phytochrome phyB.

    Science.gov (United States)

    Velázquez Escobar, Francisco; Buhrke, David; Fernandez Lopez, Maria; Shenkutie, Sintayehu Manaye; von Horsten, Silke; Essen, Lars-Oliver; Hughes, Jon; Hildebrandt, Peter

    2017-05-01

    The N-terminal extension (NTE) of plant phytochromes has been suggested to play a functional role in signaling photoinduced structural changes. Here, we use resonance Raman spectroscopy to study the effect of the NTE on the chromophore structure of B-type phytochromes from two evolutionarily distant plants. NTE deletion seems to have no effect on the chromophore in the inactive Pr state, but alters the torsion of the C-D ring methine bridge and the surrounding hydrogen bonding network in the physiologically active Pfr state. These changes are accompanied by a shift of the conformational equilibrium between two Pfr substates, which might affect the thermal isomerization rate of the C-D double bond and, thus, account for the effect of the NTE on the dark reversion kinetics. © 2017 Federation of European Biochemical Societies.

  6. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  7. Conformational changes of the N-terminal part of Mason-Pfizer monkey virus p12 protein during multimerization

    International Nuclear Information System (INIS)

    Knejzlik, Zdenek; Ulbrich, Pavel; Strohalm, Martin; Lastuvkova, Hana; Kodicek, Milan; Sakalian, Michael; Ruml, Tomas

    2009-01-01

    The Mason-Pfizer monkey virus is a prototype Betaretrovirus with the defining characteristic that it assembles spherical immature particles from Gag-related polyprotein precursors within the cytoplasm of the infected cell. It was shown previously that the N-terminal part of the Gag p12 domain (wt-Np12) is required for efficient assembly. However, the precise role for p12 in mediating Gag-Gag interaction is still poorly understood. In this study we employed detailed circular dichroism spectroscopy, electron microscopy and ultracentrifugation analyses of recombinant wt-Np12 prepared by in vitro transcription and translation. The wt-Np12 domain fragment forms fibrillar structures in a concentration-dependent manner. Assembly into fibers is linked to a conformational transition from unfolded or another non-periodical state to α-helix during multimerization.

  8. Investigation of the N-terminal coding region of MUC7 alterations in dentistry students with and without caries

    Directory of Open Access Journals (Sweden)

    Koç Öztürk L

    2016-06-01

    Full Text Available Human low-molecular weight salivary mucin (MUC7 is a small, secreted glycoprotein coded by MUC7. In the oral cavity, they inhibit the colonization of oral bacteria, including cariogenic ones, by masking their surface adhesions, thus helping saliva to avoid dental caries. The N-terminal domain is important for low-molecular weight (MG2 mucins to contact with oral microorganisms. In this study, we aimed to identify the N-terminal coding region of the MUC7 gene between individuals with and without caries. Forty-four healthy dental students were enrolled in this study; 24 of them were classified to have caries [decayed, missing, filled-teeth (DMFT = 5.6] according to the World Health Organization (WHO criteria, and 20 of them were caries-free (DMFT = 0. Simplified oral hygiene index (OHI-S and gingival index (GI were used to determine the oral hygiene and gingival conditions. Total protein levels and salivary total protein levels and salivary buffer capacity (SBC were determined by Lowry and Ericsson methods. DNA was extracted from peripheral blood cells of all the participants and genotyping was carried out by a polymerase chain reaction (PCR-sequencing method. No statistical differences were found between two groups in the terms of salivary parameters, oral hygiene and gingival conditions. We detected one common single nucleotide polymorphism (SNP that leads to a change of asparagine to lysine at codon 80. This substitution was found in 29.0 and 40.0%, respectively, of the groups with and without caries. No other sequence variations were detected. The SNP found in this study may be a specific polymorphism affecting the Turkish population. Further studies with extended numbers are necessary in order to clarify this finding.

  9. Improving N-terminal protein annotation of Plasmodium species based on signal peptide prediction of orthologous proteins

    Directory of Open Access Journals (Sweden)

    Neto Armando

    2012-11-01

    Full Text Available Abstract Background Signal peptide is one of the most important motifs involved in protein trafficking and it ultimately influences protein function. Considering the expected functional conservation among orthologs it was hypothesized that divergence in signal peptides within orthologous groups is mainly due to N-terminal protein sequence misannotation. Thus, discrepancies in signal peptide prediction of orthologous proteins were used to identify misannotated proteins in five Plasmodium species. Methods Signal peptide (SignalP and orthology (OrthoMCL were combined in an innovative strategy to identify orthologous groups showing discrepancies in signal peptide prediction among their protein members (Mixed groups. In a comparative analysis, multiple alignments for each of these groups and gene models were visually inspected in search of misannotated proteins and, whenever possible, alternative gene models were proposed. Thresholds for signal peptide prediction parameters were also modified to reduce their impact as a possible source of discrepancy among orthologs. Validation of new gene models was based on RT-PCR (few examples or on experimental evidence already published (ApiLoc. Results The rate of misannotated proteins was significantly higher in Mixed groups than in Positive or Negative groups, corroborating the proposed hypothesis. A total of 478 proteins were reannotated and change of signal peptide prediction from negative to positive was the most common. Reannotations triggered the conversion of almost 50% of all Mixed groups, which were further reduced by optimization of signal peptide prediction parameters. Conclusions The methodological novelty proposed here combining orthology and signal peptide prediction proved to be an effective strategy for the identification of proteins showing wrongly N-terminal annotated sequences, and it might have an important impact in the available data for genome-wide searching of potential vaccine and drug

  10. Immunological and protective effects of Bordetella bronchiseptica subunit vaccines based on the recombinant N-terminal domain of dermonecrotic toxin.

    Science.gov (United States)

    Wang, Chuanwen; Liu, Liping; Zhang, Zhen; Yan, Zhengui; Yu, Cuilian; Shao, Mingxu; Jiang, Xiaodong; Chi, Shanshan; Wei, Kai; Zhu, Ruiliang

    2015-10-01

    Dermonecrotic toxin (DNT) produced by Bordetella bronchiseptica (B. bronchiseptica) can cause clinical turbinate atrophy in swine and induce dermonecrotic lesions in model mice. We know that the N-terminal of DNT molecule contains the receptor-binding domain, which facilitates binding to the target cells. However, we do not know whether this domain has sufficient immunogenicity to resist B. bronchiseptica damage and thereby to develop a subunit vaccine for the swine industry. In this study, we prokaryotically expressed the recombinant N-terminal of DNT from B. bronchiseptica (named DNT-N) and prepared it for the subunit vaccine to evaluate its immunogenicity. Taishan Pinus massoniana pollen polysaccharide (TPPPS), a known immunomodulator, was used as the adjuvant to examine its immune-conditioning effects. At 49 d after inoculation, 10 mice from each group were challenged with B. bronchiseptica, and another 10 mice were intradermally challenged with native DNT, to examine the protection imparted by the vaccines. The immune parameters (T-lymphocyte counts, cytokine secretions, serum antibody titers, and survival rates) and skin lesions were determined. The results showed that pure DNT-N vaccine significantly induced immune responses and had limited ability to resist the B. bronchiseptica and DNT challenge, whereas the mice administered with TPPPS or Freund's incomplete adjuvant vaccine could induce higher levels of the above immune parameters. Remarkably, the DNT-N vaccine combined with TPPPS adjuvant protected the mice effectively to prevent B. bronchiseptica infection. Our findings indicated that DNT-N has potential for development as an effective subunit vaccine to counteract the damage of B. bronchiseptica infection, especially when used conjointly with TPPPS. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains.

    Science.gov (United States)

    Harper, Stephen; Gratton, Hayley E; Cornaciu, Irina; Oberer, Monika; Scott, David J; Emsley, Jonas; Dreveny, Ingrid

    2014-05-13

    The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.

  12. The N-terminal domain of the repressor of Staphylococcus aureus phage Φ11 possesses an unusual dimerization ability and DNA binding affinity.

    Directory of Open Access Journals (Sweden)

    Anindya Biswas

    Full Text Available Bacteriophage Φ11 uses Staphylococcus aureus as its host and, like lambdoid phages, harbors three homologous operators in between its two divergently oriented repressor genes. None of the repressors of Φ11, however, showed binding to all three operators, even at high concentrations. To understand why the DNA binding mechanism of Φ11 repressors does not match that of lambdoid phage repressors, we studied the N-terminal domain of the Φ11 lysogenic repressor, as it harbors a putative helix-turn-helix motif. Our data revealed that the secondary and tertiary structures of the N-terminal domain were different from those of the full-length repressor. Nonetheless, the N-terminal domain was able to dimerize and bind to the operators similar to the intact repressor. In addition, the operator base specificity, binding stoichiometry, and binding mechanism of this domain were nearly identical to those of the whole repressor. The binding affinities of the repressor and its N-terminal domain were reduced to a similar extent when the temperature was increased to 42°C. Both proteins also adequately dislodged a RNA polymerase from a Φ11 DNA fragment carrying two operators and a promoter. Unlike the intact repressor, the binding of the N-terminal domain to two adjacent operator sites was not cooperative in nature. Taken together, we suggest that the dimerization and DNA binding abilities of the N-terminal domain of the Φ11 repressor are distinct from those of the DNA binding domains of other phage repressors.

  13. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    Science.gov (United States)

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  14. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers

    DEFF Research Database (Denmark)

    Plasencia, Inés; Rivas, Luis; Keough, Kevin M W

    2004-01-01

    aggregation, and leakage of the aqueous content of the vesicles. The lipid-peptide interaction includes a significant hydrophobic component for both zwitterionic and anionic membranes, although the interaction with phosphatidylglycerol bilayers is also electrostatic in nature. The effects of the SP-C N......-terminal peptides on the membrane structure are mediated by significant perturbations of the packing order and mobility of phospholipid acyl chain segments deep in the bilayer, as detected by differential scanning calorimetry and spin-label ESR. These results suggest that the N-terminal region of SP-C, even...

  15. Localization of Daucus carota NMCP1 to the nuclear periphery: the role of the N-terminal region and an NLS-linked sequence motif, RYNLRR, in the tail domain

    Directory of Open Access Journals (Sweden)

    Yuta eKimura

    2014-02-01

    Full Text Available Recent ultrastructural studies revealed that a structure similar to the vertebrate nuclear lamina exists in the nuclei of higher plants. However, plant genomes lack genes for lamins and intermediate-type filament proteins, and this suggests that plant-specific nuclear coiled-coil proteins make up the lamina-like structure in plants. NMCP1 is a protein, first identified in Daucus carota cells, that localizes exclusively to the nuclear periphery in interphase cells. It has a tripartite structure comprised of head, rod, and tail domains, and includes putative nuclear localization signal (NLS motifs. We identified the functional NLS of DcNMCP1 (carrot NMCP1 and determined the protein regions required for localizing to the nuclear periphery using EGFP-fused constructs transiently expressed in Apium graveolens epidermal cells. Transcription was driven under a CaMV35S promoter, and the genes were introduced into the epidermal cells by a DNA-coated microprojectile delivery system. Of the NLS motifs, KRRRK and RRHK in the tail domain were highly functional for nuclear localization. Addition of the N-terminal 141 amino acids from DcNMCP1 shifted the localization of a region including these NLSs from the entire nucleus to the nuclear periphery. Using this same construct, the replacement of amino acids in RRHK or its preceding sequence, YNL, with alanine residues abolished localization to the nuclear periphery, while replacement of KRRRK did not affect localization. The sequence R/Q/HYNLRR/H, including YNL and the first part of the sequence of RRHK, is evolutionarily conserved in a subclass of NMCP1 sequences from many plant species. These results show that NMCP1 localizes to the nuclear periphery by a combined action of a sequence composed of R/Q/HYNLRR/H, NLS, and the N-terminal region including the head and a portion of the rod domain, suggesting that more than one binding site is implicated in localization of NMCP1.

  16. Identification of quercitrin as an inhibitor of the p90 S6 ribosomal kinase (RSK): structure of its complex with the N-terminal domain of RSK2 at 1.8 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Derewenda, Urszula; Artamonov, Mykhaylo; Szukalska, Gabriela; Utepbergenov, Darkhan; Olekhnovich, Natalya [University of Virginia, Charlottesville, VA 22908-0736 (United States); Parikh, Hardik I.; Kellogg, Glen E. [Virginia Commonwealth University, Richmond, VA 23298-0540 (United States); Somlyo, Avril V.; Derewenda, Zygmunt S., E-mail: zsd4n@virginia.edu [University of Virginia, Charlottesville, VA 22908-0736 (United States)

    2013-02-01

    The crystal structure of quercitrin, a naturally occurring flavonol glycoside, has been determined in a complex with the N-terminal kinase domain of murine RSK2. The structure revealed that quercitrin inhibits the RSK2 kinase in the same fashion as another known inhibitor, SL0101. Members of the RSK family of kinases constitute attractive targets for drug design, but a lack of structural information regarding the mechanism of selective inhibitors impedes progress in this field. The crystal structure of the N-terminal kinase domain (residues 45–346) of mouse RSK2, or RSK2{sup NTKD}, has recently been described in complex with one of only two known selective inhibitors, a rare naturally occurring flavonol glycoside, kaempferol 3-O-(3′′,4′′-di-O-acetyl-α-l-rhamnopyranoside), known as SL0101. Based on this structure, it was hypothesized that quercitrin (quercetin 3-O-α-l-rhamnopyranoside), a related but ubiquitous and inexpensive compound, might also act as an RSK inhibitor. Here, it is demonstrated that quercitrin binds to RSK2{sup NTKD} with a dissociation constant (K{sub d}) of 5.8 µM as determined by isothermal titration calorimetry, and a crystal structure of the binary complex at 1.8 Å resolution is reported. The crystal structure reveals a very similar mode of binding to that recently reported for SL0101. Closer inspection shows a number of small but significant differences that explain the slightly higher K{sub d} for quercitrin compared with SL0101. It is also shown that quercitrin can effectively substitute for SL0101 in a biological assay, in which it significantly suppresses the contractile force in rabbit pulmonary artery smooth muscle in response to Ca{sup 2+}.

  17. Identification of quercitrin as an inhibitor of the p90 S6 ribosomal kinase (RSK): structure of its complex with the N-terminal domain of RSK2 at 1.8 Å resolution

    International Nuclear Information System (INIS)

    Derewenda, Urszula; Artamonov, Mykhaylo; Szukalska, Gabriela; Utepbergenov, Darkhan; Olekhnovich, Natalya; Parikh, Hardik I.; Kellogg, Glen E.; Somlyo, Avril V.; Derewenda, Zygmunt S.

    2013-01-01

    The crystal structure of quercitrin, a naturally occurring flavonol glycoside, has been determined in a complex with the N-terminal kinase domain of murine RSK2. The structure revealed that quercitrin inhibits the RSK2 kinase in the same fashion as another known inhibitor, SL0101. Members of the RSK family of kinases constitute attractive targets for drug design, but a lack of structural information regarding the mechanism of selective inhibitors impedes progress in this field. The crystal structure of the N-terminal kinase domain (residues 45–346) of mouse RSK2, or RSK2 NTKD , has recently been described in complex with one of only two known selective inhibitors, a rare naturally occurring flavonol glycoside, kaempferol 3-O-(3′′,4′′-di-O-acetyl-α-l-rhamnopyranoside), known as SL0101. Based on this structure, it was hypothesized that quercitrin (quercetin 3-O-α-l-rhamnopyranoside), a related but ubiquitous and inexpensive compound, might also act as an RSK inhibitor. Here, it is demonstrated that quercitrin binds to RSK2 NTKD with a dissociation constant (K d ) of 5.8 µM as determined by isothermal titration calorimetry, and a crystal structure of the binary complex at 1.8 Å resolution is reported. The crystal structure reveals a very similar mode of binding to that recently reported for SL0101. Closer inspection shows a number of small but significant differences that explain the slightly higher K d for quercitrin compared with SL0101. It is also shown that quercitrin can effectively substitute for SL0101 in a biological assay, in which it significantly suppresses the contractile force in rabbit pulmonary artery smooth muscle in response to Ca 2+

  18. Efficient production of native lunasin with correct N-terminal processing by using the pH-induced self-cleavable Ssp DnaB mini-intein system in Escherichia coli.

    Science.gov (United States)

    Setrerrahmane, Sarra; Zhang, Yi; Dai, Guangzhi; Lv, Jing; Tan, Shuhua

    2014-09-01

    To develop an efficient and cost-effective approach for the production of small preventive peptide lunasin with correct natural N terminus, a synthetic gene was designed by OPTIMIZER & Gene Designer and cloned into pTWIN1 vector at SapI and PstI sites. Thus, lunasin was N-terminally fused to the pH-induced self-cleavable Ssp DnaB mini-intein linked to a chitin binding domain (CBD) with no extra residues. The resultant fusion protein was highly expressed by lactose induction in Escherichia coli BL21 (DE3) in a 7-l bioreactor and bound to a chitin affinity column. After washing the impurities, the Ssp DnaB intein mediated on-column self-cleavage was easily triggered by shifting pH and temperature to allow the native lunasin released. The final purified lunasin yielded up to 75 mg/l medium. Tricine/SDS-PAGE and matrix-assisted laser desorption time-of-flight (MALDI-TOF)/mass spectrometry (MS) verified the structural authenticity of the product, implying the correct cleavage at the junction between Ssp DnaB intein and lunasin. MTT assay confirmed its potent proliferation inhibitory activity to human cancer cells HCT-116 and MDA-MB-231; however, no cytotoxicity to normal human lens epithelial cell SRA01/04 and hepatoma HepG2. Taken together, we provide a novel strategy to produce recombinant native lunasin with correct N-terminal processing by using the pH-induced self-cleavable Ssp DnaB mini-intein.

  19. The scavenger receptor SSc5D physically interacts with bacteria through the SRCR-containing N-terminal domain

    Directory of Open Access Journals (Sweden)

    Catarina Bessa-Pereira

    2016-10-01

    Full Text Available The scavenger receptor cysteine-rich (SRCR family comprises a group of membrane-attached or secreted proteins that contain one or more modules/domains structurally similar to the membrane distal domain of type I macrophage scavenger receptor. Although no all-inclusive biological function has been ascribed to the SRCR family, some of these receptors have been shown to recognize pathogen-associated molecular patterns (PAMP of bacteria, fungi or other microbes. SSc5D is a recently described soluble SRCR receptor produced by monocytes/macrophages and T lymphocytes, consisting of an N-terminal portion which contains five SRCR modules, and a large C-terminal mucin-like domain. Towards establishing a global common role for SRCR domains, we interrogated whether the set of five SRCR domains of SSc5D displayed pattern recognition receptor (PRR properties. For that purpose, we have expressed in a mammalian expression system the N-terminal SRCR-containing moiety of SSC5D (N-SSc5D, thus excluding the mucin-like domain likely by nature to bind microorganisms, and tested the capacity of the SRCR functional groups to physically interact with bacteria. Using conventional protein-bacteria binding assays, we showed that N-SSc5D had a superior capacity to bind to E. coli strains RS218 and IHE3034 compared with that of the extracellular domains of the SRCR proteins CD5 and CD6 (sCD5 and sCD6, respectively, and similar E. coli-binding properties as Spα, a proven PRR of the SRCR family. We have further designed a more sensitive, real-time and label-free surface plasmon resonance (SPR-based assay, and examined the capacity of N-SSc5D, Spα, sCD5 and sCD6 to bind to different bacteria. We demonstrated that the N-SSc5D compares with Spα in the capacity to bind to E. coli and L. monocytogenes, and further that it can distinguish between pathogenic E. coli RS218 and IHE3034 strains and the non-pathogenic laboratory E. coli strain BL21(DE3. Our work thus advocates the

  20. Specificity and versatility of substrate binding sites in four catalytic domains of human N-terminal acetyltransferases.

    Directory of Open Access Journals (Sweden)

    Cédric Grauffel

    Full Text Available Nt-acetylation is among the most common protein modifications in eukaryotes. Although thought for a long time to protect proteins from degradation, the role of Nt-acetylation is still debated. It is catalyzed by enzymes called N-terminal acetyltransferases (NATs. In eukaryotes, several NATs, composed of at least one catalytic domain, target different substrates based on their N-terminal sequences. In order to better understand the substrate specificity of human NATs, we investigated in silico the enzyme-substrate interactions in four catalytic subunits of human NATs (Naa10p, Naa20p, Naa30p and Naa50p. To date hNaa50p is the only human subunit for which X-ray structures are available. We used the structure of the ternary hNaa50p/AcCoA/MLG complex and a structural model of hNaa10p as a starting point for multiple molecular dynamics simulations of hNaa50p/AcCoA/substrate (substrate=MLG, EEE, MKG, hNaa10p/AcCoA/substrate (substrate=MLG, EEE. Nine alanine point-mutants of the hNaa50p/AcCoA/MLG complex were also simulated. Homology models of hNaa20p and hNaa30p were built and compared to hNaa50p and hNaa10p. The simulations of hNaa50p/AcCoA/MLG reproduce the interactions revealed by the X-ray data. We observed strong hydrogen bonds between MLG and tyrosines 31, 138 and 139. Yet the tyrosines interacting with the substrate's backbone suggest that their role in specificity is limited. This is confirmed by the simulations of hNaa50p/AcCoA/EEE and hNaa10p/AcCoA/MLG, where these hydrogen bonds are still observed. Moreover these tyrosines are all conserved in hNaa20p and hNaa30p. Other amino acids tune the specificity of the S1' sites that is different for hNaa10p (acidic, hNaa20p (hydrophobic/basic, hNaa30p (basic and hNaa50p (hydrophobic. We also observe dynamic correlation between the ligand binding site and helix [Formula: see text] that tightens under substrate binding. Finally, by comparing the four structures we propose maps of the peptide

  1. Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex.

    Science.gov (United States)

    Jefferson, Matthew; Donaszi-Ivanov, Andras; Pollen, Sean; Dalmay, Tamas; Saalbach, Gerhard; Powell, Penny P

    2014-09-01

    The viral N-terminal protease N(pro) of pestiviruses counteracts cellular antiviral defenses through inhibition of IRF3. Here we used mass spectrometry to identify a new role for N(pro) through its interaction with over 55 associated proteins, mainly ribosomal proteins and ribonucleoproteins, including RNA helicase A (DHX9), Y-box binding protein (YBX1), DDX3, DDX5, eIF3, IGF2BP1, multiple myeloma tumor protein 2, interleukin enhancer binding factor 3 (IEBP3), guanine nucleotide binding protein 3, and polyadenylate-binding protein 1 (PABP-1). These are components of the translation machinery, ribonucleoprotein particles (RNPs), and stress granules. Significantly, we found that stress granule formation was inhibited in MDBK cells infected with a noncytopathic bovine viral diarrhea virus (BVDV) strain, Kyle. However, ribonucleoproteins binding to N(pro) did not inhibit these proteins from aggregating into stress granules. N(pro) interacted with YBX1 though its TRASH domain, since the mutant C112R protein with an inactive TRASH domain no longer redistributed to stress granules. Interestingly, RNA helicase A and La autoantigen relocated from a nuclear location to form cytoplasmic granules with N(pro). To address a proviral role for N(pro) in RNP granules, we investigated whether N(pro) affected RNA interference (RNAi), since interacting proteins are involved in RISC function during RNA silencing. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) silencing with small interfering RNAs (siRNAs) followed by Northern blotting of GAPDH, expression of N(pro) had no effect on RNAi silencing activity, contrasting with other viral suppressors of interferon. We propose that N(pro) is involved with virus RNA translation in the cytoplasm for virus particle production, and when translation is inhibited following stress, it redistributes to the replication complex. Although the pestivirus N-terminal protease, N(pro), has been shown to have an important role in degrading IRF3 to

  2. Differential structural properties of GLP-1 and exendin-4 determine their relative affinity for the GLP-1 receptor N-terminal extracellular domain.

    Science.gov (United States)

    Runge, Steffen; Schimmer, Susann; Oschmann, Jan; Schiødt, Christine Bruun; Knudsen, Sanne Möller; Jeppesen, Claus Bekker; Madsen, Kjeld; Lau, Jesper; Thøgersen, Henning; Rudolph, Rainer

    2007-05-15

    Glucagon-like peptide-1 (GLP-1) and exendin-4 (Ex4) are homologous peptides with established potential for treatment of type 2 diabetes. They bind and activate the pancreatic GLP-1 receptor (GLP-1R) with similar affinity and potency and thereby promote insulin secretion in a glucose-dependent manner. GLP-1R belongs to family B of the seven transmembrane G-protein coupled receptors. The N-terminal extracellular domain (nGLP-1R) is a ligand binding domain with differential affinity for Ex4 and GLP-1: low affinity for GLP-1 and high affinity for exendin-4. The superior affinity of nGLP-1R for Ex4 was previously explained by an additional interaction between nGLP-1R and the C-terminal Trp-cage of Ex4. In this study we have combined biophysical and pharmacological approaches thus relating structural properties of the ligands in solution to their relative binding affinity for nGLP-1R. We used both a tracer competition assay and ligand-induced thermal stabilization of nGLP-1R to measure the relative affinity of full length, truncated, and chimeric ligands for soluble refolded nGLP-1R. The ligands in solution and the conformational consequences of ligand binding to nGLP-1R were characterized by circular dichroism and fluorescence spectroscopy. We found a correlation between the helical content of the free ligands and their relative binding affinity for nGLP-1R, supporting the hypothesis that the ligands are helical at least in the segment that binds to nGLP-1R. The Trp-cage of Ex4 was not necessary to maintain a superior helicity of Ex4 compared to GLP-1. The results suggest that the differential affinity of nGLP-1R is explained almost entirely by divergent residues in the central part of the ligands: Leu10-Gly30 of Ex4 and Val16-Arg36 of GLP-1. In view of our results it appears that the Trp-cage plays only a minor role for the interaction between Ex4 and nGLP-1R and for the differential affinity of nGLP-1R for GLP-1 and Ex4.

  3. Calcium has a permissive role in interleukin-1beta-induced c-jun N-terminal kinase activation in insulin-secreting cells

    DEFF Research Database (Denmark)

    Størling, Joachim; Zaitsev, Sergei V; Kapelioukh, Iouri L

    2005-01-01

    The c-jun N-terminal kinase (JNK) signaling pathway mediates IL-1beta-induced apoptosis in insulin-secreting cells, a mechanism relevant to the destruction of pancreatic beta-cells in type 1 and 2 diabetes. However, the mechanisms that contribute to IL-1beta activation of JNK in beta-cells are la...

  4. The N-Terminal Flanking Region of the Invariant Chain Peptide Augments the Immunogenicity of a Cryptic “Self” Epitope from a Tumor-Associated Antigen

    NARCIS (Netherlands)

    Hess, A.D.; Thoburn, C.; Chen, W.; Miura, Y.; Wall, E. van der

    2001-01-01

    The N-terminal flanking region of the invariant chain peptide termed CLIP appears to have superagonistic properties interacting with the T cell receptor and the MHC class II molecule at or near the binding site for the bacterial superantigen Staphylococcal enterotoxin B (SEB). The present studies

  5. Troponin T, N-terminal pro natriuretic peptide and a patent ductus arteriosus scoring system predict death before discharge or neurodevelopmental outcome at 2 years in preterm infants.

    LENUS (Irish Health Repository)

    El-Khuffash, Afif F

    2011-03-01

    There is little consensus regarding the use of echocardiography in patent ductus arteriosus (PDA) treatment in preterm infants. The use of troponin T (cTnT) and N-terminal Pro-BNP (NTpBNP) in combination with echocardiography assessment may facilitate the development of a superior predictive model.

  6. Unbiased Selective Isolation of Protein N-Terminal Peptides from Complex Proteome Samples Using Phospho Tagging PTAG) and TiO2-based Depletion

    NARCIS (Netherlands)

    Mommen, G.P.M.; Waterbeemd, van de B.; Meiring, H.D.; Kersten, G.; Heck, A.J.R.; Jong, de A.P.J.M.

    2012-01-01

    A positional proteomics strategy for global N-proteome analysis is presented based on phospho tagging (PTAG) of internal peptides followed by depletion by titanium dioxide (TiO2) affinity chromatography. Therefore, N-terminal and lysine amino groups are initially completely dimethylated with

  7. Site-specific quantification of lysine acetylation in the N-terminal tail of histone H4 using a double-labelling, targeted UHPLC MS/MS approach

    NARCIS (Netherlands)

    D'Urzo, Annalisa; Boichenko, Alexander P.; van den Bosch, Thea; Hermans, Jos; Dekker, Frank; Andrisano, Vincenza; Bischoff, Rainer

    We developed a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the site-specific quantification of lysine acetylation in the N-terminal region of histone H4 by combining chemical derivatization at the protein and peptide levels with digestion using chymotrypsin and

  8. Cardiovascular risk prediction by N-terminal pro brain natriuretic peptide and high sensitivity C-reactive protein is affected by age and sex

    DEFF Research Database (Denmark)

    Olsen, M.H.; Hansen, T.W.; Christensen, M.K.

    2008-01-01

    BACKGROUND: Previous studies have shown that the urine albumin/creatinine ratio (UACR), high sensitivity C-reactive protein (hsCRP) and N-terminal pro brain natriuretic peptide (Nt-proBNP) predict cardiovascular events in a general population aged 41, 51, 61 or 71 years. This study investigated...

  9. Usefulness of Serial N-terminal Pro-B-type Natriuretic Peptide Measurements to Predict Cardiac Death in Acute and Chronic Dilated Cardiomyopathy in Children

    NARCIS (Netherlands)

    Boer, S.L. den; Rizopoulos, D.; Sarvaas, G.J.; Backx, A.P.; Harkel, A.D. Ten; Iperen, G.G. van; Rammeloo, L.A.; Tanke, R.B.; Boersma, E.; Helbing, W.A.; Dalinghaus, M.

    2016-01-01

    N-terminal pro-B-type natriuretic peptide (NT-proBNP) is an important predictor of outcome in adults with heart failure. In children with heart failure secondary to dilated cardiomyopathy (DC) markers that reliably predict disease progression and outcome during follow-up are scarce. We investigated

  10. N-Terminal Pro-B-Type Natriuretic Peptide and Phonocardiography in Differentiating Innocent Cardiac Murmurs from Congenital Cardiac Anomalies in Asymptomatic Puppies

    NARCIS (Netherlands)

    Marinus, S M; Engelen, H.G.H.; Szatmári, V.

    2017-01-01

    Background: Differentiating innocent cardiac murmurs from murmurs caused by congenital cardiac anomalies can be challenging with auscultation alone in asymptomatic puppies. Hypothesis: Plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations and phonocardiograms recorded by an

  11. Mortality and preoperative cardiac function in vascular amputees : an N-terminal pro-brain natriuretic peptide (NT-proBNP) pilot study

    NARCIS (Netherlands)

    Riemersma, Marcel; Dijkstra, Pieter U.; van Veldhuisen, Dirk Jan; Muskiet, Frits A. J.; van den Dungen, Jan A. M. M.; Geertzen, Jan H. B.

    Objective: To determine preoperative ventricular function in vascular amputees by measuring N-terminal pro-brain natriuretic peptide (NT-proBNP) and to analyse the relationship between NT-proBNP levels and 30-day postoperative mortality. Design: Prospective pilot study. Subjects and methods: In 19

  12. Involvement of the N-terminal unique domain of Chk tyrosine kinase in Chk-induced tyrosine phosphorylation in the nucleus

    International Nuclear Information System (INIS)

    Nakayama, Yuji; Kawana, Akiko; Igarashi, Asae; Yamaguchi, Naoto

    2006-01-01

    Chk tyrosine kinase phosphorylates Src-family kinases and suppresses their kinase activity. We recently showed that Chk localizes to the nucleus as well as the cytoplasm and inhibits cell proliferation. In this study, we explored the role of the N-terminal unique domain of Chk in nuclear localization and Chk-induced tyrosine phosphorylation in the nucleus. In situ binding experiments showed that the N-terminal domain of Chk was associated with the nucleus and the nuclear matrix. The presence of the N-terminal domain of Chk led to a fourfold increase in cell population exhibiting Chk-induced tyrosine phosphorylation in the nucleus. Expression of Chk but not kinase-deficient Chk induced tyrosine phosphorylation of a variety of proteins ranging from 23 kDa to ∼200 kDa, especially in Triton X-100-insoluble fraction that included chromatin and the nuclear matrix. Intriguingly, in situ subnuclear fractionations revealed that Chk induced tyrosine phosphorylation of proteins that were associated with the nuclear matrix. These results suggest that various unidentified substrates of Chk, besides Src-family kinases, may be present in the nucleus. Thus, our findings indicate that the importance of the N-terminal domain to Chk-induced tyrosine phosphorylation in the nucleus, implicating that these nuclear tyrosine-phosphorylated proteins may contribute to inhibition of cell proliferation

  13. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception

    Directory of Open Access Journals (Sweden)

    R. Schneider

    2013-11-01

    δ13Catm level in the Penultimate (~ 140 000 yr BP and Last Glacial Maximum (~ 22 000 yr BP, which can be explained by either (i changes in the isotopic composition or (ii intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP. Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

  14. The role of n terminal - probrain natriuretic peptide in the diagnosis of hemodynamic persistent asrteriosus ductus in premature neonates patient

    Science.gov (United States)

    Dasraf, D.; Djer, M. M.; Advani, N.

    2017-08-01

    Persistent ductus arteriosus is one of the most frequent congenital heart diseases found in infants, mainly in preterms. Echocardiography is the gold standard for the diagnosis of hemodynamically significant patent ductus arteriosus (hs-PDA) in preterm neonates. A few studies have suggested that the use of a simple blood assay to detect N-terminal pro-brain natriuretic peptide (NT-proBNP) may be useful in determining the diagnosis and management of hs-PDA. No such studies have been conducted in Indonesia, although the assay kit and characteristics of the patient (gestational age and chronological age) influence the accuracy of NT-proBNP levels in determining hs-PDA. The aim of this study was to determine the association between the NT-proBNP level and the prevalence of hs-PDA in an Indonesian patient population. A cross-sectional study was conducted at Dr. Cipto Mangunkusumo Hospital. PDA was determined using echocardiography in 49 preterm neonates (gestational age groups: non-PDA, non-hsPDA, and hs-PDA. The blood NT-proBNP level was then determined in the non-hsPDA and hs-PDA groups, and between-group differences were compared. Among the 49 neonates, 33 patients had PDA, and 16 of these had hs-PDA. The results revealed a significant association between the NT-proBNP level and hs-PDA (p < 0.001).

  15. Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity.

    Science.gov (United States)

    Molina-Serrano, Diego; Schiza, Vassia; Demosthenous, Christis; Stavrou, Emmanouil; Oppelt, Jan; Kyriakou, Dimitris; Liu, Wei; Zisser, Gertrude; Bergler, Helmut; Dang, Weiwei; Kirmizis, Antonis

    2016-12-01

    Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N-alpha-terminal acetyltransferase Nat4 and loss of its associated H4 N-terminal acetylation (N-acH4) extend yeast replicative lifespan. Notably, nat4Δ-induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N-acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N-acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress-response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ-mediated longevity. Collectively, these findings establish histone N-acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Blood N-terminal Pro-brain Natriuretic Peptide and Interleukin-17 for Distinguishing Incomplete Kawasaki Disease from Infectious Diseases.

    Science.gov (United States)

    Wu, Ling; Chen, Yuanling; Zhong, Shiling; Li, Yunyan; Dai, Xiahua; Di, Yazhen

    2015-06-01

    To explore the diagnostic value of blood N-terminal pro-brain natriuretic peptide (NT-proBNP) and interleukin-17(IL-17) for incomplete Kawasaki disease. Patients with Kawasaki disease, Incomplete Kawasaki disease and unclear infectious fever were included in this retrospective study. Their clinical features, and laboratory test results of blood NT-proBNP and IL-17 were collected and compared. 766 patients with complete clinical information were recruited, consisting of 291 cases of Kawasaki disease, 74 cases of incomplete Kawasaki disease, and 401 cases of unclear infectious diseases. When the consistency with indicator 2 and 3 in Kawasaki disease diagnosis criteria was assessed with blood IL-17 ?11.55 pg/mL and blood NT-proBNP ? 225.5 pg/dL as the criteria, the sensitivity and specificity for distinguishing incomplete Kawasaki disease and infectious diseases reached 86.5% and 94.8%, respectively. When we chose the consistency with indicator 1 and 2 in Kawasaki disease diagnosis criteria, the appearance of decrustation and/or the BCG erythema, blood IL-17 ?11.55 pg/mL and blood NT-Pro BNP ?225.5 pg/dL as the criteria, the sensitivity and specificity for distinguishing incomplete Kawasaki disease and infectious diseases was 43.2% and 100%, respectively. Blood NT-proBNP and IL-17 are useful laboratory indicators for distinguishing incomplete Kawasaki disease and infectious diseases at the early stage.

  17. Improving the secretion of a methyl parathion hydrolase in Pichia pastoris by modifying its N-terminal sequence.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available Pichia pastoris is commonly used to express and secrete target proteins, although not all recombinant proteins can be successfully produced. In this study, we used methyl parathion hydrolase (MPH from Ochrobactrum sp. M231 as a model to study the importance of the N-terminus of the protein for its secretion. While MPH can be efficiently expressed intracellularly in P. pastoris, it is not secreted into the extracellular environment. Three MPH mutants (N66-MPH, D10-MPH, and N9-MPH were constructed through modification of its N-terminus, and the secretion of each by P. pastoris was improved when compared to wild-type MPH. The level of secreted D10-MPH was increased to 0.21 U/mL, while that of N9-MPH was enhanced to 0.16 U/mL. Although N66-MPH was not enzymatically active, it was secreted efficiently, and was identified by SDS-PAGE. These results demonstrate that the secretion of heterologous proteins in P. pastoris may be improved by modifying their N-terminal structures.

  18. N-terminal pro-brain natriuretic peptide and abnormal brain aging: The AGES-Reykjavik Study.

    Science.gov (United States)

    Sabayan, Behnam; van Buchem, Mark A; de Craen, Anton J M; Sigurdsson, Sigurdur; Zhang, Qian; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J

    2015-09-01

    To investigate the independent association of serum N-terminal fragment of the prohormone natriuretic peptide (NT-proBNP) with structural and functional features of abnormal brain aging in older individuals. In this cross-sectional study based on the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study, we included 4,029 older community-dwelling individuals (born 1907 to 1935) with a measured serum level of NT-proBNP. Outcomes included parenchymal brain volumes estimated from brain MRI, cognitive function measured by tests of memory, processing speed, and executive functioning, and presence of depressive symptoms measured using the Geriatric Depression Scale. In a substudy, cardiac output of 857 participants was assessed using cardiac MRI. In multivariate analyses, adjusted for sociodemographic and cardiovascular factors, higher levels of NT-proBNP were independently associated with lower total (p brain volumes. Likewise, in multivariate analyses, higher levels of NT-proBNP were associated with worse scores in memory (p = 0.005), processing speed (p = 0.001), executive functioning (p brain parenchymal volumes, impaired executive function and processing speed, and higher depressive symptoms were independent of the level of cardiac output. Higher serum levels of NT-proBNP, independent of cardiovascular risk factors and a measure of cardiac function, are linked with alterations in brain structure and function. Roles of natriuretic peptides in the process of brain aging need to be further elucidated. © 2015 American Academy of Neurology.

  19. Analysis of N-terminal pro-brain natriuretic peptide levels in patients with chronic heart failure

    International Nuclear Information System (INIS)

    Fu Xiao; Zhang Xingping; Zhou Kejian

    2011-01-01

    To investigate the changes and its clinical significance of serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels in patients with chronic heart failure(CHF), 128 patients with decompensated CHF and 20 patients without structural heart disease were selected as CHF and control group. All subjects were evaluated heart function by New York Heart Association (NYHA) class. The serum NT-proBNP levels were assayed by electrochemiluminescence double antibody sandwich immunoassay. Left ventricular ejection fraction (LVEF) was detected by color Doppler ultrasound. The results showed that the NT-proBNP levels in CHF group were significantly higher than that of in the control group (P<0.05). Further, the NT-proBNP levels showed an increased tendency accompanied by the severity of heart failure (P<0.05) and lowering of LVEF (r=-0.595, P<0.05). The serum NT-proBNP levels can reflect the state of cardiac function in patients with decompensated DHF, and useful in the diagnosis and severity assessment of CHF. (authors)

  20. Release kinetics of N-terminal pro-B-type natriuretic peptide in a clinical model of acute myocardial infarction.

    Science.gov (United States)

    Liebetrau, Christoph; Gaede, Luise; Dörr, Oliver; Troidl, Christian; Voss, Sandra; Hoffmann, Jedrzej; Paszko, Agata; Weber, Michael; Rolf, Andreas; Hamm, Christian; Nef, Holger; Möllmann, Helge

    2014-02-15

    N-terminal segment of B-type natriuretic peptide prohormone (NT-proBNP) is elevated in patients with acute myocardial infarction (AMI) thus providing both diagnostic information and prognostic information. The aim of the present study was to determine the time course of NT-proBNP release in patients undergoing transcoronary ablation of septal hypertrophy (TASH) a procedure mimicking AMI. We analyzed the release kinetics of NT-proBNP in 18 consecutive patients with hypertrophic obstructive cardiomyopathy undergoing TASH. Serum samples were collected prior to and at 15, 30, 45, 60, 75, 90, and 105 min, and 2, 4, 8, and 24h after TASH. NT-proBNP concentrations showed a continuous increase during the first 75 min with a significant percent change compared to baseline value already 15 min after TASH (105.6% [IQR 102.2-112.7]; Pvalue until the 8th h after initiation of myocardial infarction. NT-proBNP concentration increases immediately after induction of myocardial infarction proving early evidence of myocardial injury despite the decrease of the left ventricular wall stress due to the TASH related reduction of the left ventricular outflow gradient. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. N-terminal pro B-type natriuretic peptide predicts mortality in patients with left ventricular hypertrophy.

    Science.gov (United States)

    Garcia, Santiago; Akbar, Muhammad S; Ali, Syed S; Kamdar, Forum; Tsai, Michael Y; Duprez, Daniel A

    2010-09-03

    Left ventricular hypertrophy adversely affects outcomes in patients with hypertension. Whether N-terminal pro B-type natriuretic peptide (NT-proBNP) adds incremental prognostic information in patients with hypertension and left ventricular hypertrophy (LVH) is not well established. We aimed to study the prognostic value of NT-proBNP in hypertensive patients with LVH. Echocardiography was performed in 232 patients (mean age 61±15, 102 males, 130 females) for the diagnosis of left ventricular hypertrophy. Left ventricular mass was measured according to The American Society of Echocardiography guidelines. A blood sample was taken for NT-proBNP determination. NT-proBNP levels were analyzed in quartiles after log transformation. Long term survival was established by review of electronic medical records. Arterial hypertension was present in 130 patients (56%) and left ventricular hypertrophy was present in 105 patients (45%). In patients with left ventricular hypertrophy, NT-proBNP levels predicted long term survival (Chi-square=10, p=0.01). After adjusting by age, presence of coronary artery disease, ejection fraction, diabetes status, and hypertension; patients in highest NT pro-BNP quartile were twice as likely to die when compared to patients in the lowest NT-ptoBNP quartile (OR=2.2, 95% CI=1.0-4.6, p=0.03). NT-proBNP is an independent predictor of survival in patients with hypertension and increased left ventricular mass. Copyright © 2009 Elsevier B.V. All rights reserved.

  2. Usefulness of N-terminal pro-brain natriuretic peptide as a biomarker of the presence of carcinoid heart disease.

    Science.gov (United States)

    Bhattacharyya, Sanjeev; Toumpanakis, Christos; Caplin, Martyn Evan; Davar, Joseph

    2008-10-01

    We sought to investigate whether N-terminal pro-brain natriuretic peptide (NT-pro-BNP) can be used as a biomarker for the detection of carcinoid heart disease (CHD); 200 patients with carcinoid syndrome were screened for CHD using transthoracic echocardiography. A carcinoid score was formulated to quantify severity of CHD. NT-pro-BNP was measured in all patients before echocardiography. Patients were categorised into New York Heart Association class. CHD was present in 39 patients (19.5%). NT-pro-BNP was significantly higher in those with CHD (median 1,149 pg/ml) than in those without CHD (median 101 pg/ml, p pro-BNP at a cut-off level of 260 pg/ml for detection of CHD were 0.92 and 0.91, respectively. NT-pro-BNP positively correlated both with carcinoid score (r = 0.81, p pro-BNP seems to be an excellent biomarker of CHD. A high negative predictive value may allow it to provide a screening test for CHD.

  3. Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.; Deisenhofer, Johann; Goldstein, Joseph L.; Brown, Michael S.; Infante, Rodney E.; (UTSMC)

    2010-09-21

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.

  4. Crystal Structure of the N-Terminal RNA Recognition Motif of mRNA Decay Regulator AUF1

    Directory of Open Access Journals (Sweden)

    Young Jun Choi

    2016-01-01

    Full Text Available AU-rich element binding/degradation factor 1 (AUF1 plays a role in destabilizing mRNAs by forming complexes with AU-rich elements (ARE in the 3′-untranslated regions. Multiple AUF1-ARE complexes regulate the translation of encoded products related to the cell cycle, apoptosis, and inflammation. AUF1 contains two tandem RNA recognition motifs (RRM and a Gln- (Q- rich domain in their C-terminal region. To observe how the two RRMs are involved in recognizing ARE, we obtained the AUF1-p37 protein covering the two RRMs. However, only N-terminal RRM (RRM1 was crystallized and its structure was determined at 1.7 Å resolution. It appears that the RRM1 and RRM2 separated before crystallization. To demonstrate which factors affect the separate RRM1-2, we performed limited proteolysis using trypsin. The results indicated that the intact proteins were cleaved by unknown proteases that were associated with them prior to crystallization. In comparison with each of the monomers, the conformations of the β2-β3 loops were highly variable. Furthermore, a comparison with the RRM1-2 structures of HuR and hnRNP A1 revealed that a dimer of RRM1 could be one of the possible conformations of RRM1-2. Our data may provide a guidance for further structural investigations of AUF1 tandem RRM repeat and its mode of ARE binding.

  5. Barley polyamine oxidase: Characterisation and analysis of the cofactor and the N-terminal amino acid sequence

    DEFF Research Database (Denmark)

    Radova, A.; Sebela, M.; Galuszka, P.

    2001-01-01

    This paper reports the first purification method developed for the isolation of an homogeneous polyamine oxidase (PAO) from etiolated barley seedlings. The crude enzyme preparation was obtained after initial precipitation of the extract with protamine sulphate and ammonium sulphate. The enzyme...... was further confirmed by measuring the fluorescence spectra, Barley PAO is an acidic protein (pI 5.4) containing 3% of neutral sugars: its molecular mass determined by SDS-PAGE was 56 kDa, whilst gel permeation chromatography revealed the higher value of 76 kDa. The N-terminal amino acid sequence of barley...... PAO shows a high degree of similarity to that of maize PAO and to several other flavoprotein oxidases. The polyamines spermine and spermidine were the only two substrates of the enzyme with K-m values 4 x 10(-5) and 3 x 10(-5) M and pH optima of 5.0 and 6.0, respectively. Barley polyamine oxidase...

  6. c-Jun N-terminal kinase mediates AML1-ETO protein-induced connexin-43 expression

    International Nuclear Information System (INIS)

    Gao Fenghou; Wang Qiong; Wu Yingli; Li Xi; Zhao Kewen; Chen Guoqiang

    2007-01-01

    AML1-ETO fusion protein, a product of leukemia-related chromosomal translocation t(8;21), was reported to upregulate expression of connexin-43 (Cx43), a member of gap junction-constituted connexin family. However, its mechanism(s) remains unclear. By bioinformatic analysis, here we showed that there are two putative AML1-binding consensus sequences followed by two activated protein (AP)1 sites in the 5'-flanking region upstream to Cx43 gene. AML1-ETO could directly bind to these two AML1-binding sites in electrophoretic mobility shift assay, but luciferase reporter assay revealed that the AML1 binding sites were not indispensable for Cx43 induction by AML1-ETO protein. Conversely, AP1 sites exerted an important role in this event. In agreement, AML1-ETO overexpression in leukemic U937 cells activated c-Jun N-terminal kinase (JNK), while its specific inhibitor SP600125 effectively abrogated AML1-ETO-induced Cx43 expression, indicating that JNK signaling pathway contributes to AML1-ETO induced Cx43 expression. These results would shed new insights for understanding mechanisms of AML1-ETO-associated leukemogenesis

  7. Epstein-Barr virus nuclear protein 3C binds to the N-terminal (NTD) and beta trefoil domains (BTD) of RBP/CSL; Only the NTD interaction is essential for lymphoblastoid cell growth

    International Nuclear Information System (INIS)

    Calderwood, Michael A.; Lee, Sungwook; Holthaus, Amy M.; Blacklow, Stephen C.; Kieff, Elliott; Johannsen, Eric

    2011-01-01

    Association of EBV nuclear proteins EBNA2, EBNA3A and EBNA3C with RBP/CSL, is essential for lymphoblastoid cell line (LCL) proliferation. Conserved residues in the EBNA3 homology domain, required for RBP/CSL interaction, lack the WΦP motif that mediates EBNA2 and Notch binding to the RBP/CSL beta-trefoil domain (BTD). We map RBP/CSL interacting residues within EBNA3A(aa128-204) and EBNA3C(aa211-233). The EBNA3A results are consistent with an earlier report (aa125-222), but the EBNA3C domain is unexpectedly small and includes a 'WTP' sequence. This EBNA3C WTP motif confers RBP/CSL binding in vitro, in yeast, and in mammalian cells. Further, an EBNA3C WTP → STP(W227S) mutation impaired BTD binding whereas EBNA3 homology domain mutations disrupted RBP/CSL N-terminal domain (NTD) binding. WTP was not essential for EBNA3C repression of EBNA2 in reporter assays or for maintenance of LCL growth. Our results indicate that EBNA3 proteins interact with multiple RBP/CSL domains, but only NTD interactions are required for LCL growth.

  8. Diagnosis of invasive candidiasis by enzyme-linked immunosorbent assay using the N-terminal fragment of Candida albicans hyphal wall protein 1

    Directory of Open Access Journals (Sweden)

    Pontón José

    2007-04-01

    Full Text Available Abstract Background The diagnosis of invasive candidiasis is difficult because there are no specific clinical manifestations of the disease and colonization and infection are difficult to distinguish. In the last decade, much effort has been made to develop reliable tests for rapid diagnosis of invasive candidiasis, but none of them have found widespread clinical use. Results Antibodies against a recombinant N-terminal fragment of the Candida albicans germ tube-specific antigen hyphal wall protein 1 (Hwp1 generated in Escherichia coli were detected by both immunoblotting and ELISA tests in a group of 36 hematological or Intensive Care Unit patients with invasive candidiasis and in a group of 45 control patients at high risk for the mycosis who did not have clinical or microbiological data to document invasive candidiasis. Results were compared with an immunofluorescence test to detect antibodies to C. albicans germ tubes (CAGT. The sensitivity, specificity, positive and negative predictive values of a diagnostic test based on the detection of antibodies against the N-terminal fragment of Hwp1 by immunoblotting were 27.8 %, 95.6 %, 83.3 % and 62.3 %, respectively. Detection of antibodies to the N-terminal fragment of Hwp1 by ELISA increased the sensitivity (88.9 % and the negative predictive value (90.2 % but slightly decreased the specificity (82.6 % and positive predictive values (80 %. The kinetics of antibody response to the N-terminal fragment of Hwp1 by ELISA was very similar to that observed by detecting antibodies to CAGT. Conclusion An ELISA test to detect antibodies against a recombinant N-terminal fragment of the C. albicans germ tube cell wall antigen Hwp1 allows the diagnosis of invasive candidiasis with similar results to those obtained by detecting antibodies to CAGT but without the need of treating the sera to adsorb the antibodies against the cell wall surface of the blastospore.

  9. The Informative Value of N-Terminal Pro-type B Natriuretic Peptide in Cardiac Surgical Patients with Hypercreatininemia

    Directory of Open Access Journals (Sweden)

    M. G. Burzhunova

    2011-01-01

    Full Text Available Objective: to study the informative value of a dramatic increase in the preoperative blood level of the inactive moiety of the precursor of N-terminal pro-type B natriuretic peptide (NT-proBNP in cardiac surgical patients with hypercreatininemia. Subjects and materials. Twenty-one patients with a preoperative NT-proBNP level of 1000 pg/ml or more, who underwent myocardial revascularization under extracorporeal circulation (ECC, were examined. The patients were divided into groups with normal (up to 120 ^mol/l (Group 1; n=11 and elevated (Group 2; n=10 creatinine concentrations. The values of circulation were processed after skin incision and at the end of surgery. The clinical features of a perioperative period were analyzed. Results. Creatininemia was 103±3.3 and 183±12.9 ^mol/l in Groups 1 and 2, respectively (p<0.05; NT-proBNP was 1397±139 and 1908±170 pg/ml (p<0.05. EuroSCORE-predicted mortality ran to 9.8±1.6 and 9.1±1.7% (p>0.05. There were no intergroup differences in intraoperative circulatory parameters. The intensity of sympatomimetic therapy after ECC was equal in the identified patient groups and there were either no differences (p>0.05 in the frequency of intra-aortic balloon counterpulsation (18.2 and 10.0%, the length of mechanical ventilation (15±1.5 and 18.7±2.3 hours and intensive care unit stay (1.8±0.5 and 2.0±0.7 days in survivors, and inpatient mortality (23.7 and 20.0% that proved to be substantially higher than the EuroSCORE-predicted one. Regression analysis showed that in the entire group of operated patients, the level of NT-proBNP turned out to be a more significant predictor of inpatient mortality (p=0.012 than EuroSCORE-predicted one (p = 0.04. The similar regularity was characteristic for patients with hypercreatininemia. In the patients with hypercholesterolemia, the EuroSCORE-predicted mortality completely lost its significance (p=0.61 in predicting actual mortality rates. In this group, NT

  10. Thermodynamic characterization of binding Oxytricha nova single strand telomere DNA with the alpha protein N-terminal domain.

    Science.gov (United States)

    Buczek, Pawel; Horvath, Martin P

    2006-06-23

    The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology.

  11. Association of N-terminal domain polymorphisms of the porcine glucocorticoid receptor with carcass composition and meat quality traits.

    Science.gov (United States)

    Reyer, Henry; Ponsuksili, Siriluck; Wimmers, Klaus; Murani, Eduard

    2014-02-01

    The glucocorticoid receptor (GR) is a ubiquitously acting transcription factor that is responsible for mediating the physiological response to stress and adaptation to environmental conditions. Genetic variation of a GR gene (NR3C1) may therefore contribute to multiple phenotypic alterations and influence relevant traits of animal production. Here, we examined effects of two non-synonymous mutations of the porcine NR3C1, leading to amino acid exchanges p.Glu13Asp (c.39A>C) and p.Val19Leu (c.55G>C) in the N-terminal domain of the GR, on meat quality and carcass composition. In addition, we explored their influence on transcriptional activity of GR in vitro. A commercial crossbreed Pietrain × (German Large White × German Landrace) herd (n = 545) in which genotypes and relevant traits had been collected was used to perform the association analysis. The single nucleotide polymorphism (SNP) c.55G>C was significantly associated with conductivity and meat color scores. These effects were highly consistent considering the physiological relationship between these traits. Association analysis of SNP c.39A>C also revealed significant effects on closely connected meat quality traits. In addition, SNP c.55G>C showed association with carcass traits, mainly those related to muscle deposition. The molecular mechanism of action of both amino acid substitutions remains obscure because neither showed significant influence on transcriptional activity of GR. Our study emphasizes NR3C1 as an important candidate gene for muscle-related traits in pigs, but further work is necessary to clarify the molecular background of the identified associations. © 2013 Stichting International Foundation for Animal Genetics.

  12. Exercise dependence of N-terminal pro-brain natriuretic peptide in patients with precapillary pulmonary hypertension.

    Science.gov (United States)

    Grachtrup, Sabine; Brügel, Mathias; Pankau, Hans; Halank, Michael; Wirtz, Hubert; Seyfarth, Hans-Jürgen

    2012-01-01

    N-terminal pro-brain natriuretic peptide (NT-proBNP) is secreted by cardiac ventricular myocytes upon pressure and volume overload and is a prognostic marker to monitor the severity of precapillary pulmonary hypertension and the extent of right heart failure. The impact of physical exercise on NT-proBNP levels in patients with left heart disease was demonstrated previously. No data regarding patients with isolated right heart failure and the influence of acute exercise on NT-proBNP serum levels exist. Twenty patients with precapillary pulmonary hypertension were examined. Hemodynamic parameters were measured during right heart catheterization. Serum NT-proBNP of patients was measured at rest, after a 6-min walking test, during ergospirometry and during recovery, all within 7 h. Significant differences in sequential NT-proBNP values, relative changes compared to values at rest and the correlation between NT-proBNP and obtained parameters were assessed. At rest, the mean serum level of NT-proBNP was 1,278 ± 998 pg/ml. The mean level of NT-proBNP at maximal exercise was increased (1,592 ± 1,219 pg/ml), whereas serum levels decreased slightly during recovery (1,518 ± 1,170 pg/ml). The relative increase of serum NT-proBNP during exercise correlated with pulmonary vascular resistance (r = 0.45; p = 0.026) and cardiac output (r = -0.5; p = 0.015). In this study, we demonstrated acute changes in NT-proBNP levels due to physical exercise in a small group of patients with precapillary pulmonary hypertension. Our results also confirm the predominant usefulness of NT-proBNP as an intraindividual parameter of right heart load. Copyright © 2012 S. Karger AG, Basel.

  13. Cocoa flavanols reduce N-terminal pro-B-type natriuretic peptide in patients with chronic heart failure.

    Science.gov (United States)

    De Palma, Rodney; Sotto, Imelda; Wood, Elizabeth G; Khan, Noorafza Q; Butler, Jane; Johnston, Atholl; Rothman, Martin T; Corder, Roger

    2016-06-01

    Poor prognosis in chronic heart failure (HF) is linked to endothelial dysfunction for which there is no specific treatment currently available. Previous studies have shown reproducible improvements in endothelial function with cocoa flavanols, but the clinical benefit of this effect in chronic HF has yet to be determined. Therefore, the aim of this study was to assess the potential therapeutic value of a high dose of cocoa flavanols in patients with chronic HF, by using reductions in N-terminal pro-B-type natriuretic peptide (NT-proBNP) as an index of improved cardiac function. Thirty-two patients with chronic HF, stable on guideline-directed medical therapy, were randomized to consume 50 g/day of high-flavanol dark chocolate (HFDC; 1064 mg of flavanols/day) or low-flavanol dark chocolate (LFDC; 88 mg of flavanols/day) for 4 weeks and then crossed over to consume the alternative dark chocolate for a further 4 weeks. Twenty-four patients completed the study. After 4 weeks of HFDC, NT-proBNP (mean decrease % ± standard deviation) was significantly reduced compared with baseline (-44 ± 69%), LFDC (-33 ± 72%), and follow-up (-41 ± 77%) values. HFDC also reduced diastolic blood pressure compared with values after LFDC (-6.7 ± 10.1 mmHg). Reductions in blood pressure and NT-proBNP after HFDC indicate decreased vascular resistance resulting in reduced left ventricular afterload. These effects warrant further investigation in patients with chronic HF.

  14. Molecular characterization of the 30-AA N-terminal mineral interaction domain of the biomineralization protein AP7.

    Science.gov (United States)

    Kim, Il Won; Morse, Daniel E; Evans, John Spencer

    2004-12-21

    The AP7 protein is one of several mollusk shell proteins which are responsible for aragonite polymorph formation and stabilization within the nacre layer of the Pacific red abalone, H. rufescens. Previously, we demonstrated that the 30-AA N-terminal domain of AP7, denoted as AP7-1, exists as an unfolded sequence and possesses the capability of inhibiting calcium carbonate crystal growth in vitro via growth step frustration or interruption. However, very little is known with regard to the interactive capabilities of this sequence with Ca(II) and with calcium carbonates. Using multidisciplinary techniques, we determine that the AP7-1 polypeptide interacts with Ca(II) ions at the -DD- sequence clusters, yet retains its unfolded, conformationally labile structure in the presence of Ca(II) ions. Further, NMR experiments reveal that the extended structured sequence blocks, -GNGM-, -SVRTQG-, and -ISYL, exhibit motional, chemical exchange, and/or backbone geometry perturbations in response to Ca(II) interactions with AP7-1. Solid-state NMR magic angle spinning studies verify that during the course of in vitro calcium carbonate crystal growth, AP7-1 becomes bound to calcite fragments and cannot be entirely displaced from the mineral fragments using competitive Ca(II) washing. Finally, using a scrambled sequence version of the AP7-1 polypeptide, we observe that sequence scrambling does not adversely affect the crystal growth inhibitory activity of AP7-1, suggesting that the amino acid composition of AP7-1 may be more critical to growth step inhibition than the linear ordering of amino acids.

  15. Serum N-terminal-pro-brain natriuretic peptide level and its clinical implications in patients with atrial fibrillation.

    Science.gov (United States)

    Bai, Mei; Yang, Jiefu; Li, Yingying

    2009-12-01

    Brain natriuretic peptide (BNP) is increasingly being used for screening and monitoring of congestive heart failure. However, the role of BNP in patients with atrial fibrillation (AF) and normal left ventricular function has not been determined. This study investigates serum N-terminal pro-brain natriuretic peptide (NT-proBNP) level and its clinical implications in patients with AF. Serum NT-proBNP levels were measured by enzyme-linked immunosorbent assay (ELISA) and transthoracic echocardiography was performed in 136 subjects (90 cases with AF and 46 cases with sinus rhythm [SR]). Subjects were excluded if they had a history of myocardial infarction, cardiomyopathy, rheumatic heart disease, or hyperthyroidism that preceded the onset of AF. Controls (n = 30) were from a healthy outpatient primary care population. Potential determinants of serum NT-proBNP levels were identified by univariate and multivariate analyses. Individuals with AF had higher serum NT-proBNP levels (689.56 +/- 251.87 fmol/ml) than those with SR (456.11 +/- 148.14 fmol/ml, P NT-proBNP levels (P > 0.05). The regression model of serum NT-proBNP levels and clinical predictors showed that presence of AF, older age, and larger right atrial diameter were independently predictive of higher serum NT-proBNP values. Patients with AF were associated with increased serum NT-proBNP levels. Examining the change of serum NT-proBNP levels is helpful to evaluate the cardiac function in patients with AF. Copyright 2009 Wiley Periodicals, Inc.

  16. N-Terminal Pro-B Type Natriuretic Peptide is Associated with Mild Cognitive Impairment in the General Population.

    Science.gov (United States)

    Kara, Kaffer; Mahabadi, Amir Abbas; Weimar, Christian; Winkler, Angela; Neumann, Till; Kälsch, Hagen; Dragano, Nico; Moebus, Susanne; Erbel, Raimund; Jöckel, Karl-Heinz; Jokisch, Martha

    2017-01-01

    N-terminal pro-B type natriuretic peptide (NT-proBNP) is a marker of cardiac stress and is linked with silent cardiac diseases. While associations of cognitive impairment with manifest cardiovascular diseases are established, data on whether subclinical elevation of NT-proBNP levels below clinically established threshold of heart failure is related with cognitive functioning, especially mild cognitive impairment (MCI), is rare. Aim of the present study was to investigate the cross-sectional association of NT-proBNP levels and MCI in a population-based study sample without heart failure. We used data from the second examination of the population based Heinz-Nixdorf-Recall-Study. Subjects with overt coronary heart disease and subjects with NT-proBNP levels indicating potential heart failure (NT-proBNP≥300 pg/ml) were excluded from this analysis. Participants performed a validated brief cognitive assessment and were classified either as MCI [subtypes: amnestic-MCI (aMCI), non-amnestic-MCI (naMCI)], or cognitively-normal. We included 419 participants with MCI (63.1±7.4 y; 47% men; aMCI n = 209; naMCI n = 210) and 1,206 cognitively normal participants (62.42±7.1 y; 48% men). NT-proBNP-levels≥125 pg/ml compared to heart failure, higher NT-proBNPlevels are associated with MCI and both MCI subtypes independent of traditional cardiovascular risk factors and sociodemographic parameters.

  17. The N-terminal neurotensin fragment, NT1-11, inhibits cortisol secretion by human adrenocortical cells.

    Science.gov (United States)

    Sicard, Flavie; Contesse, Vincent; Lefebvre, Hervé; Ait-Ali, Djida; Gras, Marjorie; Cartier, Dorthe; Decker, Annick; Chartrel, Nicolas; Anouar, Youssef; Vaudry, Hubert; Delarue, Catherine

    2006-08-01

    Neurotensin (NT) modulates corticosteroid secretion from the mammalian adrenal gland. The objective of this study was to investigate the possible involvement of NT in the control of cortisol secretion in the human adrenal gland. In vitro studies were conducted on cultured human adrenocortical cells. This study was conducted in a university research laboratory. Adrenal explants from patients undergoing expanded nephrectomy for kidney cancer were studied. Cortisol secretion from cultured adrenocortical cells was measured. NT1-11, the N-terminal fragment of NT, dose-dependently inhibited basal and ACTH-stimulated cortisol production by human adrenocortical cells in primary culture. In contrast, NT had no influence on cortisol output at concentrations up to 10(-6) m. HPLC and RT-PCR analyses failed to detect any significant amounts of NT and NT mRNA, respectively, in adrenal extracts. Molecular and pharmacological studies were performed to determine the type of NT receptor involved in the corticostatic effect of NT1-11. RT-PCR analysis revealed the expression of NT receptor type (NTR) 3 mRNA but not NTR1 and NTR2 mRNAs in the human adrenal tissue. However, the pharmacological profile of the adrenal NT1-11 receptor was different from that of NTR3, indicating that this receptor type is not involved in the action of NT1-11 on corticosteroidogenesis. Our results indicate that NT1-11 may act as an endocrine factor to inhibit cortisol secretion through activation of a receptor distinct from the classical NTR1, NTR2, and NTR3.

  18. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  19. Type I Collagen Synthesis Marker Procollagen I N-Terminal Peptide (PINP) in Prostate Cancer Patients Undergoing Intermittent Androgen Suppression

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Gerhard, E-mail: gerhard.hamilton@toc.lbg.ac.at; Olszewski-Hamilton, Ulrike [Ludwig Boltzmann Cluster of Translational of Oncology, Nussdorfer Strasse 64, Vienna A-1090 (Austria); Theyer, Gerhard [Hospital Kittsee, Kittsee A-2421, Burgenland (Austria)

    2011-09-15

    Intermittent androgen suppression (IAS) therapy for prostate cancer patients attempts to maintain the hormone dependence of the tumor cells by cycles alternating between androgen suppression (AS) and treatment cessation till a certain prostate-specific antigen (PSA) threshold is reached. Side effects are expected to be reduced, compared to standard continuous androgen suppression (CAS) therapy. The present study examined the effect of IAS on bone metabolism by determinations of serum procollagen I N-terminal peptide (PINP), a biochemical marker of collagen synthesis. A total of 105 treatment cycles of 58 patients with prostate cancer stages ≥pT2 was studied assessing testosterone, PSA and PINP levels at monthly intervals. During phases of AS lasting for up to nine months PSA levels were reversibly reduced, indicating apoptotic regression of the prostatic tumors. Within the first cycle PINP increased at the end of the AS period and peaked in the treatment cessation phase. During the following two cycles a similar pattern was observed for PINP, except a break in collagen synthesis as indicated by low PINP levels in the first months off treatment. Therefore, measurements of the serum PINP concentration indicated increased bone matrix synthesis in response to >6 months of AS, which uninterruptedly continued into the first treatment cessation phase, with a break into each of the following two pauses. In summary, synthesis of bone matrix collagen increases while degradation decreases during off-treatment phases in patients undergoing IAS. Although a direct relationship between bone matrix turnover and risk of fractures is difficult to establish, IAS for treatment of biochemical progression of prostate tumors is expected to reduce osteoporosis in elderly men often at high risk for bone fractures representing a highly suitable patient population for this kind of therapy.

  20. Predictive value of N-terminal pro-brain natriuretic peptide in severe sepsis and septic shock.

    Science.gov (United States)

    Varpula, Marjut; Pulkki, Kari; Karlsson, Sari; Ruokonen, Esko; Pettilä, Ville

    2007-05-01

    The aim of this study was to evaluate the predictive value of N-terminal pro-brain natriuretic peptide (NT-proBNP) on mortality in a large, unselected patient population with severe sepsis and septic shock. Prospective observational cohort study about incidence and prognosis of sepsis in 24 intensive care units in Finland (the FINNSEPSIS study). A total of 254 patients with severe sepsis or septic shock. After informed consent, the blood tests for NT-proBNP analyses were drawn on the day of admission and 72 hrs thereafter. Patients' demographic data were collected, and intensive care unit and hospital mortality and basic hemodynamic and laboratory data were recorded daily. NT-proBNP levels at admission were significantly higher in hospital nonsurvivors (median, 7908 pg/mL) compared with survivors (median, 3479 pg/mL; p = .002), and the difference remained after 72 hrs (p = .002). The receiver operating characteristic curves of admission and 72-hr NT-proBNP levels for hospital mortality resulted in area under the curve values of 0.631 (95% confidence interval, 0.549-0.712; p = .002) and 0.648 (95% confidence interval, 0.554-0.741; p = .002), respectively. In logistic regression analyses, NT-proBNP values at 72 hrs after inclusion and Simplified Acute Physiology Score for the first 24 hrs were independent predictors of hospital mortality. Pulmonary artery occlusion pressure (p < .001), plasma creatinine clearance (p = .001), platelet count (p = .03), and positive blood culture (p = .04) had an independent effect on first-day NT-proBNP values, whereas after 72 hrs, only plasma creatinine clearance (p < .001) was significant in linear regression analysis. NT-proBNP values are frequently increased in severe sepsis and septic shock. Values are significantly higher in nonsurvivors than survivors. NT-proBNP on day 3 in the intensive care unit is an independent prognostic marker of mortality in severe sepsis.

  1. Association of menopause age and N-terminal pro brain natriuretic peptide: the Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Ebong, Imo A; Watson, Karol E; Goff, David C; Bluemke, David A; Srikanthan, Preethi; Horwich, Tamara; Bertoni, Alain G

    2015-05-01

    Menopause age can affect the risk of developing cardiovascular disease (CVD). The purpose of this study was to investigate the associations of early menopause (menopause occurring before age 45 y) and menopause age with N-terminal pro brain natriuretic peptide (NT-proBNP), a potential risk marker of CVD and heart failure. Our cross-sectional study included 2,275 postmenopausal women, aged 45 to 85 years and without clinical CVD (2000-2002), from the Multi-Ethnic Study of Atherosclerosis. Participants were classified as having or not having early menopause. NT-proBNP was log-transformed. Multivariable linear regression was used for analysis. Five hundred sixty-one women had early menopause. The median (25th-75th percentiles) NT-proBNP value was 79.0 (41.1-151.6) pg/mL for all participants, 83.4 (41.4-164.9) pg/mL for women with early menopause, and 78.0 (40.8-148.3) pg/mL for women without early menopause. The mean (SD) age was 65 (10.1) and 65 (8.9) years for women with and without early menopause, respectively. No significant interactions between menopause age and ethnicity were observed. In multivariable analysis, early menopause was associated with a 10.7% increase in NT-proBNP levels, whereas each 1-year increase in menopause age was associated with a 0.7% decrease in NT-proBNP levels. Early menopause is associated with greater NT-proBNP levels, whereas each 1-year increase in menopause age is associated with lower NT-proBNP levels, in postmenopausal women.

  2. The Tobacco Smoke Component, Acrolein, Suppresses Innate Macrophage Responses by Direct Alkylation of c-Jun N-Terminal Kinase

    Science.gov (United States)

    Hristova, Milena; Spiess, Page C.; Kasahara, David I.; Randall, Matthew J.; Deng, Bin

    2012-01-01

    The respiratory innate immune system is often compromised by tobacco smoke exposure, and previous studies have indicated that acrolein, a reactive electrophile in tobacco smoke, may contribute to the immunosuppressive effects of smoking. Exposure of mice to acrolein at concentrations similar to those in cigarette smoke (5 ppm, 4 h) significantly suppressed alveolar macrophage responses to bacterial LPS, indicated by reduced induction of nitric oxide synthase 2, TNF-α, and IL-12p40. Mechanistic studies with bone marrow–derived macrophages or MH-S macrophages demonstrated that acrolein (1–30 μM) attenuated these LPS-mediated innate responses in association with depletion of cellular glutathione, although glutathione depletion itself was not fully responsible for these immunosuppressive effects. Inhibitory actions of acrolein were most prominent after acute exposure (acrolein with critical signaling pathways. Among the key signaling pathways involved in innate macrophage responses, acrolein marginally affected LPS-mediated activation of nuclear factor (NF)-κB, and significantly suppressed phosphorylation of c-Jun N-terminal kinase (JNK) and activation of c-Jun. Using biotin hydrazide labeling, NF-κB RelA and p50, as well as JNK2, a critical mediator of innate macrophage responses, were revealed as direct targets for alkylation by acrolein. Mass spectrometry analysis of acrolein-modified recombinant JNK2 indicated adduction to Cys41 and Cys177, putative important sites involved in mitogen-activated protein kinase (MAPK) kinase (MEK) binding and JNK2 phosphorylation. Our findings indicate that direct alkylation of JNK2 by electrophiles, such as acrolein, may be a prominent and hitherto unrecognized mechanism in their immunosuppressive effects, and may be a major factor in smoking-induced effects on the immune system. PMID:21778411

  3. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties.

    Science.gov (United States)

    Mabilleau, Guillaume; Mieczkowska, Aleksandra; Irwin, Nigel; Simon, Yannick; Audran, Maurice; Flatt, Peter R; Chappard, Daniel

    2014-06-01

    Bone remodeling is under complex regulation from nervous, hormonal and local signals, including gut hormones. Among the gut hormones, a role for the glucose-dependent insulinotropic polypeptide (GIP) has been suggested. However, the rapid degradation of GIP in the bloodstream by the ubiquitous enzyme dipeptidyl peptidase-4 (DPP-4) precludes therapeutic use. To circumvent this problem, a series of N-terminally modified GIP agonists have been developed, with N-AcGIP being the most promising. The aims of the present study were to investigate the effects of N-AcGIP on bone at the micro-level using trabecular and cortical microstructural morphology, and at the tissue-level in rats. Copenhagen rats were randomly assigned into control or N-AcGIP-treated groups and received daily injection for 4 weeks. Bone microstructural morphology was assessed by microCT and dynamic histomorphometry and tissue-level properties by nanoindentation, qBEI and infra-red microscopy. Four week treatment with N-AcGIP did not alter trabecular or cortical microstructural morphology. In addition, no significant modifications of mechanical response and properties at the tissue-level were observed in trabecular bone. However, significant augmentations in maximum load (12%), hardness (14%), indentation modulus (13%) and dissipated energy (16%) were demonstrated in cortical bone. These beneficial modifications of mechanical properties at the tissue-level were associated with increased mineralization (22%) and collagen maturity (13%) of the bone matrix. Taken together, the results support a beneficial role of GIP, and particularly stable analogs such as N-AcGIP, on tissue material properties of bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Ribonucleocapsid Formation of SARS-COV Through Molecular Action of the N-Terminal Domain of N Protein

    Energy Technology Data Exchange (ETDEWEB)

    Saikatendu, K.S.; Joseph, J.S.; Subramanian, V.; Neuman, B.W.; Buchmeier, M.J.; Stevens, R.C.; Kuhn, P.; /Scripps Res. Inst.

    2007-07-12

    Conserved amongst all coronaviruses are four structural proteins, the matrix (M), small envelope (E) and spike (S) that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in their lumen. The N terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C-terminus of N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17A (monoclinic) and 1.85 A (cubic) respectively, solved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core and is oriented similar to that in the IBV N-NTD and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggest a common mode of RNA recognition, but probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs hints that they employ different modes of both RNA recognition as well as oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.

  5. C-Jun N-Terminal Kinase 2 Promotes Liver Injury via the Mitochondrial Permeability Transition after Hemorrhage and Resuscitation

    Directory of Open Access Journals (Sweden)

    Christoph Czerny

    2012-01-01

    Full Text Available Hemorrhagic shock leads to hepatic hypoperfusion and activation of mitogen-activated stress kinases (MAPK like c-Jun N-terminal kinase (JNK 1 and 2. Our aim was to determine whether mitochondrial dysfunction leading to hepatic necrosis and apoptosis after hemorrhage/resuscitation (H/R was dependent on JNK2. Under pentobarbital anesthesia, wildtype (WT and JNK2 deficient (KO mice were hemorrhaged to 30 mm Hg for 3 h and then resuscitated with shed blood plus half the volume of lactated Ringer’s solution. Serum alanine aminotransferase (ALT, necrosis, apoptosis and oxidative stress were assessed 6 h after resuscitation. Mitochondrial polarization was assessed by intravital microscopy. After H/R, ALT in WT-mice increased from 130 U/L to 4800 U/L. In KO-mice, ALT after H/R was blunted to 1800 U/l (P<0.05. Necrosis, caspase-3 activity and ROS were all substantially decreased in KO compared to WT mice after H/R. After sham operation, intravital microscopy revealed punctate mitochondrial staining by rhodamine 123 (Rh123, indicating normal mitochondrial polarization. At 4 h after H/R, Rh123 staining became dim and diffuse in 58% of hepatocytes, indicating depolarization and onset of the mitochondrial permeability transition (MPT. By contrast, KO mice displayed less depolarization after H/R (23%, P<0.05. In conclusion, JNK2 contributes to MPT-mediated liver injury after H/R.

  6. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Christina Funk

    2015-06-01

    Full Text Available Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary

  7. Crystallization and preliminary X-ray crystallographic analysis of a 40 kDa N-terminal fragment of the yeast prion-remodeling factor Hsp104

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukyeong; Tsai, Francis T. F., E-mail: ftsai@bcm.tmc.edu [Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 (United States)

    2007-09-01

    An N-terminal fragment of S. cerevisiae Hsp104 has been crystallized. This is the first report of the crystallization of a eukaryotic member of the Hsp100 family of molecular chaperones. A 40 kDa N-terminal fragment of Saccharomyces cerevisiae Hsp104 was crystallized in two different crystal forms. Native 1 diffracted to 2.6 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 66.6, b = 75.8, c = 235.7 Å. Native 2 diffracted to 2.9 Å resolution and belonged to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = 179.1, b = 179.1, c = 69.7 Å. This is the first report of the crystallization of a eukaryotic member of the Hsp100 family of molecular chaperones.

  8. Features of the Env leader protein and the N-terminal Gag domain of feline foamy virus important for virus morphogenesis

    International Nuclear Information System (INIS)

    Geiselhart, Verena; Schwantes, Astrid; Bastone, Patrizia; Frech, Matthias; Loechelt, Martin

    2003-01-01

    Previous studies have shown that foamy virus (FV) particle budding, especially the involvement of the viral Env glycoprotein, is different from that of other (ortho) retroviruses: the N-terminal Env leader protein Elp is a constituent of released FV particles. A defined sequence in Elp required for particle budding binds to the MA domain of Gag. To extend these findings, we show that feline FV Elp is a membrane-anchored protein with the N-terminus located inside the particle. Thus, the internal/cytoplasmic domain of Elp has the correct topology for interacting with Gag during budding. In addition to Elp, an Elp-related protein of about 9 kDa was shown to be virion associated and is probably generated by cellular signal peptidases. Besides the function of Elp binding, the N-terminal domain of Gag was shown to be required for proper localization of feline FV Gag to the cytoplasm and the perinuclear/nuclear region

  9. The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels.

    Science.gov (United States)

    Chen, Haijun; Kronengold, Jack; Yan, Yangyang; Gazula, Valeswara-Rao; Brown, Maile R; Ma, Liqun; Ferreira, Gonzalo; Yang, Youshan; Bhattacharjee, Arin; Sigworth, Fred J; Salkoff, Larry; Kaczmarek, Leonard K

    2009-04-29

    Potassium channels activated by intracellular Na(+) ions (K(Na)) play several distinct roles in regulating the firing patterns of neurons, and, at the single channel level, their properties are quite diverse. Two known genes, Slick and Slack, encode K(Na) channels. We have now found that Slick and Slack subunits coassemble to form heteromeric channels that differ from the homomers in their unitary conductance, kinetic behavior, subcellular localization, and response to activation of protein kinase C. Heteromer formation requires the N-terminal domain of Slack-B, one of the alternative splice variants of the Slack channel. This cytoplasmic N-terminal domain of Slack-B also facilitates the localization of heteromeric K(Na) channels to the plasma membrane. Immunocytochemical studies indicate that Slick and Slack-B subunits are coexpressed in many central neurons. Our findings provide a molecular explanation for some of the diversity in reported properties of neuronal K(Na) channels.

  10. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence

    Directory of Open Access Journals (Sweden)

    Rajeev Gupta

    2017-06-01

    Full Text Available Voltage-Dependent Anion Channel (VDAC phosphorylated by c-Jun N-terminal Kinase-3 (JNK3 was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  11. An N-terminal peptide extension results in efficient expression, but not secretion, of a synthetic horseradish peroxidase gene in transgenic tobacco.

    Science.gov (United States)

    Kis, Mihaly; Burbridge, Emma; Brock, Ian W; Heggie, Laura; Dix, Philip J; Kavanagh, Tony A

    2004-03-01

    Native horseradish (Armoracia rusticana) peroxidase, HRP (EC 1.11.1.7), isoenzyme C is synthesized with N-terminal and C-terminal peptide extensions, believed to be associated with protein targeting. This study aimed to explore the specific functions of these extensions, and to generate transgenic plants with expression patterns suitable for exploring the role of peroxidase in plant development and defence. Transgenic Nicotiana tabacum (tobacco) plants expressing different versions of a synthetic horseradish peroxidase, HRP, isoenzyme C gene were constructed. The gene was engineered to include additional sequences coding for either the natural N-terminal or the C-terminal extension or both. These constructs were placed under the control of a constitutive promoter (CaMV-35S) or the tobacco RUBISCO-SSU light inducible promoter (SSU) and introduced into tobacco using Agrobacterium-mediated transformation. To study the effects of the N- and C-terminal extensions, the localization of recombinant peroxidase was determined using biochemical and molecular techniques. Transgenic tobacco plants can exhibit a ten-fold increase in peroxidase activity compared with wild-type tobacco levels, and the majority of this activity is located in the symplast. The N-terminal extension is essential for the production of high levels of recombinant protein, while the C-terminal extension has little effect. Differences in levels of enzyme activity and recombinant protein are reflected in transcript levels. There is no evidence to support either preferential secretion or vacuolar targeting of recombinant peroxidase in this heterologous expression system. This leads us to question the postulated targeting roles of these peptide extensions. The N-terminal extension is essential for high level expression and appears to influence transcript stability or translational efficiency. Plants have been generated with greatly elevated cytosolic peroxidase activity, and smaller increases in apoplastic

  12. The Use of N-Terminal Pro-Brain Natriuretic Peptide to Evaluate Vascular Disease in Elderly Patients with Mental Illness

    OpenAIRE

    Nilsson, Karin; Gustafson, Lars; Hultberg, Björn

    2012-01-01

    Background: Serum N-terminal pro-brain natriuretic peptide (NT-proBNP) is regarded as a sensitive marker of cardiovascular disease. Vascular disease plays an important role in cognitive impairment. Method: In 447 elderly patients with mental illness, serum NT-proBNP level and the presence or absence of vascular disease according to the medical record were used to categorize patients in different subgroups of vascular disease. Results and Conclusion: Patients with vascular disease and elevated...

  13. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Berbís, M. Álvaro [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain); André, Sabine [Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539 Munich (Germany); Cañada, F. Javier [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain); Pipkorn, Rüdiger [Central Peptide Synthesis Unit, German Cancer Research Center, 69120 Heidelberg (Germany); Ippel, Hans [Department of Biochemistry, CARIM, University of Maastricht, Maastricht (Netherlands); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Mayo, Kevin H. [Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Kübler, Dieter [Biomolecular Interactions, German Cancer Research Center, 69120 Heidelberg (Germany); Gabius, Hans-Joachim [Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539 Munich (Germany); Jiménez-Barbero, Jesús, E-mail: jjbarbero@cib.csic.es [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain)

    2014-01-03

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence unique in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.

  14. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    International Nuclear Information System (INIS)

    Berbís, M. Álvaro; André, Sabine; Cañada, F. Javier; Pipkorn, Rüdiger; Ippel, Hans; Mayo, Kevin H.; Kübler, Dieter; Gabius, Hans-Joachim; Jiménez-Barbero, Jesús

    2014-01-01

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence unique in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with 15 N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein

  15. Mortality and preoperative cardiac function in vascular amputees: an N-terminal pro-brain natriuretic peptide (NT-proBNP) pilot study

    OpenAIRE

    Riemersma, Marcel; Dijkstra, Pieter U.; van Veldhuisen, Dirk Jan; Muskiet, Frits A. J.; van den Dungen, Jan A. M. M.; Geertzen, Jan H. B.

    2008-01-01

    Objective: To determine preoperative ventricular function in vascular amputees by measuring N-terminal pro-brain natriuretic peptide (NT-proBNP) and to analyse the relationship between NT-proBNP levels and 30-day postoperative mortality. Design: Prospective pilot study. Subjects and methods: In 19 patients planned for a lower limb amputation for nonreconstructable peripheral arterial disease NT-proBNP was measured the day before amputation. Results: Four amputees died within 30 days after the...

  16. Prognostic value of N-terminal pro-B-type natriuretic peptide in patients with acute coronary syndromes undergoing left main percutaneous coronary intervention

    OpenAIRE

    Jaberg, L; Toggweiler, S; Puck, M; Frank, M; Rufibach, K; Lüscher, T F; Corti, R

    2011-01-01

    BACKGROUND: Patients undergoing acute left main (LM) coronary artery revascularization have a high mortality and natriuretic peptides such as N-terminal pro-B-type (NT-proBNP) have been shown to have prognostic value in patients with acute coronary syndromes. The present study looked at the prognostic value of NT-proBNP in these patients. METHODS AND RESULTS: We studied all consecutive patients undergoing acute LM coronary artery percutaneous coronary intervention between January 2005 and Dec...

  17. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies.

    Science.gov (United States)

    Dai, Chun-ling; Chen, Xia; Kazim, Syed Faraz; Liu, Fei; Gong, Cheng-Xin; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-04-01

    Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer's disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14-17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6-18) and 77E9 (tau 184-195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aβ accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aβ pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6-18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aβ pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6-18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies.

  18. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence.

    Science.gov (United States)

    Gupta, Rajeev; Ghosh, Subhendu

    2017-06-01

    Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  19. Annexin A1 N-terminal derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions.

    Directory of Open Access Journals (Sweden)

    Valentina Bizzarro

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we have evaluated whether Annexin A1 derived peptide Ac2-26 stimulates fibroblast migration in high glucose conditions. Using normal human skin fibroblasts WS1 in low glucose (LG or high glucose (HG we observed the enrichment of Annexin A1 protein at cell movement structures like lamellipodial extrusions and interestingly, a significant decrease in levels of the protein in HG conditions. The analysis of the translocation of Annexin A1 to cell membrane showed lower levels of Annexin A1 in both membrane pool and supernatants of WS1 cells treated with HG. Wound-healing assays using cell line transfected with Annexin A1 siRNAs indicated a slowing down in migration speed of cells suggesting that Annexin A1 has a role in the migration of WS1 cells. In order to analyze the role of extracellular Annexin A1 in cell migration, we have performed wound-healing assays using Ac2-26 showing that peptide was able to increase fibroblast cell migration in HG conditions. Experiments on the mobilization of intracellular calcium and analysis of p-ERK expression confirmed the activity of the FPR1 following stimulation with the peptide Ac2-26. A wound-healing assay on WS1 cells in the presence of the FPR agonist fMLP, of the FPR antagonist CsH and in the presence of Ac2-26 indicated that Annexin A1 influences fibroblast cell migration under HG conditions acting through FPR receptors whose expression was slightly increased in HG. In conclusion, these data demonstrate that (i Annexin A1 is involved in migration of WS1 cells, through interaction with FPRs; (ii N- terminal peptide of Annexin A1 Ac2-26 is able to stimulate direct migration of WS1 cells in high glucose treatment possibly due to the increased receptor expression observed in hyperglycemia conditions.

  20. Association between N-terminal proB-type Natriuretic Peptide and Depressive Symptoms in Patients with Acute Myocardial Infarction

    Institute of Scientific and Technical Information of China (English)

    Yan Ren; Jiao Jia; Jian Sa; Li-Xia Qiu; Yue-Hua Cui; Yue-An Zhang; Hong Yang

    2017-01-01

    Background:While depression and certain cardiac biomarkers are associated with acute myocardial infarction (AMI),the relationship between them remains largely unexplored.We examined the association between depressive symptoms and biomarkers in patients with AMI.Methods:We performed a cross-sectional study using data from 103 patients with AMI between March 2013 and September 2014.The levels of depression,N-terminal proB-type natriuretic peptide (NT-proBNP),and troponin I (TnI) were measured at baseline.The patients were divided into two groups:those with depressive symptoms and those without depressive symptoms according to Zung Self-rating Depression Scale (SDS) score.Baseline comparisons between two groups were made using Student's t-test for continuous variables,Chi-square or Fisher's exact test for categorical variables,and Wilcoxon test for variables in skewed distribution.Binomial logistic regression and multivariate linear regression were performed to assess the association between depressive symptoms and biomarkers while adjusting for demographic and clinical variables.Results:Patients with depressive symptoms had significantly higher NT-proBNP levels as compared to patients without depressive symptoms (1135.0 [131.5,2474.0] vs.384.0 [133.0,990.0],Z =-2.470,P =0.013).Depressive symptoms were associated with higher NT-proBNP levels (odds ratio [OR] =2.348,95% CI:1.344 to 4.103,P =0.003) and higher body mass index (OR =1.169,95% confidence interval [CI]:1.016 to 1.345,P =0.029).The total SDS score was associated with the NT-proBNP level (β =0.327,95% CI:1.674 to 6.119,P =0.001) after multivariable adjustment.In particular,NT-proBNP was associated with three of the depressive dimensions,including core depression (β =0.299,95% CI:0.551 to 2.428,P =0.002),cognitive depression (β =0.320,95% CI:0.476 to 1.811,P=0.001),and somatic depression (β =0.333,95% CI:0.240 to 0.847,P =0.001).Neither the overall depressive symptomatology nor the individual

  1. Prognostic value of N-terminal pro-brain natriuretic peptide in hospitalised patients with community-acquired pneumonia.

    Science.gov (United States)

    Jeong, Ki Young; Kim, Kyuseok; Kim, Tae Yun; Lee, Christopher C; Jo, Si On; Rhee, Joong Eui; Jo, You Hwan; Suh, Gil Joon; Singer, Adam J

    2011-02-01

    The prognostic role of N-terminal pro-brain natriuretic peptide (NT-proBNP) in patients with community-acquired pneumonia (CAP) has not been evaluated. The aim of the present study was to investigate whether NT-proBNP level could predict mortality in hospitalised CAP patients. We performed a structured medical record review of all hospitalised CAP patients from May 2003 to October 2006, and classified patients into the 30-day survival and non-survival group. Data included demographic and clinical characteristics, and laboratory findings including NT-proBNP levels. The APACHE II scores, PSI (pneumonia severity index) and CURB65 (confusion, urea, respiratory rate, blood pressure and aged 65 or more) scores were calculated. Comparisons between survivors and non-survivors were made with χ(2), non-parametric tests and logistic regression and ROC analysis were used to compare the ability of NT-proBNP (adjusted for age, heart failure and creatinine), APACHE II, PSI and CURB65 to predict mortality. Of 502 patients, 61 (12.2%) died within 30 days. NT-proBNP levels were measured in 167 patients and were significantly higher in non-survivors compared to survivors (median 841.7 (IQR 267.1-3137.3) pg/ml vs 3658.0 (1863.0-7025.0) pg/ml, p=0.019). NT-proBNP was an independent predictor of mortality (adjusted OR 1.53; 95% CI 1.16 to 2.02, p=0.002). The AUC for NT-proBNP was 0.712 (95% CI, 0.613 to 0.812), which was comparable to those of PSI (0.749, p=0.531) and CURB65 (0.698, p=0.693), but inferior to that of APACHE II (0.831, p=0.037). Adding NT-proBNP to APACHE II, PSI and CURB65 did not significantly increase the AUCs, respectively. NT-proBNP level is an independent predictor of mortality in hospitalised CAP patients. The performance of NT-proBNP level is comparable to those of PSI and CURB65 in predicting mortality.

  2. A role for galanin N-terminal fragment (1-15) in anxiety- and depression-related behaviors in rats.

    Science.gov (United States)

    Millón, Carmelo; Flores-Burgess, Antonio; Narváez, Manuel; Borroto-Escuela, Dasiel O; Santín, Luis; Parrado, Concepción; Narváez, José Angel; Fuxe, Kjell; Díaz-Cabiale, Zaida

    2014-10-31

    Galanin (GAL) plays a role in mood regulation. In this study we analyzed the action of the active N-terminal fragment [GAL(1-15)] in anxiety- and depression-related behavioral tests in rats. The effect of GAL(1-15) was analyzed in the forced swimming test, tail suspension test, open field test, and light/dark test. The proximity of GAL1 and GAL2 receptors was examined with the proximity ligation assay (PLA). We tested the GAL receptors involved in GAL(1-15) effects with the GAL2 receptor antagonist M871 and with an in vivo model of siRNA GAL2 receptor knockdown or siRNA GAL1 receptor knockdown rats. The effects of GAL(1-15) were also studied in the cell line RN33B. GAL(1-15) induced strong depression-like and anxiogenic-like effects in all the tests. These effects were stronger than the ones induced by GAL. The involvement of the GAL2 receptor was demonstrated with M871 and with the siRNA GAL2 receptor knockdown rats. The PLA indicated the possible existence of GAL1 and GAL2 heteroreceptor complexes in the dorsal hippocampus and especially in the dorsal raphe nucleus. In the siRNA GAL1 receptor knockdown rats the behavioral actions of GAL(1-15) disappeared, and in the siRNA GAL2 receptor knockdown rats the reductions of the behavioral actions of GAL(1-15) was linked to a disappearance of PLA. In the cell line RN33B, GAL(1-15) decreased 5-HT immunoreactivity more strongly than GAL. Our results indicate that GAL(1-15) exerts strong depression-related and anxiogenic-like effects and may give the basis for the development of drugs targeting GAL1 and GAL2 heteroreceptor complexes in the raphe-limbic system for the treatment of depression and anxiety. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  3. A Role for Galanin N-Terminal Fragment (1–15) in Anxiety- and Depression-Related Behaviors in Rats

    Science.gov (United States)

    Millón, Carmelo; Flores-Burgess, Antonio; Narváez, Manuel; Borroto-Escuela, Dasiel O.; Santín, Luis; Parrado, Concepción; Narváez, José Angel; Fuxe, Kjell

    2015-01-01

    Background: Galanin (GAL) plays a role in mood regulation. In this study we analyzed the action of the active N-terminal fragment [GAL(1–15)] in anxiety- and depression-related behavioral tests in rats. Methods: The effect of GAL(1–15) was analyzed in the forced swimming test, tail suspension test, open field test, and light/dark test. The proximity of GAL1 and GAL2 receptors was examined with the proximity ligation assay (PLA). We tested the GAL receptors involved in GAL(1–15) effects with the GAL2 receptor antagonist M871 and with an in vivo model of siRNA GAL2 receptor knockdown or siRNA GAL1 receptor knockdown rats. The effects of GAL(1–15) were also studied in the cell line RN33B. Results: GAL(1–15) induced strong depression-like and anxiogenic-like effects in all the tests. These effects were stronger than the ones induced by GAL. The involvement of the GAL2 receptor was demonstrated with M871 and with the siRNA GAL2 receptor knockdown rats. The PLA indicated the possible existence of GAL1 and GAL2 heteroreceptor complexes in the dorsal hippocampus and especially in the dorsal raphe nucleus. In the siRNA GAL1 receptor knockdown rats the behavioral actions of GAL(1–15) disappeared, and in the siRNA GAL2 receptor knockdown rats the reductions of the behavioral actions of GAL(1–15) was linked to a disappearance of PLA. In the cell line RN33B, GAL(1–15) decreased 5-HT immunoreactivity more strongly than GAL. Conclusions: Our results indicate that GAL(1–15) exerts strong depression-related and anxiogenic-like effects and may give the basis for the development of drugs targeting GAL1 and GAL2 heteroreceptor complexes in the raphe-limbic system for the treatment of depression and anxiety. PMID:25522404

  4. The N-terminal domains of Vps3 and Vps8 are critical for localization and function of the CORVET tethering complex on endosomes.

    Directory of Open Access Journals (Sweden)

    Nadine Epp

    Full Text Available Endosomal biogenesis depends on multiple fusion and fission events. For fusion, the heterohexameric CORVET complex as an effector of the endosomal Rab5/Vps21 GTPase has a central function in the initial tethering event. Here, we show that the CORVET-specific Vps3 and Vps8 subunits, which interact with Rab5/Vps21, require their N-terminal domains for localization and function. Surprisingly, CORVET may lack either one of the two N-terminal domains, but not both, to promote protein sorting via the endosome. The dually truncated complex mislocalizes to the cytosol and is impaired in endocytic protein sorting, but not in assembly. Furthermore, the endosomal localization can be rescued by overexpression of Vps21 or one of the truncated CORVET subunits, even though CORVET assembly is not impaired by loss of the N-terminal domains or in strains lacking all endosomal Rab5s and Ypt7. We thus conclude that CORVET requires only its C-terminal domains for assembly and has beyond its putative β-propeller domains additional binding sites for endosomes, which could be important to bind Vps21 and other endosome-specific factors for efficient endosome tethering.

  5. Characterization of the N-terminal segment used by the barley yellow dwarf virus movement protein to promote interaction with the nuclear membrane of host plant cells.

    Science.gov (United States)

    Dennison, Sarah Rachel; Harris, Frederick; Brandenburg, Klaus; Phoenix, David Andrew

    2007-11-01

    The barley yellow dwarf virus movement protein (BYDV-MP) requires its N-terminal sequence to promote the transport of viral RNA into the nuclear compartment of host plant cells. Here, graphical analysis predicts that this sequence would form a membrane interactive amphiphilic alpha-helix. Confirming this prediction, NT1, a peptide homologue of the BYDV-MP N-terminal sequence, was found to be alpha-helical (65%) in the presence of vesicles mimics of the nuclear membrane. The peptide increased the fluidity of these nuclear membrane mimics (rise in wavenumber of circa 0.5-1.0 cm(-1)) and induced surface pressure changes of 2 mN m(-1) in lipid monolayers with corresponding compositions. Taken with isotherm analysis these results suggest that BYDV-MP forms an N-terminal amphiphilic alpha-helix, which partitions into the nuclear membrane primarily through thermodynamically stable associations with the membrane lipid headgroup region. We speculate that these associations may play a role in targeting of the nuclear membrane by BYDM-MP.

  6. Intrafamiliar clinical variability of circumferential skin creases Kunze type caused by a novel heterozygous mutation of N-terminal TUBB gene.

    Science.gov (United States)

    Dentici, M L; Terracciano, A; Bellacchio, E; Capolino, R; Novelli, A; Digilio, M C; Dallapiccola, B

    2018-02-10

    Circumferential skin creases Kunze type (CSC-KT; OMIM 156610, 616734) is a rare disorder characterized by folding of excess skin, which leads to ringed creases, known as Michelin Tire Baby Syndrome (MTBS). CSC-KT patients also exhibit facial dysmorphism, growth retardation, intellectual disability (ID) and multiple congenital malformations. Recently, 2 heterozygous mutations in TUBB gene and 4 mutations (both homozygous and heterozygous) in MAPRE2 gene were identified in 3 and 4 CSC-KT patients, respectively. In the 3 TUBB gene-related CSC-KT patients, all mutations fall in the N-terminal gene domain and were de novo. Mutations in the C-terminal of TUBB gene have been associated to microcephaly and structural brain malformation, in the absence of CSC-KT features. We report a 9-year-old boy with a diagnosis of CSC-KT based on MTBS, facial dysmorphism, microcephaly, severe ID, cortical atrophy and corpus callosum hypoplasia. Sanger sequencing identified a novel heterozygous c.218T>C (p.Met73Thr) mutation in the N-terminal of TUBB gene, that was inherited from the mother affected by isolated MTBS. This is the first report of inherited TUBB gene-related CSC-KT resulting from a novel heterozygous mutation in the N-terminal domain. Present data support the role of TUBB mutations in CSC-KT and definitely includes CSC-KT syndrome within the tubulinopathies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. An N-terminal region of a Myb-like protein is involved in its intracellular localization and activation of a gibberellin-inducible proteinase gene in germinated rice seeds.

    Science.gov (United States)

    Sutoh, Keita; Washio, Kenji; Imai, Ryozo; Wada, Masamitsu; Nakai, Tomonori; Yamauchi, Daisuke

    2015-01-01

    The expression of the gene for a proteinase (Rep1) is upregulated by gibberellins. The CAACTC regulatory element (CARE) of the Rep1 promoter is involved in the gibberellin response. We isolated a cDNA for a CARE-binding protein containing a Myb domain in its carboxyl-terminal region and designated the gene Carboxyl-terminal Myb1 (CTMyb1). This gene encodes two polypeptides of two distinctive lengths, CTMyb1L and CTMyb1S, which include or exclude 213 N-terminal amino acid residues, respectively. CTMyb1S transactivated the Rep1 promoter in the presence of OsGAMyb, but not CTMyb1L. We observed an interaction between CTMyb1S and the rice prolamin box-binding factor (RPBF). A bimolecular fluorescence complex analysis detected the CTMyb1S and RPBF complex in the nucleus, but not the CTMyb1L and RPBF complex. The results suggest that the arrangement of the transfactors is involved in gibberellin-inducible expression of Rep1.

  8. Crystal structures of Hsp104 N-terminal domains from Saccharomyces cerevisiae and Candida albicans suggest the mechanism for the function of Hsp104 in dissolving prions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Li, Jingzhi; Weaver, Clarissa; Lucius, Aaron; Sha, Bingdong

    2017-03-31

    Hsp104 is a yeast member of the Hsp100 family which functions as a molecular chaperone to disaggregate misfolded polypeptides. To understand the mechanism by which the Hsp104 N-terminal domain (NTD) interacts with its peptide substrates, crystal structures of the Hsp104 NTDs fromSaccharomyces cerevisiae(ScHsp104NTD) andCandida albicans(CaHsp104NTD) have been determined at high resolution. The structures of ScHsp104NTD and CaHsp104NTD reveal that the yeast Hsp104 NTD may utilize a conserved putative peptide-binding groove to interact with misfolded polypeptides. In the crystal structures ScHsp104NTD forms a homodimer, while CaHsp104NTD exists as a monomer. The consecutive residues Gln105, Gln106 and Lys107, and Lys141 around the putative peptide-binding groove mediate the monomer–monomer interactions within the ScHsp104NTD homodimer. Dimer formation by ScHsp104NTD suggests that the Hsp104 NTD may specifically interact with polyQ regions of prion-prone proteins. The data may reveal the mechanism by which Hsp104 NTD functions to suppress and/or dissolve prions.

  9. Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Rasmussen, Hanne B; Grunnet, Morten

    2004-01-01

    of the tyrosine residue at position 51 resulted in a non-polarized steady-state distribution of the channel. The importance of tyrosine 51 in basolateral localisation was emphasized by the fact that a short peptide comprising this tyrosine was able to redirect the p75 neurotrophin receptor, an otherwise apically...

  10. A case report of reversible generalized seizures in a patient with Waardenburg syndrome associated with a novel nonsense mutation in the penultimate exon of SOX10.

    Science.gov (United States)

    Suzuki, Noriomi; Mutai, Hideki; Miya, Fuyuki; Tsunoda, Tatsuhiko; Terashima, Hiroshi; Morimoto, Noriko; Matsunaga, Tatsuo

    2018-05-23

    Waardenburg syndrome type 1 (WS1) can be distinguished from Waardenburg syndrome type 2 (WS2) by the presence of dystopia canthorum. About 96% of WS1 are due to PAX3 mutations, and SOX10 mutations have been reported in 15% of WS2. This report describes a patient with WS1 who harbored a novel SOX10 nonsense mutation (c.652G > T, p.G218*) in exon 3 which is the penultimate exon. The patient had mild prodromal neurological symptoms that were followed by severe attacks of generalized seizures associated with delayed myelination of the brain. The immature myelination recovered later and the neurological symptoms could be improved. This is the first truncating mutation in exon 3 of SOX10 that is associated with neurological symptoms in Waardenburg syndrome. Previous studies reported that the neurological symptoms that associate with WS are congenital and irreversible. These findings suggest that the reversible neurological phenotype may be associated with the nonsense mutation in exon 3 of SOX10. When patients of WS show mild prodromal neurological symptoms, the clinician should be aware of the possibility that severe attacks of generalized seizures may follow, which may be associated with the truncating mutation in exon 3 of SOX10.

  11. Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains.

    Science.gov (United States)

    Jacewicz, Agata; Shuman, Stewart

    2015-08-01

    Mycobacterium smegmatis encodes several DNA repair polymerases that are adept at incorporating ribonucleotides, which raises questions about how ribonucleotides in DNA are sensed and removed. RNase H enzymes, of which M. smegmatis encodes four, are strong candidates for a surveillance role. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of M. smegmatis RnhC, a bifunctional RNase H and acid phosphatase. We report that (i) the RnhC nuclease is stringently specific for RNA:DNA hybrid duplexes; (ii) RnhC does not selectively recognize and cleave DNA-RNA or RNA-DNA junctions in duplex nucleic acid; (iii) RnhC cannot incise an embedded monoribonucleotide or diribonucleotide in duplex DNA; (iv) RnhC can incise tracts of 4 or more ribonucleotides embedded in duplex DNA, leaving two or more residual ribonucleotides at the cleaved 3'-OH end and at least one or two ribonucleotides on the 5'-PO4 end; (v) the RNase H activity is inherent in an autonomous 140-amino-acid (aa) N-terminal domain of RnhC; and (vi) the C-terminal 211-aa domain of RnhC is an autonomous acid phosphatase. The cleavage specificity of RnhC is clearly distinct from that of Escherichia coli RNase H2, which selectively incises at an RNA-DNA junction. Thus, we classify RnhC as a type I RNase H. The properties of RnhC are consistent with a role in Okazaki fragment RNA primer removal or in surveillance of oligoribonucleotide tracts embedded in DNA but not in excision repair of single misincorporated ribonucleotides. RNase H enzymes help cleanse the genome of ribonucleotides that are present either as ribotracts (e.g., RNA primers) or as single ribonucleotides embedded in duplex DNA. Mycobacterium smegmatis encodes four RNase H proteins, including RnhC, which is characterized in this study. The nucleic acid substrate and cleavage site specificities of RnhC are consistent with a role in initiating the removal of ribotracts but not in single-ribonucleotide surveillance. Rnh

  12. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation.

    Directory of Open Access Journals (Sweden)

    Kurt Warnhoff

    2014-10-01

    Full Text Available The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance.

  13. The N-terminal cleavage of chondromodulin-I in growth-plate cartilage at the hypertrophic and calcified zones during bone development.

    Directory of Open Access Journals (Sweden)

    Shigenori Miura

    Full Text Available Chondromodulin-I (ChM-I is a 20-25 kDa anti-angiogenic glycoprotein in cartilage matrix. In the present study, we identified a novel 14-kDa species of ChM-I by immunoblotting, and purified it by immunoprecipitation with a newly raised monoclonal antibody against ChM-I. The N-terminal amino acid sequencing indicated that it was an N-terminal truncated form of ChM-I generated by the proteolytic cleavage at Asp37-Asp38. This 14-kDa ChM-I was shown by the modified Boyden chamber assay to have very little inhibitory activity on the VEGF-A-induced migration of vascular endothelial cells in contrast to the intact 20-25 kDa form of ChM-I (ID50 = 8 nM. Immunohistochemistry suggested that 20-25 kDa ChM-I was exclusively localized in the avascular zones, i.e. the resting, proliferating, and prehypertrophic zones, of the cartilaginous molds of developing long bone, whereas the 14-kDa form of ChM-I was found in hypertrophic and calcified zones. Immunoblotting demonstrated that mature growth-plate chondrocytes isolated from rat costal cartilage actively secrete ChM-I almost exclusively as the intact 20-25 kDa form into the medium in primary culture. Taken together, our results suggest that intact 20-25 kDa ChM-I is stored as a component of extracellular matrix in the avascular cartilage zones, but it is inactivated by a single N-terminal proteolytic cleavage in the hypertrophic zone of growth-plate cartilage.

  14. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation.

    Science.gov (United States)

    Warnhoff, Kurt; Murphy, John T; Kumar, Sandeep; Schneider, Daniel L; Peterson, Michelle; Hsu, Simon; Guthrie, James; Robertson, J David; Kornfeld, Kerry

    2014-10-01

    The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance.

  15. Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B-SP-C interactions in phospholipid bilayers

    DEFF Research Database (Denmark)

    Plasencia, I; Cruz, A; Casals, C

    2001-01-01

    . The fluorescence emission spectrum of Dns-SP-C in phospholipid bilayers is similar to the spectrum of dansyl-phosphatidylethanolamine, and indicates that the N-terminal end of the protein is located at the surface of the membranes and is exposed to the aqueous environment. In membranes containing...... phosphatidylglycerol (PG), the fluorescence of Dns-SP-C shows a 3-fold increase with respect to the fluorescence of phosphatidylcholine (PC), suggesting that electrostatic lipid-protein interactions induce important effects on the structure and disposition of the N-terminal segment of the protein in these membranes...... of the N-terminal segment of the protein into less polar environments that originate during protein lateral segregation. This suggests that conformation and interactions of the N-terminal segment of SP-C could be important in regulating the lateral distribution of the protein in surfactant bilayers...

  16. Residual stresses

    International Nuclear Information System (INIS)

    Sahotra, I.M.

    2006-01-01

    The principal effect of unloading a material strained into the plastic range is to create a permanent set (plastic deformation), which if restricted somehow, gives rise to a system of self-balancing within the same member or reaction balanced by other members of the structure., known as residual stresses. These stresses stay there as locked-in stresses, in the body or a part of it in the absence of any external loading. Residual stresses are induced during hot-rolling and welding differential cooling, cold-forming and extruding: cold straightening and spot heating, fabrication and forced fitting of components constraining the structure to a particular geometry. The areas which cool more quickly develop residual compressive stresses, while the slower cooling areas develop residual tensile stresses, and a self-balancing or reaction balanced system of residual stresses is formed. The phenomenon of residual stresses is the most challenging in its application in surface modification techniques determining endurance mechanism against fracture and fatigue failures. This paper discusses the mechanism of residual stresses, that how the residual stresses are fanned and what their behavior is under the action of external forces. Such as in the case of a circular bar under limit torque, rectangular beam under limt moment, reclaiming of shafts welds and peening etc. (author)

  17. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent.

    Science.gov (United States)

    Goyal, Bhupesh; Srivastava, Kinshuk Raj; Durani, Susheel

    2017-06-01

    Protein folding problem remains a formidable challenge as main chain, side chain and solvent interactions remain entangled and have been difficult to resolve. Alanine-based short peptides are promising models to dissect protein folding initiation and propagation structurally as well as energetically. The effect of N-terminal diproline and charged side chains is assessed on the stabilization of helical conformation in alanine-based short peptides using circular dichroism (CD) with water and methanol as solvent. A1 (Ac-Pro-Pro-Ala-Lys-Ala-Lys-Ala-Lys-Ala-NH 2 ) is designed to assess the effect of N-terminal homochiral diproline and lysine side chains to induce helical conformation. A2 (Ac-Pro-Pro-Glu-Glu-Ala-Ala-Lys-Lys-Ala-NH 2 ) and A3 (Ac-dPro-Pro-Glu-Glu-Ala-Ala-Lys-Lys-Ala-NH 2 ) with N-terminal homochiral and heterochiral diproline, respectively, are designed to assess the effect of Glu...Lys (i, i + 4) salt bridge interactions on the stabilization of helical conformation. The CD spectra of A1, A2 and A3 in water manifest different amplitudes of the observed polyproline II (PPII) signals, which indicate different conformational distributions of the polypeptide structure. The strong effect of solvent substitution from water to methanol is observed for the peptides, and CD spectra in methanol evidence A2 and A3 as helical folds. Temperature-dependent CD spectra of A1 and A2 in water depict an isodichroic point reflecting coexistence of two conformations, PPII and β-strand conformation, which is consistent with the previous studies. The results illuminate the effect of N-terminal diproline and charged side chains in dictating the preferences for extended-β, semi-extended PPII and helical conformation in alanine-based short peptides. The results of the present study will enhance our understanding on stabilization of helical conformation in short peptides and hence aid in the design of novel peptides with helical structures. Copyright © 2017 European Peptide

  18. Procollagen type I N-terminal propeptide (PINP) as an indicator of type I collagen metabolism: ELISA development, reference interval, and hypovitaminosis D induced hyperparathyroidism

    DEFF Research Database (Denmark)

    Orum, O; Hansen, M; Jensen, Charlotte Harken

    1996-01-01

    A sandwich enzyme-linked immunosorbent assay (ELISA) for quantification of the N-terminal propeptide of human procollagen type I (PINP) utilizing purified alpha 1-chain specific rabbit antibodies is described. The ELISA measured the content of the alpha 1-chain of PINP independent of the molecular....../mL, these values being significantly different from the normal range (p ELISA was superior to commercially available assays for PICP and osteocalcin in separation between healthy controls and patients with osteomalaci. Udgivelsesdato: 1996-Aug...

  19. NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding

    International Nuclear Information System (INIS)

    Arrowsmith, C.H.; Carey, J.; Treat-Clemons, L.; Jardetzky, O.

    1989-01-01

    The trp repressor of Escherichia coli specifically binds to operator DNAs in three operons involved in tryptophan metabolism. The NMR spectra of repressor and a chymotryptic fragment lacking the six amino-terminal residues are compared. Two-dimensional J-correlated spectra of the two forms of the protein are superimposable except for cross-peaks that are associated with the N-terminal region. The chemical shifts and relaxation behavior of the N-terminal resonances suggest mobile arms. Spin-echo experiments on a ternary complex of repressor with L-tryptophan and operator DNA indicate that the termini are also disordered in the complex, although removal of the arms reduces the DNA binding energy. Relaxation measurements on the armless protein show increased mobility for several residues, probably due to helix fraying in the newly exposed N-terminal region. DNA binding by the armless protein does not reduce the mobility of these residues. Thus, it appears that the arms serve to stabilize the N-terminal helix but that this structural role does not explain their contribution to the DNA binding energy. These results suggest that the promiscuous DNA binding by the arms seen in the X-ray crystal structure is found in solution as well

  20. Residual stresses

    International Nuclear Information System (INIS)

    Macherauch, E.

    1978-01-01

    Residual stresses are stresses which exist in a material without the influence of external powers and moments. They come into existence when the volume of a material constantly changes its form as a consequence of mechanical, thermal, and/or chemical processes and is hindered by neighbouring volumes. Bodies with residual stress are in mechanical balance. These residual stresses can be manifested by means of all mechanical interventions disturbing this balance. Acoustical, optical, radiological, and magnetical methods involving material changes caused by residual stress can also serve for determining residual stress. Residual stresses have an ambivalent character. In technical practice, they are feared and liked at the same time. They cause trouble because they can be the cause for unexpected behaviour of construction elements. They are feared since they can cause failure, in the worst case with catastrophical consequences. They are appreciated, on the other hand, because, in many cases, they can contribute to improvements of the material behaviour under certain circumstances. But they are especially liked for their giving convenient and (this is most important) mostly uncontrollable explanations. For only in very few cases we have enough knowledge and possibilities for the objective evaluation of residual stresses. (orig.) [de

  1. The N-terminal leucine-zipper motif in PTRF/cavin-1 is essential and sufficient for its caveolae-association

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Zhuang [State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Zou, Xinle [State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Wang, Hongzhong; Lei, Jigang; Wu, Yuan [State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Liao, Kan, E-mail: kliao@sibs.ac.cn [State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2015-01-16

    Highlight: • The N-terminal leucine-zipper motif in PTRF/cavin-1 determines caveolar association. • Different cellular localization of PTRF/cavin-1 influences its serine 389 and 391 phosphorylation state. • PTRF/cavin-1 regulates cell motility via its caveolar association. - Abstract: PTRF/cavin-1 is a protein of two lives. Its reported functions in ribosomal RNA synthesis and in caveolae formation happen in two different cellular locations: nucleus vs. plasma membrane. Here, we identified that the N-terminal leucine-zipper motif in PTRF/cavin-1 was essential for the protein to be associated with caveolae in plasma membrane. It could counteract the effect of nuclear localization sequence in the molecule (AA 235–251). Deletion of this leucine-zipper motif from PTRF/cavin-1 caused the mutant to be exclusively localized in nuclei. The fusion of this leucine-zipper motif with histone 2A, which is a nuclear protein, could induce the fusion protein to be exported from nucleus. Cell migration was greatly inhibited in PTRF/cavin-1{sup −/−} mouse embryonic fibroblasts (MEFs). The inhibited cell motility could only be rescued by exogenous cavin-1 but not the leucine-zipper motif deleted cavin-1 mutant. Plasma membrane dynamics is an important factor in cell motility control. Our results suggested that the membrane dynamics in cell migration is affected by caveolae associated PTRF/cavin-1.

  2. The N-terminal leucine-zipper motif in PTRF/cavin-1 is essential and sufficient for its caveolae-association

    International Nuclear Information System (INIS)

    Wei, Zhuang; Zou, Xinle; Wang, Hongzhong; Lei, Jigang; Wu, Yuan; Liao, Kan

    2015-01-01

    Highlight: • The N-terminal leucine-zipper motif in PTRF/cavin-1 determines caveolar association. • Different cellular localization of PTRF/cavin-1 influences its serine 389 and 391 phosphorylation state. • PTRF/cavin-1 regulates cell motility via its caveolar association. - Abstract: PTRF/cavin-1 is a protein of two lives. Its reported functions in ribosomal RNA synthesis and in caveolae formation happen in two different cellular locations: nucleus vs. plasma membrane. Here, we identified that the N-terminal leucine-zipper motif in PTRF/cavin-1 was essential for the protein to be associated with caveolae in plasma membrane. It could counteract the effect of nuclear localization sequence in the molecule (AA 235–251). Deletion of this leucine-zipper motif from PTRF/cavin-1 caused the mutant to be exclusively localized in nuclei. The fusion of this leucine-zipper motif with histone 2A, which is a nuclear protein, could induce the fusion protein to be exported from nucleus. Cell migration was greatly inhibited in PTRF/cavin-1 −/− mouse embryonic fibroblasts (MEFs). The inhibited cell motility could only be rescued by exogenous cavin-1 but not the leucine-zipper motif deleted cavin-1 mutant. Plasma membrane dynamics is an important factor in cell motility control. Our results suggested that the membrane dynamics in cell migration is affected by caveolae associated PTRF/cavin-1

  3. Differential functions of C- and N-terminal hepatitis B x protein in liver cells treated with doxorubicin in normoxic or hypoxic condition.

    Directory of Open Access Journals (Sweden)

    Davor Kin-Fan Chau

    Full Text Available Hepatitis viral B x protein (HBx, a hepatocarcinogen, is frequently mutated. Hypoxia influences the growth of HCC and also the sensitivity of tumor cells to treatments. We aimed to test the role of HBx and acute hypoxia in the efficacy of chemotherapy. In this study, we established 4 Chang liver cell lines with the full-length HBx (HBx, the first 50 amino acids of N-terminal HBx (HBx/50, the last 104 amino acids of C-terminal HBx (HBx/51 and empty vector (CL, respectively. MTT and TNUEL assays were used to assess cell viability and apoptosis respectively. Western blot was used to determine the expression of relevant proteins. Results showed that among 4 cell lines, doxorubicin was most effective in decreasing the viability and enhancing apoptosis in HBx/51 cells, while HBx/50 cells were most resistant to the treatment. Cells in hypoxia were more susceptible to doxorubicin than cells in normoxia. Hypoxia facilitated the Bid cleavage especially in HBx/51 cells via phosphorylating p38 MAPK. p38 MAPK inhibitor significantly reduced the tBid level and increased cell viability. In conclusion, N-terminal HBx and C-terminal HBx function differentially in their ability to regulate cell growth, with the former being promotive but the latter being inhibitory. The acute hypoxia may overcome the HBx-induced resistance and facilitate the chemotherapy.

  4. The 133-kDa N-terminal domain enables myosin 15 to maintain mechanotransducing stereocilia and is essential for hearing

    Science.gov (United States)

    Fang, Qing; Indzhykulian, Artur A; Mustapha, Mirna; Riordan, Gavin P; Dolan, David F; Friedman, Thomas B; Belyantseva, Inna A; Frolenkov, Gregory I; Camper, Sally A; Bird, Jonathan E

    2015-01-01

    The precise assembly of inner ear hair cell stereocilia into rows of increasing height is critical for mechanotransduction and the sense of hearing. Yet, how the lengths of actin-based stereocilia are regulated remains poorly understood. Mutations of the molecular motor myosin 15 stunt stereocilia growth and cause deafness. We found that hair cells express two isoforms of myosin 15 that differ by inclusion of an 133-kDa N-terminal domain, and that these isoforms can selectively traffic to different stereocilia rows. Using an isoform-specific knockout mouse, we show that hair cells expressing only the small isoform remarkably develop normal stereocilia bundles. However, a critical subset of stereocilia with active mechanotransducer channels subsequently retracts. The larger isoform with the 133-kDa N-terminal domain traffics to these specialized stereocilia and prevents disassembly of their actin core. Our results show that myosin 15 isoforms can navigate between functionally distinct classes of stereocilia, and are independently required to assemble and then maintain the intricate hair bundle architecture. DOI: http://dx.doi.org/10.7554/eLife.08627.001 PMID:26302205

  5. N-Terminal Prodomain of Pfs230 Synthesized Using a Cell-Free System Is Sufficient To Induce Complement-Dependent Malaria Transmission-Blocking Activity▿

    Science.gov (United States)

    Tachibana, Mayumi; Wu, Yimin; Iriko, Hideyuki; Muratova, Olga; MacDonald, Nicholas J.; Sattabongkot, Jetsumon; Takeo, Satoru; Otsuki, Hitoshi; Torii, Motomi; Tsuboi, Takafumi

    2011-01-01

    The aim of a malaria transmission-blocking vaccine is to block the development of malaria parasites in the mosquito and thus prevent subsequent infection of the human host. Previous studies have demonstrated that the gametocyte/gamete surface protein Pfs230 can induce transmission-blocking immunity and have evaluated Escherichia coli-produced Pfs230 as a transmission-blocking vaccine candidate. In this study, we used the wheat germ cell-free expression system to produce N-terminal fragments of Pfs230 and evaluated the transmission-blocking activity of antisera raised against the recombinant Pfs230 protein. The rabbit antisera reacted to the surface of cultured gametocytes and gametes of the Plasmodium falciparum NF54 line, recognized the 360-kDa form of parasite-produced Pfs230 by Western blot assay, and reduced the infectivity of NF54 parasites to Anopheles stefensi mosquitoes in the presence of complement in a standard membrane feeding assay. Thus, our data demonstrate that the N-terminal pro domain of Pfs230 is sufficient to induce complement-dependent transmission-blocking activity against P. falciparum. PMID:21715579

  6. N-terminal prodomain of Pfs230 synthesized using a cell-free system is sufficient to induce complement-dependent malaria transmission-blocking activity.

    Science.gov (United States)

    Tachibana, Mayumi; Wu, Yimin; Iriko, Hideyuki; Muratova, Olga; MacDonald, Nicholas J; Sattabongkot, Jetsumon; Takeo, Satoru; Otsuki, Hitoshi; Torii, Motomi; Tsuboi, Takafumi

    2011-08-01

    The aim of a malaria transmission-blocking vaccine is to block the development of malaria parasites in the mosquito and thus prevent subsequent infection of the human host. Previous studies have demonstrated that the gametocyte/gamete surface protein Pfs230 can induce transmission-blocking immunity and have evaluated Escherichia coli-produced Pfs230 as a transmission-blocking vaccine candidate. In this study, we used the wheat germ cell-free expression system to produce N-terminal fragments of Pfs230 and evaluated the transmission-blocking activity of antisera raised against the recombinant Pfs230 protein. The rabbit antisera reacted to the surface of cultured gametocytes and gametes of the Plasmodium falciparum NF54 line, recognized the 360-kDa form of parasite-produced Pfs230 by Western blot assay, and reduced the infectivity of NF54 parasites to Anopheles stefensi mosquitoes in the presence of complement in a standard membrane feeding assay. Thus, our data demonstrate that the N-terminal pro domain of Pfs230 is sufficient to induce complement-dependent transmission-blocking activity against P. falciparum.

  7. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    Science.gov (United States)

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  8. Role of N-terminal 28-amino-acid region of Rhizopus oryzae lipase in directing proteins to secretory pathway of Aspergillus oryzae.

    Science.gov (United States)

    Hama, Shinji; Tamalampudi, Sriappareddy; Shindo, Naoki; Numata, Takao; Yamaji, Hideki; Fukuda, Hideki; Kondo, Akihiko

    2008-07-01

    To develop a new approach for improving heterologous protein production in Aspergillus oryzae, we focused on the functional role of the N-terminal region of Rhizopus oryzae lipase (ROL). Several N-terminal deletion variants of ROL were expressed in A. oryzae. Interestingly, a segment of 28 amino acids from the C-terminal region of the propeptide (N28) was found to be critical for secretion of ROL into the culture medium. To further investigate the role of N28, the ROL secretory process was visualized in vivo using ROL-green fluorescent protein (GFP) fusion proteins. In cells producing ROL with N28, fluorescence observations showed that the fusion proteins are transported through endoplasmic reticulum (ER), Golgi, and cell wall, which is one of the typical secretory processes in a eukaryotic cell. Because the expression of the mature ROL-GFP fusion protein induced fluorescence accumulation without its translocation into the ER, N28 is considered to play a crucial role in protein transport. When N28 was inserted between the secretion signal and GFP, fluorescence observations showed that GFP, which is originally a cytoplasmic protein, was efficiently translocated into the ER of A. oryzae, resulting in an enhanced secretion of mature GFP after proteolytic cleavage of N28. These findings suggest that N28 facilitates protein translocation into ER and can be a promising candidate for improving heterologous protein production in A. oryzae.

  9. Role of N-terminal His6-Tags in binding and efficient translocation of polypeptides into cells using anthrax protective antigen (PA.

    Directory of Open Access Journals (Sweden)

    Christoph Beitzinger

    Full Text Available It is of interest to define bacterial toxin biochemical properties to use them as molecular-syringe devices in order to deliver enzymatic activities into host cells. Binary toxins of the AB(7/8-type are among the most potent and specialized bacterial protein toxins. The B subunits oligomerize to form a pore that binds with high affinity host cell receptors and the enzymatic A subunit. This allows the endocytosis of the complex and subsequent injection of the A subunit into the cytosol of the host cells. Here we report that the addition of an N-terminal His(6-tag to different proteins increased their binding affinity to the protective antigen (PA PA(63-channels, irrespective if they are related (C2I or unrelated (gpJ, EDIN to the AB(7/8-family of toxins. His(6-EDIN exhibited voltage-dependent increase of the stability constant for binding by a factor of about 25 when the trans-side corresponding to the cell interior was set to -70 mV. Surprisingly, the C. botulinum toxin C2II-channel did not share this feature of PA(63. Cell-based experiments demonstrated that addition of an N-terminal His(6-tag promoted also intoxication of endothelial cells by C2I or EDIN via PA(63. Our results revealed that addition of His(6-tags to several factors increase their binding properties to PA(63 and enhance the property to intoxicate cells.

  10. Mouse Hepatitis Virus Strain A59 and Blocking Antireceptor Monoclonal Antibody Bind to the N-Terminal Domain of Cellular Receptor

    Science.gov (United States)

    Dveksler, Gabriela S.; Pensiero, Michael N.; Dieffenbach, Carl W.; Cardellichio, Christine B.; Basile, Alexis A.; Elia, Patrick E.; Holmes, Kathryn V.

    1993-03-01

    Mouse hepatitis virus (MHV) strain A59 uses as cellular receptors members of the carcinoembryonic antigen family in the immunoglobulin superfamily. Recombinant receptor proteins with deletions of whole or partial immunoglobulin domains were used to identify the regions of receptor glycoprotein recognized by virus and by antireceptor monoclonal antibody CC1, which blocks infection of murine cells. Monoclonal antibody CC1 and MHV-A59 virions bound only to recombinant proteins containing the entire first domain of MHV receptor. To determine which of the proteins could serve as functional virus receptors, receptor-negative hamster cells were transfected with recombinant deletion clones and then challenged with MHV-A59 virions. Receptor activity required the entire N-terminal domain with either the second or the fourth domain and the transmembrane and cytoplasmic domains. Recombinant proteins lacking the first domain or its C-terminal portion did not serve as viral receptors. Thus, like other virus receptors in the immunoglobulin superfamily, including CD4, poliovirus receptor, and intercellular adhesion molecule 1, the N-terminal domain of MHV receptor is recognized by the virus and the blocking monoclonal antibody.

  11. Monoclonal Antibodies Directed toward the Hepatitis C Virus Glycoprotein E2 Detect Antigenic Differences Modulated by the N-Terminal Hypervariable Region 1 (HVR1), HVR2, and Intergenotypic Variable Region.

    Science.gov (United States)

    Alhammad, Yousef; Gu, Jun; Boo, Irene; Harrison, David; McCaffrey, Kathleen; Vietheer, Patricia T; Edwards, Stirling; Quinn, Charles; Coulibaly, Fásseli; Poumbourios, Pantelis; Drummer, Heidi E

    2015-12-01

    Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a heterodimer and mediate receptor interactions and viral fusion. Both E1 and E2 are targets of the neutralizing antibody (NAb) response and are candidates for the production of vaccines that generate humoral immunity. Previous studies demonstrated that N-terminal hypervariable region 1 (HVR1) can modulate the neutralization potential of monoclonal antibodies (MAbs), but no information is available on the influence of HVR2 or the intergenotypic variable region (igVR) on antigenicity. In this study, we examined how the variable regions influence the antigenicity of the receptor binding domain of E2 spanning HCV polyprotein residues 384 to 661 (E2661) using a panel of MAbs raised against E2661 and E2661 lacking HVR1, HVR2, and the igVR (Δ123) and well-characterized MAbs isolated from infected humans. We show for a subset of both neutralizing and nonneutralizing MAbs that all three variable regions decrease the ability of MAbs to bind E2661 and reduce the ability of MAbs to inhibit E2-CD81 interactions. In addition, we describe a new MAb directed toward the region spanning residues 411 to 428 of E2 (MAb24) that demonstrates broad neutralization against all 7 genotypes of HCV. The ability of MAb24 to inhibit E2-CD81 interactions is strongly influenced by the three variable regions. Our data suggest that HVR1, HVR2, and the igVR modulate exposure of epitopes on the core domain of E2 and their ability to prevent E2-CD81 interactions. These studies suggest that the function of HVR2 and the igVR is to modulate antibody recognition of glycoprotein E2 and may contribute to immune evasion. This study reveals conformational and antigenic differences between the Δ123 and intact E2661 glycoproteins and provides new structural and functional data about the three variable regions and their role in occluding neutralizing and nonneutralizing epitopes on the E2 core domain. The variable regions may therefore function to

  12. Improving the production of the denatured recombinant N-terminal domain of rhoptry-associated protein 2 from a Plasmodium falciparum target in the pathology of anemia in falciparum malaria

    Directory of Open Access Journals (Sweden)

    Luis Andre Mariuba

    2008-09-01

    Full Text Available Rhoptry-associated protein 2 (RAP2 is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2 was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.

  13. The N-terminal amphipathic helix of the topological specificity factor MinE is associated with shaping membrane curvature.

    Directory of Open Access Journals (Sweden)

    Yu-Ling Shih

    Full Text Available Pole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear. Here we report that MinE-induced membrane deformation involves the formation of an amphipathic helix of MinE(2-9, which, together with the adjacent basic residues, function as membrane anchors. Biochemical evidence suggested that the membrane association induces formation of the helix, with the helical face, consisting of A2, L3, and F6, inserted into the membrane. Insertion of this helix into the cell membrane can influence local membrane curvature and lead to drastic changes in membrane topology. Accordingly, MinE showed characteristic features of protein-induced membrane tubulation and lipid clustering in in vitro reconstituted systems. In conclusion, MinE shares common protein signatures with a group of membrane trafficking proteins in eukaryotic cells. These MinE signatures appear to affect membrane curvature.

  14. Solid residues

    International Nuclear Information System (INIS)

    Mulder, E.; Duin, P.J. van; Grootenboer, G.J.

    1995-01-01

    A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs

  15. Combined measurement of copeptin, high-sensitivity troponin T, and N-terminal proBNP improves the identification of patients at risk of cardiovascular death

    DEFF Research Database (Denmark)

    Alehagen, Urban; Dahlström, Ulf; Carstensen, John

    2012-01-01

    and all mortality was registered. Cardiovascular mortality was evaluated using Kaplan–Meier plots and multivariate Cox proportional hazard regression analyses. Results: Copeptin, HS-TnT, and NT-proBNP measurements provided independent prognostic information in a multivariate setting over 5 years (hazard......Objectives: A multimarker strategy for the handling of patients with heart failure has been suggested in the literature. Therefore, the potential prognostic relevance of combined copeptin, high-sensitivity troponin T (HS-TnT), and N-terminal proBNP (NT-proBNP) measurement in plasma from elderly...... patients with symptoms of heart failure was evaluated. Methods: This study included 470 elderly patients (mean age 73 years) from a rural municipality with symptoms of heart failure. Clinical examination, echocardiography, and biomarker measurements were performed. All patients were followed for 13 years...

  16. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    International Nuclear Information System (INIS)

    Zhang, Xiangning; Liu, Hui; Li, Binbin; Huang, Peichun; Shao, Jianyong; He, Zhiwei

    2012-01-01

    Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK) and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression

  17. The scorpion toxin Bot IX is a potent member of the α-like family and has a unique N-terminal sequence extension.

    Science.gov (United States)

    Martin-Eauclaire, Marie-France; Salvatierra, Juan; Bosmans, Frank; Bougis, Pierre E

    2016-09-01

    We report the detailed chemical, immunological and pharmacological characterization of the α-toxin Bot IX from the Moroccan scorpion Buthus occitanus tunetanus venom. Bot IX, which consists of 70 amino acids, is a highly atypical toxin. It carries a unique N-terminal sequence extension and is highly lethal in mice. Voltage clamp recordings on oocytes expressing rat Nav1.2 or insect BgNav1 reveal that, similar to other α-like toxins, Bot IX inhibits fast inactivation of both variants. Moreover, Bot IX belongs to the same structural/immunological group as the α-like toxin Bot I. Remarkably, radioiodinated Bot IX competes efficiently with the classical α-toxin AaH II from Androctonus australis, and displays one of the highest affinities for Nav channels. © 2016 Federation of European Biochemical Societies.

  18. The Use of N-Terminal Pro-Brain Natriuretic Peptide to Evaluate Vascular Disease in Elderly Patients with Mental Illness

    Directory of Open Access Journals (Sweden)

    Karin Nilsson

    2012-02-01

    Full Text Available Background: Serum N-terminal pro-brain natriuretic peptide (NT-proBNP is regarded as a sensitive marker of cardiovascular disease. Vascular disease plays an important role in cognitive impairment. Method: In 447 elderly patients with mental illness, serum NT-proBNP level and the presence or absence of vascular disease according to the medical record were used to categorize patients in different subgroups of vascular disease. Results and Conclusion: Patients with vascular disease and elevated serum NT-proBNP level had a lower cognition level, shorter survival time, lower renal function and a higher percentage of pathological brain imaging than patients with vascular disease and normal NT-proBNP level. Thus, elevated serum NT-proBNP level might be helpful to detect patients who have a more severe cardiovascular disease.

  19. Elevation of serum N-terminal pro-brain natriuretic peptide after exercise is an index of myocardial damage or a cytoprotective reflection?

    Science.gov (United States)

    Faviou, E; Zachari, A; Nounopoulos, C; Agrafiotis, E; Vourli, G; Dionyssiou-Asteriou, A

    2008-03-01

    Recent investigations have suggested the occurrence of transient cardiac dysfunction and reversible myocardial injury in healthy individuals after heavy exercise. Our purpose was to examine if the release of N-terminal pro-brain natriuretic peptide (NT-proBNP) after intense exercise in obviously healthy participants may have cytoprotective and growth-regulating effects or may result from myocardial dysfunction/damage with changes in cTnT as a marker for myocardial cell necrosis during exercise. In 43 highly-trained male athletes hypertrophy. A normal plasma concentration of NT-proBNP in consecutive routine check-up, before and after exercise, could minimize the possibility of cardiac dysfunction, whereas persistent elevated plasma concentrations warrant further cardiological evaluation.

  20. The 1.8-Å crystal structure of the N-terminal domain of an archaeal MCM as a right-handed filament.

    Science.gov (United States)

    Fu, Yang; Slaymaker, Ian M; Wang, Junfeng; Wang, Ganggang; Chen, Xiaojiang S

    2014-04-03

    Mini-chromosome maintenance (MCM) proteins are the replicative helicase necessary for DNA replication in both eukarya and archaea. Most of archaea only have one MCM gene. Here, we report a 1.8-Å crystal structure of the N-terminal MCM from the archaeon Thermoplasma acidophilum (tapMCM). In the structure, the MCM N-terminus forms a right-handed filament that contains six subunits in each turn, with a diameter of 25Å of the central channel opening. The inner surface is highly positively charged, indicating DNA binding. This filament structure with six subunits per turn may also suggests a potential role for an open-ring structure for hexameric MCM and dynamic conformational changes in initiation and elongation stages of DNA replication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Diagnostic Value of N Terminal Pro B Type Natriuretic Peptide (NT-pro BNP in Cardiac Involvement in Patients with Beta- Thalassemia

    Directory of Open Access Journals (Sweden)

    Noor Mohammad Noori

    2017-04-01

    Full Text Available Background Heart failure is a major cause of death in thalassemia. The study aimed to determine the diagnostic value of N Terminal Pro B Type Natriuretic Peptide (NT-pro BNP, to early diagnose the cardiac involvement in beta- thalassemia major patients. Materials and Methods  80 thalassemia patients aged 7 to 18 years old (patients group, and 80 healthy age and gender matched controls were enrolled in the case-control study. Patients were selected from those attending to the clinic of Aliasghar hospital, Zahedan-Iran. They were subjected to echo-Doppler tissue and conventional examination for both right and left heart function. Data were analysis using SPSS 18.0 software. Results  NT-pro BNP increased in patients compared the controls (P

  2. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  3. Prognostic Value of N-Terminal Pro-B-Type Natriuretic Peptide Levels in Heart Failure Patients With and Without Atrial Fibrillation

    DEFF Research Database (Denmark)

    Kristensen, Søren Lund; Jhund, Pardeep S; Mogensen, Ulrik M

    2017-01-01

    BACKGROUND: Patients with heart failure (HF) and atrial fibrillation (AF) have higher circulating levels of NT-proBNP (N-terminal pro-B-type natriuretic peptide) than HF patients without AF. There is uncertainty about the prognostic importance of a given concentration of NT-proBNP in HF patients...... Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure) or the ATMOSPHERE trial (Aliskiren Trial to Minimize Outcomes in Patients With Heart Failure), of whom 3575 (24%) had AF on their baseline ECG. Median (Q1, Q3) levels of NT-proBNP were 1817 pg/mL (1095......-3266 pg/mL) in those with AF and 1271 pg/mL (703-2569 pg/mL) in those without (PHeart Association class (III/IV; 36% versus 24%), and experienced fewer previous HF hospitalizations (52% versus 61%) or myocardial infarction (30...

  4. Quantification of the N-terminal propeptide of human procollagen type I (PINP): comparison of ELISA and RIA with respect to different molecular forms

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Hansen, M; Brandt, J

    1998-01-01

    This paper compares the results of procollagen type I N-terminal propeptide (PINP) quantification by radioimmunoassay (RIA) and enzyme linked immunosorbent assay (ELISA). PINP in serum from a patient with uremic hyperparathyroidism was measured in RIA and ELISA to 20 micrograms l-1 and 116...... of PINP when analysed in a direct ELISA. It is concluded that the major difference in the ELISA and RIA results is due to assay efficacy with respect to the low molecular weight form of PINP. Udgivelsesdato: 1998-Jan-12......-PAGE). Analysis of fractions from size separated amniotic fluid, serum and dialysis fluid demonstrated that the RIA failed to measure the low molecular weight form of PINP. However, the anti-PINP supplied with the RIA-kit and the anti-PINP applied in the ELISA reacted equally well with both molecular forms...

  5. Relation between N-terminal pro-brain natriuretic peptide and cardiac remodeling and function assessed by cardiovascular magnetic resonance imaging in patients with arrhythmogenic right ventricular cardiomyopathy.

    Science.gov (United States)

    Cheng, Huaibing; Lu, Minjie; Hou, Cuihong; Chen, Xuhua; Wang, Jing; Yin, Gang; Chu, Jianmin; Zhang, Shu; Prasad, Sanjay K; Pu, Jielin; Zhao, Shihua

    2015-02-01

    Although N-terminal pro-brain natriuretic peptide (NT-proBNP) is a useful screening test of impaired right ventricular (RV) function in conditions affecting the right-sided cardiac muscle, the role of NT-proBNP remains unclear in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). This study was designed to clarify the relation between the plasma NT-proBNP level and the RV function evaluated by cardiovascular magnetic resonance (CMR) imaging. We selected 56 patients with confirmed ARVC only when their blood specimens for NT-proBNP measurements were collected within 48 hours of a CMR scan. The NT-proBNP level was significantly higher in patients with RV dysfunction than in patients without RV dysfunction (median of 655.3 [interquartile range 556.4 to 870.0] vs 347.0 [interquartile range 308.0 to 456.2] pmol/L, p rights reserved.

  6. Effects of body mass index and age on N-terminal pro brain natriuretic peptide are associated with glomerular filtration rate in chronic heart failure patients

    DEFF Research Database (Denmark)

    Schou, Morten; Gustafsson, Finn; Kistorp, Caroline N

    2007-01-01

    BACKGROUND: Obesity is a state characterized by glomerular hyperfiltration and age-related decreases in glomerular filtration rate (GFR). Body mass index (BMI), age, and GFR are associated with plasma concentrations of N-terminal pro-brain natriuretic peptide (NT-proBNP) in chronic heart failure...... (CHF) patients. We hypothesized that the effects of BMI and age on plasma concentrations of NT-proBNP are associated with GFR. METHODS: We obtained clinical data and laboratory test results from 345 CHF patients at the baseline visit in our heart failure clinic and examined the hypothesis using...... estimates for BMI (P = 0.3807) and age (P = 0.7238) changed markedly and became insignificant. In another model, after adjustment for GFR estimated by the 4-component Modification of Diet in Renal Disease formula (eGFR(MDRD)), the parameter estimates for age (P = 0.0674) changed markedly and became...

  7. Propeptide big-endothelin, N-terminal-pro brain natriuretic peptide and mortality. The Ludwigshafen risk and cardiovascular health (LURIC) study.

    Science.gov (United States)

    Gergei, Ingrid; Krämer, Bernhard K; Scharnagl, Hubert; Stojakovic, Tatjana; März, Winfried; Mondorf, Ulrich

    The endothelin system (Big-ET-1) is a key regulator in cardiovascular (CV) disease and congestive heart failure (CHF). We have examined the incremental value of Big-ET-1 in predicting total and CV mortality next to the well-established CV risk marker N-Terminal Pro-B-Type Natriuretic Peptide (NT-proBNP). Big-ET-1 and NT-proBNP were determined in 2829 participants referred for coronary angiography (follow-up 9.9 years). Big-ET-1 is an independent predictor of total, CV mortality and death due to CHF. The conjunct use of Big-ET-1 and NT-proBNP improves the risk stratification of patients with intermediate to high risk of CV death and CHF. Big-ET-1improves risk stratification in patients referred for coronary angiography.

  8. Structure of the N-terminal domain of the protein Expansion: an ‘Expansion’ to the Smad MH2 fold

    Energy Technology Data Exchange (ETDEWEB)

    Beich-Frandsen, Mads; Aragón, Eric [Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona (Spain); Llimargas, Marta [Institut de Biologia Molecular de Barcelona, IBMB–CSIC, Baldiri Reixac 10, 08028 Barcelona (Spain); Benach, Jordi [ALBA Synchrotron, BP 1413, km 3.3, Cerdanyola del Vallès (Spain); Riera, Antoni [Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona (Spain); Universitat de Barcelona, Martí i Franqués 1-11, 08028 Barcelona (Spain); Pous, Joan [Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona (Spain); Platform of Crystallography IBMB–CSIC, Baldiri Reixac 10, 08028 Barcelona (Spain); Macias, Maria J., E-mail: maria.macias@irbbarcelona.org [Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona (Spain); Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona (Spain)

    2015-04-01

    Expansion is a modular protein that is conserved in protostomes. The first structure of the N-terminal domain of Expansion has been determined at 1.6 Å resolution and the new Nα-MH2 domain was found to belong to the Smad/FHA superfamily of structures. Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-β signalling pathway. Apart from Smads and Expansion, no other type of protein belonging to the known kingdoms of life contains MH2 domains. To compare the Expansion and Smad MH2 domains, the crystal structure of the Expansion domain was determined at 1.6 Å resolution, the first structure of a non-Smad MH2 domain to be characterized to date. The structure displays the main features of the canonical MH2 fold with two main differences: the addition of an α-helical region and the remodelling of a protein-interaction site that is conserved in the MH2 domain of Smads. Owing to these differences, to the new domain was referred to as Nα-MH2. Despite the presence of the Nα-MH2 domain, Expansion does not participate in TGF-β signalling; instead, it is required for other activities specific to the protostome phyla. Based on the structural similarities to the MH2 fold, it is proposed that the Nα-MH2 domain should be classified as a new member of the Smad/FHA superfamily.

  9. Structure of the N-terminal domain of the protein Expansion: an ‘Expansion’ to the Smad MH2 fold

    International Nuclear Information System (INIS)

    Beich-Frandsen, Mads; Aragón, Eric; Llimargas, Marta; Benach, Jordi; Riera, Antoni; Pous, Joan; Macias, Maria J.

    2015-01-01

    Expansion is a modular protein that is conserved in protostomes. The first structure of the N-terminal domain of Expansion has been determined at 1.6 Å resolution and the new Nα-MH2 domain was found to belong to the Smad/FHA superfamily of structures. Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-β signalling pathway. Apart from Smads and Expansion, no other type of protein belonging to the known kingdoms of life contains MH2 domains. To compare the Expansion and Smad MH2 domains, the crystal structure of the Expansion domain was determined at 1.6 Å resolution, the first structure of a non-Smad MH2 domain to be characterized to date. The structure displays the main features of the canonical MH2 fold with two main differences: the addition of an α-helical region and the remodelling of a protein-interaction site that is conserved in the MH2 domain of Smads. Owing to these differences, to the new domain was referred to as Nα-MH2. Despite the presence of the Nα-MH2 domain, Expansion does not participate in TGF-β signalling; instead, it is required for other activities specific to the protostome phyla. Based on the structural similarities to the MH2 fold, it is proposed that the Nα-MH2 domain should be classified as a new member of the Smad/FHA superfamily

  10. Feline tetherin is characterized by a short N-terminal region and is counteracted by the feline immunodeficiency virus envelope glycoprotein.

    Science.gov (United States)

    Celestino, Michele; Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Chiuppesi, Flavia; Pistello, Mauro; Borsetti, Alessandra; Palù, Giorgio; Parolin, Cristina

    2012-06-01

    Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.

  11. Structure of the USP15 N-terminal domains: a β-hairpin mediates close association between the DUSP and UBL domains.

    Science.gov (United States)

    Harper, Stephen; Besong, Tabot M D; Emsley, Jonas; Scott, David J; Dreveny, Ingrid

    2011-09-20

    Ubiquitin specific protease 15 (USP15) functions in COP9 signalosome mediated regulation of protein degradation and cellular signaling through catalyzing the ubiquitin deconjugation reaction of a discrete number of substrates. It influences the stability of adenomatous polyposis coli, IκBα, caspase-3, and the human papillomavirus type 16 E6. USP15 forms a subfamily with USP4 and USP11 related through a shared presence of N-terminal "domain present in ubiquitin specific proteases" (DUSP) and "ubiquitin-like" (UBL) domains (DU subfamily). Here we report the 1.5 Å resolution crystal structure of the human USP15 N-terminal domains revealing a 80 Å elongated arrangement with the DU domains aligned in tandem. This architecture is generated through formation of a defined interface that is dominated by an intervening β-hairpin structure (DU finger) that engages in an intricate hydrogen-bonding network between the domains. The UBL domain is closely related to ubiquitin among β-grasp folds but is characterized by the presence of longer loop regions and different surface characteristics, indicating that this domain is unlikely to act as ubiquitin mimic. Comparison with the related murine USP4 DUSP-UBL crystal structure reveals that the main DU interdomain contacts are conserved. Analytical ultracentrifugation, small-angle X-ray scattering, and gel filtration experiments revealed that USP15 DU is monomeric in solution. Our data provide a framework to advance study of the structure and function of the DU subfamily. © 2011 American Chemical Society

  12. Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression.

    Science.gov (United States)

    Oda, Shun-Ichiro; Noda, Takeshi; Wijesinghe, Kaveesha J; Halfmann, Peter; Bornholdt, Zachary A; Abelson, Dafna M; Armbrust, Tammy; Stahelin, Robert V; Kawaoka, Yoshihiro; Saphire, Erica Ollmann

    2016-02-15

    Marburg virus (MARV), a member of the filovirus family, causes severe hemorrhagic fever with up to 90% lethality. MARV matrix protein VP40 is essential for assembly and release of newly copied viruses and also suppresses immune signaling in the infected cell. Here we report the crystal structure of MARV VP40. We found that MARV VP40 forms a dimer in solution, mediated by N-terminal domains, and that formation of this dimer is essential for budding of virus-like particles. We also found the N-terminal domain to be necessary and sufficient for immune antagonism. The C-terminal domains of MARV VP40 are dispensable for immunosuppression but are required for virus assembly. The C-terminal domains are only 16% identical to those of Ebola virus, differ in structure from those of Ebola virus, and form a distinct broad and flat cationic surface that likely interacts with the cell membrane during virus assembly. Marburg virus, a cousin of Ebola virus, causes severe hemorrhagic fever, with up to 90% lethality seen in recent outbreaks. Molecular structures and visual images of the proteins of Marburg virus are essential for the development of antiviral drugs. One key protein in the Marburg virus life cycle is VP40, which both assembles the virus and suppresses the immune system. Here we provide the molecular structure of Marburg virus VP40, illustrate differences from VP40 of Ebola virus, and reveal surfaces by which Marburg VP40 assembles progeny and suppresses immune function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. Structural diversity and evolution of the N-terminal isoform-specific region of ecdysone receptor-A and -B1 isoforms in insects

    Directory of Open Access Journals (Sweden)

    Kubo Takeo

    2010-02-01

    Full Text Available Abstract Background The ecdysone receptor (EcR regulates various cellular responses to ecdysteroids during insect development. Insects have multiple EcR isoforms with different N-terminal A/B domains that contain the isoform-specific activation function (AF-1 region. Although distinct physiologic functions of the EcR isoforms have been characterized in higher holometabolous insects, they remain unclear in basal direct-developing insects, in which only A isoform has been identified. To examine the structural basis of the EcR isoform-specific AF-1 regions, we performed a comprehensive structural comparison of the isoform-specific region of the EcR-A and -B1 isoforms in insects. Results The EcR isoforms were newly identified in 51 species of insects and non-insect arthropods, including direct-developing ametabolous and hemimetabolous insects. The comprehensive structural comparison revealed that the isoform-specific region of each EcR isoform contained evolutionally conserved microdomain structures and insect subgroup-specific structural modifications. The A isoform-specific region generally contained four conserved microdomains, including the SUMOylation motif and the nuclear localization signal, whereas the B1 isoform-specific region contained three conserved microdomains, including an acidic activator domain-like motif. In addition, the EcR-B1 isoform of holometabolous insects had a novel microdomain at the N-terminal end. Conclusions Given that the nuclear receptor AF-1 is involved in cofactor recruitment and transcriptional regulation, the microdomain structures identified in the isoform-specific A/B domains might function as signature motifs and/or as targets for cofactor proteins that play essential roles in the EcR isoform-specific AF-1 regions. Moreover, the novel microdomain in the isoform-specific region of the holometabolous insect EcR-B1 isoform suggests that the holometabolous insect EcR-B1 acquired additional transcriptional

  14. Association between resting heart rate and N-terminal pro-brain natriuretic peptide in a community-based population study in Beijing

    Directory of Open Access Journals (Sweden)

    Cao R

    2014-12-01

    Full Text Available Ruihua Cao, Yongyi Bai, Ruyi Xu, Ping Ye Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, People’s Republic of China Background: N-terminal pro-brain natriuretic peptide (NT-proBNP is associated with an increased risk of cardiac insufficiency, which possibly leads to heart failure. However, the relationship between resting heart rate and NT-proBNP is unclear.Objective: This study focuses on this relativity between resting heart rate and plasma NT-proBNP levels in a surveyed community-based population.Methods: We evaluated the relativity between resting heart rate and plasma levels of NT-proBNP in 1,567 participants (mean age 61.0 years, range 21–96 years from a community-based population in Beijing, People’s Republic of China.Results: In patients with high resting heart rate (≥75 beats/min, NT-proBNP was higher than in those having low resting heart rate (<75 beats/min. In multiple linear stepwise regression analysis, plasma NT-proBNP was associated with resting heart rate (partial correlation coefficient, 0.82; 95% confidence interval, 0.18–1.51; P=0.011. A subsequent subgroup analysis revealed that the association between resting heart rate and plasma NT-proBNP was strengthened in subjects over 60 years old (partial correlation coefficient 1.28; 95% confidence interval, 0.49–2.36; P=0.031; while the relativity between resting heart rate and plasma NT-proBNP was not emerged in the younger subgroup (<60 years old.Conclusions: Resting heart rate was associated with plasma NT-proBNP in the elderly, which indicated a relationship between resting heart rate and cardiac function damage. Keywords: resting heart rate, N-terminal pro-brain natriuretic peptide, epidemiology, cardiac function, relationship

  15. Three-dimensional structure of N-terminal domain of DnaB helicase and helicase-primase interactions in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Tara Kashav

    2009-10-01

    Full Text Available Replication initiation is a crucial step in genome duplication and homohexameric DnaB helicase plays a central role in the replication initiation process by unwinding the duplex DNA and interacting with several other proteins during the process of replication. N-terminal domain of DnaB is critical for helicase activity and for DnaG primase interactions. We present here the crystal structure of the N-terminal domain (NTD of H. pylori DnaB (HpDnaB helicase at 2.2 A resolution and compare the structural differences among helicases and correlate with the functional differences. The structural details of NTD suggest that the linker region between NTD and C-terminal helicase domain plays a vital role in accurate assembly of NTD dimers. The sequence analysis of the linker regions from several helicases reveals that they should form four helix bundles. We also report the characterization of H. pylori DnaG primase and study the helicase-primase interactions, where HpDnaG primase stimulates DNA unwinding activity of HpDnaB suggesting presence of helicase-primase cohort at the replication fork. The protein-protein interaction study of C-terminal domain of primase and different deletion constructs of helicase suggests that linker is essential for proper conformation of NTD to interact strongly with HpDnaG. The surface charge distribution on the primase binding surface of NTDs of various helicases suggests that DnaB-DnaG interaction and stability of the complex is most probably charge dependent. Structure of the linker and helicase-primase interactions indicate that HpDnaB differs greatly from E.coli DnaB despite both belong to gram negative bacteria.

  16. Light microscopic detection of sugar residues in glycoconjugates of salivary glands and the pancreas with lectin-horseradish peroxidase conjugates. I. Mouse.

    Science.gov (United States)

    Schulte, B A; Spicer, S S

    1983-12-01

    Mouse salivary glands and pancreases were stained with a battery of ten horseradish peroxidase-conjugated lectins. Lectin staining revealed striking differences in the structure of oligosaccharides of stored intracellular secretory glycoproteins and glycoconjugates associated with the surface of epithelial cells lining excretory ducts. The percentage of acinar cells containing terminal alpha-N-acetylgalactosamine residues varied greatly in submandibular glands of 30 male mice, but all submandibular acinar cells contained oligosaccharides with terminal sialic acid and penultimate beta-galactose residues. The last named dimer was abundant in secretory glycoprotein of all mucous acinar cells in murine sublingual glands and an additional 20-50% of these cells in all glands contained terminal N-acetylglucosamine residues. In contrast, terminal alpha-N-acetylgalactosamine was abundant in sublingual serous demilune secretions. Serous acinar cells in the exorbital lacrimal gland, posterior lingual gland, parotid gland and pancreas exhibited a staining pattern unique to each organ. In contrast, the apical cytoplasm and surface of striated duct epithelial cells in the submandibular, sublingual, parotid and exorbital lacrimal gland stained similarly. A comparison of staining with conjugated lectins reported biochemically to have very similar carbohydrate binding specificity has revealed some remarkable differences in their reactivity, suggesting different binding specificity for the same terminal sugars having different glycosidic linkages or with different penultimate sugar residues.

  17. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  18. Hexa-histidin tag position influences disulfide structure but not binding behavior of in vitro folded N-terminal domain of rat corticotropin-releasing factor receptor type 2a

    OpenAIRE

    Klose, Jana; Wendt, Norbert; Kubald, Sybille; Krause, Eberhard; Fechner, Klaus; Beyermann, Michael; Bienert, Michael; Rudolph, Rainer; Rothemund, Sven

    2004-01-01

    The oxidative folding, particularly the arrangement of disulfide bonds of recombinant extracellular N-terminal domains of the corticotropin-releasing factor receptor type 2a bearing five cysteines (C2 to C6), was investigated. Depending on the position of a His-tag, two types of disulfide patterns were found. In the case of an N-terminal His-tag, the disulfide bonds C2–C3 and C4–C6 were found, leaving C5 free, whereas the C-terminal position of the His-tag led to the disulfide pattern C2–C5 a...

  19. Age-dependent values of N-terminal pro-B-type natriuretic peptide are superior to a single cut-point for ruling out suspected systolic dysfunction in primary care

    DEFF Research Database (Denmark)

    Hildebrandt, Per; Collinson, Paul O; Doughty, Robert N

    2010-01-01

    The study evaluated the use of age-related decision limits for N-terminal pro-B-type natriuretic peptide (NT-proBNP), for ruling out suspected systolic dysfunction in symptomatic patients in primary care, compared with the present standards.......The study evaluated the use of age-related decision limits for N-terminal pro-B-type natriuretic peptide (NT-proBNP), for ruling out suspected systolic dysfunction in symptomatic patients in primary care, compared with the present standards....

  20. Identification of an N-terminal 27 kDa fragment of Mycoplasma pneumoniae P116 protein as specific immunogen in M. pneumoniae infections

    Directory of Open Access Journals (Sweden)

    Chourasia Bishwanath

    2010-12-01

    Full Text Available Abstract Background Mycoplasma pneumoniae is an important cause of respiratory tract infection and is increasingly being associated with other diseases such as asthma and extra-pulmonary complications. Considerable cross-reactivity is known to exist between the whole cell antigens used in the commercial serological testing assays. Identification of specific antigens is important to eliminate the risk of cross-reactions among different related organisms. Adherence of M. pneumoniae to human epithelial cells is mediated through a well defined apical organelle to which a number of proteins such as P1, P30, P116 and HMW1-3 have been localized, and are being investigated for adhesion, gliding and immunodiagnostic purposes. Methods A 609 bp fragment P116(N-27, corresponding to the N-terminal region of M. pneumoniae P116 gene was cloned and expressed. A C-terminal fragment P1(C-40, of P1 protein of M. pneumoniae was also expressed. Three IgM ELISA assays based on P116(N-27, P1(C-40 and (P116 (N-27 + P1(C-40 proteins were optimized and a detailed analysis comparing the reactivity of these proteins with a commercial kit was carried out. Comparative statistical analysis of these assays was performed with the SPSS version 15.0. Results The expressed P116(N-27 protein was well recognized by the patient sera and was immunogenic in rabbit. P1(C-40 of M. pneumoniae was also immunogenic in rabbit. In comparison to the reference kit, which is reported to be 100% sensitive and 75% specific, ELISA assay based on purified P116(N-27, P1(C-40 and (P116(N-27 + P1(C-40 proteins showed 90.3%, 87.1% and 96.8% sensitivity and 87.0%, 87.1% and 90.3% specificity respectively. The p value for all the three assays was found to be Conclusion This study shows that an N-terminal fragment of P116 protein holds a promise for serodiagnosis of M. pneumoniae infection. The IgM ELISA assays based on the recombinant proteins seem to be suitable for the use in serodiagnosis of acute M

  1. N-terminal pro-brain natriuretic peptide in relation to inflammation, myocardial necrosis, and the effect of an invasive strategy in unstable coronary artery disease.

    Science.gov (United States)

    Jernberg, Tomas; Lindahl, Bertil; Siegbahn, Agneta; Andren, Bertil; Frostfeldt, Gunnar; Lagerqvist, Bo; Stridsberg, Mats; Venge, Per; Wallentin, Lars

    2003-12-03

    We sought to examine whether measurements of N-terminal pro-brain natriuretic peptide (NT-proBNP), in addition to cardiac troponin T (cTnT) and interleukin-6 (IL-6), improve the ability to identify high-risk patients who benefit from an early invasive strategy. Biochemical indicators of cardiac performance (e.g., NT-proBNP), inflammation (e.g., IL-6), and myocardial damage (e.g., cTnT) predict mortality in unstable coronary artery disease (UCAD) (i.e., unstable angina or non-ST-segment elevation myocardial infarction [MI]). In these patients, an early invasive treatment strategy improves the outcome. Levels of NT-proBNP, cTnT, and IL-6 were measured in 2,019 patients with UCAD randomized to an invasive or non-invasive strategy in the FRagmin and fast revascularization during InStability in Coronary artery disease (FRISC-II) trial. Patients were followed up for two years to determine death and MI. Patients in the third NT-proBNP tertile had a 4.1-fold (95% confidence interval [CI] 2.4 to 7.2) and 3.5-fold (95% CI 1.8 to 6.8) increased mortality in the non-invasive and invasive groups, respectively. An increased NT-proBNP level was independently associated with mortality. In patients with increased levels of both NT-proBNP and IL-6, an early invasive strategy reduced mortality by 7.3% (risk ratio 0.46, 95% CI 0.21 to 1.00). In patients with lower NT-proBNP or IL-6 levels, the mortality was not reduced. Only elevated cTnT was independently associated with future MI and a reduction of MI by means of an invasive strategy. N-terminal proBNP is independently associated with mortality. The combination of NT-proBNP and IL-6 seems to be a useful tool in the identification of patients with a definite survival benefit from an early invasive strategy. Only cTnT is independently associated with future MI and a reduction of MI by an invasive strategy.

  2. Cordyceps militaris Fraction induces apoptosis and G2/M Arrest via c-Jun N-Terminal kinase signaling pathway in oral squamous carcinoma KB Cells.

    Science.gov (United States)

    Xie, Wangshi; Zhang, Zhang; Song, Liyan; Huang, Chunhua; Guo, Zhongyi; Hu, Xianjing; Bi, Sixue; Yu, Rongmin

    2018-01-01

    Cordyceps militaris fraction (CMF) has been shown to possess in vitro antitumor activity against human chronic myeloid leukemia K562 cells in our previous research. The in vitro inhibitory activities of CMF on the growth of KB cells were evaluated by viability assay. The apoptotic and cell cycle influences of CMF were detected by 4',6-diamidino-2-phenylindole staining and flow cytometry assay. The expression of different apoptosis-associated proteins and cell cycle regulatory proteins was examined by Western blot assay. The nuclear localization of c-Jun was observed by fluorescence staining. The objective of this study was to investigate the antiproliferative effect of CMF as well as the mechanism underlying the apoptosis and cell cycle arrest it induces in KB cells. CMF suppressed KB cells' proliferation in a dose- and time-dependent manner. Flow cytometric analysis indicated that CMF induced G2/M cell cycle arrest and apoptosis. Western blot analysis revealed that CMF induced caspase-3, caspase-9, and PARP cleavages, and increased the Bax/Bcl-2 ratio. CMF also led to increased expression of p21, decreased expression of cyclin B1, mitotic phosphatase cdc25c, and mitotic kinase cdc2, as well as unchanged expression of p53. In addition, CMF stimulated c-Jun N-terminal kinases (JNK) protein phosphorylations, resulting in upregulated expression of c-Jun and nuclear localization of c-Jun. Pretreatment with JNK inhibitor SP600125 suppressed CMF-induced apoptosis and G2/M arrest. CMF is capable of modulating c-Jun caspase and Bcl-2 family proteins through JNK-dependent apoptosis, which results in G2/M phase arrest in KB cells. CMF could be developed as a promising candidate for the new antitumor agents. CMF exhibited strong anticancer activity against oral squamous carcinoma KB cellsCMF inhibited KB cells' proliferation via induction of apoptosis and G2/M cell cycle arrestCMF activated JNK signaling pathway and promoted the nuclear localization of c-JunCMF regulated the

  3. In vivo mutational analysis of the N-terminal region of HIV-1 Nef reveals critical motifs for the development of an AIDS-like disease in CD4C/HIV transgenic mice

    International Nuclear Information System (INIS)

    Hanna, Zaher; Priceputu, Elena; Kay, Denis G.; Poudrier, Johanne; Chrobak, Pavel; Jolicoeur, Paul

    2004-01-01

    HIV-1 Nef is a critical determinant of pathogenicity in humans and transgenic (Tg) mice. To gain a better understanding of the molecular mechanisms by which Nef induces an AIDS-like disease in Tg mice, a mutational analysis of the N-terminal domain, involved in anchoring Nef to the plasma membrane, was carried out. The pathogenic effects of these Nef mutant alleles were evaluated in Tg mice by FACS analysis and by histopathological assessment. Mutation of the myristoylation site (G2A) completely abrogated the development of the AIDS-like organ disease in Tg mice, although partial downregulation of the CD4 cell surface protein and depletion of peripheral CD4 + T-cells, but not of CD4 + CD8 + thymocytes, still occurred. Despite that, the peripheral CD4 + T cells expressing Nef G2A show normal spontaneous proliferation in vivo or after stimulation in vitro, including in an allogenic mixed leukocyte reaction (MLR). Three other internal deletion mutants of Nef, spanning amino acids 8-17 (Nef Δ8-17 ), 25-35 (Nef Δ25-35 ), and 57-66 (Nef Δ57-66 ), were also studied. Nef Δ8-17 retained full pathogenic potential, although Nef Δ25-35 and Nef Δ57-66 Tg mice were free of organ disease. However, Nef Δ25-35 Tg mice exhibited disorganization of thymic architecture and a partial depletion of peripheral CD4 + T cells. These data indicate that myristoylation and other regions at the N-terminus of Nef (aa 25-35 and 57-66) are involved in mediating severe T-cell phenotypes and organ disease, although residues 8-17 are dispensable for these Nef functions. In addition, these results indicate that at least some of the CD4 + T-cell phenotypes can develop independently of the other AIDS-like organ phenotypes. This apparent segregation of different Nef-mediated phenotypes suggests distinct mechanisms of Nef action in different populations of target cells, and may be relevant to human AIDS

  4. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  5. N-terminal pro-brain natriuretic peptide for additional risk stratification in patients with non-ST-elevation acute coronary syndrome and an elevated troponin T: an Invasive versus Conservative Treatment in Unstable coronary Syndromes (ICTUS) substudy

    NARCIS (Netherlands)

    Windhausen, Fons; Hirsch, Alexander; Sanders, Gerard T.; Cornel, Jan Hein; Fischer, Johan; van Straalen, Jan P.; Tijssen, Jan G. P.; Verheugt, Freek W. A.; de Winter, Robbert J.

    2007-01-01

    BACKGROUND: New evidence has emerged that the assessment of multiple biomarkers such as cardiac troponin T (cTnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP) in patients with non-ST-elevation acute coronary syndrome (nSTE-ACS) provides unique prognostic information. The purpose of this

  6. Frequency of and Prognostic Significance of Cardiac Involvement at Presentation in Hereditary Transthyretin-Derived Amyloidosis and the Value of N-Terminal Pro-B-Type Natriuretic Peptide

    NARCIS (Netherlands)

    Klaassen, Sebastiaan H C; Tromp, Jasper; Nienhuis, Hans L A; van der Meer, Peter; van den Berg, Maarten P; Blokzijl, Hans; van Veldhuisen, Dirk J; Hazenberg, Bouke P C

    2018-01-01

    The aim of this study is to assess the prevalence of cardiac involvement in hereditary transthyretin-derived (ATTRm) amyloidosis at the time of diagnosis and to determine the diagnostic and clinical value of N-terminal pro-B-type natriuretic peptide (NT-proBNP). The University Medical Center

  7. Binding of the N-Terminal Domain of the Lactococcal Bacteriophage TP901-1 CI Repressor to Its Target DNA: A Crystallography, Small Angle Scattering, and Nuclear Magnetic Resonance Study

    DEFF Research Database (Denmark)

    Frandsen, Kristian Erik Høpfner; Rasmussen, Kim K.; Jensen, Malene Ringkjøbing

    2013-01-01

    In most temperate bacteriophages, regulation of the choice of lysogenic or lytic life cycle is controlled by a CI repressor protein. Inhibition of transcription is dependent on a helix–turn–helix motif, often located in the N-terminal domain (NTD), which binds to specific DNA sequences (operator ...

  8. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    Science.gov (United States)

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. DISCO interacting protein 2 determines direction of axon projection under the regulation of c-Jun N-terminal kinase in the Drosophila mushroom body

    International Nuclear Information System (INIS)

    Nitta, Yohei; Sugie, Atsushi

    2017-01-01

    Precisely controlled axon guidance for complex neuronal wiring is essential for appropriate neuronal function. c-Jun N-terminal kinase (JNK) was found to play a role in axon guidance recently as well as in cell proliferation, protection and apoptosis. In spite of many genetic and molecular studies on these biological processes regulated by JNK, how JNK regulates axon guidance accurately has not been fully explained thus far. To address this question, we use the Drosophila mushroom body (MB) as a model since the α/β axons project in two distinct directions. Here we show that DISCO interacting protein 2 (DIP2) is required for the accurate direction of axonal guidance. DIP2 expression is under the regulation of Basket (Bsk), the Drosophila homologue of JNK. We additionally found that the Bsk/DIP2 pathway is independent from the AP-1 transcriptional factor complex pathway, which is directly activated by Bsk. In conclusion, our findings revealed DIP2 as a novel effector downstream of Bsk modulating the direction of axon projection. - Highlights: • DIP2 is required for accurate direction of axon guidance in Drosophila mushroom body. • DIP2 is a downstream of JNK in the axon guidance of Drosophila mushroom body neuron. • JNK/DIP2 pathway is independent from JNK/AP-1 transcriptional factor complex pathway.

  10. NEW POSSIBILITIES FOR EVALUATION OF SEVERITY AND PROGNOSIS IN PATIENTS WITH CHRONIC HEART FAILURE BASED ON N-TERMINAL PRO-BRAIN NATRIURETIC PEPTIDE PLASMA LEVEL

    Directory of Open Access Journals (Sweden)

    A. S. Galjavich

    2009-01-01

    Full Text Available Aim. To study an importance of plasma N-terminal pro-brain natriuretic peptide (N-proBNP in evaluation of severity and prognosis in patients with chronic heart failure (CHF of ischemic genesis.Material and methods. 77 patients (60 men and 17 women; 59,4±10,7 y.o. with CHF of ischemic genesis were included in the study. All patients had sinus rhythm and history of Q wave myocardial infarction. Standard examination was performed to all patients. Besides N-proBNP plasma level and patients yearly survival were evaluated.Results. N-proBNP plasma level had direct correlation with clinical indices (exercise tolerance, blood pressure, heart rate and echocardiographic heart sizes. N-proBNP plasma level had relationship with prognosis of CHF patients. Baseline N-proBNP level was more than 2 times higher in died patients in comparison with survived patients. The yearly survival rate of CHF patients was 51,3% if N-proBNP level had been more than 400 fmol/ml (>15% of normal value. The clinico-laboratory index (based on N-proBNP plasma level of severity and prognosis in CHF patients was developed.Conclusion. The clinico-laboratory index based on N-proBNP plasma level is easy to use and can improve medical practice.

  11. Site-specific Isopeptide Bridge Tethering of Chimeric gp41 N-terminal Heptad Repeat Helical Trimers for the Treatment of HIV-1 Infection

    Science.gov (United States)

    Wang, Chao; Li, Xue; Yu, Fei; Lu, Lu; Jiang, Xifeng; Xu, Xiaoyu; Wang, Huixin; Lai, Wenqing; Zhang, Tianhong; Zhang, Zhenqing; Ye, Ling; Jiang, Shibo; Liu, Keliang

    2016-01-01

    Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection. PMID:27562370

  12. Crystal structures of the F and pSLT plasmid TraJ N-terminal regions reveal similar homodimeric PAS folds with functional interchangeability

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jun; Wu, Ruiying; Adkins, Joshua N.; Joachimiak, Andrzej; Glover, Mark

    2014-09-16

    In the F-family of conjugative plasmids, TraJ is an essential transcriptional activator of the tra operon that encodes most of the proteins required for conjugation. Here we report for the first time the X-ray crystal structures of the TraJ N-terminal regions from the prototypic F plasmid (TraJF11-130) and from the Salmonella virulence plasmid pSLT (TraJpSLT 1-128). Both proteins form similar homodimeric Per-ARNT-Sim (PAS) fold structures. Mutational analysis reveals that the observed dimeric interface is critical for TraJF transcriptional activation, indicating that dimerization of TraJ is required for its in vivo function. An artificial ligand (oxidized dithiothreitol) occupies a cavity in the TraJF dimer interface, while a smaller cavity in corresponding region of the TraJpSLT structure lacks a ligand. Gas chromatography/mass spectrometry-electron ionization analysis of dithiothreitol-free TraJF suggests indole may be the natural TraJ ligand; however, disruption of the indole biosynthetic pathway does not affect TraJF function. Heterologous PAS domains from pSLT and R100 TraJ can functionally replace the TraJF PAS domain, suggesting that TraJ allelic specificity is mediated by the region C-terminal to the PAS domain.

  13. Influence of Dimerization of Lipopeptide Laur-Orn-Orn-Cys-NH2 and an N-terminal Peptide of Human Lactoferricin on Biological Activity.

    Science.gov (United States)

    Kamysz, Elżbieta; Sikorska, Emilia; Dawgul, Małgorzata; Tyszkowski, Rafał; Kamysz, Wojciech

    Lactoferrin (LF) is a naturally occurring antimicrobial peptide that is cleaved by pepsin to lactoferricin (LFcin). LFcin has an enhanced antimicrobial activity as compared to that of LF. Recently several hetero- and homodimeric antimicrobial peptides stabilized by a single disulfide bond linking linear polypeptide chains have been discovered. We have demonstrated that the S-S bond heterodimerization of lipopeptide Laur-Orn-Orn-Cys-NH 2 (peptide III) and the synthetic N -terminal peptide of human lactoferricin (peptide I) yields a dimer (peptide V), which is almost as microbiologically active as the more active monomer and at the same time it is much less toxic. Furthermore, it has been found that the S-S bond homodimerization of both peptide I and peptide III did not affect antimicrobial and haemolytic activity of the compounds. The homo- and heterodimerization of peptides I and III resulted in either reduction or loss of antifungal activity. This work suggests that heterodimerization of antimicrobial lipopeptides via intermolecular disulfide bond might be a powerful modification deserving consideration in the design of antimicrobial peptides.

  14. Expression, purification, crystallization and structure determination of the N terminal domain of Fhb, a factor H binding protein from Streptococcus suis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunmao [State Key Laboratory of Pathogen and Biosecurity, Beijng Institute of Microbiology and Infectious Disease, No. 20 Dongda Street, Fengtai District, Beijing 100071 (China); Yu, You [Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing (China); Yang, Maojun, E-mail: maojunyang@tsinghua.edu.cn [Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing (China); Jiang, Yongqiang, E-mail: jiangyq@bmi.ac.cn [State Key Laboratory of Pathogen and Biosecurity, Beijng Institute of Microbiology and Infectious Disease, No. 20 Dongda Street, Fengtai District, Beijing 100071 (China)

    2015-10-23

    Fhb is a surface virulence protein from Streptococcus suis, which could aid bacterial evasion of host innate immune defense by recruiting complement regulator factor H to inactivate C3b deposited on bacterial surface in blood. Here we successfully expressed and purified the N terminal domain of Fhb (N-Fhb) and obtained crystals of the N-Fhb by sitting-drop vapor diffusion method with a resolution of 1.50 Å. The crystals belong to space group C2 with unit cell parameters a = 127.1 Å, b = 77.3 Å, c = 131.6 Å, α = 90°, β = 115.9°, γ = 90°. The structure of N-Fhb was determined by SAD method and the core structure of N-Fhb is a β sandwich. We speculated that binding of Fhb to human factor H may be mainly mediated by surface amino acids with negative charges. - Highlights: • We expressed N-Fhb as the soluble protein in Escherichia coli. • Crystals of N-Fhb were grown by sitting drop vapor diffusion method. • Crystals of N-Fhb could diffracted to 1.5 Å. • The core structure of N-Fhb was a β sandwich. • A part of the surface of N-Fhb was rich with negative charges.

  15. The c-Jun N-terminal kinase pathway is critical for cell transformation by the latent membrane protein 1 of Epstein-Barr virus

    International Nuclear Information System (INIS)

    Kutz, Helmut; Reisbach, Gilbert; Schultheiss, Ute; Kieser, Arnd

    2008-01-01

    The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) transforms cells activating signal transduction pathways such as NF-κB, PI3-kinase, or c-Jun N-terminal kinase (JNK). Here, we investigated the functional role of the LMP1-induced JNK pathway in cell transformation. Expression of a novel dominant-negative JNK1 allele caused a block of proliferation in LMP1-transformed Rat1 fibroblasts. The JNK-specific inhibitor SP600125 reproduced this effect in Rat1-LMP1 cells and efficiently interfered with proliferation of EBV-transformed lymphoblastoid cells (LCLs). Inhibition of the LMP1-induced JNK pathway in LCLs caused the downregulation of c-Jun and Cdc2, the essential G2/M cell cycle kinase, which was accompanied by a cell cycle arrest of LCLs at G2/M phase transition. Moreover, SP600125 retarded tumor growth of LCLs in a xenograft model in SCID mice. Our data support a critical role of the LMP1-induced JNK pathway for proliferation of LMP1-transformed cells and characterize JNK as a potential target for intervention against EBV-induced malignancies

  16. Phosphorylation of rat brain purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal kinase-3 modifies open-channel noise.

    Science.gov (United States)

    Gupta, Rajeev

    2017-09-02

    The drift kinetic energy of ionic flow through single ion channels cause vibrations of the pore walls which are observed as open-state current fluctuations (open-channel noise) during single-channel recordings. Vibration of the pore wall leads to transitions among different conformational sub-states of the channel protein in the open-state. Open-channel noise analysis can provide important information about the different conformational sub-state transitions and how biochemical modifications of ion channels would affect their transport properties. It has been shown that c-Jun N-terminal kinase-3 (JNK3) becomes activated by phosphorylation in various neurodegenerative diseases and phosphorylates outer mitochondrion associated proteins leading to neuronal apoptosis. In our earlier work, JNK3 has been reported to phosphorylate purified rat brain mitochondrial voltage-dependent anion channel (VDAC) in vitro and modify its conductance and opening probability. In this article we have compared the open-state noise profile of the native and the JNK3 phosphorylated VDAC using Power Spectral Density vs frequency plots. Power spectral density analysis of open-state noise indicated power law with average slope value α ≈1 for native VDAC at both positive and negative voltage whereas average α value open-state noise arises due to coupling of ionic transport and conformational sub-states transitions in open-state and this coupling is perturbed as a result of channel phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. C-reactive protein and N-terminal prohormone brain natriuretic peptide as biomarkers in acute exacerbations of COPD leading to hospitalizations.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Roy Chen

    Full Text Available There are currently no accepted and validated blood tests available for diagnosing acute exacerbations of chronic obstructive pulmonary disease (AECOPD. In this study, we sought to determine the discriminatory power of blood C-reactive protein (CRP and N-terminal prohormone brain natriuretic peptide (NT-proBNP in the diagnosis of AECOPD requiring hospitalizations. The study cohort consisted of 468 patients recruited in the COPD Rapid Transition Program who were hospitalized with a primary diagnosis of AECOPD, and 110 stable COPD patients who served as controls. Logistic regression was used to build a classification model to separate AECOPD from convalescent or stable COPD patients. Performance was assessed using an independent validation set of patients who were not included in the discovery set. Serum CRP and whole blood NT-proBNP concentrations were highest at the time of hospitalization and progressively decreased over time. Of the 3 classification models, the one with both CRP and NT-proBNP had the highest AUC in discriminating AECOPD (cross-validated AUC of 0.80. These data were replicated in a validation cohort with an AUC of 0.88. A combination of CRP and NT-proBNP can reasonably discriminate AECOPD requiring hospitalization versus clinical stability and can be used to rapidly diagnose patients requiring hospitalization for AECOPD.

  18. Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Minamitani, Takeharu; Orba, Yasuko; Sato, Mami; Sawa, Hirofumi; Ariga, Hiroyoshi

    2004-01-01

    The results of our previous study showed that tumor invasion and metastasis are promoted in extracellular matrix (ECM) tenascin-X-deficient (TNX-/-) mice via increased expression of matrix metalloproteinases (MMPs). However, little is known about the relationship between TNX deficiency and activation of MMP genes. In this study, we investigated the molecular mechanism by which TNX deficiency activates the MMP-2 gene. We examined the intracellular signaling pathways that regulate gene expression of the proteinase in isolated fibroblasts. Results of gelatin zymography showed that MMP-2 was induced to a greater extent in TNX-/- fibroblasts embedded in type I collagen than in wild-type fibroblasts. RT-PCR analysis revealed that the increased level of MMP-2 expression was caused at the transcription level. Conversely, stable overexpression of TNX in a fibroblast cell line reduced MMP-2 expression and suppressed MMP-2 promoter activity. In addition, treatment of TNX-/- fibroblasts with SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and genistein, a tyrosine kinase inhibitor, suppressed the increased level of proMMP-2 and increased MMP-2 promoter activity in TNX-/- fibroblasts. Furthermore, increased activation of JNK and tyrosine phosphorylation of certain proteins were observed in TNX-/- fibroblasts. These findings suggest that induction of MMP-2 by TNX deficiency is mediated, at least in part, through the JNK and protein tyrosine kinase phosphorylation pathway

  19. Functional role of the N-terminal domain of ΔFosB in response to stress and drugs of abuse.

    Science.gov (United States)

    Ohnishi, Y N; Ohnishi, Y H; Vialou, V; Mouzon, E; LaPlant, Q; Nishi, A; Nestler, E J

    2015-01-22

    Previous work has implicated the transcription factor, ΔFosB, acting in the nucleus accumbens, in mediating the pro-rewarding effects of drugs of abuse such as cocaine as well as in mediating resilience to chronic social stress. However, the transgenic and viral gene transfer models used to establish these ΔFosB phenotypes express, in addition to ΔFosB, an alternative translation product of ΔFosB mRNA, termed Δ2ΔFosB, which lacks the N-terminal 78 aa present in ΔFosB. To study the possible contribution of Δ2ΔFosB to these drug and stress phenotypes, we prepared a viral vector that overexpresses a point mutant form of ΔFosB mRNA which cannot undergo alternative translation as well as a vector that overexpresses Δ2ΔFosB alone. Our results show that the mutant form of ΔFosB, when overexpressed in the nucleus accumbens, reproduces the enhancement of reward and of resilience seen with our earlier models, with no effects seen for Δ2ΔFosB. Overexpression of full length FosB, the other major product of the FosB gene, also has no effect. These findings confirm the unique role of ΔFosB in the nucleus accumbens in controlling responses to drugs of abuse and stress. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Effect of milrinone on the cardiac function and N-terminal pro-brain natriuretic peptide levels in patients with senile refractory heart failure

    Directory of Open Access Journals (Sweden)

    Jiao-Na Wei1

    2017-06-01

    Full Text Available Objective: To study the effect of milrinone on the cardiac function and N-terminal probrain natriuretic peptide (NT-proBNP levels in patients with senile refractory heart failure. Methods: 90 patients with senile refractory heart failure who were treated in our hospital between August 2013 and August 2016 were collected and divided into control group (n=45 and observation group (n=45 according to the random number table. The control group received regular clinical treatment, and the observation group received regular + milrinone treatment. The cardiac function and serum NT-proBN contents were compared between two groups of patients before and after treatment. Results: Before treatment, the differences in ultrasound and serum cardiac function indexes and serum NT-proBN levels were not statistically significant between two groups of patients. After treatment, ultrasound serum cardiac function parameter LVEDD level in observation group was lower than that in control group while CI and SV levels were higher than those in control group; serum cardiac function indexes Cys-C, GDF-15, sST2 and H-FABP contents were lower than those in control group; serum NT-proBNP content was lower than that in control group. Conclusion: Milrinone therapy can optimize the cardiac function and reduce the serum NT-proBN levels in patients with senile refractory heart failure.

  1. Reference intervals for N-terminal pro-B-type natriuretic peptide in amniotic fluid between 10 and 34 weeks of gestation.

    Directory of Open Access Journals (Sweden)

    Waltraut M Merz

    Full Text Available BACKGROUND: In adult and pediatric cardiology, n-terminal pro-B-type natriuretic peptide (nt-proBNP serves as biomarker in the diagnosis and management of cardiovascular dysfunction. Elevated levels of circulating nt-proBNP are present in fetal conditions associated with myocardial pressure or volume load. Compared to fetal blood sampling, amniocentesis is technically easier and can be performed from early pregnancy onwards. We aimed to investigate amniotic fluid (AF nt-proBNP concentrations in normal pregnancies between 10 and 34 weeks of gestation. METHODS: Nt-proBNP and total protein (TP was measured in AF by chemiluminescence assay (photometry, respectively. To adjust for a potential dilutional effect, the AF-nt-proBNP/AF-TP ratio was analyzed. Reference intervals were constructed by regression modeling across gestational age. RESULTS: 132 samples were analyzed. A negative correlation between AF-nt-proBNP/AF-TP ratio and gestational age was observed. Curves for the mean and the 5% and 95% reference interval between 10 and 34 weeks of gestation were established. CONCLUSION: In normal pregnancy, nt-proBNP is present in AF and decreases during gestation. Our data provide the basis for research on AF-nt-proBNP as biomarker in fetal medicine.

  2. EGCG-targeted p57/KIP2 reduces tumorigenicity of oral carcinoma cells: Role of c-Jun N-terminal kinase

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuya; Digumarthi, Hari; Aranbayeva, Zina; Wataha, John; Lewis, Jill; Messer, Regina; Qin, Haiyan; Dickinson, Douglas; Osaki, Tokio; Schuster, George S.; Hsu, Stephen

    2007-01-01

    The green tea polyphenol epigallocatechin-3-gallate (EGCG) regulates gene expression differentially in tumor and normal cells. In normal human primary epidermal keratinocytes (NHEK), one of the key mediators of EGCG action is p57/KIP2, a cyclin-dependent kinase (CDK) inhibitor. EGCG potently induces p57 in NHEK, but not in epithelial cancer cells. In humans, reduced expression of p57 often is associated with advanced tumors, and tumor cells with inactivated p57 undergo apoptosis when exposed to EGCG. The mechanism of p57 induction by EGCG is not well understood. Here, we show that in NHEK, EGCG-induces p57 via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. In p57-negative tumor cells, JNK signaling mediates EGCG-induced apoptosis, and exogenous expression of p57 suppresses EGCG-induced apoptosis via inhibition of c-Jun N-terminal kinase (JNK). We also found that restoration of p57 expression in tumor cells significantly reduced tumorigenicity in athymic mice. These results suggest that p57 expression may be an useful indicator for the clinical course of cancers, and could be potentially useful as a target for cancer therapies

  3. N-Terminal Cu-Binding Motifs (Xxx-Zzz-His, Xxx-His) and Their Derivatives: Chemistry, Biology and Medicinal Applications.

    Science.gov (United States)

    Gonzalez, Paulina; Bossak, Karolina; Stefaniak, Ewelina; Hureau, Christelle; Raibaut, Laurent; Bal, Wojciech; Faller, Peter

    2018-06-07

    Peptides and proteins with N-terminal amino acid sequences NH 2 -Xxx-His (XH) and NH 2 -Xxx-Zzz-His (XZH) form well-established high-affinity Cu II -complexes. Key examples are Asp-Ala-His (in serum albumin) and Gly-His-Lys, the wound healing factor. This opens a straightforward way to add a high-affinity Cu II -binding site to almost any peptide or protein, by chemical or recombinant approaches. Thus, these motifs, NH 2 -Xxx-Zzz-His in particular, have been used to equip peptides and proteins with a multitude of functions based on the redox activity of Cu, including nuclease, protease, glycosidase, or oxygen activation properties, useful in anticancer or antimicrobial drugs. More recent research suggests novel biological functions, mainly based on the redox inertness of Cu II in XZH, like PET imaging (with 64 Cu), chelation therapies (for instance in Alzheimer's disease and other types of neurodegeneration), antioxidant units, Cu transporters and activation of biological functions by strong Cu II binding. This Review gives an overview of the chemical properties of Cu-XH and -XZH motifs and discusses the pros and cons of the vastly different biological applications, and how they could be improved depending on the application. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. N-terminal pro-B-type Natriuretic Peptide in three different mechanisms of dysnatremia onset after a child's craniopharyngioma surgery.

    Science.gov (United States)

    Spatenkova, Vera; Hradil, Jan; Suchomel, Petr

    2017-10-01

    Craniopharyngioma, due to its sellar location, can be perioperatively complicated by different types of dysnatremia. We present a rare postoperative onset of a combination of three different mechanisms of dysnatremia with N-terminal pro-B-type Natriuretic Peptide (NT-proBNP) and renal function parameters in a boy with a good outcome after craniopharyngioma surgery: 1/ Central diabetes insipidus (CDI) onset immediately after the operation, hypernatremia with peak serum sodium (SNa) 158 mmol/l) caused by free water polyuria (electrolyte-free water clearance, EWC 0.104 ml/s), NT-proBNP 350 pg/ml; 2/ cerebral salt wasting (CSW) onset on day 7, hyponatremia (SNa 128 mmol/l) with hypoosmolality (measured serum osmolality, SOsm 265 mmol/kg) caused by natriuresis (sodium - daily output 605 mmol/day, fractional excretion 0.035), NT-proBNP 191 pg/ml; 3/ Polydypsia onset on day 11 caused hyponatremia (SNa 132 mmol/l), EWC 0.015, NT-proBNP 68 pg/ml.

  5. Expression, purification, crystallization and structure determination of the N terminal domain of Fhb, a factor H binding protein from Streptococcus suis

    International Nuclear Information System (INIS)

    Zhang, Chunmao; Yu, You; Yang, Maojun; Jiang, Yongqiang

    2015-01-01

    Fhb is a surface virulence protein from Streptococcus suis, which could aid bacterial evasion of host innate immune defense by recruiting complement regulator factor H to inactivate C3b deposited on bacterial surface in blood. Here we successfully expressed and purified the N terminal domain of Fhb (N-Fhb) and obtained crystals of the N-Fhb by sitting-drop vapor diffusion method with a resolution of 1.50 Å. The crystals belong to space group C2 with unit cell parameters a = 127.1 Å, b = 77.3 Å, c = 131.6 Å, α = 90°, β = 115.9°, γ = 90°. The structure of N-Fhb was determined by SAD method and the core structure of N-Fhb is a β sandwich. We speculated that binding of Fhb to human factor H may be mainly mediated by surface amino acids with negative charges. - Highlights: • We expressed N-Fhb as the soluble protein in Escherichia coli. • Crystals of N-Fhb were grown by sitting drop vapor diffusion method. • Crystals of N-Fhb could diffracted to 1.5 Å. • The core structure of N-Fhb was a β sandwich. • A part of the surface of N-Fhb was rich with negative charges.

  6. Effects of new sports tennis type exercise on aerobic capacity, follicle stimulating hormone and N-terminal telopeptide in the postmenopausal women.

    Science.gov (United States)

    Shin, Hyun-Jae; Lee, Ha-Yan; Cho, Hye-Young; Park, Yun-Jin; Moon, Hyung-Hoon; Lee, Sung-Hwan; Lee, Sung-Ki; Kim, Myung-Ki

    2014-04-01

    Menopause is characterized by rapid decreases in bone mineral density, aerobic fitness, muscle strength, and balance. In the present study, we investigated the effects of new sports tennis type exercise on aerobic capacity, follicle stimulating hormone (FSH) and N-terminal telopeptide (NTX) in the postmenopausal women. Subjects were consisted of 20 postmenopausal women, who had not menstruated for at least 1 yr and had follicle-stimulating hormone levels > 35 mIU/L, estradiol levelssports tennis type exercise group (n= 10). New sports tennis type exercise was consisted of warm up (10 min), new sports tennis type exercise (40 min), cool down (10 min) 3 days a per week for 12 weeks. The aerobic capacities were increased by 12 weeks new sports tennis type exercise. New sports tennis type exercise significantly increased FSH and NTx levels, indicating biochemical markers of bone formation and resorption. These findings indicate that 12 weeks of new sports tennis type exercise can be effective in prevention of bone loss and enhancement of aerobic capacity in postmenopausal women.

  7. NEW POSSIBILITIES FOR EVALUATION OF SEVERITY AND PROGNOSIS IN PATIENTS WITH CHRONIC HEART FAILURE BASED ON N-TERMINAL PRO-BRAIN NATRIURETIC PEPTIDE PLASMA LEVEL

    Directory of Open Access Journals (Sweden)

    A. S. Galjavich

    2016-01-01

    Full Text Available Aim. To study an importance of plasma N-terminal pro-brain natriuretic peptide (N-proBNP in evaluation of severity and prognosis in patients with chronic heart failure (CHF of ischemic genesis.Material and methods. 77 patients (60 men and 17 women; 59,4±10,7 y.o. with CHF of ischemic genesis were included in the study. All patients had sinus rhythm and history of Q wave myocardial infarction. Standard examination was performed to all patients. Besides N-proBNP plasma level and patients yearly survival were evaluated.Results. N-proBNP plasma level had direct correlation with clinical indices (exercise tolerance, blood pressure, heart rate and echocardiographic heart sizes. N-proBNP plasma level had relationship with prognosis of CHF patients. Baseline N-proBNP level was more than 2 times higher in died patients in comparison with survived patients. The yearly survival rate of CHF patients was 51,3% if N-proBNP level had been more than 400 fmol/ml (>15% of normal value. The clinico-laboratory index (based on N-proBNP plasma level of severity and prognosis in CHF patients was developed.Conclusion. The clinico-laboratory index based on N-proBNP plasma level is easy to use and can improve medical practice.

  8. Structure-activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region.

    Directory of Open Access Journals (Sweden)

    Victoria S Paulsen

    Full Text Available Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH(2 terminus of the peptide and the fragment arasin 1(1-23 was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1-23 were shown to be non-toxic to human red blood cells and arasin 1(1-23 was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1-23 was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC, arasin 1(1-23 was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1-23 has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1-23 involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC.

  9. A Loop Region in the N-Terminal Domain of Ebola Virus VP40 Is Important in Viral Assembly, Budding, and Egress

    Directory of Open Access Journals (Sweden)

    Emmanuel Adu-Gyamfi

    2014-10-01

    Full Text Available Ebola virus (EBOV causes viral hemorrhagic fever in humans and can have clinical fatality rates of ~60%. The EBOV genome consists of negative sense RNA that encodes seven proteins including viral protein 40 (VP40. VP40 is the major Ebola virus matrix protein and regulates assembly and egress of infectious Ebola virus particles. It is well established that VP40 assembles on the inner leaflet of the plasma membrane of human cells to regulate viral budding where VP40 can produce virus like particles (VLPs without other Ebola virus proteins present. The mechanistic details, however, of VP40 lipid-interactions and protein-protein interactions that are important for viral release remain to be elucidated. Here, we mutated a loop region in the N-terminal domain of VP40 (Lys127, Thr129, and Asn130 and find that mutations (K127A, T129A, and N130A in this loop region reduce plasma membrane localization of VP40. Additionally, using total internal reflection fluorescence microscopy and number and brightness analysis we demonstrate these mutations greatly reduce VP40 oligomerization. Lastly, VLP assays demonstrate these mutations significantly reduce VLP release from cells. Taken together, these studies identify an important loop region in VP40 that may be essential to viral egress.

  10. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway.

    Science.gov (United States)

    Pelegrino, F S A; Pflugfelder, S C; De Paiva, C S

    2012-01-01

    Patients with tear dysfunction often experience increased irritation symptoms when subjected to drafty and/or low humidity environmental conditions. The purpose of this study was to investigate the effects of low humidity stress (LHS) on corneal barrier function and expression of cornified envelope (CE) precursor proteins in the epithelium of C57BL/6 and c-jun N-terminal kinase 2 (JNK2) knockout (KO) mice. LHS was induced in both strains by exposure to an air draft for 15 (LHS15D) or 30 days (LHS30D) at a relative humidity LHS15D showed corneal barrier dysfunction, decreased apical corneal epithelial cell area, higher MMP-9 expression and gelatinase activity and increased involucrin and SPRR-2 immunoreactivity in the corneal epithelium compared to NS mice. JNK2KO mice were resistant to LHS-induced corneal barrier disruption. MMP-3,-9,-13, IL-1α, IL-1β, involucrin and SPRR-2a RNA transcripts were significantly increased in C57BL/6 mice at LHS15D, while no change was noted in JNK2KO mice. LHS is capable of altering corneal barrier function, promoting pathologic alteration of the TJ complex and stimulating production of CE proteins by the corneal epithelium. Activation of the JNK2 signaling pathway contributes to corneal epithelial barrier disruption in LHS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Characterizing interaction forces between actin and proteins of the tropomodulin family reveals the presence of the N-terminal actin-binding site in leiomodin.

    Science.gov (United States)

    Arslan, Baran; Colpan, Mert; Gray, Kevin T; Abu-Lail, Nehal I; Kostyukova, Alla S

    2018-01-15

    Tropomodulin family of proteins includes several isoforms of tropomodulins (Tmod) and leiomodins (Lmod). These proteins can sequester actin monomers or nucleate actin polymerization. Although it is known that their actin-binding properties are isoform-dependent, knowledge on how they vary in strengths of interactions with G-actin is missing. While it is confirmed in many studies that Tmods have two actin-binding sites, information on number and location of actin-binding sites in Lmod2 is controversial. We used atomic force microscopy to study interactions between G-actin and proteins of the tropomodulin family. Unbinding forces between G-actin and Tmod1, Tmod2, Tmod3, or Lmod2 were quantified. Our results indicated that Tmod1 and Tmod3 had unimodal force distributions, Tmod2 had a bimodal distribution and Lmod2 had a trimodal distribution. The number of force distributions correlates with the proteins' abilities to sequester actin or to nucleate actin polymerization. We assigned specific unbinding forces to the individual actin-binding sites of Tmod2 and Lmod2 using mutations that destroy actin-binding sites of Tmod2 and truncated Lmod2. Our results confirm the existence of the N-terminal actin-binding site in Lmod2. Altogether, our data demonstrate how the differences between the number and the strength of actin-binding sites of Tmod or Lmod translate to their functional abilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Disposition of radiolabelled insulin-like growth factor I (IGF-I), IGF-II and their N-terminal truncated variants in rats

    International Nuclear Information System (INIS)

    Yamamoto, Hiroyuki; Kato, Yuzuru; Murphy, L.J.

    1996-01-01

    Serum half life, tissue uptake and urinary excretion of N-terminal truncated IGF variants and their intact precursors were compared to see whether the variants regulate the bioavailability of those growth factors. IGF-I, des(1-3) IGF-I, IGF-II and des(1-6) IGF-II were labeled with 125 I and intravenously administered to SD rats. Blood from femoral artery and urine from implanted bladder catheter were collected at appropriate intervals until sacrifice of animals at 2 hr after administration. Tissues were dissected out and all of these samples were measured for their radioactivity with a gamma counter. The half lives of des(1-3) IGF-I, IGF-I, des(1-6) IGF-II and IGF-II were 20.5, 228.3, 21.3 and 181.7 min, respectively. Maximal accumulation of all peptides was found in the kidney. 125 I-IGF-I and -II showed the following distribution pattern; levels were higher in the kidney>pancreas>small intestine>liver>duodenum>stomach>lung>spleen>heart>large intestine>testis>brain>skeletal muscle. Skeletal muscle, kidney and testis showed a preferential uptake of the variants. Urinary excretion of the variants were much greater. Thus the variants were more rapidly cleared from circulation. The physiological significance of tissue distribution of 4 peptides remains to be further investigated. (K.H.)

  13. Crystallization and preliminary X-ray diffraction analysis of mouse galectin-4 N-terminal carbohydrate recognition domain in complex with lactose

    International Nuclear Information System (INIS)

    Krejčiříková, Veronika; Fábry, Milan; Marková, Vladimíra; Malý, Petr; Řezáčová, Pavlína; Brynda, Jiří

    2008-01-01

    Mouse galectin-4 carbohydrate binding domain was overexpressed in E. coli and crystallized in the presence of lactose. The crystals belong to tetragonal space group P42 1 2 and diffraction data were collected to 2.1 Å resolution. Galectin-4 is thought to play a role in the process of tumour conversion of cells of the alimentary tract and the breast tissue; however, its exact function remains unknown. With the aim of elucidating the structural basis of mouse galectin-4 (mGal-4) binding specificity, we have undertaken X-ray analysis of the N-terminal domain, CRD1, of mGal-4 in complex with lactose (the basic building block of known galectin-4 carbohydrate ligands). Crystals of CRD1 in complex with lactose were obtained using vapour-diffusion techniques. The crystals belong to tetragonal space group P42 1 2 with unit-cell parameters a = 91.1, b = 91.16, c = 57.10 Å and preliminary X-ray diffraction data were collected to 3.2 Å resolution. An optimized crystallization procedure and cryocooling protocol allowed us to extend resolution to 2.1 Å. Structure refinement is currently under way; the initial electron-density maps clearly show non-protein electron density in the vicinity of the carbohydrate binding site, indicating the presence of one lactose molecule. The structure will help to improve understanding of the binding specificity and function of the potential colon cancer marker galectin-4

  14. N-terminal pro-brain natriuretic peptide and associated factors in the general working population: a baseline survey of the Uranosaki cohort study.

    Science.gov (United States)

    Tanaka, Atsushi; Yoshida, Hisako; Kawaguchi, Atsushi; Oyama, Jun-Ichi; Kotooka, Norihiko; Toyoda, Shigeru; Inoue, Teruo; Natsuaki, Masafumi; Node, Koichi

    2017-07-19

    Few data on clinical characteristics associated with N-terminal pro-brain natriuretic peptide (NT-proBNP) or the clinical value of measuring NT-proBNP in the working population are available. The aim of the present study was to investigate the levels of NT-proBNP and their association with clinical variables in the Japanese general working population by using baseline data from the Uranosaki cohort study. In the study, the plasma concentration of NT-proBNP and some biomarkers were measured in addition to the standard health checkups at the workplace. Questionnaires regarding health-related quality of life (HR-QOL) were also completed. A total of 2140 participants were enrolled in the study. Plasma levels of NT-proBNP were positively associated with age, female sex, systolic blood pressure, pulse pressure, prevalent hypertension, smoking habit, high-density lipoprotein cholesterol (HDL-C), and prevalent proteinuria, and negatively associated with body mass index, lipid profiles except HDL-C, uric acid, renal function, and hemoglobin. Both the plasma concentration of high-molecular weight adiponectin and that of high-sensitivity troponin T were positively and independently associated with NT-proBNP. In addition, the HR-QOL score regarding sleep disorder was independently associated with NT-proBNP. Thus, we have obtained evidence that the plasma NT-proBNP is affected by several clinical variables in the general working population.

  15. Limitations of N-Terminal Pro-B-Type Natriuretic Peptide in the Diagnosis of Heart Disease among Cancer Patients Who Present with Cardiac or Pulmonary Symptoms.

    Science.gov (United States)

    Wieshammer, Siegfried; Dreyhaupt, Jens; Müller, Dirk; Momm, Felix; Jakob, Andreas

    2016-01-01

    Recognizing heart disease is relevant to oncologists because cancer patients are at an increased risk of cardiac mortality due to shared risk factors and the adverse effects of cancer therapy. This study assessed the extent to which the measurement of N-terminal pro-B-type natriuretic peptide (NT-proBNP) aids in the diagnosis of heart disease in addition to a history of coronary artery disease and the presence of atrial fibrillation (composite test). The NT- proBNP cutoff value was 100 pg/ml. A series of 583 consecutive cancer patients (68.4 ± 11.0 years) who were referred because of cardiac or pulmonary symptoms prospectively underwent a diagnostic work-up. Heart disease was diagnosed if at least one of the following conditions was present: (a) history of coronary artery disease, (b) atrial fibrillation, (c) impaired left ventricular systolic function, (d) significant valvular disease, (e) pulmonary hypertension, or (f) left ventricular hypertrophy. Except for (a), all 6 conditions were associated with NT-proBNP >100 pg/ml. The sensitivity/specificity values of the composite test were 0.92/0.50 for any heart disease. Several extracardiac covariates were associated with NT-proBNP >100 pg/ml, which contributed to the low test specificity. The low specificity of NT-proBNP limits its value for the diagnosis of heart disease in cancer patients. © 2016 The Author(s) Published by S. Karger AG, Basel.

  16. Prognostic value of N-terminal pro-B-type natriuretic peptide in patients with acute coronary syndromes undergoing left main percutaneous coronary intervention.

    Science.gov (United States)

    Jaberg, Laurenz; Toggweiler, Stefan; Puck, Marietta; Frank, Michelle; Rufibach, Kaspar; Lüscher, Thomas F; Corti, Roberto

    2011-01-01

    Patients undergoing acute left main (LM) coronary artery revascularization have a high mortality and natriuretic peptides such as N-terminal pro-B-type (NT-proBNP) have been shown to have prognostic value in patients with acute coronary syndromes. The present study looked at the prognostic value of NT-proBNP in these patients. We studied all consecutive patients undergoing acute LM coronary artery percutaneous coronary intervention between January 2005 and December 2008 in whom NT-proBNP was measured (n=71). We analyzed the clinical characteristics and the short- and long-term outcomes in relation to NT-proBNP level at admission. Median NT-proBNP was 1,364 ng/L, ranging from 46 to 70,000 ng/L. NT-proBNP was elevated in 63 (89%) patients and was ≥1,000ng/L in 42 (59%). Log NT-proBNP (hazard ratio [HR] 3.51, 95% confidence interval [CI] 1.55-7.97, P=0.003) and left ventricular ejection fraction (HR 0.95, 95%CI 0.91-0.99, P=0.007) were predictors for all-cause mortality. Log NT-proBNP was the only independent significant predictor of cardiovascular mortality. In-hospital mortality was 0% for patients with NT-proBNP value for NT-proBNP in patients undergoing acute LM coronary artery intervention.

  17. Diagnostic value of N-terminal pro-brain natriuretic peptide for pleural effusion due to heart failure: a meta-analysis.

    Science.gov (United States)

    Zhou, Q; Ye, Z J; Su, Y; Zhang, J C; Shi, H Z

    2010-08-01

    N-terminal pro-brain natriuretic peptide (NT-proBNP) is a biomarker useful in diagnosis of pleural effusion due to heart failure. Thus far, its overall diagnostic accuracy has not been systematically reviewed. The aim of the present meta-analysis was to establish the overall diagnostic accuracy of the measurement of pleural NT-proBNP for identifying pleural effusion due to heart failure. After a systematic review of English-language studies, sensitivity, specificity, and other measures of accuracy of NT-proBNP concentrations in pleural fluid in the diagnosis of pleural effusion resulting from heart failure were pooled using fixed-effects models. Summary receiver operating characteristic curves were used to summarise overall test performance. Eight publications met the inclusion criteria. The summary estimates for pleural NT-proBNP in the diagnosis of pleural effusion attributable to heart failure were: sensitivity 0.95 (95% CI 0.92 to 0.97), specificity 0.94 (0.92 to 0.96), positive likelihood ratio 14.12 (10.23 to 19.51), negative likelihood ratio 0.06 (0.04 to 0.09) and diagnostic OR 213.87 (122.50 to 373.40). NT-proBNP levels in pleural fluid showed a high diagnostic accuracy and may help accurately differentiate cardiac from non-cardiac conditions in patients presenting with pleural effusion.

  18. N-terminal pro-brain natriuretic peptide and high-sensitivity troponin T exhibit additive prognostic value for the outcome of critically ill patients.

    Science.gov (United States)

    Lenz, Max; Krychtiuk, Konstantin A; Goliasch, Georg; Distelmaier, Klaus; Wojta, Johann; Heinz, Gottfried; Speidl, Walter S

    2018-04-01

    Patients treated at medical intensive care units suffer from various pathologies and often present with elevated troponin T (TnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Both markers may reflect different forms of cardiac involvement in critical illness. Therefore, the aim of our study was to examine the synergistic prognostic potential of NT-proBNP and high-sensitivity TnT (hs)TnT in unselected critically ill patients. We included all consecutive patients admitted to our intensive care unit within one year, excluding those suffering from acute myocardial infarction or undergoing cardiac surgery and measured NT-proBNP and TnT plasma levels on the day of admission and 72 hours thereafter. Of the included 148 patients, 52% were male, mean age was of 64.2 ± 16.8 years and 30-day mortality was 33.2%. Non-survivors showed significantly higher NT-proBNP and TnT plasma levels as compared with survivors ( pvalue. This might be attributed to a difference in underlying pathomechanisms and an assessment of synergistic risk factors.

  19. Estimated glomerular filtration rate is associated with both arterial stiffness and N-terminal pro-brain natriuretic peptide in newly diagnosed hypertensive patients.

    Science.gov (United States)

    Gür, Mustafa; Uçar, Hakan; Kuloğlu, Osman; Kıvrak, Ali; Şeker, Taner; Türkoğlu, Caner; Özaltun, Betül; Kaypaklı, Onur; Şahin, Durmuş Yıldıray; Elbasan, Zafer; Tanboğa, Halil İbrahim; Çaylı, Murat

    2014-01-01

    Even a slight decrease in the glomerular filtration rate (GFR) is an independent risk factor for cardiovascular disease. Arterial stiffness, left ventricular hypertrophy and N-terminal pro-brain natriuretic peptide (NT-proBNP) are independent risk factors for cardiovascular disease, which are particularly common in end-stage renal disease. We aimed to evaluate the association between GFR with arterial stiffness, left ventricle mass (LVM) and NT-proBNP in hypertensive subjects with normal to mildly impaired renal function. The study population consisted of 285 newly diagnosed hypertensive patients (mean age; 49.9 ± 11.8 years). GFR was estimated (eGFR) by the Modification of Diet in Renal Disease formula. Pulse wave velocity (PWV) and augmentation index (AIx), which reflects arterial stiffness, were calculated using the single-point method via the Mobil-O-Graph® ARCsolver algorithm. LVM was obtained by echocardiography. Plasma NT-proBNP was measured by electrochemiluminescence. The patients were divided into two groups according to the median eGFR value (eGFRlow group values were higher in eGFRlow group compared with eGFRhigh group (pvalues were higher in eGFRlow group compared with eGFRhigh group (pPresent study showed that eGFR was independently associated with PWV and NT-proBNP values. Importantly, these findings may explain, in part, the increase in cardiovascular risk in with slightly impaired renal function.

  20. Designer Self-Assembling Peptide Nanofiber Scaffolds Containing Link Protein N-Terminal Peptide Induce Chondrogenesis of Rabbit Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Baichuan Wang

    2014-01-01

    Full Text Available Designer self-assembling peptide nanofiber hydrogel scaffolds have been considered as promising biomaterials for tissue engineering because of their excellent biocompatibility and biofunctionality. Our previous studies have shown that a novel designer functionalized self-assembling peptide nanofiber hydrogel scaffold (RLN/RADA16, LN-NS containing N-terminal peptide sequence of link protein (link N can promote nucleus pulposus cells (NPCs adhesion and three-dimensional (3D migration and stimulate biosynthesis of type II collagen and aggrecan by NPCs in vitro. The present study has extended these investigations to determine the effects of this functionalized LN-NS on bone marrow stem cells (BMSCs, a potential cell source for NP regeneration. Although the functionalized LN-NS cannot promote BMSCs proliferation, it significantly promotes BMSCs adhesion compared with that of the pure RADA16 hydrogel scaffold. Moreover, the functionalized LN-NS remarkably stimulates biosynthesis and deposition of type II collagen and aggrecan. These data demonstrate that the functionalized peptide nanofiber hydrogel scaffold containing link N peptide as a potential matrix substrate will be very useful in the NP tissue regeneration.

  1. Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats.

    Science.gov (United States)

    Hsieh, Ching-Liang; Ho, Tin-Yun; Su, Shan-Yu; Lo, Wan-Yu; Liu, Chung-Hsiang; Tang, Nou-Ying

    2009-01-01

    Our previous studies have shown that Uncaria rhynchophylla (UR) can reduce epileptic seizures. We hypothesized that UR and its major component rhynchophylline (RH), reduce epileptic seizures in rats treated with kainic acid (KA) by inhibiting nuclear factor-kappaB (NF-kappaB) and activator-protein-1 (AP-1) activity, and by eliminating superoxide anions. Therefore, the level of superoxide anions and the DNA binding activities of NF-kappaB and AP-1 were measured. Sprague-Dawley (SD) rats were pre-treated with UR (1.0 g/kg, i.p.), RH (0.25 mg/kg, i.p.), or valproic acid (VA, 250 mg/kg, i.p.) for 3 days and then KA was administered intra-peritoneal (i.p.). The results indicated that UR, RH, and VA can reduce epileptic seizures and the level of superoxide anions in the blood. Furthermore, KA was demonstrated to induce the DNA binding activities of NF-kappaB and AP-1. However, these inductions were inhibited by pre-treatment with UR, RH, or VA for 3 days. Moreover, UR and RH were shown to be involved in the suppression of c-Jun N-terminal kinase (JNK) phosphorylation. This study suggested that UR and RH have antiepileptic effects in KA-induced seizures and are associated with the regulation of the innate immune system via a reduction in the level of superoxide anions, JNK phosphorylation, and NF-kappaB activation.

  2. Prognostic value of N-terminal prohormone brain natriuretic peptide for in-hospital and long-term outcomes in patients with infective endocarditis.

    Science.gov (United States)

    Wei, Xue-Biao; Liu, Yuan-Hui; He, Peng-Cheng; Yu, Dan-Qing; Zhou, Ying-Ling; Tan, Ning; Chen, Ji-Yan

    2017-05-01

    Background Limited research studies with a large sample size were performed to evaluate the prognostic value of N-terminal pro-B-type natriuretic peptide (NT-proBNP) for in-hospital or long-term poor outcomes in patients with infective endocarditis. Methods A total of 703 patients with infective endocarditis were enrolled and divided into four groups according to admission NT-pro-BNP (pg/mL) quartiles: Q1 (3522). Multivariate regression was used to determine independent risk of NT-proBNP for in-hospital and one-year death. Results In-hospital death occurred in 9.0% of patients. The in-hospital mortality was increased from the lowest to the highest NT-proBNP quartiles (1.1%, 3.4%, 9.1% and 22.3%, P  2260 pg/mL had 76.2% sensitivity and 69.1% specificity for predicting in-hospital death. Kaplan-Meier analysis showed that patients with NT-proBNP > 2260 pg/ml had a worse prognosis than those without (log-rank test 18.84, P endocarditis.

  3. The role of p38 MAP kinase and c-Jun N-terminal protein kinase signaling in the differentiation and apoptosis of immortalized neural stem cells

    International Nuclear Information System (INIS)

    Yang, Se-Ran; Cho, Sung-Dae; Ahn, Nam-Shik; Jung, Ji-Won; Park, Joon-Suk; Jo, Eun-Hye; Hwang, Jae-Woong; Kim, Sung-Hoon; Lee, Bong-Hee; Kang, Kyung-Sun; Lee, Yong-Soon

    2005-01-01

    The two distinct members of the mitogen-activated protein (MAP) kinase family c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, play an important role in central nervous system (CNS) development and differentiation. However, their role and functions are not completely understood in CNS. To facilitate in vitro study, we have established an immortal stem cell line using SV40 from fetal rat embryonic day 17. In these cells, MAP kinase inhibitors (SP600125, SB202190, and PD98059) were treated for 1, 24, 48, and 72 h to examine the roles of protein kinases. Early inhibition of JNK did not alter phenotypic or morphological changes of immortalized cells, however overexpression of Bax and decrease of phosphorylated AKT was observed. The prolonged inhibition of JNK induced polyploidization of immortalized cells, and resulted in differentiation and inhibition of cell proliferation. Moreover, JNK and p38 MAP kinase but not ERK1/2 was activated, and p21, p53, and Bax were overexpressed by prolonged inhibition of JNK. These results indicate that JNK and p38 MAP kinase could play dual roles on cell survival and apoptosis. Furthermore, this established cell line could facilitate study of the role of JNK and p38 MAP kinase on CNS development or differentiation/apoptosis

  4. Ureaplasma antigenic variation beyond MBA phase variation: DNA inversions generating chimeric structures and switching in expression of the MBA N-terminal paralogue UU172.

    Science.gov (United States)

    Zimmerman, Carl-Ulrich R; Rosengarten, Renate; Spergser, Joachim

    2011-02-01

    Phase variation of the major ureaplasma surface membrane protein, the multiple-banded antigen (MBA), with its counterpart, the UU376 protein, was recently discussed as a result of DNA inversion occurring at specific inverted repeats. Two similar inverted repeats to the ones within the mba locus were found in the genome of Ureaplasma parvum serovar 3; one within the MBA N-terminal paralogue UU172 and another in the adjacent intergenic spacer region. In this report, we demonstrate on both genomic and protein level that DNA inversion at these inverted repeats leads to alternating expression between UU172 and the neighbouring conserved hypothetical ORF UU171. Sequence analysis of this phase-variable 'UU172 element' from both U. parvum and U. urealyticum strains revealed that it is highly conserved among both species and that it also includes the orthologue of UU144. A third inverted repeat region in UU144 is proposed to serve as an additional potential inversion site from which chimeric genes can evolve. Our results indicate that site-specific recombination events in the genome of U. parvum serovar 3 are dynamic and frequent, leading to a broad spectrum of antigenic variation by which the organism may evade host immune responses. © 2010 Blackwell Publishing Ltd.

  5. Ureaplasma antigenic variation beyond MBA phase variation: DNA inversions generating chimeric structures and switching in expression of the MBA N-terminal paralogue UU172

    Science.gov (United States)

    Zimmerman, Carl-Ulrich R; Rosengarten, Renate; Spergser, Joachim

    2011-01-01

    Phase variation of the major ureaplasma surface membrane protein, the multiple-banded antigen (MBA), with its counterpart, the UU376 protein, was recently discussed as a result of DNA inversion occurring at specific inverted repeats. Two similar inverted repeats to the ones within the mba locus were found in the genome of Ureaplasma parvum serovar 3; one within the MBA N-terminal paralogue UU172 and another in the adjacent intergenic spacer region. In this report, we demonstrate on both genomic and protein level that DNA inversion at these inverted repeats leads to alternating expression between UU172 and the neighbouring conserved hypothetical ORF UU171. Sequence analysis of this phase-variable ‘UU172 element’ from both U. parvum and U. urealyticum strains revealed that it is highly conserved among both species and that it also includes the orthologue of UU144. A third inverted repeat region in UU144 is proposed to serve as an additional potential inversion site from which chimeric genes can evolve. Our results indicate that site-specific recombination events in the genome of U. parvum serovar 3 are dynamic and frequent, leading to a broad spectrum of antigenic variation by which the organism may evade host immune responses. PMID:21255110

  6. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  7. Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets.

    Science.gov (United States)

    Hou, Yixuan; Lin, Chun-Ming; Yokoyama, Masaru; Yount, Boyd L; Marthaler, Douglas; Douglas, Arianna L; Ghimire, Shristi; Qin, Yibin; Baric, Ralph S; Saif, Linda J; Wang, Qiuhong

    2017-07-15

    We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity. IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region

  8. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK activation correlates with the analgesic effects of ketamine in neuropathic pain

    Directory of Open Access Journals (Sweden)

    Wang Wen

    2011-01-01

    Full Text Available Abstract Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK, a member of mitogen-activated protein kinase (MAPK family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS-induced phosphorylated JNK (pJNK expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain.

  9. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK) activation correlates with the analgesic effects of ketamine in neuropathic pain

    Science.gov (United States)

    2011-01-01

    Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL)-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK), a member of mitogen-activated protein kinase (MAPK) family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS)-induced phosphorylated JNK (pJNK) expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain. PMID:21255465

  10. Acquired tolerance in cadmium-adapted lung epithelial cells: Roles of the c-Jun N-terminal kinase signaling pathway and basal level of metallothionein

    International Nuclear Information System (INIS)

    Lau, Andy T.Y.; Zhang Jian; Chiu, J.-F.

    2006-01-01

    Cadmium-resistant cells were developed in our laboratory with rat lung epithelial cells (LECs) by stepwise exposure of LECs to cadmium chloride from 1 μM to 20 μM after 20 passages. To investigate the Cd-resistant phenotype in a long-term perspective, cadmium-resistant cells adapted to 20 μM cadmium (Cd R ) were then cultured in the absence of cadmium for various passages [Cd R (-n)]. All these adapted cells were significantly protected from cadmium toxicity as compared to parental cadmium-sensitive LECs (Cd S ). The cadmium-resistant phenotype of adapted cells was relatively stable in the absence of cadmium for as long as 40 passages. Basal mRNA level of metallothionein-1 (MT-1) was dramatically higher in Cd R than in Cd R (-), which may account for the higher Cd-resistance of Cd R than Cd R (-). MT-1 mRNA level decreased drastically in Cd R after cadmium removal, suggesting that the high basal level of MT-1 in Cd R may be only partially responsible for cadmium-resistance. Treatment of cells with high levels of cadmium resulted in decreased phosphorylation of c-Jun N-terminal kinase (JNK1/2) in adapted cells than in sensitive cells and this cadmium-induced JNK activity was blocked by JNK inhibitor II, SP600125. Ro318220, a strong activator of JNK, reverted cadmium-sensitive phenotype in adapted cells. Taken together, our results suggest that during cadmium adaptation, cells develop tolerance to cell death, generally due to perturbation of the JNK signaling pathway and the nonresponsiveness of JNK phosphorylation is critical for the Cd-tolerance in these cells

  11. Plasma N-terminal pro-brain natriuretic peptide levels in patients with acute myocardial infarction, unstable angina pectoris and non-insulin-dependent diabetes

    International Nuclear Information System (INIS)

    Zhang Yonggang; Li Yuguang

    2004-01-01

    Objective: Determination of plasma N-terminal pro-brain natriuretic peptide [NT-proBNP (1-76)] levels is useful for the diagnosis of heart failure. Present study was to investigate the significance of changes of plasma NT-proBNP (1-76) levels in patients with acute myocardial infarction (AMI), unstable angina pectoris (UAP) and non-insulin-dependent diabetes (NIDD). Methods: Plasma NT-proBNP (1-76) levels were determined with RIA in 32 patients with AMI, 27 patients with UAP, 12 patients with NIDD and 20 controls. Moreover, 16 of the 32 AMI patients underwent percutaneous transluminal coronary angioplasty (PTCA) and plasma (1-76) levels were again determined 12hr before and 12hr after the procedure. Results: The plasma NT-proBNP (1-76) levels in controls were 360.8 ± 57.3 pg/ ml with no significant difference between the sexes. In patients with AMI, UAP and NIDD, NT-proBNP (1-76) levels were 554.1 ± 195.9 pg/ml, 525.7 ± 199.1 pg/ml and 552.6 ± 141.9 pg/ml respectively; all of them were significantly higher than those in controls (P 0.05). Conclusion: The plasma NT-proBNP (1-76) levels in patients with AMI, UAP and NIDD were increased significantly and the result suggested that NT-proBNP (1-76) might be a useful risk marker for these diseases. (authors)

  12. Association of N-terminal pro-brain natriuretic peptide with cognitive function and depression in elderly people with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Insa Feinkohl

    Full Text Available Type 2 diabetes mellitus is associated with risk of congestive heart failure (CHF, cognitive dysfunction and depression. CHF itself is linked both to poor cognition and depression. The ventricular N-terminal pro-brain natriuretic peptide (NT-proBNP is a marker of CHF, suggesting potential as a marker for cognitive impairment and/or depression. This was tested in the Edinburgh Type 2 Diabetes Study (ET2DS.Cross-sectional analysis of 1066 men and women aged 60-75 with type 2 diabetes. Results from seven neuropsychological tests were combined in a standardised general cognitive ability factor, 'g'. A vocabulary-based test estimated pre-morbid cognitive ability. The Hospital Anxiety and Depression Scale (HADS assessed possible depression. After adjustment for age and sex, raised plasma NT-proBNP was weakly associated with lower 'g' and higher depression scores (ß -0.09, 95% CI -0.13 to -0.03, p = 0.004 and ß 0.08, 95% CI 0.04 to 0.12, p0.05 for 'g'; β 0.03, 95% CI -0.02 to 0.07, p>0.05 for depression scores.Raised plasma NT-proBNP was weakly but statistically significantly associated with poorer cognitive function and depression. The prospective phases of the ET2DS will help determine whether or not NT-proBNP can be considered a risk marker for subsequent cognitive impairment and incident depression and whether it provides additional information over and above traditional risk factors for these conditions.

  13. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains.

    Science.gov (United States)

    Morici, P; Florio, W; Rizzato, C; Ghelardi, E; Tavanti, A; Rossolini, G M; Lupetti, A

    2017-10-01

    The spread of multi-drug resistant (MDR) Klebsiella pneumoniae strains producing carbapenemases points to a pressing need for new antibacterial agents. To this end, the in-vitro antibacterial activity of a synthetic N-terminal peptide of human lactoferrin, further referred to as hLF1-11, was evaluated against K. pneumoniae strains harboring different carbapenemase genes (i.e. OXA-48, KPC-2, KPC-3, VIM-1), with different susceptibility to colistin and other antibiotics, alone or in combination with conventional antibiotics (gentamicin, tigecycline, rifampicin, clindamycin, and clarithromycin). An antimicrobial peptide susceptibility assay was used to assess the bactericidal activity of hLF1-11 against the different K. pneumoniae strains tested. The synergistic activity was evaluated by a checkerboard titration method, and the fractional inhibitory concentration (FIC) index was calculated for the various combinations. hLF1-11 was more efficient in killing a K. pneumoniae strain susceptible to most antimicrobials (including colistin) than a colistin-susceptible strain and a colistin-resistant MDR K. pneumoniae strain. In addition, hLF1-11 exhibited a synergistic effect with the tested antibiotics against MDR K. pneumoniae strains. The results of this study indicate that resistance to hLF1-11 and colistin are not strictly associated, and suggest an hLF1-11-induced sensitizing effect of K. pneumoniae to antibiotics, especially to hydrophobic antibiotics, which are normally not effective on Gram-negative bacteria. Altogether, these data indicate that hLF1-11 in combination with antibiotics is a promising candidate to treat infections caused by MDR-K. pneumoniae strains.

  14. Distinctive functions of Syk N-terminal and C-terminal SH2 domains in the signaling cascade elicited by oxidative stress in B cells.

    Science.gov (United States)

    Ding, J; Takano, T; Hermann, P; Gao, S; Han, W; Noda, C; Yanagi, S; Yamamura, H

    2000-05-01

    Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.

  15. A Novel Dual NO-donating Oxime and c-Jun N-terminal Kinase Inhibitor Protects Against Cerebral Ischemia–Reperfusion Injury in Mice

    Science.gov (United States)

    Atochin, Dmitriy N.; Schepetkin, Igor A.; Khlebnikov, Andrei I.; Seledtsov, Victor I.; Swanson, Helen; Quinn, Mark T.; Huang, Paul L.

    2017-01-01

    The c-Jun N-terminal kinase (JNK) has been shown to be an important regulator of neuronal cell death. Previously, we synthesized the sodium salt of 11H-indeno[1,2-b]quinoxalin-11-one (IQ-1S) and demonstrated that it was a high-affinity inhibitor of the JNK family. In the present work, we found that IQ-1S could release nitric oxide (NO) during its enzymatic metabolism by liver microsomes. Moreover, serum nitrite/nitrate concentration in mice increased after intraperitoneal injection of IQ-1S. Because of these dual actions as JNK inhibitor and NO-donor, the therapeutic potential of IQ-1S was evaluated in an animal stroke model. We subjected wild-type C57BL6 mice to focal ischemia (30 minutes) with subsequent reperfusion (48 hours). Mice were treated with IQ-1S (25 mg/kg) suspended in 10% solutol or with vehicle alone 30 minutes before and 24 hours after middle cerebral artery MCA) occlusion (MCAO). Using laser-Doppler flowmetry, we monitored cerebral blood flow (CBF) above the MCA during 30 minutes of MCAO provoked by a filament and during the first 30 minutes of subsequent reperfusion. In mice treated with IQ-1S, ischemic and reperfusion values of CBF were not different from vehicle-treated mice. However, IQ-1S treated mice demonstrated markedly reduced neurological deficit and infarct volumes as compared with vehicle-treated mice after 48 hours of reperfusion. Our results indicate that the novel JNK inhibitor releases NO during its oxidoreductive bioconversion and improves stroke outcome in a mouse model of cerebral reperfusion. We conclude that IQ-1S is a promising dual functional agent for the treatment of cerebral ischemia and reperfusion injury. PMID:26923672

  16. Anti-Inflammatory Effects and Joint Protection in Collagen-Induced Arthritis after Treatment with IQ-1S, a Selective c-Jun N-Terminal Kinase Inhibitor.

    Science.gov (United States)

    Schepetkin, Igor A; Kirpotina, Liliya N; Hammaker, Deepa; Kochetkova, Irina; Khlebnikov, Andrei I; Lyakhov, Sergey A; Firestein, Gary S; Quinn, Mark T

    2015-06-01

    c-Jun N-terminal kinases (JNKs) participate in many physiologic and pathologic processes, including inflammatory diseases. We recently synthesized the sodium salt of IQ-1S (11H-indeno[1,2-b]quinoxalin-11-one oxime) and demonstrated that it is a high-affinity JNK inhibitor and inhibits murine delayed-type hypersensitivity. Here we show that IQ-1S is highly specific for JNK and that its neutral form is the most abundant species at physiologic pH. Molecular docking of the IQ-1S syn isomer into the JNK1 binding site gave the best pose, which corresponded to the position of cocrystallized JNK inhibitor SP600125 (1,9-pyrazoloanthrone). Evaluation of the therapeutic potential of IQ-1S showed that it inhibited matrix metalloproteinase 1 and 3 gene expression induced by interleukin-1β in human fibroblast-like synoviocytes and significantly attenuated development of murine collagen-induced arthritis (CIA). Treatment with IQ-1S either before or after induction of CIA resulted in decreased clinical scores, and joint sections from IQ-1S-treated CIA mice exhibited only mild signs of inflammation and minimal cartilage loss compared with those from control mice. Collagen II-specific antibody responses were also reduced by IQ-1S treatment. By contrast, the inactive ketone derivative 11H-indeno[1,2-b]quinoxalin-11-one had no effect on CIA clinical scores or collagen II-specific antibody titers. IQ-1S treatment also suppressed proinflammatory cytokine and chemokine levels in joints and lymph node cells. Finally, treatment with IQ-1S increased the number of Foxp3(+)CD4(+)CD25(+) regulatory T cells in lymph nodes. Thus, IQ-1S can reduce inflammation and cartilage loss associated with CIA and can serve as a small-molecule modulator for mechanistic studies of JNK function in rheumatoid arthritis. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  17. C0 and C1 N-terminal Ig domains of myosin binding protein C exert different effects on thin filament activation.

    Science.gov (United States)

    Harris, Samantha P; Belknap, Betty; Van Sciver, Robert E; White, Howard D; Galkin, Vitold E

    2016-02-09

    Mutations in genes encoding myosin, the molecular motor that powers cardiac muscle contraction, and its accessory protein, cardiac myosin binding protein C (cMyBP-C), are the two most common causes of hypertrophic cardiomyopathy (HCM). Recent studies established that the N-terminal domains (NTDs) of cMyBP-C (e.g., C0, C1, M, and C2) can bind to and activate or inhibit the thin filament (TF). However, the molecular mechanism(s) by which NTDs modulate interaction of myosin with the TF remains unknown and the contribution of each individual NTD to TF activation/inhibition is unclear. Here we used an integrated structure-function approach using cryoelectron microscopy, biochemical kinetics, and force measurements to reveal how the first two Ig-like domains of cMyPB-C (C0 and C1) interact with the TF. Results demonstrate that despite being structural homologs, C0 and C1 exhibit different patterns of binding on the surface of F-actin. Importantly, C1 but not C0 binds in a position to activate the TF by shifting tropomyosin (Tm) to the "open" structural state. We further show that C1 directly interacts with Tm and traps Tm in the open position on the surface of F-actin. Both C0 and C1 compete with myosin subfragment 1 for binding to F-actin and effectively inhibit actomyosin interactions when present at high ratios of NTDs to F-actin. Finally, we show that in contracting sarcomeres, the activating effect of C1 is apparent only once low levels of Ca(2+) have been achieved. We suggest that Ca(2+) modulates the interaction of cMyBP-C with the TF in the sarcomere.

  18. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells

    International Nuclear Information System (INIS)

    Tang, Nan-Hong; Chen, Yan-Lin; Wang, Xiao-Qian; Li, Xiu-Jin; Wu, Yong; Zou, Qi-Lian; Chen, Yuan-Zhong

    2010-01-01

    Fibronectin (FN) is known to be a large multifunction glycoprotein with binding sites for many substances, including N-terminal and C-terminal heparin-binding domains. We investigated the effects of highly purified rhFNHN29 and rhFNHC36 polypeptides originally cloned from the two heparin-binding domains on the adhesion and invasion of highly metastatic human hepatocellular carcinoma cells (MHCC97H) and analyzed the underlying mechanism involved. The MHCC97H cells that adhered to FN in the presence of various concentrations of rhFNHN29 and rhFNHC36 polypeptides were stained with crystal violet and measured, and the effects of rhFNHN29 and rhFNHC36 on the invasion of the MHCC97H cells were then detected using the Matrigel invasion assay as well as a lung-metastasis mouse model. The expression level of integrins and focal adhesion kinase (FAK) phosphotyrosyl protein was examined by Western blot, and the activity of matrix metalloproteinases (MMPs) and activator protein 1 (AP-1) was analyzed by gelatin zymography and the electrophoretic mobility band-shift assay (EMSA), respectively. Both of the polypeptides rhFNHN29 and rhFNHC36 inhibited adhesion and invasion of MHCC97H cells; however, rhFNHC36 exhibited inhibition at a lower dose than rhFNHN29. These inhibitory effects were mediated by integrin αvβ3 and reversed by a protein tyrosine phosphatase inhibitor. Polypeptides rhFNHN29 and rhFNHC36 abrogated the tyrosine phosphorylation of focal adhesion kinase (p-FAK) and activation of activator protein 1 (AP-1), resulting in the decrease of integrin αv, β3 and β1 expression as well as the reduction of MMP-9 activity. Polypeptides rhFNHN29 and rhFNHC36 could potentially be applicable to human liver cancer as anti-adhesive and anti-invasive agents

  19. Unraveling the Molecular Complexity of O-Glycosylated Endogenous (N-Terminal) pro-B-Type Natriuretic Peptide Forms in Blood Plasma of Patients with Severe Heart Failure.

    Science.gov (United States)

    Halfinger, Bernhard; Hammerer-Lercher, Angelika; Amplatz, Benno; Sarg, Bettina; Kremser, Leopold; Lindner, Herbert H

    2017-01-01

    Currently, N-terminal pro-B-type natriuretic peptide (NT-proBNP) and its physiologically active counterpart, BNP, are most frequently used as biomarkers for diagnosis, prognosis, and disease monitoring of heart failure (HF). Commercial NT-proBNP and BNP immunoassays cross-react to varying degrees with unprocessed proBNP, which is also found in the circulation. ProBNP processing and immunoassay response are related to O-linked glycosylation of NT-proBNP and proBNP. There is a clear and urgent need to identify the glycosylation sites in the endogenously circulating peptides requested by the community to gain further insights into the different naturally occurring forms. The glycosylation sites of (NT-) proBNP (NT-proBNP and/or proBNP) were characterized in leftovers of heparinized plasma samples of severe HF patients (NT-proBNP: >10000 ng/L) by using tandem immunoaffinity purification, sequential exoglycosidase treatment for glycan trimming, β-elimination and Michael addition chemistry, as well as high-resolution nano-flow liquid chromatography electrospray multistage mass spectrometry. We describe 9 distinct glycosylation sites on circulating (NT-) proBNP in HF patients. Differentially glycosylated variants were detected based on highly accurate mass determination and multistage mass spectrometry. Remarkably, for each of the identified proteolytic glycopeptides, a nonglycosylated form also was detectable. Our results directly demonstrate for the first time a rather complex distribution of the endogenously circulating glycoforms by mass spectrometric analysis in HF patients, and show 9 glycosites in human (NT-) proBNP. This information may also have an impact on commercial immunoassays applying antibodies specific for the central region of (NT-) proBNP, which detect mostly nonglycosylated forms. © 2016 American Association for Clinical Chemistry.

  20. Influence of atrial fibrillation on plasma von willebrand factor, soluble E-selectin, and N-terminal pro B-type natriuretic peptide levels in systolic heart failure.

    Science.gov (United States)

    Freestone, Bethan; Gustafsson, Finn; Chong, Aun Yeong; Corell, Pernille; Kistorp, Caroline; Hildebrandt, Per; Lip, Gregory Y H

    2008-05-01

    Endothelial dysfunction is present in patients with heart failure (HF) due to left ventricular systolic dysfunction, as well as in patients with atrial fibrillation (AF) who have normal cardiac function. It is unknown whether AF influences the degree of endothelial dysfunction in patients with systolic HF. We measured levels of plasma von Willebrand factor (vWF) and E-selectin (as indexes of endothelial damage/dysfunction and endothelial activation, respectively; both enzyme-linked immunosorbent assay) in patients with AF and HF (AF-HF), who were compared to patients with sinus rhythm and HF (SR-HF), as well as in age-matched, healthy, control subjects. We also assessed the relationship of vWF and E-selectin to plasma N-terminal pro B-type natriuretic peptide (NTpro-BNP), a marker for HF severity and prognosis. One hundred ninety patients (73% men; mean age, 69.0 +/- 10.1 years [+/- SD]) with systolic HF were studied, who were compared to 117 healthy control subjects: 52 subjects (27%) were in AF, while 138 subjects (73%) were in sinus rhythm. AF-HF patients were older than SR-HF patients (p = 0.046), but left ventricular ejection fraction and New York Heart Association class were similar. There were significant differences in NT-proBNP (p NT-proBNP (p NT-proBNP levels (Spearman r = 0.139; p = 0.017). There is evidence of greater endothelial damage/dysfunction in AF-HF patients when compared to SR-HF patients. The clinical significance of this is unclear but may have prognostic value.

  1. Relation of N-terminal pro-brain natriuretic peptide levels and their prognostic power in chronic stable heart failure to obesity status.

    Science.gov (United States)

    Frankenstein, Lutz; Remppis, Andrew; Nelles, Manfred; Schaelling, Bernd; Schellberg, Dieter; Katus, Hugo; Zugck, Christian

    2008-11-01

    To investigate the relationship between body mass index (BMI) and N-terminal pro-brain natriuretic peptide (NTproBNP) level and resultant prognostic capacity in chronic heart failure (CHF) controlled for known confounders. We formed 206 triplets of patients (n = 618) with stable systolic CHF matched with respect to age, sex, renal function (MDRD, modification of diet in renal disease formula), and NYHA class, each with a BMI >30 kg/m(2) (group 3), 20-24.9 kg/m(2) (group 1), and 25-29.9 kg/m(2) (group 2). BMI conveys a 4% drop in NTproBNP per unit increase. This influence remained significant after correction for age, sex, MDRD, NYHA, heart rate, rhythm, and ejection fraction. NTproBNP remained an independent predictor of adverse outcome after correction for age, sex, BMI, NYHA, MDRD, and ejection fraction. Despite numerical differences, prognostic power was comparable between BMI groups (log-transformed NTproBNP; group 1: hazard ratio (HR) 1.435, 95% CI 1.046-1.967, chi(2) 5.02, P = 0.03; group 2: HR 1.604, 95% CI 1.203-2.138, chi(2) 10.36, P = 0.001; group 3: HR 1.735, 95% CI 1.302-2.313, chi(2) 14.12, P = 0.0002) (P = NS, all). An NTproBNP correction factor was calculated. Even matched for NYHA, age, sex, and renal function, BMI exerts a significant and independent inverse influence on NTproBNP in patients with stable CHF. NTproBNP retained equal statistical power in all three BMI groups.

  2. Clinical implications of B-type natriuretic peptide and N-terminal pro--B-type natriuretic peptide in the care of the vascular surgery patient.

    Science.gov (United States)

    Wayne Causey, Marlin; Singh, Niten

    2014-12-01

    B-type natriuretic peptide (also known as brain natriuretic peptide or BNP) is a physiologic marker that is often used to assess a patient's global cardiovascular health. BNP is secreted from the ventricular cardiac myocytes in response to stretch that occurs due to increased intravascular volume. PreproBNP is cleaved into BNP and N-terminal proBNP (NT proBNP) to cause diuresis, natriuresis, and vasodilation, and can be measured with a blood laboratory assay test or point-of-care testing. BNP/NT proBNP has been most extensively studied in the diagnosis and management of heart failure, but within the past 5 years, interest has carried over to vascular surgery patients. Studies have demonstrated that elevated levels of BNP/NT-proBNP (typically >100 pg/mL/>300 pg/mL) are associated with major adverse cardiac events at 30 and 180 days. Additional analysis of BNP/NT-proBNP has demonstrated that patients can be classified as very low risk (400 pg/mL). BNP/NT-proBNP in the low- and very-low-risk groups suggests patients are unlikely to have a major adverse cardiac event. An elevated BNP/NT-proBNP, excluding those with reasons for abnormal values, suggests the need for additional risk stratification and medical risk factor optimization. A preoperative measure of BNP or NT-proBNP affords an easy and rapid opportunity to individually and objectively quantify perioperative cardiovascular risk. Recent studies have also identified other biomarkers, none superior to BNP or NT-proBNP, but that, when used concomitantly, aid in further stratifying perioperative risk and will likely be the focus of future investigations. Published by Elsevier Inc.

  3. Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression.

    Science.gov (United States)

    de Ronde, Dryas; Pasquier, Adrien; Ying, Su; Butterbach, Patrick; Lohuis, Dick; Kormelink, Richard

    2014-02-01

    Recently, Tomato spotted wilt virus (TSWV) nonstructural protein NSs has been identified unambiguously as an avirulence (Avr) determinant for Tomato spotted wilt (Tsw)-based resistance. The observation that NSs from two natural resistance-breaking isolates had lost RNA silencing suppressor (RSS) activity and Avr suggested a link between the two functions. To test this, a large set of NSs mutants was generated by alanine substitutions in NSs from resistance-inducing wild-type strains (NSs(RI) ), amino acid reversions in NSs from resistance-breaking strains (NSs(RB)), domain deletions and swapping. Testing these mutants for their ability to suppress green fluorescent protein (GFP) silencing and to trigger a Tsw-mediated hypersensitive response (HR) revealed that the two functions can be separated. Changes in the N-terminal domain were found to be detrimental for both activities and indicated the importance of this domain, additionally supported by domain swapping between NSs(RI) and NSs(RB). Swapping domains between the closely related Tospovirus Groundnut ringspot virus (GRSV) NSs and TSWV NSs(RI) showed that Avr functionality could not simply be transferred between species. Although deletion of the C-terminal domain rendered NSs completely dysfunctional, only a few single-amino-acid mutations in the C-terminus affected both functions. Mutation of a GW/WG motif (position 17/18) rendered NSs completely dysfunctional for RSS and Avr activity, and indicated a putative interaction between NSs and Argonaute 1 (AGO1), and its importance in TSWV virulence and viral counter defence against RNA interference. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  4. Electrochemiluminescence quenching of luminol by CuS in situ grown on reduced graphene oxide for detection of N-terminal pro-brain natriuretic peptide.

    Science.gov (United States)

    Li, Xiaojian; Lu, Peng; Wu, Bin; Wang, Yaoguang; Wang, Huan; Du, Bin; Pang, Xuehui; Wei, Qin

    2018-07-30

    A novel electrochemiluminescence (ECL) signal-off strategy based on CuS in situ grown on reduced graphene oxide (CuS-rGO) quenching luminol/H 2 O 2 system was firstly proposed. Luminol was grafted on the surface of Au@Fe 3 O 4 -Cu 3 (PO 4 ) 2 nanoflowers (Luminol-Au@Fe 3 O 4 -Cu 3 (PO 4 ) 2 ) which exhibited excellent catalytic effect towards the reduction of H 2 O 2 to enhance the ECL intensity of luminol. Cu 3 (PO 4 ) 2 nanoflowers showed large surface area which can immobilize more Fe 3 O 4 and Au nanoparticles. The quenching mechanism of CuS-rGO was due to ECL resonance energy transfer (RET). The spectral overlap between fluorescence spectrum of Luminol-Au@Fe 3 O 4 -Cu 3 (PO 4 ) 2 and UV-vis absorption spectrum of CuS-rGO revealed that resonance energy transfer was possible. Au nanoparticles were immobilized on the surface of CuS-rGO to capture secondary antibodies. After a sandwich-type immunoreaction, a remarkable decrease of ECL signal was observed. Under the optimal conditions, the immunosensor showed excellent performance for N-terminal pro-brain natriuretic peptide (NT-proBNP) detection with a wide detection range from 0.5 pg mL -1 to 20 ng mL -1 and a low detection limit of 0.12 pg mL -1 (S/N = 3). The prepared NT-proBNP immunosensor displayed high sensitivity, excellent stability and good specificity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Echocardiographic evaluation and N-terminal pro-brain natriuretic peptide measurement of patients hospitalized for heart failure during weaning from mechanical ventilation.

    Science.gov (United States)

    Gerbaud, E; Erickson, M; Grenouillet-Delacre, M; Beauvieux, M-C; Coste, P; Durrieu-Jaïs, C; Hilbert, G; Castaing, Y; Vargas, F

    2012-04-01

    Weaning patients with heart failure who have required mechanical ventilation remains challenging. We evaluated echocardiographic indexes and N-terminal pro-brain natriuretic peptide (NT-proBNP) as markers of acute cardiac dysfunction before and after spontaneous breathing trials (SBT) in such patients to assess their ability to predict subsequent successful extubation. Forty-four patients who underwent their first SBT were prospectively included. Plasma levels of NT-proBNP and transthoracic echocardiography indices including cardiac index, E/A ratio and E/Ea ratio were recorded immediately before commencing and just before the end of SBT. Ten patients (22.7%) failed their SBT. No significant difference was observed concerning baseline echocardiographic data and NT-proBNP level between the patients who succeeded the SBT or those that failed. Cardiac index increased significantly at end-SBT in patients who passed (3.3 [3.06-3.77] vs. 3 [2.68-3.3] L/min/m(2), Pfailed. E/Ea ratio (16.8 [8.5-27.3] vs. 10.7 [6.7-20.5], P=0.006) and NT-proBNP level (8199 [3106-10949] vs. 4200 [1855-7125] pg/mL, P=0.004) increased significantly in those who failed the SBT, in contrast to the weaning success group where they remained unchanged. Neither NT-proBNP level nor the studied echocardiographic indices before SBT were able to predict SBT outcome in patients presenting with severe heart failure. Failure to increase the cardiac index and increases in both E/Ea ratio and NT-proBNP levels were seen at end-SBT in patients who failed the SBT, and may reflect failure of myocardial reserve to cope with the stress of SBT.

  6. A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Atochin, Dmitriy N; Schepetkin, Igor A; Khlebnikov, Andrei I; Seledtsov, Victor I; Swanson, Helen; Quinn, Mark T; Huang, Paul L

    2016-04-08

    The c-Jun N-terminal kinase (JNK) has been shown to be an important regulator of neuronal cell death. Previously, we synthesized the sodium salt of 11H-indeno[1,2-b]quinoxalin-11-one (IQ-1S) and demonstrated that it was a high-affinity inhibitor of the JNK family. In the present work, we found that IQ-1S could release nitric oxide (NO) during its enzymatic metabolism by liver microsomes. Moreover, serum nitrite/nitrate concentration in mice increased after intraperitoneal injection of IQ-1S. Because of these dual actions as JNK inhibitor and NO-donor, the therapeutic potential of IQ-1S was evaluated in an animal stroke model. We subjected wild-type C57BL6 mice to focal ischemia (30min) with subsequent reperfusion (48h). Mice were treated with IQ-1S (25mg/kg) suspended in 10% solutol or with vehicle alone 30min before and 24h after middle cerebral artery (MCA) occlusion (MCAO). Using laser-Doppler flowmetry, we monitored cerebral blood flow (CBF) above the MCA during 30min of MCAO provoked by a filament and during the first 30min of subsequent reperfusion. In mice treated with IQ-1S, ischemic and reperfusion values of CBF were not different from vehicle-treated mice. However, IQ-1S treated mice demonstrated markedly reduced neurological deficit and infarct volumes as compared with vehicle-treated mice after 48h of reperfusion. Our results indicate that the novel JNK inhibitor releases NO during its oxidoreductive bioconversion and improves stroke outcome in a mouse model of cerebral reperfusion. We conclude that IQ-1S is a promising dual functional agent for the treatment of cerebral ischemia and reperfusion injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass.

    Science.gov (United States)

    Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena

    2017-11-14

    Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  8. Preliminary X-Ray Crystallographic Studies of the N-Terminal Domains of Hsp104 from Yeast Candida albicans and Saccharomyces cerevisiae

    Science.gov (United States)

    Wang, P.; Li, J.; Sha, B.

    2017-12-01

    Yeast Hsp104 is an ATP-dependent molecular chaperone, which can solublize and rescue denatured proteins from aggregates into active form by cooperating with Hsp70 and Hsp40 chaperones. Moreover, overexpression of Hsp104 of Saccharomyces cerevisiae (ScHsp104) cures the yeast [ PSI +] prion due to the completely dissolution of the prion seeds, demonstrating ScHsp104's potential to clear amyloid-like protein aggregates, thus making ScHsp104 a promising medication approach for human amyloidogenic neurodegenerative diseases. Because the working mechanisms for ScHsp104's activities have not been clearly elucidated yet, crystallographic determination of ScHsp104 stands for great significance. Here, the expression, purification and crystallization of the N-terminal domains of Hsp104 from yeast Candida albicans (CaHsp104N) and S. cerevisiae (ScHsp104N) are described. The CaHsp104N crystals diffracted to 1.54 Å and belonged to the sp. gr. P3221 or P3121, with unit cell parameters of a = 55.213 Å, c = 109.451 Å. The data of the ScHsp104N crystals were collected to the resolution of 2.53 Å in the sp. gr. C2, with unit cell parameters a = 148.587 Å, b = 66.255 Å, c = 74.577 Å, β = 107.369°. The phase of ScHsp104N is determined by the molecular replacement method using CaHsp104N as the search model.

  9. Cytotoxic Activity of 3,6-Dihydroxyflavone in Human Cervical Cancer Cells and Its Therapeutic Effect on c-Jun N-Terminal Kinase Inhibition

    Directory of Open Access Journals (Sweden)

    Eunjung Lee

    2014-08-01

    Full Text Available Previously we have shown that 3,6-dihydroxyflavone (3,6-DHF is a potent agonist of the human peroxisome proliferator-activated receptor (hPPAR with cytotoxic effects on human cervical cancer cells. To date, the mechanisms by which 3,6-DHF exerts its antitumor effects on cervical cells have not been clearly defined. Here, we demonstrated that 3,6-DHF exhibits a novel antitumor activity against HeLa cells with IC50 values of 25 μM and 9.8 μM after 24 h and 48 h, respectively. We also showed that the anticancer effects of 3,6-DHF are mediated via the toll-like receptor (TLR 4/CD14, p38 mitogen-activated protein kinase (MAPK, Jun-N terminal kinase (JNK, extracellular-signaling regulated kinase (ERK, and cyclooxygenase (COX-2 pathways in lipopolysaccharide (LPS-stimulated RAW264.7 cells. We found that 3,6-DHF showed a similar IC50 (113 nM value to that of the JNK inhibitor, SP600125 (IC50 = 118 nM in a JNK1 kinase assay. Binding studies revealed that 3,6-DHF had a strong binding affinity to JNK1 (1.996 × 105 M−1 and that the 6-OH and the carbonyl oxygen of the C ring of 3,6-DHF participated in hydrogen bonding interactions with the carbonyl oxygen and the amide proton of Met111, respectively. Therefore, 3,6-DHF may be a candidate inhibitor of JNKs, with potent anticancer effects.

  10. Clinical characteristics and serum N-terminal pro-brain natriuretic peptide as a diagnostic marker of Kawasaki disease in infants younger than 3 months of age.

    Science.gov (United States)

    Bae, Hyun Kyung; Lee, Do Kyung; Kwon, Jung Hyun; Kim, Hae Soon; Sohn, Sejung; Hong, Young Mi

    2014-08-01

    The incidence of Kawasaki disease (KD) is rare in young infants (less than 3 months of age), who present with only a few symptoms that fulfill the clinical diagnostic criteria. The diagnosis for KD can therefore be delayed, leading to a high risk of cardiac complications. We examined the clinical characteristics and measured the serum levels of N-terminal pro-brain natriuretic peptide (NT-proBNP) levels of these patients for assessing its value in the early detection of KD. We retrospectively reviewed the data of young infants diagnosed with KD from 2004 to 2012. The control group included 20 hospitalized febrile patients. Laboratory data, including NT-proBNP were obtained for each patient in both groups. Incomplete KD was observed in 21/24 patients (87.5%). The mean fever duration on admission was 1.36±1.0 days in the KD group. Common symptoms included erythema at the site of Bacille Calmette-Guerin inoculation (70.8%), skin rash (50.0%), changes of oropharyngeal mucosa (29.1%), and cervical lymphadenopathy (20.8%). The mean number of major diagnostic criteria fulfilled was 2.8±1.4. Five KD patients (20.8%) had only one symptom matching these criteria. The incidence of coronary artery complications was 12.5%. The mean serum NT-proBNP level in the acute phase, in the KD and control groups, were 4,159±3,714 pg/mL and 957±902 pg/mL, respectively, which decreased significantly in the convalescent phase. Incomplete KD was observed in 87.5% patients. Serum NT-proBNP might be a valuable biomarker for the early detection of KD in febrile infants aged <3 months.

  11. Epicardial fat thickness in stable coronary artery disease: its relationship with high-sensitive cardiac troponin T and N-terminal pro-brain natriuretic peptide.

    Science.gov (United States)

    Börekçi, Abdurrezzak; Gür, Mustafa; Özaltun, Betül; Baykan, Ahmet Oytun; Harbalioğlu, Hazar; Seker, Taner; Sen, Ömer; Acele, Armağan; Gözükara, Mehmet Yavuz; Kuloğlu, Osman; Koç, Mevlüt; Çayli, Murat

    2014-12-01

    Epicardial adipose tissue is related to coronary atherosclerosis, left ventricle hypertrophy, myocardial dysfunction, cardiomyopathy, and inflammation, which produces a variety of cytokines that influence key pathogenic mechanisms of atherogenesis. The main goal of this study is to examine the relationship between epicardial fat thickness (EFT) and cardiovascular risk markers as well as the complexity of coronary artery disease (CAD) in patients with stable CAD. We prospectively included 439 stable CAD patients undergoing coronary angiography in the present study (mean age: 62.2±10.7 years). Patients were divided into two groups (EFTlow and EFThigh groups) according to their median EFT values. EFT was evaluated by two-dimensional echocardiography before angiography. The SYNTAX score was calculated in all patients. N-terminal pro-brain natriuretic peptide (NT-proBNP), high-sensitive C-reactive protein (hs-CRP), high-sensitive cardiac troponin T (hs-cTnT), uric acid, and other biochemical markers were also measured. Age, SYNTAX score, frequencies of diabetes, hyperlipidemia, and hypertension, NT-proBNP, hs-CRP, hs-cTnT, and uric acid levels were higher in EFThigh group compared with the EFTlow group (P<0.05 for all). EFT was associated independently with age (β=-0.102, P=0.001), diabetes (β=-0.083, P=0.011), SYNTAX score (β=0.352, P<0.001), hs-CRP level (β=0.217, P<0.001), hs-cTnT level (β=0.197, P<0.001), and NT-proBNP level (β=0.300, P<0.001) in multivariate analysis. EFT obtained by echocardiograpy may not only be an easy tool but also an important tool for early detection of increased cardiac risk as well as the extent and complexity of CAD in patients with stable CAD.

  12. Usefulness of repeated N-terminal pro-B-type natriuretic peptide measurements as incremental predictor for long-term cardiovascular outcome after vascular surgery.

    Science.gov (United States)

    Goei, Dustin; van Kuijk, Jan-Peter; Flu, Willem-Jan; Hoeks, Sanne E; Chonchol, Michel; Verhagen, Hence J M; Bax, Jeroen J; Poldermans, Don

    2011-02-15

    Plasma N-terminal pro-B-type natriuretic peptide (NT-pro-BNP) levels improve preoperative cardiac risk stratification in vascular surgery patients. However, single preoperative measurements of NT-pro-BNP cannot take into account the hemodynamic stress caused by anesthesia and surgery. Therefore, the aim of the present study was to assess the incremental predictive value of changes in NT-pro-BNP during the perioperative period for long-term cardiac mortality. Detailed cardiac histories, rest left ventricular echocardiography, and NT-pro-BNP levels were obtained in 144 patients before vascular surgery and before discharge. The study end point was the occurrence of cardiovascular death during a median follow-up period of 13 months (interquartile range 5 to 20). Preoperatively, the median NT-pro-BNP level in the study population was 314 pg/ml (interquartile range 136 to 1,351), which increased to a median level of 1,505 pg/ml (interquartile range 404 to 6,453) before discharge. During the follow-up period, 29 patients (20%) died, 27 (93%) from cardiovascular causes. The median difference in NT-pro-BNP in the survivors was 665 pg/ml, compared to 5,336 pg/ml in the patients who died (p = 0.01). Multivariate Cox regression analyses, adjusted for cardiac history and cardiovascular risk factors (age, angina pectoris, myocardial infarction, stroke, diabetes mellitus, renal dysfunction, body mass index, type of surgery and the left ventricular ejection fraction), demonstrated that the difference in NT-pro-BNP level between pre- and postoperative measurement was the strongest independent predictor of cardiac outcome (hazard ratio 3.06, 95% confidence interval 1.36 to 6.91). In conclusion, the change in NT-pro-BNP, indicated by repeated measurements before surgery and before discharge is the strongest predictor of cardiac outcomes in patients who undergo vascular surgery. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The interrelationship between preoperative anemia and N-terminal pro-B-type natriuretic peptide: the effect on predicting postoperative cardiac outcome in vascular surgery patients.

    Science.gov (United States)

    Goei, Dustin; Flu, Willem-Jan; Hoeks, Sanne E; Galal, Wael; Dunkelgrun, Martin; Boersma, Eric; Kuijper, Ruud; van Kuijk, Jan-Peter; Winkel, Tamara A; Schouten, Olaf; Bax, Jeroen J; Poldermans, Don

    2009-11-01

    N-terminal pro-B-type natriuretic peptide (NT-proBNP) predicts adverse cardiac outcome in patients undergoing vascular surgery. However, several conditions might influence this prognostic value, including anemia. In this study, we evaluated whether anemia confounds the prognostic value of NT-proBNP for predicting cardiac events in patients undergoing vascular surgery. A detailed cardiac history, resting echocardiography, and hemoglobin and NT-proBNP levels were obtained in 666 patients before vascular surgery. Anemia was defined as serum hemoglobin value of NT-proBNP for the prediction of the composite end point. Multivariable regression analysis was used to assess the additional value of NT-proBNP for the prediction of postoperative cardiac events in nonanemic and anemic patients. Anemia was present in 206 patients (31%) before surgery. Hemoglobin level was inversely related with the NT-proBNP levels (beta coefficient = -2.242; P = 0.025). The optimal predictive cutoff value of NT-proBNP for predicting the composite cardiovascular outcome was 350 pg/mL. After adjustment for clinical cardiac risk factors, both anemia (odds ratio [OR] 1.53; 95% confidence interval [CI]: 1.07-2.99) and increased levels of NT-proBNP (OR 4.09; 95% CI: 2.19-7.64) remained independent predictors for postoperative cardiac events. However, increased levels of NT-proBNP were not predictive for the risk of adverse cardiac events in the subgroup of anemic patients (OR 2.16; 95% CI: 0.90-5.21). Both anemia and NT-proBNP are independently associated with an increased risk for postoperative cardiac events in patients undergoing vascular surgery. NT-proBNP has less predictive value in anemic patients.

  14. Diagnostic and prognostic value of N-terminal pro B-type natriuretic peptide (NT-proBNP) in patients with chronic aortic regurgitation.

    Science.gov (United States)

    Weber, Michael; Hausen, Michael; Arnold, Roman; Moellmann, Helge; Nef, Holger; Elsaesser, Albrecht; Mitrovic, Vesselin; Hamm, Christian

    2008-07-21

    BNP and its N-terminal fragment NT-proBNP have proven to be of diagnostic and prognostic value in patients with valvular aortic stenosis. Data regarding those biomarkers in patients with chronic aortic regurgitation (AR) are sparse. Thus it was the aim of the present study to evaluate the diagnostic and the long term prognostic value of NT-proBNP in patients presenting with AR. This study included 60 patients with isolated AR of varying severity (AR I mild, AR II moderate and AR III severe) and preserved left ventricular function. Patients were followed over a median period of 824 (770-921) days. NT-proBNP at baseline was related to disease severity and to functional status (161 (70-456) pg/ml in AR I, 226 (100-666) pg/ml in AR II and 1268 (522-5446) pg/ml in AR III (p=0.003)). Patients (n=6) experiencing an adverse event had higher NT-proBNP values at baseline as event free survivors (1271 (613-2992) pg/ml vs. 215 (92-534) pg/ml; p=0.034). The AUC of the ROC curve for NT-proBNP as a predictor for an adverse event was 0.76 (pvalue of 602 pg/ml. Consequently, in Kaplan-Meier analysis NT-proBNP values dichotomised at this cut-off were able to discriminate patients with an adverse outcome in the entire study group (Log rank 9.98, p=0.0016) and even better in the conservative group (Log rank 26.92, p<0.001). NT-proBNP is linked to disease severity in patients with chronic aortic regurgitation reflecting hemodynamic stress due to volume overload. It provides prognostic information for the clinical outcome and thus might be a useful biomarker for risk stratification.

  15. Association of N-terminal pro-brain natriuretic peptide with the severity of coronary artery disease in patients with normal left ventricular ejection fraction.

    Science.gov (United States)

    Wu, Naqiong; Ma, Fenglian; Guo, Yuanlin; Li, Xiaoling; Liu, Jun; Qing, Ping; Xu, Ruixia; Zhu, Chenggang; Jia, Yanjun; Liu, Geng; Dong, Qian; Jiang, Lixin; Li, Jianjun

    2014-01-01

    Backround N-terminal pro-brain natriuretic peptide (NT-proBNP) is a reliable predictor in acute coronary artery disease (CAD). Little is known about patients with stable CAD, especially Chinese patients with CAD. The aim of the present study was to investigate the association of NT-proBNP levels with the severity of CAD in patients with normal left ventricular ejection fraction. A total of 658 consecutive patients were divided into two groups based on angiograms: CAD group (n = 484) and angiographic normal control group (n = 174). The severity of CAD was evaluated by modified Gensini score, and its relationship with NT-proBNP was analyzed. The prevalence of risk factors such as age, male gender, diabetes mellitus (DM), dyslipidemia, smoking, and family history of CAD in the CAD group were higher than that in the control group. In multivariate regression model analysis, age, gender, and DM were determinants of the presence of CAD. NT-pro BNP was found to be an independent predictor for CAD (OR:1.66 (95% CI: 1.06-2.61), P value of 641.15 pmol/L was identified as a cut-off value in the diagnosis or exclusion of CAD (area under curve (AUC) = 0.56, 95% CI: 0.51-0.61). Furthermore, NT-proBNP was positively correlated with Gensini score (r = 0.14, P < 0.001) in patients with CAD. NT-proBNP was an independent predictor for Chinese patients with CAD, suggesting that the NT-proBNP level might be associated with the presence and the severity of CAD.

  16. Relation between N-terminal pro-brain natriuretic peptide levels and response to enhanced external counterpulsation in chronic angina pectoris.

    Science.gov (United States)

    Sahlén, Anders; Wu, Eline; Rück, Andreas; Hagerman, Inger; Förstedt, Gunilla; Sylvén, Christer; Berglund, Margareta; Jernberg, Tomas

    2014-01-01

    Although enhanced external counterpulsation (EECP) provides symptom reduction in many patients with severe angina pectoris, one-quarter of patients fail to respond. Earlier reports have not clearly established whether and how EECP responders may be identified pre-hoc. We hypothesized that clinical and biochemical data may be used to predict EECP response. We explored a database of n=53 patients who had undergone clinically indicated EECP during 35 1-h sessions in our unit (65±7 years; 49 male), and sought to clarify which factors are predictive of response. Efficiency of counterpulsation was measured as the diastolic augmentation (DA) ratio, and was recorded both at beginning and end of the EECP treatment course. An increase in 6-min walk (6MW) distance of 5% was indicative of clinical response. Response occurred in 28 patients (53%; nonresponse in n=25, 47%). Responders had shorter baseline 6MW distance (377±81 vs. 445±62 m; P<0.01), lower left ventricular ejection fraction (48±9 vs. 54±8%; P<0.05), frequently had an increase in DA ratio during the EECP treatment course (23/28 vs. 5/28 with unchanged or decreased DA ratio; P<0.05), and higher levels of N-terminal pro-brain natriuretic peptide [NT-proBNP; 256 (123-547) vs. 62 (26-444) ng/l, P<0.01]. In multivariate logistic regression, response was independently predicted by baseline 6MW distance and baseline NT-proBNP levels (P<0.05 for both; model sensitivity: 82%, specificity: 72%, accuracy: 79%). There is larger clinical benefit of EECP in patients with greater functional impairment and higher levels of NT-proBNP.

  17. N-terminal pro brain natriuretic peptide on admission for early risk stratification of patients with chest pain and no ST-segment elevation.

    Science.gov (United States)

    Jernberg, Tomas; Stridsberg, Mats; Venge, Per; Lindahl, Bertil

    2002-08-07

    The study evaluated the prognostic value of single measurement of N-terminal pro brain natriuretic peptide (NT-proBNP) obtained on admission in patients with symptoms suggestive of an acute coronary syndrome and no ST-segment elevation. Patients with symptoms suggestive of an acute coronary syndrome and no ST-segment elevation constitute a large and heterogeneous population. Early risk stratification has been based on clinical background factors, electrocardiography (ECG) and biochemical markers of myocardial damage. The neurohormonal activation has, so far, received less attention. The NT-proBNP was analyzed on admission in 755 patients admitted because of chest pain and no ST-segment elevation. Patients were followed concerning death for 40 months (median). The median NT-proBNP level was 400 (111 to 1646) ng/l. Compared to the lowest quartile, patients in the second, third and fourth quartiles had a relative risk of subsequent death of 4.2 (1.6 to 11.1), 10.7 (4.2 to 26.8) and 26.6 (10.8 to 65.5), respectively. When NT-proBNP was added to a Cox regression model including clinical background factors, ECG and troponin T, the NT-proBNP levels were independently associated with prognosis. A single measurement of NT-proBNP on admission will substantially improve the early risk stratification of patients with symptoms suggestive of an acute coronary syndrome and no ST-segment elevation. A combination of clinical background factors, ECG, troponin T and NT-proBNP obtained on admission will provide a highly discerning tool for risk stratification and further clinical decisions.

  18. Domain swapping reveals that the N-terminal domain of the sensor kinase KdpD in Escherichia coli is important for signaling

    Directory of Open Access Journals (Sweden)

    Lippert Marie-Luise

    2009-07-01

    Full Text Available Abstract Background The KdpD/KdpE two-component system of Escherichia coli regulates expression of the kdpFABC operon encoding the high affinity K+ transport system KdpFABC. The input domain of KdpD comprises a domain that belongs to the family of universal stress proteins (Usp. It has been previously demonstrated that UspC binds to this domain, resulting in KdpD/KdpE scaffolding under salt stress. However the mechanistic significance of this domain for signaling remains unclear. Here, we employed a "domain swapping" approach to replace the KdpD-Usp domain with four homologous domains or with the six soluble Usp proteins of E. coli. Results Full response to salt stress was only achieved with a chimera that contains UspC, probably due to unaffected scaffolding of the KdpD/KdpE signaling cascade by soluble UspC. Unexpectedly, chimeras containing either UspF or UspG not only prevented kdpFABC expression under salt stress but also under K+ limiting conditions, although these hybrid proteins exhibited kinase and phosphotransferase activities in vitro. These are the first KdpD derivatives that do not respond to K+ limitation due to alterations in the N-terminal domain. Analysis of the KdpD-Usp tertiary structure revealed that this domain has a net positively charged surface, while UspF and UspG are characterized by net negative surface charges. Conclusion The Usp domain within KdpD not only functions as a binding surface for the scaffold UspC, but it is also important for KdpD signaling. We propose that KdpD sensing/signaling involves alterations of electrostatic interactions between the large N- and C-terminal cytoplasmic domains.

  19. N-terminal Pro-brain Natriuretic Peptide, High-sensitivity Troponin and Pulmonary Artery Clot Score as Predictors of Right Ventricular Dysfunction in Echocardiography.

    Science.gov (United States)

    Granér, Marit; Harjola, Veli-Pekka; Selander, Tuomas; Laiho, Mia K; Piilonen, Anneli; Raade, Merja; Mustonen, Pirjo

    2016-06-01

    We investigated the ability of cardiac biomarkers and total pulmonary artery (PA) clot score to predict right ventricular dysfunction (RVD) on admission and at seven-month follow-up in subjects with acute pulmonary embolism (APE). Sixty-three normotensive patients with APE were divided into two groups: patients with (n= 32, age 58±19 years) and without (n=31, age 55±16 years) echocardiographic RVD. Transthoracic echocardiography (TTE), N-terminal pro-brain natriuretic peptide (NT-proBNP), and high-sensitivity troponin T (hsTnT) were assessed upon arrival and repeated at seven months. Total PA clot score was determined on admission. The age- and sex dependent NT-proBNP on admission, on day 5, and at seven months exhibited the best sensitivity (admission 94%, day 5 100%, seven months 100%) and negative predictive value (NPV) (89%, 100%, 100%) for detecting RVD. Six patients (10%) had persistent RVD at seven months. Total PA clot score showed only low to moderate sensitivity (77%) and PPV (7%) for detection of RVD at seven months. Normal age- and sex dependent NT-proBNP on admission or measured five days later seems to be useful in exclusion of RVD at follow up. Total PA clot score shows only to be of modest benefit for predicting persistent RVD. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  20. Right ventricular function and N-terminal pro-brain natriuretic peptide levels in adult patients with simple dextro-transposition of the great arteries.

    Science.gov (United States)

    Martínez-Quintana, Efrén; Marrero-Negrín, Natalia; Gopar-Gopar, Silvia; Rodríguez-González, Fayna

    2017-06-01

    Dextro-transposition of the great arteries (d-TGA) patients is at high risk of developing right ventricular dysfunction and tricuspid regurgitation in adulthood. Determining the relation between echocardiographic parameters, N-terminal pro-brain natriuretic peptide (NT-pro-BNP) levels and the New York Heart Association (NYHA) functional class may help determining the best time to operate them. Patients with simple d-TGA operated in infancy with an atrial switch procedure (Mustard or Senning operation) were followed up in our Adult Congenital Heart Disease Unit. Analytical, echocardiographic, and clinical parameters were determined to evaluate the correlation between right echocardiographic ventricular function, NT-pro-BNP levels, and NYHA functional class. Twenty-four patients with d-TGA were operated in infancy of whom 17 alive patients had simple d-TGA. Nine patients had NT-pro-BNP levels lower than 200 pg/mL and eight patients were above 200 pg/mL. Patients with lower hemoglobin concentration, higher right ventricular diameter or under diuretic treatment showed significant higher NT-pro-BNP levels (above 200 pg/dL). The Spearman test showed a positive correlation between basal right ventricular diameter and tricuspid regurgitation with pro NT BNP levels (correlation coefficient of .624; P=.017 and .490; P=.046, respectively) and a negative correlation with the right ventricle fractional area change (-.508, P=.045). No correlation was seen between NT-pro-BNP levels and the rest of echocardiographic parameters or the NYHA functional class. NT-pro-BNP levels showed a positive correlation with basal right ventricular diameter and tricuspid regurgitation but not with NYHA association functional class in d-TGA patients. © 2017, Wiley Periodicals, Inc.

  1. Utility of N-terminal pro-brain natriuretic peptide for assessing hemodynamic significance of patent ductus arteriosus in dogs undergoing ductal repair.

    Science.gov (United States)

    Hariu, Crystal D; Saunders, Ashley B; Gordon, Sonya G; Norby, Bo; Miller, Matthew W

    2013-09-01

    Determine if plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) correlates with markers of hemodynamically significant patent ductus arteriosus (PDA) in dogs. Ten dogs with PDA and 30 healthy dogs of similar ages. Prospective case series with control population. Dogs with PDA were initially evaluated with thoracic radiographs, transthoracic echocardiography, pulmonary capillary wedge pressure (PCWP) and NT-proBNP. Following ductal occlusion, NT-proBNP and echocardiography were repeated within 24 h and at day 90. PCWP was repeated at day 90. Correlation between NT-proBNP and hemodynamic measurements was assessed, and accuracy of NT-proBNP for identifying PDA severity was estimated. NT-proBNP was significantly higher (median; absolute range) in dogs with PDA (895; 490-7118 pmol/L) than controls (663; 50-1318 pmol/L) (p = 0.025). NT-proBNP decreased significantly 90 days post-ductal closure (597; 154-1858 pmol/L) (p = 0.013). Left atrial and ventricular size decreased significantly within 24 h and at day 90 as did PCWP (day 90 only). NT-proBNP correlated with vertebral heart size (VHS) and indexed left ventricular systolic diameter (iLVIDs); concentrations ≥ 1224 pmol/L distinguished dogs with elevated VHS and iLVIDs. NT-proBNP is elevated in dogs with PDA, decreases following PDA closure and correlates with select radiographic and echocardiographic markers of cardiac remodeling. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Formation of large viroplasms and virulence of Cauliflower mosaic virus in turnip plants depend on the N-terminal EKI sequence of viral protein TAV.

    Directory of Open Access Journals (Sweden)

    Angèle Geldreich

    Full Text Available Cauliflower mosaic virus (CaMV TAV protein (TransActivator/Viroplasmin plays a pivotal role during the infection cycle since it activates translation reinitiation of viral polycistronic RNAs and suppresses RNA silencing. It is also the major component of cytoplasmic electron-dense inclusion bodies (EDIBs called viroplasms that are particularly evident in cells infected by the virulent CaMV Cabb B-JI isolate. These EDIBs are considered as virion factories, vehicles for CaMV intracellular movement and reservoirs for CaMV transmission by aphids. In this study, focused on different TAV mutants in vivo, we demonstrate that three physically separated domains collectively participate to the formation of large EDIBs: the N-terminal EKI motif, a sequence of the MAV domain involved in translation reinitiation and a C-terminal region encompassing the zinc finger. Surprisingly, EKI mutant TAVm3, corresponding to a substitution of the EKI motif at amino acids 11-13 by three alanines (AAA, which completely abolished the formation of large viroplasms, was not lethal for CaMV but highly reduced its virulence without affecting the rate of systemic infection. Expression of TAVm3 in a viral context led to formation of small irregularly shaped inclusion bodies, mild symptoms and low levels of viral DNA and particles accumulation, despite the production of significant amounts of mature capsid proteins. Unexpectedly, for CaMV-TAVm3 the formation of viral P2-containing electron-light inclusion body (ELIB, which is essential for CaMV aphid transmission, was also altered, thus suggesting an indirect role of the EKI tripeptide in CaMV plant-to-plant propagation. This important functional contribution of the EKI motif in CaMV biology can explain the strict conservation of this motif in the TAV sequences of all CaMV isolates.

  3. Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway.

    Science.gov (United States)

    Gong, Juanjuan; Sun, Fumou; Li, Yihang; Zhou, Xiaoling; Duan, Zhenzhen; Duan, Fugang; Zhao, Lei; Chen, Hansen; Qi, Suhua; Shen, Jiangang

    2015-04-01

    Momordica charantia (MC) is a medicinal plant for stroke treatment in Traditional Chinese Medicine, but its active compounds and molecular targets are unknown yet. M. charantia polysaccharide (MCP) is one of the important bioactive components in MC. In the present study, we tested the hypothesis that MCP has neuroprotective effects against cerebral ischemia/reperfusion injury through scavenging superoxide (O2(-)), nitric oxide (NO) and peroxynitrite (ONOO(-)) and inhibiting c-Jun N-terminal protein kinase (JNK3) signaling cascades. We conducted experiments with in vivo global and focal cerebral ischemia/reperfusion rat models and in vitro oxygen glucose deprivation (OGD) neural cells. The effects of MCP on apoptotic cell death and infarction volume, the bioactivities of scavenging O2(-), NO and ONOO(-), inhibiting lipid peroxidation and modulating JNK3 signaling pathway were investigated. Major results are summarized as below: (1) MCP dose-dependently attenuated apoptotic cell death in neural cells under OGD condition in vitro and reduced infarction volume in ischemic brains in vivo; (2) MCP had directing scavenging effects on NO, O2(-) and ONOO(-) and inhibited lipid peroxidation; (3) MCP inhibited the activations of JNK3/c-Jun/Fas-L and JNK3/cytochrome C/caspases-3 signaling cascades in ischemic brains in vivo. Taken together, we conclude that MCP could be a promising neuroprotective ingredient of M. charantia and its mechanisms could be at least in part attributed to its antioxidant activities and inhibiting JNK3 signaling cascades during cerebral ischemia/reperfusion injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. N-Terminal pro-Brain Natriuretic Peptide and Associations With Brain Magnetic Resonance Imaging (MRI Features in Middle Age: The CARDIA Brain MRI Study

    Directory of Open Access Journals (Sweden)

    Ian T. Ferguson

    2018-05-01

    Full Text Available ObjectiveAs part of research on the heart–brain axis, we investigated the association of N-terminal pro-brain natriuretic peptide (NT-proBNP with brain structure and function in a community-based cohort of middle-aged adults from the Brain Magnetic Resonance Imaging sub-study of the Coronary Artery Risk Development in Young Adults (CARDIA Study.Approach and resultsIn a cohort of 634 community-dwelling adults with a mean (range age of 50.4 (46–52 years, we examined the cross-sectional association of NT-proBNP to total, gray (GM and white matter (WM volumes, abnormal WM load and WM integrity, and to cognitive function tests [the Digit Symbol Substitution Test (DSST, the Stroop test, and the Rey Auditory–Verbal Learning Test]. These associations were examined using linear regression models adjusted for demographic and cardiovascular risk factors and cardiac output. Higher NT-proBNP concentration was significantly associated with smaller GM volume (β = −3.44; 95% CI = −5.32, −0.53; p = 0.003, even after additionally adjusting for cardiac output (β = −2.93; 95% CI = −5.32, −0.53; p = 0.017. Higher NT-proBNP levels were also associated with lower DSST scores. NT-proBNP was not related to WM volume, WM integrity, or abnormal WM load.ConclusionIn this middle-aged cohort, subclinical levels of NT-proBNP were related to brain function and specifically to GM and not WM measures, extending similar findings in older cohorts. Further research is warranted into biomarkers of cardiac dysfunction as a target for early markers of a brain at risk.

  5. The pestivirus N terminal protease N(pro redistributes to mitochondria and peroxisomes suggesting new sites for regulation of IRF3 by N(pro..

    Directory of Open Access Journals (Sweden)

    Matthew Jefferson

    Full Text Available The N-terminal protease of pestiviruses, N(pro is a unique viral protein, both because it is a distinct autoprotease that cleaves itself from the following polyprotein chain, and also because it binds and inactivates IRF3, a central regulator of interferon production. An important question remains the role of N(pro in the inhibition of apoptosis. In this study, apoptotic signals induced by staurosporine, interferon, double stranded RNA, sodium arsenate and hydrogen peroxide were inhibited by expression of wild type N(pro, but not by mutant protein N(pro C112R, which we show is less efficient at promoting degradation of IRF3, and led to the conclusion that N(pro inhibits the stress-induced intrinsic mitochondrial pathway through inhibition of IRF3-dependent Bax activation. Both expression of N(pro and infection with Bovine Viral Diarrhea Virus (BVDV prevented Bax redistribution and mitochondrial fragmentation. Given the role played by signaling platforms during IRF3 activation, we have studied the subcellular distribution of N(pro and we show that, in common with many other viral proteins, N(pro targets mitochondria to inhibit apoptosis in response to cell stress. N(pro itself not only relocated to mitochondria but in addition, both N(pro and IRF3 associated with peroxisomes, with over 85% of N(pro puncta co-distributing with PMP70, a marker for peroxisomes. In addition, peroxisomes containing N(pro and IRF3 associated with ubiquitin. IRF3 was degraded, whereas N(pro accumulated in response to cell stress. These results implicate mitochondria and peroxisomes as new sites for IRF3 regulation by N(pro, and highlight the role of these organelles in the anti-viral pathway.

  6. The pestivirus N terminal protease N(pro) redistributes to mitochondria and peroxisomes suggesting new sites for regulation of IRF3 by N(pro.).

    Science.gov (United States)

    Jefferson, Matthew; Whelband, Matthew; Mohorianu, Irina; Powell, Penny P

    2014-01-01

    The N-terminal protease of pestiviruses, N(pro) is a unique viral protein, both because it is a distinct autoprotease that cleaves itself from the following polyprotein chain, and also because it binds and inactivates IRF3, a central regulator of interferon production. An important question remains the role of N(pro) in the inhibition of apoptosis. In this study, apoptotic signals induced by staurosporine, interferon, double stranded RNA, sodium arsenate and hydrogen peroxide were inhibited by expression of wild type N(pro), but not by mutant protein N(pro) C112R, which we show is less efficient at promoting degradation of IRF3, and led to the conclusion that N(pro) inhibits the stress-induced intrinsic mitochondrial pathway through inhibition of IRF3-dependent Bax activation. Both expression of N(pro) and infection with Bovine Viral Diarrhea Virus (BVDV) prevented Bax redistribution and mitochondrial fragmentation. Given the role played by signaling platforms during IRF3 activation, we have studied the subcellular distribution of N(pro) and we show that, in common with many other viral proteins, N(pro) targets mitochondria to inhibit apoptosis in response to cell stress. N(pro) itself not only relocated to mitochondria but in addition, both N(pro) and IRF3 associated with peroxisomes, with over 85% of N(pro) puncta co-distributing with PMP70, a marker for peroxisomes. In addition, peroxisomes containing N(pro) and IRF3 associated with ubiquitin. IRF3 was degraded, whereas N(pro) accumulated in response to cell stress. These results implicate mitochondria and peroxisomes as new sites for IRF3 regulation by N(pro), and highlight the role of these organelles in the anti-viral pathway.

  7. Generation and characterization of polyclonal antibodies specific to N-terminal extension of p85 isoform of ribosomal protein S6 kinase 1 (p85 S6K1

    Directory of Open Access Journals (Sweden)

    Savinska L. O.

    2015-08-01

    Full Text Available Aim. Generation of polyclonal antibodies specific to the ribosomal protein S6 kinase isoform – p85S6K1 and directed to the N-terminal (1–23 aa extension of p85S6K1. Methods. Animal immunization with synthetic (1–23 aa peptide, ELISA, Western blot, Immunoprecipitation, immunofluorescent analysis. Results. Polyclonal antibodies have been generated, which specifically recognize only p85 but not p70 isoform of S6K1 in western blot, immunoprecipitation and immunofluorescence analysis. Conclusions. The obtained antibodies can be recommended for studies on the p85S6K1 and other S6K1 isoforms possessing the N-terminal extension – the identification of binding protein partners, analysis of subcellular localization under different physiological conditions, elucidation of the signal transduction pathways involving different S6K1 isoforms.

  8. Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-β Variants and Structural Analysis by Solution NMR Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Christina Dammers

    Full Text Available Alzheimer's disease (AD is the leading cause of dementia in the elderly and is characterized by memory loss and cognitive decline. Pathological hallmark of AD brains are intracellular neurofibrillary tangles and extracellular amyloid plaques. The major component of these plaques is the highly heterogeneous amyloid-β (Aβ peptide, varying in length and modification. In recent years pyroglutamate-modified amyloid-β (pEAβ peptides have increasingly moved into the focus since they have been described to be the predominant species of all N-terminally truncated Aβ. Compared to unmodified Aβ, pEAβ is known to show increased hydrophobicity, higher toxicity, faster aggregation and β-sheet stabilization and is more resistant to degradation. Nuclear magnetic resonance (NMR spectroscopy is a particularly powerful method to investigate the conformations of pEAβ isoforms in solution and to study peptide/ligand interactions for drug development. However, biophysical characterization of pEAβ and comparison to its non-modified variant has so far been seriously hampered by the lack of highly pure recombinant and isotope-enriched protein. Here we present, to our knowledge, for the first time a reproducible protocol for the production of pEAβ from a recombinant precursor expressed in E. coli in natural isotope abundance as well as in uniformly [U-15N]- or [U-13C, 15N]-labeled form, with yields of up to 15 mg/l E. coli culture broth. The chemical state of the purified protein was evaluated by RP-HPLC and formation of pyroglutamate was verified by mass spectroscopy. The recombinant pyroglutamate-modified Aβ peptides showed characteristic sigmoidal aggregation kinetics as monitored by thioflavin-T assays. The quality and quantity of produced pEAβ40 and pEAβ42 allowed us to perform heteronuclear multidimensional NMR spectroscopy in solution and to sequence-specifically assign the backbone resonances under near-physiological conditions. Our results suggest

  9. [Effect of Acupuncture Intervention on c-jun N-terminal Kinase Signaling in the Hippocampus in Rats with Forced Swimming Stress].

    Science.gov (United States)

    Guo, Yu; Xu, Ke; Bao, Wu-ye; Wang, Yu; Zhang, Xu-hui; Xu, Ming-min; Yu, Miao; Zhang, Chun-tao; Zhao, Bing-cong; Wu, Ji-hong; Tu, Ya

    2016-02-01

    To observe the effect of acupuncture on c-jun N-terminal Kinase (JNK) signaling in the hippocampus in rats with forced-swimming stress, so as to reveal its underlying mechanism in relieving depression-like motor response. Forty-eight Sprague-Dawley rats were randomly divided into 8 groups as control, control + JNK inhibitor (SP 600125) , model, model + SP 600125, acupuncture, acupuncture + SP 600125, Fluoxetine (an anti-depressant) , and Fluoxetine + SP 600125 (n = 6 in each group). The depression-like behavior (immobility) model was established by forcing the rat to swim in a glass-cylinder and solitary raise. Acupuncture stimulation was applied to "Baihui" (GV-20) and "Yintang" (GV 29) for 20 min before forced swimming and once again 24 h later.. The rats of the Fluoxetine and Fluoxetine+ SP 600125 groups were treated by intragastric administration of fluoxetine 10 mL (1.8 mg)/kg before forced swimming and once again 24 h thereafter. The rats of the model + SP 600125 and acupuncture + SP 600125 groups were treated by intraperitoneal injection of SP 600125 (10 mg/kg) 90 min before forced swimming and 30 min before acupuncture intervention, respectively. The immobility duration of rats in the water glass-cylinder was used to assess their depression-like behavior response. The expression levels of protein kinase kinase 4 (MKK 4), MKK 7, JNK, and phosphorylated JNK (p-JNK) in the hippocampus were detected by Western blot. Compared to the control group, the duration of immobility, and the expression levels of hippocampal MKK 4, MKK 7, and p-JNK proteins w