WorldWideScience

Sample records for n-nitrosodiethylamine-induced liver tumorigenesis

  1. Exacerbation of N-nitrosodiethylamine Induced Hepatotoxicity and DNA Damage in Mice Exposed to Chronic Unpredictable Stress

    Directory of Open Access Journals (Sweden)

    Nayeem Bilal

    2017-06-01

    Full Text Available Psychological stress contributes to increased susceptibility to a number of diseases including cancer. The present study was designed to assess the effect of chronic unpredictable stress on N-nitrosodiethylamine induced liver toxicity in terms of in vivo antioxidant status and DNA damage in Swiss albino mice. The animals used in this study were randomized into different groups based on the treatment with N-nitrosodiethylamine or chronic unpredictable stress alone and post-stress administration of N-nitrosodiethylamine. The mice were sacrificed after 12 weeks of treatment, and the status of major enzymatic and non-enzymatic antioxidants, liver function markers, lipid peroxidation and the extent of DNA damage were determined in circulation and liver tissues of all the groups. The N-nitrosodiethylamine treated group showed significantly compromised levels of the antioxidant enzymes, lipid peroxidation, and the liver function markers with enhanced DNA damage as compared to chronic unpredictable stress or control groups. A similar but less typical pattern observed in the chronic unpredictable stress treated mice. All the measured biochemical parameters were significantly altered in the group treated with the combination of chronic unpredictable stress and N-nitrosodiethylamine when compared to controls, or chronic unpredictable stress alone and/or N-nitrosodiethylamine alone treated groups. Thus, exposure to continuous, unpredictable stress conditions even in general life may significantly enhance the hepatotoxic potential of N-nitrosodiethylamine through an increase in the oxidative stress and DNA damage.

  2. Carvacrol attenuates N-nitrosodiethylamine induced liver injury in experimental Wistar rats

    Directory of Open Access Journals (Sweden)

    Balan Rajan

    2015-06-01

    Full Text Available Carvacrol is a main constituent in the essential oils of countless aromatic plants including Origanum Vulgare and Thymus vulgari, which has been assessed for substantial pharmacological properties. In recent years, notable research has been embarked on to establish the biological actions of Carvacrol for its promising use in clinical applications. The present study is an attempt to reveal the protective role of Carvacrol against N-Nitrosodiethylamine (DEN induced hepatic injury in male Wistar albino rats. DEN is an egregious toxin, present in numerous environmental factors, which enhances chemical driven liver damage by inducing oxidative stress and cellular injury. Administration of DEN (200 mg/kg bodyweight, I.P to rats results in elevated marker enzymes (in both serum and tissue. Carvacrol (15 mg/kg body weight suppressed the elevation of marker enzymes (in both serum and tissue and augmented the antioxidants levels. The hoisted activities of Phase I enzymes and inferior activities of Phase II enzymes were observed in DEN-administered animals, whereas Carvacrol treated animals showed improved near normal activity. Histological observations also support the protective role of Carvacrol against DEN induced liver damage. Final outcome from our findings intimate that Carvacrol might be beneficial in attenuating toxin induced liver damage.

  3. Curcumin Attenuates N-Nitrosodiethylamine-Induced Liver Injury in Mice by Utilizing the Method of Metabonomics.

    Science.gov (United States)

    Qiu, Peiyu; Sun, Jiachen; Man, Shuli; Yang, He; Ma, Long; Yu, Peng; Gao, Wenyuan

    2017-03-08

    N-Nitrosodiethylamine (DEN) exists as a food additive in cheddar cheese, processed meats, beer, water, and so forth. It is a potent hepatocarcinogen in animals and humans. Curcumin as a natural dietary compound decreased DEN-induced hepatocarcinogenesis in this research. According to the histopathological examination of liver tissues and biomarker detection in serum and livers, it was demonstrated that curcumin attenuated DEN-induced hepatocarcinogenesis through parts of regulating the oxidant stress enzymes (T-SOD and CAT), liver function (ALT and AST) and LDHA, AFP level, and COX-2/PGE2 pathway. Furthermore, curcumin attenuated metabolic disorders via increasing concentration of glucose and fructose, and decreasing levels of glycine and proline, and mRNA expression of GLUT1, PKM and FASN. Docking study indicated that curcumin presented strong affinity with key metabolism enzymes such as GLUT1, PKM, FASN and LDHA. There were a number of amino acid residues involved in curcumin-targeting enzymes of hydrogen bonds and hydrophobic interactions. All in all, curcumin exhibited a potent liver protective agent inhibiting chemically induced liver injury through suppressing liver cellular metabolism in the prospective application.

  4. Dynamic contrast enhanced MR imaging for evaluation of angiogenesis of hepatocellular nodules in liver cirrhosis in N-nitrosodiethylamine induced rat model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Chen, Hui Juan; Huang, Wei; Zhang, Long Jiang [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Wang, Zhen J. [University of California, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2017-05-15

    To investigate whether dynamic contrast -enhanced MRI (DCE-MRI) can distinguish the type of liver nodules in a rat model with N-nitrosodiethylamine- induced cirrhosis. Liver nodules in cirrhosis were induced in 60 male Wistar rats via 0.01 % N-nitrosodiethylamine in the drinking water for 35-100 days. The nodules were divided into three groups: regenerative nodule (RN), dysplastic nodule (DN), and hepatocellular carcinoma (HCC). DCE-MRI was performed, and parameters including transfer constant (K{sup trans}), rate constant (K{sub ep}), extravascular extracellular space volume fraction (V{sub e}), and initial area under the contrast concentration versus time curve (iAUC) were measured and compared. The highest K{sup trans} and iAUC values were seen in HCC, followed by DN and RN (all P < 0.05). The area under the receiver operating characteristic curve (AUROC) for DN and HCC were 0.738 and 0.728 for K{sup trans} and iAUC, respectively. The AUROC for HCC were 0.850 and 0.840 for K{sup trans} and iAUC, respectively. Ordinal logistic regression analysis showed that K{sup trans} had a high goodness of fit (0.970, 95 % confidence interval, 13.751-24.958). DCE-MRI is a promising method to differentiate of liver nodules. Elevated K{sup trans} suggested that the nodules may be transformed into HCC. (orig.)

  5. Foetal distribution and metabolism of N-Nitrosodiethylamine in mice

    International Nuclear Information System (INIS)

    Brittebo, E.B.; Lindgren, A.; Tjaelve, A.

    1981-01-01

    In pregnant NMRI mice, low-temperature autoradiography was used to study the distribution of N- 14 C-nitrosodiethylamine in foetal tissues, and autoradiography with heated tape-sections was used to trace nonvolatile metabolites. Autoradiography with 14 C-acetate was used to distinquish the part of the radiography which upon the degradation of N- 14 C-nitrosodiethylamine may be incorporated in the normal metabolism of the tissues. The results indicated that the non-metabolized N-nitrosodiethylamine passed to the foetuses with an even distribution in most foetal tissues on all the studied days of gestation (day 12, 14, 16 and 18). The autoradiographic results further indicated a metabolism of the substance in the mucosa of the foetal bronchial tree and in the foetal liver on day 18 of gestation, but not in earlier stages of pregnancy. This was substantiated by studies in vitro, which showed a marked capacity of the 18 day old foetal lung and liver (in contrast to tissues from 16 day old foetuses) to form 14 CO 2 from the N- 14 C-nitrosodiethylamine. Since the lung and liver are target tissues for the transplacental carcinogenesis of N-nitrosodiethylamine in NMRI mice, a causal relationship between metabolic ability and carcinogenesis may exist in these tissues. (Author)

  6. Protective Effect of Prosopis cineraria Against N-Nitrosodiethylamine Induced Liver Tumor by Modulating Membrane Bound Enzymes and Glycoproteins

    Directory of Open Access Journals (Sweden)

    Naina Mohamed Pakkir Maideen

    2012-06-01

    Full Text Available Purpose: The objective of the present study was to evaluate the protective effect of methanol extract of Prosopis cineraria (MPC against N-nitrosodiethylamine (DEN, 200mg/kg induced Phenobarbital promoted experimental liver tumors in male Wistar rats. Methods: The rats were divided into four groups, each group consisting of six animals. Group 1 served as control animals. Liver tumor was induced in group 2, 3, and 4 and Group 3 animals received MPC 200mg/kg and Group 4 animals received MPC 400mg/kg. Results: Administration of DEN has brought down the levels of membrane bound enzymes like Na+/ K+ ATPase, Mg2+ ATPase and Ca2+ATPase which were later found to be increased by the administration of Prosopis cineraria (200 and 400mg/kg in dose dependent manner. The MPC extract also suppressed the levels of glycoproteins like Hexose, Hexosamine and Sialic acid when compared to liver tumor bearing animals. Conclusions: Our study suggests that MPC may extend its protective role by modulating the levels of membrane bound enzymes and suppressing glycoprotein levels.

  7. Hepatoprotective and Antioxidant activity of Scoparia dulcis Linn, against N Nitrosodiethylamine (DEN) induced Hepatotoxicity in experimental Rats

    OpenAIRE

    Langeswaran K; Jagadeesan A. J; Vijayaprakash S; Balasubramanian M. P

    2012-01-01

    Scoparia dulcis Linn, belongs to the family Scrophulariaceae and have speculated Medicinal properties. In this present investigation, the antioxidant and hepatoprotective activity of the aqueous extracts of Scoparia dulcis was evaluated against N-nitrosodiethylamine (DEN) induced liver cirrhosis in experimental rats. In group III hepatotoxicity induced animals, an oral dose of 500 mg/kg, of the aqueous extracts of Scoparia dulcis exhibited a significant (P

  8. Compound list: nitrosodiethylamine [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available nitrosodiethylamine DEN 00145 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATES...s/LATEST/Rat/in_vitro/nitrosodiethylamine.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tgg...ates/LATEST/Rat/in_vivo/Liver/Single/nitrosodiethylamine.Rat.in_vivo.Liver.Single....zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/nitrosodiethylamine.Rat.in_vivo.Liver.Repeat.zip ... ...T/Human/in_vitro/nitrosodiethylamine.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggate

  9. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Subhayan, E-mail: subhayansur18@gmail.com [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Pal, Debolina; Roy, Rituparna; Barua, Atish [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Roy, Anup [North Bengal Medical College and Hospital, West Bengal (India); Saha, Prosenjit [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Panda, Chinmay Kumar, E-mail: ckpanda.cnci@gmail.com [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India)

    2016-06-01

    The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30th weeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30th week. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF. - Highlights: • Simultaneous tongue and liver carcinogenesis in mice by oral NDEA administration • Restriction of both carcinogenesis by EGCG and TF at early pre-malignant stages • The mechanisms of carcinogenesis and restriction were similar in both the organs. • Changes in proliferation

  10. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice

    International Nuclear Information System (INIS)

    Sur, Subhayan; Pal, Debolina; Roy, Rituparna; Barua, Atish; Roy, Anup; Saha, Prosenjit; Panda, Chinmay Kumar

    2016-01-01

    The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30th weeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30th week. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF. - Highlights: • Simultaneous tongue and liver carcinogenesis in mice by oral NDEA administration • Restriction of both carcinogenesis by EGCG and TF at early pre-malignant stages • The mechanisms of carcinogenesis and restriction were similar in both the organs. • Changes in proliferation

  11. Protective Effect of Morus alba Leaf Extract on N-Nitrosodiethylamine-induced Hepatocarcinogenesis in Rats.

    Science.gov (United States)

    Kujawska, Małgorzata; Ewertowska, Małgorzata; Adamska, Teresa; Ignatowicz, Ewa; Flaczyk, Ewa; Przeor, Monika; Kurpik, Monika; Liebert, Jadwiga Jodynis

    The leaves of white mulberry (Morus alba L.) contain various polyphenolic compounds possessing strong antioxidant activity and anticancer potential. This study was designed to investigate the chemopreventive effect of aqueous extract of mulberry leaves against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. Wistar rats were divided into four groups: control, mulberry extract-treated, NDEA-treated, and mulberry extract plus NDEA-treated. Mulberry extract was given in the diet (1,000 mg/kg b.w./day); NDEA was given in drinking water. Mulberry extract reduced the incidence of hepatocellular carcinoma, dysplastic nodules, lipid peroxidation, protein carbonyl formation, and DNA degradation. Treatment with mulberry leaf extract along with NDEA challenge did not affect the activity of antioxidant enzymes and glutathione content. Treatment with mulberry leaf extract partially protected the livers of rats from NDEA-induced hepatocarcinogenesis and a direct antioxidant mechanism appears to contribute to its anticarcinogenic activity. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Therapeutic Efficacy of Allyl Isothiocyanate Evaluated on N-Nitrosodiethylamine/Phenobarbitol induced Hepatocarcinogenesis in Wistar Rats

    Directory of Open Access Journals (Sweden)

    G. Thiyagarajan

    2010-07-01

    Full Text Available N-nitrosodiethylamine (NDEA is a potential carcinogenic agent that induces liver cancer. To evaluate the chemotherapeutic effect of Allyl isothiocyanate in the experimental model, Wistar male rats were administered single dose of intraperitoneal (IP injection of NDEA. Two weeks after administration of NDEA, Phenobarbital at the concentration of 0.05% was incorporated in rat chow for up to 14 successive weeks to promote liver cancer. Allyl isothiocyanate (AITC (2mg/kg body weight in addition with 0.5ml of corn oil was given orally on a daily basis. At the end of this experimental period, the rats were sacrificed and the blood samples were taken for biochemical studies. The levels of the marker enzymes for liver function were measured in serum. The results of the biochemical studies showed that NDEA administration followed by phenobarbital induces macro and microscopic liver tumors that increase the levels of marker enzymes and decreases the level of antioxidant in the serum in addition to loss of body weight. Conclusively, the administration of AITC as therapeutic treatment for hepatocarcinoma has significantly reduced the tumor development and counteracted all the biochemical effects induced by NDEA.

  13. Chitosan nanoparticles from marine squid protect liver cells against N-diethylnitrosoamine-induced hepatocellular carcinoma.

    Science.gov (United States)

    Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-09-01

    Rationale of this study was framed to investigate the protective effect and anti-cancer property of nanoparticles based on chitosan isolated from squid, Sepioteuthis lessoniana, on hepatic cells in N-Nitrosodiethylamine-induced hepatocellular carcinoma in rats. The results conferred that the chitosan nanoparticle supplementation had a protective effect on liver cells by reducing the levels of marker enzymes and bilirubin and thus increasing the albumin levels. The level of reduced glutathione, ascorbic acid and α-tocopherol significantly increased in both post- and pre-treatment with chitosan nanoparticles. The levels of antioxidant enzymes were enhanced and lipid peroxidation products were diminished while treating nitrosodiethylamine-induced hepatocellular carcinoma with chitosan nanoparticles. Supplementation of chitosan nanoparticles had potent anti-hyperlipidemic property that was evidenced by monitoring the serum lipid levels and its components. Animals pre-treated with chitosan nanoparticles along with nitrosodiethylamine showed a significant reduction in the total cholesterol and triglycerides levels with increase in the levels of phospholipids and free fatty acids. Chitosan nanoparticles treated rats showed significant increment in high-density lipoprotein cholesterol and reduction in low-density lipoprotein and very low-density lipoprotein cholesterol when compared with levels in nitrosodiethylamine-induced hepatocellular carcinoma. Nitrosodiethylamine-induced carcinoma changes on circulation and hepatic antioxidant defense mechanism were regulated by chitosan nanoparticles, concluding that the chitosan nanoparticles have a potent protective effect on liver cells which might be due to its robust antioxidant and anti-lipidemic property. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chemopreventive effects of embelin and curcumin against N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats.

    Science.gov (United States)

    Sreepriya, M; Bali, Geetha

    2005-09-01

    The effects of embelin (50 mg/kg/day), a benzoquinone derivative of Embelia ribes, and the effects of curcumin (100 mg/kg/day), the active principle of Curcuma longa, against N-nitrosodiethylamine (DENA)-initiated and phenobarbital (PB)-promoted hepatocarcinogenesis were studied in Wistar rats. They were able to prevent the induction of hepatic hyper plastic nodules, body weight loss, increase in the levels of hepatic diagnostic markers, and hypoproteinemia induced by DENA/PB treatment. Hence, results of our study suggest the possible chemopreventive effects of embelin (EMB) and curcumin (CUR) against DENA/PB-induced hepatocarcinogenesis in Wistar rats.

  15. Protective Effects of Total Glucosides of Paeony on N-nitrosodiethylamine-induced Hepatocellular Carcinoma in Rats via Down-regulation of Regulatory B Cells.

    Science.gov (United States)

    Song, S S; Yuan, P F; Li, P P; Wu, H X; Ni, W J; Lu, J T; Wei, W

    2015-01-01

    Total glucoside of paeony (TGP), extracted from the root of Paeonia Lactiflora, has been known to show anti-inflammatory, anti-oxidative, hepato-protective and immuno-regulatory activities. The aim of this present study was to determine the anti-tumor effect of TGP against N-nitrosodiethylamine (DEN)-induced hepatocellular carcinoma (HCC) in rats, and to find the related mechanisms. Rat HCC model was established by intragastrically administrating with DEN (8 mg/kg). We found the number of tumor nodules and the index of liver and spleen were increased in the model group compared with the normal group, and was significantly decreased by TGP. Additionally, TGP obviously improved the hepatic pathological lesions induced by DEN, and decreased the elevated levels of serum alanine aminotransferase (ALT), glutamic oxalacetic transaminase (AST), alkaline phosphatase (ALP) and alpha fetoprotein (AFP) by DEN. Moreover, TGP decreased the level of B cell-activating factor (BAFF) and the proportion of IL-10-producing regulatory B cells (Bregs), and the decrease of BAFF by TGP is positively correlated to the decrease of IL-10-producing Bregs by TGP. These results suggest that TGP had a good therapeutic action on DEN-induced HCC rats, which might be due to its down-regulation of Bregs through reducing the level of BAFF.

  16. Effects of whole-body γ-irradiation on lipid peroxidation and anti-oxidant enzymes in the liver of N-nitrosodiethylamine-treated mice

    International Nuclear Information System (INIS)

    Grudzinski, I.P.; Frankiewicz-Jozko, A; Gajewska, J.; Szczypka, M.; Szymanski, A.

    2000-01-01

    B6c3F1 mice were treated per os with either normal saline or N-nitrosodiethylamine (NDEA) (0.01, 0.1, 1.0 or 5.0 mg/kg body weight) daily for 21 days. On day 22 nd of the experiment , the animals were whole-body γ-irradiated (10 Gy) and examined at 3.5 days post-radiation exposure. Pretreatment of mice with NDEA at the lowest dosage (0.01 and 0.1 mg/kg) increased thiobarbituric acid-reactive substances (TBARS) and catalase (CAT) activity in the liver. Since the agent at the highest doses (1.0 and 5.0 mg/kg) did not have any effects on TBARS, it was associated with the selective increase of thiol (SH) groups and GSH-linked anti-oxidant enzyme activities such as glutathione peroxidase (GPX), transferase (GST) and reductase (GR). γ-irradiation decreased TBARS and increased superoxide dismutase (SOD) and GPX activity in NDEA-treated mice. Simultaneously, γ-rays did not have any effects on GST and GR enzymes, and it slightly decreased SH groups and CAT activity. Results of the present study indicate that NDEA can promote lipid peroxidation in mice liver. γ-irradiation of mice at a dose of 10 Gy modifies the activity of hepatic anti-oxidant enzymes, which in turn can lead to the reduction of NDEA-induced lipid peroxidation and/or pro-oxidant shift(s). The anti-oxidant enzymes such as SOD and GPX are suggested to be mainly involved in this process. (author)

  17. Immunohistochemical, histopathological study and chemoprotective effect of Solanum nigrum in N-nitrosodiethylamine-induced hepatocellular carcinoma in Wistar rats

    Directory of Open Access Journals (Sweden)

    G. M. Akshatha

    2018-04-01

    Full Text Available Background and Aim: Cancer is a devastating disease with a severe impact on the physical and psychological well-being of patients. Hepatocellular carcinoma (HCC has been reported in various species of animals including dogs, cats, sheep, and pigs. The present study aimed to study the immunohistochemical and histopathological changes and chemoprotective effect of aqueous and alcoholic extracts of Solanum nigrum on N-nitrosodiethylamine (NDEA-induced HCC rat model. Materials and Methods: Eighty-two male Wistar rats of 15 weeks of age weighing 200-250 g were selected for the experiment. They were randomly divided into ten groups. Group I served as normal control consisted of healthy rats. HCC was induced in Group II, IV, V, VI, VII, and X rats using NDEA as inducing agent followed by phenobarbitone as a promoter for 16 weeks. Group II rats were kept untreated as HCC control. Group III rats were kept as vehicle control (0.05% Sodium bicarbonate. Group IV and V rats were treated with aqueous extract of S. nigrum at 200 mg/kg and 400 mg/kg, respectively, and Group VI and VII rats were treated with an alcoholic extract of S. nigrum at 200 mg/kg and 400 mg/kg, respectively, daily orally for 28 days. Group X rats were treated with sorafenib as reference drug at a dose of 11.4 mg/kg daily orally for 28 days. Group VIII and IX rats were kept as aqueous and alcoholic extract control for studying the effect of the same on normal rats. Liver samples were collected to study the gross and histopathological lesions and the activity of cleaved caspase-3 and chemopreventive effect of aqueous and alcoholic extracts of S. nigrum on HCC. Results: The liver sections of rats from HCC control (Group II showed loss of lobular architecture, necrosis, fatty change, enlarged and darkened nuclei with variable size, dilatation of hepatic sinusoids with Kupffer cell hyperplasia, dilatation and proliferation of bile duct, and intranuclear vacuoles and also showed the presence

  18. Non-invasive monitoring of carcinogenesis in N-nitrosodiethylamine induced liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Hui; Kang, Joo Hyun; Lee, Yong Jin; Lee, Tae Sup; Kim, Kwang Il; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Young Seo [Kyungwon University, Seongnam (Korea, Republic of)

    2010-10-15

    Molecular imaging based on reporter gene expression allows tissue-specific events or processes to be measured using the bioluminescence imaging (BLI) reporter gene expression vector controlled by specific enhancer/promoters. Alpha-fetoprotein (AFP), which is a tumor marker, is a serum glycoprotein that is expressed normally by fetal liver and yolk-sac cells, as well as in trace amounts in the fetal gastrointestinal tract. The serum concentration of AFP decreases rapidly after birth and its expression is repressed in adults. Approximately 80% of HCC patients show an increase in the AFP level. Therefore, AFP has been used for many years as a diagnostic and prognostic serum marker for HCC and transgenic system for AFP was proposed as a valuable tool for elucidation of mechanism of transcriptional regulation during liver development and hepatocarcinogenesis. In this study, firefly luciferase (fLuc) expressing transgenic mice controlled by the AFP enhancer/ promoter (enh/promoter) were produced to screen for the development of AFP-producing liver cancer. These models are expected to be useful for monitoring agents or drugs that modulate the AFP level as well as for measuring the specific signaling events important for liver cancer development

  19. [The elaboration of gas chromatographic method of the determination of N-nitrosamines (N-nitrosodimethylamine, N-nitrosodiethylamine) in biological samples (urine)].

    Science.gov (United States)

    Zaytseva, N V; Ulanova, T S; Nurislamova, T V; Popova, N A

    2014-01-01

    The issues of the elaboration of a method for the determination of N-nitrosamines (N-nitrosodimethylamine, N-nitrosodiethylamine) in urine by means of the method of capillary gas chromatography with the use of a thermionic detector are considered. There were performed investigations on the study of the efficacy of the extraction of N-nitrosamines from the urine by steam distillation and gas chromatographic detection of headspace. With the aim of the maximal recovery of N-nitrosamines from the urine and setting parameters of the extraction two method were used to prepare the bioassay for the analysis the alkalization with potassium hydroxide and the addition of salting out reagent--neutral salts of alkali and alkaline earth metals. During the process of performed studies there was found that the greatest degree of extraction of N-nitrosamines from the urine by the method of headspace analysis is achieved if using the salting-out agent in an amount of 16 g of sodium sulfate and for N-nitrosodimethylamine is 99%, for N-nitrosodiethylamine--100%.

  20. A high level of liver-specific expression of oncogenic KrasV12 drives robust liver tumorigenesis in transgenic zebrafish

    Directory of Open Access Journals (Sweden)

    Anh Tuan Nguyen

    2011-11-01

    Human liver cancer is one of the deadliest cancers worldwide, with hepatocellular carcinoma (HCC being the most common type. Aberrant Ras signaling has been implicated in the development and progression of human HCC, but a complete understanding of the molecular mechanisms of this protein in hepatocarcinogenesis remains elusive. In this study, a stable in vivo liver cancer model using transgenic zebrafish was generated to elucidate Ras-driven tumorigenesis in HCC. Using the liver-specific fabp10 (fatty acid binding protein 10 promoter, we overexpressed oncogenic krasV12 specifically in the transgenic zebrafish liver. Only a high level of krasV12 expression initiated liver tumorigenesis, which progressed from hyperplasia to benign and malignant tumors with activation of the Ras-Raf-MEK-ERK and Wnt–β-catenin pathways. Histological diagnosis of zebrafish tumors identified HCC as the main lesion. The tumors were invasive and transplantable, indicating malignancy of these HCC cells. Oncogenic krasV12 was also found to trigger p53-dependent senescence as a tumor suppressive barrier in the pre-neoplastic stage. Microarray analysis of zebrafish liver hyperplasia and HCC uncovered the deregulation of several stage-specific and common biological processes and signaling pathways responsible for krasV12-driven liver tumorigenesis that recapitulated the molecular hallmarks of human liver cancer. Cross-species comparisons of cancer transcriptomes further defined a HCC-specific gene signature as well as a liver cancer progression gene signature that are evolutionarily conserved between human and zebrafish. Collectively, our study presents a comprehensive portrait of molecular mechanisms during progressive Ras-induced HCC. These observations indicate the validity of our transgenic zebrafish to model human liver cancer, and this model might act as a useful platform for drug screening and identifying new therapeutic targets.

  1. Time course evaluation of N-nitrosodialkylamines-induced DNA alkylation and oxidation in liver of mosquito fish

    International Nuclear Information System (INIS)

    Chao, M.-R.; Chang, Y.-Z.; Wong, R.-H.; Hu, C.-W.

    2009-01-01

    Here we simultaneously measured N7-alkylguanines and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in liver of small fish, respectively, to assess the time course of the formation and removal of alkylation and oxidative damage to DNA caused by N-nitrosodialkylamines. Mosquito fish (Gambusia affinis) were killed at various times during (4 days) and post-exposure (16 days) to N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) alone or their combination with concentrations of 10 and 50 mg/l. The modified guanine adducts were sensitively and selectively quantitated by isotope-dilution LC-MS/MS methods. During exposure, N7-methylguanine (N7-MeG) and N7-ethylguanine (N7-EtG) in liver DNA increased with the duration and dose of N-nitrosodialkylamine exposure, while 8-oxodG was dose-dependently induced within 1 day. It was found that NDMA formed substantially more N7-alkylated guanines and 8-oxodG than NDEA on the basis of adducts formed per micromolar concentration, suggesting that NDMA can be more easily bioactivated than NDEA to form reactive alkylating agents with the concomitant formation of oxygen radicals. After cessation of exposure, N7-alkylguanines remained elevated for 1 day and then gradually decreased over time but still higher than the background levels, even at day 16 (half-lives of 7-8 days). However, 8-oxodG was excised quickly from liver DNA and returned to the background level within 4 days post-exposure (half-lives less than 2 days). Taken together, this study firstly demonstrated that in addition to alkylation, N-nitrosodialkylamines can concurrently cause oxidative damage to DNA in vivo

  2. Time course evaluation of N-nitrosodialkylamines-induced DNA alkylation and oxidation in liver of mosquito fish

    Energy Technology Data Exchange (ETDEWEB)

    Chao, M -R [Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan (China); Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung 402, Taiwan (China); Chang, Y -Z [Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung 402, Taiwan (China); Wong, R -H [Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan (China); Hu, C.-W. [Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan (China)], E-mail: windyhu@csmu.edu.tw

    2009-01-15

    Here we simultaneously measured N7-alkylguanines and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in liver of small fish, respectively, to assess the time course of the formation and removal of alkylation and oxidative damage to DNA caused by N-nitrosodialkylamines. Mosquito fish (Gambusia affinis) were killed at various times during (4 days) and post-exposure (16 days) to N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) alone or their combination with concentrations of 10 and 50 mg/l. The modified guanine adducts were sensitively and selectively quantitated by isotope-dilution LC-MS/MS methods. During exposure, N7-methylguanine (N7-MeG) and N7-ethylguanine (N7-EtG) in liver DNA increased with the duration and dose of N-nitrosodialkylamine exposure, while 8-oxodG was dose-dependently induced within 1 day. It was found that NDMA formed substantially more N7-alkylated guanines and 8-oxodG than NDEA on the basis of adducts formed per micromolar concentration, suggesting that NDMA can be more easily bioactivated than NDEA to form reactive alkylating agents with the concomitant formation of oxygen radicals. After cessation of exposure, N7-alkylguanines remained elevated for 1 day and then gradually decreased over time but still higher than the background levels, even at day 16 (half-lives of 7-8 days). However, 8-oxodG was excised quickly from liver DNA and returned to the background level within 4 days post-exposure (half-lives less than 2 days). Taken together, this study firstly demonstrated that in addition to alkylation, N-nitrosodialkylamines can concurrently cause oxidative damage to DNA in vivo.

  3. Time course evaluation of N-nitrosodialkylamines-induced DNA alkylation and oxidation in liver of mosquito fish

    Energy Technology Data Exchange (ETDEWEB)

    Chao, M.-R. [Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan (China); Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung 402, Taiwan (China); Chang, Y.-Z. [Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung 402, Taiwan (China); Wong, R.-H. [Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan (China); Hu, C.-W. [Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan (China)], E-mail: windyhu@csmu.edu.tw

    2009-01-15

    Here we simultaneously measured N7-alkylguanines and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in liver of small fish, respectively, to assess the time course of the formation and removal of alkylation and oxidative damage to DNA caused by N-nitrosodialkylamines. Mosquito fish (Gambusia affinis) were killed at various times during (4 days) and post-exposure (16 days) to N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) alone or their combination with concentrations of 10 and 50 mg/l. The modified guanine adducts were sensitively and selectively quantitated by isotope-dilution LC-MS/MS methods. During exposure, N7-methylguanine (N7-MeG) and N7-ethylguanine (N7-EtG) in liver DNA increased with the duration and dose of N-nitrosodialkylamine exposure, while 8-oxodG was dose-dependently induced within 1 day. It was found that NDMA formed substantially more N7-alkylated guanines and 8-oxodG than NDEA on the basis of adducts formed per micromolar concentration, suggesting that NDMA can be more easily bioactivated than NDEA to form reactive alkylating agents with the concomitant formation of oxygen radicals. After cessation of exposure, N7-alkylguanines remained elevated for 1 day and then gradually decreased over time but still higher than the background levels, even at day 16 (half-lives of 7-8 days). However, 8-oxodG was excised quickly from liver DNA and returned to the background level within 4 days post-exposure (half-lives less than 2 days). Taken together, this study firstly demonstrated that in addition to alkylation, N-nitrosodialkylamines can concurrently cause oxidative damage to DNA in vivo.

  4. Ligand activation of peroxisome proliferator-activated receptor-β/δ suppresses liver tumorigenesis in hepatitis B transgenic mice

    International Nuclear Information System (INIS)

    Balandaram, Gayathri; Kramer, Lance R.; Kang, Boo-Hyon; Murray, Iain A.; Perdew, Gary H.; Gonzalez, Frank J.; Peters, Jeffrey M.

    2016-01-01

    Highlights: • The role of PPARβ/δ in HBV-induced liver cancer was examined. • PPARβ/δ inhibits steatosis, inflammation, tumor multiplicity and promotes apoptosis. • Kupffer cell PPARβ/δ mediates these effects independent of DNA binding. - Abstract: Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits steatosis and inflammation, known risk factors for liver cancer. In this study, the effect of ligand activation of PPARβ/δ in modulating liver tumorigenesis in transgenic hepatitis B virus (HBV) mice was examined. Activation of PPARβ/δ in HBV mice reduced steatosis, the average number of liver foci, and tumor multiplicity. Reduced expression of hepatic CYCLIN D1 and c-MYC, tumor necrosis factor alpha (Tnfa) mRNA, serum levels of alanine aminotransaminase, and an increase in apoptotic signaling was also observed following ligand activation of PPARβ/δ in HBV mice compared to controls. Inhibition of Tnfa mRNA expression was not observed in wild-type hepatocytes. Ligand activation of PPARβ/δ inhibited lipopolysaccharide (LPS)-induced mRNA expression of Tnfa in wild-type, but not in Pparβ/δ-null Kupffer cells. Interestingly, LPS-induced expression of Tnfa mRNA was also inhibited in Kupffer cells from a transgenic mouse line that expressed a DNA binding mutant form of PPARβ/δ compared to controls. Combined, these results suggest that ligand activation of PPARβ/δ attenuates hepatic tumorigenesis in HBV transgenic mice by inhibiting steatosis and cell proliferation, enhancing hepatocyte apoptosis, and modulating anti-inflammatory activity in Kupffer cells.

  5. Aerosolized 3-bromopyruvate inhibits lung tumorigenesis without causing liver toxicity.

    Science.gov (United States)

    Zhang, Qi; Pan, Jing; North, Paula E; Yang, Shoua; Lubet, Ronald A; Wang, Yian; You, Ming

    2012-05-01

    3-Bromopyruvate, an alkylating agent and a well-known inhibitor of energy metabolism, has been proposed as a specific anticancer agent. However, the chemopreventive effect of 3-bromopyruvate in lung tumorigenesis has not been tested. In this study, we investigated the chemopreventive activity of 3-bromopyruvate in a mouse lung tumor model. Benzo(a)pyrene was used to induce lung tumors, and 3-bromopyruvate was administered by oral gavage to female A/J mice. We found that 3-bromopyruvate significantly decreased tumor multiplicity and tumor load by 58% and 83%, respectively, at a dose of 20 mg/kg body weight by gavage. Due to the known liver toxicity of 3-bromopyruvate in animal models given large doses of 3-bromopyruvate, confirmed in this study, we decided to test the chemopreventive activity of aerosolized 3-bromopyruvate in the same lung tumor model. As expected, aerosolized 3-bromopyruvate similarly significantly decreased tumor multiplicity and tumor load by 49% and 80%, respectively, at a dose of 10 mg/mL by inhalation. Interestingly, the efficacy of aerosolized 3-bromopyruvate did not accompany any liver toxicity indicating that it is a safer route of administering this compound. Treatment with 3-bromopyruvate increased immunohistochemical staining for cleaved caspase-3, suggesting that the lung tumor inhibitory effects of 3-bromopyruvate were through induction of apoptosis. 3-Bromopyruvate also dissociated hexokinase II from mitochondria, reduced hexokinase activity, and blocked energy metabolism in cancer cells, finally triggered cancer cell death and induced apoptosis through caspase-3, and PARP in human lung cancer cell line. The ability of 3-bromopyruvate to inhibit mouse lung tumorigenesis, in part through induction of apoptosis, merits further investigation of this compound as a chemopreventive agent for human lung cancer.

  6. Sex-dependent Differences in Intestinal Tumorigenesis Induced in Apc1638N/+ Mice by Exposure to {gamma} Rays

    Energy Technology Data Exchange (ETDEWEB)

    Trani, Daniela [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Maastricht Radiation Oncology (MaastRO) Lab, GROW-School for Oncology and Developmental Biology, University of Maastricht (Netherlands); Moon, Bo-Hyun [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Kallakury, Bhaskar; Hartmann, Dan P. [Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Datta, Kamal [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Fornace, Albert J., E-mail: af294@georgetown.edu [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia (United States); Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (United States); Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah (Saudi Arabia)

    2013-01-01

    Purpose: The purpose of the present study was to assess the effect of 1 and 5 Gy radiation doses and to investigate the interplay of gender and radiation with regard to intestinal tumorigenesis in an adenomatous polyposis coli (APC) mutant mouse model. Methods and Materials: Apc1638N/+ female and male mice were exposed whole body to either 1 Gy or 5 Gy of {gamma} rays and euthanized when most of the treated mice became moribund. Small and large intestines were processed to determine tumor burden, distribution, and grade. Expression of proliferation marker Ki-67 and estrogen receptor (ER)-{alpha} were also assessed by immunohistochemistry. Results: We observed that, with both 1 Gy and 5 Gy of {gamma} rays, females displayed reduced susceptibility to radiation-induced intestinal tumorigenesis compared with males. As for radiation effect on small intestinal tumor progression, although no substantial differences were found in the relative frequency and degree of dysplasia of adenomas in irradiated animals compared with controls, invasive carcinomas were found in 1-Gy- and 5-Gy-irradiated animals. Radiation exposure was also shown to induce an increase in protein levels of proliferation marker Ki-67 and sex-hormone receptor ER-{alpha} in both non tumor mucosa and intestinal tumors from irradiated male mice. Conclusions: We observed important sex-dependent differences in susceptibility to radiation-induced intestinal tumorigenesis in Apc1638N/+ mutants. Furthermore, our data provide evidence that exposure to radiation doses as low as 1 Gy can induce a significant increase in intestinal tumor multiplicity as well as enhance tumor progression in vivo.

  7. Removal of the precursors of N-nitrosodiethylamine (NDEA), an emerging disinfection byproduct, in drinking water treatment process and its toxicity to adult zebrafish (Danio rerio).

    Science.gov (United States)

    Zheng, Jian; Lin, Tao; Chen, Wei

    2018-01-01

    N-nitrosodiethylamine (NDEA) is one of the emerging nitrogenous disinfection byproducts with probable cytotoxicity, genotoxicity, and carcinogenesis. Its potential toxicological effects have received extensive attention but remain to be poorly understood. In this study, changes in NDEA precursors in drinking water treatment process were studied using the trial of its formation potential (FP), and the toxicity induced by NDEA to adult zebrafish was investigated. NDEA FP in the raw water of Taihu Lake ranged from 46.9 to 68.3 ng/L. The NDEA precursors were removed effectively by O 3 /BAC process. Hydrophilic fraction and low-molecular-weight fraction (stress and antioxidant defense to zebrafish metabolism system at concentrations over 5 μg/L. After a 42-day exposure, a significant DNA damage was observed in zebrafish liver cells at NDEA concentrations beyond 500 μg/L. This study investigated NDEA properties in both engineering prospective and toxicity evaluation, thus providing comprehensive information on its control in drinking water treatment process and its toxicity effect on zebrafish as a model animal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model.

    Science.gov (United States)

    Achiwa, Koichi; Ishigami, Masatoshi; Ishizu, Yoji; Kuzuya, Teiji; Honda, Takashi; Hayashi, Kazuhiko; Hirooka, Yoshiki; Katano, Yoshiaki; Goto, Hidemi

    2016-01-29

    Nonalcoholic steatohepatitis (NASH) patients progress to liver cirrhosis and even hepatocellular carcinoma (HCC). Several lines of evidence indicate that accumulation of lipopolysaccharide (LPS) and disruption of gut microbiota play contributory roles in HCC. Moreover, in a dextran sodium sulfate (DSS)-induced colitis model in mice, a high-fat diet increases portal LPS level and promotes hepatic inflammation and fibrosis. However, this diet-induced NASH model requires at least 50 weeks for carcinogenesis. In this study, we sought to determine whether increased intestinal permeability would aggravate liver inflammation and fibrosis and accelerate tumorigenesis in a diet-induced NASH model. Mice were fed a choline-deficient high-fat (CDHF) diet for 4 or 12 weeks. The DSS group was fed CDHF and intermittently received 1% DSS in the drinking water. Exposure to DSS promoted mucosal changes such as crypt loss and increased the number of inflammatory cells in the colon. In the DSS group, portal LPS levels were elevated at 4 weeks, and the proportions of Clostridium cluster XI in the fecal microbiota were elevated. In addition, levels of serum transaminase, number of lobular inflammatory cells, F4/80 staining-positive area, and levels of inflammatory cytokines were all elevated in the DSS group. Liver histology in the DSS group revealed severe fibrosis at 12 weeks. Liver tumors were detected in the DSS group at 12 weeks, but not in the other groups. Thus, DSS administration promoted liver tumors in a CDHF diet-induced NASH mouse over the short term, suggesting that the induction of intestinal inflammation and gut disruption of microbiota in NASH promote hepatic tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Inducible transgenics. New lessons on events governing the induction and commitment in mammary tumorigenesis

    International Nuclear Information System (INIS)

    Hulit, James; Di Vizio, Dolores; Pestell, Richard G

    2001-01-01

    Breast cancer arises from multiple genetic events that together contribute to the established, irreversible malignant phenotype. The development of inducible tissue-specific transgenics has allowed a careful dissection of the events required for induction and subsequent maintenance of tumorigenesis. Mammary gland targeted expression of oncogenic Ras or c-Myc is sufficient for the induction of mammary gland tumorigenesis in the rodent, and when overexpressed together the rate of tumor onset is substantially enhanced. In an exciting recent finding, D'Cruz et al discovered tetracycline-regulated c-Myc overexpression in the mammary gland induced invasive mammary tumors that regressed upon withdrawal of c-Myc expression. Almost one-half of the c-Myc-induced tumors harbored K-ras or N-ras gene point mutations, correlating with tumor persistence on withdrawal of c-Myc transgene expression. These findings suggest maintenance of tumorigenesis may involve a second mutation within the Ras pathway

  10. Changes of sodium nitrate, nitrite, and N-nitrosodiethylamine during in vitro human digestion.

    Science.gov (United States)

    Kim, Hyeong Sang; Hur, Sun Jin

    2017-06-15

    This study aimed to determine the changes in sodium nitrate, sodium nitrite, and N-nitrosodiethylamine (NDEA) during in vitro human digestion, and the effect of enterobacteria on the changes in these compounds. The concentrations of nitrate, nitrite, and NDEA were significantly reduced from 150, 150, and 1ppm to 42.8, 63.2, and 0.85ppm, respectively, during in vitro human digestion (pdigestion. This study is the first to report that E. coli can dramatically reduce the amount of nitrite during in vitro human digestion and this may be due to the effect of nitrite reductase present in E. coli. We therefore conclude that the amounts of potentially harmful substances and their toxicity can be decreased during human digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Analysis of N-nitrosodiethylamine by ion chromatography coupled with UV photolysis pretreatment

    Directory of Open Access Journals (Sweden)

    Xueli Li

    2016-04-01

    Full Text Available Nitrosamines such as N-nitrosodiethylamine (NDEA are commonly detected by spectrophotometry after photolysis and Griess reaction (PG in food industries for lower cost. Results of this research indicate that NDEA decays rapidly under UV irradiation, and concentrations of the generated NO2− and NO3− ions vary with photolysis conditions. Thus, the measurement of the PG method may be inconsistent because it is based on the amount of photoproduced NO2−. In addition, more errors may be present in the PG method since NO3− cannot be measured colorimetrically using Griess reagent. In this work, the sum of the concentrations of photoproduced NO2− and NO3− was found to be equivalent to the initial NDEA before photolysis, and a photolysis–ion chromatography method was validated, which may serve as a feasible and accurate method to determine nitrosamines.

  12. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  13. Pitavastatin suppresses diethylnitrosamine-induced liver preneoplasms in male C57BL/KsJ-db/db obese mice

    International Nuclear Information System (INIS)

    Shimizu, Masahito; Tanaka, Takuji; Moriwaki, Hisataka; Yasuda, Yoichi; Sakai, Hiroyasu; Kubota, Masaya; Terakura, Daishi; Baba, Atsushi; Ohno, Tomohiko; Kochi, Takahiro; Tsurumi, Hisashi

    2011-01-01

    Obesity and related metabolic abnormalities, including inflammation and lipid accumulation in the liver, play a role in liver carcinogenesis. Adipocytokine imbalances, such as decreased serum adiponectin levels, are also involved in obesity-related liver tumorigenesis. In the present study, we examined the effects of pitavastatin - a drug used for the treatment of hyperlipidemia - on the development of diethylnitrosamine (DEN)-induced liver preneoplastic lesions in C57BL/KsJ-db/db (db/db) obese mice. Male db/db mice were administered tap water containing 40 ppm DEN for 2 weeks and were subsequently fed a diet containing 1 ppm or 10 ppm pitavastatin for 14 weeks. At sacrifice, feeding with 10 ppm pitavastatin significantly inhibited the development of hepatic premalignant lesions, foci of cellular alteration, as compared to that in the untreated group by inducing apoptosis, but inhibiting cell proliferation. Pitavastatin improved liver steatosis and activated the AMPK-α protein in the liver. It also decreased free fatty acid and aminotransferases levels, while increasing adiponectin levels in the serum. The serum levels of tumor necrosis factor (TNF)-α and the expression of TNF-α and interleukin-6 mRNAs in the liver were decreased by pitavastatin treatment, suggesting attenuation of the chronic inflammation induced by excess fat deposition. Pitavastatin is effective in inhibiting the early phase of obesity-related liver tumorigenesis and, therefore, may be useful in the chemoprevention of liver cancer in obese individuals

  14. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  15. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale).

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Zhang, Lu; Shi, Leming; Sun, Yongming Andrew; Fung, Chris; Moland, Carrie L; Dial, Stacey L; Fuscoe, James C; Chen, Tao

    2006-09-06

    Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. In this study, we identified comfrey-induced gene expression profile in the livers of rats. Groups of 6 male transgenic Big Blue rats were fed a basal diet and a diet containing 8% comfrey roots, a dose that resulted in liver tumors in a previous carcinogenicity bioassay. The animals were treated for 12 weeks and sacrificed one day after the final treatment. We used a rat microarray containing 26,857 genes to perform genome-wide gene expression studies. Dietary comfrey resulted in marked changes in liver gene expression, as well as in significant decreases in the body weight and increases in liver mutant frequency. When a two-fold cutoff value and a P-value less than 0.01 were selected, 2,726 genes were identified as differentially expressed in comfrey-fed rats compared to control animals. Among these genes, there were 1,617 genes associated by Ingenuity Pathway Analysis with particular functions, and the differentially expressed genes in comfrey-fed rat livers were involved in metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and cancer development. The gene expression profile provides us a better understanding of underlying mechanisms for comfrey-induced hepatic toxicity. Integration of gene expression changes with known pathological changes can be used to formulate a mechanistic scheme for comfrey-induced liver toxicity and tumorigenesis.

  16. Apoptosis-promoted tumorigenesis: γ-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death

    OpenAIRE

    Michalak, Ewa M.; Vandenberg, Cassandra J.; Delbridge, Alex R.D.; Wu, Li; Scott, Clare L.; Adams, Jerry M.; Strasser, Andreas

    2010-01-01

    Although tumor development requires impaired apoptosis, we describe a novel paradigm of apoptosis-dependent tumorigenesis. Because DNA damage triggers apoptosis through p53-mediated induction of BH3-only proteins Puma and Noxa, we explored their roles in γ-radiation-induced thymic lymphomagenesis. Surprisingly, whereas Noxa loss accelerated it, Puma loss ablated tumorigenesis. Tumor suppression by Puma deficiency reflected its protection of leukocytes from γ-irradiation-induced death, because...

  17. Induction of Nrf2-dependent Antioxidation and Protection Against Carbon Tetrachloride-induced Liver Damage by Andrographis Herba (穿心蓮chuānn lián Ethanolic Extract

    Directory of Open Access Journals (Sweden)

    Haw-Wen Chen

    2012-07-01

    Full Text Available Andrographis paniculata is a traditional Chinese herb and displays diverse biological activities including antioxidation, anti-tumorigenesis, anti-virus, and anti-atherogenesis. In this study, we investigated the up-regulation of ethanolic extract of A. paniculata (APE on the antioxidant defense in rat livers and whether this enhancement protected against carbon tetrachloride (CCl4-induced liver damage. Male Sprague-Dawley rats were orally administered (i.g. 0, 0.75, or 2 g/kg/d APE for 5 d. At d 6, rats were sacrificed and liver tissues were removed. Some animals (n=8 were intraperitoneally injected CCl4 (1 mL/kg, 50% in olive oil and blood was drawn 24 h after CCl4 treatment. The results showed that APE increased hepatic glutathione (GSH content and superoxide dismutase, GSH peroxidase, and GSH S-transferase activities in a dose-dependent manner (p<0.05. Results of immunoblotting and RT-PCR revealed that rats treated with APE had higher glutamate cysteine ligase catalytic and modifier subunits, heme oxygenase 1, superoxide dismutase 1, and GSH S-transferase Ya and Yb protein and mRNA expression than those of control rats. Moreover, APE increased Nrf2 nuclear translocation and Nrf2 binding to DNA in rat liver. In the presence of CCl4, APE decreased hepatic thiobarbituric acid-reactive substances production and plasma aspartate aminotransferase and alanine aminotransferase activities. These results suggest that APE protection against CCl4 insult is attributed, at least in part, to its up-regulation of antioxidant defense in rat liver.

  18. Specitic gene alterations in radiation-induced tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joo Mee; Kang, Chang Mo; Lee, Seung Sook; Cho, Chul Koo; Bae, Sang Woo; Lee, Su Jae; Lee, Yun Sil [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    To identify a set of genes involved in the development of radiation-induced tumorigenesis, we used DNA microarrays consisting of 1,176 mouse genes and compared expression profiles of radioresistant cells, designated NIH3T3-R1 and -R4. These cells were tumorigenic in a nude mouse grafting system, as compared to the parental NIH3T3 cells. Expressions of MDM2, CDK6 and CDC25B were found to increase more than 3-fold. Entactin protein levels were downregulated in NIH3T3-R1 and -R4 cells. Changes in expression genes were confirmed by reverse transcription-PCR or western blotting. When these genes were transfected to NIH3T3 cells, the CDC25B and MDM2 overexpressing NIH3T3 cells showed radioresistance, while 2 CDK6 overexpressing cells did not. In the case of entactin overexpressing NIH3T3-R1 or R-4 cells were still radioresistant. Furthermore, the CDC25B and MDM2 overexpressing cells grafted to nude mice, were tumorigenic. NIH3T3-R1 and R4 cells showed increased radiation-induced apoptosis, accompanied by faster growth rate, rather than and earlier radiation-induced G2/M phase arrest, suggesting that the radioresistance of NIH3T3-R1 and R4 cells was due to faster growth rate, rather than induction of apoptosis. In the case of MDM2 and CDC25B overexpressing cells, similar phenomena, such as increased apoptosis and faster growth rate, were shown. The above results, therefore, demonstrate involvement of CDC25B and MDM2 overexpression in radiation-induced tumorigenesis and provide novel targets for detection of radiation-induced carcinogenesis.

  19. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    Science.gov (United States)

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  20. Acetaminophen-induced Liver Injury is Attenuated in Transgenic fat-1 Mice Endogenously Synthesizing Long-chain n-3 Fatty Acids.

    Science.gov (United States)

    Feng, Ruibing; Wang, Yang; Liu, Conghui; Yan, Chunyan; Zhang, Hang; Su, Huanxing; Kang, Jing X; Shang, Chang-Zhen; Wan, Jian-Bo

    2018-04-18

    Acetaminophen (APAP) overdose-caused hepatotoxicity is the most commonly cause of drugs-induced liver failurecharacterized by oxidative stress, mitochondrial dysfunction, and cell damage. Therapeutic efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in several models of liver disease is well documented. However, the impacts of n-3 PUFA on APAP hepatotoxicity are not adequately addressed. In this study, the fat-1 transgenic mice that synthesize endogenous n-3 PUFA and wild type (WT) littermates were injected intraperitoneally with APAP at the dose of 400 mg/kg to induce liver injury, and euthanized at 0 h, 2 h, 4 h and 6 h post APAP injection for sampling. APAP overdose caused severe liver injury in WT mice as indicated by serum parameters, histopathological changes and hepatocyte apoptosis, which were remarkably ameliorated in fat-1 mice. These protective effects of n-3 PUFA were associated with regulation of the prolonged JNK activation via inhibition of apoptosis signal-regulating kinase 1 (ASK1) / mitogen-activated protein kinase kinase 4 (MKK4) pathway. Additionally, the augment of endogenous n-3 PUFA reduced nuclear factor kappa B (NF-κB) - mediated inflammation response induced by APAP treatment in the liver. These findings indicate that n-3 PUFA has potent protective effects against APAP-induced acute liver injury, suggesting that n-3 dietary supplement with n-3 PUFA may be a potential therapeutic strategy for the treatment of hepatotoxicity induced by APAP overdose. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Mechanisms of Reactive Stroma-Induced Tumorigenesis in Prostate Cancer

    Science.gov (United States)

    2016-11-01

    type I receptor blocker (SI Appendix, Fig. S9). Together, these results further support the concept that TGF-β1–expressing prostate cancer cells induce...of NBT-II bladder carcinoma cells to condi- tioned medium from normal fetal urogenital sinus. Cancer Res 47(11):2955–2960. 22. Nimmo R, Woollard A...AWARD NUMBER: W81XWH-12-1-0197 TITLE: Mechanisms of Reactive Stroma - Induced Tumorigenesis in Prostate Cancer PRINCIPAL INVESTIGATOR

  2. Multiple susceptibility loci for radiation-induced mammary tumorigenesis in F2[Dahl S x R]-intercross rats.

    Directory of Open Access Journals (Sweden)

    Victoria L Herrera

    Full Text Available Although two major breast cancer susceptibility genes, BRCA1 and BRCA2, have been identified accounting for 20% of breast cancer genetic risk, identification of other susceptibility genes accounting for 80% risk remains a challenge due to the complex, multi-factorial nature of breast cancer. Complexity derives from multiple genetic determinants, permutations of gene-environment interactions, along with presumptive low-penetrance of breast cancer predisposing genes, and genetic heterogeneity of human populations. As with other complex diseases, dissection of genetic determinants in animal models provides key insight since genetic heterogeneity and environmental factors can be experimentally controlled, thus facilitating the detection of quantitative trait loci (QTL. We therefore, performed the first genome-wide scan for loci contributing to radiation-induced mammary tumorigenesis in female F2-(Dahl S x R-intercross rats. Tumorigenesis was measured as tumor burden index (TBI after induction of rat mammary tumors at forty days of age via ¹²⁷Cs-radiation. We observed a spectrum of tumor latency, size-progression, and pathology from poorly differentiated ductal adenocarcinoma to fibroadenoma, indicating major effects of gene-environment interactions. We identified two mammary tumorigenesis susceptibility quantitative trait loci (Mts-QTLs with significant linkage: Mts-1 on chromosome-9 (LOD-2.98 and Mts-2 on chromosome-1 (LOD-2.61, as well as two Mts-QTLs with suggestive linkage: Mts-3 on chromosome-5 (LOD-1.93 and Mts-4 on chromosome-18 (LOD-1.54. Interestingly, Chr9-Mts-1, Chr5-Mts-3 and Chr18-Mts-4 QTLs are unique to irradiation-induced mammary tumorigenesis, while Chr1-Mts-2 QTL overlaps with a mammary cancer susceptibility QTL (Mcs 3 reported for 7,12-dimethylbenz-[α]antracene (DMBA-induced mammary tumorigenesis in F2[COP x Wistar-Furth]-intercross rats. Altogether, our results suggest at least three distinct susceptibility QTLs for

  3. Relationship of histochemically detectable altered hepatocyte foci to hepatic tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Peraino, C.; Staffeldt, E.F.; Carnes, B.A.; Ludeman, V.A.; Blomquist, J.A.; Vesselinovitch, S.D.

    1984-01-01

    A new experimental system was used to examine the stages of chemically induced hepatic neoplasia in the rat. The treatment protocol involved the intraperitoneal injection of a single non-necrogenic dose of carcinogen (N-nitrosodiethylamine (NDEA) or benzo(a)pyrene (BP)) into male and female rats within one day after birth, followed by dietary exposure to promoter (0.05% phenobarbital) from weaning. Rats were killed at intervals, and their livers were examined for tumors and for histochemically detectable foci of altered hepatocytes. The data showed that (1) the new treatment protocol was highly efficient in foci and tumor production; (2) growth rates and incidence levels of foci were directly related to hepatocarcinogenic effectiveness (NDEA > BP), whereas both carcinogens had similar effects on foci phenotypic properties; (3) after their formation, foci at a given level of phenotypic complexity did not become progressively more complex; (4) incidence levels of foci were sex-dependent (females > males), but growth rates of foci were the same for both sexes; (5) growth rates and growth capacities (ranges of possible growth rates) of foci were directly related to phenotypic complexity levels of foci; (6) frequencies and phenotypic complexities of foci were inversely related; the reverse was true for tumors, although 10% of the tumors were relatively simple (three markers or fewer); (7) marker frequency distribution patterns were completely different in foci and in tumors.

  4. Cdk2-Null Mice Are Resistant to ErbB-2-Induced Mammary Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Dipankar Ray

    2011-05-01

    Full Text Available The concept of targeting G1 cyclin-dependent kinases (CDKs in breast cancer treatments is supported by the fact that the genetic ablation of Cdk4 had minimal impacts on normal cell proliferation in majority of cell types, resulting in near-normal mouse development, whereas such loss of Cdk4 completely abrogated ErbB-2/neu-induced mammary tumorigenesis in mice. In most human breast cancer tissues, another G1-regulatory CDK, CDK2, is also hyperactivated by various mechanisms and is believed to be an important therapeutic target. In this report, we provide genetic evidence that CDK2 is essential for proliferation and oncogenesis of murine mammary epithelial cells. We observed that 87% of Cdk2-null mice were protected from ErbB-2-induced mammary tumorigenesis. Mouse embryonic fibroblasts isolated from Cdk2-null mouse showed resistance to various oncogene-induced transformation. Previously, we have reported that hemizygous loss of Cdc25A, the major activator of CDK2, can also protect mice from ErbB-2-induced mammary tumorigenesis [Cancer Res (2007 67(14: 6605–11]. Thus, we propose that CDC25A-CDK2 pathway is critical for the oncogenic action of ErbB-2 in mammary epithelial cells, in a manner similar to Cyclin D1/CDK4 pathway.

  5. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine

    International Nuclear Information System (INIS)

    Santra, Amal; Chowdhury, Abhijit; Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna

    2007-01-01

    Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology. Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects

  6. Weight loss following diet-induced obesity does not alter colon tumorigenesis in the AOM mouse model.

    Science.gov (United States)

    Velázquez, Kandy T; Enos, Reilly T; Carson, Meredith S; Cranford, Taryn L; Bader, Jackie E; Chatzistamou, Ioulia; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi; Davis, J Mark; Carson, James A; Murphy, E Angela

    2016-10-01

    Obesity presents a significant public health concern given its association with increased cancer incidence, unfavorable prognosis, and metastasis. However, there is very little literature on the effects of weight loss, following obesity, on risk for colon cancer or liver cancer. Therefore, we sought to study whether intentional weight loss through diet manipulation was capable of mitigating colon and liver cancer in mice. We fed mice with a high-fat diet (HFD) comprised of 47% carbohydrates, 40% fat, and 13% protein for 20 wk to mimic human obesity. Subsequently, azoxymethane (AOM) was used to promote colon and liver carcinogenesis. A subset of obese mice was then switched to a low-fat diet (LFD) containing 67.5% carbohydrate, 12.2% fat, and 20% protein to promote intentional weight loss. Body weight loss and excess fat reduction did not protect mice from colon cancer progression and liver dysplastic lesion in the AOM-chemical-cancer model even though these mice had improved blood glucose and leptin levels. Intentional weight loss in AOM-treated mice actually produced histological changes that resemble dysplastic alterations in the liver and presented a higher percentage of F4/80 + CD206 + macrophages and activated T cells (CD4 + CD69 + ) in the spleen and lymph nodes, respectively. In addition, the liver of AOM-treated mice exposed to a HFD during the entire period of the experiment exhibited a marked increase in proliferation and pNF-κB activation. Altogether, these data suggest that intentional weight loss following chemical-induced carcinogenesis does not affect colon tumorigenesis but may in fact negatively impact liver repair mechanisms. Copyright © 2016 the American Physiological Society.

  7. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC{sup 1638N/+} Mice

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Strawn, Steve J.; Thakor, Hemang; Fan, Ziling [Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia (United States); Shay, Jerry W. [Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas (United States); Fornace, Albert J. [Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia (United States); Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah (Saudi Arabia); Datta, Kamal, E-mail: kd257@georgetown.edu [Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia (United States)

    2016-05-01

    Purpose: There are uncertainties associated with the prediction of colorectal cancer (CRC) risk from highly energetic heavy ion (HZE) radiation. We undertook a comprehensive assessment of intestinal and colonic tumorigenesis induced after exposure to high linear energy transfer (high-LET) HZE radiation spanning a range of doses and LET in a CRC mouse model and compared the results with the effects of low-LET γ radiation. Methods and Materials: Male and female APC{sup 1638N/+} mice (n=20 mice per group) were whole-body exposed to sham-radiation, γ rays, {sup 12}C, {sup 28}Si, or {sup 56}Fe radiation. For the >1 Gy HZE dose, we used γ-ray equitoxic doses calculated using relative biological effectiveness (RBE) determined previously. The mice were euthanized 150 days after irradiation, and intestinal and colon tumor frequency was scored. Results: The highest number of tumors was observed after {sup 28}Si, followed by {sup 56}Fe and {sup 12}C radiation, and tumorigenesis showed a male preponderance, especially after {sup 28}Si. Analysis showed greater tumorigenesis per unit of radiation (per cGy) at lower doses, suggesting either radiation-induced elimination of target cells or tumorigenesis reaching a saturation point at higher doses. Calculation of RBE for intestinal and colon tumorigenesis showed the highest value with {sup 28}Si, and lower doses showed greater RBE relative to higher doses. Conclusions: We have demonstrated that the RBE of heavy ion radiation-induced intestinal and colon tumorigenesis is related to ion energy, LET, gender, and peak RBE is observed at an LET of 69 keV/μm. Our study has implications for understanding risk to astronauts undertaking long duration space missions.

  8. N-Hydroxylation of 4-Aminobiphenyl by CYP2E1 Produces Oxidative Stress in a Mouse Model of Chemically Induced Liver Cancer

    Science.gov (United States)

    Wang, Shuang; Sugamori, Kim S.; Tung, Aveline; McPherson, J. Peter; Grant, Denis M.

    2015-01-01

    4-Aminobiphenyl (ABP) is a trace component of cigarette smoke and hair dyes, a suspected human carcinogen and a potent rodent liver carcinogen. Postnatal exposure of mice to ABP results in a higher incidence of liver tumors in males than in females, paralleling the sex difference in human liver cancer incidence. A traditional model of ABP tumorigenesis involves initial CYP1A2-mediated N-hydroxylation, which eventually leads to production of mutagenic ABP-DNA adducts that initiate tumor growth. However, several studies have found no correlation between sex or CYP1A2 function and the DNA-damaging, mutagenic, or tumorigenic effects of ABP. Oxidative stress may be an important etiological factor for liver cancer, and it has also been linked to ABP exposure. The goals of this study were to identify novel enzyme(s) that contribute to ABP N-oxidation, and to investigate a potential role for oxidative stress in ABP liver tumorigenicity. Isozyme-selective inhibition experiments using liver microsomes from wild-type and genetically modified mice identified CYP2E1 as a major ABP N-hydroxylating enzyme. The N-hydroxylation of ABP by transiently expressed CYP2E1 produced oxidative stress in cultured mouse hepatoma cells. In vivo postnatal exposure of mice to a tumorigenic dose of ABP also produced oxidative stress in male wild-type mice, but not in male Cyp2e1(−/−) mice or in female mice. However, a stronger NRF2-associated antioxidant response was observed in females. Our results identify CYP2E1 as a novel ABP-N-oxidizing enzyme, and suggest that sex differences in CYP2E1-dependent oxidative stress and antioxidant responses to ABP may contribute to the observed sex difference in tumor incidence. PMID:25601990

  9. Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis

    International Nuclear Information System (INIS)

    Zhang, Yan; Choksi, Swati; Liu, Zheng-Gang

    2013-01-01

    Tumor-associated macrophages (TAMs) promote tumorigenesis because of their proangiogenic and immune-suppressive functions. Here, we report that butylated hydroxyanisole (BHA) blocks occurrence of tumor associated macrophages (TAMs) in tobacco smoke carcinogen-induced lung tumorigenesis. Continuous administration of butylated hydroxyanisole (BHA), a ROS inhibitor, before or after NNK treatment significantly blocked tumor development, although less effectively when BHA is administered after NNK treatment. Strikingly, BHA abolished the occurrence of F4/80 + macrophages with similar efficiency no matter whether it was administered before or after NNK treatment. Detection of cells from bronchioalveolar lavage fluid (BALF) confirmed that BHA markedly inhibited the accumulation of macrophages while slightly reducing the number of lymphocytes that were induced by NNK. Immunohistological staining showed that BHA specifically abolished the occurrence of CD206 + TAMs when it was administered before or after NNK treatment. Western blot analysis of TAMs markers, arginase I and Ym-1, showed that BHA blocked NNK-induced TAMs accumulation. Our study clearly demonstrated that inhibiting the occurrence of TAMs by BHA contributes to the inhibition of tobacco smoke carcinogen-induced tumorigenesis, suggesting ROS inhibitors may serve as a therapeutic target for treating smoke-induced lung cancer

  10. Possible mechanism of phthalates-induced tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yu-Chih Wang

    2012-07-01

    Full Text Available Phthalates—substances used in the manufacture of plastics—are considered as possible human carcinogens and tumor-promoting agents. The worldwide annual production of plastics surpassed 300 million tons in 2010. Plastics are an indispensable material in modern society, and many products manufactured from plastics are a boon to public health; however, plastics also pose health risks. Animal studies have indicated that phthalates are carcinogenic, but human epidemiological data confirming this carcinogenicity in humans are limited. The activation of peroxisome proliferator-activated receptor α (PPARα, which has been observed in rodent carcinogenesis, has not been observed in humans. Here, we review the hypothesis that the aryl hydrocarbon receptor (AhR and its downstream signaling cascade promote phthalate-induced tumorigenesis.

  11. Identification of Chemical Inhibitors of β-Catenin-Driven Liver Tumorigenesis in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Kimberley J Evason

    2015-07-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most lethal human cancers. The search for targeted treatments has been hampered by the lack of relevant animal models for the genetically diverse subsets of HCC, including the 20-40% of HCCs that are defined by activating mutations in the gene encoding β-catenin. To address this chemotherapeutic challenge, we created and characterized transgenic zebrafish expressing hepatocyte-specific activated β-catenin. By 2 months post fertilization (mpf, 33% of transgenic zebrafish developed HCC in their livers, and 78% and 80% of transgenic zebrafish showed HCC at 6 and 12 mpf, respectively. As expected for a malignant process, transgenic zebrafish showed significantly decreased mean adult survival compared to non-transgenic control siblings. Using this novel transgenic model, we screened for druggable pathways that mediate β-catenin-induced liver growth and identified two c-Jun N-terminal kinase (JNK inhibitors and two antidepressants (one tricyclic antidepressant, amitriptyline, and one selective serotonin reuptake inhibitor that suppressed this phenotype. We further found that activated β-catenin was associated with JNK pathway hyperactivation in zebrafish and in human HCC. In zebrafish larvae, JNK inhibition decreased liver size specifically in the presence of activated β-catenin. The β-catenin-specific growth-inhibitory effect of targeting JNK was conserved in human liver cancer cells. Our other class of hits, antidepressants, has been used in patient treatment for decades, raising the exciting possibility that these drugs could potentially be repurposed for cancer treatment. In support of this proposal, we found that amitriptyline decreased tumor burden in a mouse HCC model. Our studies implicate JNK inhibitors and antidepressants as potential therapeutics for β-catenin-induced liver tumors.

  12. Ectopic Liver Tissue Formation in Rats with Induced Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Bauyrzhan Umbayev

    2014-12-01

    Full Text Available Introduction: The possible alternative approach to whole-organ transplantation is a cell-based therapy, which can also be used as a "bridge" to liver transplantation.  However, morphological and functional changes in the liver of patients suffering from chronic liver fibrosis and cirrhosis restrict the effectiveness of direct cell transplantation. Therefore, extra hepatic sites for cell transplantation, including the spleen, pancreas, peritoneal cavity, and subrenal capsule, could be a useful therapeutic approach for compensation of liver functions. However, a method of transplantation of hepatocytes into ectopic sites is needed to improve hepatocyte engraftment. Previously published data has demonstrated that mouse lymph nodes can support the engraftment and proliferation of hepatocytes as ES and rescue Fah mice from lethal liver failure. Thus, the aim of the study was to evaluate the engraftment of i.p. injected allogeneic hepatocytes into extra hepatic sites in albino rats with chemically induced liver fibrosis (LF. Materials and methods: Albino rats were randomly divided into 4 groups: (1 intact group (n = 18; (2 rats with induced LF (n = 18; (3 rats with induced LF and transplanted with hepatocytes (n = 18; (4 as a control, rats were treated with cyclosporine A only (n = 18. In order to prevent an immune response, groups 2 and 3 were subjected to immunosuppression by cyclosporine A (25 mg/kg per day. LF was induced using N-nitrosodimethylamine (NDMA, i.p., 10 mg/kg, three times a week for 4 weeks and confirmed by histological analysis of the liver samples. Hepatocytes transplantation (HT was performed two days after NDMA exposure cessation by i.p. injection of 5×106 freshly isolated allogeneic hepatocytes. Liver function was assessed by quantifying blood biochemical parameters (ALT, AST, GGT, total protein, bilirubin, and albumin at 1 week, 1 month, and 2 months after hepatocytes transplantation (HT. To confirm a hepatocytes

  13. Lessons from Mouse Models of High-Fat Diet-Induced NAFLD

    Directory of Open Access Journals (Sweden)

    Yasuo Terauchi

    2013-10-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD encompasses a clinicopathologic spectrum of diseases ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH, the more aggressive form of fatty liver disease that may progress to cirrhosis and cirrhosis-related complications, including hepatocellular carcinoma. The prevalence of NAFLD, including NASH, is also increasing in parallel with the growing epidemics of obesity and diabetes. However, the causal relationships between obesity and/or diabetes and NASH or liver tumorigenesis have not yet been clearly elucidated. Animal models of NAFLD/NASH provide crucial information, not only for elucidating the pathogenesis of NAFLD/NASH, but also for examining therapeutic effects of various agents. A high-fat diet is widely used to produce hepatic steatosis and NASH in experimental animals. Several studies, including our own, have shown that long-term high-fat diet loading, which can induce obesity and insulin resistance, can also induce NASH and liver tumorigenesis in C57BL/6J mice. In this article, we discuss the pathophysiology of and treatment strategies for NAFLD and subsequent NAFLD-related complications such as NASH and liver tumorigenesis, mainly based on lessons learned from mouse models of high-fat diet-induced NAFLD/NASH.

  14. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor

  15. Induced expression of hepatic N-methyl-D-aspartate receptor 2C subunit gene during liver enlargement induced by lead nitrate, a hepatocellular mitogen.

    Science.gov (United States)

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Hikida, Tokihiro; Kojima, Misaki; Degawa, Masakuni

    2013-02-01

    We previously demonstrated the super-induced expression of the Grin2c gene encoding the N-methyl-D-aspartate receptor 2C subunit during the development of liver enlargement with hepatocellular hypertrophy induced by phenobarbital, clofibrate, or piperonyl butoxide. In the present study, we assessed whether or not Grin2c gene expression was induced during the development of chemically induced liver enlargement with hyperplasia. Male Sprague-Dawley (SD) rats, stroke-prone spontaneously hypertensive rats (SHRSPs), and SHRSP's normotensive control, Wistar-Kyoto (WKY) rats, were administered lead nitrate (LN) (0.1 mmol/kg, single i.v.), a direct inducer of liver hyperplasia, and changes in the level of Grin2c mRNA in the liver were assessed by real-time RT-PCR. The level of hepatic Grin2c mRNA was significantly higher 6-48 hr after the injection in SD rats (about 30~40- and 70-fold over the control at 6~24 hr and 48 hr, respectively) and in WKY rats (about 20-fold over the control only at 12 hr), but was not significantly higher in SHRSPs. Such differences in LN-induced levels of Grin2c mRNA among SD rats, WKY rats, and SHRSPs were closely correlated with those in the previously reported increase in liver weight 48 hr after LN administration. The present findings suggest that the increase in the level of hepatic Grin2c mRNA relates to development of chemically induced liver enlargement with hyperplasia.

  16. Amelioration effects against N-nitrosodiethylamine and CCl(4)-induced hepatocarcinogenesis in Swiss albino rats by whole plant extract of Achyranthes aspera.

    Science.gov (United States)

    Kartik, R; Rao, Ch V; Trivedi, S P; Pushpangadan, P; Reddy, G D

    2010-12-01

    The prevalence of oxidative stress may be implicated in the etiology of many pathological conditions. Protective antioxidant action imparted by many plant extracts and plant products make them a promising therapeutic drug for free-radical-induced pathologies. In this study, we assessed the antioxidant potential and suppressive effects of Achyranthes aspera by evaluating the hepatic diagnostic markers on chemical-induced hepatocarcinogenesis. The in vivo model of hepatocarcinogenesis was studied in Swiss albino rats. Experimental rats were divided into five groups: control, positive control (NDEA and CCl(4)), A. aspera treated (100, 200, and 400 mg/kg b.w.). At 20 weeks after the administration of NDEA and CCl(4), treated rats received A. aspera extract (AAE) at a dose of 100, 200, and 400 mg/kg once daily route. At the end of 24 weeks, the liver and relative liver weight and body weight were estimated. Lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and reduced glutathione (GSH) were assayed. The hepatic diagnostic markers namely serum glutamic oxaloacetic transminase (AST), serum glutamic pyruvate transminase (ALT), serum alkaline phosphatase (ALP), gamma glutamyl transpeptidase (GGT), and bilirubin (BL) were also assayed, and the histopathological studies were investigated in control, positive control, and experimental groups. The extract did not show acute toxicity and the per se effect of the extract showed decrease in LPO, demonstrating antioxidant potential and furthermore no change in the hepatic diagnosis markers was observed. Administration of AAE suppressed hepatic diagnostic and oxidative stress markers as revealed by decrease in NDEA and CCl(4) -induced elevated levels of SGPT, SGOT, SALP, GGT, bilirubin, and LPO. There was also a significant elevation in the levels of SOD, CAT, GPx, GST, and GSH as observed after AAE treatment. The liver and relative liver weight were

  17. Analysis of the expression level and methylation of tumor protein p53, phosphatase and tensin homolog and mutS homolog 2 in N-methyl-N-nitrosourea-induced thymic lymphoma in C57BL/6 mice.

    Science.gov (United States)

    Huo, Xueyun; Li, Zhenkun; Zhang, Shuangyue; Li, Changlong; Guo, Meng; Lu, Jing; Lv, Jianyi; Du, Xiaoyan; Chen, Zhenwen

    2017-10-01

    Tumorigenesis is often caused by somatic mutation or epigenetic changes in genes that regulate aspects of cell death, proliferation and survival. Although the functions of multiple tumor suppressor genes have been well studied in isolation, how these genes cooperate during the progression of a single tumor remains unclear in numerous cases. The present study used N-methyl-N-nitrosourea (MNU), one of the most potent mutagenic nitrosourea compounds, to induce thymic lymphoma in C57BL/6J mice. Subsequently, the protein expression levels of phosphatase and tensin homolog (PTEN), transformation protein 53 and mutS homolog 2 (MSH2) were evaluated concomitantly in the thymus, liver, kidney and spleen of MNU-treated mice by western blotting. To determine whether changes in expression level were due to aberrant epigenetic regulation, the present study further examined the methylation status of each gene by MassARRAY analysis. During the tumorigenesis process of an MNU-induced single thymic lymphoma, the expression level of PTEN was revealed to be reduced in thymic lymphoma samples but not in normal or non-tumor thymus tissue samples. Furthermore, a marked reduction of P53 expression levels were demonstrated in thymic lymphomas and spleens with a metastatic tumor. Conversely, MSH2 upregulation was identified only in liver, kidney, and spleen samples that were infiltrated by thymic lymphoma cells. Furthermore, the present study revealed that a number of 5'-C-phosphate-G-3' sites located in the promoter of aberrantly expressed genes had significantly altered methylation statuses. These results improve the understanding of the course of mutagen-induced cancer, and highlight that epigenetic regulation may serve an important function in cancer.

  18. Amelioration effects against N-nitrosodiethylamine and CCl4-induced hepatocarcinogenesis in Swiss albino rats by whole plant extract of Achyranthes aspera

    Science.gov (United States)

    Kartik, R.; Rao, Ch. V.; Trivedi, S.P.; Pushpangadan, P.; Reddy, G.D.

    2010-01-01

    Objective: The prevalence of oxidative stress may be implicated in the etiology of many pathological conditions. Protective antioxidant action imparted by many plant extracts and plant products make them a promising therapeutic drug for free-radical-induced pathologies. In this study, we assessed the antioxidant potential and suppressive effects of Achyranthes aspera by evaluating the hepatic diagnostic markers on chemical-induced hepatocarcinogenesis. Materials and Methods: The in vivo model of hepatocarcinogenesis was studied in Swiss albino rats. Experimental rats were divided into five groups: control, positive control (NDEA and CCl4), A. aspera treated (100, 200, and 400 mg/kg b.w.). At 20 weeks after the administration of NDEA and CCl4, treated rats received A. aspera extract (AAE) at a dose of 100, 200, and 400 mg/kg once daily route. At the end of 24 weeks, the liver and relative liver weight and body weight were estimated. Lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and reduced glutathione (GSH) were assayed. The hepatic diagnostic markers namely serum glutamic oxaloacetic transminase (AST), serum glutamic pyruvate transminase (ALT), serum alkaline phosphatase (ALP), gamma glutamyl transpeptidase (GGT), and bilirubin (BL) were also assayed, and the histopathological studies were investigated in control, positive control, and experimental groups. Results: The extract did not show acute toxicity and the per se effect of the extract showed decrease in LPO, demonstrating antioxidant potential and furthermore no change in the hepatic diagnosis markers was observed. Administration of AAE suppressed hepatic diagnostic and oxidative stress markers as revealed by decrease in NDEA and CCl4 -induced elevated levels of SGPT, SGOT, SALP, GGT, bilirubin, and LPO. There was also a significant elevation in the levels of SOD, CAT, GPx, GST, and GSH as observed after AAE treatment. The

  19. Studies of liver-specific metabolic reactions with 15N. 1

    International Nuclear Information System (INIS)

    Hirschberg, K.; Jung, K.; Faust, H.; Matkowitz, R.

    1987-01-01

    The 15 N tracer technique was used to investigate liver-specific reactions (urea and hippurate synthesis) for studying the metabolism in the healthy and damaged pig liver. After [ 15 N]ammonium chloride administration the tracer distribution on non-protein compounds of serum and urine was followed. Blood samplings before and after liver passage rendered possible a direct analysis of the [ 15 N]ammonium metabolism. The thioacetamide-induced liver damage was used as model for an acute liver intoxication. The capacity for urea synthesis was not influenced by means of this noxious substance, but the metabolism of amino acids and hippuric acid. The considerably depressed excretion of [ 15 N]hippurate seems to be a suitable indicator of liver disfunction. (author)

  20. 1-methylmalate from camu-camu (Myrciaria dubia) suppressed D-galactosamine-induced liver injury in rats.

    Science.gov (United States)

    Akachi, Toshiyuki; Shiina, Yasuyuki; Kawaguchi, Takumi; Kawagishi, Hirokazu; Morita, Tatsuya; Sugiyama, Kimio

    2010-01-01

    To evaluate the protective effects of fruit juices against D-galactosamine (GalN)-induced liver injury, lyophilized fruit juices (total 12 kinds) were fed to rats for 7 d, and then we evoked liver injury by injecting GalN. The juice of camu-camu (Myrciaria dubia) significantly suppressed GalN-induced liver injury when the magnitude of liver injury was assessed by plasma alanine aminotransferase and aspartate aminotransferase activities, although some other juices (acerola, dragon fruit, shekwasha, and star fruit) also tended to have suppressive effects. An active compound was isolated from camu-camu juice by solvent fractionation and silica gel column chromatography. The structure was determined to be 1-methylmalate. On the other hand, malate, 1,4-dimethylmalate, citrate, and tartrate had no significant effect on GalN-induced liver injury. It is suggested that 1-methylmalate might be a rather specific compound among organic acids and their derivatives in fruit juices in suppressing GalN-induced liver injury.

  1. The interplay between autophagy and ROS in tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kongara, Sameera [Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States); The Cancer Institute of New Jersey, New Brunswick, NJ (United States); Karantza, Vassiliki, E-mail: karantva@umdnj.edu [Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States); The Cancer Institute of New Jersey, New Brunswick, NJ (United States); Division of Medical Oncology, Department of Internal Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States)

    2012-11-21

    Reactive oxygen species (ROS) at physiological levels are important cell signaling molecules. However, aberrantly high ROS are intimately associated with disease and commonly observed in cancer. Mitochondria are primary sources of intracellular ROS, and their maintenance is essential to cellular health. Autophagy, an evolutionarily conserved process whereby cytoplasmic components are delivered to lysosomes for degradation, is responsible for mitochondrial turnover and removal of damaged mitochondria. Impaired autophagy is implicated in many pathological conditions, including neurological disorders, inflammatory bowel disease, diabetes, aging, and cancer. The first reports connecting autophagy to cancer showed that allelic loss of the essential autophagy gene BECLIN1 (BECN1) is prevalent in human breast, ovarian, and prostate cancers and that Becn1{sup +/-} mice develop mammary gland hyperplasias, lymphomas, lung and liver tumors. Subsequent studies demonstrated that Atg5{sup -/-} and Atg7{sup -/-} livers give rise to adenomas, Atg4C{sup -/-} mice are susceptible to chemical carcinogenesis, and Bif1{sup -/-} mice are prone to spontaneous tumors, indicating that autophagy defects promote tumorigenesis. Due to defective mitophagy, autophagy-deficient cells accumulate damaged mitochondria and deregulated ROS levels, which likely contribute to their tumor-initiating capacity. However, the role of autophagy in tumorigenesis is complex, as more recent work also revealed tumor dependence on autophagy: autophagy-competent mutant-Ras-expressing cells form tumors more efficiently than their autophagy-deficient counterparts; similarly, FIP200 deficiency suppresses PyMT-driven mammary tumorigenesis. These latter findings are attributed to the fact that tumors driven by powerful oncogenes have high metabolic demands catered to by autophagy. In this review, we discuss the relationship between ROS and autophagy and summarize our current knowledge on their functional interactions

  2. The interplay between autophagy and ROS in tumorigenesis

    International Nuclear Information System (INIS)

    Kongara, Sameera; Karantza, Vassiliki

    2012-01-01

    Reactive oxygen species (ROS) at physiological levels are important cell signaling molecules. However, aberrantly high ROS are intimately associated with disease and commonly observed in cancer. Mitochondria are primary sources of intracellular ROS, and their maintenance is essential to cellular health. Autophagy, an evolutionarily conserved process whereby cytoplasmic components are delivered to lysosomes for degradation, is responsible for mitochondrial turnover and removal of damaged mitochondria. Impaired autophagy is implicated in many pathological conditions, including neurological disorders, inflammatory bowel disease, diabetes, aging, and cancer. The first reports connecting autophagy to cancer showed that allelic loss of the essential autophagy gene BECLIN1 (BECN1) is prevalent in human breast, ovarian, and prostate cancers and that Becn1 +/- mice develop mammary gland hyperplasias, lymphomas, lung and liver tumors. Subsequent studies demonstrated that Atg5 -/- and Atg7 -/- livers give rise to adenomas, Atg4C -/- mice are susceptible to chemical carcinogenesis, and Bif1 -/- mice are prone to spontaneous tumors, indicating that autophagy defects promote tumorigenesis. Due to defective mitophagy, autophagy-deficient cells accumulate damaged mitochondria and deregulated ROS levels, which likely contribute to their tumor-initiating capacity. However, the role of autophagy in tumorigenesis is complex, as more recent work also revealed tumor dependence on autophagy: autophagy-competent mutant-Ras-expressing cells form tumors more efficiently than their autophagy-deficient counterparts; similarly, FIP200 deficiency suppresses PyMT-driven mammary tumorigenesis. These latter findings are attributed to the fact that tumors driven by powerful oncogenes have high metabolic demands catered to by autophagy. In this review, we discuss the relationship between ROS and autophagy and summarize our current knowledge on their functional interactions in tumorigenesis.

  3. Inhibition of induced tumorigenesis by dietary 2-deoxy-D-Glucose in mice

    International Nuclear Information System (INIS)

    Singh, Saurabh; Pandey, Sanjay; Bhuria, Vikas; Bhatt, Anant Narayan; Taneja, Pankaj; Soni, Ravi; Dwarakanath, Bilikere S.; Oberoi, Raghav; Chawla, Aman Preet; Saluja, Daman

    2014-01-01

    Enhanced glycolysis facilitating proliferation and defence against death, besides energy production is a fundamental metabolic change exhibited by majority of the tumor types. Recent evidences support Warburg's proposition that this metabolic re-programming may also drive tumorigenesis induced by chemical carcinogens and radiation. Targeting this phenotype using the glycolytic inhibitor, 2-deoxy-D glucose (2-DG) has been shown to enhance the efficacy of radiation and chemotherapeutic drugs in experimental systems as well as clinics. 2-DG is also a potent Energy Restriction Mimetic Agent (ERMA) as an alternative to Dietary Energy Restriction (DER) for combating cancer. Since DER regimen is difficult to sustain in humans, we have hypothesized that 2-DG may impair the process of induced tumorigenesis, thereby offering an attractive chemopreventive strategy. Systematic studies have indeed shown that dietary 2-DG administration impairs the formation and growth of implanted tumor (Lewis Lung carcinoma; Ehrlich ascites carcinoma) as well as chemical (DMBA and TPA) and radiation-induced skin tumors in C57BL/6, Strain A and Swiss Albino mice respectively in the tumor implant study. Decrease in the fraction of animals bearing tumor and growth rate, besides increase in the latency period were evident. In the chemical and radiation induced tumor studies, a significant reduction in the percentage of tumor (papillomas) bearing animals (incidence), number of tumors per animal (tumor burden) and increased latency were observed. Although, mechanisms underlying cancer preventive/inhibitory potential of dietary 2-DG is not completely understood, our current findings suggests modifications of certain circulating factors (glucose and insulin), oxidative stress (LPO and GSH), immune status (CD4/CD8 and regulatory T-cells; T-regs), extracellular matrix (MMP-9) and angiogenesis (tumor associated and radiation-induced) as some of the contributing factors. Further studies are required

  4. Biochemical and molecular evidences for the antitumor potential of Ginkgo biloba leaves extract in rodents.

    Science.gov (United States)

    Ahmed, Hanaa H; Shousha, Wafaa Gh; El-Mezayen, Hatem A; El-Toumy, Sayed A; Sayed, Alaa H; Ramadan, Aesha R

    2017-01-01

    Hepatocellular carcinoma (HCC) is one of the deadliest primary cancers, with a 5-year survival rate of 10% or less. This study was undertaken to elucidate the underlying biochemical and molecular mechanisms in favor of N-nitrosodiethylamine-induced hepatocellular carcinoma. Furthermore, the aim of this work was extended to explore the efficacy of Ginkgo biloba leaves extract in deterioration of HCC in rats. In the current study, HCC group experienced significant downregulation of ING-3 gene expression and upregulation of Foxp-1 gene expression in liver. Treatment of HCC groups with Ginkgo biloba leaves extract resulted in upregulation of ING-3 and downregulation of Foxp-1 gene expression in liver. In addition, there was significant increase in serum alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and glypican-3 (GPC-3) levels in HCC group versus the negative control group. In contrast, the groups with HCC subjected to either high or low dose of Ginkgo biloba leaves extract elicited significant reduction (Panaplasia. Interestingly, treatment with Ginkgo biloba leaves extract elicited marked improvement in the histological feature of liver tissue in HCC groups. In conclusion, this research indicated that the carcinogenic potency of N-nitrosodiethylamine targeted multiple systems on the cellular and molecular levels. In addition, the results of the current study shed light on the promising anticancer activity of Ginkgo biloba leaves extract in treatment of hepatocellular carcinoma induced chemically in the experimental model through its apoptotic and antiproliferative properties.

  5. Nonacetaminophen Drug-Induced Acute Liver Failure.

    Science.gov (United States)

    Thomas, Arul M; Lewis, James H

    2018-05-01

    Acute liver failure of all causes is diagnosed in between 2000 and 2500 patients annually in the United States. Drug-induced acute liver failure is the leading cause of acute liver failure, accounting for more than 50% of cases. Nonacetaminophen drug injury represents 11% of all cases in the latest registry from the US Acute Liver Failure Study Group. Although rare, acute liver failure is clinically dramatic when it occurs, and requires a multidisciplinary approach to management. In contrast with acetaminophen-induced acute liver failure, non-acetaminophen-induced acute liver failure has a more ominous prognosis with a lower liver transplant-free survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Persistent and heritable structural damage induced in heterochromatic DNA from rat liver by N-nitrosodimethylamine

    International Nuclear Information System (INIS)

    Ward, E.J.; Stewart, B.W.

    1987-01-01

    Analysis, by benzoylated DEAE-cellulose chromatography, has been made of structural change in eu- and heterochromatic DNA from rat liver following administration of the carcinogen N-nitrosodimethylamine. Either hepatic DNA was prelabeled with [ 3 H]thymidine administered 2-3 weeks before injection of the carcinogen or the labeled precursor was given during regenerative hyperplasia in rats treated earlier with N-nitrosodimethylamine. Following phenol extraction of either whole liver homogenate or nuclease-fractionated eu- and heterochromatin, carcinogen-modified DNA was examined by stepwise or caffeine gradient elution from benzoylated DEAE-cellulose. In whole DNA, nitrosamine-induced single-stranded character was maximal 4-24 h after treatment, declining rapidly thereafter; gradient elution of these DNA preparations also provided short-term evidence of structural change. Caffeine gradient chromatography suggested short-term nitrosamine-induced structural change in euchromatic DNA, while increased binding of heterochromatic DNA was evident for up to 3 months after carcinogen treatment. Preparations of newly synthesized heterochromatic DNA from animals subjected to hepatectomy up to 2 months after carcinogen treatment provided evidence of heritable structural damage. Carcinogen-induced binding of heterochromatic DNA to benzoylated DEAE-cellulose was indicative of specific structural lesions whose affinity equalled that of single-stranded DNA up to 1.0 kilobase in length. The data suggest that structural lesions in heterochromatin, which may be a consequence of incomplete repair, are preferentially degraded by endogenous nuclease(s)

  7. Intravenous miR-144 inhibits tumor growth in diethylnitrosamine-induced hepatocellular carcinoma in mice.

    Science.gov (United States)

    He, Quan; Wang, Fangfei; Honda, Takashi; Lindquist, Diana M; Dillman, Jonathan R; Timchenko, Nikolai A; Redington, Andrew N

    2017-10-01

    Previous in vitro studies have demonstrated that miR-144 inhibits hepatocellular carcinoma cell proliferation, invasion, and migration. We have shown that miR-144, injected intravenously, is taken up by the liver and induces endogenous hepatic synthesis of miR-144. We hypothesized that administered miR-144 has tumor-suppressive effects on liver tumor development in vivo. The effects of miR-144 on tumorigenesis and tumor growth were tested in a diethylnitrosamine-induced hepatocellular carcinoma mouse model. MiR-144 injection had no effect on body weight but significantly reduced diethylnitrosamine-induced liver enlargement compared with scrambled microRNA. MiR-144 had no effect on diethylnitrosamine-induced liver tumor number but reduced the tumor size above 50%, as evaluated by magnetic resonance imaging (scrambled microRNA 23.07 ± 5.67 vs miR-144 10.38 ± 2.62, p hepatocellular carcinoma tumorigenesis. Exogenously delivered miR-144 may be a therapeutic strategy to suppress tumor growth in hepatocellular carcinoma.

  8. Fish oil prevents sucrose-induced fatty liver but exacerbates high-safflower oil-induced fatty liver in ddy mice.

    Science.gov (United States)

    Yamazaki, Tomomi; Nakamori, Akiko; Sasaki, Eriko; Wada, Satoshi; Ezaki, Osamu

    2007-12-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). We analyzed the effects of dietary fish oil on fatty liver induced by sucrose, safflower oil, and butter in ddY mice. In experiment I, mice were fed a high-starch diet [70 energy% (en%) starch] plus 20% (wt/wt) sucrose in the drinking water or fed a high-safflower oil diet (60 en%) for 11 weeks. As a control, mice were fed a high-starch diet with drinking water. Fish oil (10 en%) was either supplemented or not. Mice supplemented with sucrose or fed safflower oil showed a 1.7-fold or 2.2-fold increased liver triglyceride content, respectively, compared with that of control mice. Fish oil completely prevented sucrose-induced fatty liver, whereas it exacerbated safflower oil-induced fatty liver. Sucrose increased SREBP-1c and target gene messenger RNAs (mRNAs), and fish oil completely inhibited these increases. In experiment II, mice were fed a high-safflower oil or a high-butter diet, with or without fish oil supplementation. Fish oil exacerbated safflower oil-induced fatty liver but did not affect butter-induced fatty liver. Fish oil increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and target CD36 mRNA in safflower oil-fed mice. These increases were not observed in sucrose-supplemented or butter-fed mice. The effects of dietary fish oil on fatty liver differ according to the cause of fatty liver; fish oil prevents sucrose-induced fatty liver but exacerbates safflower oil-induced fatty liver. The exacerbation of fatty liver may be due, at least in part, to increased expression of liver PPARgamma.

  9. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines.

    Science.gov (United States)

    Zong, L; Yu, Q H; Du, Y X; Deng, X M

    2014-02-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  10. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Zong, L. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China); No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Yu, Q. H. [Second Military Medical University, Changhai Hospital, Department of Gastroenterology, Shanghai, China, Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai (China); Du, Y. X. [No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Deng, X. M. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2014-03-03

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  11. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    International Nuclear Information System (INIS)

    Zong, L.; Yu, Q.H.; Du, Y.X.; Deng, X.M.

    2014-01-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis

  12. Uridine prevents fenofibrate-induced fatty liver.

    Directory of Open Access Journals (Sweden)

    Thuc T Le

    Full Text Available Uridine, a pyrimidine nucleoside, can modulate liver lipid metabolism although its specific acting targets have not been identified. Using mice with fenofibrate-induced fatty liver as a model system, the effects of uridine on liver lipid metabolism are examined. At a daily dosage of 400 mg/kg, fenofibrate treatment causes reduction of liver NAD(+/NADH ratio, induces hyper-acetylation of peroxisomal bifunctional enzyme (ECHD and acyl-CoA oxidase 1 (ACOX1, and induces excessive accumulation of long chain fatty acids (LCFA and very long chain fatty acids (VLCFA. Uridine co-administration at a daily dosage of 400 mg/kg raises NAD(+/NADH ratio, inhibits fenofibrate-induced hyper-acetylation of ECHD, ACOX1, and reduces accumulation of LCFA and VLCFA. Our data indicates a therapeutic potential for uridine co-administration to prevent fenofibrate-induced fatty liver.

  13. Interleukin-6 mediates epithelial-stromal interactions and promotes gastric tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Hiroto Kinoshita

    Full Text Available Interleukin-6 (IL-6 is a pleiotropic cytokine that affects various functions, including tumor development. Although the importance of IL-6 in gastric cancer has been documented in experimental and clinical studies, the mechanism by which IL-6 promotes gastric cancer remains unclear. In this study, we investigated the role of IL-6 in the epithelial-stromal interaction in gastric tumorigenesis. Immunohistochemical analysis of human gastritis, gastric adenoma, and gastric cancer tissues revealed that IL-6 was frequently detected in the stroma. IL-6-positive cells in the stroma showed positive staining for the fibroblast marker α-smooth muscle actin, suggesting that stromal fibroblasts produce IL-6. We compared IL-6 knockout (IL-6(-/- mice with wild-type (WT mice in a model of gastric tumorigenesis induced by the chemical carcinogen N-methyl-N-nitrosourea. The stromal fibroblasts expressed IL-6 in tumors from WT mice. Gastric tumorigenesis was attenuated in IL-6(-/- mice, compared with WT mice. Impaired tumor development in IL-6(-/- mice was correlated with the decreased activation of STAT3, a factor associated with gastric cancer cell proliferation. In vitro, when gastric cancer cell line was co-cultured with primary human gastric fibroblast, STAT3-related genes including COX-2 and iNOS were induced in gastric cancer cells and this response was attenuated with neutralizing anti-IL-6 receptor antibody. IL-6 production from fibroblasts was increased when fibroblasts were cultured in the presence of gastric cancer cell-conditioned media. IL-6 production from fibroblasts was suppressed by an interleukin-1 (IL-1 receptor antagonist and siRNA inhibition of IL-1α in the fibroblasts. IL-1α mRNA and protein were increased in fibroblast lysate, suggesting that cell-associated IL-1α in fibroblasts may be involved. Our results suggest the importance of IL-6 mediated stromal-epithelial cell interaction in gastric tumorigenesis.

  14. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Directory of Open Access Journals (Sweden)

    L. Zong

    2014-03-01

    Full Text Available Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN and lipopolysaccharide (LPS in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST and alanine aminotransferase (ALT. Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  15. Acrolein scavengers, cysteamine and N-benzylhydroxylamine, reduces the mouse liver damage after acetaminophen overdose.

    Science.gov (United States)

    Koyama, Ryo; Mizuta, Ryushin

    2017-01-10

    Our previous study suggested that the highly toxic α,β-unsaturated aldehyde acrolein, a byproduct of oxidative stress, plays a major role in acetaminophen-induced liver injury. In this study, to determine the involvement of acrolein in the liver injury and to identify novel therapeutic options for the liver damage, we examined two putative acrolein scavengers, a thiol compound cysteamine and a hydroxylamine N-benzylhydroxylamine, in cell culture and in mice. Our results showed that cysteamine and N-benzylhydroxylamine effectively prevented the cell toxicity of acrolein in vitro and acetaminophen-induced liver injury in vivo, which suggested that acrolein is involved in the liver damage, and these two drugs can be potential therapeutic options for this condition.

  16. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Rezaei, Nousin; Liontos, Michalis

    2006-01-01

    Recent studies have indicated the existence of tumorigenesis barriers that slow or inhibit the progression of preneoplastic lesions to neoplasia. One such barrier involves DNA replication stress, which leads to activation of the DNA damage checkpoint and thereby to apoptosis or cell cycle arrest...... and senescence markers cosegregate closely. Thus, senescence in human preneoplastic lesions is a manifestation of oncogene-induced DNA replication stress and, together with apoptosis, provides a barrier to malignant progression....

  17. Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Saito, Taku; Yano, Fumiko; Mori, Daisuke; Kawata, Manabu; Hoshi, Kazuto; Takato, Tsuyoshi; Masaki, Hideki; Otsu, Makoto; Eto, Koji; Nakauchi, Hiromitsu; Chung, Ung-il; Tanaka, Sakae

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are a promising cell source for cartilage regenerative medicine. Meanwhile, the risk of tumorigenesis should be considered in the clinical application of human iPSCs (hiPSCs). Here, we report in vitro chondrogenic differentiation of hiPSCs and maturation of the differentiated hiPSCs through transplantation into mouse knee joints. Three hiPSC clones showed efficient chondrogenic differentiation using an established protocol for human embryonic stem cells. The differentiated hiPSCs formed hyaline cartilage tissues at 8 weeks after transplantation into the articular cartilage of NOD/SCID mouse knee joints. Although tumors were not observed during the 8 weeks after transplantation, an immature teratoma had developed in one mouse at 16 weeks. In conclusion, hiPSCs are a potent cell source for regeneration of hyaline articular cartilage. However, the risk of tumorigenesis should be managed for clinical application in the future.

  18. Suppression of colorectal tumorigenesis by recombinant Bacteroides fragilis enterotoxin-2 in vivo

    OpenAIRE

    Lv, You; Ye, Tao; Wang, Hui-Peng; Zhao, Jia-Ying; Chen, Wen-Jie; Wang, Xin; Shen, Chen-Xia; Wu, Yi-Bin; Cai, Yuan-Kun

    2017-01-01

    AIM To evaluate the impact of recombinant Bacteroides fragilis enterotoxin-2 (BFT-2, or Fragilysin) on colorectal tumorigenesis in mice induced by azoxymethane/dextran sulfate sodium (AOM/DSS). METHODS Recombinant proBFT-2 was expressed in Escherichia coli strain Rosetta (DE3) and BFT-2 was obtained and tested for its biological activity via colorectal adenocarcinoma cell strains SW-480. Seventy C57BL/6J mice were randomly divided into a blank (BC; n = 10), model (AD; n = 20), model + low-dos...

  19. Studies of liver-specific metabolic reactions with /sup 15/N. 1. Metabolism of /sup 15/N-ammonium chloride in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, K; Jung, K; Faust, H; Matkowitz, R

    1987-07-01

    The /sup 15/N tracer technique was used to investigate liver-specific reactions (urea and hippurate synthesis) for studying the metabolism in the healthy and damaged pig liver. After (/sup 15/N)ammonium chloride administration the tracer distribution on non-protein compounds of serum and urine was followed. Blood samplings before and after liver passage rendered possible a direct analysis of the (/sup 15/N)ammonium metabolism. The thioacetamide-induced liver damage was used as model for an acute liver intoxication. The capacity for urea synthesis was not influenced by means of this noxious substance, but the metabolism of amino acids and hippuric acid. The considerably depressed excretion of (/sup 15/N)hippurate seems to be a suitable indicator of liver disfunction.

  20. Dietary Selenium Deficiency Exacerbates DSS-Induced Epithelial Injury and AOM/DSS-Induced Tumorigenesis

    Science.gov (United States)

    Barrett, Caitlyn W.; Singh, Kshipra; Motley, Amy K.; Lintel, Mary K.; Matafonova, Elena; Bradley, Amber M.; Ning, Wei; Poindexter, Shenika V.; Parang, Bobak; Reddy, Vishruth K.; Chaturvedi, Rupesh; Fingleton, Barbara M.; Washington, Mary K.; Wilson, Keith T.; Davies, Sean S.; Hill, Kristina E.; Burk, Raymond F.; Williams, Christopher S.

    2013-01-01

    Selenium (Se) is an essential micronutrient that exerts its functions via selenoproteins. Little is known about the role of Se in inflammatory bowel disease (IBD). Epidemiological studies have inversely correlated nutritional Se status with IBD severity and colon cancer risk. Moreover, molecular studies have revealed that Se deficiency activates WNT signaling, a pathway essential to intestinal stem cell programs and pivotal to injury recovery processes in IBD that is also activated in inflammatory neoplastic transformation. In order to better understand the role of Se in epithelial injury and tumorigenesis resulting from inflammatory stimuli, we examined colonic phenotypes in Se-deficient or -sufficient mice in response to dextran sodium sulfate (DSS)-induced colitis, and azoxymethane (AOM) followed by cyclical administration of DSS, respectively. In response to DSS alone, Se-deficient mice demonstrated increased morbidity, weight loss, stool scores, and colonic injury with a concomitant increase in DNA damage and increases in inflammation-related cytokines. As there was an increase in DNA damage as well as expression of several EGF and TGF-β pathway genes in response to inflammatory injury, we sought to determine if tumorigenesis was altered in the setting of inflammatory carcinogenesis. Se-deficient mice subjected to AOM/DSS treatment to model colitis-associated cancer (CAC) had increased tumor number, though not size, as well as increased incidence of high grade dysplasia. This increase in tumor initiation was likely due to a general increase in colonic DNA damage, as increased 8-OHdG staining was seen in Se-deficient tumors and adjacent, non-tumor mucosa. Taken together, our results indicate that Se deficiency worsens experimental colitis and promotes tumor development and progression in inflammatory carcinogenesis. PMID:23861820

  1. Abacavir-induced liver toxicity

    Directory of Open Access Journals (Sweden)

    Maria Diletta Pezzani

    2016-09-01

    Full Text Available Abacavir-induced liver toxicity is a rare event almost exclusively occurring in HLA B*5701-positive patients. Herein, we report one case of abnormal liver function tests occurring in a young HLA B*5701-negative woman on a stable nevirapine-based regimen with no history of liver problems or alcohol abuse after switching to abacavir from tenofovir. We also investigated the reasons for abacavir discontinuation in a cohort of patients treated with abacavir-lamivudine-nevirapine.

  2. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage

    NARCIS (Netherlands)

    Gonzalez Ponce, Herson Antonio; Consolacion Martinez-Saldana, Maria; Rosa Rincon-Sanchez, Ana; Teresa Sumaya-Martinez, Maria; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han; Jaramillo-Juarez, Fernando

    2016-01-01

    Acetaminophen (APAP)-induced acute liver failure (ALF) is a serious health problem in developed countries. N-acetyl-L-cysteine (NAC), the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients

  3. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1–Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma

    DEFF Research Database (Denmark)

    Engelholm, Lars H.; Riaz, Anjum; Serra, Denise

    2017-01-01

    Background & Aims Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver cancer that predominantly affects children and young adults with no underlying liver disease. A somatic, 400 Kb deletion on chromosome 19 that fuses part of the DnaJ heat shock protein family (Hsp40) member B1 gene...... (DNAJB1) to the protein kinase cAMP-activated catalytic subunit alpha gene (PRKACA) has been repeatedly identified in patients with FL-HCC. However, the DNAJB1–PRKACA gene fusion has not been shown to induce liver tumorigenesis. We used the CRISPR/Cas9 technique to delete in mice the syntenic region...... on chromosome 8 to create a Dnajb1–Prkaca fusion and monitored the mice for liver tumor development. Methods We delivered CRISPR/Cas9 vectors designed to juxtapose exon 1 of Dnajb1 with exon 2 of Prkaca to create the Dnajb1–Prkaca gene fusion associated with FL-HCC, or control Cas9 vector, via hydrodynamic tail...

  4. Prepubertal exposure to cow's milk reduces susceptibility to carcinogen-induced mammary tumorigenesis in rats

    DEFF Research Database (Denmark)

    Nielsen, Tina Skau; Khan, Galam; Davis, Jennifer

    2011-01-01

    Cow's milk contains high levels of estrogens, progesterone and insulin-like growth factor 1 (IGF-1), all of which are associated with breast cancer. We investigated whether prepubertal milk exposure affects mammary gland development and carcinogenesis in rats. Sprague-Dawley rats were given either...... whole milk or tap water to drink from postnatal day (PND) 14 to PND 35, and thereafter normal tap water. Mammary tumorigenesis was induced by administering 7,12-dimethylbenz[a]anthracene on PND 50. Milk exposure increased circulating E2 levels on PND 25 by 10-fold (p ... opening, which marks puberty onset, by 2.5 days (p milk before puberty exhibited reduced carcinogen-induced mammary carcinogenesis; that is, their tumor latency was longer (p

  5. Montelukast induced acute hepatocellular liver injury

    Directory of Open Access Journals (Sweden)

    Harugeri A

    2009-01-01

    Full Text Available A 46-year-old male with uncontrolled asthma on inhaled albuterol and formoterol with budesonide was commenced on montelukast. He developed abdominal pain and jaundice 48 days after initiating montelukast therapy. His liver tests showed an increase in serum total bilirubin, conjugated bilirubin, aspartate aminotranferase, alanine aminotranferase, and alkaline phosphatase. The patient was evaluated for possible non-drug related liver injury. Montelukast was discontinued suspecting montelukast induced hepatocellular liver injury. Liver tests began to improve and returned to normal 55 days after drug cessation. Causality of this adverse drug reaction by the Council for International Organizations of Medical Sciences or Roussel Uclaf Causality Assessment Method (CIOMS or RUCAM and Naranjo′s algorithm was ′probable′. Liver tests should be monitored in patients receiving montelukast and any early signs of liver injury should be investigated with a high index of suspicion for drug induced liver injury.

  6. Scaffold attachment factor B1 (SAFB1 heterozygosity does not influence Wnt-1 or DMBA-induced tumorigenesis

    Directory of Open Access Journals (Sweden)

    Lewis Michael T

    2009-03-01

    Full Text Available Abstract Background Scaffold Attachment Factor B1 (SAFB1 is a multifunctional protein which has been implicated in breast cancer previously. We recently generated SAFB1 knockout mice (SAFB1-/-, but pleiotropic phenotypes including high lethality, dwarfism associated with low IGF-I levels, and infertility and subfertility in male and female mice, respectively, do not allow for straightforward tumorigenesis studies in these mice. Therefore, we asked whether SAFB1 heterozygosity would influence tumor development and progression in MMTV-Wnt-1 oncomice or DMBA induced tumorigenicity, in a manner consistent with haploinsufficiency of the remaining allele. Methods We crossed female SAFB1+/- (C57B6/129 mice with male MMTV-Wnt-1 (C57B6/SJL mice to obtain SAFB1+/+/Wnt-1, SAFB1+/-/Wnt-1, and SAFB1+/- mice. For the chemical induced tumorigenesis study we treated 8 weeks old SAFB1+/- and SAFB+/+ BALB/c mice with 1 mg DMBA once per week for 6 weeks. Animals were monitored for tumor incidence and tumor growth. Tumors were characterized by performing H&E, and by staining for markers of proliferation and apoptosis. Results We did not detect significant differences in tumor incidence and growth between SAFB1+/+/Wnt-1 and SAFB1+/-/Wnt-1 mice, and between DMBA-treated SAFB1+/+ and SAFB1+/-mice. Histological evaluation of tumors showed that SAFB1 heterozygosity did not lead to changes in proliferation or apoptosis. There were, however, significant differences in the distribution of tumor histologies with an increase in papillary and cribriform tumors, and a decrease in squamous tumors in the SAFB1+/-/Wnt-1 compared to the SAFB1+/+/Wnt-1 tumors. Of note, DMBA treatment resulted in shortened survival of SAFB1+/- mice compared to their wildtype littermates, however this trend did not reach statistical significance. Conclusion Our data show that SAFB1 heterozygosity does not influence Wnt-1 or DMBA-induced mammary tumorigenesis.

  7. Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

    Science.gov (United States)

    Wu, Chin-Han; Tseng, Ya-Shih; Yang, Chao-Chun; Kao, Yu-Ting; Sheu, Hamm-Ming; Liu, Hsiao-Sheng

    2013-11-01

    Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive. Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5 μM and 1 μM for 2-7 days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4 weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer

  8. Drug-induced liver injury

    DEFF Research Database (Denmark)

    Nielsen, Mille Bækdal; Ytting, Henriette; Skalshøi Kjær, Mette

    2017-01-01

    OBJECTIVE: The idiosyncratic subtype of drug-induced liver injury (DILI) is a rare reaction to medical treatment that in severe cases can lead to acute liver failure and death. The aim of this study was to describe the presentation and outcome of DILI and to identify potential predictive factors...... that DILI may be severe and run a fatal course, and that bilirubin and INR levels may predict poor outcome....

  9. Effects of Radiofrequency Induced local Hyperthermia on Normal Canine Liver

    International Nuclear Information System (INIS)

    Suh, Chang Ok; Loh, John J. K.; Seong, Jin Sil

    1991-01-01

    In order to assess the effects of radiofrequency-induced local hyperthermia on the normal liver, histopathologic findings and biochemical changes after localized hyperthermia in canine liver were studied. Hyperthermia was externally administered using the Thermotron RF-8 (Yamamoto Vinyter Co., Japan; Capacitive type heating machine) with parallel opposed electrodes. Thirteen dogs were used and allocated into one control group (N=3) and two treatment groups according to the treatment temperature. Group I (N=5) was heated with 42.5±0.5.deg.C for 30 minutes, and Group(N=5) was heated with 45±0.5.deg.C for 15-30 minutes. Samples of liver tissue were obtained through a needle biopsy immediately after hyperthermia and 7, 14 and 28 days after treatment and examined for SGOT, SGPT and alkaline phosphatase. Although SGOT and SGPT were elevated after hyperthermia in both groups (three of five in each group), there was no liver cell necrosis or hyperthermia related mortality in Group I. A hydropic swelling of hepatocytes was prominent histologic finding. Hyperthermia with 45.deg.C for 30 minutes was fatal and showed extensive liver cell necrosis. In conclusion, liver damage day heat of 42.5±0.5.deg.C for 30 minutes is reversible, and liver damage by heat of 45±0.5.deg.C for 30 minutes can be fatal or irreversible. However, these results cannot be applied directly to human trial. Therefore, in order to apply hyperthermic treatment on human liver tumor safely, close observation of temperature with proper thermometry is mandatory. Hyperthermic treatment should be confined to the tumor area while sparing a normal liver as much as possible

  10. Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Phuoc T Tran

    Full Text Available KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.

  11. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

    International Nuclear Information System (INIS)

    Dearth, Robert K; Kuiatse, Isere; Wang, Yu-Fen; Liao, Lan; Hilsenbeck, Susan G; Brown, Powel H; Xu, Jianming; Lee, Adrian V

    2011-01-01

    Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm 3 . For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Using the first transgenic animal model to

  12. An Update on Drug-induced Liver Injury.

    Science.gov (United States)

    Devarbhavi, Harshad

    2012-09-01

    Idiosyncratic drug-induced liver injury (DILI) is an important cause of morbidity and mortality following drugs taken in therapeutic doses. Hepatotoxicity is a leading cause of attrition in drug development, or withdrawal or restricted use after marketing. No age is exempt although adults and the elderly are at increased risk. DILI spans the entire spectrum ranging from asymptomatic elevation in transaminases to severe disease such as acute hepatitis leading to acute liver failure. The liver specific Roussel Uclaf Causality Assessment Method is the most validated and extensively used for determining the likelihood that an implicated drug caused DILI. Asymptomatic elevation in liver tests must be differentiated from adaptation. Drugs producing DILI have a signature pattern although no single pattern is characteristic. Antimicrobial and central nervous system agents including antiepileptic drugs are the leading causes of DILI worldwide. In the absence of a diagnostic test or a biomarker, the diagnosis rests on the evidence of absence of competing causes such as acute viral hepatitis, autoimmune hepatitis and others. Recent studies show that antituberculosis drugs given for active or latent disease are still a major cause of drug-induced liver injury in India and the West respectively. Presence of jaundice signifies a severe disease and entails a worse outcome. The pathogenesis is unclear and is due to a mix of host, drug metabolite and environmental factors. Research has evolved from incriminating candidate genes to genome wide analysis studies. Immediate cessation of the drug is key to prevent or minimize progressive damage. Treatment is largely supportive. N-acetylcysteine is the antidote for paracetamol toxicity. Carnitine has been tried in valproate injury whereas steroids and ursodeoxycholic acid may be used in DILI associated with hypersensitivity or cholestatic features respectively. This article provides an overview of the epidemiology, the patterns of

  13. Stem Cells Transplantation in the Treatment of Patients with Liver Failure.

    Science.gov (United States)

    Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong

    2018-02-23

    Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma.

    Science.gov (United States)

    Engelholm, Lars H; Riaz, Anjum; Serra, Denise; Dagnæs-Hansen, Frederik; Johansen, Jens V; Santoni-Rugiu, Eric; Hansen, Steen H; Niola, Francesco; Frödin, Morten

    2017-12-01

    Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver cancer that predominantly affects children and young adults with no underlying liver disease. A somatic, 400 Kb deletion on chromosome 19 that fuses part of the DnaJ heat shock protein family (Hsp40) member B1 gene (DNAJB1) to the protein kinase cAMP-activated catalytic subunit alpha gene (PRKACA) has been repeatedly identified in patients with FL-HCC. However, the DNAJB1-PRKACA gene fusion has not been shown to induce liver tumorigenesis. We used the CRISPR/Cas9 technique to delete in mice the syntenic region on chromosome 8 to create a Dnajb1-Prkaca fusion and monitored the mice for liver tumor development. We delivered CRISPR/Cas9 vectors designed to juxtapose exon 1 of Dnajb1 with exon 2 of Prkaca to create the Dnajb1-Prkaca gene fusion associated with FL-HCC, or control Cas9 vector, via hydrodynamic tail vein injection to livers of 8-week-old female FVB/N mice. These mice did not have any other engineered genetic alterations and were not exposed to liver toxins or carcinogens. Liver tissues were collected 14 months after delivery; genomic DNA was analyzed by PCR to detect the Dnajb1-Prkaca fusion, and tissues were characterized by histology, immunohistochemistry, RNA sequencing, and whole-exome sequencing. Livers from 12 of the 15 mice given the vectors to induce the Dnajb1-Prkaca gene fusion, but none of the 11 mice given the control vector, developed neoplasms. The tumors contained the Dnajb1-Prkaca gene fusion and had histologic and cytologic features of human FL-HCCs: large polygonal cells with granular, eosinophilic, and mitochondria-rich cytoplasm, prominent nucleoli, and markers of hepatocytes and cholangiocytes. In comparing expression levels of genes between the mouse tumor and non-tumor liver cells, we identified changes similar to those detected in human FL-HCC, which included genes that affect cell cycle and mitosis regulation. Genomic analysis of mouse neoplasms induced by

  15. Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice.

    Science.gov (United States)

    Liu, Zhaoguo; Zhu, Pingting; Tao, Yu; Shen, Cunsi; Wang, Siliang; Zhao, Lingang; Wu, Hongyan; Fan, Fangtian; Lin, Chao; Chen, Chen; Zhu, Zhijie; Wei, Zhonghong; Sun, Lihua; Liu, Yuping; Wang, Aiyun; Lu, Yin

    2015-07-01

    Epidemiologic and animal studies revealed that capsaicin (8-methyl-N-vanillyl-6-noneamide) can act as a carcinogen or cocarcinogen. However, the influence of consumption of capsaicin-containing foods or vegetables on skin cancer patients remains largely unknown. In the present study, we demonstrated that capsaicin has a cocarcinogenic effect on 9, 10-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. Our results showed that topical application of capsaicin on the dorsal skin of DMBA-initiated and TPA-promoted mice could significantly accelerate tumor formation and growth and induce more and larger skin tumors than the model group (DMBA + TPA). Moreover, capsaicin could promote TPA-induced skin hyperplasia and tumor proliferation. Mechanistic study found that inflammation-related factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were highly elevated by pretreatment with capsaicin, suggesting an inflammation-dependent mechanism. Furthermore, mice that were administered capsaicin exhibited significant up-regulation of phosphorylation of nuclear factor kappaB (NF-κB), Erk and p38 but had no effect on JNK. Thus, our results indicated that inflammation, Erk and P38 collectively played a crucial role in cancer-promoting effect of capsaicin on carcinogen-induced skin cancer in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  17. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    International Nuclear Information System (INIS)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-01

    Highlights: ► Cigarette smoke may induce liver fibrosis via nicotine receptors. ► Nicotine induces proliferation of hepatic stellate cells (HSCs). ► Nicotine activates hepatic fibrogenic pathways. ► Nicotine receptor antagonists attenuate HSC proliferation. ► Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers’ blood is pro-fibrogenic, through

  18. Tocilizumab-Induced Acute Liver Injury in Adult Onset Still’s Disease

    Directory of Open Access Journals (Sweden)

    Michael Drepper

    2013-01-01

    Full Text Available Background. Tocilizumab, a monoclonal humanized anti-IL-6 receptor antibody, is used in treatment of refractory adult onset Still’s disease (AOSD. Mild to moderate liver enzyme elevation is a well-known side effect, but severe liver injury has only been reported in 3 cases in the literature. Case. A young female suffering from corticoid and methotrexate refractory AOSD was treated by tocilizumab. After 19 months of consecutive treatment, she developed acute severe liver injury. Liver biopsy showed extensive hepatocellular necrosis with ballooned hepatocytes, highly suggestive of drug-induced liver injury. No other relevant drug exposure beside tocilizumab was recorded. She recovered totally after treatment discontinuation and an initial 3-day course of intravenous N-acetylcysteine with normalization of liver function tests after 6 weeks. Conclusion. Acute severe hepatitis can be associated with tocilizumab as documented in this case. Careful monitoring of liver function tests is warranted during tocilizumab treatment.

  19. Drug-induced liver injury due to antibiotics.

    Science.gov (United States)

    Björnsson, Einar S

    Drug-induced liver injury (DILI) is an important differential diagnosis in patients with abnormal liver tests and normal hepatobiliary imaging. Of all known liver diseases, the diagnosis of DILI is probably one of the most difficult one to be established. In all major studies on DILI, antibiotics are the most common type of drugs that have been reported. The clinical phenotype of different types of antibiotics associated with liver injury is highly variable. Some widely used antibiotics such as amoxicillin-clavulanate have been shown to have a delayed onset on liver injury and recently cefazolin has been found to lead to liver injury 1-3 weeks after exposure of a single infusion. The other extreme is the nature of nitrofurantoin-induced liver injury, which can occur after a few years of treatment and lead to acute liver failure (ALF) or autoimmune-like reaction. Most patients with liver injury associated with use of antibiotics have a favorable prognosis. However, patients with jaundice have approximately 10% risk of death from liver failure and/or require liver transplantation. In rare instances, the hepatoxicity can lead to chronic injury and vanishing bile duct syndrome. Given, sometimes very severe consequences of the adverse liver reactions, it cannot be over emphasized that the indication for the different antibiotics should be evidence-based and symptoms and signs of liver injury from the drugs should lead to prompt cessation of therapy.

  20. Traditional Chinese Medicine and Herb-induced Liver Injury: Comparison with Drug-induced Liver Injury.

    Science.gov (United States)

    Jing, Jing; Teschke, Rolf

    2018-03-28

    Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded.

  1. Metabolism of acyclic and cyclic N-nitrosamines in cultured human bronchi

    DEFF Research Database (Denmark)

    Harris, Curtis C.; Autrup, Herman; Stoner, Gary D.

    1977-01-01

    The metabolism of carcinogenic N-nitrosamines was studied in normal-appearing bronchial specimens obtained from 4 patients. Explants of bronchi were cultured in a chemically defined medium for 7 days. N-Nitrosamines [N-nitrosodimethylamine (DMN), N-nitrosodiethylamine (DEN), N,N'-dinitrosopiperaz...

  2. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats

    OpenAIRE

    Asgharzadeh, Fereshteh; Bargi, Rahimeh; Beheshti, Farimah; Hosseini, Mahmoud; Farzadnia, Mehdi; Khazaei, Majid

    2017-01-01

    Objective: Liver fibrosis is the primary sign of chronic liver injury induced by various causes. Thymoquinone (TQ) is the major ingredient of Nigella sativa with several beneficial effects on the body. In the present study, we aimed to investigate the effect of TQ on liver fibrosis in a lipopolysaccharide (LPS)-induced inflammation in male rats. Materials and methods: Fifty male Wistar rats were randomly divided into five groups (n=10 in each group) as follow: (1) control; (2) LPS (1 mg/kg/da...

  3. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    International Nuclear Information System (INIS)

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina; Ross, Mark A.; Soucy, Nicole V.; Klei, Linda R.; Barchowsky, Aaron

    2007-01-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei, L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic

  4. TWEAK induces liver progenitor cell proliferation

    Science.gov (United States)

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  5. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-01

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  6. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  7. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Akinori Okumura

    2017-12-01

    Full Text Available Leukocyte cell-derived chemotaxin 2 (LECT2 is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.

  8. Potential Therapeutic Uses of p19ARF Mimics in Mammary Tumorigenesis

    National Research Council Canada - National Science Library

    Hann, Stephen R

    2005-01-01

    Since many breast tumors have deregulated c-Myc we hypothesize that an ARF mimic would be a valuable therapeutic agent for breast cancer to inhibit c-Myc-induced transformation/tumorigenesis without...

  9. Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis.

    Science.gov (United States)

    McGreal, Steven R; Bhushan, Bharat; Walesky, Chad; McGill, Mitchell R; Lebofsky, Margitta; Kandel, Sylvie E; Winefield, Robert D; Jaeschke, Hartmut; Zachara, Natasha E; Zhang, Zhen; Tan, Ee Phie; Slawson, Chad; Apte, Udayan

    2018-04-01

    Overdose of acetaminophen (APAP) results in acute liver failure. We have investigated the role of a posttranslational modification of proteins called O-GlcNAcylation, where the O-GlcNAc transferase (OGT) adds and O-GlcNAcase (OGA) removes a single β-D-N-acetylglucosamine (O-GlcNAc) moiety, in the pathogenesis of APAP-induced liver injury. Hepatocyte-specific OGT knockout mice (OGT KO), which have reduced O-GlcNAcylation, and wild-type (WT) controls were treated with 300 mg/kg APAP and the development of injury was studied over a time course from 0 to 24 h. OGT KO mice developed significantly lower liver injury as compared with WT mice. Hepatic CYP2E1 activity and glutathione (GSH) depletion following APAP treatment were not different between WT and OGT KO mice. However, replenishment of GSH and induction of GSH biosynthesis genes were significantly faster in the OGT KO mice. Next, male C57BL/6 J mice were treated Thiamet-G (TMG), a specific inhibitor of OGA to induce O-GlcNAcylation, 1.5 h after APAP administration and the development of liver injury was studied over a time course of 0-24 h. TMG-treated mice exhibited significantly higher APAP-induced liver injury. Treatment with TMG did not affect hepatic CYP2E1 levels, GSH depletion, APAP-protein adducts, and APAP-induced mitochondrial damage. However, GSH replenishment and GSH biosynthesis genes were lower in TMG-treated mice after APAP overdose. Taken together, these data indicate that induction in cellular O-GlcNAcylation exacerbates APAP-induced liver injury via dysregulation of hepatic GSH replenishment response.

  10. Antioxidation, anti-inflammation and anti-apoptosis by paeonol in LPS/d-GalN-induced acute liver failure in mice.

    Science.gov (United States)

    Gong, Xiaobao; Yang, You; Huang, Ligua; Zhang, Qingyan; Wan, Rong-Zhen; Zhang, Peng; Zhang, Baoshun

    2017-05-01

    To evaluate the hepatoprotective effects and potential mechanisms of paeonol (Pae) against acute liver failure (ALF) induced by lipopolysaccharide (LPS)/d-galactosamine (d-GalN) in mice, we examined anti-oxidative, anti-inflammatory and anti-apoptotic activities of Pae. We found that Pae pretreatment markedly reduced the activities of alanine transaminase and aspartate transaminase as well as the histopathological changes induced by LPS/d-GalN. Catalase, glutathione and superoxide dismutase activities increased and reactive oxygen species activity decreased after Pae treatment compared with LPS/d-GalN treatment. Pretreatment with Pae also significantly inhibited the expression levels of iNOS, nitric oxide (NO), COX-2 and prostaglandin E 2 (PGE 2 ). In addition, Pae administration prevented the phosphorylated expression of IκB kinase, inhibitor kappa B in the nuclear factor-kappa B (NF-κB) signaling pathway, and suppressed the phosphorylated expression of extracellular signal-regulated kinase (ERK), c-jun-N-terminal kinase and p38 in the MAPK signaling pathway. Pretreatment with Pae also inhibited hepatocyte apoptosis by reducing the expression of caspases 3, 8, 9, and Bax, and increasing Bcl-2. In total, protective effects of Pae against LPS/d-GalN-induced ALF in mice are attributed to its antioxidative effect, inflammatory suppression in NF-κB and MARK signaling pathways, and inhibition of hepatocyte apoptosis inhibition. Therefore, Pae can be a potential therapeutic agent in attenuating LPS/d-GalN-induced ALF in the future. Copyright © 2017. Published by Elsevier B.V.

  11. Evaluation of the Intake of Nitrate, Nitrite, Nitrosodiethylamine and Nitrosodimethylamine by Food Consumption

    Directory of Open Access Journals (Sweden)

    Liliana Avasilcai

    2014-12-01

    Full Text Available The aim of the present study was the evaluation of nitrate, nitrite, nitrosodiethylamine (NDEA and nitrosodimethylamine (NDMA intake by food consumption. We determined concentrations of nitrates, nitrites in 102 food samples (40 meat products, 15 fermented cheese, 25 vegetables, 22 fruits and the concentration NDEA, NDMA in 40 meat products. Nitrates and nitrites were determined using Peter-Griess method; nitrosamines were quantified by HPLC with UV detection.  We designed vegetalian, vegetarian and conventional diets of about 2500 kcal/day.  Based of the values found, we calculated the intake of nitrates, nitrites and nitrosamines. The obtained values fits to WHO’s recommendations, except for vegetalian and conventional diet, in which the nitrate content was 3,46 respectively 1,64 times higher than the acceptable daily intake (157 mg NO3-/day.

  12. Role and mechanisms of autophagy in acetaminophen-induced liver injury.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Hua; Jaeschke, Hartmut; Ding, Wen-Xing

    2018-04-23

    Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Collision induced dissociation of protonated N-nitrosodimethylamine by ion trap mass spectrometry: Ultimate carcinogens in gas phase

    Science.gov (United States)

    Kulikova, Natalia; Baker, Michael; Gabryelski, Wojciech

    2009-12-01

    Collision induced dissociation of protonated N-nitrosodimethylamine (NDMA) and isotopically labeled N-nitrosodimethyl-d6-amine (NDMA-d6) was investigated by sequential ion trap mass spectrometry to establish mechanisms of gas phase reactions leading to intriguing products of this potent carcinogen. The fragmentation of (NDMA + H+) occurs via two dissociation pathways. In the alkylation pathway, homolytic cleavage of the N-O bond of N-dimethyl, N'-hydroxydiazenium ion generates N-dimethyldiazenium distonic ion which reacts further by a CH3 radical loss to form methanediazonium ion. Both methanediazonium ion and its precursor are involved in ion/molecule reactions. Methanediazonium ion showed to be capable of methylating water and methanol molecules in the gas phase of the ion trap and N-dimethyldiazenium distonic ion showed to abstract a hydrogen atom from a solvent molecule. In the denitrosation pathway, a tautomerization of N-dimethyl, N'-hydroxydiazenium ion to N-nitrosodimethylammonium intermediate ion results in radical cleavage of the N-N bond of the intermediate ion to form N-dimethylaminium radical cation which reacts further through [alpha]-cleavage to generate N-methylmethylenimmonium ion. Although the reactions of NDMA in the gas phase are different to those for enzymatic conversion of NDMA in biological systems, each activation method generates the same products. We will show that collision induced dissociation of N-nitrosodiethylamine (NDEA) and N-nitrosodipropylamine (NDPA) is also a feasible approach to gain information on formation, stability, and reactivity of alkylating agents originating from NDEA and NDPA. Investigating such biologically relevant, but highly reactive intermediates in the condensed phase is hampered by the short life-times of these transient species.

  14. Ethanol extract from portulaca oleracea L. attenuated acetaminophen-induced mice liver injury

    Science.gov (United States)

    Liu, Xue-Feng; Zheng, Cheng-Gang; Shi, Hong-Guang; Tang, Gu-Sheng; Wang, Wan-Yin; Zhou, Juan; Dong, Li-Wei

    2015-01-01

    Acetaminophen-induced liver injury represents the most frequent cause of drug-induced liver failure in the world. Portulaca oleracea L., a widely distributed weed, has been used as a folk medicine in many countries. Previously, we reported that the ethanol extracts of Portulaca oleracea L. (PO) exhibited significant anti-hypoxic activity. In the present study, we investigated the role of PO on acetaminophen (APAP) induced hepatotoxicity. The results demonstrated that PO was an effective anti-oxidative agent, which could, to some extent, reverse APAP-induced hepatotoxicity by regulating the reactive oxygen species (ROS) in the liver of mice. At the same time, PO treatment significantly decreased mice serum levels of IL-6 and TNFα and their mRNA expression in liver tissue IL-α and TNFα play an important role during APAP-induced liver injury. Furthermore, PO inhibited APAP and TNFα-induced activation of JNK, whose activation play an important effect during APAP induced liver injury. These findings suggested that administration of PO may be an effective strategy to prevent or treat liver injury induced by APAP. PMID:25901199

  15. Acute liver injury induced by weight-loss herbal supplements.

    Science.gov (United States)

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-11-27

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss.

  16. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Atul Rawat

    2016-01-01

    Full Text Available Introduction: Erythromycin (ERY is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group: control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a decreased TCA cycle activity and enhanced fatty acid oxidation, (b dysfunction of lipid and amino acid metabolism and (c oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new

  17. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  18. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    International Nuclear Information System (INIS)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori; Tsuneyama, Koichi; Endo, Shinya; Tsukui, Tohru; Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  19. Propylthiouracil-induced liver failure and artificial liver support systems: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Wu DB

    2017-01-01

    Full Text Available Dong-Bo Wu,1,2 En-Qiang Chen,1,2 Lang Bai,1,2 Hong Tang1,2 1Center of Infectious Diseases, West China Hospital of Sichuan University, 2Division of Molecular Biology of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, People’s Republic of China Background: Antithyroid drugs carry a potential risk of hepatotoxicity. Propylthiouracil (PTU is commonly prescribed for patients with hyperthyroidism. PTU, however, can induce liver injury, ranging from mild asymptomatic elevation of aminotransferases to acute liver failure (ALF.Case presentation: This case reports on a 16-year-old Chinese girl with hyperthyroidism, who was admitted to our hospital for jaundice, nausea, and fatigue associated with severe hyperbilirubinemia and coagulopathy. She had been prescribed PTU 5 months earlier. There was no history of hypersensitivity to drugs, viral liver diseases, blood transfusion, or surgery. On the basis of her symptoms and the clinical data, she was diagnosed with PTU-induced ALF. Due to the limited number of available donor organs for liver transplantation, she was started on treatment with artificial liver support system (ALSS. After four sessions of ALSS, her clinical signs and symptoms were found to be markedly improved, and she was discharged 25 days after admission. Four months later, her liver function normalized.Conclusion: Although PTU-induced liver failure is rare in clinical practice, liver function should be appropriately monitored during treatment with PTU. PTU-induced ALF in this patient was successfully managed with an ALSS, suggesting that the latter may be an alternative to liver transplantation. Keywords: propylthiouracil, liver injury, acute liver failure, artificial liver support systems 

  20. Diphenhydramine as a Cause of Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Yunseok Namn

    2017-01-01

    Full Text Available Drug-induced liver injury (DILI is the most common cause of acute liver failure in the Unites States and accounts for 10% of acute hepatitis cases. We report the only known case of diphenhydramine-induced acute liver injury in the absence of concomitant medications. A 28-year-old man with history of 13/14-chromosomal translocation presented with fevers, vomiting, and jaundice. Aspartate-aminotransferase and alanine-aminotransferase levels peaked above 20,000 IU/L and 5,000 IU/L, respectively. He developed coagulopathy but without altered mental status. Patient reported taking up to 400 mg diphenhydramine nightly, without concomitant acetaminophen, for insomnia. He denied taking other medications, supplements, antibiotics, and herbals. A thorough workup of liver injury ruled out viral hepatitis (including A, B, C, and E, autoimmune, toxic, ischemic, and metabolic etiologies including Wilson’s disease. A liver biopsy was consistent with DILI without evidence of iron or copper deposition. Diphenhydramine was determined to be the likely culprit. This is the first reported case of diphenhydramine-induced liver injury without concomitant use of acetaminophen.

  1. Non-invasive evaluation of liver stiffness after splenectomy in rabbits with CCl4-induced liver fibrosis.

    Science.gov (United States)

    Wang, Ming-Jun; Ling, Wen-Wu; Wang, Hong; Meng, Ling-Wei; Cai, He; Peng, Bing

    2016-12-14

    To investigate the diagnostic performance of liver stiffness measurement (LSM) by elastography point quantification (ElastPQ) in animal models and determine the longitudinal changes in liver stiffness by ElastPQ after splenectomy at different stages of fibrosis. Liver stiffness was measured in sixty-eight rabbits with CCl 4 -induced liver fibrosis at different stages and eight healthy control rabbits by ElastPQ. Liver biopsies and blood samples were obtained at scheduled time points to assess liver function and degree of fibrosis. Thirty-one rabbits with complete data that underwent splenectomy at different stages of liver fibrosis were then included for dynamic monitoring of changes in liver stiffness by ElastPQ and liver function according to blood tests. LSM by ElastPQ was significantly correlated with histologic fibrosis stage ( r = 0.85, P fibrosis, moderate fibrosis, and cirrhosis, respectively. Longitudinal monitoring of the changes in liver stiffness by ElastPQ showed that early splenectomy (especially F1) may delay liver fibrosis progression. ElastPQ is an available, convenient, objective and non-invasive technique for assessing liver stiffness in rabbits with CCl 4 -induced liver fibrosis. In addition, liver stiffness measurements using ElastPQ can dynamically monitor the changes in liver stiffness in rabbit models, and in patients, after splenectomy.

  2. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage

    Science.gov (United States)

    Barrett, Caitlyn W.; Reddy, Vishruth K.; Short, Sarah P.; Motley, Amy K.; Lintel, Mary K.; Bradley, Amber M.; Freeman, Tanner; Vallance, Jefferson; Ning, Wei; Parang, Bobak; Poindexter, Shenika V.; Fingleton, Barbara; Chen, Xi; Washington, Mary K.; Wilson, Keith T.; Shroyer, Noah F.; Hill, Kristina E.; Burk, Raymond F.; Williams, Christopher S.

    2015-01-01

    Patients with inflammatory bowel disease are at increased risk for colon cancer due to augmented oxidative stress. These patients also have compromised antioxidant defenses as the result of nutritional deficiencies. The micronutrient selenium is essential for selenoprotein production and is transported from the liver to target tissues via selenoprotein P (SEPP1). Target tissues also produce SEPP1, which is thought to possess an endogenous antioxidant function. Here, we have shown that mice with Sepp1 haploinsufficiency or mutations that disrupt either the selenium transport or the enzymatic domain of SEPP1 exhibit increased colitis-associated carcinogenesis as the result of increased genomic instability and promotion of a protumorigenic microenvironment. Reduced SEPP1 function markedly increased M2-polarized macrophages, indicating a role for SEPP1 in macrophage polarization and immune function. Furthermore, compared with partial loss, complete loss of SEPP1 substantially reduced tumor burden, in part due to increased apoptosis. Using intestinal organoid cultures, we found that, compared with those from WT animals, Sepp1-null cultures display increased stem cell characteristics that are coupled with increased ROS production, DNA damage, proliferation, decreased cell survival, and modulation of WNT signaling in response to H2O2-mediated oxidative stress. Together, these data demonstrate that SEPP1 influences inflammatory tumorigenesis by affecting genomic stability, the inflammatory microenvironment, and epithelial stem cell functions. PMID:26053663

  3. Hedgehog pathway mediates early acceleration of liver regeneration induced by a novel two-staged hepatectomy in mice.

    Science.gov (United States)

    Langiewicz, Magda; Schlegel, Andrea; Saponara, Enrica; Linecker, Michael; Borger, Pieter; Graf, Rolf; Humar, Bostjan; Clavien, Pierre A

    2017-03-01

    ALPPS, a novel two-staged approach for the surgical removal of large/multiple liver tumors, combines portal vein ligation (PVL) with parenchymal transection. This causes acceleration of compensatory liver growth, enabling faster and more extensive tumor removal. We sought to identify the plasma factors thought to mediate the regenerative acceleration following ALPPS. We compared a mouse model of ALPPS against PVL and additional control surgeries (n=6 per group). RNA deep sequencing was performed to identify candidate molecules unique to ALPPS liver (n=3 per group). Recombinant protein and a neutralizing antibody combined with appropriate surgeries were used to explore candidate functions in ALPPS (n=6 per group). Indian hedgehog (IHH/Ihh) levels were assessed in human ALPPS patient plasma (n=6). ALPPS in mouse confirmed significant acceleration of liver regeneration relative to PVL (pIhh mRNA, coding for a secreted ligand inducing hedgehog signaling, was uniquely upregulated in ALPPS liver (pIhh plasma levels rose 4h after surgery (pIhh alone was sufficient to induce ALPPS-like acceleration of liver growth. Conversely, blocking Ihh markedly inhibited the accelerating effects of ALPPS. In the small cohort of ALPPS patients, IHH tended to be elevated early after surgery. Ihh and hedgehog pathway activation provide the first mechanistic insight into the acceleration of liver regeneration triggered by ALPPS surgery. The accelerating potency of recombinant Ihh, and its potential effect in human ALPPS may lead to a clinical role for this protein. ALPPS, a novel two-staged hepatectomy, accelerates liver regeneration, thereby helping to treat patients with otherwise unresectable liver tumors. The molecular mechanisms behind this accelerated regeneration are unknown. Here, we elucidate that Indian hedgehog, a secreted ligand important for fetal development, is a crucial mediator of the regenerative acceleration triggered by ALPPS surgery. Copyright © 2016. Published by

  4. Liver regeneration signature in hepatitis B virus (HBV-associated acute liver failure identified by gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Oriel Nissim

    Full Text Available The liver has inherent regenerative capacity via mitotic division of mature hepatocytes or, when the hepatic loss is massive or hepatocyte proliferation is impaired, through activation of hepatic stem/progenitor cells (HSPC. The dramatic clinical course of acute liver failure (ALF has posed major limitations to investigating the molecular mechanisms of liver regeneration and the role of HSPC in this setting. We investigated the molecular mechanisms of liver regeneration in 4 patients who underwent liver transplantation for hepatitis B virus (HBV-associated ALF.Gene expression profiling of 17 liver specimens from the 4 ALF cases and individual specimens from 10 liver donors documented a distinct gene signature for ALF. However, unsupervised multidimensional scaling and hierarchical clustering identified two clusters of ALF that segregated according to histopathological severity massive hepatic necrosis (MHN; 2 patients and submassive hepatic necrosis (SHN; 2 patients. We found that ALF is characterized by a strong HSPC gene signature, along with ductular reaction, both of which are more prominent in MHN. Interestingly, no evidence of further lineage differentiation was seen in MHN, whereas in SHN we detected cells with hepatocyte-like morphology. Strikingly, ALF was associated with a strong tumorigenesis gene signature. MHN had the greatest upregulation of stem cell genes (EpCAM, CK19, CK7, whereas the most up-regulated genes in SHN were related to cellular growth and proliferation. The extent of liver necrosis correlated with an overriding fibrogenesis gene signature, reflecting the wound-healing process.Our data provide evidence for a distinct gene signature in HBV-associated ALF whose intensity is directly correlated with the histopathological severity. HSPC activation and fibrogenesis positively correlated with the extent of liver necrosis. Moreover, we detected a tumorigenesis gene signature in ALF, emphasizing the close relationship between

  5. Dietary Factors Modulate Colonic Tumorigenesis Through the Interaction of Gut Microbiota and Host Chloride Channels.

    Science.gov (United States)

    Zhang, Yong; Kang, Chao; Wang, Xiao-Lan; Zhou, Min; Chen, Meng-Ting; Zhu, Xiao-Hui; Liu, Kai; Wang, Bin; Zhang, Qian-Yong; Zhu, Jun-Dong; Mi, Man-Tian

    2018-03-01

    In recent decades, the association among diet, gut microbiota, and the risk of colorectal cancer (CRC) has been established. Gut microbiota and associated metabolites, such as bile acids and butyrate, are now known to play a key role in CRC development. The aim of this study is to identify that the progression to CRC is influenced by cholic acid, sodium butyrate, a high-fat diet, or different dose of dihydromyricetin (DMY) interacted with gut microbiota. An AOM/DSS (azoxymethan/dextran sodium sulfate) model is established to study the gut microbiota compsition before and after tumor formation during colitis-induced tumorigenesis. All above dietary factors profoundly influence the composition of gut microbiota and host colonic tumorigenesis. In addition, mice with DMY-modified initial microbiota display different degrees of chemically induced tumorigenesis. Mechanism analysis reveals that gut microbiota-associated chloride channels participated in colon tumorigenesis. Gut microbiota changes occur in the hyperproliferative stage before tumor formation. Gut microbiota and host chloride channels, both of which are regulated by dietary factors, are associated with CRC development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen

    International Nuclear Information System (INIS)

    Singh, Mahendra Pratap; Kim, Ki Young; Kim, Hwa-Young

    2017-01-01

    Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA −/− ). We found that MsrA −/− mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA +/+ ). The central lobule area of the MsrA −/− liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA −/− than in MsrA +/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA −/− than in MsrA +/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA −/− than in MsrA +/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. - Highlights: • MsrA deficiency increases APAP-induced liver damage. • MsrA deletion enhances APAP-induced hepatic GSH depletion and oxidative stress. • MsrA deficiency induces more profound activation of Nrf2 in response to APAP. • MsrA protects the liver from APAP-induced toxicity.

  7. Role of IRAK-M in alcohol induced liver injury.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available Increasing evidence suggests that innate immunity plays an important role in alcohol-induced liver injury and most studies have focused on positive regulation of innate immunity. The main objective of this study was to investigate the negative regulator of innate immunity, IL-1/Toll-like receptor (TLR signaling pathways and interleukin receptor-associated kinase-M (IRAK-M in alcoholic liver injury. We established an alcohol-induced liver injury model using wild type and IRAK-M deficient B6 mice and investigated the possible mechanisms. We found that in the absence of IRAK-M, liver damage by alcohol was worse with higher alanine transaminase (ALT, more immune cell infiltration and increased numbers of IFNγ producing cells. We also found enhanced phagocytic activity in CD68(+ cells. Moreover, our results revealed altered gut bacteria after alcohol consumption and this was more striking in the absence of IRAK-M. Our study provides evidence that IRAK-M plays an important role in alcohol-induced liver injury and IRAK-M negatively regulates the innate and possibly the adaptive immune response in the liver reacting to acute insult by alcohol. In the absence of IRAK-M, the hosts developed worse liver injury, enhanced gut permeability and altered gut microbiota.

  8. Imatinib-induced fulminant liver failure in chronic myeloid leukemia: role of liver transplant and second-generation tyrosine kinase inhibitors: a case report.

    Science.gov (United States)

    Nacif, Lucas Souto; Waisberg, Daniel R; Pinheiro, Rafael Soares; Lima, Fabiana Roberto; Rocha-Santos, Vinicius; Andraus, Wellington; D'Albuquerque, Luiz Carneiro

    2018-03-10

    There is a worldwide problem of acute liver failure and mortality associated with remaining on the waiting for a liver transplant. In this study, we highlight results published in recent years by leading transplant centers in evaluating imatinib-induced acute liver failure in chronic myeloid leukemia and follow-up in liver transplantation. A 36-year-old brown-skinned woman (mixed Brazilian race) diagnosed 1 year earlier with chronic myeloid leukemia was started after delivery of a baby and continued for 6 months with imatinib mesylate (selective inhibitor of Bcr-Abl tyrosine kinase), which induced liver failure. We conducted a literature review using the PubMed database for articles published through September 2017, and we demonstrate a role of liver transplant in this situation for imatinib-induced liver failure. We report previously published results and a successful liver transplant after acute liver failure due to imatinib-induced in chronic myeloid leukemia treatment. We report a case of a successful liver transplant after acute liver failure resulting from imatinib-induced chronic myeloid leukemia treatment. The literature reveals the importance of prompt acute liver failure diagnosis and treatment with liver transplant in selected cases.

  9. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression via liver X receptors and sterol response element binding protein regulation in cervical cancer.

    Science.gov (United States)

    Kim, Min Jun; Choi, Mee Young; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Kim, Yoon Sook; Choi, Wan Sung

    2018-01-12

    O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G 0 /G 1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.

  10. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    Science.gov (United States)

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. T cells infiltrate the liver and kill hepatocytes in HLA-B(∗)57:01-associated floxacillin-induced liver injury.

    Science.gov (United States)

    Wuillemin, Natascha; Terracciano, Luigi; Beltraminelli, Helmut; Schlapbach, Christoph; Fontana, Stefano; Krähenbühl, Stephan; Pichler, Werner J; Yerly, Daniel

    2014-06-01

    Drug-induced liver injury is a major safety issue. It can cause severe disease and is a common cause of the withdrawal of drugs from the pharmaceutical market. Recent studies have identified the HLA-B(∗)57:01 allele as a risk factor for floxacillin (FLUX)-induced liver injury and have suggested a role for cytotoxic CD8(+) T cells in the pathomechanism of liver injury caused by FLUX. This study aimed to confirm the importance of FLUX-reacting cytotoxic lymphocytes in the pathomechanism of liver injury and to dissect the involved mechanisms of cytotoxicity. IHC staining of a liver biopsy from a patient with FLUX-induced liver injury revealed periportal inflammation and the infiltration of cytotoxic CD3(+) CD8(+) lymphocytes into the liver. The infiltration of cytotoxic lymphocytes into the liver of a patient with FLUX-induced liver injury demonstrates the importance of FLUX-reacting T cells in the underlying pathomechanism. Cytotoxicity of FLUX-reacting T cells from 10 HLA-B(∗)57:01(+) healthy donors toward autologous target cells and HLA-B(∗)57:01-transduced hepatocytes was analyzed in vitro. Cytotoxicity of FLUX-reacting T cells was concentration dependent and required concentrations in the range of peak serum levels after FLUX administration. Killing of target cells was mediated by different cytotoxic mechanisms. Our findings emphasize the role of the adaptive immune system and especially of activated drug-reacting T cells in human leukocyte antigen-associated, drug-induced liver injury. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Dietary elevated sucrose modulation of diesel-induced genotoxicity in the colon and liver of Big Blue rats

    DEFF Research Database (Denmark)

    Risom, L.; Moller, P.; Hansen, Max

    2003-01-01

    Earlier studies have indicated that sucrose possesses either co-carcinogenic or tumor-promoter effects in colon carcinogenesis induced by genotoxic carcinogens. In this study we investigated the role of sucrose on diesel exhaust particle (DEP)-induced genotoxicity in the colonic mucosa and liver......-breaks and DNA adducts in liver. DEP and sucrose treatment did not have any effect on mutation frequency in colon and liver. Oxidative DNA damage detected as 8-oxodG (8-oxo-7,8-dihydro-2'-deoxyguanosine) and endonuclease III or formamidopyrimidine DNA glycosylase sensitive sites was unaltered in colon and liver....... The mRNA expression levels of the DNA repair enzymes N-methylpurine DNA glycosylase (MPG), 8-oxoguanine DNA glycosylase (OGG1) and ERCC1 (part of the nucleotide excision repair complex) measured by reverse transcription-polymerase chain reaction were increased in liver by DEP feeding. In colon...

  13. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    International Nuclear Information System (INIS)

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-01-01

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR −/− and SHP −/− mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR −/− mice and therefore, increased SHP expression in FXR −/− mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR −/− mice with overexpression of SHP in hepatocytes (FXR −/− /SHP Tg ) and determined the contribution of SHP in HCC development in FXR −/− mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR −/− mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR −/− mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency

  14. Saturation of retinol-binding protein correlates closely to the severity of alcohol-induced liver disease

    DEFF Research Database (Denmark)

    Wagnerberger, S.; Schäfer, C.; Bode, C.

    2006-01-01

    Impaired metabolism of retinol has been shown to occur in alcohol-induced liver disease (ALD). The purpose of the present study was to investigate the saturation of retinol-binding protein (RBP) in 6 patients with different stages of ALD. Hospitalized alcohol consumers (n=118) with different stages......: 43.5+/-6.2%; ALD3: 29.0+/-5.1%). The present study indicates that plasma concentrations of retinol and RBP per se do not correlate to severity of ALD, but rather that the retinol/RBP ratio links to the severity of alcohol-induced liver damage. From these results, a reduced availability of retinol...

  15. An Overview on the Proposed Mechanisms of Antithyroid Drugs-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2015-03-01

    Full Text Available Drug-induced liver injury (DILI is a major problem for pharmaceutical industry and drug development. Mechanisms of DILI are many and varied. Elucidating the mechanisms of DILI will allow clinicians to prevent liver failure, need for liver transplantation, and death induced by drugs. Methimazole and propylthiouracil (PTU are two convenient antithyroid agents which their administration is accompanied by hepatotoxicity as a deleterious side effect. Although several cases of antithyroid drugs-induced liver injury are reported, there is no clear idea about the mechanism(s of hepatotoxicity induced by these medications. Different mechanisms such as reactive metabolites formation, oxidative stress induction, intracellular targets dysfunction, and immune-mediated toxicity are postulated to be involved in antithyroid agents-induced hepatic damage. Due to the idiosyncratic nature of antithyroid drugs-induced hepatotoxicity, it is impossible to draw a specific conclusion about the mechanisms of liver injury. However, it seems that reactive metabolite formation and immune-mediated toxicity have a great role in antithyroids liver toxicity, especially those caused by methimazole. This review attempted to discuss different mechanisms proposed to be involved in the hepatic injury induced by antithyroid drugs.

  16. Therapeutic efficacy of human hepatocyte transplantation in a SCID/uPA mouse model with inducible liver disease.

    Directory of Open Access Journals (Sweden)

    Donna N Douglas

    2010-02-01

    Full Text Available Severe Combined Immune Deficient (SCID/Urokinase-type Plasminogen Activator (uPA mice undergo liver failure and are useful hosts for the propagation of transplanted human hepatocytes (HH which must compete with recipient-derived hepatocytes for replacement of the diseased liver parenchyma. While partial replacement by HH has proven useful for studies with Hepatitis C virus, complete replacement of SCID/uPA mouse liver by HH has never been achieved and limits the broader application of these mice for other areas of biomedical research. The herpes simplex virus type-1 thymidine kinase (HSVtk/ganciclovir (GCV system is a powerful tool for cell-specific ablation in transgenic animals. The aim of this study was to selectively eliminate murine-derived parenchymal liver cells from humanized SCID/uPA mouse liver in order to achieve mice with completely humanized liver parenchyma. Thus, we reproduced the HSVtk (vTK/GCV system of hepatic failure in SCID/uPA mice.In vitro experiments demonstrated efficient killing of vTK expressing hepatoma cells after GCV treatment. For in vivo experiments, expression of vTK was targeted to the livers of FVB/N and SCID/uPA mice. Hepatic sensitivity to GCV was first established in FVB/N mice since these mice do not undergo liver failure inherent to SCID/uPA mice. Hepatic vTK expression was found to be an integral component of GCV-induced pathologic and biochemical alterations and caused death due to liver dysfunction in vTK transgenic FVB/N and non-transplanted SCID/uPA mice. In SCID/uPA mice with humanized liver, vTK/GCV caused death despite extensive replacement of the mouse liver parenchyma with HH (ranging from 32-87%. Surprisingly, vTK/GCV-dependent apoptosis and mitochondrial aberrations were also localized to bystander vTK-negative HH.Extensive replacement of mouse liver parenchyma by HH does not provide a secure therapeutic advantage against vTK/GCV-induced cytotoxicity targeted to residual mouse hepatocytes

  17. Mammary tumorigenesis in APCmin/+ mice is enhanced by X-irradiation with a characteristic age dependence

    International Nuclear Information System (INIS)

    Tatsuhiko, Imaoka; Mayumi, Nishimura; Shizuko, Kakinuma; Yoshiya, Shimada; Mieko, Okamoto

    2006-01-01

    The ApcM min/+ (Min) mouse is a genetically predisposed model of both intestinal and mammary tumorigenesis. We investigated age-related changes in the susceptibility of mice (before, during and after puberty) to radiation-induced mammary tumorigenesis using this model. Female Min and wild-type mice having the C57BL/6J background were irradiated with 2 Gy of X-rays at 2, 5, 7 and 10 weeks and sacrificed at 18 weeks of age. Min mice irradiated at 7 to 10 weeks of age (after puberty) developed mammary tumors with squamous metaplasia, whereas their wild-type litter-mates did not. Interestingly, irradiation of Min mice at 2 to 5 weeks (before and during puberty, respectively) did not induce mammary tumors but rather cystic nodules with metaplasia. The mammary tumors exhibited increased nuclear beta-catenin protein and loss of the wild-type Apc allele. Our results show that susceptibility to radiation-induced mammary tumorigenesis increases after puberty in Min mice, suggesting that the tumorigenic effect of ionizing radiation targets the lobular-alveolar progenitor cells, which increase in number with age and are controlled by beta-catenin signaling. (author)

  18. Non-invasive evaluation of liver stiffness after splenectomy in rabbits with CCl4-induced liver fibrosis

    OpenAIRE

    Wang, Ming-Jun; Ling, Wen-Wu; Wang, Hong; Meng, Ling-Wei; Cai, He; Peng, Bing

    2016-01-01

    AIM To investigate the diagnostic performance of liver stiffness measurement (LSM) by elastography point quantification (ElastPQ) in animal models and determine the longitudinal changes in liver stiffness by ElastPQ after splenectomy at different stages of fibrosis. METHODS Liver stiffness was measured in sixty-eight rabbits with CCl4-induced liver fibrosis at different stages and eight healthy control rabbits by ElastPQ. Liver biopsies and blood samples were obtained at scheduled time points...

  19. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    International Nuclear Information System (INIS)

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15 ml/kg). In CCl 4 + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl 4 -induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl 4 -induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  20. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da-Gang [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Wang, Jun-Xian [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Lu, Yan; Tao, Li; Wang, Jian-Qing [Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei 230032 (China)

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  1. Irradiation strongly reduces tumorigenesis of human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Inui, Shoki; Minami, Kazumasa; Ito, Emiko; Imaizumi, Hiromasa; Mori, Seiji; Koizumi, Masahiko; Fukushima, Satsuki; Miyagawa, Shigeru; Sawa, Yoshiki; Matsuura, Nariaki

    2017-01-01

    Induced pluripotent stem (iPS) cells have demonstrated they can undergo self-renewal, attain pluripotency, and differentiate into various types of functional cells. In clinical transplantation of iPS cells, however, a major problem is the prevention of tumorigenesis. We speculated that tumor formation could be inhibited by means of irradiation. Since the main purpose of this study was to explore the prevention of tumor formation in human iPS (hiPS) cells, we tested the effects of irradiation on tumor-associated factors such as radiosensitivity, pluripotency and cell death in hiPS cells. The irradiated hiPS cells showed much higher radiosensitivity, because the survival fraction of hiPS cells irradiated with 2 Gy was < 10%, and there was no change of pluripotency. Irradiation with 2 and 4 Gy caused substantial cell death, which was mostly the result of apoptosis. Irradiation with 2 Gy was detrimental enough to cause loss of proliferation capability and trigger substantial cell death in vitro. The hiPS cells irradiated with 2 Gy were injected into NOG mice (NOD/Shi-scid, IL-2 Rγnull) for the analysis of tumor formation. The group of mice into which hiPS cells irradiated with 2 Gy was transplanted showed significant suppression of tumor formation in comparison with that of the group into which non-irradiated hiPS cells were transplanted. It can be presumed that this diminished rate of tumor formation was due to loss of proliferation and cell death caused by irradiation. Our findings suggest that tumor formation following cell therapy or organ transplantation induced by hiPS cells may be prevented by irradiation.

  2. Lyman NTCP model analysis of radiation-induced liver disease in hypofractionated conformal radiotherapy for primary liver carcinoma

    International Nuclear Information System (INIS)

    Xu Zhiyong; Zhu Yi; Zhao Jiaodong; Fu Xiaolong; Jiang Guoliang; Liang Shixiong; Zhu Xiaodong

    2006-01-01

    Objective: To identify the factors associated with radiation-induced liver disease (RILD) and to describe the probability of RILD using the Lyman normal tissue complication(NTCP) model for primary liver carcinoma(PLC) treated with hypofractionated conformal therapy (CRT). Methods: A total of 109 PLC patients treated with hypofractionated CRT were prospectively followed according to the Child-Pugh classification for liver cirrhosis, 93 patients in class A and 16 in class B. The mean dose of radiation to the isocenter was (53.5±5.5) Gy, fractions of (4.8±0.5) Gy, with interfraction interval of 48 hours and irradiation 3 times per week. Maximal likelihood analysis yielded the best estimates of parameters of the Lyman NTCP model for all patients; Child-Pugh A and Child-Pugh B patients, respectively. Results: Of all the patients, 17 developed RILD (17/109), 8 in Child-Pugh A (8/93) and 9 in Child-Pugh B (9/16). By multivariate analysis, only the Child-Pugh Grade of liver cirrhosis was the independent factor (P=0.000) associated with the developing of BILD. The best estimates of the NTCP parameters for all 109 patients were n=1.1, m=0.35 and TD 50 (1)=38.5 Gy. The n, m, TD 50 (1) estimated from patients with Child-Pugh A was 1.1, 0.28, 40.5 Gy, respectively, compared with 0.7, 0.43, 23 Gy respectively, for patients with Child-Pugh B. Conclusions: Primary liver cancer patients who possess Child-Pugh B cirrhosis would present a significantly greater susceptibility to RILD after hypofractionated CRT than patients with Child-Pugh A cirrhosis. The predominant risk factor for developing RILD is the severity of hepatic cirrhosis in the liver of PLC patients. (authors)

  3. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage

    Directory of Open Access Journals (Sweden)

    Herson Antonio González-Ponce

    2016-10-01

    Full Text Available Acetaminophen (APAP-induced acute liver failure (ALF is a serious health problem in developed countries. N-acetyl-L-cysteine (NAC, the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients and contain high levels of bioactive compounds, including antioxidants. The aim of this study was to evaluate the hepatoprotective effect of Opuntia robusta and Opuntia streptacantha extracts against APAP-induced ALF. In addition, we analyzed the antioxidant activities of these extracts. Fruit extracts (800mg/kg/day, orally were given prophylactically to male Wistar rats before intoxication with APAP (500 mg/kg, intraperitoneally. Rat hepatocyte cultures were exposed to 20mmol/LAPAP, and necrosis was assessed by LDH leakage. Opuntia robusta had significantly higher levels of antioxidants than Opuntia streptacantha. Both extracts significantly attenuated APAP-induced injury markers AST, ALT and ALP and improved liver histology. The Opuntia extracts reversed APAP-induced depletion of liver GSH and glycogen stores. In cultured hepatocytes, Opuntia extracts significantly reduced leakage of LDH and cell necrosis, both prophylactically and therapeutically. Both extracts appeared to be superior to NAC when used therapeutically. We conclude that Opuntia extracts are hepatoprotective and can be used as a nutraceutical to prevent ALF.

  4. Anti-thromboxane B2 antibodies protect against acetaminophen-induced liver injury in mice

    Directory of Open Access Journals (Sweden)

    Ivan Ćavar

    2011-12-01

    Full Text Available Prostanoids are lipid compounds that mediate a variety of physiological and pathological functions in almost all body tissues and organs. Thromboxane (TX A2 is a powerful inducer of platelet aggregation and vasoconstriction and it has ulcerogenic activity in the gastrointestinal tract. Overdose or chronic use of a high dose of acetaminophen (N-acetyl-paminophenol, APAP is a major cause of acute liver failure in the Western world. We investigated whether TXA2 plays a role in host response to toxic effect of APAP. CBA/H Zg mice of both sexes were intoxicated with a single lethal or high sublethal dose of APAP, which was administered to animals by oral gavage. The toxicity of APAP was determined by observing the survival of mice during 48 h, by measuring concentration of alanine-aminotransferase (ALT in plasma 20-22 h after APAP administration and by liver histology. The results have shown that anti-thromboxane (TX B2 antibodies (anti-TXB2 and a selective inhibitor of thromboxane (TX synthase, benzylimidazole (BZI, were significantly hepatoprotective, while a selective thromboxane receptor (TPR antagonist, daltroban, was slightly protective in this model of acute liver injury. A stabile metabolite of TXA2, TXB2, and a stabile agonist of TPR, U-46619, had no influence on APAP-induced liver damage. Our findings suggest that TXA2 has a pathogenic role in acute liver toxicity induced with APAP, which was highly abrogated by administration of anti-TXB2. According to our results, this protection is mediated, at least in part, through decreased production of TXB2 by liver fragments ex vivo.

  5. Cytokine and acute phase protein gene expression in liver biopsies from dairy cows with a lipopolysaccharide - induced mastitis

    DEFF Research Database (Denmark)

    Vels, J; Røntved, Christine M.; Bjerring, Martin

    2009-01-01

    A minimally invasive liver biopsy technique was tested for its applicability to study the hepatic acute phase response (APR) in dairy cows with Escherichia coli lipopolysaccharide (LPS)-induced mastitis. The hepatic mRNA expression profiles of the inflammatory cytokines, tumor necrosis factor (TNF......, a minimally invasive liver biopsy technique can be used for studying the hepatic APR in diseased cattle. Lipopolysaccharide-induced mastitis resulted in a time-dependent production of inflammatory cytokines and SAA and Hp in the liver of dairy cows.......- ), IL-1β, IL-6, and IL-10, and the acute phase proteins serum amyloid A isoform 3 (SAA3), haptoglobin (Hp), and 1-acid glycoprotein (AGP) were determined by real-time reverse transcription-PCR. Fourteen primiparous cows in mid lactation were challenged with 200 µg of LPS (n = 8) or NaCl solution (n = 6...

  6. Lipocalin-2 in Fructose-Induced Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jessica Lambertz

    2017-11-01

    Full Text Available The intake of excess dietary fructose most often leads to non-alcoholic fatty liver disease (NAFLD. Fructose is metabolized mainly in the liver and its chronic consumption results in lipogenic gene expression in this organ. However, precisely how fructose is involved in NAFLD progression is still not fully understood, limiting therapy. Lipocalin-2 (LCN2 is a small secreted transport protein that binds to fatty acids, phospholipids, steroids, retinol, and pheromones. LCN2 regulates lipid and energy metabolism in obesity and is upregulated in response to insulin. We previously discovered that LCN2 has a hepatoprotective effect during hepatic insult, and that its upregulation is a marker of liver damage and inflammation. To investigate if LCN2 has impact on the metabolism of fructose and thereby arising liver damage, we fed wild type and Lcn2−/− mice for 4 or 8 weeks on diets that were enriched in fructose either by adding this sugar to the drinking water (30% w/v, or by feeding a chow containing 60% (w/w fructose. Body weight and daily intake of food and water of these mice was then measured. Fat content in liver sections was visualized using Oil Red O stain, and expression levels of genes involved in fat and sugar metabolism were measured by qRT-PCR and Western blot analysis. We found that fructose-induced steatosis and liver damage was more prominent in female than in male mice, but that the most severe hepatic damage occurred in female mice lacking LCN2. Unexpectedly, consumption of elevated fructose did not induce de novo lipogenesis or fat accumulation. We conclude that LCN2 acts in a lipid-independent manner to protect the liver against fructose-induced damage.

  7. Toxicogenomic analysis of N-nitrosomorpholine induced changes in rat liver: Comparison of genomic and proteomic responses and anchoring to histopathological parameters

    International Nuclear Information System (INIS)

    Oberemm, A.; Ahr, H.-J.; Bannasch, P.; Ellinger-Ziegelbauer, H.; Glueckmann, M.; Hellmann, J.; Ittrich, C.; Kopp-Schneider, A.; Kramer, P.-J.; Krause, E.; Kroeger, M.; Kiss, E.; Richter-Reichhelm, H.-B.; Scholz, G.; Seemann, K.; Weimer, M.; Gundert-Remy, U.

    2009-01-01

    A common animal model of chemical hepatocarcinogenesis was used to examine the utility of transcriptomic and proteomic data to identify early biomarkers related to chemically induced carcinogenesis. N-nitrosomorpholine, a frequently used genotoxic model carcinogen, was applied via drinking water at 120 mg/L to male Wistar rats for 7 weeks followed by an exposure-free period of 43 weeks. Seven specimens of each treatment group (untreated control and 120 mg/L N-nitrosomorpholine in drinking water) were sacrificed at nine time points during and after N-nitrosomorpholine treatment. Individual samples from the liver were prepared for histological and toxicogenomic analyses. For histological detection of preneoplastic and neoplastic tissue areas, sections were stained using antibodies against the placental form of glutathione-S-transferase (GST-P). Gene and protein expression profiles of liver tissue homogenates were analyzed using RG-U34A Affymetrix rat gene chips and two-dimensional gel electrophoresis-based proteomics, respectively. In order to compare results obtained by histopathology, transcriptomics and proteomics, GST-P-stained liver sections were evaluated morphometrically, which revealed a parallel time course of the area fraction of preneoplastic lesions and gene plus protein expression patterns. On the transcriptional level, an increase of hepatic GST-P expression was detectable as early as 3 weeks after study onset. Comparing deregulated genes and proteins, eight species were identified which showed a corresponding expression profile on both expression levels. Functional analysis suggests that these genes and corresponding proteins may be useful as biomarkers of early hepatocarcinogenesis.

  8. 15N liver function tests - concept, validity, clinical use

    International Nuclear Information System (INIS)

    Faust, H.; Jung, K.; Krumbiegel, P.; Hirschberg, K.; Reinhardt, R.; Junghans, P.

    1987-01-01

    Several liver function tests using the oral application of a nitrogen compound labelled with 15 N and the subsequent determination of 15 N in a certain fraction of urine by emission spectrometry are described. Because of the key position of the liver in the metabolism of nitrogen compounds the results of these tests allow conclusions concerning disturbances of special liver functions. Instructions for the clinical use of the '[ 15 N]Ammonium Test', '[ 15 N]Hippurate Test' the '[ 15 N]Methacetin Test', and the '[ 15 N]Glycine Test' are given. (author)

  9. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.

    Science.gov (United States)

    Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il

    2018-03-12

    The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Protective Roles of N-acetyl Cysteine and/or Taurine against Sumatriptan-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Javad Khalili Fard

    2016-12-01

    Full Text Available Purpose: Triptans are the drug category mostly prescribed for abortive treatment of migraine. Most recent cases of liver toxicity induced by triptans have been described, but the mechanisms of liver toxicity of these medications have not been clear. Methods: In the present study, we obtained LC50 using dose-response curve and investigated cell viability, free radical generation, lipid peroxide production, mitochondrial injury, lysosomal membrane damage and the cellular glutathione level as toxicity markers as well as the beneficial effects of taurine and/or N-acetyl cysteine in the sumatriptan-treated rat parenchymal hepatocytes using accelerated method of cytotoxicity mechanism screening. Results: It was revealed that liver toxicity induced by sumatriptan in in freshly isolated parenchymal hepatocytes is dose-dependent. Sumatriptan caused significant free radical generation followed by lipid peroxide formation, mitochondrial injury as well as lysosomal damage. Moreover, sumatriptan reduced cellular glutathione content. Taurine and N-acetyl cysteine were able to protect hepatocytes against sumatriptan-induced harmful effects. Conclusion: It is concluded that sumatriptan causes oxidative stress in hepatocytes and the decreased hepatocytes glutathione has a key role in the sumatriptan-induced harmful effects. Also, N-acetyl cysteine and/or taurine could be used as treatments in sumatriptan-induced side effects.

  11. Aloe vera attenuated liver injury in mice with acetaminophen-induced hepatitis.

    Science.gov (United States)

    Werawatganon, Duangporn; Linlawan, Sittikorn; Thanapirom, Kessarin; Somanawat, Kanjana; Klaikeaw, Naruemon; Rerknimitr, Rungsun; Siriviriyakul, Prasong

    2014-07-08

    An overdose of the acetaminophen causes liver injury. This study aims to examine the anti-oxidative, anti-inflammatory effects of Aloe vera in mice with acetaminophen induced hepatitis. Male mice were randomly divided into three groups (n = 8 each). Control group were given orally distilled water (DW). APAP group were given orally N-acetyl-P-aminophenol (APAP) 400 mg/kg suspended in DW. Aloe vera-treated group were given orally APAP and Aloe vera (150 mg/kg) suspended in DW. Twenty-four hours later, the liver was removed to determine hepatic malondialdehyde (MDA), hepatic glutathione (GSH), the number of interleukin (IL)-12 and IL-18 positive stained cells (%) by immunohistochemistry method, and histopathological examination. Then, the serum was collected to determine transaminase (ALT). In APAP group, ALT, hepatic MDA and the number of IL-12 and IL-18 positive stained cells were significantly increased when compared to control group (1210.50 ± 533.86 vs 85.28 ± 28.27 U/L, 3.60 ± 1.50 vs 1.38 ± 0.15 nmol/mg protein, 12.18 ± 1.10 vs 1.84 ± 1.29%, and 13.26 ± 0.90 vs 2.54 ± 1.29%, P = 0.000, respectively), whereas hepatic GSH was significantly decreased when compared to control group (5.98 ± 0.30 vs 11.65 ± 0.43 nmol/mg protein, P = 0.000). The mean level of ALT, hepatic MDA, the number of IL-12 and IL-18 positive stained cells, and hepatic GSH in Aloe vera-treated group were improved as compared with APAP group (606.38 ± 495.45 vs 1210.50 ± 533.86 U/L, P = 0.024; 1.49 ± 0.64 vs 3.60 ± 1.50 nmol/mg protein, P = 0.001; 5.56 ± 1.25 vs 12.18 ± 1.10%, P = 0.000; 6.23 ± 0.94 vs 13.26 ± 0.90%, P = 0.000; and 10.02 ± 0.20 vs 5.98 ± 0.30 nmol/mg protein, P = 0.000, respectively). Moreover, in the APAP group, the liver showed extensive hemorrhagic hepatic necrosis at all zones while in Aloe vera-treated group, the liver architecture was improved histopathology. APAP overdose can cause liver injury. Our result indicate that Aloe vera attenuate APAP-induced

  12. Radiation induced liver disease: A clinical update

    International Nuclear Information System (INIS)

    Benson, R.; Madan, R.; Chander, S.; Kilambi, R.

    2016-01-01

    Radiation-induced liver disease (RILD) or radiation hepatitis is a sub-acute form of liver injury due to radiation. It is one of the most dreaded complications of radiation which prevents radiation dose escalation and re irradiation for hepatobiliary or upper gastrointestinal malignancies. This complication should be kept in mind whenever a patient is planned for irradiation of these malignancies. Although, incidence of RILD is decreasing due to better knowledge of liver tolerance, improved investigation modalities and modern radiation delivery techniques, treatment options are still limited. In this review article, we have focussed on pathophysiology, risk factors, prevention and management of RILD

  13. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice.

    Science.gov (United States)

    Du, Xianhong; Wu, Zhuanchang; Xu, Yong; Liu, Yuan; Liu, Wen; Wang, Tixiao; Li, Chunyang; Zhang, Cuijuan; Yi, Fan; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2018-05-07

    As an immune checkpoint, Tim-3 plays roles in the regulation of both adaptive and innate immune cells including macrophages and is greatly involved in chronic liver diseases. However, the precise roles of Tim-3 in nonalcoholic steatohepatitis (NASH) remain unstated. In the current study, we analyzed Tim-3 expression on different subpopulations of liver macrophages and further investigated the potential roles of Tim-3 on hepatic macrophages in methionine and choline-deficient diet (MCD)-induced NASH mice. The results of flow cytometry demonstrated the significantly increased expression of Tim-3 on all detected liver macrophage subsets in MCD mice, including F4/80 + CD11b + , F4/80 + CD68 + , and F4/80 + CD169 + macrophages. Remarkably, Tim-3 knockout (KO) significantly accelerated MCD-induced liver steatosis, displaying higher serum ALT, larger hepatic vacuolation, more liver lipid deposition, and more severe liver fibrosis. Moreover, compared with wild-type C57BL/6 mice, Tim-3 KO MCD mice demonstrated an enhanced expression of NOX2, NLRP3, and caspase-1 p20 together with increased generation of IL-1β and IL-18 in livers. In vitro studies demonstrated that Tim-3 negatively regulated the production of reactive oxygen species (ROS) and related downstream pro-inflammatory cytokine secretion of IL-1β and IL-18 in macrophages. Exogenous administration of N-Acetyl-L-cysteine (NAC), a small molecular inhibitor of ROS, remarkably suppressed caspase-1 p20 expression and IL-1β and IL-18 production in livers of Tim-3 KO mice, thus significantly reducing the severity of steatohepatitis induced by MCD. In conclusion, Tim-3 is a promising protector in MCD-induced steatohepatitis by controlling ROS and the associated pro-inflammatory cytokine production in macrophages.

  14. Continuous cell injury promotes hepatic tumorigenesis in cdc42-deficient mouse liver

    DEFF Research Database (Denmark)

    van Hengel, Jolanda; D'Hooge, Petra; Hooghe, Bart

    2008-01-01

    be required for liver function. METHODS: Mice in which Cdc42 was ablated in hepatocytes and bile duct cells were generated by Cre-loxP technology. Livers were examined by histologic, immunohistochemical, ultrastructural, and serum analysis to define the effect of loss of Cdc42 on liver structure. RESULTS...... of 2 months, the canaliculi between hepatocytes were greatly enlarged, although the tight junctions flanking the canaliculi appeared normal. Regular liver plates were absent. E-cadherin expression pattern and gap junction localization were distorted. Analysis of serum samples indicated cholestasis...

  15. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Bhathena J

    2011-06-01

    Full Text Available Jasmine Bhathena, Arun Kulamarva, Christopher Martoni, Aleksandra Malgorzata Urbanska, Meenakshi Malhotra, Arghya Paul, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, CanadaBackground: Obesity, hypercholesterolemia, elevated triglycerides, and type 2 diabetes are major risk factors for metabolic syndrome. Hamsters, unlike rats or mice, respond well to diet-induced obesity, increase body mass and adiposity on group housing, and increase food intake due to social confrontation-induced stress. They have a cardiovascular and hepatic system similar to that of humans, and can thus be a useful model for human pathophysiology.Methods: Experiments were planned to develop a diet-induced Bio F1B Golden Syrian hamster model of dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hamsters were fed a normal control diet, a high-fat/high-cholesterol diet, a high-fat/high-cholesterol/methionine-deficient/choline-devoid diet, and a high-fat/high-cholesterol/choline-deficient diet. Serum total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, atherogenic index, and body weight were quantified biweekly. Fat deposition in the liver was observed and assessed following lipid staining with hematoxylin and eosin and with oil red O.Results: In this study, we established a diet-induced Bio F1B Golden Syrian hamster model for studying dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hyperlipidemia and elevated serum glucose concentrations were induced using this diet. Atherogenic index was elevated, increasing the risk for a cardiovascular event. Histological analysis of liver specimens at the end of four weeks showed increased fat deposition in the liver of animals fed

  16. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study.

    Science.gov (United States)

    Aglan, Hadeer A; Ahmed, Hanaa H; El-Toumy, Sayed A; Mahmoud, Nadia S

    2017-06-01

    The global burden of hepatocellular carcinoma is increasing; actually, it is estimated as 750,000 new cases annually. This study was initiated to emphasize the possibility that gallic acid could alleviate hepatocarcinogenesis in vivo. In this study, 40 rats were enrolled and distributed as follows; group 1 was set as negative control, while all of groups 2, 3, and 4 were orally received N-nitrosodiethylamine for hepatocellular carcinoma induction. Group 2 was left untreated, whereas groups 3 and 4 were orally treated with gallic acid and doxorubicin, respectively. The current data indicated that gallic acid administration in hepatocellular carcinoma bearing rats yielded significant decline in serum levels of alpha-fetoprotein, glypican-3, and signal transducer and activator of transcription 3 along with significant enhancement in serum suppressors of cytokine signaling 3 level. Also, gallic acid-treated group displayed significant downregulation in the gene expression levels of hepatic gamma glutamyl transferase and heat shock protein gp96. Intriguingly, treatment with gallic acid remarkably ameliorated the destabilization of liver tissue architecture caused by N-nitrosodiethylamine intoxication as evidenced by histopathological investigation. In conclusion, this study demonstrates that the hepatocarcinogenic effect of N-nitrosodiethylamine can be abrogated by gallic acid supplementation owing to its affinity to regulate signal transducer and activator of transcription 3 signaling pathway through its outstanding bioactivities including antioxidant, anti-inflammatory, apoptotic, and antitumor effects.

  17. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    Science.gov (United States)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  18. Occurrence of volatile and non-volatile N-nitrosamines in processed meat products and the role of heat treatment

    DEFF Research Database (Denmark)

    Herrmann, Susan Strange; Duedahl-Olesen, Lene; Granby, Kit

    2015-01-01

    -nitrosoproline (NPRO), N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), N-nitrosodiethylamine (NDEA) and N-nitrosomethylaniline (NMA) depending on the type of product and/or the heat treatment. The levels of the NVNA, NTCA and N-nitroso-2-methyl-thiazolidine 4-carboxylic acid (NMTCA) decreased after frying...

  19. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-07-26

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.

  20. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D.

    2012-01-01

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H 2 DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  1. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  2. Free methionine supplementation limits alcohol-induced liver damage in rats

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Bode, C.; Bode, J.C.

    1998-01-01

    Alcohol feeding to rats that were submitted to a jejunoileal bypass operation has been shown to result in liver damage being comparable with alcohol-induced liver disease in man. In the present study, a striking effect of free methionine consumption on histological liver injury, triglyceride accu...

  3. Drug-induced liver toxicity and prevention by herbal antioxidants: an overview

    Directory of Open Access Journals (Sweden)

    Divya eSingh

    2016-01-01

    Full Text Available The liver is the center for drug and xenobiotic metabolism, which is influenced most with medication/xenobiotic-mediated toxic activity. Drug-induced hepatotoxicity is common and its actual frequency is hard to determine due to underreporting, difficulties in detection or diagnosis, and incomplete observation of exposure. The death rate is high, up to about 10% for medication instigated liver danger. Endorsed medications (counting acetaminophen represented >50% of instances of intense liver failure in a study from the Acute Liver Failure Study Group (ALFSG of the patients admitted in 17 US healing facilities. Albeit different studies are accessible uncovering the mechanistic aspects of medication prompted hepatotoxicity, we are in the dilemma about the virtual story. The expanding prevalence and effectiveness of Ayurveda and herbal products in the treatment of various disorders led the investigators to look into their potential in countering drug-induced liver toxicity. Several plant products have been reported to date to mitigate the drug-induced toxicity. The dietary nature and less side reactions of the herbs provide them an extra edge over other candidates of supplementary medication. In this paper, we have discussed on the mechanism involved in drug-induced liver toxicity and the potential of herbal antioxidants as supplementary medication.

  4. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats

    Directory of Open Access Journals (Sweden)

    Fereshteh Asgharzadeh

    2017-10-01

    Full Text Available Objective: Liver fibrosis is the primary sign of chronic liver injury induced by various causes. Thymoquinone (TQ is the major ingredient of Nigella sativa with several beneficial effects on the body. In the present study, we aimed to investigate the effect of TQ on liver fibrosis in a lipopolysaccharide (LPS-induced inflammation in male rats. Materials and methods: Fifty male Wistar rats were randomly divided into five groups (n=10 in each group as follow: (1 control; (2 LPS (1 mg/kg/day; i.p; (3 LPS+TQ 2 mg/kg/day (i.p (LPs+TQ2; (4 LPS+TQ 5 mg/kg/day (LPS+TQ5; (5 LPS+ TQ 10 mg/kg/day (LPS+ TQ10. After three weeks, blood samples were taken for evaluation of liver function tests. Then, the livers were harvested for histological evaluation of fibrosis and collagen content and measurement of oxidative stress markers including malondialdehyde (MDA, total thiol groups, superoxide dismutase (SOD and catalase activity in tissue homogenates. Results: LPS group showed higher levels of fibrosis and collagen content stained by Masson’s trichrome in liver tissue with impaired liver function test and increased oxidative stress markers (p

  5. LP-THAE induced tumor cell apoptosis of rabbit VX2 liver carcinoma

    International Nuclear Information System (INIS)

    Chen Shengli; Quan Yi; Huang Zicheng; Chen Guodong; Zhu Dongliang

    2007-01-01

    Objective: To research tumor cell apoptosis induced by Lp-THAE of rabbit VX2 liver implanted tumor. Methods: 27 New Zealand white rabbits implanted with VX2 tumor at left middle lobe of the liver divided into three groups: Group A(n= 9) Lp-THAE: treated through transhepatic artery catheterization; Group B(n=9) THAI and Group C(n=9) as control. The rabbits were executed at second to fifth day after treatment. HE dye microscopy was taken for counting the typical apoptosis cells and calculating apoptosis index (ApI). FITC-AnnexinV/PI assay was used for measuring apoptosis by flow cytometry. Results: The ApI of tumor central area and marginal area were (17.769±2.417)%, (4.129±1.172)%, P<0.01. The percentages of tumor cell apoptosis and tumor cell necrosis were (16.483±1.404)%, (9.478±0.964)%, P<0.01 and (43.559±5.053)%, (33.460±1.840)%, P=0.093. The total percentages of tumor cell apoptosis and necrosis were (60.042±13.979)%, (42.938±8.979)%, P< 0.01, at tumor center and marginal area in THAE group respectively. The ApI, percentages of tumor cell apoptosis and necrosis in THAE group were significantly higher than those of THAI group (P<0.01). The percentages of tumor cell apoptosis at tumor center area in THAE group were significantly higher than those of tumor marginal area(P<0.01). Conclusion: Induced tumor cell apoptosis and necrosis are two mechanisms of action for Lp-THAE treatment of liver carcinoma. (authors)

  6. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    2014-09-16

    evaluated the periportal fibrosis gene signature in the GEO dataset - GSE13747 [34]. In this dataset, liver fibrosis was induced by bile duct ...dataset, liver fibrosis was induced by bile duct ligation. Figure 10-D shows the observed correlation between log-ratios of periportal fibrosis...at 15 days of exposure obtained from TG-GATEs, and D) liver fibrosis produced by bile duct ligation obtained from GSE13747. doi:10.1371/journal.pone

  7. Attenuation of N-nitrosodimethylamine induced hepatotoxicity by Operculina turpethum in Swiss Albino mice

    Science.gov (United States)

    Sharma, Veena; Singh, Manu

    2014-01-01

    Objective(s): To appraise the antihepatotoxic efficacy of ethanolic extract of Operculum turpethum root on the liver of Swiss albino mice. Materials and Methods: Hepatic fibrosis was induced in adult male albino mice through intraperitoneal administrations of N-nitrosodimethylamine (NDMA) at the concentration of 10 mg/kg body weight. The liver toxicity and therapeutic effect of the plant ethanolic extract was assessed by the analysis of liver marker enzymes and antioxidant enzymes and liver histopathological studies. Results: Hepatotoxicity was manifested by significantly decreased (PNDMA induced toxicity which was also supported by histopathological studies of the liver. Conclusion: O. turpethum manifested therapeutic effects by significantly restoring the enzymatic levels and reducing the hepatic damage in mice. This work intends to aid researchers in the study of natural products which could be useful in the treatment of liver diseases including cancer. PMID:24592311

  8. An autopsy case of multiple myeloma with veno-occlusive disease of the liver induced by ionizing radiation

    International Nuclear Information System (INIS)

    Ueno, Hironori; Inagaki, Yasutaka; Yonei, Yoshikazu; Ozawa, Yukako; Atsukawa, Kazuhiro; Tsukada, Nobuhiro; Miyamoto, Kei; Suzuki, Osamu; Kiryu, Yasuyoshi

    1995-01-01

    An autopsy case of multiple myeloma which accompanied radiation-induced veno-occlusion of the liver is presented. A 62-year-old woman with a chief complaint of low back pain was diagnosed as having multiple myeloma. Approximately one year later, the patient was treated with chemotherapy, consisting of VCR, MCNU, ADR, PSL, and CPA, and X-irradiation of 30 Gy to the bilateral trunk for medically intractable rib pain. The irradiation field included the entire liver. Six months later, she was admitted to the hospital due to abdominal distention and massive amounts of ascites. Various examinations failed to make a qualitative diagnosis. Postmortem examination revealed fibrotic occlusion of the central vein which is typical for veno-occlusion disease of the liver. This finding was restricted to the area that was not shielded, irrespective of anatomical structure, strongly suggesting radiation-induced veno-occlusion of the liver. (N.K.)

  9. HIF-1 α as a Key Factor in Bile Duct Ligation-Induced Liver Fibrosis in Rats.

    Science.gov (United States)

    Moczydlowska, Joanna; Miltyk, Wojciech; Hermanowicz, Adam; Lebensztejn, Dariusz M; Palka, Jerzy A; Debek, Wojciech

    2017-02-01

    Although several studies suggested hypoxia as an important microenvironmental factor contributing to inflammation and fibrosis in chronic liver diseases, the mechanism of this process is not fully understood. We considered hypoxia inducible factor (HIF-1α) as a key transcription factor in liver fibrosis. The aim of the study was to evaluate the mechanisms of signaling pathway during bile duct ligation (BDL)-induced liver fibrosis in rats. BDL animal model of liver fibrosis was used in the study. Male Wistar rats were divided randomly into two experimental groups: sham group (n = 15), BDL group (n = 30). Hydroxyproline (Hyp) content as a marker of collagen accumulation in liver of rats subjected to BDL was evaluated according to the method described by Gerling B et al. Expression of signaling proteins [integrin β 1 receptor, HIF-1α, nuclear factor kappa B (NF-κB), and transforming growth factor (TGF-β)] was evaluated applying Western-immunoblot analysis. In all experiments, the mean values for six assays ± standard deviations (SD) were calculated. The results were submitted to the statistical analysis using the Student's "t" test, accepting p bile ducts was found to increase Hyp content in rat liver, accompanied by increase of HIF-1α expression during 10 weeks after BDL. The Hyp level was time dependent. There was not such a difference in control group (p livers were increased 1 week after surgery and remained increased until the end of the experiment. The mechanism of development of liver fibrosis involves activation of Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9), upregulation of HIF-1α transcriptional activity and its related factors, NF-κB and TGF-β. It suggests that they may represent targets for the treatment of the disease.

  10. Characterization of long noncoding RNA and messenger RNA signatures in melanoma tumorigenesis and metastasis.

    Directory of Open Access Journals (Sweden)

    Siqi Wang

    Full Text Available The incidence of melanoma, the most aggressive and life-threatening form of skin cancer, has significantly risen over recent decades. Therefore, it is essential to identify the mechanisms that underlie melanoma tumorigenesis and metastasis and to explore novel and effective melanoma treatment strategies. Accumulating evidence s uggests that aberrantly expressed long noncoding RNAs (lncRNAs have vital functions in multiple cancers. However, lncRNA functions in melanoma tumorigenesis and metastasis remain unclear. In this study, we investigated lncRNA and messenger RNA (mRNA expression profiles in primary melanomas, metastatic melanomas and normal skin samples from the Gene Expression Omnibus database. We used GSE15605 as the training set (n = 74 and GSE7553 as the validation set (n = 58. In three comparisons (primary melanoma versus normal skin, metastatic melanoma versus normal skin, and metastatic melanoma versus primary melanoma, 178, 295 and 48 lncRNAs and 847, 1758, and 295 mRNAs were aberrantly expressed, respectively. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses to examine the differentially expressed mRNAs, and potential core lncRNAs were predicted by lncRNA-mRNA co-expression networks. Based on our results, 15 lncRNAs and 144 mRNAs were significantly associated with melanoma tumorigenesis and metastasis. A subsequent analysis suggested a critical role for a five-lncRNA signature during melanoma tumorigenesis and metastasis. Low expression of U47924.27 was significantly associated with decreased survival of patients with melanoma. To the best of our knowledge, this study is the first to explore the expression patterns of lncRNAs and mRNAs during melanoma tumorigenesis and metastasis by re-annotating microarray data from the Gene Expression Omnibus (GEO microarray dataset. These findings reveal potential roles for lncRNAs during melanoma tumorigenesis and metastasis and provide a rich candidate

  11. Nebivolol and chrysin protect the liver against ischemia/reperfusion-induced injury in rats

    Directory of Open Access Journals (Sweden)

    Sayed M. Mizar

    2015-03-01

    Full Text Available Oxidative stress plays a key role in the pathogenesis of hepatic ischemia/reperfusion (I/R-induced injury, one of the leading causes of liver damage post-surgical intervention, trauma and transplantation. This study aimed to evaluate the protective effect of nebivolol and chrysin against I/R-induced liver injury via their vasodilator and antioxidant effects, respectively. Adult male Wister rats received nebivolol (5 mg/kg and/or chrysin (25 mg/kg by oral gavage daily for one week then subjected to ischemia via clamping the portal triad for 30 min then reperfusion for 30 min. Liver function enzymes, alanine transaminase (ALT and aspartate transaminase (AST, as well as hepatic Myeloperoxidase (MPO, total nitrate (NOx, glutathione (GSH and liver malondialdehyde (MDA were measured at the end of the experiment. Liver tissue damage was examined by histopathology. In addition, the expression levels of nitric oxide synthase (NOS subtypes, endothelial (eNOS and inducible (iNOS in liver samples were assessed by Western blotting and confirmed by immunohistochemical analysis. Both chrysin and nebivolol significantly counteracted I/R-induced oxidative stress and tissue damage biomarkers. The combination of these agents caused additive liver protective effect against I/R-induced damage via the up regulation of nitric oxide expression and the suppression of oxidative stress. Chrysin and nebivolol combination showed a promising protective effect against I/R-induced liver injury, at least in part, via decreasing oxidative stress and increasing nitric oxide levels.

  12. Suppression of colorectal tumorigenesis by recombinant Bacteroides fragilis enterotoxin-2 in vivo.

    Science.gov (United States)

    Lv, You; Ye, Tao; Wang, Hui-Peng; Zhao, Jia-Ying; Chen, Wen-Jie; Wang, Xin; Shen, Chen-Xia; Wu, Yi-Bin; Cai, Yuan-Kun

    2017-01-28

    To evaluate the impact of recombinant Bacteroides fragilis enterotoxin-2 (BFT-2, or Fragilysin) on colorectal tumorigenesis in mice induced by azoxymethane/dextran sulfate sodium (AOM/DSS). Recombinant proBFT-2 was expressed in Escherichia coli strain Rosetta (DE3) and BFT-2 was obtained and tested for its biological activity via colorectal adenocarcinoma cell strains SW-480. Seventy C57BL/6J mice were randomly divided into a blank (BC; n = 10), model (AD; n = 20), model + low-dose toxin (ADLT; n = 20, 10 μg), and a model + high-dose toxin (ADHT; n = 20, 20 μg) group. Mice weight, tumor formation and pathology were analyzed. Immunohistochemistry determined Ki-67 and Caspase-3 expression in normal and tumor tissues of colorectal mucosa. Recombinant BFT-2 was successfully obtained, along with its biological activity. The most obvious weight loss occurred in the AD group compared with the ADLT group (21.82 ± 0.68 vs 23.23 ± 0.91, P ADHT group (21.82 ± 0.68 vs 23.57 ± 1.06, P ADHT groups (19.75 ± 3.30 vs 6.50 ± 1.73, P ADHT group. The incidence of colorectal adenocarcinoma in both the ADHT group and the ADHT group was reduced compared to that in the AD group ( P ADHT group was 50% and 40%, respectively, both of which were lower than that found in the AD group (94.44%, P ADHT group was 45% and 55%, both of which were higher than that found in the BC group (16.67%, P < 0.05, P < 0.05). Oral administration with lower-dose biologically active recombinant BFT-2 inhibited colorectal tumorigenesis in mice.

  13. Acetaminophen-Induced Liver Injury Alters the Acyl Ethanolamine-Based Anti-Inflammatory Signaling System in Liver

    Directory of Open Access Journals (Sweden)

    Patricia Rivera

    2017-10-01

    Full Text Available Protective mechanisms against drug-induced liver injury are actively being searched to identify new therapeutic targets. Among them, the anti-inflammatory N-acyl ethanolamide (NAE-peroxisome proliferators activated receptor alpha (PPARα system has gained much interest after the identification of its protective role in steatohepatitis and liver fibrosis. An overdose of paracetamol (APAP, a commonly used analgesic/antipyretic drug, causes hepatotoxicity, and it is being used as a liver model. In the present study, we have analyzed the impact of APAP on the liver NAE-PPARα system. A dose-response (0.5–5–10–20 mM and time-course (2–6–24 h study in human HepG2 cells showed a biphasic response, with a decreased PPARα expression after 6-h APAP incubation followed by a generalized increase of NAE-PPARα system-related components (PPARα, NAPE-PLD, and FAAH, including the NAEs oleoyl ethanolamide (OEA and docosahexaenoyl ethanolamide, after a 24-h exposure to APAP. These results were partially confirmed in a time-course study of mice exposed to an acute dose of APAP (750 mg/kg. The gene expression levels of Pparα and Faah were decreased after 6 h of treatment and, after 24 h, the gene expression levels of Nape-pld and Faah, as well as the liver levels of OEA and palmitoyl ethanolamide, were increased. Repeated APAP administration (750 mg/kg/day up to 4 days also decreased the expression levels of PPARα and FAAH, and increased the liver levels of NAEs. A resting period of 15 days completely restored these impairments. Liver immunohistochemistry in a well-characterized human case of APAP hepatotoxicity confirmed PPARα and FAAH decrements. Histopathological and hepatic damage (Cyp2e1, Caspase3, αSma, Tnfα, and Mcp1-related alterations observed after repeated APAP administration were aggravated in the liver of Pparα-deficient mice. Our results demonstrate that the anti-inflammatory NAE-PPARα signaling system is implicated in liver

  14. Mammary tumorigenesis in APC{sup min/+} mice is enhanced by X-irradiation with a characteristic age dependence

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuhiko, Imaoka; Mayumi, Nishimura; Shizuko, Kakinuma; Yoshiya, Shimada [National Institute of Radiological Sciences, Experimental Radiobiology for Children' s Health Research Group, Research, Center for Radiation Protection (Japan); Mieko, Okamoto [Tokyo Metropolitan Institute of Medical Science (Japan)

    2006-07-01

    The ApcM{sup min/+} (Min) mouse is a genetically predisposed model of both intestinal and mammary tumorigenesis. We investigated age-related changes in the susceptibility of mice (before, during and after puberty) to radiation-induced mammary tumorigenesis using this model. Female Min and wild-type mice having the C57BL/6J background were irradiated with 2 Gy of X-rays at 2, 5, 7 and 10 weeks and sacrificed at 18 weeks of age. Min mice irradiated at 7 to 10 weeks of age (after puberty) developed mammary tumors with squamous metaplasia, whereas their wild-type litter-mates did not. Interestingly, irradiation of Min mice at 2 to 5 weeks (before and during puberty, respectively) did not induce mammary tumors but rather cystic nodules with metaplasia. The mammary tumors exhibited increased nuclear beta-catenin protein and loss of the wild-type Apc allele. Our results show that susceptibility to radiation-induced mammary tumorigenesis increases after puberty in Min mice, suggesting that the tumorigenic effect of ionizing radiation targets the lobular-alveolar progenitor cells, which increase in number with age and are controlled by beta-catenin signaling. (author)

  15. Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury.

    Science.gov (United States)

    Dang, Yangjie; Liu, Ting; Mei, Xiaopeng; Meng, Xiangzhong; Gou, Xingchun; Deng, Bin; Xu, Hao; Xu, Lixian

    2017-12-01

    It is not known whether simultaneous delivery of hydrogen and oxygen can reduce injury caused by hemorrhagic shock and resuscitation (HSR). This study investigated the therapeutic potential of hyperoxygenated hydrogen-rich solution (HHOS), a combined hydrogen/oxygen carrier, in a rat model of HSR-induced liver injury. Rats (n = 60) were randomly divided into 5 groups (n = 6 per group at each time point). One group underwent sham operation, and the others were subjected to severe hemorrhagic shock and then treated with lactated Ringer's solution (LRS), hydrogen-rich solution, hyperoxygenated solution, or HHOS. At 2 and 6 h after resuscitation, blood samples (n = 6) were collected from the femoral artery and serum concentrations of alanine aminotransferase and aspartate aminotransferase (AST) were measured. Rats were then sacrificed, and histopathological changes in the liver were evaluated by quantifying the percentage of apoptotic cells by caspase-3 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick-end labeling. Inflammation was assessed by assessing malondialdehyde content and tumor necrosis factor-α, and interleukin (IL)-6 expression. Compared to lactated Ringer's solution, hydrogen-rich solution, or hyperoxygenated solution groups, serum AST and alanine aminotransferase levels and IL-6, tumor necrosis factor-α, and malondialdehyde expression in liver tissue were decreased by HHOS treatment. The number of caspase-3- and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was decreased (P < 0.05) by HHOS treatment, 2 and 6 h after resuscitation. HHOS has protective effects against liver injury in a rat model of HSR. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-07-01

    Full Text Available Peroxisome proliferator-activated receptor α (PPARα is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF. However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apoptosis, thereby protecting against ALF. In a murine model of D-galactosamine (D-GalN- and lipopolysaccharide (LPS-induced ALF, Wy-14643 was administered to activate PPARα, and 4-phenylbutyric acid (4-PBA was administered to attenuate ER stress. PPARα activation ameliorated liver injury, because pre-administration of its specific inducer, Wy-14643, reduced the serum aminotransferase levels and preserved liver architecture compared with that of controls. The protective effect of PPARα activation resulted from the suppression of ER stress-induced hepatocyte apoptosis. Indeed, (1 PPARα activation decreased the expression of glucose-regulated protein 78 (Grp78, Grp94 and C/EBP-homologous protein (CHOP in vivo; (2 the liver protection by 4-PBA resulted from the induction of PPARα expression, as 4-PBA pre-treatment promoted upregulation of PPARα, and inhibition of PPARα by small interfering RNA (siRNA treatment reversed liver protection and increased hepatocyte apoptosis; (3 in vitro PPARα activation by Wy-14643 decreased hepatocyte apoptosis induced by severe ER stress, and PPARα inhibition by siRNA treatment decreased the hepatocyte survival induced by mild ER stress. Here, we demonstrate that PPARα activation contributes to liver protection and decreases hepatocyte apoptosis in ALF, particularly through regulating ER stress. Therefore, targeting PPARα could be a potential therapeutic strategy to ameliorate ALF.

  17. PROTECTIVE EFFECTS OF HYPOTHALAMIC BETA-ENDORPHIN NEURONS AGAINST ALCOHOL-INDUCED LIVER INJURIES AND LIVER CANCERS IN RAT ANIMAL MODELS

    Science.gov (United States)

    Murugan, Sengottuvelan; Boyadjieva, Nadka; Sarkar, Dipak K.

    2014-01-01

    Background Recently, retrograde tracing has provided evidence for an influence of hypothalamic β-endorphin (BEP) neurons on the liver, but functions of these neurons are not known. We evaluated the effect of BEP neuronal activation on alcohol-induced liver injury and hepatocellular cancer. Methods Male rats received either BEP neuron transplants or control transplants in the hypothalamus and randomly assigned to feeding alcohol-containing liquid diet or control liquid diet for 8 weeks or to treatment of a carcinogen diethylnitrosamine (DEN). Liver tissues of these animals were analyzed histochemically and biochemically for tissue injuries or cancer. Results Alcohol-feeding increased liver weight and induced several histopathological changes such as prominent microvesicular steatosis and hepatic fibrosis. Alcohol feeding also increased protein levels of triglyceride, hepatic stellate cell activation factors and catecholamines in the liver and endotoxin levels in the plasma. However, these effects of alcohol on the liver were reduced in animals with BEP neuron transplants. BEP neuron transplants also suppressed carcinogen-induced liver histopathologies such as extensive fibrosis, large focus of inflammatory infiltration, hepatocelluar carcinoma, collagen deposition, numbers of preneoplastic foci, levels of hepatic stellate cell activation factors and catecholamines, as well as inflammatory milieu and the levels of NK cell cytotoxic factors in the liver. Conclusion These findings are the first evidence for a role of hypothalamic BEP neurons in influencing liver functions. Additionally, the data identify that BEP neuron transplantation prevents hepatocellular injury and hepatocellular carcinoma formation possibly via influencing the immune function. PMID:25581653

  18. Steatosis induced CCL5 contributes to early-stage liver fibrosis in nonalcoholic fatty liver disease progress.

    Science.gov (United States)

    Li, Bing-Hang; He, Fang-Ping; Yang, Xin; Chen, Yuan-Wen; Fan, Jian-Gao

    2017-02-01

    The rapidly increasing prevalence of nonalcoholic fatty liver disease (NAFLD) has become one of the major public health threats in China and worldwide. However, during the development of NAFLD, the key mechanism underlying the progression of related fibrosis remains unclear, which greatly impedes the development of optimal NAFLD therapy. In the current study, we were endeavored to characterize a proinflammatory cytokine, CCL5, as a major contributor for fibrosis in NAFLD. The results showed that CCL5 was highly expressed in fatty liver and NASH patients. In NAFLD rats induced by 8-week-HFD, CCL5 and its receptor, CCR5, were significantly up-regulated and liver fibrosis exclusively occurred in this group. In addition, we showed that hepatocytes are the major source contributing to this CCL5 elevation. Interestingly, a CCL5 inhibitor Met-CCL5, significantly decreased liver fibrosis but not hepatic steatosis. Using a cell model of hepatic steatosis, we found that the conditioned medium of lipid-overloaded hepatocytes (Fa2N-4 cells) which produced excessive CCL5 stimulated the profibrotic activities of hepatic stellate cells (LX-2) as manifested by increased migration rate, proliferation and collagen production of LX-2 cells. CCL5 knockdown in Fa2N-4 cells, Met-CCL5 or CCR5 antibody treatment on LX-2 cells all significantly inhibited the conditioned medium of FFA-treated Fa2N-4 cells to exert stimulatory effects on LX-2 cells. Consistently, the conditioned medium of Fa2N-4 cells with CCL5 over-expression significantly enhanced migration rate, cell proliferation and collagen production of LX-2 cells. All these results support that CCL5 produced by steatotic hepatocytes plays an essential role in fibrotic signaling machinery of NAFLD. In addition, we were able to identify C/EBP-β as the up-stream regulator of CCL5 gene transcription in hepatocytes treated with free fatty acid (FFA). Our data strongly supported that CCL5 plays a pivotal regulatory role in

  19. Protective effect of bicyclol on tetracycline-induced fatty liver in mice

    International Nuclear Information System (INIS)

    Yu, Hong-Yan; Wang, Bao-Lian; Zhao, Jing; Yao, Xiao-Min; Gu, Yu; Li, Yan

    2009-01-01

    Peroxisome proliferators-activated receptor α (PPARα) and oxidative stress are two important pathological factors in non-alcoholic fatty liver disease (NAFLD). Tetracycline-induced fatty liver was partly due to the disturbance of mitochondrial fatty acids β-oxidation regulated by PPARα. Bicyclol was found to protect against high fat diet-induced fatty liver through modulating PPARα and clearing reactive oxygen species (ROS). The present study was performed to further investigate the effect of bicyclol on tetracycline-induced fatty liver and related mechanism in mice. Bicyclol (75, 150, 300 mg/kg) was given orally three times in two consecutive days. Tetracycline (200 mg/kg) was injected intraperitoneally 1 h after the last administration of bicyclol. Oxidative stress, mitochondrial function, PPARα and its target genes were evaluated by biochemical and RT-PCR analysis. The activity of CYP4A was assessed by liquid chromatography/mass spectrometry (LC/MS) method. Bicyclol significantly protected against tetracycline-induced fatty liver by reducing the accumulation of hepatic lipids and elevation of serum aminotransferase. In addition, bicyclol remarkably alleviated the over-production of thiobarbituric acid-reactive substance. The reduced activity of mitochondrial respiratory chain (MRC) complexes I and IV and mitochondrial permeability transition (MPT) were also improved by bicyclol. Furthermore, bicyclol inhibited the decrease of PPARα expression and its target genes, including long-chain acyl CoA dehydrogenase (LCAD), acetyl CoA oxidase (AOX) and CYP4A at mRNA and enzyme activity level. Bicyclol protected against tetracycline-induced fatty liver mainly through modulating the disturbance of PPARα pathway and ameliorating mitochondrial function.

  20. Effects of Fatty Liver Induced by Excess Orotic Acid on B-Group Vitamin Concentrations of Liver, Blood, and Urine in Rats.

    Science.gov (United States)

    Shibata, Katsumi; Morita, Nobuya; Kawamura, Tomoyo; Tsuji, Ai; Fukuwatari, Tsutomu

    2015-01-01

    Fatty liver is caused when rats are given orotic acid of the pyrimidine base in large quantities. The lack of B-group vitamins suppresses the biosynthesis of fatty acids. We investigated how orotic acid-induced fatty liver affects the concentrations of liver, blood, and urine B-group vitamins in rats. The vitamin B6 and B12 concentrations of liver, blood, and urine were not affected by orotic acid-induced fatty liver. Vitamin B2 was measured only in the urine, but was unchanged. The liver, blood, and urine concentrations of niacin and its metabolites fell dramatically. Niacin and its metabolites in the liver, blood, and urine were affected as expected. Although the concentrations of vitamin B1, pantothenic acid, folate, and biotin in liver and blood were decreased by orotic acid-induced fatty liver, these urinary excretion amounts showed a specific pattern toward increase. Generally, as for the typical urinary excretion of B-group vitamins, these are excreted when the body is saturated. However, the ability to sustain vitamin B1, pantothenic acid, folate, and biotin decreased in fatty liver, which is hypothesized as a specific phenomenon. This metabolic response might occur to prevent an abnormally increased biosynthesis of fatty acids by orotic acid.

  1. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis.

    Science.gov (United States)

    Haricharan, S; Li, Y

    2014-01-25

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Liver function tests using the stable istope 15N

    International Nuclear Information System (INIS)

    Faust, H.; Jung, K.; Hirschberg, K.; Krumbiegel, P.; Junghans, P.; Reinhardt, R.; Teichmann, B.

    1988-01-01

    Several liver function tests using oral application of a nitrogen compound labelled with 15 N and the subsequent determination of 15 N in a certain fraction of urine or in the total urine by emission spectrometry are described. Because of the key function of the liver in the metabolism of nitrogen compounds, the results of these tests allow conclusions concerning some disturbances of liver functions. (author)

  3. Long-term prognosis for transplant-free survivors of paracetamol-induced acute liver failure

    DEFF Research Database (Denmark)

    Jepsen, P; Schmidt, L E; Larsen, F S

    2010-01-01

    The prognosis for transplant-free survivors of paracetamol-induced acute liver failure remains unknown.......The prognosis for transplant-free survivors of paracetamol-induced acute liver failure remains unknown....

  4. Symbiotic formulation in experimentally induced liver fibrosis in rats: intestinal microbiota as a key point to treat liver damage?

    Science.gov (United States)

    D'Argenio, Giuseppe; Cariello, Rita; Tuccillo, Concetta; Mazzone, Giovanna; Federico, Alessandro; Funaro, Annalisa; De Magistris, Laura; Grossi, Enzo; Callegari, Maria L; Chirico, Marilena; Caporaso, Nicola; Romano, Marco; Morelli, Lorenzo; Loguercio, Carmela

    2013-05-01

    Evidence indicates that intestinal microbiota may participate in both the induction and the progression of liver damage. The aim of our research was the detection and evaluation of the effects of chronic treatment with a symbiotic formulation on CCl4 -induced rat liver fibrosis. CCl4 significantly increased gastric permeability in respect to basal values, and the treatment with symbiotic significantly decreased it. CCl4 per se induced a decrease in intestinal permeability. This effect was also seen in fibrotic rats treated with symbiotic and was still evident when normal rats were treated with symbiotic alone (P symbiotic treatment normalized the plasma levels of TNF-α and significantly enhanced anti-inflammatory cytokine IL 10. TNF-α, TGF-β, TLR4, TLR2, iNOS and α-SMA mRNA expression in the liver were up-regulated in rats with CCl4 -induced liver fibrosis and down-regulated by symbiotic treatment. Moreover, IL-10 and eNOS mRNA levels were increased in the CCL4 (+) symbiotic group. Symbiotic treatment of fibrotic rats normalized serum ALT, AST and improved histology and liver collagen deposition. DGGE analysis of faecal samples revealed that CCl4 administration and symbiotic treatment either alone or in combination produced modifications in faecal profiles vs controls. Our results provide evidence that in CCl4 -induced liver fibrosis, significant changes in gastro-intestinal permeability and in faecal flora occur. Treatment with a specific symbiotic formulation significantly affects these changes, leading to improvement in both liver inflammation and fibrosis. © 2013 John Wiley & Sons A/S.

  5. Distinct cellular responses differentiating alcohol- and hepatitis C virus-induced liver cirrhosis

    Directory of Open Access Journals (Sweden)

    Boix Loreto

    2006-11-01

    Full Text Available Abstract Background Little is known at the molecular level concerning the differences and/or similarities between alcohol and hepatitis C virus induced liver disease. Global transcriptional profiling using oligonucleotide microarrays was therefore performed on liver biopsies from patients with cirrhosis caused by either chronic alcohol consumption or chronic hepatitis C virus (HCV. Results Global gene expression patterns varied significantly depending upon etiology of liver disease, with a greater number of differentially regulated genes seen in HCV-infected patients. Many of the gene expression changes specifically observed in HCV-infected cirrhotic livers were expectedly associated with activation of the innate antiviral immune response. We also compared severity (CTP class of cirrhosis for each etiology and identified gene expression patterns that differentiated ethanol-induced cirrhosis by class. CTP class A ethanol-cirrhotic livers showed unique expression patterns for genes implicated in the inflammatory response, including those related to macrophage activation and migration, as well as lipid metabolism and oxidative stress genes. Conclusion Stages of liver cirrhosis could be differentiated based on gene expression patterns in ethanol-induced, but not HCV-induced, disease. In addition to genes specifically regulating the innate antiviral immune response, mechanisms responsible for differentiating chronic liver damage due to HCV or ethanol may be closely related to regulation of lipid metabolism and to effects of macrophage activation on deposition of extracellular matrix components.

  6. NF-kappaB in Lung Tumorigenesis

    International Nuclear Information System (INIS)

    Cai, Zhenjian; Tchou-Wong, Kam-Meng; Rom, William N.

    2011-01-01

    The development of lung cancer in humans can be divided into three steps initiation, promotion and progression. This process is driven by alterations in related signal transduction pathways. These pathways signal the aberrant activation of NF-kappaB, a transcription factor that regulates the expression of genes important for lung tumorigenesis. Our current knowledge about the role of the NF-kappaB signaling pathway in the development of lung cancer has been bolstered by animal models demonstrating the connection between K-ras and tobacco induced lung transformation with NF-kappaB. Activation of downstream genes leads to cell proliferation, inhibition of apoptosis, angiogenesis, inflammation, invasion, and metastasis

  7. NF-kappaB in Lung Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhenjian [Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Tchou-Wong, Kam-Meng; Rom, William N., E-mail: william.rom@nyumc.org [Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2011-12-14

    The development of lung cancer in humans can be divided into three steps initiation, promotion and progression. This process is driven by alterations in related signal transduction pathways. These pathways signal the aberrant activation of NF-kappaB, a transcription factor that regulates the expression of genes important for lung tumorigenesis. Our current knowledge about the role of the NF-kappaB signaling pathway in the development of lung cancer has been bolstered by animal models demonstrating the connection between K-ras and tobacco induced lung transformation with NF-kappaB. Activation of downstream genes leads to cell proliferation, inhibition of apoptosis, angiogenesis, inflammation, invasion, and metastasis.

  8. Arsenic induced apoptosis in rat liver following repeated 60 days exposure

    International Nuclear Information System (INIS)

    Bashir, Somia; Sharma, Yukti; Irshad, M.; Nag, T.C.; Tiwari, Monica; Kabra, M.; Dogra, T.D.

    2006-01-01

    Background: Accumulation of the wide spread environmental toxin arsenic in liver results in hepatotoxcity. Exposure to arsenite and other arsenicals has been previously shown to induce apoptosis in certain tumor cell lines at low (1-3 μM) concentration. Aim: The present study was focused to elucidate the role of free radicals in arsenic toxicity and to investigate the nature of in vivo sodium arsenite induced cell death in liver. Methods: Male wistar rats were exposed to arsenite at three different doses of 0.05, 2.5 and 5 mg/l for 60 days. Oxidative stress in liver was measured by estimating pro-oxidant and antioxidant activity in liver. Histopathological examination of liver was carried out by light and transmission electron microscopy. Analysis of DNA fragmentation by gel electrophoresis was used to identify apoptosis after the exposure. Terminal deoxy-nucleotidyl transferase mediated dUTP Nick end-labeling (TUNEL) assay was used to qualify and quantify apoptosis. Results: A significant increase in cytochrome-P450 and lipid peroxidation accompanied with a significant alteration in the activity of many of the antioxidants was observed, all suggestive of arsenic induced oxidative stress. Histopathological examination under light and transmission electron microscope suggested a combination of ongoing necrosis and apoptosis. DNA-TUNEL showed an increase in apoptotic cells in liver. Agarose gel electrophoresis of DNA of hepatocytes resulted in a characteristic ladder pattern. Conclusion: Chronic arsenic administration induces a specific pattern of apoptosis called post-mitotic apoptosis

  9. Ethanol and liver: Recent insights into the mechanisms of ethanol-induced fatty liver

    Science.gov (United States)

    Liu, Jinyao

    2014-01-01

    Alcoholic fatty liver disease (AFLD), a potentially pathologic condition, can progress to steatohepatitis, fibrosis, and cirrhosis, leading to an increased probability of hepatic failure and death. Alcohol induces fatty liver by increasing the ratio of reduced form of nicotinamide adenine dinucleotide to oxidized form of nicotinamide adenine dinucleotide in hepatocytes; increasing hepatic sterol regulatory element-binding protein (SREBP)-1, plasminogen activator inhibitor (PAI)-1, and early growth response-1 activity; and decreasing hepatic peroxisome proliferator-activated receptor-α activity. Alcohol activates the innate immune system and induces an imbalance of the immune response, which is followed by activated Kupffer cell-derived tumor necrosis factor (TNF)-α overproduction, which is in turn responsible for the changes in the hepatic SREBP-1 and PAI-1 activity. Alcohol abuse promotes the migration of bone marrow-derived cells (BMDCs) to the liver and then reprograms TNF-α expression from BMDCs. Chronic alcohol intake triggers the sympathetic hyperactivity-activated hepatic stellate cell (HSC) feedback loop that in turn activates the HSCs, resulting in HSC-derived TNF-α overproduction. Carvedilol may block this feedback loop by suppressing sympathetic activity, which attenuates the progression of AFLD. Clinical studies evaluating combination therapy of carvedilol with a TNF-α inhibitor to treat patients with AFLD are warranted to prevent the development of alcoholic liver disease. PMID:25356030

  10. Quercetin prevents pyrrolizidine alkaloid clivorine-induced liver injury in mice by elevating body defense capacity.

    Directory of Open Access Journals (Sweden)

    Lili Ji

    Full Text Available Quercetin is a plant-derived flavonoid that is widely distributed in nature. The present study is designed to analyze the underlying mechanism in the protection of quercetin against pyrrolizidine alkaloid clivorine-induced acute liver injury in vivo. Serum transaminases, total bilirubin analysis, and liver histological evaluation demonstrated the protection of quercetin against clivorine-induced liver injury. Terminal dUTP nick end-labeling assay demonstrated that quercetin reduced the increased amount of liver apoptotic cells induced by clivorine. Western-blot analysis of caspase-3 showed that quercetin inhibited the cleaved activation of caspase-3 induced by clivorine. Results also showed that quercetin reduced the increase in liver glutathione and lipid peroxidative product malondialdehyde induced by clivorine. Quercetin reduced the enhanced liver immunohistochemical staining for 4-hydroxynonenal induced by clivorine. Results of the Mouse Stress and Toxicity PathwayFinder RT2 Profiler PCR Array demonstrated that the expression of genes related with oxidative or metabolic stress and heat shock was obviously altered after quercetin treatment. Some of the alterations were confirmed by real-time PCR. Our results demonstrated that quercetin prevents clivorine-induced acute liver injury in vivo by inhibiting apoptotic cell death and ameliorating oxidative stress injury. This protection may be caused by the elevation of the body defense capacity induced by quercetin.

  11. Quercetin Prevents Pyrrolizidine Alkaloid Clivorine-Induced Liver Injury in Mice by Elevating Body Defense Capacity

    Science.gov (United States)

    Ji, Lili; Ma, Yibo; Wang, Zaiyong; Cai, Zhunxiu; Pang, Chun; Wang, Zhengtao

    2014-01-01

    Quercetin is a plant-derived flavonoid that is widely distributed in nature. The present study is designed to analyze the underlying mechanism in the protection of quercetin against pyrrolizidine alkaloid clivorine-induced acute liver injury in vivo. Serum transaminases, total bilirubin analysis, and liver histological evaluation demonstrated the protection of quercetin against clivorine-induced liver injury. Terminal dUTP nick end-labeling assay demonstrated that quercetin reduced the increased amount of liver apoptotic cells induced by clivorine. Western-blot analysis of caspase-3 showed that quercetin inhibited the cleaved activation of caspase-3 induced by clivorine. Results also showed that quercetin reduced the increase in liver glutathione and lipid peroxidative product malondialdehyde induced by clivorine. Quercetin reduced the enhanced liver immunohistochemical staining for 4-hydroxynonenal induced by clivorine. Results of the Mouse Stress and Toxicity PathwayFinder RT2 Profiler PCR Array demonstrated that the expression of genes related with oxidative or metabolic stress and heat shock was obviously altered after quercetin treatment. Some of the alterations were confirmed by real-time PCR. Our results demonstrated that quercetin prevents clivorine-induced acute liver injury in vivo by inhibiting apoptotic cell death and ameliorating oxidative stress injury. This protection may be caused by the elevation of the body defense capacity induced by quercetin. PMID:24905073

  12. A liver-function test using 15N-labelled ammonium chloride

    International Nuclear Information System (INIS)

    Jung, K.; Hirscherg, K.; Faust, H.; Matkowitz, R.

    1985-01-01

    Malfunction of the liver involves disturbances of urea synthesis and ammonia detoxification. These phenomena became apparent, especially during ammonia loading of patients. The functional state of the liver can be assessed by oral administration of 15 NH 4 Cl and subsequent analysis of 15 N-urea and 15 N-ammonia in urine by emission spectrometry. Clinical tests based on the ratio of the excess abundances (see Appendix) of 15 N-ammonia to 15 N-urea excreted in urine 3 h after oral administration gave values for patients with liver disease which differed significantly from those for healthy subjects. Absorption disturbances, which often accompany liver diseases, do not influence the effectiveness of the method. (orig.)

  13. Liver-function test using /sup 15/N-labelled ammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K; Hirscherg, K; Faust, H; Matkowitz, R

    1985-08-01

    Malfunction of the liver involves disturbances of urea synthesis and ammonia detoxification. These phenomena became apparent, especially during ammonia loading of patients. The functional state of the liver can be assessed by oral administration of /sup 15/NH/sub 4/Cl and subsequent analysis of /sup 15/N-urea and /sup 15/N-ammonia in urine by emission spectrometry. Clinical tests based on the ratio of the excess abundances (see Appendix) of /sup 15/N-ammonia to /sup 15/N-urea excreted in urine 3 h after oral administration gave values for patients with liver disease which differed significantly from those for healthy subjects. Absorption disturbances, which often accompany liver diseases, do not influence the effectiveness of the method.

  14. Hepatitis C virus core protein targets 4E-BP1 expression and phosphorylation and potentiates Myc-induced liver carcinogenesis in transgenic mice.

    Science.gov (United States)

    Abdallah, Cosette; Lejamtel, Charlène; Benzoubir, Nassima; Battaglia, Serena; Sidahmed-Adrar, Nazha; Desterke, Christophe; Lemasson, Matthieu; Rosenberg, Arielle R; Samuel, Didier; Bréchot, Christian; Pflieger, Delphine; Le Naour, François; Bourgeade, Marie-Françoise

    2017-08-22

    Hepatitis C virus (HCV) is a leading cause of liver diseases including the development of hepatocellular carcinoma (HCC). Particularly, core protein has been involved in HCV-related liver pathologies. However, the impact of HCV core on signaling pathways supporting the genesis of HCC remains largely elusive. To decipher the host cell signaling pathways involved in the oncogenic potential of HCV core, a global quantitative phosphoproteomic approach was carried out. This study shed light on novel differentially phosphorylated proteins, in particular several components involved in translation. Among the eukaryotic initiation factors that govern the translational machinery, 4E-BP1 represents a master regulator of protein synthesis that is associated with the development and progression of cancers due to its ability to increase protein expression of oncogenic pathways. Enhanced levels of 4E-BP1 in non-modified and phosphorylated forms were validated in human hepatoma cells and in mouse primary hepatocytes expressing HCV core, in the livers of HCV core transgenic mice as well as in HCV-infected human primary hepatocytes. The contribution of HCV core in carcinogenesis and the status of 4E-BP1 expression and phosphorylation were studied in HCV core/Myc double transgenic mice. HCV core increased the levels of 4E-BP1 expression and phosphorylation and significantly accelerated the onset of Myc-induced tumorigenesis in these double transgenic mice. These results reveal a novel function of HCV core in liver carcinogenesis potentiation. They position 4E-BP1 as a tumor-specific target of HCV core and support the involvement of the 4E-BP1/eIF4E axis in hepatocarcinogenesis.

  15. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo

    Science.gov (United States)

    Lobikin, Maria; Chernet, Brook; Lobo, Daniel; Levin, Michael

    2012-12-01

    Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (Vmem) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by ‘instructor’ cells—a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting

  16. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P L; Hadi, Mackenzie; Laarakkers, Coby M M; Masereeuw, R.|info:eu-repo/dai/nl/155644033; Groothuis, Geny M M; Russel, Frans G M

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker

  17. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats.

    Science.gov (United States)

    Asgharzadeh, Fereshteh; Bargi, Rahimeh; Beheshti, Farimah; Hosseini, Mahmoud; Farzadnia, Mehdi; Khazaei, Majid

    2017-01-01

    Liver fibrosis is the primary sign of chronic liver injury induced by various causes. Thymoquinone (TQ) is the major ingredient of Nigella sativa with several beneficial effects on the body. In the present study, we aimed to investigate the effect of TQ on liver fibrosis in a lipopolysaccharide (LPS)-induced inflammation in male rats. Fifty male Wistar rats were randomly divided into five groups (n=10 in each group) as follow: (1) control; (2) LPS (1 mg/kg/day; i.p); (3) LPS+TQ 2 mg/kg/day (i.p) (LPs+TQ2); (4) LPS+TQ 5 mg/kg/day (LPS+TQ5); (5) LPS+ TQ 10 mg/kg/day (LPS+ TQ10). After three weeks, blood samples were taken for evaluation of liver function tests. Then, the livers were harvested for histological evaluation of fibrosis and collagen content and measurement of oxidative stress markers including malondialdehyde (MDA), total thiol groups, superoxide dismutase (SOD) and catalase activity in tissue homogenates. LPS group showed higher levels of fibrosis and collagen content stained by Masson's trichrome in liver tissue with impaired liver function test and increased oxidative stress markers (pliver fibrosis, improved liver function tests and increased the levels of anti-oxidative enzymes (SOD and catalase), while reduced MDA concentration (pliver fibrosis possibly through affecting oxidative stress status. It seems that administration of TQ can be considered as a part of liver fibrosis management.

  18. Dexamethasone-induced haptoglobin release by calf liver parenchymal cells.

    Science.gov (United States)

    Higuchi, H; Katoh, N; Miyamoto, T; Uchida, E; Yuasa, A; Takahashi, K

    1994-08-01

    Parenchymal cells were isolated from the liver of male calves, and monolayer cultures formed were treated with glucocorticoids to examine whether haptoglobin, appearance of which is associated with hepatic lipidosis (fatty liver) in cattle, is induced by steroid hormones. Without addition of dexamethasone, only trace amounts of haptoglobin were detected in culture medium. With addition of dexamethasone (10(-12) to 10(-4) M), considerable amounts of haptoglobin were released into the medium. Maximal release was observed at concentrations of 10(-8) to 10(-6) M dexamethasone. Haptoglobin release was similarly induced by cortisol, although the effect was less potent than that of dexamethasone. Actinomycin D (a known protein synthesis inhibitor) dose-dependently reduced amounts of haptoglobin released in response to 10(-8) M dexamethasone. Dexamethasone also induced annexin I, which is known to be synthesized in response to glucocorticoids. Dexamethasone treatment resulted in reduced protein kinase C activity in the cell cytosol, which has been shown to be an early event in dexamethasone-treated cells. Other than glucocorticoids, estradiol induced haptoglobin release, whereas progesterone was less effective. The association of haptoglobin with hepatic lipidosis can be reasonably explained by the fact that haptoglobin production by the liver is induced by glucocorticoids and estradiol, and these steroid hormones are triggers for development of hepatic lipidosis in cattle.

  19. Acute alcohol-induced liver injury

    Directory of Open Access Journals (Sweden)

    Gavin Edward Arteel

    2012-06-01

    Full Text Available Alcohol consumption is customary in most cultures and alcohol abuse is common worldwide. For example, more than 50% of Americans consume alcohol, with an estimated 23.1% of Americans participating in heavy and/or binge drinking at least once a month. A safe and effective therapy for alcoholic liver disease (ALD in humans is still elusive, despite significant advances in our understanding of how the disease is initiated and progresses. It is now clear that acute alcohol binges not only can be acutely toxic to the liver, but also can contribute to the chronicity of ALD. Potential mechanisms by which acute alcohol causes damage include steatosis, dysregulated immunity and inflammation and altered gut permeability. Recent interest in modeling acute alcohol exposure has yielded new insights into potential mechanisms of acute injury, that also may well be relevant for chronic ALD. Recent work by this group on the role of PAI-1 and fibrin metabolism in mediating acute alcohol-induced liver damage serve as an example of possible new targets that may be useful for alcohol abuse, be it acute or chronic.

  20. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation.

    Science.gov (United States)

    Zhang, Qiang; Zhang, Yaqing; Parsels, Joshua D; Lohse, Ines; Lawrence, Theodore S; Pasca di Magliano, Marina; Sun, Yi; Morgan, Meredith A

    2016-11-01

    Pancreatic cancers driven by KRAS mutations require additional mutations for tumor progression. The tumor suppressor FBXW7 is altered in pancreatic cancers, but its contribution to pancreatic tumorigenesis is unknown. To determine potential cooperation between Kras mutation and Fbxw7 inactivation in pancreatic tumorigenesis, we generated P48-Cre;LSL-Kras G12D ;Fbxw7 fl/fl (KFC fl/fl ) compound mice. We found that KFC fl/fl mice displayed accelerated tumorigenesis: all mice succumbed to pancreatic ductal adenocarcinoma (PDA) by 40 days of age, with PDA onset occurring by 2 weeks of age. PDA in KFC fl/fl mice was preceded by earlier onset of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions, and associated with chromosomal instability and the accumulation of Fbxw7 substrates Yes-associated protein (Yap), c-Myc, and Notch. Using KFC fl/fl and FBXW7-deficient human pancreatic cancer cells, we found that Yap silencing attenuated growth promotion by Fbxw7 deletion. Our data demonstrate that Fbxw7 is a potent suppressor of Kras G12D -induced pancreatic tumorigenesis due, at least in part, to negative regulation of Yap. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Shear wave elastography results correlate with liver fibrosis histology and liver function reserve.

    Science.gov (United States)

    Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue

    2016-05-07

    To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P function reserve in experimental severe fibrosis and cirrhosis.

  2. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    International Nuclear Information System (INIS)

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-01-01

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion ( TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  3. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Science.gov (United States)

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  4. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice

    Directory of Open Access Journals (Sweden)

    Nancy Sayuri Uchida

    2017-01-01

    Full Text Available High doses of acetaminophen (APAP lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP, and gamma-glutamyl transferase (γGT were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO activity and nitric oxide (NO production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γGT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP.

  5. Regulation of N-nitrosodimethylamine demethylase in rat liver and kidney.

    Science.gov (United States)

    Hong, J Y; Pan, J M; Dong, Z G; Ning, S M; Yang, C S

    1987-11-15

    In previous work, the low Km form of N-nitrosodimethylamine (NDMA) demethylase has been demonstrated to be due to a specific form of cytochrome P-450 (designated as P-450ac) and to be the enzyme required for the metabolic activation of NDMA. The present work deals with the regulation of P-450ac in rat liver during development as well as the mechanism of induction of P-450ac in rat liver and kidney by inducers. NDMA demethylase activity was almost undetectable in the liver of newborn rats, increased after day 4, and remained elevated throughout the first 17 days of the neonatal period. The enhancement of NDMA demethylase activity during development was accompanied by corresponding increases of P-450ac content and P-450ac mRNA levels as determined by Western and slot blot analyses, respectively. No sex differences with respect to this enzyme were observed in the developing rats. Acetone treatment on late-term pregnant rats for 2 days resulted in transplacental inductions of P-450ac and P-450ac mRNA in the newborn rats. Pretreatment of young male rats and adult female rats with acetone or isopropyl alcohol caused increases of NDMA demethylase activity and P-450ac content in the liver but no significant change in the P-450ac mRNA level. These facts suggest the possible existence of a posttranscription regulatory mechanism under these induction conditions. The presence of P-450ac in rat kidney was demonstrated by Western and Northern blot analyses. The renal form of P-450ac seemed to be regulated in a fashion similar to the hepatic P-450ac regarding its response to inducing factors such as fasting and acetone treatment.

  6. Ozagrel hydrochloride, a selective thromboxane A2 synthase inhibitor, alleviates liver injury induced by acetaminophen overdose in mice

    Directory of Open Access Journals (Sweden)

    Tomishima Yoshiro

    2013-01-01

    Full Text Available Abstract Background Overdosed acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP causes severe liver injury. We examined the effects of ozagrel, a selective thromboxane A2 (TXA2 synthase inhibitor, on liver injury induced by APAP overdose in mice. Methods Hepatotoxicity was induced to ICR male mice by an intraperitoneal injection with APAP (330 mg/kg. The effects of ozagrel (200 mg/kg treatment 30 min after the APAP injection were evaluated with mortality, serum alanine aminotransferase (ALT levels and hepatic changes, including histopathology, DNA fragmentation, mRNA expression and total glutathione contents. The impact of ozagrel (0.001-1 mg/mL on cytochrome P450 2E1 (CYP2E1 activity in mouse hepatic microsome was examined. RLC-16 cells, a rat hepatocytes cell line, were exposed to 0.25 mM N-acetyl-p-benzoquinone imine (NAPQI, a hepatotoxic metabolite of APAP. In this model, the cytoprotective effects of ozagrel (1–100 muM were evaluated by the WST-1 cell viability assay. Results Ozagel treatment significantly attenuated higher mortality, elevated serum alanine aminotransferase levels, excessive hepatic centrilobular necrosis, hemorrhaging and DNA fragmentation, as well as increase in plasma 2,3-dinor thromboxane B2 levels induced by APAP injection. Ozagrel also inhibited the hepatic expression of cell death-related mRNAs induced by APAP, such as jun oncogene, FBJ osteosarcoma oncogene (fos and C/EBP homologous protein (chop, but did not suppress B-cell lymphoma 2-like protein11 (bim expression and hepatic total glutathione depletion. These results show ozagrel can inhibit not all hepatic changes but can reduce the hepatic necrosis. Ozagrel had little impact on CYP2E1 activity involving the NAPQI production. In addition, ozagrel significantly attenuated cell injury induced by NAPQI in RLC-16. Conclusions We demonstrate that the TXA2 synthase inhibitor, ozagrel, dramatically alleviates liver injury induced by APAP in mice, and suggest

  7. Mouse Precision-Cut Liver Slices as an ex Vivo Model To Study Idiosyncratic Drug-Induced Liver Injury

    NARCIS (Netherlands)

    Hadi, Mackenzie; Chen, Yixi; Starokozhko, Viktoriia; Groothuis, Geny M. M.; Merema, M.T.

    Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in

  8. Rapamycin Induces Heme Oxygenase-1 in Liver but Inhibits Bile Flow Recovery after Ischemia

    NARCIS (Netherlands)

    Kist, Alwine; Wakkie, Joris; Madu, Max; Versteeg, Ruth; ten Berge, Judith; Nikolic, Andrej; Nieuwenhuijs, Vincent B.; Porte, Robert J.; Padbury, Robert T. A.; Barritt, Greg J.

    Background/Aims. Rapamycin, which is employed in the management of patients undergoing liver surgery, induces the synthesis of heme oxygenase-1 (HO-1) in some non-liver cell types. The aim was to investigate whether rapamycin can induce HO-1 expression in the liver, and to test the effects of

  9. Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Gd-EOB-DTPA for the Evaluation of Liver Fibrosis Induced by Carbon Tetrachloride in Rats.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available To investigate the utility of dynamic contrast-enhanced MRI (DCE-MRI with Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA for detecting liver fibrosis induced by carbon tetrachloride (CCl4 in rats.This study was approved by the institutional animal care and use committee. Liver fibrosis in rats was induced by intraperitoneal injection of 1 mL/kg 50% CCl4 twice a week for 4-13 weeks. Control rats were injected with saline. Liver fibrosis was graded using the Metaviar score: no fibrosis (F0, mild fibrosis (F1-F2 and advanced fibrosis (F3-F4. DCE-MRI with Gd-EOB-DTPA was performed for all rats. Ktrans, Kep, Ve and iAUC of the liver parenchyma were measured. Relative enhancement (RE value of the liver was calculated on T1-weighted images at 15, 20 and 25 min after Gd-EOB-DTPA administration.Thirty-five rats were included: no fibrosis (n=13, mild fibrosis (n=11 and advanced fibrosis (n=11. Ktrans and iAUC values were highest in advanced fibrosis group and lowest in no fibrosis group (P<0.05. The area under the receiver operating characteristic curve (AUROC for fibrosis (stages F1 and greater were 0.773 and 0.882 for Ktrans and iAUC, respectively. AUROC for advanced fibrosis were 0.835 and 0.867 for Ktrans and iAUC, respectively. Kep and RE values were not able to differentiate fibrosis stages (all P>0.05.Ktrans and iAUC obtained from DCE-MRI with Gd-EOB-DTPA are useful for the detection and staging of rat liver fibrosis induced by CCl4.

  10. Beneficial effect of honokiol on lipopolysaccharide induced anxiety-like behavior and liver damage in mice.

    Science.gov (United States)

    Sulakhiya, Kunjbihari; Kumar, Parveen; Gurjar, Satendra S; Barua, Chandana C; Hazarika, Naba K

    2015-02-26

    Anxiety disorders are commonly occurring co-morbid neuropsychiatric disorders with chronic inflammatory conditions such as live damage. Numerous studies revealed that peripheral inflammation, oxidative stress and brain derived neurotrophic factor (BDNF) play important roles in the pathophysiology of anxiety disorders. Honokiol (HNK) is a polyphenol, possessing multiple biological activities including antioxidant, anti-inflammatory, anxiolytic, antidepressant and hepatoprotection. The present study was designed to investigate the effect of HNK, in lipopolysaccharide (LPS)-induced anxiety-like behavior and liver damage in mice. Mice (n=6-10/group) were pre-treated with different doses of HNK (2.5 and 5mg/kg; i.p.) for two days, and challenged with saline or LPS (0.83mg/kg; i.p.) on third day. Anxiety-like behavior was monitored using elevated plus maze (EPM) and open field test (OFT). Animals were sacrificed to evaluate various biochemical parameters in plasma and liver. HNK pre-treatment provided significant (P<0.01) protection against LPS-induced reduction in body weight, food and water intake in mice. HNK at higher dose significantly (P<0.05) attenuated LPS-induced anxiety-like behavior by increasing the number of entries and time spent in open arm in EPM test, and by increasing the frequency in central zone in OFT. HNK pre-treatment ameliorated LPS-induced peripheral inflammation by reducing plasma IL-1β, IL-6, TNF-α level, and also improved the plasma BDNF level, prevented liver damage via attenuating transaminases (AST, ALT), liver oxidative stress and TNF-α activity in LPS challenged mice. In conclusion, the current investigation suggests that HNK provided beneficial effect against LPS-induced anxiety-like behavior and liver damage which may be governed by inhibition of cytokines production, oxidative stress and depletion of plasma BDNF level. Our result suggests that HNK could be a therapeutic approach for the treatment of anxiety and other

  11. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Sarfati, Gilles; Nubret, Esther; Kapel, Nathalie; Waligora-Dupriet, Anne-Judith; Bergheim, Ina; Cynober, Luc; De-Bandt, Jean-Pascal

    2016-02-01

    Fructose diets have been shown to induce insulin resistance and to alter liver metabolism and gut barrier function, ultimately leading to non-alcoholic fatty liver disease. Citrulline, Glutamine and Arginine may improve insulin sensitivity and have beneficial effects on gut trophicity. Our aim was to evaluate their effects on liver and gut functions in a rat model of fructose-induced non-alcoholic fatty liver disease. Male Sprague-Dawley rats (n = 58) received a 4-week fructose (60%) diet or standard chow with or without Citrulline (0.15 g/d) or an isomolar amount of Arginine or Glutamine. All diets were made isonitrogenous by addition of non-essential amino acids. At week 4, nutritional and metabolic status (plasma glucose, insulin, cholesterol, triglycerides and amino acids, net intestinal absorption) was determined; steatosis (hepatic triglycerides content, histological examination) and hepatic function (plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin) were assessed; and gut barrier integrity (myeloperoxidase activity, portal endotoxemia, tight junction protein expression and localization) and intestinal and hepatic inflammation were evaluated. We also assessed diets effects on caecal microbiota. In these experimental isonitrogenous fructose diet conditions, fructose led to steatosis with dyslipidemia but without altering glucose homeostasis, liver function or gut permeability. Fructose significantly decreased Bifidobacterium and Lactobacillus and tended to increase endotoxemia. Arginine and Glutamine supplements were ineffective but Citrulline supplementation prevented hypertriglyceridemia and attenuated liver fat accumulation. While nitrogen supply alone can attenuate fructose-induced non-alcoholic fatty liver disease, Citrulline appears to act directly on hepatic lipid metabolism by partially preventing hypertriglyceridemia and steatosis. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition

  12. Amiodarone-Induced Liver Injury and Cirrhosis.

    Science.gov (United States)

    Buggey, Jonathan; Kappus, Matthew; Lagoo, Anand S; Brady, Carla W

    2015-01-01

    We present a case report of an 80-year-old woman with volume overload thought initially to be secondary to heart failure, but determined to be amiodarone-induced acute and chronic liver injury leading to submassive necrosis and bridging fibrosis consistent with early cirrhosis. Her histopathology was uniquely absent of steatosis and phospholipidosis, which are commonly seen in AIC.

  13. Anabolic steroid-induced cardiomyopathy underlying acute liver failure in a young bodybuilder.

    Science.gov (United States)

    Bispo, Miguel; Valente, Ana; Maldonado, Rosário; Palma, Rui; Glória, Helena; Nóbrega, João; Alexandrino, Paula

    2009-06-21

    Heart failure may lead to subclinical circulatory disturbances and remain an unrecognized cause of ischemic liver injury. We present the case of a previously healthy 40-year-old bodybuilder, referred to our Intensive-Care Unit of Hepatology for treatment of severe acute liver failure, with the suspicion of toxic hepatitis associated with anabolic steroid abuse. Despite the absence of symptoms and signs of congestive heart failure at admission, an anabolic steroid-induced dilated cardiomyopathy with a large thrombus in both ventricles was found to be the underlying cause of the liver injury. Treatment for the initially unrecognized heart failure rapidly restored liver function to normal. To our knowledge, this is the first reported case of severe acute liver failure due to an unrecognized anabolic steroid-induced cardiomyopathy. Awareness of this unique presentation will allow for prompt treatment of this potentially fatal cause of liver failure.

  14. Hepatoprotective effect of Phytosome Curcumin against paracetamol-induced liver toxicity in mice

    Directory of Open Access Journals (Sweden)

    Bui Thanh Tung

    2017-04-01

    Full Text Available Abstract Curcuma longa, which contains curcumin as a major constituent, has been shown many pharmacological effects, but it is limited using in clinical due to low bioavailability. In this study, we developed a phytosome curcumin formulation and evaluated the hepatoprotective effect of phytosome curcumin on paracetamol induced liver damage in mice. Phytosome curcumin (equivalent to curcumin 100 and 200 mg/kg body weight and curcumin (200 mg/kg body weight were given by gastrically and toxicity was induced by paracetamol (500 mg/kg during 7 days. On the final day animals were sacrificed and liver function markers (ALT, AST, hepatic antioxidants (SOD, CAT and GPx and lipid peroxidation in liver homogenate were estimated. Our data showed that phytosome has stronger hepatoprotective effect compared to curcumin-free. Administration of phytosome curcumin effectively suppressed paracetamol-induced liver injury evidenced by a reduction of lipid peroxidation level, and elevated enzymatic antioxidant activities of superoxide dismutase, catalase, glutathione peroxidase in mice liver tissue. Our study suggests that phytosome curcumin has strong antioxidant activity and potential hepatoprotective effects.

  15. Liver function tests using the stable isotope /sup 15/N

    Energy Technology Data Exchange (ETDEWEB)

    Faust, H; Jung, K; Hirschberg, K; Krumbiegel, P; Junghans, P; Reinhardt, R; Matkowitz, R; Teichmann, B

    1988-01-01

    Several liver function tests using oral application of a nitrogen compound labelled with /sup 15/N and the subsequent determination of /sup 15/N in a certain fraction of urine or in the total urine by emission spectrometry are described. Because of the key function of the liver in the metabolism of nitrogen compounds, the results of these tests allow conclusions concerning some disturbances of liver functions.

  16. Effect of WeiJia on carbon tetrachloride induced chronic liver injury

    Science.gov (United States)

    Cheung, Pik-Yuen; Zhang, Qi; Zhang, Ya-Ou; Bai, Gan-Rong; Lin, Marie Chia-Mi; Chan, Bernard; Fong, Chi-Chun; Shi, Lin; Shi, Yue-Feng; Chun, Jay; Kung, Hsiang-Fu; Yang, Mengsu

    2006-01-01

    AIM: To study the effect of WeiJia on chronic liver injury using carbon tetrachloride (CCl4) induced liver injury animal model. METHODS: Wistar rats weighing 180-220g were randomly divided into three groups: normal control group (Group A), CCl4 induced liver injury control group (Group B) and CCl4 induction with WeiJia treatment group (Group C). Each group consisted of 14 rats. Liver damage and fibrosis was induced by subcutaneous injection with 40% CCl4 in olive oil at 3 mL/kg body weight twice a week for eight weeks for Groups B and C rats whereas olive oil was used for Group A rats. Starting from the third week, Group C rats also received daily intraperitoneal injection of WeiJia at a dose of 1.25 μg/kg body weight. Animals were sacrificed at the fifth week (4 male, 3 female), and eighth week (4 male, 3 female) respectively. Degree of fibrosis were measured and serological markers for liver fibrosis and function including hyaluronic acid (HA), type IV collagen (CIV), γ-glutamyl transferase (γ-GT), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Alpha smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) immunohistochemistry were also performed. RESULTS: CCl4 induction led to the damage of liver and development of fibrosis in Group B and Group C rats when compared to Group A rats. The treatment of WeiJia in Group C rats could reduce the fibrosis condition significantly compared to Group B rats. The effect could be observed after three weeks of treatment and was more obvious after eight weeks of treatment. Serum HA, CIV, ALT, AST and γ-GT levels after eight weeks of treatment for Group C rats were 58±22 µg/L (P0.05) respectively, similar to normal control group (Group A), but significantly different from CCl4 induced liver injury control group (Group B). An increase in PCNA and decrease in α-SMA expression level was also observed. CONCLUSION: WeiJia could improve liver function and reduce liver

  17. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

    Energy Technology Data Exchange (ETDEWEB)

    Gonsebatt, M.E. [UNAM, Ciudad Universitaria, Dept. Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Mexico (Mexico); Razo, L.M. del; Sanchez-Pena, L.C. [Seccion de Toxicologia, CINVESTAV, Mexico (Mexico); Cerbon, M.A. [Facultad de Quimica, UNAM, Departamento de Biologia, Mexico (Mexico); Zuniga, O.; Ramirez, P. [Facultad de Estudios Superiores Cuautitlan, UNAM, Laboratorio de Toxicologia Celular, Coordinacion General de Estudios de Posgrado e Investigacion, Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2007-09-15

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 {mu}M of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function. (orig.)

  18. Hepatoprotective Effect of Essential Oils from Hyptis crenata in Sepsis-Induced Liver Dysfunction.

    Science.gov (United States)

    Lima, Glauber Cruz; Vasconcelos, Yuri de Abreu Gomes; de Santana Souza, Marilia Trindade; Oliveira, Alan Santos; Bomfim, Rangel Rodrigues; de Albuquerque Júnior, Ricardo Luiz Cavalcanti; Camargo, Enilton Aparecido; Portella, Viviane Gomes; Coelho-de-Souza, Andrelina Noronha; Diniz, Lúcio Ricardo Leite

    2018-02-28

    No specific therapeutics are available for the treatment of sepsis-induced liver dysfunction, a clinical complication strongly associated with the high mortality rate of septic patients. This study investigated the effect of the essential oil of Hyptis crenata (EOHc), a lamiaceae plant used to treat liver disturbances in Brazilian folk medicine, on liver function during early sepsis. Sepsis was induced by the cecal ligation and puncture (CLP) model. Rats were divided into four groups: Sham, Sham+EOHc, CLP, and CLP+EOHc. EOHc (300 mg/kg) was orally administered 12 and 24 h after surgery. The animals were sacrificed for blood collection and liver tissue samples 48 h after surgery. Hepatic function was evaluated by measuring serum bilirubin, alkaline phosphatase (ALP), aspartate aminotransferase, and alanine aminotransferase (ALT) levels. The levels of malondialdehyde and the activity of superoxide dismutase, catalase, and GSH peroxidase (GSH-Px) were measured for assessment of oxidative stress. Liver morphology was analyzed by hematoxylin and eosin staining. EOHc normalized serum ALP, ALT, and bilirubin levels and inhibited morphological changes. In addition, we observed that EOHc inhibited elevation in hepatic lipid peroxidation and reduction of the glutathione peroxidase activity induced by sepsis. Our data show that EOHc plays a protective effect against liver injury induced by sepsis.

  19. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Directory of Open Access Journals (Sweden)

    Tobias Eggert

    Full Text Available Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL, while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  20. Piroxicam induced submassive necrosis of the liver.

    Science.gov (United States)

    Paterson, D; Kerlin, P; Walker, N; Lynch, S; Strong, R

    1992-01-01

    Several widely used non-steroidal anti-inflammatory drugs have been reported as causing severe hepatitis. Three cases of severe acute hepatitis have been reported in association with piroxicam. A fatal submassive necrosis that occurred in a 68 year old lady who had received piroxicam for 15 months is described. A 48 year old man who developed submassive hepatic necrosis six weeks after beginning piroxicam but was successfully treated with orthotopic liver transplantation is also reported. Piroxicam may induce submassive necrosis of the liver, probably as an idiosyncratic reaction. Images Figure 1 Figure 2 Figure 3 PMID:1446877

  1. Germline Mutations in Mtap Cooperate with Myc to Accelerate Tumorigenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Yuwaraj Kadariya

    Full Text Available The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (Mtap(lacZ could accelerate tumorigenesis development in two different mouse cancer models, Eμ-myc transgenic and Pten(+/- .Mtap Eμ-myc and Mtap Pten mice were generated and tumor-free survival was monitored over time. Tumors were also examined for a variety of histological and protein markers. In addition, microarray analysis was performed on the livers of Mtap(lacZ/+ and Mtap (+/+ mice.Survival in both models was significantly decreased in Mtap(lacZ/+ compared to Mtap(+/+ mice. In Eµ-myc mice, Mtap mutations accelerated the formation of lymphomas from cells in the early pre-B stage, and these tumors tended to be of higher grade and have higher expression levels of ornithine decarboxylase compared to those observed in control Eµ-myc Mtap(+/+ mice. Surprisingly, examination of Mtap status in lymphomas in Eµ-myc Mtap(lacZ/+ and Eµ-myc Mtap(+/+ animals did not reveal significant differences in the frequency of loss of Mtap protein expression, despite having shorter latency times, suggesting that haploinsufficiency of Mtap may be playing a direct role in accelerating tumorigenesis. Consistent with this idea, microarray analysis on liver tissue from age and sex matched Mtap(+/+ and Mtap(lacZ/+ animals found 363 transcripts whose expression changed at least 1.5-fold (P<0.01. Functional categorization of these genes reveals enrichments in several pathways involved in growth control and cancer.Our findings show that germline inactivation of a single Mtap allele alters gene expression and enhances lymphomagenesis in Eµ-myc mice.

  2. Antioxidants as recipes for efavirenz-induced liver damage: A study in albino rats

    Directory of Open Access Journals (Sweden)

    Elias Adikwu

    2018-03-01

    Full Text Available Objective: Hepatotoxicity is a clinical challenge associated with the use of efavirenz (EFV. This study investigated the effects of n-acetylcysteine (NAC, vitamins C and E on EFV-induced hepatotoxicity in albino rats. Methods: Rats were divided into groups and administered with NAC (20mg/kg, Vit C (50mg/kg, Vit  E (50mg/kg, Vit C+ E and 60mg/kg of EFV respectively. Rats were also divided into groups and pretreated with NAC, Vit C, E, and combined doses of Vit C+E prior to treatment with EFV for 15 days respectively. After drug administration rats were sacrificed and serum was collected and evaluated for liver function parameters. Rats were dissected, liver was collected weighed and evaluated for alkaline phosphatase (ALP, alanine aminotransferase (AST, aspartate aminotransferase (ALT, gamma glutamyl transferase (GGT, lactate dehydrogenase (LDH, malondialdehyde (MDA, super oxide dismutase (SOD, catalase (CAT, glutathione (GSH, gluthatione peroxidase (GPX levels and pathological damage. Results: Effects were not significant (p>0.05 on body and liver weights, however, the levels of AST, ALT, AST, GGT, LDH, CB, TB and MDA were increased significantly (p<0.05 whereas SOD, CAT, SOD, GSH and GPX were decreased significantly (p<0.05 in EFV-treated rats in comparison to control. The liver of EFV-treated rats showed necrosis of hepatocytes. Nevertheless, EFV-induced alterations in the above parameters were significantly (p<0.05 ameliorated in antioxidants pretreated rats.  The combined doses of Vit C and E produced the best and significant (p<0.05 ameliorative effects in comparison to their individual doses. Conclusion: This study shows the prospects of antioxidants as candidates for the treatments of efavirenz-induced hepatotoxicity.

  3. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats.

    Science.gov (United States)

    Lv, Long-Xian; Hu, Xin-Jun; Qian, Gui-Rong; Zhang, Hua; Lu, Hai-Feng; Zheng, Bei-Wen; Jiang, Li; Li, Lan-Juan

    2014-06-01

    This work investigated the effect of the intragastric administration of five lactic acid bacteria from healthy people on acute liver failure in rats. Sprague-Dawley rats were given intragastric supplements of Lactobacillus salivarius LI01, Lactobacillus salivarius LI02, Lactobacillus paracasei LI03, Lactobacillus plantarum LI04, or Pediococcus pentosaceus LI05 for 8 days. Acute liver injury was induced on the eighth day by intraperitoneal injection of 1.1 g/kg body weight D-galactosamine (D-GalN). After 24 h, samples were collected to determine the level of liver enzymes, liver function, histology of the terminal ileum and liver, serum levels of inflammatory cytokines, bacterial translocation, and composition of the gut microbiome. The results indicated that pretreatment with L. salivarius LI01 or P. pentosaceus LI05 significantly reduced elevated alanine aminotransferase and aspartate aminotransferase levels, prevented the increase in total bilirubin, reduced the histological abnormalities of both the liver and the terminal ileum, decreased bacterial translocation, increased the serum level of interleukin 10 and/or interferon-γ, and resulted in a cecal microbiome that differed from that of the liver injury control. Pretreatment with L. plantarum LI04 or L. salivarius LI02 demonstrated no significant effects during this process, and pretreatment with L. paracasei LI03 aggravated liver injury. To the best of our knowledge, the effects of the three species-L. paracasei, L. salivarius, and P. pentosaceus-on D-GalN-induced liver injury have not been previously studied. The excellent characteristics of L. salivarius LI01 and P. pentosaceus LI05 enable them to serve as potential probiotics in the prevention or treatment of acute liver failure.

  4. Possible gasoline-induced chronic liver injury due to occupational malpractice in a motor mechanic: a case report

    OpenAIRE

    Gunathilaka, Mahesh Lakmal; Niriella, Madunil Anuk; Luke, Nathasha Vihangi; Piyarathna, Chathura Lakmal; Siriwardena, Rohan Chaminda; De Silva, Arjuna Priyadarshin; de Silva, Hithanadura Janaka

    2017-01-01

    Background Hydrocarbon-induced occupational liver injury is a well-known clinical entity among petroleum industry workers. There are many types of hydrocarbon exposure, with inhalation being the most common. Hydrocarbon-induced occupational liver injury is a rarely suspected and commonly missed etiological agent for liver injury. We report a case of a non-petroleum industry worker with chronic liver disease secondary to hydrocarbon-induced occupational liver injury caused by chronic low-grade...

  5. Antioxidant status, lipoprotein profile and liver lipids in rats fed on high-cholesterol diet containing currant oil rich in n-3 and n-6 polyunsaturated fatty acids.

    Science.gov (United States)

    Vecera, R; Skottová, N; Vána, P; Kazdová, L; Chmela, Z; Svagera, Z; Walterá, D; Ulrichová, J; Simánek, V

    2003-01-01

    Plant-based n-3 polyunsaturated fatty acids (PUFA) possess a prospective antiatherogenic potential. Currant oil from Ribes nigrum L. is one of the few plant oils containing PUFAn-3 (15.3 mol%) in addition to PUFAn-6 (60.5 mol%). This study was aimed at comparing the effects of currant oil with those of lard fat, rich in saturated (43.8 mol%) and monounsaturated (47.0 mol%) fatty acids, on antioxidant parameters, the lipoprotein profile and liver lipids in rats fed on 1 % (w/w) cholesterol diets containing either 10 % of currant oil (COD) or lard fat (LFD). After 3 weeks of feeding, the COD induced a significant decrease in blood glutathione (GSH) and an increase in Cu(2+) induced oxidizability of serum lipids, but did not affect liver GSH and t-butyl hydroperoxide-induced lipoperoxidation of liver microsomes. Although the COD did not cause accumulation of liver triacylglycerols as LFD, the lipoprotein profile (VLDL, LDL, HDL) was not significantly improved after COD. The consumption of PUFAn-3 was reflected in LDL as an increase in eicosapentaenoic and docosahexaenoic acid. These results suggest that currant oil affects positively the lipid metabolism in the liver, above all it does not cause the development of a fatty liver. However, adverse effects of currant oil on the antioxidant status in the blood still remain of concern.

  6. Chronic Uridine Administration Induces Fatty Liver and Pre-Diabetic Conditions in Mice.

    Directory of Open Access Journals (Sweden)

    Yasuyo Urasaki

    Full Text Available Uridine is a pyrimidine nucleoside that exerts restorative functions in tissues under stress. Short-term co-administration of uridine with multiple unrelated drugs prevents drug-induced liver lipid accumulation. Uridine has the ability to modulate liver metabolism; however, the precise mechanism has not been delineated. In this study, long-term effects of uridine on liver metabolism were examined in both HepG2 cell cultures and C57BL/6J mice. We report that uridine administration was associated with O-GlcNAc modification of FOXO1, increased gluconeogenesis, reduced insulin signaling activity, and reduced expression of a liver-specific fatty acid binding protein FABP1. Long-term uridine feeding induced systemic glucose intolerance and severe liver lipid accumulation in mice. Our findings suggest that the therapeutic potentials of uridine should be designed for short-term acute administration.

  7. Radiation-induced liver injury mimicking liver metastases on FDG-PET-CT after chemoradiotherapy for esophageal cancer. A retrospective study and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Voncken, Francine E.M.; Aleman, Berthe M.P. [The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Radiation Oncology, Amsterdam (Netherlands); Dieren, Jolanda M. van [The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Gastroenterology, Amsterdam (Netherlands); Grootscholten, Cecile [The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Internal Medicine, Amsterdam (Netherlands); Lalezari, Ferry [The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Radiology, Amsterdam (Netherlands); Sandick, Johanna W. van [The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Surgery, Amsterdam (Netherlands); Steinberg, Jeffrey D.; Vegt, Erik [The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Nuclear Medicine, Amsterdam (Netherlands)

    2018-02-15

    For esophageal cancer patients treated with neoadjuvant chemoradiotherapy (nCRT), restaging using F-18-fluorodeoxyglucose (FDG) positron emission tomography computed tomography (PET-CT) following nCRT can detect interval metastases, including liver metastases, in almost 10% of patients. However, in clinical practice, focal FDG liver uptake, unrelated to liver metastases, is observed after chemoradiotherapy. This radiation-induced liver injury (RILI) can potentially lead to overstaging. A systematic search for potential cases of RILI after (chemo)radiotherapy for esophageal cancer was performed in the electronic reports from all PET-CT scans made between 2006 and 2015 in our hospital. Additional data about potential cases were obtained from the electronic medical records. A literature review of RILI was also performed. Of 205 patients undergoing nCRT, 6 cases with localized increased FDG uptake in the caudate or left liver lobe following nCRT for esophageal cancer were identified. None of these patients had signs of liver metastases with additional imaging, during surgery, on biopsy, or during follow-up (range 11-46 months). At our institute, the incidence of RILI after neoadjuvant chemoradiotherapy for esophageal cancer was 3%. In the literature, RILI is described in about 8% of patients at the time of restaging. FDG-avid lesions occur in the high radiation dose area, usually corresponding to the caudate or left liver lobe. FDG accumulation in the caudate or left liver lobe after CRT in the area that received a high radiation dose may be caused by metastases or RILI. Awareness of the pitfall of high FDG uptake in RILI is crucial to avoid misinterpretation and overstaging. (orig.) [German] Nach neoadjuvanter Radiochemotherapie (nCRT) findet man bei ungefaehr 10 % der Patienten mit Oesophaguskarzinom beim Restaging in der F-18-Fluorodeoxyglukose-Positronenemissionscomputertomographie (FDG-PET-CT) Intervallmetastasen, einschliesslich Lebermetastasen. In der klinischen

  8. Biochemical and radio-immunological studies on HCV-induced liver fibrosis

    International Nuclear Information System (INIS)

    Abdel-Mageed, M.E.A.

    2010-01-01

    Hepatitis C virus infection is now becoming a common health problem in Egypt. Liver biopsy is the gold standard for this diagnosis. However, liver biopsy is invasive and is associated with complications with chronic hepatitis C patients. There is a clinical need for noninvasive measurement of liver fibrosis. Noninvasive bio markers such as Collagen III was identified in serum samples of patients with HCV induced liver fibrosis at 70 kDa using SDS-PAGE and western blot, measured by ELISA and purified using electro elution . Hyaluronic acid also can be used to differentiate between liver fibrosis patients and healthy individuals using radioimmunoassay .we have developed noninvasive diagnosis that can be applied to patients who either have contraindications or refuse liver biopsy for the management of their HCV infection.

  9. The effect of phytosterol protects rats against 4-nitrophenol-induced liver damage.

    Science.gov (United States)

    Chen, Jiaqin; Song, Meiyan; Li, Yansen; Zhang, Yonghui; Taya, Kazuyoshi; Li, ChunMei

    2016-01-01

    We investigated the effect of phytosterol (PS) in regard to liver damage induced by 4-nitrophenol (PNP). Twenty rats were randomly divided into four groups (Control, PS, PNP, and PNP+PS). The PS and PNP+PS groups were pretreated with PS for one week. The PNP and PNP+PS groups were injected subcutaneously with PNP for 28 days. The control group received a basal diet and was injected with vehicle alone. Treatment with PS prevented the elevation of the total bilirubin levels, as well as an increase in serum alkaline transaminase and aspartate transaminase, which are typically caused by PNP-induced liver damage. Histopathologically showed that liver damage was significantly mitigated by PS treatment. However, there was no significant change in antioxidant enzyme activities, and the Nrf2-antioxidant system was not activated after treatment with PS. These results suggest that PS could mitigate liver damage induced by PNP, but does not enhance antioxidant capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Dietary fructose augments ethanol-induced liver pathology.

    Science.gov (United States)

    Thomes, Paul G; Benbow, Jennifer H; Brandon-Warner, Elizabeth; Thompson, Kyle J; Jacobs, Carl; Donohue, Terrence M; Schrum, Laura W

    2017-05-01

    Certain dietary components when combined with alcohol exacerbate alcohol-induced liver injury (ALI). Here, we tested whether fructose, a major ingredient of the western diet, enhances the severity of ALI. We fed mice ethanol for 8 weeks in the following Lieber-DeCarli diets: (a) Regular (contains olive oil); (b) corn oil (contains corn oil); (c) fructose (contains fructose and olive oil) and (d) corn+fructose (contains fructose and corn oil). We compared indices of metabolic function and liver pathology among the different groups. Mice fed fructose-free and fructose-containing ethanol diets exhibited similar levels of blood alcohol, blood glucose and signs of disrupted hepatic insulin signaling. However, only mice given fructose-ethanol diets showed lower insulin levels than their respective controls. Compared with their respective pair-fed controls, all ethanol-fed mice exhibited elevated levels of serum ALT; the inflammatory cytokines TNF-α, MCP-1 and MIP-2; hepatic lipid peroxides and triglycerides. All the latter parameters were significantly higher in mice given fructose-ethanol diets than those fed fructose-free ethanol diets. Mice given fructose-free or fructose-containing ethanol diets each had higher levels of hepatic lipogenic enzymes than controls. However, the level of the lipogenic enzyme fatty acid synthase (FAS) was significantly higher in livers of mice given fructose control and fructose-ethanol diets than in all other groups. Our findings indicate that dietary fructose exacerbates ethanol-induced steatosis, oxidant stress, inflammation and liver injury, irrespective of the dietary fat source, to suggest that inclusion of fructose in or along with alcoholic beverages increases the risk of more severe ALI in heavy drinkers. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Increased expression of PPARγ in high fat diet-induced liver steatosis in mice

    International Nuclear Information System (INIS)

    Inoue, Mitsutaka; Ohtake, Takaaki; Motomura, Wataru; Takahashi, Nobuhiko; Hosoki, Yayoi; Miyoshi, Shigeki; Suzuki, Yasuaki; Saito, Hiroyuki; Kohgo, Yutaka; Okumura, Toshikatsu

    2005-01-01

    The present study was performed to examine a hypothesis that peroxisome proliferator-activated receptor γ (PPARγ) is implicated in high fat diet-induced liver steatosis. Mice were fed with control or high fat diet containing approximately 10% or 80% cholesterol, respectively. Macroscopic and microscopic findings demonstrated that lipid accumulation in the liver was observed as early as 2 weeks after high fat diet and that high fat diet for 12 weeks developed a fatty liver phenotype, establishing a novel model of diet-induced liver steatosis. Gene profiling with microarray and real-time PCR studies demonstrated that among genes involved in lipid metabolism, adipogenesis-related genes, PPARγ and its targeted gene, CD36 mRNA expression was specifically up-regulated in the liver by high fat diet for 2 weeks. Immunohistochemical study revealed that PPARγ protein expression is increased in the nuclei of hepatocytes by high fat diet. It was also shown that protein expression of cAMP response element-binding protein (CREB), an upstream molecule of PPARγ, in the liver was drastically suppressed by high fat diet. All these results suggest for the first time that the CREB-PPARγ signaling pathway may be involved in the high fat diet-induced liver steatosis

  12. Diet- and Genetically-Induced Obesity Differentially Affect the Fecal Microbiome and Metabolome in Apc1638N Mice.

    Science.gov (United States)

    Pfalzer, Anna C; Nesbeth, Paula-Dene C; Parnell, Laurence D; Iyer, Lakshmanan K; Liu, Zhenhua; Kane, Anne V; Chen, C-Y Oliver; Tai, Albert K; Bowman, Thomas A; Obin, Martin S; Mason, Joel B; Greenberg, Andrew S; Choi, Sang-Woon; Selhub, Jacob; Paul, Ligi; Crott, Jimmy W

    2015-01-01

    Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on the intestinal microbiome and metabolome in a mouse model of CRC. Apc1638N mice were made obese by either high fat (HF) feeding or the presence of the Leprdb/db (DbDb) mutation. Intestinal tumors were quantified and stool microbiome and metabolome were profiled. Genetic obesity, and to a lesser extent HF feeding, promoted intestinal tumorigenesis. Each induced distinct microbial patterns: taxa enriched in HF were mostly Firmicutes (6 of 8) while those enriched in DbDb were split between Firmicutes (7 of 12) and Proteobacteria (5 of 12). Parabecteroides distasonis was lower in tumor-bearing mice and its abundance was inversely associated with colonic Il1b production (pmetabolome. A depletion of adenosine and P.distasonis in tumor-bearing mice could play a mechanistic role in tumor formation. Adenosine and P. distasonis have previously been shown to be anti-inflammatory in the colon and we postulate their reduction could promote tumorigenesis by de-repressing inflammation.

  13. The direct effect of Focal Adhesion Kinase (FAK, dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD, and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  14. TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner

    Science.gov (United States)

    Badmann, A; Langsch, S; Keogh, A; Brunner, T; Kaufmann, T; Corazza, N

    2012-01-01

    Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage. PMID:23254290

  15. Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling

    Science.gov (United States)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2012-01-01

    SUMMARY The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein within the intestinal epithelium. Following Apc loss, FAK expression increased in a c-Myc-dependent manner. Codeletion of Apc and Fak strongly reduced proliferation normally induced following Apc loss, and this was associated with reduced levels of phospho-Akt and suppression of intestinal tumorigenesis in Apc heterozygous mice. Thus, FAK is required downstream of Wnt Signaling, for Akt/mTOR activation, intestinal regeneration, and tumorigenesis. Importantly, this work suggests that FAK inhibitors may suppress tumorigenesis in patients at high risk of developing colorectal cancer. PMID:20708588

  16. Demonstration of Regenerable, Large-Scale Ion Exchange System Using WBA Resin in Rialto, CA (Drinking Water Treatment - Pilot Scale)

    Science.gov (United States)

    2008-08-01

    Administration NDBA N-nitrosodi-n-butylamine NDEA N-nitrosodiethylamine NDMA N-nitrosodimethylamine NDPA N-nitrosodi-n-propylamine v ACRONYMS...spectrometry (IC-MS/MS). Nitrosamines were analyzed using EPA Method 521. N-nitrosodimethylamine ( NDMA ) was 2.6 parts per trillion (ppt) with a detection...and metals (Ca, Cu, Fe, Mg, Mn, K, Na , and Zn). Specific methods are listed in Table 5. ** N-nitrosodimethylamine ( NDMA ), N-nitrosodiethylamine

  17. Programmed Cell Death, Proliferating Cell Nuclear Antigen and p53 Expression in Mouse Colon Mucosa during Diet-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Mauro Risio

    2000-01-01

    Full Text Available Western‐style diets (WDs trigger and sustain the early phases of tumorigenesis in mouse colon, and when continued throughout the life span lead to the development of dysplastic crypts. In order to evaluate the roles both of cell proliferation and programmed cell death (PCD in WD‐induced tumorigenesis, immunohistochemical detection of proliferating nuclear antigen (PCNA, in situ end labeling (TUNEL of DNA breaks, and p53 protein were carried out in mouse colonic mucosa during prolonged feeding of two WDs. PCNA Labeling Index of colonic crypts was significantly higher in WD‐treated animals than in controls only at the beginning of the nutritional study, the gap rapidly bridged by increased cell proliferation spontaneously occurring in the colonic mucosa during aging. A transient early homeostatic activation of PCD at the base of the crypt also was observed in WD groups. No changes in PCD were seen in the upper third of the crypt or in surface epithelium throughout the study, indicating that PCD in that colonic crypt segment produces a constant flux of cell loss, uninfluenced by homeostatic fluctuations. A major finding was an irreversible, progressive, age‐related decline of PCD at the crypt base in both control and treated animals that occurred during the second half of the rodents  life span. p53 protein was not immunohistochemically detected, suggesting that neither overexpression of wild‐type nor mutated forms of the protein are involved in the above mentioned changes.

  18. Proapoptotic Role of Potassium Ions in Liver Cells

    Directory of Open Access Journals (Sweden)

    Zhenglin Xia

    2016-01-01

    Full Text Available Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1.

  19. Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage.

    Science.gov (United States)

    Das, Sujata; Pradhan, Goutam Kumar; Das, Subhadip; Nath, Debjani; Das Saha, Krishna

    2015-12-05

    Chronic exposure to arsenic over a period of time induces toxicity, primarily in liver but gradually in all systems of the body. Andrographolide (AG), a major diterpene lactone of Andrographis paniculata, shows a wide array of physiological functions including hepatoprotection. Therapeutic applications of AG are however seriously constrained because of its insolubility, poor bioavailability, and short plasma half-life. Nanoparticulation of AG is a possible solution to these problems. In the present study we investigated the effectiveness of polylactide co-glycolide (PLGA) nanocapsulated andrographolide (NA) against arsenic induced liver damage in mice. NA of average diameter 65.8 nm and encapsulation efficiency of 64% were prepared. Sodium arsenite at a dose of 40 mg/L supplied via drinking water in mice significantly raised the serum level of liver function markers such as AST, ALT, and ALP, and caused arsenic deposition in liver and ROS generation, though it did not show any lethality up to 30 days of exposure. However, even liver toxicity was not observed when mice were given AG and NA orally at doses up to 100 mg/kg bwt and 20 mg/kg bwt respectively on alternate days for one month. Treatment of non-toxic doses of AG or NA on alternate days along with arsenic significantly decreased the arsenic induced elevation of the serum level of ALT, AST and ALP, and arsenic deposition in liver. AG and NA increased the level of hepatic antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), and the level of reduced glutathione (GSH). Also, the ROS level was lowered in mice exposed to arsenic but treated with AG or NA. Protective efficiency of NA is about five times more than that of AG. Administration of NA to arsenic-treated mice caused signs of improvement in liver tissue architecture. In conclusion, the results of this study suggest that NA could be beneficial against arsenic-induced liver toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights

  20. Metronidazole-induced encephalopathy in a patient with liver cirrhosis.

    Science.gov (United States)

    Cheong, Hyeong Cheol; Jeong, Taek Geun; Cho, Young Bum; Yang, Bong Joon; Kim, Tae Hyeon; Kim, Haak Cheoul; Cho, Eun-Young

    2011-06-01

    Encephalopathy is a disorder characterized by altered brain function, which can be attributed to various causes. Encephalopathy associated with metronidazole administration occurs rarely and depends on the cumulative metronidazole dose, and most patients with this condition recover rapidly after discontinuation of therapy. Because metronidazole is metabolized in the liver and can be transported by the cerebrospinal fluid and cross the blood-brain barrier, it may induce encephalopathy even at a low cumulative dose in patients with hepatic dysfunction. We experienced a patient who showed ataxic gait and dysarthric speech after receiving metronidazole for the treatment of hepatic encephalopathy that was not controlled by the administration of lactulose. The patient was diagnosed as metronidazole-induced encephalopathy, and stopping drug administration resulted in a complete recovery from encephalopathy. This case shows that caution should be exercised when administering metronidazole because even a low dose can induce encephalopathy in patients with liver cirrhosis.

  1. Impairment of Akt activity by CYP2E1 mediated oxidative stress is involved in chronic ethanol-induced fatty liver

    Directory of Open Access Journals (Sweden)

    Tao Zeng

    2018-04-01

    Full Text Available Protein kinase B (PKB/Akt plays important roles in the regulation of lipid homeostasis, and impairment of Akt activity has been demonstrated to be involved in the development of non-alcoholic fatty liver disease (NAFLD. Previous studies suggest that cytochrome P4502E1 (CYP2E1 plays causal roles in the pathogenesis of alcoholic fatty liver (AFL. We hypothesized that Akt activity might be impaired due to CYP2E1-induced oxidative stress in chronic ethanol-induced hepatic steatosis. In this study, we found that chronic ethanol-induced hepatic steatosis was accompanied with reduced phosphorylation of Akt at Thr308 in mice liver. Chronic ethanol exposure had no effects on the protein levels of phosphatidylinositol 3 kinase (PI3K and phosphatase and tensin homologue deleted on chromosome ten (PTEN, and led to a slight decrease of phosphoinositide-dependent protein kinase 1 (PDK-1 protein level. Ethanol exposure resulted in increased levels of malondialdehyde (MDA and 4-hydroxynonenal (4-HNE-Akt adducts, which was significantly inhibited by chlormethiazole (CMZ, an efficient CYP2E1 inhibitor. Interestingly, N-acetyl-L-cysteine (NAC significantly attenuated chronic ethanol-induced hepatic fat accumulation and the decline of Akt phosphorylation at Thr308. In the in vitro studies, Akt phosphorylation was suppressed in CYP2E1-expressing HepG2 (CYP2E1-HepG2 cells compared with the negative control HepG2 (NC-HepG2 cells, and 4-HNE treatment led to significant decrease of Akt phosphorylation at Thr308 in wild type HepG2 cells. Lastly, pharmacological activation of Akt by insulin-like growth factor-1 (IGF-1 significantly alleviated chronic ethanol-induced fatty liver in mice. Collectively, these results indicate that CYP2E1-induced oxidative stress may be responsible for ethanol-induced suppression of Akt phosphorylation and pharmacological modulation of Akt in liver may be an effective strategy for the treatment of ethanol-induced fatty liver. Keywords

  2. Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    2017-01-01

    Full Text Available Chronic excessive alcohol consumption (more than 40–80 g/day for males and more than 20–40 g/day for females could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT, aspartate transaminase (AST, hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity.

  3. Dietary Fisetin Supplementation Protects Against Alcohol-Induced Liver Injury in Mice.

    Science.gov (United States)

    Sun, Qian; Zhang, Wenliang; Zhong, Wei; Sun, Xinguo; Zhou, Zhanxiang

    2016-10-01

    Overproduction of reactive oxygen species is associated with the development of alcoholic liver disease (ALD). Plant polyphenols have been used as dietary interventions for multiple diseases including ALD. The objective of this study was to determine whether dietary supplementation with fisetin, a novel flavonoid, exerts beneficial effect on alcohol-induced liver injury. C57BL/6J mice were pair-fed with the Lieber-DeCarli control or ethanol (EtOH) diet for 4 weeks with or without fisetin supplementation at 10 mg/kg/d. Alcohol feeding induced lipid accumulation in the liver and increased plasma alanine aminotransferase and aspartate aminotransferase activities, which were attenuated by fisetin supplementation. The EtOH concentrations in the plasma and liver were significantly elevated by alcohol exposure but were reduced by fisetin supplementation. Although fisetin did not affect the protein expression of alcohol metabolism enzymes, the aldehyde dehydrogenase activities were significantly increased by fisetin compared to the alcohol alone group. In addition, fisetin supplementation remarkably reduced hepatic NADPH oxidase 4 levels along with decreased plasma hydrogen peroxide and hepatic superoxide and 4-hydroxynonenal levels after alcohol exposure. Alcohol-induced apoptosis and up-regulation of Fas and cleaved caspase-3 in the liver were prevented by fisetin. Moreover, fisetin supplementation attenuated alcohol-induced hepatic steatosis through increasing plasma adiponectin levels and hepatic protein levels of p-AMPK, ACOX1, CYP4A, and MTTP. This study demonstrated that the protective effect of fisetin on ALD is achieved by accelerating EtOH clearance and inhibition of oxidative stress. The data suggest that fisetin has a therapeutical potential for treating ALD. Copyright © 2016 by the Research Society on Alcoholism.

  4. Preventive effect of halofuginone on concanavalin A-induced liver fibrosis.

    Directory of Open Access Journals (Sweden)

    Jie Liang

    Full Text Available Halofuginone (HF is an active component of extracts derived from the plant alkaloid febrifugine and has shown therapeutic promise in animal models of fibrotic disease. Our main objectives were to clarify the suppressive effect of HF on concanavalin A (ConA-induced liver fibrosis. ConA injection into the tail vein caused a great increase in the serum aspartate aminotransferase (AST and alanine aminotransferase (ALT levels, while orally administration of HF significantly decreased the levels of the transaminases. In addition, the levels of hyaluronic acid (HA, procollagen III (PCIII and TGF-β1 in the serum and collagen I, α-SMA, tissue inhibitors of metalloproteinase 2 (TIMP2 and Smad3 in the liver tissue were significantly lowered with the treatment of HF. Histological examination also demonstrated that HF significantly reduced the severity of liver fibrosis. Since ConA-induced liver fibrosis is caused by the repeated activation of T cells, immunomodulatory substances might be responsible for the suppressive effect of HF. We found that the production of nuclear factor (NF-kB in the serum was increased in ConA-treated group, while decreased significantly with the treatment of HF. The changes of inflammatory cytokines tumor necrosis factor (TNF-α, IL-6 and IL-1β in the serum followed the same rhythm. All together, our findings indicate that orally administration HF (10ppm would attenuate the liver fibrosis by suppressing the synthesis of collagen I and inflammation-mediated liver injury.

  5. Total Flavonoids from Mimosa Pudica Protects Carbon Tetrachloride -Induced Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Zhen-qin QIU

    2015-03-01

    Full Text Available Objective: To observe the protective effect of total flavonoids from Mimosa pudica on carbon tetrachloride (CCl4-induced acute liver injury in mice. Methods: CCl4-induced acute liver injury model in mice was established. The activity of ALT and AST, the content of serum albumin (Alb and total antioxidant capacity (T-AOC were determined. The content of malondiadehyde (MDA was measured and the activity of superoxide dismutase (SOD was determined. The histopathological changes of liver were observed.Results: Compared with CCl4 modle group, each dose group of total flavonouida from Mimosa pudica couldreduced the activity of ALT and AST in mice obviously (P<0.01, indicating they had remarkably protective effect on CCl4-induced acute liver injury in mice. high and middle dose groups of total flavonouida from Mimosa pudica couldincrease the content of Alb in mice (P<0.01. Each dose group of total flavonouida from Mimosa pudica could enhance the level of T-AOC (P<0.01. each dose group of total flavonouida from Mimosa pudica could lower the content of liver homogenate MDA but enhance the activity of SOD in a dose-depended manner (P<0.01. Conclusion: Total flavones from Mimosa Pudica have obvious protective effect on CCl4-induced acute liver injury in mice.

  6. Shanxi Aged Vinegar Protects against Alcohol-Induced Liver Injury via Activating Nrf2-Mediated Antioxidant and Inhibiting TLR4-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2018-06-01

    Full Text Available Shanxi aged vinegar (SAV is a typical fermented and antioxidant food, which has various health-promoting effects. This work aimed to explore the effects of SAV on alcohol-induced liver injury. A mice model of alcoholic liver injury was established to illuminate its potential mechanisms. All mice pretreated with SAV and then received an ethanol solution (50% w/v, 4.8 g/kg b.w.. The results showed that SAV ameliorated alcohol-induced histological changes and elevation of liver enzymes. SAV attenuated alcohol-induced oxidative stress by declining levels of hepatic oxidants, and restoring depletion of antioxidant enzyme activities in mice livers. Moreover, SAV alleviated alcohol-induced oxidative damage by activating nuclear factor erythroid-2-related factor 2 (Nrf2-mediated signal pathway. In addition, SAV prevented alcohol-induced inflammation by suppressing lipopolysaccharide (LPS level and activities of pro-inflammatory enzymes, and regulating inflammatory cytokines. SAV inhibited alcohol-induced inflammation through down-regulating the expression of Toll-like receptor 4 (TLR4-mediated inflammatory response. The findings provide crucial evidence for elucidating the hepatoprotective mechanisms of SAV and encourage the future application of SAV as a functional food for liver protection.

  7. Necrostatin-1 protects against reactive oxygen species (ROS-induced hepatotoxicity in acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    2014-01-01

    Full Text Available Excessive acetaminophen (APAP use is one of the most common causes of acute liver failure. Various types of cell death in the damaged liver are linked to APAP-induced hepatotoxicity, and, of these, necrotic cell death of hepatocytes has been shown to be involved in disease pathogenesis. Until recently, necrosis was commonly considered to be a random and unregulated form of cell death; however, recent studies have identified a previously unknown form of programmed necrosis called receptor-interacting protein kinase (RIPK-dependent necrosis (or necroptosis, which is controlled by the kinases RIPK1 and RIPK3. Although RIPK-dependent necrosis has been implicated in a variety of disease states, including atherosclerosis, myocardial organ damage, stroke, ischemia–reperfusion injury, pancreatitis, and inflammatory bowel disease. However its involvement in APAP-induced hepatocyte necrosis remains elusive. Here, we showed that RIPK1 phosphorylation, which is a hallmark of RIPK-dependent necrosis, was induced by APAP, and the expression pattern of RIPK1 and RIPK3 in the liver overlapped with that of CYP2E1, whose activity around the central vein area has been demonstrated to be critical for the development of APAP-induced hepatic injury. Moreover, a RIPK1 inhibitor ameliorated APAP-induced hepatotoxicity in an animal model, which was underscored by significant suppression of the release of hepatic enzymes and cytokine expression levels. RIPK1 inhibition decreased reactive oxygen species levels produced in APAP-injured hepatocytes, whereas CYP2E1 expression and the depletion rate of total glutathione were unaffected. Of note, RIPK1 inhibition also conferred resistance to oxidative stress in hepatocytes. These data collectively demonstrated a RIPK-dependent necrotic mechanism operates in the APAP-injured liver and inhibition of this pathway may be beneficial for APAP-induced fulminant hepatic failure.

  8. Effect of adoptive transfer or depletion of regulatory T cells on triptolide-induced liver injury

    Directory of Open Access Journals (Sweden)

    Xinzhi eWang

    2016-04-01

    Full Text Available ObjectiveThe aim of this study is to clarify the role of regulatory T cell (Treg in triptolide (TP-induced hepatotoxicity. MethodsFemale C57BL/6 mice received either adoptive transfer of Tregs or depletion of Tregs, then underwent TP administration and were sacrificed 24 hours after TP administration. Liver injury was determined according to ALT and AST levels in serum and histopathological change in liver tissue. Hepatic frequencies of Treg cells and the mRNA expression levles of transcription factor FoxP3 and RORγt, IL-10, SOCS and Notch/Notch ligand were investigated.ResultsDuring TP-induced liver injury, hepatic Treg and IL-10 decreased, while Th17 cell transcription factor RORγt, SOCS signaling and Notch signaling increased, accompanied with liver inflammation. Adoptive transfer of Tregs ameliorated the severity of TP-induced liver injury, accompanied with increased levels of hepatic Treg and IL-10. Adoptive transfer of Tregs remarkably inhibited the expression of RORγt, SOCS3, Notch1 and Notch3. On the contrary, depletion of Treg cells in TP-administered mice resulted in a notable increase of RORγt, SOCS1, SOCS3 and Notch3, while the Treg and IL-10 of liver decreased. Consistent with the exacerbation of liver injury, higher serum levels of ALT and AST were detected in Treg-depleted mice. ConclusionsThese results showed that adoptive transfer or depletion of Tregs attenuated or aggravated TP-induced liver injury, suggesting that Tregs could play important roles in the progression of liver injury. SOCS proteins and Notch signaling affected Tregs, which may contribute to the pathogenesis of TP-induced hepatotoxicity.

  9. Possible gasoline-induced chronic liver injury due to occupational malpractice in a motor mechanic: a case report.

    Science.gov (United States)

    Gunathilaka, Mahesh Lakmal; Niriella, Madunil Anuk; Luke, Nathasha Vihangi; Piyarathna, Chathura Lakmal; Siriwardena, Rohan Chaminda; De Silva, Arjuna Priyadarshin; de Silva, Hithanadura Janaka

    2017-07-03

    Hydrocarbon-induced occupational liver injury is a well-known clinical entity among petroleum industry workers. There are many types of hydrocarbon exposure, with inhalation being the most common. Hydrocarbon-induced occupational liver injury is a rarely suspected and commonly missed etiological agent for liver injury. We report a case of a non-petroleum industry worker with chronic liver disease secondary to hydrocarbon-induced occupational liver injury caused by chronic low-grade hydrocarbon ingestion due to occupational malpractice. A 23-year-old Sri Lankan man who was a motor mechanic presented to our hospital with decompensated cirrhosis. He had been chronically exposed to gasoline via inadvertent ingestion due to occupational malpractice. He used to remove gasoline from carburetors by sucking and failed to practice mouth washing thereafter. On evaluation, he had histologically proven established cirrhosis. A comprehensive history and workup ruled out other nonoccupational etiologies for cirrhosis. The patient's long-term occupational gasoline exposure and clinical course led us to a diagnosis of hydrocarbon-induced occupational liver injury leading to decompensated cirrhosis. Hydrocarbon-induced occupational liver injury should be considered as a cause when evaluating a patient with liver injury with possible exposure in relevant occupations.

  10. Tailored Granular Activated Carbon Treatment of Perchlorate in Drinking Water

    Science.gov (United States)

    2010-10-01

    Science NCP National Contingency Plan NDEA N-nitrosodiethylamine NDMA N-nitrosodimethylamine NDPA N-Nitrosodi-n-propylamine NFESC Naval Facilities...nitrosodimethylamine [ NDMA ], N-nitrosodiethylamine [NDEA], and N-nitrosodi-n-propylamine [NDPA]) by EPA method 521 5.5.6 Demobilization Spent TGAC and...and monthly Influent Bed 1 and Effluent Bed 2. AFIT Conductivity 120.1 Once weekly at Influent Bed 1 and Effluent Bed 2. Weck Laboratories NDMA

  11. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation

    International Nuclear Information System (INIS)

    Shukla, Pradeep K.; Chaudhry, Kamaljit K.; Mir, Hina; Gangwar, Ruchika; Yadav, Nikki; Manda, Bhargavi; Meena, Avtar S.; Rao, RadhaKrishna

    2016-01-01

    Alcohol consumption is one of the major risk factors for colorectal cancer. However, the mechanism involved in this effect of alcohol is unknown. We evaluated the effect of chronic ethanol feeding on azoxymethane and dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in mouse colon. Inflammation in colonic mucosa was assessed at a precancerous stage by evaluating mucosal infiltration of neutrophils and macrophages, and analysis of cytokine and chemokine gene expression. Chronic ethanol feeding significantly increased the number and size of polyps in colon of AOM/DSS treated mice. Confocal microscopic and immunoblot analyses showed a significant elevation of phospho-Smad, VEGF and HIF1α in the colonic mucosa. RT-PCR analysis at a precancerous stage indicated that ethanol significantly increases the expression of cytokines IL-1α, IL-6 and TNFα, and the chemokines CCL5/RANTES, CXCL9/MIG and CXCL10/IP-10 in the colonic mucosa of AOM/DSS treated mice. Confocal microscopy showed that ethanol feeding induces a dramatic elevation of myeloperoxidase, Gr1 and CD68-positive cells in the colonic mucosa of AOM/DSS-treated mice. Ethanol feeding enhanced AOM/DSS-induced suppression of tight junction protein expression and elevated cell proliferation marker, Ki-67 in the colonic epithelium. This study demonstrates that chronic ethanol feeding promotes colonic tumorigenesis potentially by enhancing inflammation and elevation of proinflammatory cytokines and chemokines

  12. The Hepatoprotection Provided by Taurine and Glycine against Antineoplastic Drugs Induced Liver Injury in an Ex Vivo Model of Normothermic Recirculating Isolated Perfused Rat Liver

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2016-03-01

    Full Text Available Taurine (2-aminoethane sulfonic acid is a non-protein amino acid found in high concentration in different tissues. Glycine (Amino acetic acid is the simplest amino acid incorporated in the structure of proteins. Several investigations indicate the hepatoprotective properties of these amino acids. On the other hand, antineoplastic agents-induced serum transaminase elevation and liver injury is a clinical complication. The current investigation was designed to screen the possible hepatoprotective properties of taurine and glycine against antineoplastic drugs-induced hepatic injury in an ex vivo model of isolated perfused rat liver. Rat liver was perfused with different concentration (10 μM, 100 μM and 1000 μM of antineoplastic drugs (Mitoxantrone, Cyclophosphamide, Cisplatin, 5 Fluorouracil, Doxorubicin and Dacarbazine via portal vein. Taurine and glycine were administered to drug-treated livers and liver perfusate samples were collected for biochemical measurements (ALT, LDH, AST, and K+. Markers of oxidative stress (reactive oxygen species formation, lipid peroxidation, total antioxidant capacity and glutathione were also assessed in liver tissue. Antineoplastic drugs caused significant pathological changes in perfusate biochemistry. Furthermore, markers of oxidative stress were significantly elevated in drug treated livers. It was found that taurine (5 and 10 mM and glycine (5 and 10 mM administration significantly mitigated the biomarkers of liver injury and attenuated drug induced oxidative stress. Our data indicate that taurine and glycine supplementation might help as potential therapeutic options to encounter anticancer drugs-induced liver injury.

  13. Putrescine treatment reverses α-tocopherol-induced desynchronization of polyamine and retinoid metabolism during rat liver regeneration

    Directory of Open Access Journals (Sweden)

    Lourdes Sánchez-Sevilla

    2016-10-01

    Full Text Available Abstract Background The pre-treatment with α-tocopherol inhibits progression of rat liver proliferation induced by partial hepatectomy (PH, by decreasing and/or desynchronizing cyclin D1 expression and activation into the nucleus, activation and nuclear translocation of STAT-1 and -3 proteins and altering retinoid metabolism. Interactions between retinoic acid and polyamines have been reported in the PH-induced rat liver regeneration. Therefore, we evaluated the effect of low dosage of α-tocopherol on PH-induced changes in polyamine metabolism. Methods This study evaluated the participation of polyamine synthesis and metabolism during α-tocopherol-induced inhibition of rat liver regeneration. In PH-rats (Wistar treated with α-tocopherol and putrescine, parameters indicative of cell proliferation, lipid peroxidation, ornithine decarboxylase expression (ODC, and polyamine levels, were determined. Results Pre-treatment with α-tocopherol to PH-animals exerted an antioxidant effect, shifting earlier the increased ODC activity and expression, temporally affecting polyamine synthesis and ornithine metabolism. Whereas administration of putrescine induced minor changes in PH-rats, the concomitant treatment actually counteracted most of adverse actions exerted by α-tocopherol on the remnant liver, restituting its proliferative potential, without changing its antioxidant effect. Putrescine administration to these rats was also associated with lower ODC expression and activity in the proliferating liver, but the temporally shifting in the amount of liver polyamines induced by α-tocopherol, was also “synchronized” by the putrescine administration. The latter is supported by the fact that a close relationship was observed between fluctuations of polyamines and retinoids. Conclusions Putrescine counteracted most adverse actions exerted by α-tocopherol on rat liver regeneration, restoring liver proliferative potential and restituting the decreased

  14. A Prominent Role of Interleukin-18 in Acetaminophen-Induced Liver Injury Advocates Its Blockage for Therapy of Hepatic Necroinflammation

    Directory of Open Access Journals (Sweden)

    Malte Bachmann

    2018-02-01

    Full Text Available Acetaminophen [paracetamol, N-acetyl-p-aminophenol (APAP]-induced acute liver injury (ALI not only remains a persistent clinical challenge but likewise stands out as well-characterized paradigmatic model of drug-induced liver damage. APAP intoxication associates with robust hepatic necroinflammation the role of which remains elusive with pathogenic but also pro-regenerative/-resolving functions being ascribed to leukocyte activation. Here, we shine a light on and put forward a unique role of the interleukin (IL-1 family member IL-18 in experimental APAP-induced ALI. Indeed, amelioration of disease as previously observed in IL-18-deficient mice was further substantiated herein by application of the IL-18 opponent IL-18-binding protein (IL-18BPd:Fc to wild-type mice. Data altogether emphasize crucial pathological action of this cytokine in APAP toxicity. Adding recombinant IL-22 to IL-18BPd:Fc further enhanced protection from liver injury. In contrast to IL-18, the role of prototypic pro-inflammatory IL-1 and tumor necrosis factor-α is controversially discussed with lack of effects or even protective action being repeatedly reported. A prominent detrimental function for IL-18 in APAP-induced ALI as proposed herein should relate to its pivotal role for hepatic expression of interferon-γ and Fas ligand, both of which aggravate APAP toxicity. As IL-18 serum levels increase in patients after APAP overdosing, targeting IL-18 may evolve as novel therapeutic option in those hard-to-treat patients where standard therapy with N-acetylcysteine is unsuccessful. Being a paradigmatic experimental model of ALI, current knowledge on ill-fated properties of IL-18 in APAP intoxication likewise emphasizes the potential of this cytokine to serve as therapeutic target in other entities of inflammatory liver diseases.

  15. Apigenin inhibits d-galactosamine/LPS-induced liver injury through upregulation of hepatic Nrf-2 and PPARγ expressions in mice.

    Science.gov (United States)

    Zhou, Rui-Jun; Ye, Hua; Wang, Feng; Wang, Jun-Long; Xie, Mei-Lin

    2017-11-04

    Apigenin is a natural flavonoid compound widely distributed in a variety of vegetables, medicinal plants and health foods. This study aimed to examine the protective effect of apigenin against d-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced mouse liver injury and to investigate the potential biochemical mechanisms. The results showed that after oral administration of apigenin 100-200 mg/kg for 7 days, the levels of serum alanine aminotransferase and aspartate aminotransferase were decreased, and the severity of liver injury was alleviated. Importantly, apigenin pretreatment increased the levels of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and peroxisome proliferator-activated receptor γ (PPARγ) protein expressions as well as superoxide dismutase, catalase, glutathione S-transferase and glutathione reductase activities, decreased the levels of hepatic nuclear factor-κB (NF-κB) protein expression and tumor necrosis factor-α. These findings demonstrated that apigenin could prevent the D-GalN/LPS-induced liver injury in mice, and its mechanisms might be associated with the increments of Nrf-2-mediated antioxidative enzymes and modulation of PPARγ/NF-κB-mediated inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver.

    Science.gov (United States)

    Peng, Yanhua; Rideout, Drew; Rakita, Steven; Lee, James; Murr, Michel

    2012-01-01

    Obesity induces steatosis and increases oxidative stress, as well as chronic inflammation in the liver. The balance between lipogenesis and lipolysis is disrupted in obese animals. At a cellular level, the changes in metabolic sensors and energy regulators are poorly understood. We hypothesized that diet-induced steatosis increases oxidative stress, inflammation, and changes the metabolic regulators to promote energy storage in mice. The setting was a university-affiliated basic science research laboratory. Four-week-old C57BL mice were fed a high-fat diet (n = 8) or regular chow (n = 8) for 7 weeks. The liver sections were stained for fat content and immunofluorescence. Liver homogenates were used for protein analysis by immunoblotting and mRNA analysis by reverse transcriptase-polymerase chain reaction. The gels were quantified using densitometry P ≤ .05 was considered significant. The high-fat diet upregulated protein kinase-C atypical isoforms ζ and λ and decreased glucose tolerance and the interaction of insulin receptor substrate 2 with phosphoinositide kinase-3. The high-fat diet increased the transcriptional factors liver X receptor (4321 ± 98 versus 2981 ± 80) and carbohydrate response element-binding protein (5132 ± 135 versus 3076 ± 91), the lipogenesis genes fatty acid binding protein 5, stearoyl-co-enzyme A desaturase-1, and acetyl-co-enzyme A carboxylase protein, and fatty acid synthesis. The high-fat diet decreased 5'-adenosine monophosphate-activated protein kinase (2561 ± 78 versus 1765 ± 65), glucokinase-3β (2.214 ± 34 versus 3356 ± 86), and SIRT1 (2015 ± 76 versus 3567 ± 104) and increased tumor necrosis factor-α (3415 ± 112 versus 2042 ± 65), nuclear factor kappa B (5123 ± 201 versus 2562 ± 103), cyclooxygenase-2 (4230 ± 113 versus 2473 ± 98), nicotinamide-adenine dinucleotide phosphate oxidase (3501 ± 106 versus 1600 ± 69) and reactive oxygen species production (all P high-fat diet impairs glucose tolerance and hepatic

  17. Involvement of immune-related factors in diclofenac-induced acute liver injury in mice

    International Nuclear Information System (INIS)

    Yano, Azusa; Higuchi, Satonori; Tsuneyama, Koichi; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is difficult to predict DILI in humans due to the lack of experimental animal models. Diclofenac, a non-steroidal anti-inflammatory drug rarely causes severe liver injury in human, but there is some evidence for immunoallergic idiosyncratic reactions. In this study, the mechanism of diclofenac-induced liver injury in mice was investigated. First, we established the dosing condition for liver injury in normal mice. Plasma ALT and AST levels were significantly increased in diclofenac-administered (80 mg/kg, i.p.) mice in a dose- and time-dependent manner. Among several interleukins (ILs) and chemokines, mRNA expression of helper T (Th) 17 cell-mediated factors, such as retinoid orphan receptor (ROR)-γt, and signal transducers and activators of transcription factor (STAT) 3 in the liver, and the plasma IL-17 level were significantly increased. Neutralization of IL-17 tended to suppress the hepatotoxicity of diclofenac, suggesting that IL-17 was partly involved. Gadolinium chloride (GdCl 3 ) administration demonstrated that Kupffer cells are not likely to be involved in diclofenac hepatotoxicity. Hepatic expressions of IL-1β mRNA and plasma IL-1β were significantly increased soon after the diclofenac administration. Then, the results of an in vivo neutralization study of IL-1β suggested that IL-1β was involved early in the time of pathogenesis of the diclofenac-induced liver injury. In conclusion, we firstly developed a diclofenac-induced acute liver injury model in normal mice, and the involvement of IL-17 and IL-1β was clarified.

  18. Melatonin protects against taurolithocholic-induced oxidative stress in rat liver.

    Science.gov (United States)

    Fuentes-Broto, Lorena; Miana-Mena, Francisco J; Piedrafita, Eduardo; Berzosa, César; Martínez-Ballarín, Enrique; García-Gil, Francisco A; Reiter, Russel J; García, Joaquín J

    2010-08-01

    Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl(3) and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA + 4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. Published 2010 Wiley-Liss, Inc.

  19. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice.

    Directory of Open Access Journals (Sweden)

    Hong-Min Ni

    Full Text Available Chronic alcohol causes liver hypoxia and steatosis, which eventually develops into alcoholic liver disease (ALD. While it has been known that alcohol consumption activates hepatic hypoxia inducing factor-1α (HIF-1α, conflicting results regarding the role of HIF-1α in alcohol-induced liver injury and steatosis in mice have been reported. In the present study, we aimed to use hepatocyte-specific HIF-1β knockout mice to eliminate the possible compensatory effects of the single knockout of the 1α subunit of HIF to study the role of HIFs in ALD. C57BL/6 wild type mice were treated with acute ethanol to mimic human binge drinking. Matched wild-type and hepatocyte specific HIF-1β knockout mice were also subjected to a recently established Gao-binge alcohol model to mimic chronic plus binge conditions, which is quite common in human alcoholics. We found that acute alcohol treatment increased BNIP3 and BNIP3L/NIX expression in primary cultured hepatocytes and in mouse livers, suggesting that HIF may be activated in these models. We further found that hepatocyte-specific HIF-1β knockout mice developed less steatosis and liver injury following the Gao-binge model or acute ethanol treatment compared with their matched wild type mice. Mechanistically, protection against Gao-binge treatment-induced steatosis and liver injury was likely associated with increased FoxO3a activation and subsequent induction of autophagy in hepatocyte-specific HIF-1β knockout mice.

  20. MicroRNA-122 is involved in oxidative stress in isoniazid-induced liver injury in mice.

    Science.gov (United States)

    Song, L; Zhang, Z R; Zhang, J L; Zhu, X B; He, L; Shi, Z; Gao, L; Li, Y; Hu, B; Feng, F M

    2015-10-27

    Many studies have shown that the pathogenesis of liver injury includes oxidative stress. MicroRNA-122 may be a marker for the early diagnosis of drug-induced liver injury. However, the relationship between microRNA-122 and oxidative stress in anti-tuberculosis drug-induced liver injury remains unknown. We measured changes in tissue microRNA-122 levels and indices of oxidative stress during liver injury in mice after administration of isoniazid, a first-line anti-tuberculosis drug. We quantified microRNA-122 expression and indices of oxidative stress at 7 time points, including 1, 3, and 5 days and 1, 2, 3, and 4 weeks. The tissue microRNA-122 levels and oxidative stress significantly changed at 3 and 5 days, suggesting that isoniazid-induced liver injury reduces oxidative stress and microRNA-122 expression compared to in the control group (P microRNA-122, began to change at 5 days (P microRNA-122 profile may affect oxidative stress by regulating mitochondrial ribosome protein S11 gene during isoniazid-induced liver injury, which may contribute to the response mechanisms of microRNA-122 and oxidative stress.

  1. Saturation of retinol-binding protein correlates closely to the severity of alcohol-induced liver disease

    DEFF Research Database (Denmark)

    Wagnerberger, S.; Schäfer, C.; Bode, C.

    2006-01-01

    Impaired metabolism of retinol has been shown to occur in alcohol-induced liver disease (ALD). The purpose of the present study was to investigate the saturation of retinol-binding protein (RBP) in 6 patients with different stages of ALD. Hospitalized alcohol consumers (n=118) with different stages...... chromatography and enzyme-linked immunosorbent assay methods, respectively. No differences were noted in daily retinol intake, but subjects with ALD had significantly lower concentrations of retinol in plasma (ALD1: 1.81+/-0.17 micromol/l [mean+/-S.E.M.]; ALD2: 1.95+/-0.24 micromol/l; ALD3: 0.67+/-0.13 micromol......: 43.5+/-6.2%; ALD3: 29.0+/-5.1%). The present study indicates that plasma concentrations of retinol and RBP per se do not correlate to severity of ALD, but rather that the retinol/RBP ratio links to the severity of alcohol-induced liver damage. From these results, a reduced availability of retinol...

  2. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability.

    Directory of Open Access Journals (Sweden)

    Glenn M Marshall

    2011-06-01

    Full Text Available The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3, leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.

  3. Interleukin 21 controls tumour growth and tumour immunosurveillance in colitis-associated tumorigenesis in mice.

    Science.gov (United States)

    Jauch, Dominik; Martin, Maria; Schiechl, Gabriela; Kesselring, Rebecca; Schlitt, Hans Jürgen; Geissler, Edward K; Fichtner-Feigl, Stefan

    2011-12-01

    Colitis-associated tumorigenesis is a balance between proliferation of tumour cells and tumour immunosurveillance. The role of T-helper-cell-derived cytokines in tumour growth is not fully understood. In this study the authors investigated the influence of interleukin (IL) 21 on intestinal tumorigenesis. Chronic colitis was induced in IL-21(-/-) and littermate control wild-type mice with three cycles of 1.5% dextran sulphate sodium (DSS) over 7 days followed by 7 days of drinking water. Mice received an azoxymethane injection on day 0 of DSS-colitis to induce tumorigenesis. Immunohistochemistry was performed on inflamed and tumour-bearing areas of colons. Cytokine expression of isolated colonic CD4 T cells was determined by ELISA. Cytotoxic capacity of isolated colonic CD8 T cells targeting tumour cells was evaluated by flow cytometry and quantitative cytotoxicity assay. Apoptosis of tumour cells was determined by TUNEL assay of colonic sections. Increasing expression of IL-21 was observed in chronic colitis, which showed functional importance, since IL-21 deficiency prevented chronic DSS-colitis development. Further, in the absence of IL-21, significantly fewer tumour nodules were detected, despite a similar extent of intestinal inflammation. In wild-type mice, 8.6±1.9 tumour nodules were found compared with 1.0±1.2 in IL-21-deficient mice. In tumour-bearing IL-21-deficient mice, intestinal inflammation was restored and partly dependent on interferon (IFN)-γ, whereas the inflammation in wild-type mice showed high IL-17A concentrations. In these rare tumours in IL-21-deficient mice, tumour cell proliferation (Ki-67) was decreased, while cell apoptosis was increased, compared with wild-type mice. Increased IFNγ expression in tumour-bearing IL-21-deficient mice led to increased tumour immunosurveillance mediated by cytotoxic CD8CD103 T cells targeting E-cadherin(+) colonic tumour cells and therefore limited tumour growth. These results indicate that IL-21

  4. Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses

    Directory of Open Access Journals (Sweden)

    Myklebost Ola

    2007-01-01

    Full Text Available Abstract Background Despite the fact that metastases are the leading cause of colorectal cancer deaths, little is known about the underlying molecular changes in these advanced disease stages. Few have studied the overall gene expression levels in metastases from colorectal carcinomas, and so far, none has investigated the peritoneal carcinomatoses by use of DNA microarrays. Therefore, the aim of the present study is to investigate and compare the gene expression patterns of primary carcinomas (n = 18, liver metastases (n = 4, and carcinomatoses (n = 4, relative to normal samples from the large bowel. Results Transcriptome profiles of colorectal cancer metastases independent of tumor site, as well as separate profiles associated with primary carcinomas, liver metastases, or peritoneal carcinomatoses, were assessed by use of Bayesian statistics. Gains of chromosome arm 5p are common in peritoneal carcinomatoses and several candidate genes (including PTGER4, SKP2, and ZNF622 mapping to this region were overexpressed in the tumors. Expression signatures stratified on TP53 mutation status were identified across all tumors regardless of stage. Furthermore, the gene expression levels for the in vivo tumors were compared with an in vitro model consisting of cell lines representing all three tumor stages established from one patient. Conclusion By statistical analysis of gene expression data from primary colorectal carcinomas, liver metastases, and carcinomatoses, we are able to identify genetic patterns associated with the different stages of tumorigenesis.

  5. Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.

    Directory of Open Access Journals (Sweden)

    Daleya Abdulaziz Bardi

    Full Text Available This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg or ELAP (250 or 500 mg/kg. Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed

  6. Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.

    Science.gov (United States)

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen

    2014-01-01

    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from

  7. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Directory of Open Access Journals (Sweden)

    G.B. Peres

    2014-06-01

    Full Text Available It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old, while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease. There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  8. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Peres, G.B. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Juliano, M.A. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Biofísica, São Paulo, SP, Brasil, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Aguiar, J.A.K.; Michelacci, Y.M. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10{sup th} or the 30{sup th} day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10{sup th}, but not on the 30{sup th} day. Sulfatase decreased 30% on the 30{sup th} day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  9. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    International Nuclear Information System (INIS)

    Peres, G.B.; Juliano, M.A.; Aguiar, J.A.K.; Michelacci, Y.M.

    2014-01-01

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10 th or the 30 th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10 th , but not on the 30 th day. Sulfatase decreased 30% on the 30 th day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver

  10. Extracorporeal liver assist device to exchange albumin and remove endotoxin in acute liver failure: Results of a pivotal pre-clinical study.

    Science.gov (United States)

    Lee, Karla C L; Baker, Luisa A; Stanzani, Giacomo; Alibhai, Hatim; Chang, Yu Mei; Jimenez Palacios, Carolina; Leckie, Pamela J; Giordano, Paola; Priestnall, Simon L; Antoine, Daniel J; Jenkins, Rosalind E; Goldring, Christopher E; Park, B Kevin; Andreola, Fausto; Agarwal, Banwari; Mookerjee, Rajeshwar P; Davies, Nathan A; Jalan, Rajiv

    2015-09-01

    In acute liver failure, severity of liver injury and clinical progression of disease are in part consequent upon activation of the innate immune system. Endotoxaemia contributes to innate immune system activation and the detoxifying function of albumin, critical to recovery from liver injury, is irreversibly destroyed in acute liver failure. University College London-Liver Dialysis Device is a novel artificial extracorporeal liver assist device, which is used with albumin infusion, to achieve removal and replacement of dysfunctional albumin and reduction in endotoxaemia. We aimed to test the effect of this device on survival in a pig model of acetaminophen-induced acute liver failure. Pigs were randomised to three groups: Acetaminophen plus University College London-Liver Dialysis Device (n=9); Acetaminophen plus Control Device (n=7); and Control plus Control Device (n=4). Device treatment was initiated two h after onset of irreversible acute liver failure. The Liver Dialysis Device resulted in 67% reduced risk of death in acetaminophen-induced acute liver failure compared to Control Device (hazard ratio=0.33, p=0.0439). This was associated with 27% decrease in circulating irreversibly oxidised human non-mercaptalbumin-2 throughout treatment (p=0.046); 54% reduction in overall severity of endotoxaemia (p=0.024); delay in development of vasoplegia and acute lung injury; and delay in systemic activation of the TLR4 signalling pathway. Liver Dialysis Device-associated adverse clinical effects were not seen. The survival benefit and lack of adverse effects would support clinical trials of University College London-Liver Dialysis Device in acute liver failure patients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity

    Science.gov (United States)

    Massart, Julie; Begriche, Karima; Moreau, Caroline; Fromenty, Bernard

    2017-01-01

    Background Obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions including fatty liver, nonalcoholic steatohepatitis (NASH) and cirrhosis. Different investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs could induce more frequently an acute hepatitis in obese individuals whereas others could worsen pre-existing NAFLD. Aim The main objective of the present review was to collect the available information regarding the role of NAFLD as risk factor for drug-induced hepatotoxicity. For this purpose, we performed a data-mining analysis using different queries including drug-induced liver injury (or DILI), drug-induced hepatotoxicity, fatty liver, nonalcoholic fatty liver disease (or NAFLD), steatosis and obesity. The main data from the collected articles are reported in this review and when available, some pathophysiological hypotheses are put forward. Relevance for patients Drugs that could pose a potential risk in obese patients include compounds belonging to different pharmacological classes such as acetaminophen, halothane, methotrexate, rosiglitazone, stavudine and tamoxifen. For some of these drugs, experimental investigations in obese rodents confirmed the clinical observations and unveiled different pathophysiological mechanisms which could explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Other drugs such as pentoxifylline, phenobarbital and omeprazole might also pose a risk but more investigations are required to determine whether this risk is significant or not. Because obese people often take several drugs for the treatment of different obesity-related diseases such as type 2 diabetes, hyperlipidemia and coronary heart disease, it is urgent to identify the main pharmaceuticals that can cause acute hepatitis on a fatty liver background or induce NAFLD worsening

  12. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  13. Drug-Induced Liver Injury Associated with Complementary and Alternative Medicines

    Science.gov (United States)

    Takahashi, Koji; Kanda, Tatsuo; Yasui, Shin; Haga, Yuki; Kumagai, Junichiro; Sasaki, Reina; Wu, Shuang; Nakamoto, Shingo; Nakamura, Masato; Arai, Makoto; Yokosuka, Osamu

    2016-01-01

    A 24-year-old man was admitted due to acute hepatitis with unknown etiology. After his condition and laboratory data gradually improved with conservative therapy, he was discharged 1 month later. Two months after his discharge, however, liver dysfunction reappeared. After his mother accidentally revealed that he took complementary and alternative medicine, discontinuation of the therapy caused his condition to improve. Finally, he was diagnosed with a recurrent drug-induced liver injury associated with Japanese complementary and alternative medicine. It is important to take the medical history in detail and consider complementary and alternative medicine as a cause of liver disease. PMID:28100990

  14. Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury.

    Science.gov (United States)

    Addante, Annalisa; Roncero, Cesáreo; Almalé, Laura; Lazcanoiturburu, Nerea; García-Álvaro, María; Fernández, Margarita; Sanz, Julián; Hammad, Seddik; Nwosu, Zeribe C; Lee, Se-Jin; Fabregat, Isabel; Dooley, Steven; Ten Dijke, Peter; Herrera, Blanca; Sánchez, Aránzazu

    2018-05-11

    Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Involvement of immune-related factors in diclofenac-induced acute liver injury in mice.

    Science.gov (United States)

    Yano, Azusa; Higuchi, Satonori; Tsuneyama, Koichi; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-03-11

    Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is difficult to predict DILI in humans due to the lack of experimental animal models. Diclofenac, a non-steroidal anti-inflammatory drug rarely causes severe liver injury in human, but there is some evidence for immunoallergic idiosyncratic reactions. In this study, the mechanism of diclofenac-induced liver injury in mice was investigated. First, we established the dosing condition for liver injury in normal mice. Plasma ALT and AST levels were significantly increased in diclofenac-administered (80 mg/kg, i.p.) mice in a dose- and time-dependent manner. Among several interleukins (ILs) and chemokines, mRNA expression of helper T (Th) 17 cell-mediated factors, such as retinoid orphan receptor (ROR)-γt, and signal transducers and activators of transcription factor (STAT) 3 in the liver, and the plasma IL-17 level were significantly increased. Neutralization of IL-17 tended to suppress the hepatotoxicity of diclofenac, suggesting that IL-17 was partly involved. Gadolinium chloride (GdCl₃) administration demonstrated that Kupffer cells are not likely to be involved in diclofenac hepatotoxicity. Hepatic expressions of IL-1β mRNA and plasma IL-1β were significantly increased soon after the diclofenac administration. Then, the results of an in vivo neutralization study of IL-1β suggested that IL-1β was involved early in the time of pathogenesis of the diclofenac-induced liver injury. In conclusion, we firstly developed a diclofenac-induced acute liver injury model in normal mice, and the involvement of IL-17 and IL-1β was clarified. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Roles of p63 in epidermal development and tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeng-Yuan Yao

    2012-12-01

    Full Text Available pidermis is composed mainly of keratinocytes and is the ma­jor barrier of human body. The development and maintenance of normal epithelial structures and functions require the transcrip­tion factor p63. The p63 gene encodes proteins with structures simi­lar to that of p53, including an N-terminal transacti­vation (TA domain, a DNA-binding domain and a car­boxy-oligomerization domain. TAp63 and ΔNp63 (p63 isoforms without TA domain regulate a wide range of target genes that are important for embryonal development and epithelial integrity. Mutations of p63 gene cause epider­mal abnormalities characterized by ectodermal dysplasia. Recent reports have indicated that p63 plays important role in tumorigenesis as well. However, the relative importance of TAp63 and ΔNp63 in epidermal development and tumorigenesis re­mains mostly unclear and awaits further investigation. In this review, we summarize the current knowledge on the structure and function of p63 and its isoforms.

  17. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  18. Sulfur Amino Acids in Diet-induced Fatty Liver: A New Perspective Based on Recent Findings

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2014-06-01

    Full Text Available The relationship of sulfur amino acids to diet-induced fatty liver was established 80 years ago, with cystine promoting the condition and methionine preventing it. This relationship has renewed importance today because diet-induced fatty liver is relevant to the current epidemics of obesity, non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes. Two recent papers provide the first evidence linking sulfane sulfur to diet-induced fatty liver opening a new perspective on the problem. This review summarizes the early data on sulfur amino acids in fatty liver and correlates that data with current knowledge of sulfur metabolism. Evidence is reviewed showing that the lipotropic effect of methionine may be mediated by sulfane sulfur and that the hepatosteatogenic effect of cystine may be related to the removal of sulfane sulfur by cysteine catabolites. Possible preventive and therapeutic strategies are discussed.

  19. The Effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on Alcohol-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Yu-Jie Zhang

    2016-09-01

    Full Text Available Previous studies have shown that fruits have different effects on alcohol metabolism and alcohol-induced liver injury. The present work selected three fruits and aimed at studying the effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on alcohol-induced liver injury in mice. The animals were treated daily with alcohol and fruit juices for fifteen days. Chronic treatment with alcohol increased the levels of aspartate transaminase (AST, alanine transaminase (ALT, total bilirubin (TBIL, triglyceride (TG, malondialdehyde (MDA, and decreased total protein (TP. Histopathological evaluation also showed that ethanol induced extensive fat droplets in hepatocyte cytoplasm. Syzygium samarangense and Passiflora edulis normalized various biochemical parameters. Solanum muricatum increased the level of ALT and induced infiltration of inflammatory cells in the liver. These results strongly suggest that treatment with Syzygium samarangense and Passiflora edulis could protect liver from the injury of alcohol, while Solanum muricatum could aggravate the damage.

  20. Liver injury from Herbals and Dietary Supplements in the US Drug Induced Liver Injury Network

    Science.gov (United States)

    Navarro, Victor J.; Barnhart, Huiman; Bonkovsky, Herbert L.; Davern, Timothy; Fontana, Robert J.; Grant, Lafaine; Reddy, K. Rajender; Seeff, Leonard B.; Serrano, Jose; Sherker, Averell H.; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj

    2014-01-01

    Background The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity due to conventional medications as well as herbals and dietary supplements (HDS). Rationale To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight US referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury due to HDS. Hepatotoxicity due to HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments including death and liver transplantation were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury due to bodybuilding HDS, 85 due to non-bodybuilding HDS, and 709 due to medications. Main Results Liver injury due to HDS increased from 7% to 20% (p Bodybuilding HDS caused prolonged jaundice (median 91 days) in young men but did not result in any fatalities or liver transplantation. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women and more frequently led to death or transplantation compared to injury from medications (13% vs. 3%, p bodybuilding HDS is more severe than from bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes; death and transplantation. PMID:25043597

  1. Radon-induced cancer: a cell-based model of tumorigenesis due to protracted exposures

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1994-01-01

    In 1982, results with C3H mouse embryo cells showed that the frequency of neoplastic transformation was enhanced when exposures to fission-spectrum neutrons were protracted in time. This finding was unexpected because the opposite was found with low-LET radiations. Similar neutron enhancements were reported with normal life-span Syrian hamster embryo cells, and with human hybrid cells. Because other studies did not confirm the preceding, in 1990 - at a conference convened by the US Armed Forces Radiobiological Research Institute - a biophysical model was proposed to explain the basis for the enhancement observed in some experiments but not in others. The model attributed special sensitivities, related to killing and neoplastic transformation, to cells in and around mitosis. Subsequently, it was shown that late G 2 /M phase cells constituted this window of sensitivity. In the instance of tumorigenesis, the model predicted that protracted exposures to a high-LET radiation would result in enhanced frequencies of transformation providing that susceptible cells were cycling or could be induced to cycle. The model explained data on lung tumour induction in rats breathing radon at different concentrations, and uranium miners working in atmospheres containing different concentrations of radon. The model also explains the anomalous finding that lung cancer deaths are often sublinearly correlated with indoor radon concentration. (author)

  2. Simulating sleep apnea by exposure to intermittent hypoxia induces inflammation in the lung and liver.

    Science.gov (United States)

    da Rosa, Darlan Pase; Forgiarini, Luiz Felipe; Baronio, Diego; Feijó, Cristiano Andrade; Martinez, Dênis; Marroni, Norma Possa

    2012-01-01

    Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH). IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice were divided into two groups and then exposed to IH (n = 6) or a simulated IH (SIH) (n = 6) for 35 days. We observed an increase in oxidative damage and other changes to endogenous antioxidant enzymes in mice exposed to IH. Specifically, the expression of multiple transcription factors, including hypoxia inducible factor (HIF-1α), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF-α), inducible NO synthase (iNOS), vascular endothelial growth factor (VEGF), and cleaved caspase 3 were shown to be increased in the IH group. Overall, we found that exposure to intermittent hypoxia for 35 days by simulating sleep apnea leads to oxidative stress, inflammation, and increased activity of caspase 3 in the liver and lung.

  3. Simulating Sleep Apnea by Exposure to Intermittent Hypoxia Induces Inflammation in the Lung and Liver

    Directory of Open Access Journals (Sweden)

    Darlan Pase da Rosa

    2012-01-01

    Full Text Available Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH. IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice were divided into two groups and then exposed to IH (n=6 or a simulated IH (SIH (n=6 for 35 days. We observed an increase in oxidative damage and other changes to endogenous antioxidant enzymes in mice exposed to IH. Specifically, the expression of multiple transcription factors, including hypoxia inducible factor (HIF-1α, nuclear factor kappa B (NF-κB, and tumor necrosis factor (TNF-α, inducible NO synthase (iNOS, vascular endothelial growth factor (VEGF, and cleaved caspase 3 were shown to be increased in the IH group. Overall, we found that exposure to intermittent hypoxia for 35 days by simulating sleep apnea leads to oxidative stress, inflammation, and increased activity of caspase 3 in the liver and lung.

  4. STAT3 activation in monocytes accelerates liver cancer progression

    International Nuclear Information System (INIS)

    Wu, Wen-Yong; Li, Jun; Wu, Zheng-Sheng; Zhang, Chang-Le; Meng, Xiang-Ling

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor

  5. Curcumin attenuates lipopolysaccharide/d-galactosamine-induced acute liver injury by activating Nrf2 nuclear translocation and inhibiting NF-kB activation.

    Science.gov (United States)

    Xie, Yi-Lian; Chu, Jin-Guo; Jian, Xiao-Min; Dong, Jin-Zhong; Wang, Li-Ping; Li, Guo-Xiang; Yang, Nai-Bin

    2017-07-01

    Curcumin, a polyphenol in curry spice isolated from the rhizome of turmeric, has been reported to possess versatile biological properties including anti-inflammatory, anti-oxidant, antifibrotic, and anticancer activities. In this study, the hepatoprotective effect of curcumin was investigated in lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced acute liver injury (ALI) in rats. Experimental ALI was induced with an intraperitoneal (ip) injection of sterile 0.9% sodium chloride (NaCl) solution containing 8μg LPS and 800mg/kg d-GalN. Curcumin was administered once daily starting three days prior to LPS/d-GalN treatment. Results indicated that curcumin could attenuate hepatic pathological damage, decrease serum ALT and AST levels, and reduce malondialdehyde (MDA) content in experimental ALI rats. Moreover, higher dosages of curcumin pretreatment inhibited NF-κB activation and reduced serum TNF-α and liver TNF-α levels induced by LPS/d-GalN ip injection. Furthermore, we found that curcumin up-regulated the expression of nuclear Nrf2 and Nrf2-dependent antioxidant defense genes including heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCLC), NAD(P)H dehydrogenase, and quinone (NQO-1) in a dose-dependent manner. Our results showed that curcumin protected experimental animals against LPS/d-GalN-induced ALI through activation of Nrf2 nuclear translocation and inhibition of NF-κB activation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury

    OpenAIRE

    Yu, Lei; Zhao, Xue-ke; Cheng, Ming-liang; Yang, Guo-zhen; Wang, Bi; Liu, Hua-juan; Hu, Ya-xin; Zhu, Li-li; Zhang, Shuai; Xiao, Zi-wen; Liu, Yong-mei; Zhang, Bao-fang; Mu, Mao

    2017-01-01

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii admin...

  7. Visualization of acute liver damage induced by cycloheximide in rats using PET with [(18F]FEDAC, a radiotracer for translocator protein (18 kDa.

    Directory of Open Access Journals (Sweden)

    Akiko Hatori

    Full Text Available Liver damage induced by drug toxicity is an important concern for both medical doctors and patients. The aim of this study was to noninvasively visualize acute liver damage using positron emission tomography (PET with N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-[(18F]fluoroethyl-8-oxo-2-phenyl-9H-purin-9-yl]acetamide ([(18F]FEDAC, a radiotracer specific for translocator protein (18 kDa, TSPO as a biomarker for inflammation, and to determine cellular sources enriching TSPO expression in the liver. A mild acute liver damage model was prepared by a single intraperitoneal injection of cycloheximide (CHX into rats. Treatment with CHX induced apoptosis and necrotic changes in hepatocytes with slight neutrophil infiltration. The uptake of radioactivity in the rat livers was measured with PET after injection of [(18F]FEDAC. The uptake of [(18F]FEDAC increased in livers damaged from treatment with CHX compared to the controls. Presence of TSPO was examined in the liver tissue using quantitative reverse transcriptase-polymerase chain reaction and immunohistochemical assays. mRNA expression of TSPO was elevated in the damaged livers compared to the controls, and the level was correlated with the [(18F]FEDAC uptake and severity of damage. TSPO expression in the damaged liver sections was mainly found in macrophages (Kupffer cells and neutrophils, but not in hepatocytes. The elevation of TSPO mRNA expression was derived from the increase of the number of macrophages with TSPO and neutrophils with TSPO in damaged livers. From this study we considered that PET imaging with [(18F]FEDAC represented the mild liver damage through the enhanced TSPO signal in inflammatory cells. We conclude that this method may be a useful tool for diagnosis in early stage of acute liver damage.

  8. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury.

    Science.gov (United States)

    Yu, Lei; Zhao, Xue-Ke; Cheng, Ming-Liang; Yang, Guo-Zhen; Wang, Bi; Liu, Hua-Juan; Hu, Ya-Xin; Zhu, Li-Li; Zhang, Shuai; Xiao, Zi-Wen; Liu, Yong-Mei; Zhang, Bao-Fang; Mu, Mao

    2017-05-02

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii administration. In the meantime, S. boulardii induced dramatic changes in the gut microbial composition. At the phylum level, we found that S. boulardii significantly increased in the relative abundance of Bacteroidetes, and decreased the relative abundance of Firmicutes and Proteobacteria, which may explain the hepatic protective effects of S. boulardii. Taken together, our results demonstrated that S. boulardii administration could change the gut microbiota in mice and alleviate acute liver failure, indicating a potential protective and therapeutic role of S. boulardii.

  9. Liver lipid molecules induce PEPCK-C gene transcription and attenuate insulin action

    International Nuclear Information System (INIS)

    Chen Guoxun

    2007-01-01

    Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) plays key roles in gluconeogenesis, glyceroneogenesis, and cataplerosis. Experiments were designed to examine the effects of endogenous lipid molecules from rat livers on the expression of PEPCK-C gene in primary rat hepatocytes. The lipid extracts prepared from livers of Zucker fatty, lean, and Wistar rats induced the expression levels of PEPCK-C transcripts. Insulin-mediated reduction of PEPCK-C gene expression was attenuated by the same treatment. The lipid extracts induced the relative luciferase activity of reporter gene constructs that contain a 2.2-kb 5' promoter fragment of PEPCK-C gene, but not the construct that contains only the 3' untranslated region (UTR) of its mRNA. The estimated half life of PEPCK-C transcripts in the presence of the lipid extract is the same as that in the absence of it. My results demonstrate for the first time that endogenous lipid molecules induce PEPCK-C gene transcription and attenuate insulin action in liver

  10. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    Energy Technology Data Exchange (ETDEWEB)

    Yannam, Govardhana Rao [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Han, Bing [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi (China); Setoyama, Kentaro [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamamoto, Toshiyuki [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Ito, Ryotaro; Brooks, Jenna M. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Guzman-Lepe, Jorge [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Galambos, Csaba [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Fong, Jason V. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Deutsch, Melvin; Quader, Mubina A. [Department of Radiation Oncology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamanouchi, Kosho [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York (United States); Kabarriti, Rafi; Mehta, Keyur [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Soto-Gutierrez, Alejandro [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  11. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    International Nuclear Information System (INIS)

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro

    2014-01-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury

  12. Vitamin B12 supplement alleviates N'-nitrosodimethylamine-induced hepatic fibrosis in rats.

    Science.gov (United States)

    Ahmad, Areeba; Afroz, Nishat; Gupta, Umesh D; Ahmad, Riaz

    2014-01-10

    Abstract Context: Altered vitamin B 12 levels have been correlated with hepatotoxicity; however, further evidence is required to establish its protective role. Objective: To evaluate the effects of vitamin B 12 supplement in protecting N'-nitrosodimethylamine (NDMA)-induced hepatic fibrosis in Wistar rats. Materials and methods: Hepatic fibrosis was induced by administering NDMA in doses of 10 mg/kg body weight thrice a week for 21 days. Another group received equal doses (10 mg/kg body weight) of vitamin B 12 subsequent to NDMA treatment. Animals from either group were sacrificed weekly from the start of the treatment along with their respective controls. Progression of hepatic fibrosis, in addition to the effect of vitamin B 12 , was assessed biochemically for liver function biomarkers, liver glycogen, hydroxyproline (HP) and B 12 reserves along with histopathologically by hematoxylin and eosin (H & E) as well immunohistochemical staining for α-SMA expression. Results and discussion: Elevation in the levels of aminotransferases, SALP, total bilirubin and HP was observed in NDMA treated rats, which was concomitant with remarkable depletion in liver glycogen and B 12 reserves (p < 0.05). Liver biopsies also demonstrated disrupted lobular architecture, collagen amassing and intense fibrosis by NDMA treatment. Immunohistochemical staining showed the presence of activated stellate cells that was dramatically increased up to day 21 in fibrotic rats. Following vitamin B 12 treatment, liver function biomarkers, glycogen contents and hepatic vitamin B 12 reserves were restored in fibrotic rats, significantly. Vitamin B 12 administration also facilitated restoration of normal liver architecture. Conclusion: These findings provide interesting new evidence in favor of protective role for vitamin B 12 against NDMA-induced hepatic fibrosis in rats.

  13. Effects of aspirin and enoxaparin in a rat model of liver fibrosis.

    Science.gov (United States)

    Li, Chen-Jie; Yang, Zhi-Hui; Shi, Xiao-Liu; Liu, De-Liang

    2017-09-21

    To examine the effects of aspirin and enoxaparin on liver function, coagulation index and histopathology in a rat model of liver fibrosis. METHODS Forty-five male Sprague-Dawley rats were randomly divided into the control group (n = 5) and model group (n = 40). Thioacetamide (TAA) was used to induce liver fibrosis in the model group. TAA-induced fibrotic rats received TAA continuously (n = 9), TAA + low-dose aspirin (n = 9), TAA + high-dose aspirin (n = 9) or TAA + enoxaparin (n = 9) for 4 wk. All rats were euthanized after 4 wk, and both hematoxylin-eosin and Masson staining were performed to observe pathological changes in liver tissue. Liver fibrosis was assessed according to the METAVIR score. Compared with untreated cirrhotic controls, a significant improvement in fibrosis grade was observed in the low-dose aspirin, high-dose aspirin and enoxaparin treated groups, especially in the high-dose aspirin treated group. Alanine aminotransferase and total bilirubin were higher, albumin was lower and both prothrombin time and international normalized ratio were prolonged in the four treatment groups compared to controls. No significant differences among the four groups were observed. Aspirin and enoxaparin can alleviate liver fibrosis in this rat model.

  14. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    Science.gov (United States)

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Alloxan-Induced Diabetes Causes Morphological and Ultrastructural Changes in Rat Liver that Resemble the Natural History of Chronic Fatty Liver Disease in Humans

    Directory of Open Access Journals (Sweden)

    Amanda Natália Lucchesi

    2015-01-01

    Full Text Available Purpose. This study evaluated the long-term effects of alloxan-induced diabetes in rat liver. Methods. Thirty nondiabetic control rats (NC and 30 untreated diabetic (UD rats were divided into three subgroups sacrificed after 6, 14, or 26 weeks. Clinical and laboratory parameters were assessed. Fresh liver weight and its relationship with body weight were obtained, and liver tissue was analyzed. Results. UD rats showed sustained hyperglycemia, high glycosylated hemoglobin, and low plasma insulin. High serum levels of AST and ALT were observed in UD rats after 2 weeks, but only ALT remained elevated throughout the experiment. Fresh liver weight was equal between NC and UD rats, but the fresh liver weight/body weight ratio was significantly higher in UD rats after 14 and 26 weeks. UD rats showed liver morphological changes characterized by hepatic sinusoidal enlargement and micro- and macrovesicular hepatocyte fatty degeneration with progressive liver structure loss, steatohepatitis, and periportal fibrosis. Ultrastructural changes of hepatocytes, such as a decrease in the number of intracytoplasmic organelles and degeneration of mitochondria, rough endoplasmic reticulum, and nuclei, were also observed. Conclusion. Alloxan-induced diabetes triggered liver morphological and ultrastructural changes that closely resembled human disease, ranging from steatosis to steatohepatitis and liver fibrosis.

  16. Role of hepatic de novo lipogenesis in the development of fasting-induced fatty liver in the American mink (Neovison vison).

    Science.gov (United States)

    Rouvinen-Watt, Kirsti; Harris, Lora; Dick, Morag; Pal, Catherine; Lei, Sha; Mustonen, Anne-Mari; Nieminen, Petteri

    2012-10-28

    American mink (Neovison vison) develop fatty liver quickly in response to food deprivation, which results in preferential mobilisation of n-3 PUFA. The altered n-3:n-6 PUFA ratio in the liver may activate the endocannabinoid system resulting in increased lipid synthesis. The objective of the present study was to investigate the effects of feeding intensity (80 or 120% RDA), dietary fat source (n-3, n-6 or n-9 fatty acids (FA)) and short-term fasting (1-7 d) on hepatic de novo lipogenesis (DNL) and the development of fatty liver in mink. Significantly elevated expression of mRNA encoding for acetyl-CoA carboxylase-1 (ACC-1) and FA synthase (FAS) was observed in the liver of mink fasted for 5-7 d, while upon re-feeding for 28 d after a 7 d food deprivation, DNL returned to pre-fasting levels. The females had a higher expression of ACC-1 and FAS mRNA than the males. In the non-fasted animals, dietary fat source and feeding intensity had significant effects on ACC-1 mRNA. The highest levels were observed in the mink fed the rapeseed oil (n-9) diet at 80% RDA, while the lowest levels were seen when the same diet was fed at 120% RDA. For FAS, the highest gene expression was seen in the fasted mink fed at 80% RDA and the lowest in the non-fasted mink fed at 80%. It is concluded that short-term food deprivation induces hepatic lipidosis in mink and that during this process, hepatic DNL further exacerbates liver fat accumulation.

  17. [EFFECT OF ACETYLCYSTEINE, CORVITIN AND THEIR COMBINATION ON THE FUNCTIONAL STATE OF LIVER IN RATS WITH PARACETAMOL INDUCED TOXIC HEPATITIS].

    Science.gov (United States)

    Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K

    2017-02-01

    Nowadays drug-induced hepatotoxicity is urgent problem worldwide. Currently more than 1000 drugs are hepatotoxic and most often are the reason of acute fulminant hepatitis and hepatocellular failure, the states requiring liver transplantation. The paracetamol induced liver toxicity is related with accumulation of its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is the free radical and enhances peroxidation of lipids, disturbs the energy status and causes death of hepatocytes. During our research we investigated and assessed the efficacy of acetylcysteine, corvitin and their combination in rat model of paracetamol induced acute toxic hepatitis. The study was performed on mature white male Wistar rates with body mass 150-180 g. 50 rats were randomly divided into 5 groups (10 rats in each group). To get the model of acute toxic hepatitis single intraperitoneal injection of paracetamol solution was used (750 mg/kg). Toxic hepatitis was treated with intrapertoneal administration of 40mg/kg acetylcysteine or 100mg/kg corvitin, as well as with combination of these drugs. Monotherapy with acetylcysteine and corvitin of paracetamol induced toxic hepatitis improved the liver function, decreased relative mass of the liver and animal mortality. The treatment of toxic hepatitis was most effective in the case of simultaneous administration of acetylcysteine and corvitin. The normal value of laboratory tests (ALT, ACT, alkaline phosphatase, total and unconjugated bilirubin) was reached and mortality was not more observed. On the bases of obtained data was concluded that acetylcysteine and corvitin have almost equal hepatoprotective activity. The combination of two drugs actually improves the liver function. The most pronounced hepatoprotective effect may be due to synergic action of acetylcysteine and corvitin and such regime can be recommended for correction of liver function.

  18. Transport of N-acetylglutamate in rat-liver mitochondria

    NARCIS (Netherlands)

    Meijer, A. J.; van Woerkom, G. M.; Wanders, R. J.; Lof, C.

    1982-01-01

    The permeability properties of the rat-liver mitochondrial membrane for N-acetylglutamate, the activator of carbamoyl-phosphate synthetase (ammonia), were studied. 1. Transport of N-acetylglutamate into the mitochondria was only observed in partially or fully de-energized mitochondria and when the

  19. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, Kevin M., E-mail: kbeggs2@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); McGreal, Steven R., E-mail: smcgreal@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); McCarthy, Alex [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); Gunewardena, Sumedha, E-mail: sgunewardena@kumc.edu [Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, 2027 HLSIC, Kansas City, KS 66160 (United States); Lampe, Jed N., E-mail: jlampe@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States); Lau, Christoper, E-mail: lau.christopher@epa.gov [Developmental Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Apte, Udayan, E-mail: uapte@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160 (United States)

    2016-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers. - Highlights: • PFOA and PFOS cause decreased HNF4α protein expression in human hepatocytes. • PFOA and PFOS promote changes associated with lipid metabolism and carcinogenesis. • PFOA and PFOS induced changes in gene expression associated with cellular dedifferentiation. • PFOA and PFOS induce expression of Nanog, a transcription factor involved in stem cell development.

  20. Radiation-induced liver damage

    International Nuclear Information System (INIS)

    Marcial, V.A.; Santiago-Delpin, E.A.; Lanaro, A.E.; Castro-Vita, H.; Arroyo, G.; Moscol, J.A.; Gomez, C.; Velazquez, J.; Prado, K.

    1977-01-01

    Due to the recent increase in the use of radiation therapy in the treatment of cancer with or without chemotherapy, the risk of liver radiation damage has become a significant concern for the radiotherapist when the treated tumour is located in the upper abdomen or lower thorax. Clinically evident radiation liver damage may result in significant mortality, but at times patients recover without sequelae. The dose of 3000 rads in 3 weeks to the entire liver with 5 fractions per week of 200 rads each, seems to be tolerated well clinically by adult humans. Lower doses may lead to damage when used in children, when chemotherapy is added, as in recent hepatectomy cases, and in the presence of pre-existent liver damage. Reduced fractionation may lead to increased damage. Increased fractionation, limitation of the dose delivered to the entire liver, and restriction of the high dose irradiation volume may afford protection. With the aim of studying the problems of hepatic radiation injury in humans, a project of liver irradiation in the dog is being conducted. Mongrel dogs are being conditioned, submitted to pre-irradiation studies (haemogram, blood chemistry, liver scan and biopsy), irradiated under conditions resembling human cancer therapy, and submitted to post-irradiation evaluation of the liver. Twenty-two dogs have been entered in the study but only four qualify for the evaluation of all the study parameters. It has been found that dogs are susceptible to liver irradiation damage similar to humans. The initial mortality has been high mainly due to non-radiation factors which are being kept under control at the present phase of the study. After the initial experiences, the study will involve variations in total dose and fractionation, and the addition of anticoagulant therapy for possible prevention of radiation liver injury. (author)

  1. Long Noncoding RNA lncCAMTA1 Promotes Proliferation and Cancer Stem Cell-Like Properties of Liver Cancer by Inhibiting CAMTA1

    Directory of Open Access Journals (Sweden)

    Li-Juan Ding

    2016-09-01

    Full Text Available Hepatocellular carcinoma (HCC is the most common subtype of liver malignancy, and it is characterized by poor prognosis because of cancer stem cell (CSC-mediated high postsurgical recurrence rates. Thus, targeting CSCs, or HCC cells with CSC-like properties, is an effective strategy for HCC therapy. Here, using long noncoding RNA (lncRNA microarray analysis, we identified a novel lncRNA termed lncCAMTA1 that is increased in both liver CSCs and HCC. High lncCAMTA1 expression in HCC indicates poor clinical outcome. In vitro and in vivo functional experiments showed that overexpression of lncCAMTA1 promotes HCC cell proliferation, CSC-like properties, and tumorigenesis. Conversely, depletion of lncCAMTA1 inhibits HCC cell proliferation, CSC-like properties, and tumorigenesis. Mechanistically, we demonstrated that lncCAMTA1 physically associates with the calmodulin binding transcription activator 1 (CAMTA1 promoter, induces a repressive chromatin structure, and inhibits CAMTA1 transcription. Furthermore, CAMTA1 is required for the effects of lncCAMTA1 on HCC cell proliferation and CSC-like properties, and the expression of lncCAMTA1 and CAMTA1 is significantly negatively correlated in HCC tissues. Collectively, our study revealed the important roles and underlying molecular mechanisms of lncCAMTA1 on HCC, and suggested that lncCAMTA1 could be an effective prognostic factor and a potential therapeutic target for HCC.

  2. Halloysite nanotubes-induced Al accumulation and oxidative damage in liver of mice after 30-day repeated oral administration.

    Science.gov (United States)

    Wang, Xue; Gong, Jiachun; Gui, Zongxiang; Hu, Tingting; Xu, Xiaolong

    2018-06-01

    Halloysite (Al 2 Si 2 O 5 (OH) 4 ·nH 2 O) nanotubes (HNTs) are natural clay materials and widely applied in many fields due to their natural hollow tubular structures. Many in vitro studies indicate that HNTs exhibit a high level of biocompatibility, however the in vivo toxicity of HNTs remains unclear. The objective of this study was to assess the hepatic toxicity of the purified HNTs in mice via oral route. The purified HNTs were orally administered to mice at 5, 50, and 300 mg/kg body weight (BW) every day for 30 days. Oral administration of HNTs stimulated the growth of the mice at the low dose (5 mg/kg BW) with no liver toxicity, but inhibited the growth of the mice at the middle (50 mg/kg BW) and high (300 mg/kg BW) doses. In addition, oral administration of HNTs at the high dose caused Al accumulation in the liver but had no marked effect on the Si content in the organ. The Al accumulation caused significant oxidative stress in the liver, which induced hepatic dysfunction and histopathologic changes. These findings demonstrated that Al accumulation-induced oxidative stress played an important role in the oral HNTs-caused liver injury. © 2018 Wiley Periodicals, Inc.

  3. Development and validation of a dynamic outcome prediction model for paracetamol-induced acute liver failure

    DEFF Research Database (Denmark)

    Bernal, William; Wang, Yanzhong; Maggs, James

    2016-01-01

    : The models developed here show very good discrimination and calibration, confirmed in independent datasets, and suggest that many patients undergoing transplantation based on existing criteria might have survived with medical management alone. The role and indications for emergency liver transplantation......BACKGROUND: Early, accurate prediction of survival is central to management of patients with paracetamol-induced acute liver failure to identify those needing emergency liver transplantation. Current prognostic tools are confounded by recent improvements in outcome independent of emergency liver...... transplantation, and constrained by static binary outcome prediction. We aimed to develop a simple prognostic tool to reflect current outcomes and generate a dynamic updated estimation of risk of death. METHODS: Patients with paracetamol-induced acute liver failure managed at intensive care units in the UK...

  4. Study on bone marrow mesenchymal stem cells in repairing of radiation induced acute liver injury of rats

    International Nuclear Information System (INIS)

    Bao Yongxing; Lou Fan; Zhao Huarong; Zhu Huhu; Ma Yan; Wen Hao

    2010-01-01

    Objective: To investigate the role of mesenchymal stem cells in the repair of radiation induced liver injury. Methods: 12 female SD rats were irradiated with 20 Gy 6 MV X-rays on the right lobe of the liver, to establish the model of radiation induced liver injury. The rats were divided randomly into two groups as invention group and control group, and transplanted with 1 ml male mesenchymal suspension or 1 ml normal saline in 4 hours after radiotherapy. The morphological changes of liver were observed. The existence of sex determining gene Y(SRY) and the level of alpha-smooth muscle actin (a-SMA) were detected. Results: Some injury of right lobe liver in two groups were observed, and the injury degree of right lobe liver in intervention group were lower than that of control group. The amount of SRY positive cells in the right lobe liver of intervention group was higher than that in the left lobe liver (t = 3.77, P <0.05). The positive expression rate of a-SMA in right lobe liver of intervention group was lower than that of control group. Conclusions: Acute radiation induced liver injury could lead BMSCs' homing in order to decrease the degree of liver fibrosis. (authors)

  5. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The potential cytotoxicity of cadmium selenide (CdSe quantum dots (QDs presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM increased cell viability in response to CdSe QDs (20 μM from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3-6 h, followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.

  6. Liver injury and fibrosis induced by dietary challenge in the Ossabaw miniature Swine.

    Science.gov (United States)

    Liang, Tiebing; Alloosh, Mouhamad; Bell, Lauren N; Fullenkamp, Allison; Saxena, Romil; Van Alstine, William; Bybee, Phelan; Werling, Klára; Sturek, Michael; Chalasani, Naga; Masuoka, Howard C

    2015-01-01

    Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model. Ossabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24. The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides. This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides.

  7. Maresin 1, a Proresolving Lipid Mediator, Mitigates Carbon Tetrachloride-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Ruidong Li

    2016-01-01

    Full Text Available Maresin 1 (MaR 1 was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb and mitogen-activated protein kinases (MAPKs in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway.

  8. Hepatoprotective effects of pecan nut shells on ethanol-induced liver damage.

    Science.gov (United States)

    Müller, Liz Girardi; Pase, Camila Simonetti; Reckziegel, Patrícia; Barcelos, Raquel C S; Boufleur, Nardeli; Prado, Ana Cristina P; Fett, Roseane; Block, Jane Mara; Pavanato, Maria Amália; Bauermann, Liliane F; da Rocha, João Batista Teixeira; Burger, Marilise Escobar

    2013-01-01

    The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4±1.9 mg GAE/g), condensed tannins (58.4±2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe(2+)-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE+Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Hepatoprotective effects of setarud against carbon tetrachloride-induced liver injury in rats.

    Science.gov (United States)

    Khorshid, Hamid Reza Khorram; Azonov, Jahan A; Novitsky, Yury A; Farzamfar, Bardia; Shahhosseiny, Mohammad Hassan

    2008-01-01

    To assess the hepatoprotective activity of a new herbal drug "setarud" in experimental liver fibrosis, 48 male Wistar rats were divided into four groups: controls, carbon tetrachloride (CCl4) group, and two treatment groups that received CCl4 and setarud at doses of 0.02 or 0.04 g/Kg/day for 30 days. Body weight gain, biochemical liver tests, bile flow rate and composition, and changes in liver morphology in the four groups were studied. CCl4 administration led to morphological and biochemical evidence of liver injury as compared to untreated controls. Setarud administration led to significant protection against CCl4-induced changes in body weight gain, liver morphology, bile flow and concentration. It was also associated with significantly lower serum liver enzyme levels (pliver disease are warranted.

  10. Mouse precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury.

    Science.gov (United States)

    Hadi, Mackenzie; Chen, Yixi; Starokozhko, Viktoriia; Merema, Marjolijn T; Groothuis, Geny M M

    2012-09-17

    Idiosyncratic drug-induced liver injury (IDILI) has been the top reason for withdrawing drugs from the market or for black box warnings. IDILI may arise from the interaction of a drug's reactive metabolite with a mild inflammation that renders the liver more sensitive to injury resulting in increased toxicity (inflammatory stress hypothesis). Aiming to develop a robust ex vivo screening method to study inflammatory stress-related IDILI mechanisms and to find biomarkers that can detect or predict IDILI, mouse precision-cut liver slices (mPCLS) were coincubated for 24 h with IDILI-related drugs and lipopolysaccharide. Lipopolysaccharide exacerbated ketoconazole (15 μM) and clozapine (45 μM) toxicity but not their non-IDILI-related comparators, voriconazole (1500 μM) and olanzapine (45 μM). However, the other IDILI-related drugs tested [diclofenac (200 μM), carbamazepine (400 μM), and troglitazone (30 μM)] did not cause synergistic toxicity with lipopolysaccharide after 24 h of incubation. Lipopolysaccharide further decreased the reduced glutathione levels caused by ketoconazole or clozapine in mPCLS after 24 h of incubation, which was not the case for the other drugs. Lipopolysaccharide significantly increased nitric oxide (NO), cytokine, and chemokine release into the mPCLS media, while the treatment with the drugs alone did not cause any substantial change. All seven drugs drastically reduced lipopolysaccharide-induced NO production. Interestingly, only ketoconazole and clozapine increased the lipopolysaccharide-induced granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) release. Pilot experiments showed that diclofenac and troglitazone, but not carbamazepine, demonstrated synergistic toxicity with lipopolysaccharide after a longer incubation of 48 h in mPCLS. In conclusion, we have developed an ex vivo model to detect inflammatory stress-related liver toxicity and identified ketoconazole, clozapine

  11. Citrulline and Nonessential Amino Acids Prevent Fructose-Induced Nonalcoholic Fatty Liver Disease in Rats.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Nubret, Esther; Sarfati, Gilles; Bergheim, Ina; De Bandt, Jean-Pascal

    2015-10-01

    Fructose induces nonalcoholic fatty liver disease (NAFLD). Citrulline (Cit) may exert a beneficial effect on steatosis. We compared the effects of Cit and an isonitrogenous mixture of nonessential amino acids (NEAAs) on fructose-induced NAFLD. Twenty-two male Sprague Dawley rats were randomly assigned into 4 groups (n = 4-6) to receive for 8 wk a 60% fructose diet, either alone or supplemented with Cit (1 g · kg(-1) · d(-1)), or an isonitrogenous amount of NEAAs, or the same NEAA-supplemented diet with starch and maltodextrin instead of fructose (controls). Nutritional and metabolic status, liver function, and expression of genes of hepatic lipid metabolism were determined. Compared with controls, fructose led to NAFLD with significantly higher visceral fat mass (128%), lower lean body mass (-7%), insulin resistance (135%), increased plasma triglycerides (TGs; 67%), and altered plasma amino acid concentrations with decreased Arg bioavailability (-27%). This was corrected by both NEAA and Cit supplementation. Fructose caused a 2-fold increase in the gene expression of fatty acid synthase (Fas) and 70% and 90% decreases in that of carnitine palmitoyl-transferase 1a and microsomal TG transfer protein via a nearly 10-fold higher gene expression of sterol regulatory element-binding protein-1c (Srebp1c) and carbohydrate-responsive element-binding protein (Chrebp), and a 90% lower gene expression of peroxisome proliferator-activated receptor α (Ppara). NEAA or Cit supplementation led to a Ppara gene expression similar to controls and decreased those of Srebp1c and Chrebp in the liver by 50-60%. Only Cit led to Fas gene expression and Arg bioavailability similar to controls. In our rat model, Cit and NEAAs effectively prevented fructose-induced NAFLD. On the basis of literature data and our findings, we propose that NEAAs may exert their effects specifically on the liver, whereas Cit presumably acts at both the hepatic and whole-body level, in part via improved

  12. Risk factors of radiation-induced liver disease after three-dimensional conformal radiotherapy for primary liver carcinoma

    International Nuclear Information System (INIS)

    Liang Shixiong; Zhu Xiaodong; Lu Haijie; Pan Chaoyang; Huang Qifang; Li Fuxiang; Wang Anyu; Liang Guoliang; Fu Xiaolong

    2005-01-01

    Objective: To identify the risk factors of radiation-induced liver disease (RILD) after three-dimensional radiotherapy (3DCRT) for primary liver carcinoma (PLC) and the dosimetric threshold of RILD. Methods: Between April 1999 and August 2003, 128 PLC patients who were treated with 3DCRT received a mean dose of 53.6 ± 6.6 Gy with a 4-8 Gy/f, 3f/w, qod regimen. The relation between RILD and the possible clinical factors, such as gender, age, UICC/ AJCC T stage, GTV, HBV status, PTV, TACE, Child-Pugh grade of liver cirrhosis, BED calculated by LQ model and fraction size were analyzed. Among 84 patients who had full dose- volume histogram (DVH) data, the relation between RILD and dosimetric parameters were analyzed. Results: Nineteen patients (14.8%) developed RILD. It was found that T stage, GTV, PTV, Child-Pugh grade of liver cirrhosis and the acute hepatic toxicity proposed by common toxicity criteria version 2.0 (CTC2.0) were correlated with RILD (P=0.024, 0.002, 0.001, 0.000, 0.000, respectively). Multivariate analysis showed that only the Child-Pugh grade of liver cirrhosis was independent factor (P=0.000). The mean liver dose was significantly higher in patients with RILD (P=0.027). In patients with Child-Pugh grade A, V5 (percentage of normal liver volume with radiation dose > 5 Gy), V 10 and V 20 ≤81%, 69% and 42%, mean liver dose ≤28 Gy, RILD was not observed, whereas in patients with Child-Pugh grade B, the possibility of developing RILD was 53.3%(8/15). Conclusions: Comprehensive consideration of T stage, GTV, PTV and Child-Pugh grade of liver cirrhosis, especially the Child-Pugh grade of liver cirrhosis, when planning 3DCRT for PLC, may lower the incidence of RILD. (authors)

  13. Choline-Deficient-Diet-Induced Fatty Liver Is a Metastasis-Resistant Microenvironment.

    Science.gov (United States)

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kosuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-07-01

    Fatty liver disease is increasing in the developed and developing world. Liver metastasis from malignant lymphoma in the fatty liver is poorly understood. In a previous report, we developed color-coded imaging of the tumor microenvironment (TME) of the murine EL4-RFP malignant lymphoma during metastasis, including the lung. In the present report, we investigated the potential and microenvironment of the fatty liver induced by a choline-deficient diet as a metastatic site in this mouse lymphoma model. C57BL/6-GFP transgenic mice were fed with a choline-deficient diet in order to establish a fatty liver model. EL4-RFP cells were injected in the spleen of normal mice and fatty-liver mice. Metastases in mice with fatty liver or normal liver were imaged with the Olympus SZX7 microscope and the Olympus FV1000 confocal microscope. Metastases of EL4-RFP were observed in the liver, ascites and bone marrow. Primary tumors were imaged in the spleen at the injection site. The fewest metastases were observed in the fatty liver. In addition, the fewest cancer-associated fibroblasts (CAFs) were observed in the fatty liver. The relative metastatic resistance of the fatty liver may be due to the reduced number of CAFs in the fatty livers. The mechanism of the effect of the choline-deficient diet is discussed. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice

    International Nuclear Information System (INIS)

    Uematsu, Yasuaki; Akai, Sho; Tochitani, Tomoaki; Oda, Shingo; Yamada, Toru; Yokoi, Tsuyoshi

    2016-01-01

    MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantly increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.

  15. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Yasuaki, E-mail: yasuaki-uematsu@ds-pharma.co.jp [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Akai, Sho [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Tochitani, Tomoaki [Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Oda, Shingo [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Yamada, Toru [Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Yokoi, Tsuyoshi [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan)

    2016-09-15

    MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantly increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.

  16. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    International Nuclear Information System (INIS)

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu; Yoo, Kyeong-Won; Song, Seung Ryel; Park, Do-Sim; So, Hong-Seob; Park, Raekil

    2013-01-01

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation

  17. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Yoo, Kyeong-Won [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Immune-network Pioneer Research Center, Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Song, Seung Ryel [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Park, Do-Sim [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Department of Laboratory of Medicine, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); So, Hong-Seob [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of); Park, Raekil [Center for Metabolic Function Regulation, and Department of Microbiology, School of Medicine, Wonkwang University, Iksan (Korea, Republic of)

    2013-12-06

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation.

  18. FC-99 ameliorates sepsis-induced liver dysfunction by modulating monocyte/macrophage differentiation via Let-7a related monocytes apoptosis.

    Science.gov (United States)

    Zhao, Yarong; Zhu, Haiyan; Wang, Haining; Ding, Liang; Xu, Lizhi; Chen, Dai; Shen, Sunan; Hou, Yayi; Dou, Huan

    2018-03-13

    The liver is a vital target for sepsis-related injury, leading to inflammatory pathogenesis, multiple organ dysfunction and high mortality rates. Monocyte-derived macrophage transformations are key events in hepatic inflammation. N 1 -[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine (FC-99) previously displayed therapeutic potential on experimental sepsis. However, the underlying mechanism of this protective effect is still not clear. FC-99 treatment attenuated the liver dysfunction in septic mice that was accompanied with reduced numbers of pro-inflammatory Ly6C hi monocytes in the peripheral blood and CD11b + F4/80 lo monocyte-derived macrophages in the liver. These effects were attributed to the FC-99-induced apoptosis of CD11b + cells. In PMA-differentiated THP-1 cells, FC-99 repressed the expression of CD11b, CD14 and caspase3 and resulted in a high proportion of Annexin V + cells. Moreover, let-7a-5p expression was abrogated upon CLP stimulation in vivo , whereas it was restored by FC-99 treatment. TargetScan analysis and luciferase assays indicated that the anti-apoptotic protein BCL-XL was targeted by let-7a-5p. BCL-XL was inhibited by FC-99 in order to induce monocyte apoptosis, leading to the impaired monocyte-to-macrophage differentiation. Murine acute liver failure was generated by caecal ligation puncture surgery after FC-99 administration; Blood samples and liver tissues were collected to determine the monocyte/macrophage subsets and the induction of apoptosis. Human acute monocytic leukemia cell line (THP-1) cells were pretreated with FC-99 followed by phorbol-12-myristate-13-acetate (PMA) stimulation, in order to induce monocyte-to-macrophage differentiation. The target of FC-99 and the mechanistic analyses were conducted by microarrays, qRT-PCR validation, TargetScan algorithms and a luciferase report assay. FC-99 exhibits potential therapeutic effects on CLP-induced liver dysfunction by restoring let-7a-5p levels.

  19. Molecular Pathogenesis of Liver Steatosis Induced by Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Cheng Jun

    2012-09-01

    Full Text Available Liver steatosis is a pathological hallmark in patients with chronic hepatitis C (CHC. Increased lipid uptake, decreased lipid secretion, increased lipid synthesis and decreased lipid degradation are all involved in pathogenesis of steatosis induced by hepatitic C virus (HCV infection. Level of low density lipoprotein receptor (LDL-R and activity of peroxisome proliferator-activated receptor (PPAR α is related to liver uptake of lipid from circulation, and affected by HCV. Secretion via microsomal triglyceride transfer protein (MTTP, and formation of very low density lipoprotein (VLDL have been hampered by HCV infection. Up-regulation of lipid synthesis related genes, such as sterol regulatory element-binding protein (SREBP-1, SREBP-2, SREBP-1c, fatty acid synthase (FASN, HMG CoA reductase (HMGCR, liver X receptor (LXR, acetyl-CoA carboxylase 1 (ACC1, hepatic CB (1 receptors, retinoid X receptor (RXR α, were the main stay of liver steatosis pathogenesis. Degradation of lipid in liver is decreased in patients with CHC. There is strong evidence that heterogeneity of HCV core genes of different genotypes affect their effects of liver steatosis induction. A mechanism in which steatosis is involved in HCV life cycle is emerging.

  20. Liver injury from herbals and dietary supplements in the U.S. Drug-Induced Liver Injury Network.

    Science.gov (United States)

    Navarro, Victor J; Barnhart, Huiman; Bonkovsky, Herbert L; Davern, Timothy; Fontana, Robert J; Grant, Lafaine; Reddy, K Rajender; Seeff, Leonard B; Serrano, Jose; Sherker, Averell H; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj

    2014-10-01

    The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity caused by conventional medications as well as herbals and dietary supplements (HDS). To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight U.S. referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury caused by HDS. Hepatotoxicity caused by HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments, including death and liver transplantation (LT), were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury caused by bodybuilding HDS, 85 by nonbodybuilding HDS, and 709 by medications. Liver injury caused by HDS increased from 7% to 20% (P Bodybuilding HDS caused prolonged jaundice (median, 91 days) in young men, but did not result in any fatalities or LT. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women, and, more frequently, led to death or transplantation, compared to injury from medications (13% vs. 3%; P bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes (death and transplantation). (Hepatology 2014;60:1399-1408). © 2014 by the American Association for the Study of Liver Diseases.

  1. Hepatocurative potential of sesquiterpene lactones of Taraxacum officinale on carbon tetrachloride induced liver toxicity in mice.

    Science.gov (United States)

    Mahesh, A; Jeyachandran, R; Cindrella, L; Thangadurai, D; Veerapur, V P; Muralidhara Rao, D

    2010-06-01

    The hepatocurative potential of ethanolic extract (ETO) and sesquiterpene lactones enriched fraction (SL) of Taraxacum officinale roots was evaluated against carbon tetrachloride (CCl 4 ) induced hepatotoxicity in mice. The diagnostic markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin contents were significantly elevated, whereas significant reduction in the level of reduced glutathione (GSH) and enhanced hepatic lipid peroxidation, liver weight and liver protein were observed in CCl 4 induced hepatotoxicity in mice. Post-treatment with ETO and SL significantly protected the hepatotoxicity as evident from the lower levels of hepatic enzyme markers, such as serum transaminase (ALT, AST), ALP and total bilirubin. Further, significant reduction in the liver weight and liver protein in drug-treated hepatotoxic mice and also reduced oxidative stress by increasing reduced glutathione content and decreasing lipid peroxidation level has been noticed. The histopathological evaluation of the liver also revealed that ETO and SL reduced the incidence of liver lesions induced by CCl 4 . The results indicate that sesquiterpene lactones have a protective effect against acute hepatotoxicity induced by the administration of CCl 4 in mice. Furthermore, observed activity of SL may be due to the synergistic action of two sesquiterpene lactones identified from enriched ethyl acetate fraction by HPLC method.

  2. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    Full Text Available Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE, a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1 (p21 and p16(INK4a (p16, although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  3. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Science.gov (United States)

    Li, Yuanyuan; Chen, Huaping; Hardy, Tabitha M; Tollefsbol, Trygve O

    2013-01-01

    Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE), a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1) (p21) and p16(INK4a) (p16), although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  4. Expression of miRNA-122 Induced by Liver Toxicants in Zebrafish

    Directory of Open Access Journals (Sweden)

    Hyun-Sik Nam

    2016-01-01

    Full Text Available MicroRNA-122 (miRNA-122, also known as liver-specific miRNA, has recently been shown to be a potent biomarker in response to liver injury in mammals. The objective of this study was to examine its expression in response to toxicant treatment and acute liver damage, using the zebrafish system as an alternative model organism. For the hepatotoxicity assay, larval zebrafish were arrayed in 24-well plates. Adult zebrafish were also tested and arrayed in 200 mL cages. Animals were exposed to liver toxicants (tamoxifen or acetaminophen at various doses, and miRNA-122 expression levels were analyzed using qRT-PCR in dissected liver, brain, heart, and intestine, separately. Our results showed no significant changes in miRNA-122 expression level in tamoxifen-treated larvae; however, miRNA-122 expression was highly induced in tamoxifen-treated adults in a tissue-specific manner. In addition, we observed a histological change in adult liver (0.5 μM and cell death in larval liver (5 μM at different doses of tamoxifen. These results indicated that miRNA-122 may be utilized as a liver-specific biomarker for acute liver toxicity in zebrafish.

  5. Bupivacaine drug-induced liver injury: a case series and brief review of the literature.

    Science.gov (United States)

    Chintamaneni, Preethi; Stevenson, Heather L; Malik, Shahid M

    2016-08-01

    Bupivacaine is an established and efficacious anesthetic that has become increasingly popular in postoperative pain management. However, there is limited literature regarding the potential for bupivacaine-induced delayed liver toxicity. Describe cholestasis as a potential adverse reaction of bupivacaine infusion into a surgical wound. Retrospective review of patients' medical records. We report the cases of 3 patients with new onset of cholestatic injury after receiving bupivacaine infusion for postoperative herniorrhaphy pain management. All patients had negative serologic workups for other causes of liver injury. All patients achieved eventual resolution of their liver injury. Bupivacaine-induced liver injury should be on the differential of individuals presenting with jaundice and cholestasis within a month of infusion via a surgically placed catheter of this commonly used anesthetic. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Liver fibrosis in mice induced by carbon tetrachloride and its reversion by luteolin

    International Nuclear Information System (INIS)

    Domitrovic, Robert; Jakovac, Hrvoje; Tomac, Jelena; Sain, Ivana

    2009-01-01

    Hepatic fibrosis is effusive wound healing process in which excessive connective tissue builds up in the liver. Because specific treatments to stop progressive fibrosis of the liver are not available, we have investigated the effects of luteolin on carbon tetrachloride (CCl 4 )-induced hepatic fibrosis. Male Balb/C mice were treated with CCl 4 (0.4 ml/kg) intraperitoneally (i.p.), twice a week for 6 weeks. Luteolin was administered i.p. once daily for next 2 weeks, in doses of 10, 25, and 50 mg/kg of body weight. The CCl 4 control group has been observed for spontaneous reversion of fibrosis. CCl 4 -intoxication increased serum aminotransferase and alkaline phosphatase levels and disturbed hepatic antioxidative status. Most of these parameters were spontaneously normalized in the CCl 4 control group, although the progression of liver fibrosis was observed histologically. Luteolin treatment has increased hepatic matrix metalloproteinase-9 levels and metallothionein (MT) I/II expression, eliminated fibrinous deposits and restored architecture of the liver in a dose-dependent manner. Concomitantly, the expression of glial fibrillary acidic protein and α-smooth muscle actin indicated deactivation of hepatic stellate cells. Our results suggest the therapeutic effects of luteolin on CCl 4 -induced liver fibrosis by promoting extracellular matrix degradation in the fibrotic liver tissue and the strong enhancement of hepatic regenerative capability, with MTs as a critical mediator of liver regeneration.

  7. Lycium barbarum polysaccharides improve CCl4-induced liver fibrosis, inflammatory response and TLRs/NF-kB signaling pathway expression in wistar rats.

    Science.gov (United States)

    Gan, Fang; Liu, Qing; Liu, Yunhuan; Huang, Da; Pan, Cuiling; Song, Suquan; Huang, Kehe

    2018-01-01

    Lycium barbarum polysaccharides (LBPs) have multiple biological and pharmacological functions, including antioxidant, anti-inflammatory and anticancer activities. This research was conducted to evaluate whether LBPs could alleviate carbon tetrachloride (CCl 4 )-induced liver fibrosis and the underlying signaling pathway mechanism. Fifty male wistar rats were randomly allocated to five groups (n=10): control, CCl 4 and CCl 4 with 400, 800 or 1600mg/kg LBPs, respectively. Each wistar rat from each group was used for blood and tissue collections at the end of experiment. The results showed that CCl 4 induced liver fibrosis as demonstrated by increasing histopathological damage, α-smooth muscle actin expression, aspartate transaminase activities, alkaline phosphatase activities and alanine aminotransferase activities. LBPs supplementation alleviated CCl 4 -induced liver fibrosis as demonstrated by reversing the above parameters. In addition, CCl 4 treatment induced the oxidative injury, increased the mRNA levels of tumor necrosis factor-α, monocyte chemoattractant protein-1 and interleukin-1β, and up-regulated the protein expressions of toll-like receptor 4 (TLR4), TLR2, myeloid differentiation factor 88, nuclear factor-kappa B (NF-kB) and p-p65. LBPs supplementation alleviated CCl 4 -induced oxidative injury, inflammatory response and TLRs/NF-kB signaling pathway expression by reversing the above some parameters. These results suggest that the alleviating effects of LBPs on CCl 4 -induced liver fibrosis in wistar rats may be through inhibiting the TLRs/NF-kB signaling pathway expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Antituberculosis Drug-Induced Liver Injury with Autoimmune Features: Facing Diagnostic and Treatment Challenges

    Directory of Open Access Journals (Sweden)

    Maria Adriana Rangel

    2017-01-01

    Full Text Available The authors present a case report of antituberculosis drug-induced liver injury that offered diagnostic challenges (namely, the possibility of drug-induced autoimmune hepatitis and treatment difficulties.

  9. Maslinic acid-enriched diet decreases intestinal tumorigenesis in Apc(Min/+ mice through transcriptomic and metabolomic reprogramming.

    Directory of Open Access Journals (Sweden)

    Susana Sánchez-Tena

    Full Text Available Chemoprevention is a pragmatic approach to reduce the risk of colorectal cancer, one of the leading causes of cancer-related death in western countries. In this regard, maslinic acid (MA, a pentacyclic triterpene extracted from wax-like coatings of olives, is known to inhibit proliferation and induce apoptosis in colon cancer cell lines without affecting normal intestinal cells. The present study evaluated the chemopreventive efficacy and associated mechanisms of maslinic acid treatment on spontaneous intestinal tumorigenesis in Apc(Min/+ mice. Twenty-two mice were randomized into 2 groups: control group and MA group, fed with a maslinic acid-supplemented diet for six weeks. MA treatment reduced total intestinal polyp formation by 45% (P<0.01. Putative molecular mechanisms associated with suppressing intestinal polyposis in Apc(Min/+ mice were investigated by comparing microarray expression profiles of MA-treated and control mice and by analyzing the serum metabolic profile using NMR techniques. The different expression phenotype induced by MA suggested that it exerts its chemopreventive action mainly by inhibiting cell-survival signaling and inflammation. These changes eventually induce G1-phase cell cycle arrest and apoptosis. Moreover, the metabolic changes induced by MA treatment were associated with a protective profile against intestinal tumorigenesis. These results show the efficacy and underlying mechanisms of MA against intestinal tumor development in the Apc(Min/+ mice model, suggesting its chemopreventive potential against colorectal cancer.

  10. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale)

    OpenAIRE

    Mei Nan; Guo Lei; Zhang Lu; Shi Leming; Sun Yongming; Fung Chris; Moland Carrie L; Dial Stacey L; Fuscoe James C; Chen Tao

    2006-01-01

    Abstract Background Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. Results In this study, we identified comfrey...

  11. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity

    International Nuclear Information System (INIS)

    Kostadinova, Radina; Boess, Franziska; Applegate, Dawn; Suter, Laura; Weiser, Thomas; Singer, Thomas; Naughton, Brian; Roth, Adrian

    2013-01-01

    Drug-induced liver injury (DILI) is the major cause for liver failure and post-marketing drug withdrawals. Due to species-specific differences in hepatocellular function, animal experiments to assess potential liabilities of drug candidates can predict hepatotoxicity in humans only to a certain extent. In addition to animal experimentation, primary hepatocytes from rat or human are widely used for pre-clinical safety assessment. However, as many toxic responses in vivo are mediated by a complex interplay among different cell types and often require chronic drug exposures, the predictive performance of hepatocytes is very limited. Here, we established and characterized human and rat in vitro three-dimensional (3D) liver co-culture systems containing primary parenchymal and non-parenchymal hepatic cells. Our data demonstrate that cells cultured on a 3D scaffold have a preserved composition of hepatocytes, stellate, Kupffer and endothelial cells and maintain liver function for up to 3 months, as measured by the production of albumin, fibrinogen, transferrin and urea. Additionally, 3D liver co-cultures maintain cytochrome P450 inducibility, form bile canaliculi-like structures and respond to inflammatory stimuli. Upon incubation with selected hepatotoxicants including drugs which have been shown to induce idiosyncratic toxicity, we demonstrated that this model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures. In conclusion, our results underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treatments for detection of in vivo-relevant adverse drug effects. - Highlights: ► 3D liver co-cultures maintain liver specific functions for up to three months. ► Activities of Cytochrome P450s remain drug- inducible accross three months. ► 3D liver co-cultures recapitulate drug-induced liver toxicity

  12. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kostadinova, Radina; Boess, Franziska [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland); Applegate, Dawn [RegeneMed, 9855 Towne Centre Drive Suite 200, San Diego, CA 92121 (United States); Suter, Laura; Weiser, Thomas; Singer, Thomas [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland); Naughton, Brian [RegeneMed, 9855 Towne Centre Drive Suite 200, San Diego, CA 92121 (United States); Roth, Adrian, E-mail: adrian_b.roth@roche.com [Non-Clinical Safety, Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Building 73 / Room 117b, 4070 Basel (Switzerland)

    2013-04-01

    Drug-induced liver injury (DILI) is the major cause for liver failure and post-marketing drug withdrawals. Due to species-specific differences in hepatocellular function, animal experiments to assess potential liabilities of drug candidates can predict hepatotoxicity in humans only to a certain extent. In addition to animal experimentation, primary hepatocytes from rat or human are widely used for pre-clinical safety assessment. However, as many toxic responses in vivo are mediated by a complex interplay among different cell types and often require chronic drug exposures, the predictive performance of hepatocytes is very limited. Here, we established and characterized human and rat in vitro three-dimensional (3D) liver co-culture systems containing primary parenchymal and non-parenchymal hepatic cells. Our data demonstrate that cells cultured on a 3D scaffold have a preserved composition of hepatocytes, stellate, Kupffer and endothelial cells and maintain liver function for up to 3 months, as measured by the production of albumin, fibrinogen, transferrin and urea. Additionally, 3D liver co-cultures maintain cytochrome P450 inducibility, form bile canaliculi-like structures and respond to inflammatory stimuli. Upon incubation with selected hepatotoxicants including drugs which have been shown to induce idiosyncratic toxicity, we demonstrated that this model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures. In conclusion, our results underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treatments for detection of in vivo-relevant adverse drug effects. - Highlights: ► 3D liver co-cultures maintain liver specific functions for up to three months. ► Activities of Cytochrome P450s remain drug- inducible accross three months. ► 3D liver co-cultures recapitulate drug-induced liver toxicity

  13. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    International Nuclear Information System (INIS)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J.

    2014-01-01

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na + -K + -ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na + -K + -ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na + -K + -ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis

  14. The relationship between radiation-induced apoptosis and the expression of cytokines in the rat's liver

    International Nuclear Information System (INIS)

    An, Eun Joo; Lee, Kyung Ja; Rhee, Chung Sik

    2000-01-01

    To determine the role of cytokines in the apoptosis of rat's liver following irradiation. Sprague-Dawley rats were irradiated to entire body with a single dose of 8 Gy. The rats were divided into 5 groups according to the sacrifice day after irradiation. The liver and blood after 1, 3, 5, 7, and 14 days irradiation were sampled for evaluation of mechanism of apoptosis and role of cytokine in relation to radiation-induced tissue damage. The study was composed of microscopic evaluation of liver tissue, in situ detection method for apoptosis, immunohistochemical stain of IL-1, IL-4, IL-6 and TNF, bioassay and radioimmunoassay of IL-6 in liver tissue and blood. Radiation-induced liver damage was noted from first day of radiation, and most severe parenchymal damage associated with infiltration of chronic inflammatory cells was seen in the groups of 5 days after radiation. A number of apoptosis were observed 1 day after radiation on both light microscope and in situ method. Afterwards, the number of apoptosis was gradually diminished. On immunohistochemical study, IL-1 and TNF were expressed 1, 3 days after radiation, but not expressed after that. IL-4 was not expressed in the entire groups. IL-6 was expressed with strong positivity in 1, 3 days after radiation. Bioassay and RIA of IL-6 in liver tissue and blood showed the highest value in 1 day after radiation, and the value is diminished after then. Apoptosis seemed to be the important mechanism of radiation-induced liver damage, and is possibly induced by the release of cytokines, such as IL-1, IL-6, TNF in view the simultaneously increased appearance of apoptosis and cytokines

  15. Risks of herbalism: a case report of Mexican poppy (Argemone mexicana L induced liver toxicity

    Directory of Open Access Journals (Sweden)

    Carlos Alfredo Meléndez González

    2013-08-01

    Full Text Available The increasing consumption of alternative medicines has lead to a greater awareness about the deleterious effects and interactions that these products can induce. Consequently, medical literature reports liver toxicity from Aloe, Camellia sinensis (green tea, Rhammus purshianus, Aesculus hippocastanum (buckeye and Valeriana officinalis (valerian, among others. This article reports a female patient who twice consumed Mexican poppy (Argemone mexicana L with a one-year interval between ingestions. Both times she developed diarrhea, jaundice and general malaise with impaired liver function tests. Other causes of liver disease were ruled out. Questionnaires were used to assess the possibility of drug-induced liver damage. Clinical information was collected from the patient’s medical record and the literature on the subject was reviewed. We conclude that, at least in this case, the most likely cause of liver toxicity was Argemone mexicana L consumption.

  16. Carboxylesterase 1 Is Regulated by Hepatocyte Nuclear Factor 4α and Protects Against Alcohol- and MCD diet-induced Liver Injury.

    Science.gov (United States)

    Xu, Jiesi; Xu, Yang; Li, Yuanyuan; Jadhav, Kavita; You, Min; Yin, Liya; Zhang, Yanqiao

    2016-04-14

    The liver is a major organ that controls hepatic and systemic homeostasis. Dysregulation of liver metabolism may cause liver injury. Previous studies have demonstrated that carboxylesterase 1 (CES1) regulates hepatic triglyceride metabolism and protects against liver steatosis. In the present study, we investigated whether CES1 played a role in the development of alcoholic liver disease (ALD) and methionine and choline-deficient (MCD) diet-induced liver injury. Both hepatocyte nuclear factor 4α (HNF4α) and CES1 were markedly reduced in patients with alcoholic steatohepatitis. Alcohol repressed both HNF4α and CES1 expression in primary hepatocytes. HNF4α regulated CES1 expression by directly binding to the proximal promoter of CES1. Global inactivation of CES1 aggravated alcohol- or MCD diet-induced liver inflammation and liver injury, likely as a result of increased production of acetaldehyde and reactive oxygen species and mitochondrial dysfunctions. Knockdown of hepatic CES1 exacerbated ethanol-induced steatohepatitis. These data indicate that CES1 plays a crucial role in protection against alcohol- or MCD diet-induced liver injury.

  17. Naturally-occurring estradiol-17β-fatty acid esters, but not estradiol-17β, preferentially induce mammary tumorigenesis in female rats: Implications for an important role in human breast cancer

    International Nuclear Information System (INIS)

    Mills, Laura H.; Yu Jina; Xu Xiaomeng; Lee, Anthony J.; Zhu Baoting

    2008-01-01

    Because mammary glands are surrounded by adipose tissues, we hypothesize that the ultra-lipophilic endogenous estrogen-17β-fatty acid esters may have preferential hormonal and carcinogenic effects in mammary tissues compared to other target organs (such as the uterus and pituitary). This hypothesis is tested in the present study. We found that all 46 rats implanted with an estradiol-17β pellet developed large pituitary tumors (average weight = 251 ±103 mg) and had to be terminated early, but only 48% of them developed mammary tumors. In addition, approximately one-fourth of them developed a huge uterus. In the 26 animals implanted with a mixture containing estradiol-17β-stearate and estradiol-17β-palmitate (two representative estradiol-17β-fatty acid esters) or in the 29 animals implanted with estradiol-17β-stearate alone (in the same molar dose as estradiol-17β), 73% and 79%, respectively, of them developed mammary tumors, whereas only 3 or 2 animals, respectively, had to be terminated early due to the presence of a large pituitary tumor. Both tumorous and normal mammary tissues contained much higher levels of estrogen esterase than other tissues, which catalyzes the releases of bioactive estrogens from their fatty acid esters. In conclusion, while estradiol-17β is much stronger in inducing pituitary tumor (100% incidence) than mammary tumor, estradiol-17β-fatty acid esters have a higher efficacy than estradiol-17β in inducing mammary tumor and yet it only has little ability to induce uterine out-growth and pituitary tumorigenesis. This study establishes the endogenous estrogen-17β-fatty acid esters as preferential inducers of mammary tumorigenesis

  18. Anaplastic thyroid cancer, tumorigenesis and therapy.

    LENUS (Irish Health Repository)

    O'Neill, J P

    2010-03-01

    Anaplastic thyroid cancer (ATC) is a fatal endocrine malignancy. Current therapy fails to significantly improve survival. Recent insights into thyroid tumorigenesis, post-malignant dedifferentiation and mode of metastatic activity offer new therapeutic strategies.

  19. Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice

    OpenAIRE

    Zhang, Wenliang; Zhong, Wei; Sun, Qian; Sun, Xinguo; Zhou, Zhanxiang

    2017-01-01

    Chronic alcohol feeding causes lipid accumulation and apoptosis in the liver. This study investigated the role of bioactive lipid metabolites in alcohol-induced liver damage and tested the potential of targeting arachidonate 15-lipoxygenase (ALOX15) in treating alcoholic liver disease (ALD). Results showed that chronic alcohol exposure induced hepatocyte apoptosis in association with increased hepatic 13-HODE. Exposure of 13-HODE to Hepa-1c1c7 cells induced oxidative stress, ER stress and apo...

  20. Lansoprazole-induced acute lung and liver injury: a case report.

    Science.gov (United States)

    Atkins, Christopher; Maheswaran, Tina; Rushbrook, Simon; Kamath, Ajay

    2014-12-01

    A 61-year old woman was admitted with increasing dyspnea and deranged liver function tests. A chest X-ray revealed small volume lungs with reticulo-nodular shadowing. High resolution computed tomography of the chest revealed interlobular septal thickening. The patient subsequently underwent an open lung biopsy and ultrasound-guided liver biopsy, which were consistent with a hypersensitivity pneumonitis and drug-induced liver injury respectively. The patient had previously been commenced on lansoprazole 10 days before the onset of symptoms; this had been stopped at diagnosis. High dose prednisolone was commenced, and the patient went on to make a full recovery. Hypersensitivity pneumonitis is a form of interstitial lung disease that is rarely associated with lansoprazole; this is the first report of it causing an idiosyncratic reaction affecting the lung and liver simultaneously. This case demonstrates the importance of obtaining a full drug history, as early identification of the offending agent will improve outcomes.

  1. Liver injury and fibrosis induced by dietary challenge in the Ossabaw miniature Swine.

    Directory of Open Access Journals (Sweden)

    Tiebing Liang

    Full Text Available Ossabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet develop metabolic syndrome and nonalcoholic steatohepatitis (NASH characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model.Ossabaw swine were fed standard chow (control group; n = 6 or NASH diet (n = 6 for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24.The NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes, (b hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides.This report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b hepatocyte ballooning generally precedes the development of fibrosis; (c there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides.

  2. Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Michael I. Carr

    2016-09-01

    Full Text Available ATM phosphorylation of Mdm2-S394 is required for robust p53 stabilization and activation in DNA-damaged cells. We have now utilized Mdm2S394A knockin mice to determine that phosphorylation of Mdm2-S394 regulates p53 activity and the DNA damage response in lymphatic tissues in vivo by modulating Mdm2 stability. Mdm2-S394 phosphorylation delays lymphomagenesis in Eμ-myc transgenic mice, and preventing Mdm2-S394 phosphorylation obviates the need for p53 mutation in Myc-driven tumorigenesis. However, irradiated Mdm2S394A mice also have increased hematopoietic stem and progenitor cell functions, and we observed decreased lymphomagenesis in sub-lethally irradiated Mdm2S394A mice. These findings document contrasting effects of ATM-Mdm2 signaling on p53 tumor suppression and reveal that destabilizing Mdm2 by promoting its phosphorylation by ATM would be effective in treating oncogene-induced malignancies, while inhibiting Mdm2-S394 phosphorylation during radiation exposure or chemotherapy would ameliorate bone marrow failure and prevent the development of secondary hematological malignancies.

  3. Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice.

    Science.gov (United States)

    Zhang, Wenliang; Zhong, Wei; Sun, Qian; Sun, Xinguo; Zhou, Zhanxiang

    2017-08-21

    Chronic alcohol feeding causes lipid accumulation and apoptosis in the liver. This study investigated the role of bioactive lipid metabolites in alcohol-induced liver damage and tested the potential of targeting arachidonate 15-lipoxygenase (ALOX15) in treating alcoholic liver disease (ALD). Results showed that chronic alcohol exposure induced hepatocyte apoptosis in association with increased hepatic 13-HODE. Exposure of 13-HODE to Hepa-1c1c7 cells induced oxidative stress, ER stress and apoptosis. 13-HODE also perturbed proteins related to lipid metabolism. HODE-generating ALOX15 was up-regulated by chronic alcohol exposure. Linoleic acid, but not ethanol or acetaldehyde, induced ALOX15 expression in Hepa-1c1c7 cells. ALOX15 knockout prevented alcohol-induced liver damage via attenuation of oxidative stress, ER stress, lipid metabolic disorder, and cell death signaling. ALOX15 inhibitor (PD146176) treatment also significantly alleviated alcohol-induced oxidative stress, lipid accumulation and liver damage. These results demonstrated that activation of ALOX15/13-HODE circuit critically mediates the pathogenesis of ALD. This study suggests that ALOX15 is a potential molecular target for treatment of ALD.

  4. Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney.

    Science.gov (United States)

    Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio

    2011-01-01

    It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.

  5. Impaired TFEB-mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-induced Liver Injury and Steatosis in Mice.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing

    2018-05-18

    Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the

  6. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice

    OpenAIRE

    Xu, Xiaoling; Kobayashi, Shogo; Qiao, Wenhui; Li, Cuiling; Xiao, Cuiying; Radaeva, Svetlana; Stiles, Bangyan; Wang, Rui-Hong; Ohara, Nobuya; Yoshino, Tadashi; LeRoith, Derek; Torbenson, Michael S.; Gores, Gregory J.; Wu, Hong; Gao, Bin

    2006-01-01

    Cholangiocellular carcinoma (CC), the second most common primary liver cancer, is associated with a poor prognosis. It has been shown that CCs harbor alterations of a number of tumor-suppressor genes and oncogenes, yet key regulators for tumorigenesis remain unknown. Here we have generated a mouse model that develops CC with high penetrance using liver-specific targeted disruption of tumor suppressors SMAD4 and PTEN. In the absence of SMAD4 and PTEN, hyperplastic foci emerge exclusively from ...

  7. Estrogen protects the liver and intestines against sepsis-induced injury in rats.

    Science.gov (United States)

    Sener, Göksel; Arbak, Serap; Kurtaran, Pelin; Gedik, Nursal; Yeğen, Berrak C

    2005-09-01

    Sepsis is commonly associated with enhanced generation of reactive oxygen metabolites, leading to multiple organ dysfunctions. The aim of this study was to examine the putative protective role of estradiol against sepsis-induced oxidative organ damage. Sepsis was induced by cecal ligation and puncture method in Wistar albino rats. Sham-operated (control) and sepsis groups received saline or estradiol propionate (10 mg/kg) intraperitoneally immediately after the operation and at 12 h. Twenty-four hours after the surgery, rats were decapitated and malondialdehyde, glutathione levels, and myeloperoxidase activity were determined in the liver and ileum, while oxidant-induced tissue fibrosis was determined by collagen contents. Tissues were also examined microscopically. Serum aspartate aminotransferase, alanine aminotransferase levels, and lactate dehydrogenase were measured for the evaluation of liver functions and tissue damage, respectively. Tumor necrosis factor-alpha was also assayed in serum samples. In the saline-treated sepsis group, glutathione levels were decreased significantly, while the malondialdehyde levels, myeloperoxidase activity, and collagen content were increased in the tissues (P Liver function tests and tumor necrosis factor-alpha levels, which were increased significantly (P < 0.001) following sepsis, were decreased (P < 0.05 to P < 0.001) with estradiol treatment. The results demonstrate the role of oxidative mechanisms in sepsis-induced tissue damage, and estradiol, by its antioxidant properties, ameliorates oxidative organ injury, implicating that treatment with estrogens might be applicable in clinical situations to ameliorate multiple organ damage induced by sepsis.

  8. Experimental study on liver accumulation of N-isopropyl-p-iodoamphetamine

    Energy Technology Data Exchange (ETDEWEB)

    Kosuda, Shigeru (Tokyo Metropolitan Komagome Hospital (Japan)); Kawahara, Shunji; Ishibashi, Akihiko; Tamura, Kohei; Kubo, Atsushi; Hashimoto, Shozo

    1990-06-01

    In order to clarify the mechanism of N-isopropyl-p-iodoamphetamine (IMP) liver accumulation, liver dynamic study by the portal injection of {sup 123}I-IMP and liver microautoradiography by {sup 125}I-IMP were performed using 5, 2 male rats, respectively. The initial uptake of {sup 123}I-IMP in the liver was very high and thereafter {sup 123}I-IMP showed relatively rapid wash-out (count ratio of lung to liver at 10 min after the injection was 0.12, 0.15). On the other hand, the addition of 5 mg, 8 mg ketamine hydrochloride decreased the initial {sup 123}I-IMP liver uptake and its lung accumulation was noted immediately after the injection (count ratio of lung to liver at 10 min was 0.20). Microautoradiography of the liver using {sup 125}I-IMP showed grain density in the central vein and sinusoids, but not in the liver parenchymal cell. These results suggest that non-specific amine receptor (binding site) may exist in the endothelial cell in the central vein, although the number of experimental rats in this series was small for conclusion. (author).

  9. Liver Status Assessment by Spectrally and Time Resolved IR Detection of Drug Induced Breath Gas Changes

    Directory of Open Access Journals (Sweden)

    Tom Rubin

    2016-05-01

    Full Text Available The actual metabolic capacity of the liver is crucial for disease identification, liver therapy, and liver tumor resection. By combining induced drug metabolism and high sensitivity IR spectroscopy of exhaled air, we provide a method for quantitative liver assessment at bedside within 20 to 60 min. Fast administration of 13C-labelled methacetin induces a fast response of liver metabolism and is tracked in real-time by the increase of 13CO2 in exhaled air. The 13CO2 concentration increase in exhaled air allows the determination of the metabolic liver capacity (LiMAx-test. Fluctuations in CO2 concentration, pressure and temperature are minimized by special gas handling, and tracking of several spectrally resolved CO2 absorption bands with a quantum cascade laser. Absorption measurement of different 12CO2 and 13CO2 rotation-vibration transitions in the same time window allows for multiple referencing and reduction of systematic errors. This FLIP (Fast liver investigation package setup is being successfully used to plan operations and determine the liver status of patients.

  10. Protection effect of piper betel leaf extract against carbon tetrachloride-induced liver fibrosis in rats.

    Science.gov (United States)

    Young, Shun-Chieh; Wang, Chau-Jong; Lin, Jing-Jing; Peng, Pei-Ling; Hsu, Jui-Ling; Chou, Fen-Pi

    2007-01-01

    Piper betel leaves (PBL) are used in Chinese folk medicine for the treatment of various disorders. PBL has the biological capabilities of detoxication, antioxidation, and antimutation. In this study, we evaluated the antihepatotoxic effect of PBL extract on the carbon tetrachloride (CCl(4))-induced liver injury in a rat model. Fibrosis and hepatic damage, as reveled by histology and the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were induced in rats by an administration of CCl(4) (8%, 1 ml/kg body weight) thrice a week for 4 weeks. PBL extract significantly inhibited the elevated AST and ALT activities caused by CCl(4) intoxication. It also attenuated total glutathione S-transferase (GST) activity and GST alpha isoform activity, and on the other hand, enhanced superoxide dismutase (SOD) and catalase (CAT) activities. The histological examination showed the PBL extract protected liver from the damage induced by CCl(4) by decreasing alpha-smooth muscle actin (alpha-sma) expression, inducing active matrix metalloproteinase-2 (MMP2) expression though Ras/Erk pathway, and inhibiting TIMP2 level that consequently attenuated the fibrosis of liver. The data of this study support a chemopreventive potential of PBL against liver fibrosis.

  11. Hepatoprotective effect of Forsythiae Fructus water extract against carbon tetrachloride-induced liver fibrosis in mice.

    Science.gov (United States)

    Zhang, Yi; Miao, Hui; Yan, Hongyu; Sheng, Yuchen; Ji, Lili

    2018-05-23

    The fruit of Forsythia suspensa (Thunb.) Vahl, named Forsythiae Fructus (Lian-Qiao), is a well-known traditional Chinese medicine (TCM) used for clearing away heat and toxic material, eliminating the mass and relieving swelling. This study aims to observe the attenuation of the water extract of Forsythiae Fructus (FSE) on carbon tetrachloride (CCl 4 )-induced hepatic fibrosis in male C57BL/6 mice. Hepatic fibrosis was induced in male C57BL/6 mice by intraperitoneal injection with 2 ml/kg CCl 4 (mixed 1: 3 in olive oil) twice a week for 4 weeks. At the same time, the mice were orally given with FSE (1, 2 g/kg) every day for 4 weeks. Serum biochemical parameters, gene and protein expression related to liver fibrosis were analyzed. The contents of forsythiaside A and forsythin in FSE were measured by high-performance liquid chromatography (HPLC). Results of serum alanine/aspartate aminotransferase (ALT/AST) activity and liver histological evaluation both showed the protection of FSE against CCl 4 -induced liver injury. Further, the anti-fibrotic effects of FSE was evidenced by the results of Masson's trichrome and Sirius red staining, liver hydroxyproline content, and serum amounts of hyaluronic acid, laminin, collagen Ⅳ and type III procollagen (PCIII). FSE also reduced the expression of α-smooth muscle actin (α-SMA) in livers from CCl 4 -injured mice. Additionally, FSE decreased the increased hepatic expression of fibroblast-specific protein 1 (FSP1) and vimentin induced by CCl 4 in mice. FSE attenuates CCl 4 -induced liver fibrosis in mice by inhibiting hepatic stellate cells (HSCs) activation, reducing hepatic extracellular matrix (ECM) disposition and reversing epithelial-mesenchymal transition (EMT). Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Diagnostic performance of traditional hepatobiliary biomarkers of drug-induced liver injury in the rat.

    Science.gov (United States)

    Ennulat, Daniela; Magid-Slav, Michal; Rehm, Sabine; Tatsuoka, Kay S

    2010-08-01

    Nonclinical studies provide the opportunity to anchor biochemical with morphologic findings; however, liver injury is often complex and heterogeneous, confounding the ability to relate biochemical changes with specific patterns of injury. The aim of the current study was to compare diagnostic performance of hepatobiliary markers for specific manifestations of drug-induced liver injury in rat using data collected in a recent hepatic toxicogenomics initiative in which rats (n = 3205) were given 182 different treatments for 4 or 14 days. Diagnostic accuracy of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (Tbili), serum bile acids (SBA), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total cholesterol (Chol), and triglycerides (Trig) was evaluated for specific types of liver histopathology by Receiver Operating Characteristic (ROC) analysis. To assess the relationship between biochemical and morphologic changes in the absence of hepatocellular necrosis, a second ROC analysis was performed on a subset of rats (n = 2504) given treatments (n = 152) that did not cause hepatocellular necrosis. In the initial analysis, ALT, AST, Tbili, and SBA had the greatest diagnostic utility for manifestations of hepatocellular necrosis and biliary injury, with comparable magnitude of area under the ROC curve and serum hepatobiliary marker changes for both. In the absence of hepatocellular necrosis, ALT increases were observed with biochemical or morphologic evidence of cholestasis. In both analyses, diagnostic utility of ALP and GGT for biliary injury was limited; however, ALP had modest diagnostic value for peroxisome proliferation, and ALT, AST, and total Chol had moderate diagnostic utility for phospholipidosis. None of the eight markers evaluated had diagnostic value for manifestations of hypertrophy, cytoplasmic rarefaction, inflammation, or lipidosis.

  13. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload.

    Science.gov (United States)

    Preziosi, Morgan E; Singh, Sucha; Valore, Erika V; Jung, Grace; Popovic, Branimir; Poddar, Minakshi; Nagarajan, Shanmugam; Ganz, Tomas; Monga, Satdarshan P

    2017-08-01

    Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked

  14. SET mediates TCE-induced liver cell apoptosis through dephosphorylation and upregulation of nucleolin.

    Science.gov (United States)

    Ren, Xiaohu; Huang, Xinfeng; Yang, Xifei; Liu, Yungang; Liu, Wei; Huang, Haiyan; Wu, Desheng; Zou, Fei; Liu, Jianjun

    2017-06-20

    Trichloroethylene (TCE) is an occupational and environmental chemical that can cause severe hepatotoxicity. While our previous studies showed that the phosphatase inhibitor SET is a key mediator of TCE-induced liver cell apoptosis, the molecular mechanisms remain elusive. Using quantitative phosphoproteomic analysis, we report here that nucleolin is a SET-regulated phosphoprotein in human liver HL-7702 cells. Functional analysis suggested that SET promoted dephosphorylation of nucleolin, decreased its binding to its transcriptional activator, c-myc, and upregulated nucleolin expression in TCE-treated cells. Importantly, TCE-induced hepatocyte apoptosis was significantly attenuated when nucleolin was downregulated with specific siRNAs. These findings indicate that TCE may induce hepatocyte apoptosis via SET-mediated dephosphorylation and overexpression of nucleolin.

  15. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-kB signaling pathways.

    Science.gov (United States)

    Kang, Hyeon Hui; Kim, In Kyoung; Lee, Hye In; Joo, Hyonsoo; Lim, Jeong Uk; Lee, Jongmin; Lee, Sang Haak; Moon, Hwa Sik

    2017-08-19

    Obstructive sleep apnea (OSA) is associated with nonalcoholic fatty liver disease (NAFLD), and causes chronic intermittent hypoxia (CIH) during sleep. Inflammation is associated with the development of metabolic complications induced by CIH. Research suggests that innate immune mechanisms are involved in the pro-inflammatory pathways of liver fibrosis. The purpose of this study was to investigate whether innate immune responses induce liver fibrosis, and to evaluate mechanisms underlying hepatic inflammation related to CIH in a murine diet-induced obesity (DIO) model. Inflammatory and oxidative stress markers, TLR4, MyD88, Toll/interleukin-1-receptor-domain-containing adaptor-inducing interferon-β (TRIF), I-κB, NF-κB, p38 MAPK, c-JNK, and ERK activation, were measured in the serum and liver. As a result, α1(I)-collagen mRNA was significantly higher in DIO mice exposed to CIH than in the control groups. CIH mice exhibited liver fibrosis and significantly higher protein expression of TLR4, MyD88, phosphorylated (phospho-) I-κB, and phospho-ERK1/2 activation in the liver, and higher expression of NF-κB than that in the controls. TRIF, p38 MAPK, and JNK activation did not differ significantly between groups. We conclude that CIH in DIO mice leads to liver fibrosis via TLR4/MyD88/MAPK/NF-kB signaling pathways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    Directory of Open Access Journals (Sweden)

    María del Carmen Martinez

    2015-01-01

    Full Text Available The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA, dehydrocholic (DHA, chenodeoxycholic, or ursodeoxycholic (URSO. The administration of Gris alone increased the activities of glutathione reductase (GRed, superoxide dismutase (SOD, alkaline phosphatase (AP, gamma glutamyl transpeptidase (GGT, and glutathione-S-transferase (GST, as well as total porphyrins, glutathione (GSH, and cytochrome P450 (CYP levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris.

  17. Inhibitory Effects of Verrucarin A on Tunicamycin-Induced ER Stress in FaO Rat Liver Cells

    Directory of Open Access Journals (Sweden)

    Eun Young Bae

    2015-05-01

    Full Text Available Endoplasmic reticulum (ER stress is linked with development and maintenance of cancer, and serves as a therapeutic target for treatment of cancer. Verrucarin A, isolated from the broth of Fusarium sp. F060190, showed potential inhibitory activity on tunicamycin-induced ER stress in FaO rat liver cells. In addition, the compound decreased tunicamycin-induced GRP78 promoter activity in a dose dependent manner without inducing significant inhibition of luciferase activity and cell growth for 6 and 12 h. Moreover, the compound decreased the expression of GRP78, CHOP, XBP-1, and suppressed XBP-1, and reduced phosphorylation of IRE1α in FaO rat liver cells. This evidence suggests for the first time that verrucarin A inhibited tunicamycin-induced ER stress in FaO rat liver cells.

  18. Characteristics and significance of D-tagatose-induced liver enlargement in rats: An interpretative review.

    Science.gov (United States)

    Bär, A

    1999-04-01

    This review addresses the issue of asymptomatic liver enlargement in rats. It was necessitated by the observation of significantly increased liver weights in rats fed diets with 10 to 20% D-tagatose, a potential new bulk sweetener, for between 28 and 90 days. Increases of liver size without accompanying histopathological changes or impairment of organ function have been observed in rats in response to the ingestion of various xenobiotic compounds (including some food additives), changes of dietary composition (e.g. , high doses of fructose and sucrose), metabolic aberrations (e.g., diabetes), as well as normal pregnancy and lactation. The underlying mechanism(s) are not yet understood in detail but peroxisome proliferation, microsomal enzyme induction, increased storage of glycogen or lipids, and hyperfunction due to an excessive workload are well-established causes of hepatomegaly in rats. In D-tagatose- and fructose-fed rats, a treatment-related increase of hepatic glycogen storage was identified as a likely cause of the liver enlargement. Dietary levels of 5% and about 15-20% were determined as no-effect levels (NOEL) for D-tagatose- and fructose-induced liver enlargement, respectively. At doses above the NOEL, D-tagatose is about four times more efficient than fructose in inducing liver enlargement. On the other hand, the estimated intake of D-tagatose from its intended uses in food is about four times lower than the actual fructose intake. Consequently, a similar safety margin would apply for both sugars. Considering the similarity of the liver effects in rats of fructose, a safe food ingredient, and D-tagatose, the absence of histopathological changes in rats fed a diet with 20% D-tagatose for 90 days, and the absence of adverse long-term consequences of glycogen-induced liver enlargement in rats, it is concluded that the observed liver enlargement in D-tagatose-fed rats has no relevance for the assessment of human safety of this substance. Copyright 1999

  19. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation

    Directory of Open Access Journals (Sweden)

    Ji Hye Jun

    2016-09-01

    Full Text Available Background/Aims Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL. Methods The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs treated with lithocholic acid (LCA and siRNA-CRP. Results The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. Conclusion CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  20. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation.

    Science.gov (United States)

    Jun, Ji Hye; Choi, Jong Ho; Bae, Si Hyun; Oh, Seh Hoon; Kim, Gi Jin

    2016-09-01

    Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  1. Resveratrol, a Natural Antioxidant, Has a Protective Effect on Liver Injury Induced by Inorganic Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Zhigang Zhang

    2014-01-01

    Full Text Available Resveratrol (Rev can ameliorate cytotoxic chemotherapy-induced toxicity and oxidative stress. Arsenic trioxide (As2O3 is a known cytotoxic environmental toxicant and a potent chemotherapeutic agent. However, the mechanisms by which resveratrol protects the liver against the cytotoxic effects of As2O3 are not known. Therefore, in the present study we investigated the mechanisms involved in the action of resveratrol using a cat model in which hepatotoxicity was induced by means of As2O3 treatment. We found that pretreatment with resveratrol, administered using a clinically comparable dose regimen, reversed changes in As2O3-induced morphological and liver parameters and resulted in a significant improvement in hepatic function. Resveratrol treatment also improved the activities of antioxidant enzymes and attenuated As2O3-induced increases in reactive oxygen species and malondialdehyde production. In addition, resveratrol attenuated the As2O3-induced reduction in the ratio of reduced glutathione to oxidized glutathione and the retention of arsenic in liver tissue. These findings provide a better understanding of the mechanisms whereby resveratrol modulates As2O3-induced changes in liver function and tissue morphology. They also provide a stronger rationale for the clinical utilization of resveratrol for the reduction of As2O3-induced hepatotoxicity.

  2. Left-liver hypertrophy after therapeutic right-liver radioembolization is substantial but less than after portal vein embolization.

    Science.gov (United States)

    Garlipp, Benjamin; de Baere, Thierry; Damm, Robert; Irmscher, Romy; van Buskirk, Mark; Stübs, Patrick; Deschamps, Frederic; Meyer, Frank; Seidensticker, Ricarda; Mohnike, Konrad; Pech, Maciej; Amthauer, Holger; Lippert, Hans; Ricke, Jens; Seidensticker, Max

    2014-05-01

    In patients with liver malignancies potentially amenable to curative extended right hepatectomy but insufficient size of the future liver remnant (FLR), portal vein embolization (PVE) of the tumor-bearing liver is used to induce contralateral liver hypertrophy but leaves the tumor untreated. Radioembolization (RE) treats the tumor in the embolized lobe along with contralateral hypertrophy induction. We performed a matched-pair analysis to compare the capacity for hypertrophy induction of these two modalities. Patients with right-hepatic secondary liver malignancies with no or negligible left-hepatic tumor involvement who were treated by right-lobar PVE (n = 141) or RE (n = 35) at two centers were matched for criteria known to influence liver regeneration following PVE: 1) baseline FLR/Total liver volume ratio (<25 versus ≥ 25%); 2) prior platinum-containing systemic chemotherapy; 3) embolization of segments 5-8 versus 4-8; and 4) baseline platelet count (<200 versus ≥ 200 Gpt/L).The primary endpoint was relative change in FLR volume from baseline to follow-up. Twenty-six matched pairs were identified. FLR volume increase from baseline to follow-up (median 33 [24-56] days after PVE or 46 [27-79] days after RE) was significant in both groups but PVE produced significantly more FLR hypertrophy than RE (61.5 versus 29%, P < 0.001). Time between treatment and follow-up was not correlated with the degree of contralateral hypertrophy achieved in both groups. Although group differences in patient history and treatment setting were present and some bias cannot be excluded, this was minimized by the matched-pair design, as remaining group differences after matching were found to have no significant influence on contralateral hypertrophy development. PVE induces significantly more contralateral hypertrophy than RE with therapeutic (nonlobectomy) doses. However, contralateral hypertrophy induced by RE is substantial and RE minimizes the risk of tumor progression in the

  3. Perfluorooctanoic acid exposure induces endoplasmic reticulum stress in the liver and its effects are ameliorated by 4-phenylbutyrate.

    Science.gov (United States)

    Yan, Shengmin; Zhang, Hongxia; Wang, Jianshe; Zheng, Fei; Dai, Jiayin

    2015-10-01

    Perfluoroalkyl acids (PFAAs) are a group of widely used anthropogenic compounds. As one of the most dominant PFAAs, perfluorooctanoic acid (PFOA) has been suggested to induce hepatotoxicity and several other toxicological effects. However, details on the mechanisms for PFOA-induced hepatotoxicity still need to be elucidated. In this study, we observed the occurrence of endoplasmic reticulum (ER) stress in mouse livers and HepG2 cells after PFOA exposure using several familiar markers for the unfolded protein response (UPR). ER stress in HepG2 cells after PFOA exposure was not significantly influenced by autophagy inhibition or stimulation. The antioxidant defense system was significantly disturbed in mouse livers after PFOA exposure, and reactive oxygen species (ROS) were increased in cells exposed to PFOA for 24 h. However, N-acetyl-L-cysteine (NAC) pretreatment did not satisfactorily alleviate the UPR in cells exposed to PFOA even though the increase of ROS was less evident. Furthermore, exposure of HepG2 cells to PFOA in the presence of sodium 4-phenylbutyrate (4-PBA), a chemical chaperone and ER stress inhibitor, suggested that 4-PBA alleviated the UPR and autophagosome accumulation induced by PFOA in cells. In addition, several toxicological effects attributed to PFOA exposure, including cell cycle arrest, proteolytic activity impairment, and neutral lipid accumulation, were also improved by 4-PBA cotreatment in cells. In vivo study demonstrated that PFOA-induced lipid metabolism perturbation and liver injury were partially ameliorated by 4-PBA in mice after 28 days of exposure. These findings demonstrated that PFOA-induced ER stress leading to UPR might play an important role in PFOA-induced hepatotoxic effects, and chemical chaperone 4-PBA could ameliorate the effects. Copyright © 2015. Published by Elsevier Inc.

  4. Nardilysin controls intestinal tumorigenesis through HDAC1/p53-dependent transcriptional regulation.

    Science.gov (United States)

    Kanda, Keitaro; Sakamoto, Jiro; Matsumoto, Yoshihide; Ikuta, Kozo; Goto, Norihiro; Morita, Yusuke; Ohno, Mikiko; Nishi, Kiyoto; Eto, Koji; Kimura, Yuto; Nakanishi, Yuki; Ikegami, Kanako; Yoshikawa, Takaaki; Fukuda, Akihisa; Kawada, Kenji; Sakai, Yoshiharu; Ito, Akihiro; Yoshida, Minoru; Kimura, Takeshi; Chiba, Tsutomu; Nishi, Eiichiro; Seno, Hiroshi

    2018-04-19

    Colon cancer is a complex disease affected by a combination of genetic and epigenetic factors. Here we demonstrate that nardilysin (N-arginine dibasic convertase; NRDC), a metalloendopeptidase of the M16 family, regulates intestinal tumorigenesis via its nuclear functions. NRDC is highly expressed in human colorectal cancers. Deletion of the Nrdc gene in ApcMin mice crucially suppressed intestinal tumor development. In ApcMin mice, epithelial cell-specific deletion of Nrdc recapitulated the tumor suppression observed in Nrdc-null mice. Moreover, epithelial cell-specific overexpression of Nrdc significantly enhanced tumor formation in ApcMin mice. Notably, epithelial NRDC controlled cell apoptosis in a gene dosage-dependent manner. In human colon cancer cells, nuclear NRDC directly associated with HDAC1, and controlled both acetylation and stabilization of p53, with alterations of p53 target apoptotic factors. These findings demonstrate that NRDC is critically involved in intestinal tumorigenesis through its epigenetic regulatory function, and targeting NRDC may lead to a novel prevention or therapeutic strategy against colon cancer.

  5. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Directory of Open Access Journals (Sweden)

    Z.G. Zhao

    2014-02-01

    Full Text Available The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL on lipopolysaccharide (LPS-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1, myeloperoxidase (MPO, and Na+-K+-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na+-K+-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na+-K+-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  6. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J. [Institute of Microcirculation, Hebei North University, Zhangjiakou, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-02-17

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na{sup +}-K{sup +}-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na{sup +}-K{sup +}-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na{sup +}-K{sup +}-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  7. Characterization of genetically engineered mouse hepatoma cells with inducible liver functions by overexpression of liver-enriched transcription factors.

    Science.gov (United States)

    Yamamoto, Hideaki; Tonello, Jane Marie; Sambuichi, Takanori; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2018-01-01

    New cell sources for the research and therapy of organ failure could significantly alleviate the shortage of donor livers that are available to patients who suffer from liver disease. Liver carcinoma derived cells, or hepatoma cells, are the ideal cells for developing bioartificial liver systems. Such cancerous liver cells are easy to prepare in large quantities and can be maintained over long periods under standard culture conditions, unlike primary hepatocytes. However, hepatoma cells possess only a fraction of the functions of primary hepatocytes. In a previous study, by transducing cells with liver-enriched transcription factors that could be inducibly overexpressed-hepatocyte nuclear factor (HNF)1α, HNF1β, HNF3β [FOXA2], HNF4α, HNF6, CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ and C/EBPγ-we created mouse hepatoma cells with high liver-specific gene expression called the Hepa/8F5 cell line. In the present study, we performed functional and genetic analyses to characterize the Hepa/8F5 cell line. Further, in three-dimensional cultures, the function of these cells improved significantly compared to parental cells. Ultimately, these cells might become a new resource that can be used in basic and applied hepatic research. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver.

    Science.gov (United States)

    Chukijrungroat, Natsasi; Khamphaya, Tanaporn; Weerachayaphorn, Jittima; Songserm, Thaweesak; Saengsirisuwan, Vitoon

    2017-08-01

    The role of gender in the progression of fatty liver due to chronic high-fat high-fructose diet (HFFD) has not been studied. The present investigation assessed whether HFFD induced hepatic perturbations differently between the sexes and examined the potential mechanisms. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were fed either a control diet or HFFD for 12 wk. Indexes of liver damage and hepatic steatosis were analyzed biochemically and histologically together with monitoring changes in hepatic gene and protein expression. HFFD induced a higher degree of hepatic steatosis in females, with significant increases in proteins involved in hepatic lipogenesis, whereas HFFD significantly induced liver injury, inflammation, and oxidative stress only in males. Interestingly, a significant increase in hepatic fibroblast growth factor 21 (FGF21) protein expression was observed in HFFD-fed males but not in HFFD-fed females. Ovarian hormone deprivation by itself led to a significant reduction in FGF21 with hepatic steatosis, and HFFD further aggravated hepatic fat accumulation in OVX rats. Importantly, estrogen replacement restored hepatic FGF21 levels and reduced hepatic steatosis in HFFD-fed OVX rats. Collectively, our results indicate that male rats are more susceptible to HFFD-induced hepatic inflammation and that the mechanism underlying this sex dimorphism is mediated through hepatic FGF21 expression. Our findings reveal sex differences in the development of HFFD-induced fatty liver and indicate the protective role of estrogen against HFFD-induced hepatic steatosis. Copyright © 2017 the American Physiological Society.

  9. Effect of N-Feruloylserotonin and Methotrexate on Severity of Experimental Arthritis and on Messenger RNA Expression of Key Proinflammatory Markers in Liver

    Directory of Open Access Journals (Sweden)

    Ľudmila Pašková

    2016-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease, leading to progressive destruction of joints and extra-articular tissues, including organs such as liver and spleen. The purpose of this study was to compare the effects of a potential immunomodulator, natural polyphenol N-feruloylserotonin (N-f-5HT, with methotrexate (MTX, the standard in RA therapy, in the chronic phase of adjuvant-induced arthritis (AA in male Lewis rats. The experiment included healthy controls (CO, arthritic animals (AA, AA given N-f-5HT (AA-N-f-5HT, and AA given MTX (AA-MTX. N-f-5HT did not affect the body weight change and clinical parameters until the 14th experimental day. Its positive effect was rising during the 28-day experiment, indicating a delayed onset of N-f-5HT action. Administration of either N-f-5HT or MTX caused reduction of inflammation measured as the level of CRP in plasma and the activity of LOX in the liver. mRNA transcription of TNF-α and iNOS in the liver was significantly attenuated in both MTX and N-f-5HT treated groups of arthritic rats. Interestingly, in contrast to MTX, N-f-5HT significantly lowered the level of IL-1β in plasma and IL-1β mRNA expression in the liver and spleen of arthritic rats. This speaks for future investigations of N-f-5HT as an agent in the treatment of RA in combination therapy with MTX.

  10. Therapeutic effects of protein kinase N3 small interfering RNA and doxorubicin combination therapy on liver and lung metastases

    Science.gov (United States)

    Hattori, Yoshiyuki; Kikuchi, Takuto; Nakamura, Mari; Ozaki, Kei-Ichi; Onishi, Hiraku

    2017-01-01

    It has been reported that suppression of protein kinase N3 (PKN3) expression in vascular and lymphatic endothelial cells results in the inhibition of tumor progression and lymph node metastasis formation. The present study investigated whether combination therapy of small interfering RNA (siRNA) against PKN3 and doxorubicin (DXR) could increase therapeutic efficacy against liver and lung metastases. In vitro transfection of PKN3 siRNA into PKN3-positive MDA-MB-231, LLC, and Colon 26 cells and PKN3-negative MCF-7 cells did not inhibit cell growth and did not increase sensitivity to DXR. However, following in vivo treatment, PKN3 siRNA suppressed the growth of liver MDA-MB-231 and lung LLC and MCF-7 metastases, although combination therapy with DXR did not increase the therapeutic efficacy. By contrast, in liver MCF-7 metastases, PKN3 siRNA or DXR alone did not exhibit significant inhibition of tumor growth, but their combination significantly improved therapeutic efficacy. Treatment of liver MDA-MB-231 metastases with PKN3 siRNA induced a change in vasculature structure via suppression of PKN3 mRNA expression. PKN3 siRNA may induce antitumor effects in lung and liver metastases by suppression of PKN3 expression in stroma cells, such as endothelial cells. From these findings, PKN3 siRNA alone or in combination with DXR may reduce the tumor growth of liver and lung metastases regardless of PKN3 expression in tumor cells. PMID:29098022

  11. Portulaca oleracea L. alleviates liver injury in streptozotocin-induced diabetic mice

    Science.gov (United States)

    Peng, Hao; Gu, Wei; Li, Min; Chen, Zhe

    2018-01-01

    Purslane is a widespread succulent herb that exhibits various pharmacological effects. The purpose of this study was to evaluate the protective effect of Portulaca oleracea L. (purslane) on streptozotocin-induced diabetes in mice. Oral glucose-tolerance tests were carried out to assess blood glucose levels and body weight and food intake were recorded. The biochemical parameters anti-aspartate aminotransferase, alanine aminotransferase, insulin, triglycerides, total cholesterol, IL-6, IL-1β, and TNFα were also measured. The pathological condition of liver tissues were examined by hematoxylin–eosin staining. Rho, ROCK1, ROCK2, NFκBp65, p-NFκBp65, IκBα, and p-IκBα expression in liver tissue were analyzed by Western blot. Purslane increased body weight and decreased food intake. Purslane also significantly reduced concentrations of glucose, anti-aspartate aminotransferase, alanine aminotransferase, triglycerides, total cholesterol, IL-6, IL-1β, and TNFα in serum. Serum insulin was elevated with purslane treatment. In addition, pathologic liver changes in diabetic mice were also alleviated by purslane. Obtained data revealed that purslane restored the levels of Rho–NFκB signaling-related proteins in comparison with those of diabetic mice. Above all, it can be assumed that purslane might play a positive role in regulating streptozotocin-induced liver injury through suppressing the Rho–NFκB pathway. PMID:29343942

  12. [Case reports of drug-induced liver injury in a reference hospital of Zulia state, Venezuela].

    Science.gov (United States)

    Mengual-Moreno, Edgardo; Lizarzábal-García, Maribel; Ruiz-Soler, María; Silva-Suarez, Niniveth; Andrade-Bellido, Raúl; Lucena-González, Maribel; Bessone, Fernando; Hernández, Nelia; Sánchez, Adriana; Medina-Cáliz, Inmaculada

    2015-03-01

    Drug-induced liver injury (DILI) is an important cause of morbidity and mortality worldwide, with varied geographical differences. The aim of this prospective, descriptive, cross-sectional study was to identify and characterize cases of DILI in a hospital of Zulia state, Venezuela. Thirteen patients with a presumptive diagnosis of DILI attended by the Department of Gastroenterology, Hospital Universitario, Zulia state, Venezuela, from December-2012 to December-2013 were studied. Ibuprofen (n = 3; 23.1%), acetaminophen (n = 3; 23.1), isoniazid (n = 2; 15.4%) and Herbalife products (n = 2; 15.4%) were the main drugs involved with DILI. Acetaminophen and ibuprofen showed a mixed pattern of liver injury (n = 3; 23.1%) and isoniazid presented a hepatocellular pattern (n = 2; 15.4%). The CIOMS/RUCAMS allowed the identification of possible (n = 7; 53.9%), probable (n = 4; 30.8%) and highly-probable cases (n = 2; 15.4%) of DILI. Amoxicillin/clavulanate, isoniazid, isotretinoin, methotrexate and Herbalife nutritional products were implicated as highly-probable and probable agents. The highest percentage of DILI corresponded to mild cases that recovered after the discontinuation of the agent involved (n = 9; 69.3%). The consumption of Herbalife botanical products is associated with probable causality and fatality (n = 1; 7.7%). In conclusion, the frequency of DILI cases controlled by the Department of Gastroenterology of the Hospital Universitario of Maracaibo was low, being ibuprofen, acetaminophen, isoniazid and products Herbalife the products most commonly involved. It is recommended to continue with the prospective registration of cases, with an extended follow up monitoring period and to facilitate the incorporation of other hospitals in the Zulia State and Venezuela.

  13. Genotoxic, epigenetic, and transcriptomic effects of tamoxifen in mouse liver

    International Nuclear Information System (INIS)

    Conti, Aline de; Tryndyak, Volodymyr; Churchwell, Mona I.; Melnyk, Stepan; Latendresse, John R.; Muskhelishvili, Levan; Beland, Frederick A.; Pogribny, Igor P.

    2014-01-01

    Highlights: • Treatment of female mice with tamoxifen caused genotoxic changes in the livers. • Tamoxifen treatment did not affect the hepatic epigenome. • Tamoxifen caused over-expression of hepatic Lcn13 and Pparγ genes. • Mice are resistant to tamoxifen-induced liver carcinogenesis and fatty liver injury. - Abstract: Tamoxifen is a non-steroidal anti-estrogenic drug widely used for the treatment and prevention of breast cancer in women; however, there is evidence that tamoxifen is hepatocarcinogenic in rats, but not in mice. Additionally, it has been reported that tamoxifen may cause non-alcoholic fatty liver disease (NAFLD) in humans and experimental animals. The goals of the present study were to (i) investigate the mechanisms of the resistance of mice to tamoxifen-induced hepatocarcinogenesis, and (ii) clarify effects of tamoxifen on NAFLD-associated liver injury. Feeding female WSB/EiJ mice a 420 p.p.m. tamoxifen-containing diet for 12 weeks resulted in an accumulation of tamoxifen-DNA adducts, (E)-α-(deoxyguanosin-N 2 -yl)-tamoxifen (dG-TAM) and (E)-α-(deoxyguanosin-N 2 -yl)-N-desmethyltamoxifen (dG-DesMeTAM), in the livers. The levels of hepatic dG-TAM and dG-DesMeTAM DNA adducts in tamoxifen-treated mice were 578 and 340 adducts/108 nucleotides, respectively, while the extent of global DNA and repetitive elements methylation and histone modifications did not differ from the values in control mice. Additionally, there was no biochemical or histopathological evidence of NAFLD-associated liver injury in mice treated with tamoxifen. A transcriptomic analysis of differentially expressed genes demonstrated that tamoxifen caused predominantly down-regulation of hepatic lipid metabolism genes accompanied by a distinct over-expression of the lipocalin 13 (Lcn13) and peroxisome proliferator receptor gamma (Pparγ), which may prevent the development of NAFLD. The results of the present study demonstrate that the resistance of mice to tamoxifen-induced

  14. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis.

    Science.gov (United States)

    Choi, Youngshim; Abdelmegeed, Mohamed A; Song, Byoung-Joon

    2018-05-01

    Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation. Copyright © 2017 Elsevier Inc. All

  15. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis

    International Nuclear Information System (INIS)

    Das, Kaberi P.; Wood, Carmen R.; Lin, Mimi T.; Starkov, Anatoly A.; Lau, Christopher; Wallace, Kendall B.; Corton, J. Christopher; Abbott, Barbara D.

    2017-01-01

    Highlights: • Structurally diverse PFAAs induced fatty liver and increased TG accumulation in mouse. • Genes of lipid synthesis and degradation were increased after exposure to PFAAs. • PFAAs did not inhibit either mitochondrial fatty acid transport or β-oxidation directly. - Abstract: Persistent presence of perfluoroalkyl acids (PFAAs) in the environment is due to their extensive use in industrial and consumer products, and their slow decay. Biochemical tests in rodent demonstrated that these chemicals are potent modifiers of lipid metabolism and cause hepatocellular steatosis. However, the molecular mechanism of PFAAs interference with lipid metabolism remains to be elucidated. Currently, two major hypotheses are that PFAAs interfere with mitochondrial beta-oxidation of fatty acids and/or they affect the transcriptional activity of peroxisome proliferator-activated receptor α (PPARα) in liver. To determine the ability of structurally-diverse PFAAs to cause steatosis, as well as to understand the underlying molecular mechanisms, wild-type (WT) and PPARα-null mice were treated with perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), or perfluorohexane sulfonate (PFHxS), by oral gavage for 7 days, and their effects were compared to that of PPARα agonist WY-14643 (WY), which does not cause steatosis. Increases in liver weight and cell size, and decreases in DNA content per mg of liver, were observed for all compounds in WT mice, and were also seen in PPARα-null mice for PFOA, PFNA, and PFHxS, but not for WY. In Oil Red O stained sections, WT liver showed increased lipid accumulation in all treatment groups, whereas in PPARα-null livers, accumulation was observed after PFNA and PFHxS treatment, adding to the burden of steatosis observed in control (untreated) PPARα-null mice. Liver triglyceride (TG) levels were elevated in WT mice by all PFAAs and in PPARα-null mice only by PFNA. In vitro β-oxidation of palmitoyl carnitine by isolated rat

  16. Hepatoprotective activity of Mentha arvensis Linn. leaves against CCL4 induced liver damage in rats

    Directory of Open Access Journals (Sweden)

    Kalpana Patil

    2012-05-01

    Full Text Available Objective: To study the Hepatoprotective activity of ethanol, chloroform and aqueous extracts of Mentha arvensis leaves against CCL4 induced liver damage in rats. Methods: Hepatotoxicity was induced by CCL4 and the biochemical parameters such as serum glutamate pyruvate transminase (sGPT, serum glutamate oxaloacetate transaminase (sGOT, alkaline phosphatase (sALP, serum bilirubin (sB and histopathological changes in liver were studied along with silymarin as standard Hepatoprotective agents. Results: The Phytochemical investigation of the extracts showed presence of flavonoids, steroids, triterpenoids, alkaloids, glycosides, carbohydrates, tannins, phenolic compounds. Treatment of the rats with chloroform, ethanol and aqueous extract with CCL 4 administration caused a significant reduction in the values of sGOT, sGPT, sALP and sB (P<0.01 almost comparable to the silymarin. The Hepatoprotective was confirmed by histopathological examination of the liver tissue of control and treated animals. Conclusions: From the results it can be concluded that Mentha arvensis possesses Hepatoprotective effect against CCL4 induced liver damage in rats.

  17. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model.

    Science.gov (United States)

    Rigo, Federica; De Stefano, Nicola; Navarro-Tableros, Victor; David, Ezio; Rizza, Giorgia; Catalano, Giorgia; Gilbo, Nicholas; Maione, Francesca; Gonella, Federica; Roggio, Dorotea; Martini, Silvia; Patrono, Damiano; Salizzoni, Mauro; Camussi, Giovanni; Romagnoli, Renato

    2018-05-01

    The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.

  18. Candidate biomarkers for the diagnosis and prognosis of drug-induced liver injury: An international collaborative effort.

    Science.gov (United States)

    Church, Rachel J; Kullak-Ublick, Gerd A; Aubrecht, Jiri; Bonkovsky, Herbert L; Chalasani, Naga; Fontana, Robert J; Goepfert, Jens C; Hackman, Frances; King, Nicholas M P; Kirby, Simon; Kirby, Patrick; Marcinak, John; Ormarsdottir, Sif; Schomaker, Shelli J; Schuppe-Koistinen, Ina; Wolenski, Francis; Arber, Nadir; Merz, Michael; Sauer, John-Michael; Andrade, Raul J; van Bömmel, Florian; Poynard, Thierry; Watkins, Paul B

    2018-01-22

    Current blood biomarkers are suboptimal in detecting drug-induced liver injury (DILI) and predicting its outcome. We sought to characterize the natural variabilty and performance characteristics of fourteen promising DILI biomarker candidates. Serum or plasma from multiple cohorts of healthy volunteers (n=192 and =81), subjects who safely took potentially hepatotoxic drugs without adverse effects (n=55 and =92) and DILI patients (n=98, =28, and =143) were assayed for microRNA-122 (miR-122), glutamate dehydrogenase (GLDH), total keratin 18 (K18), caspase cleaved K18 (ccK18), glutathione S-transferase alpha (GSTα), alpha fetoprotein (AFP), arginase-1 (ARG1), osteopontin (OPN), sorbitol dehydrogenase (SDH), fatty acid binding protein (FABP1), cadherin-5 (CDH5), macrophage colony stimulating factor receptor (MCSFR), paraoxonase 1 (PON1, normalized to prothrombin protein), and leucocyte cell-derived chemotaxin-2 (LECT2). Most candidate biomarkers were significantly altered in DILI cases compared to healthy volunteers. GLDH correlated more closely with gold standard alanine aminotransferase (ALT) than miR-122 and there was a surprisingly wide inter- and intra-individual variability of miR-122 levels among the healthy volunteers. Serum K18, OPN, and MCSFR levels were most strongly associated with liver-related death or transplant within 6 months of DILI-onset. Prediction of prognosis among DILI patients using Model for End-stage Liver Disease (MELD) was improved by incorporation of K18 and MCSFR levels. GLDH appears to be more useful than miR-122 in identifying DILI patients. K18, OPN and MCSFR are promising candidates for prediction of prognosis during an acute DILI event. Serial assessment of these biomarkers in large prospective studies will help further delineate their role in DILI diagnosis and management. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  19. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet.

    Science.gov (United States)

    Ma, Xiaoqing; Du, Wenhua; Shao, Shanshan; Yu, Chunxiao; Zhou, Lingyan; Jing, Fei

    2018-01-01

    Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  20. Protection afforded by pre- or post-treatment with 4-phenylbutyrate against liver injury induced by acetaminophen overdose in mice.

    Science.gov (United States)

    Shimizu, Daisuke; Ishitsuka, Yoichi; Miyata, Keishi; Tomishima, Yoshiro; Kondo, Yuki; Irikura, Mitsuru; Iwawaki, Takao; Oike, Yuichi; Irie, Tetsumi

    2014-09-01

    Acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) is a widely used analgesic/antipyretic drug with few adverse effects at therapeutic doses; suicidal or unintentional overdose of APAP frequently induces severe hepatotoxicity. To explore a new and effective antidote for APAP hepatotoxicity, this study examined the effects of sodium 4-phenylbutyrate (4-PBA) on liver injury induced by APAP overdose in mice. Liver injury was induced in C57BL/6 male mice by intraperitoneal injection of APAP (400mg/kg). The effects of 4-PBA (100-200mg/kg) treatment at 1h before the APAP injection were evaluated with serum alanine aminotransferase (ALT) and blood ammonia levels, hepatic pathological changes, including histopathology, DNA damage, nitrotyrosine formation, and mRNA or protein expression involved in the development of hepatotoxicity, such as X-box binding protein-1 (XBP1), c-Jun N-terminal kinase (JNK), C/EBP homologous protein (CHOP) and B-cell lymphoma 2 interacting mediator of cell death (Bim). In addition, glutathione depletion and CYP2E1 protein expression, which are measures of the metabolic conversion of APAP to a toxic metabolite, were examined. Furthermore, we examined the effects of post-treatment with 4-PBA against APAP-induced hepatotoxicity in mice. When administered at 1h before APAP injection, 4-PBA significantly prevented the increase in serum ALT and blood ammonia levels, centrilobular necrosis of hepatocytes, DNA fragmentation, and nitrotyrosine formation induced by APAP in mice. 4-PBA also inhibited hepatic Xbp1 mRNA splicing and JNK phosphorylation induced by APAP, but did not suppress CHOP and Bim mRNA and protein expression. In addition, 4-PBA had little effect on hepatic glutathione depletion and CYP2E1 expression, parameters of toxic APAP metabolite production. Post-treatment with 4-PBA administration at 1 or 2h after APAP injection also attenuated the increase in serum ALT and blood ammonia levels and hepatic pathological changes in APAP-induced

  1. Human Precision-Cut Liver Slices as an ex Vivo Model to Study Idiosyncratic Drug-Induced Liver Injury

    NARCIS (Netherlands)

    Hadi, Mackenzie; Westra, Inge M.; Starokozhko, Viktoriia; Dragovic, Sanja; Merema, M.T.; Groothuis, Geny M. M.

    Idiosyncratic drug-induced liver injury (IDILI) is a major problem during drug development and has caused drug withdrawal and black-box warnings. Because of the low concordance of the hepatotoxicity of drugs in animals and humans, robust screening methods using human tissue are needed to predict

  2. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    International Nuclear Information System (INIS)

    Kim, Young C.; Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-01-01

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  3. Time-course of cadmium-induced acute hepatotoxicity in the rat liver: the role of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Tzirogiannis, Konstantinos N.; Panoutsopoulos, Georgios I.; Hereti, Rosa I.; Alexandropoulou, Katerina N.; Basayannis, Aristidis C.; Mykoniatis, Michael G. [Department of Experimental Pharmacology, Medical School, Athens University, 75 Mikras Asias St., 115 27, Athens (Greece); Demonakou, Maria D. [Histopathology Laboratory, Sismanoglion G.D. Hospital, Sismanogliou 1, Marousi, Attiki 151 27 (Greece)

    2003-12-01

    Exposure to toxic metals and pollutants is a major environmental problem. Cadmium is a metal causing acute hepatic injury but the mechanism of this phenomenon is poorly understood. In the present study, we investigated the mechanism and time-course of cadmium-induced liver injury in rats, with emphasis being placed on apoptosis in parenchymal and nonparenchymal liver cells. Cadmium (3.5 mg/kg body weight) was injected intraperitoneally and the rats were killed 0, 9, 12, 16, 24, 48 and 60 h later. The extent of liver injury was evaluated for necrosis, apoptosis, peliosis, mitoses and inflammatory infiltration in hematoxylin-eosin-stained liver sections, and by assaying serum enzyme activities. The number of cells that died via apoptosis was quantified by TUNEL assay. The identification of nonparenchymal liver cells and activated Kupffer cells was performed histochemically. Liver regeneration was evaluated by assaying the activity of liver thymidine kinase and by the rate of {sup 3}H-thymidine incorporation into DNA. Both cadmium-induced necrotic cell death and parenchymal cell apoptosis showed a biphasic elevation at 12 and 48 h and peaked at 48 and 12 h, respectively. Nonparenchymal cell apoptosis peaked at 48 h. Peliosis hepatis, another characteristic form of liver injury, was first observed at 16 h and, at all time points, closely correlated with the apoptotic index of nonparenchymal liver cells, where the lesion was also maximial at 48 h. Kupffer cell activation and neutrophil infiltration were minimal for all time points examined. Based on thymidine kinase activity, liver regeneration was found to discern a classic biphasic peak pattern at 12 and 48 h. It was very interesting to observe that cadmium-induced liver injury did not involve inflammation at any time point. Apoptosis seems to be a major mechanism for the removal of damaged cells, and constitutes the major type of cell death in nonparenchymal liver cells. Apoptosis of nonparenchymal cells is the basis

  4. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie, E-mail: shujieli@nankai.edu.cn

    2014-06-13

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor.

  5. Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion

    International Nuclear Information System (INIS)

    Zhang, Shangrong; Wang, Yifan; Li, Shu Jie

    2014-01-01

    Highlights: • Lansoprazole (LPZ) induces cell apoptosis in breast cancer cells. • LPZ markedly inhibits intracellular proton extrusion. • LPZ induces an increase in intracellular ATP level, lysosomal alkalinization and ROS accumulation. - Abstract: The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-L-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor

  6. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    International Nuclear Information System (INIS)

    Chen Yixing; Zeng Zhaochong; Sun Jing; Huang Yan; Zhang Zhenyu; Zeng Haiying

    2015-01-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  7. Hydroxycut-induced Liver Toxicity

    African Journals Online (AJOL)

    hanumantp

    Annals of Medical and Health Sciences Research | Jan-Feb 2014 | Vol 4 ... supplements can be responsible for documented or undocumented adverse drug effects. The ... Keywords: Hydroxycut, Liver toxicity, Nutritional supplements ... Caffeine anhydrous: 200 mg* ... series and review of liver toxicity from herbal weight loss.

  8. Integrated Ion Exchange Regeneration Process for Perchlorate in Drinking Water

    Science.gov (United States)

    2010-08-01

    chloride NDEA N-Nitrosodiethylamine NDMA N-Nitrosodimethylamine NDPA N-Nitrosodipropylamine NAVFAC ESC Naval Facilities Engineering Command...NO3 37 mg/L as NO3 Uranium 1.6 μg/L 2.6 μg/L 2.2 mg/L NDMA ɚ.0 ng/L 32 ng/L ɚ.0 ng/L NDEA ɚ.0 ng/L ɚ.0 ng/L ɚ.0 ng/L NDPA ɚ.0 ng/L ɚ.0 ng...L ɚ.0 ng/L NDMA – N-Nitrosodimethylamine NDEA – N-Nitrosodiethylamine NDPA – N-Nitrosodipropylamine 15 Figure 5. Influent perchlorate

  9. Immunohistochemical study of macrophage migration inhibitory factor in rat liver fibrosis induced by thioacetamide

    OpenAIRE

    Y Hori; S Sato; J Yamate; M Kurasaki

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a molecule known to regulate macrophage accumulation at sites of inflammation. To elucidate the role of MIF in progression of liver fibrosis, the immunohistochemical localization of MIF and macrophages in the liver were examined. Male Wistar rats received thioacetamide (TA) injections (200 mg/kg, i.p.) for 1 or 6 weeks. In biochemical and histological tests, it was confirmed that liver fibrosis was induced. In immunohistochemical analyses, the e...

  10. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qi; Xu, Xi, E-mail: xuxi@njust.edu.cn; Yang, Xiao; Weng, Dan; Wang, Junsong; Zhang, Jianfa

    2017-02-15

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines and adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis. - Highlights: • Salecan treatment significantly reduced ConA-induced liver injury. • Salecan suppressed the expression and secretion of inflammatory cytokines. • Salecan decreased the expression of chemokines and adhesion molecules in liver. • Salecan inhibited the infiltration and activation of T cells induced by ConA. • Salecan partly recovered the metabolic perturbations induced by ConA.

  11. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: Prevention by thiol group protecting agents

    International Nuclear Information System (INIS)

    Custodio, Jose B.A.; Cardoso, Carla M.P.; Santos, Maria S.; Almeida, Leonor M.; Vicente, Joaquim A.F.; Fernandes, Maria A.S.

    2009-01-01

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca 2+ -induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20 nmol/mg protein) induced Ca 2+ -dependent mitochondrial swelling, depolarization of membrane potential (ΔΨ), Ca 2+ release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40 nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the ΔΨ, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H 2 O 2 generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca 2+ -induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to

  12. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    Directory of Open Access Journals (Sweden)

    Diane DeZwaan-McCabe

    2017-05-01

    Full Text Available The unfolded protein response (UPR, induced by endoplasmic reticulum (ER stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress.

  13. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis.

    Science.gov (United States)

    DeZwaan-McCabe, Diane; Sheldon, Ryan D; Gorecki, Michelle C; Guo, Deng-Fu; Gansemer, Erica R; Kaufman, Randal J; Rahmouni, Kamal; Gillum, Matthew P; Taylor, Eric B; Teesch, Lynn M; Rutkowski, D Thomas

    2017-05-30

    The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. N-Acetyl-L-Cysteine Affords Protection against Lead-Induced Cytotoxicity and Oxidative Stress in Human Liver Carcinoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2007-06-01

    Full Text Available Although lead exposure has declined in recent years as a result of change to lead-free gasoline, several epidemiological have pointed out that it represents a medical and public health emergency, especially in young children consuming high amounts of lead-contaminated flake paints. A previous study in our laboratory indicated that lead exposure induces cytotoxicity in human liver carcinoma cells. In the present study, we evaluated the role of oxidative stress in lead-induced toxicity, and the protective effect of the anti-oxidant n-acetyl-l-cysteine (NAC. We hypothesized that oxidative stress plays a role in lead-induced cytotoxicity, and that NAC affords protection against this adverse effect. To test this hypothesis, we performed the MTT [3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide] assay and the trypan blue exclusion test for cell viability. We also performed the thiobarbituric acid test for lipid peroxidation. Data obtained from the MTT assay indicated that NAC significantly increased the viability of HepG2 cells in a dosedependent manner upon 48 hours of exposure. Similar trend was obtained with the trypan blue exclusion test. Data generated from the thiobarbituric acid test showed a significant (p ≤ 0.05 increase of MDA levels in lead nitrate-treated HepG2 cells compared to control cells. Interestingly, the addition of NAC to lead nitrate-treated HepG2 cells significantly decreased cellular content of reactive oxygen species (ROS, as evidenced by the decrease in lipid peroxidation byproducts. Overall, findings from this study suggest that NAC inhibits lead nitrate-induced cytotoxicity and oxidative stress in HepG2 cells. Hence, NAC may be used as a salvage therapy for lead-induced toxicity in exposed persons.

  15. Hepatocyte Hypoxia Inducible Factor-1 Mediates the Development of Liver Fibrosis in a Mouse Model of Nonalcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Omar A Mesarwi

    Full Text Available Obstructive sleep apnea (OSA is associated with the progression of non-alcoholic fatty liver disease (NAFLD to steatohepatitis and fibrosis. This progression correlates with the severity of OSA-associated hypoxia. In mice with diet induced obesity, hepatic steatosis leads to liver tissue hypoxia, which worsens with exposure to intermittent hypoxia. Emerging data has implicated hepatocyte cell signaling as an important factor in hepatic fibrogenesis. We hypothesized that hepatocyte specific knockout of the oxygen sensing α subunit of hypoxia inducible factor-1 (HIF-1, a master regulator of the global response to hypoxia, may be protective against the development of liver fibrosis.Wild-type mice and mice with hepatocyte-specific HIF-1α knockout (Hif1a-/-hep were fed a high trans-fat diet for six months, as a model of NAFLD. Hepatic fibrosis was evaluated by Sirius red stain and hydroxyproline assay. Liver enzymes, fasting insulin, and hepatic triglyceride content were also assessed. Hepatocytes were isolated from Hif1a-/-hep mice and wild-type controls and were exposed to sustained hypoxia (1% O2 or normoxia (16% O2 for 24 hours. The culture media was used to reconstitute type I collagen and the resulting matrices were examined for collagen cross-linking.Wild-type mice on a high trans-fat diet had 80% more hepatic collagen than Hif1a-/-hep mice (2.21 μg collagen/mg liver tissue, versus 1.23 μg collagen/mg liver tissue, p = 0.03, which was confirmed by Sirius red staining. Body weight, liver weight, mean hepatic triglyceride content, and fasting insulin were similar between groups. Culture media from wild-type mouse hepatocytes exposed to hypoxia allowed for avid collagen cross-linking, but very little cross-linking was seen when hepatocytes were exposed to normoxia, or when hepatocytes from Hif1a-/-hep mice were used in hypoxia or normoxia.Hepatocyte HIF-1 mediates an increase in liver fibrosis in a mouse model of NAFLD, perhaps due to liver

  16. Human precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury

    NARCIS (Netherlands)

    Hadi, Mackenzie; Westra, Inge; Starokozhko, Viktoriia; Dragovic, Sanja; Merema, Maja; Groothuis, Genoveva

    2013-01-01

    Idiosyncratic drug-induced liver injury (IDILI) is a major problem during drug development and has caused drug withdrawal and black-box warnings. Due to the low concordance of the hepatotoxicity of drugs in animals and humans, robust screening methods using human tissue are needed to predict and to

  17. Bicyclol attenuates tetracycline-induced fatty liver associated with inhibition of hepatic ER stress and apoptosis in mice.

    Science.gov (United States)

    Yao, Xiao-Min; Li, Yue; Li, Hong-Wei; Cheng, Xiao-Yan; Lin, Ai-Bin; Qu, Jun-Ge

    2016-01-01

    Endoplasmic reticulum (ER) stress is known to be involved in the development of several metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). Tetracycline can cause hepatic steatosis, and ER stress may be involved in tetracycline-induced fatty liver. Our previous study showed that bicyclol has been proven to protect against tetracycline-induced fatty liver in mice, and ER stress may also be involved in bicyclol's hepatoprotective effect. Therefore, this study was performed to investigate the underlying mechanisms associated with ER stress and apoptosis, by which bicyclol attenuated tetracycline-induced fatty liver in mice. Bicyclol (300 mg/kg) was given to mice by gavage 3 times. Tetracycline (200 mg/kg, intraperitoneally) was injected at 1 h after the last dose of bicyclol. At 6 h and 24 h after single dose of tetracycline injection, serum ALT, AST, TG, CHO and hepatic histopathological examinations were performed to evaluate liver injuries. Hepatic steatosis was assessed by the accumulation of hepatic TG and CHO. Moreover, hepatic apoptosis and ER stress related markers were determined by TUNEL, real-time PCR, and western blot. As a result, bicyclol significantly protected against tetracycline-induced fatty liver as evidenced by the decrease of elevated serum transaminases and hepatic triglyceride, and the attenuation of histopathological changes in mice. In addition, bicyclol remarkably alleviated hepatic apoptosis and the gene expression of caspase-3, and increased the gene expression of XIAP. The gene expressions of ER stress-related markers, including CHOP, GRP78, IRE-1α, and ATF6, which were downregulated by bicyclol pretreatment in tetracycline-injected mice. These results suggested that bicyclol protected tetracycline-induced fatty liver partly due to its ability of anti-apoptosis associated with ER stress.

  18. Protective Efficacy of Alpha-lipoic Acid against AflatoxinB1-induced Oxidative Damage in the Liver

    Directory of Open Access Journals (Sweden)

    Y. Li

    2014-06-01

    Full Text Available Alpha-lipoic acid (α-LA is not only involved in energy metabolism, but is also a powerful antioxidant that can protect against hepatic oxidative stress induced by some drugs, toxins, or under various physiological and pathophysiological conditions. Here, we investigated the effect of α-LA against liver oxidative damage in broilers exposed to aflatoxin B1 (AFB1. Birds were randomly divided into four groups and assigned different diets: basal diet, 300 mg/kg α-LA supplementation in basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1, for 3 weeks. The results revealed that the addition of 300 mg/kg α-LA protected against the liver function damage of broilers induced by chronic low dose of AFB1 as estimated by a significant (p<0.05 change in levels of plasma total protein, albumin, alkaline phosphatase and the activities of liver glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase. The histopathological analysis also showed that liver tissues were injured in the AFB1 diet, but this effect was alleviated by the addition of 300 mg/kg α-LA. Additionally, AFB1 induced a profound elevation of oxidative stress in birds, as indicated by an increase in malondialdehyde level, a decrease in glutathione peroxidase activity and a depletion of the glutathione content in the liver. All of these negative effects were inhibited by treatment with α-LA. Our results suggest that the inhibition of AFB1-induced excess production of lipid peroxides and the maintenance of intracellular antioxidant status may play important roles in the protective effects of α-LA against AFB1-induced oxidative damage in the liver.

  19. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.

    Science.gov (United States)

    Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J

    2016-06-01

    Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Potential Effect of Bacopa monnieri on Nitrobenzene Induced Liver Damage in Rats.

    Science.gov (United States)

    Menon, B Rajalakshmy; Rathi, M A; Thirumoorthi, L; Gopalakrishnan, V K

    2010-10-01

    The study was designed to evaluate the hepatoprotective activity of ethanolic extract of Bacopa monnieri in acute experimental liver injury induced by Nitrobenzene in rats. The extract at the dose of 200 mg/kg body weight was administered orally once every day for 10 days. The increased serum marker enzymes, Aspartate transaminase, Alanine transaminase and alkaline phosphatase were restored towards normalization significantly by the extract. Significant increase in SOD, CAT and GPx was observed in extract treated liver injured experimental rats. Histopathological examination of the liver tissues supported the hepatoprotection. It is concluded that the ethanolic extract of Bacopa monieri plant possess good hepatoprotective activity.

  1. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation.

    Science.gov (United States)

    Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming

    2016-04-01

    Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.

  2. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    International Nuclear Information System (INIS)

    Mandal, Mili; Gardner, Carol R.; Sun, Richard; Choi, Hyejeong; Lad, Sonali; Mishin, Vladimir; Laskin, Jeffrey D.; Laskin, Debra L.

    2016-01-01

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b + infiltrating Ly6G + granulocytic and Ly6G − monocytic cells in the spleen and the liver. The majority of the Ly6G + cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G − cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80 + ) and immature (F4/80 − ) pro-inflammatory Ly6C hi macrophages and mature anti-inflammatory (Ly6C lo ) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3 + macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the bone marrow. • Hepatotoxicity is reduced in

  3. The spleen as an extramedullary source of inflammatory cells responding to acetaminophen-induced liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Mili, E-mail: milimandal@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sun, Richard, E-mail: fishpower52@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Choi, Hyejeong, E-mail: choi@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Lad, Sonali, E-mail: sonurose92@gmail.com [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Mishin, Vladimir, E-mail: mishinv@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2016-08-01

    Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b{sup +} infiltrating Ly6G{sup +} granulocytic and Ly6G{sup −} monocytic cells in the spleen and the liver. The majority of the Ly6G{sup +} cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G{sup −} cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80{sup +}) and immature (F4/80{sup −}) pro-inflammatory Ly6C{sup hi} macrophages and mature anti-inflammatory (Ly6C{sup lo}) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3{sup +} macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the

  4. Vitamin K1 attenuates bile duct ligation-induced liver fibrosis in rats.

    Science.gov (United States)

    Jiao, Kun; Sun, Quan; Chen, Baian; Li, Shengli; Lu, Jing

    2014-06-01

    Vitamin K1 is used as a liver protection drug for cholestasis-induced liver fibrosis in China, but the mechanism of vitamin K1's action in liver fibrosis is unclear. In this study, a model of liver fibrosis was achieved via bile duct ligation in rats. The rats were then injected with vitamin K1, and the levels of serum aspartate aminotransferase, alanine transaminase, total bilirubin and the fibrotic grade score, collagen content, the expressions of α-smooth muscle actin (SMA) and cytokeratin 19 (CK19) were measured on day 28 after ligation. The levels of the biochemical parameters, fibrotic score and collagen content were significantly reduced by treatment with vitamin K1 in bile duct-ligated rats. In addition, α-SMA and CK19 expression was significantly reduced by vitamin K1 treatment in bile duct-ligated rats. These results suggested that vitamin K1 may attenuate liver fibrosis by inhibiting hepatic stellate cell activation in bile duct-ligated rats.

  5. Sugammadex antagonism of rocuronium-induced neuromuscular blockade in patients with liver cirrhosis undergoing liver resection: a randomized controlled study.

    Science.gov (United States)

    Abdulatif, Mohamed; Lotfy, Maha; Mousa, Mahmoud; Afifi, Mohamed H; Yassen, Khaled

    2018-02-05

    This randomized controlled study compared the recovery times of sugammadex and neostigmine as antagonists of moderate rocuroniuminduced neuromuscular block in patients with liver cirrhosis and controls undergoing liver resection. The study enrolled 27 adult patients with Child class "A" liver cirrhosis and 28 patients with normal liver functions. Normal patients and patients with liver cirrhosis were randomized according to the type of antagonist (sugammadex 2mg/kg or neostigmine 50μg/kg). The primary outcome was the time from antagonist administration to a trainoffour (TOF) ratio of 0.9 using mechanosensor neuromuscular transmission module. The durations of the intubating and topup doses of rocuronium, the length of stay in the postanesthesia care unit (PACU), and the incidence of postoperative re curarization were recorded. The durations of the intubating and topup doses of rocuronium were prolonged in patients with liver cirrhosis than controls. The times to a TOF ratio of 0.9 were 3.1 (1.0) and 2.6 (1.0) min after sugammadex administration in patients with liver cirrhosis and controls, respectively, p=1.00. The corresponding times after neostigmine administration were longer than sugammadex 14.5 (3.6) and 15.7 (3.6) min, respectively, psugammadex compared to neostigmine. We did not encounter postoperative recurarization after sugammadex or neostigmine. Sugammadex rapidly antagonize moderate residual rocuronium induced neuromuscular block in patients with Child class "A" liver cirrhosis undergoing liver resection. Sugammadex antagonism is associated with 80% reduction in the time to adequate neuromuscular recovery compared to neostigmine.

  6. Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Howie Forbes

    2010-03-01

    Full Text Available Abstract Background The development of effective therapies for acute liver failure (ALF is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF. Method 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased. Results Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein. Control pigs (n = 4 survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8 +/- 5.9 vs 59 +/- 2.0 mmHg, increased cardiac output (7.26 +/- 1.86 vs 3.30 +/- 0.40 l/min and decreased systemic vascular resistance (8.48 +/- 2.75 vs 16.2 +/- 1.76 mPa/s/m3. Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636 +/- 95 vs 301 +/- 26.9 mPa/s/m3 observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23 +/- 0.05 vs 7.45 +/- 0.02 and prothrombin time (36 +/- 2 vs 8.9 +/- 0.3 seconds compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5 +/- 210 vs 42 +/- 8.14 coincided with a marked reduction in serum albumin (11.5 +/- 1.71 vs 25 +/- 1 g/dL in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2 +/- 36.5 vs 131.6 +/- 9.33 μmol/l. Liver histology revealed evidence of severe centrilobular necrosis

  7. GSK-3β Inhibition Attenuates CLP-Induced Liver Injury by Reducing Inflammation and Hepatic Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-01-01

    Full Text Available Liver dysfunction has been known to occur frequently in cases of sepsis. Excessive inflammation and apoptosis are pathological features of acute liver failure. Recent studies suggest that activation of glycogen synthase kinase- (GSK- 3β is involved in inflammation and apoptosis. We aimed to investigate the protective effects of GSK-3β inhibition on polymicrobial sepsis-induced liver injury and to explore the possible mechanisms. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP, and SB216763 was used to inhibit GSK-3β in C57BL/6 mice. GSK-3β was activated following CLP. Administration of SB216763 decreased mortality, ameliorated liver injury, and reduced hepatic apoptosis. The inhibition of GSK-3β also reduced leukocyte infiltration and hepatic inflammatory cytokine expression and release. Moreover, GSK-3β inhibition suppressed the transcriptional activity of nuclear factor-kappa B (NF-κB but enhanced the transcriptional activity of cAMP response element binding protein (CREB in the liver. In in vitro studies, GSK-3β inhibition reduced inflammatory cytokine production via modulation of NF-κB and CREB signaling pathways in lipopolysaccharide-stimulated macrophages. In conclusion, these findings suggest that GSK-3β blockade protects against CLP-induced liver via inhibition of inflammation by modulating NF-κB and CREB activity and suppression of hepatic apoptosis.

  8. Arctigenin Inhibits Liver Cancer Tumorigenesis by Inhibiting Gankyrin Expression via C/EBPα and PPARα

    Science.gov (United States)

    Sun, Ying; Tan, Yu-jun; Lu, Zhan-zhao; Li, Bing-bing; Sun, Cheng-hong; Li, Tao; Zhao, Li-li; Liu, Zhong; Zhang, Gui-min; Yao, Jing-chun; Li, Jie

    2018-01-01

    Burdock (Arctium lappa) is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro. Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC) cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells). In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP) assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography–mass spectrometry (LC–MS) were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region), but did not affect PPARα binding. Expression of gankyrin, C/EBPα, and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory effect on HCC

  9. Arctigenin Inhibits Liver Cancer Tumorigenesis by Inhibiting Gankyrin Expression via C/EBPα and PPARα

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2018-03-01

    Full Text Available Burdock (Arctium lappa is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro. Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells. In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography–mass spectrometry (LC–MS were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region, but did not affect PPARα binding. Expression of gankyrin, C/EBPα, and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory

  10. Arctigenin Inhibits Liver Cancer Tumorigenesis by Inhibiting Gankyrin Expression via C/EBPα and PPARα.

    Science.gov (United States)

    Sun, Ying; Tan, Yu-Jun; Lu, Zhan-Zhao; Li, Bing-Bing; Sun, Cheng-Hong; Li, Tao; Zhao, Li-Li; Liu, Zhong; Zhang, Gui-Min; Yao, Jing-Chun; Li, Jie

    2018-01-01

    Burdock ( Arctium lappa ) is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro . Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC) cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC 50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells). In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP) assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography-mass spectrometry (LC-MS) were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region), but did not affect PPARα binding. Expression of gankyrin, C/EBPα , and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory effect on HCC

  11. Histopathologic Evaluation of Nonalcoholic Fatty Liver Disease in Hypothyroidism-Induced Rats

    Directory of Open Access Journals (Sweden)

    Şule Demir

    2016-01-01

    Full Text Available It is speculated that thyroid hormones may be involved in nonalcoholic fatty liver disease (NAFLD pathogenesis. A literature scan, however, demonstrated conflicting results from studies investigating the relationship between hypothyroidism and NAFLD. Therefore, our study aims to evaluate NAFLD, from the histopathologic perspective, in hypothyroidism-induced rats. Wistar rats were divided into 2 groups: the experimental group consumed water containing methimazole 0.025% (MMI, Sigma, USA for 12 weeks and the control group consumed tap water. At the end of week 12, serum glucose, ALT, AST, triglyceride, HDL, LDL, TSH, fT4, fT3, visfatin, and insulin assays were performed. Sections were stained with hematoxylin-eosin and “Oil Red-O” for histopathologic examination of the livers. In our study, we detected mild hepatosteatosis in all hypothyroidism-induced rats. There was statistically significant difference with respect to obesity between the two groups (p0.05. In conclusion, we found that hypothyroidism-induced rats had mild hepatosteatosis as opposed to the control group histopathologically. Our study indicates that hypothyroidism can cause NAFLD.

  12. Harderian Gland Tumorigenesis: Low-Dose and LET Response

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Polly Y. [SRI International, Menlo Park, CA (United States). Biosciences Div.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Cucinotta, Francis A. [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Health Physics and Diagnostic Sciences; Bjornstad, Kathleen A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Bakke, James [SRI International, Menlo Park, CA (United States). Biosciences Div.; Rosen, Chris J. [SRI International, Menlo Park, CA (United States). Biosciences Div.; Du, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Fairchild, David G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Cacao, Eliedonna [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Health Physics and Diagnostic Sciences; Blakely, Eleanor A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.

    2016-04-19

    Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ~70 keV/μm) and 1,000 MeV/u titanium (LET ~100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the

  13. Hepatoprotective effects of Arctium lappa on carbon tetrachloride- and acetaminophen-induced liver damage.

    Science.gov (United States)

    Lin, S C; Chung, T C; Lin, C C; Ueng, T H; Lin, Y H; Lin, S Y; Wang, L Y

    2000-01-01

    The root of Arctium lappa Linne (A. lappa) (Compositae), a perennial herb, has been cultivated for a long time as a popular vegetable. In order to investigate the hepatoprotective effects of A. lappa, male ICR mice were injected with carbon tetrachloride (CCl4, 32 microl/kg, i.p.) or acetaminophen (600 mg/kg, i.p.). A. lappa suppressed the SGOT and SGPT elevations induced by CCl4 or acetaminophen in a dose-dependent manner and alleviated the severity of liver damage based on histopathological observations. In an attempt to elucidate the possible mechanism(s) of this hepatoprotective effect, glutathione (GSH), cytochrome P-450 (P-450) and malondialdehyde (MDA) contents were studied. A. lappa reversed the decrease in GSH and P-450 induced by CCl4 and acetaminophen. It was also found that A. lappa decreased the malondialdehyde (MDA) content in CCl4 or acetaminophen-intoxicated mice. From these results, it was suggested that A. lappa could protect the liver cells from CCl4 or acetaminophen-induced liver damages, perhaps by its antioxidative effect on hepatocytes, hence eliminating the deleterious effects of toxic metabolites from CCl4 or acetaminophen.

  14. Effect of Hibiscus sabdariffa extract on high fat diet–induced obesity and liver damage in hamsters

    Directory of Open Access Journals (Sweden)

    To-Wei Huang

    2015-10-01

    Full Text Available Background: Obesity is a chronic metabolic disorder associated with an increase in adipogenesis and often accompanied with fatty liver disease. Objective: In this study, we investigated the anti-obesity effects of Hibiscus sabdariffa water extract (HSE in vivo. Method: Eight-weeks-old male mice were divided into six groups (n=8 per group and were fed either normal feed, a high fat diet (HFD, HFD supplemented with different concentrations of HSE, or HFD supplemented with anthocyanin. After 10 weeks of feeding, all the blood and livers were collected for further analysis. Results: Mesocricetus auratus hamster fed with a high-fat diet developed symptoms of obesity, as determined from their body weight change and from their plasma lipid levels. Meanwhile, HSE treatment reduced fat accumulation in the livers of hamsters fed with HFD in a concentration-dependent manner. Administration of HSE reduced the levels of liver cholesterol and triglycerides, which were elevated by HFD. Analysis of the effect of HSE on paraoxonase 1, an antioxidant liver enzyme, revealed that HSE potentially regulates lipid peroxides and protects organs from oxidation-associated damage. The markers of liver damage such as serum alanine aminotransferase and aspartate aminotransferase levels that were elevated by HFD were also reduced on HSE treatment. The effects of HSE were as effective as treatment with anthocyanin; therefore the anthocyanins present in the HSE may play a crucial role in the protection established against HFD-induced obesity. Conclusions: In conclusion HSE administration constitutes an effective and viable treatment strategy against the development and consequences of obesity.

  15. Effect of Hibiscus sabdariffa extract on high fat diet–induced obesity and liver damage in hamsters

    Science.gov (United States)

    Huang, To-Wei; Chang, Chia-Ling; Kao, Erl-Shyh; Lin, Jenq-Horng

    2015-01-01

    Background Obesity is a chronic metabolic disorder associated with an increase in adipogenesis and often accompanied with fatty liver disease. Objective In this study, we investigated the anti-obesity effects of Hibiscus sabdariffa water extract (HSE) in vivo. Method Eight-weeks-old male mice were divided into six groups (n=8 per group) and were fed either normal feed, a high fat diet (HFD), HFD supplemented with different concentrations of HSE, or HFD supplemented with anthocyanin. After 10 weeks of feeding, all the blood and livers were collected for further analysis. Results Mesocricetus auratus hamster fed with a high-fat diet developed symptoms of obesity, as determined from their body weight change and from their plasma lipid levels. Meanwhile, HSE treatment reduced fat accumulation in the livers of hamsters fed with HFD in a concentration-dependent manner. Administration of HSE reduced the levels of liver cholesterol and triglycerides, which were elevated by HFD. Analysis of the effect of HSE on paraoxonase 1, an antioxidant liver enzyme, revealed that HSE potentially regulates lipid peroxides and protects organs from oxidation-associated damage. The markers of liver damage such as serum alanine aminotransferase and aspartate aminotransferase levels that were elevated by HFD were also reduced on HSE treatment. The effects of HSE were as effective as treatment with anthocyanin; therefore the anthocyanins present in the HSE may play a crucial role in the protection established against HFD-induced obesity. Conclusions In conclusion HSE administration constitutes an effective and viable treatment strategy against the development and consequences of obesity. PMID:26475512

  16. Screening for biomarkers of liver injury induced by Polygonum multiflorum: a targeted metabolomic study

    Directory of Open Access Journals (Sweden)

    Qin eDong

    2015-10-01

    Full Text Available Heshouwu (HSW, the dry roots of Polygonum multiflorum, a classical traditional Chinese medicine is used as a tonic for a wide range of conditions,particularly those associated with aging. However, it tends to be taken overdose or long term in these years, which has resulted in liver damage reported in many countries. In this study, the indicative roles of nine bile acids (BAs were evaluated to offer potential biomarkers for HSW induced liver injury. Nine BAs including cholic acid (CA and chenodeoxycholic acid (CDCA, taurocholic acid (TCA, glycocholic acid (GCA, glycochenodeoxycholic acid (GCDCA, deoxycholic acid (DCA, glycodeoxycholic acid (GDCA, ursodeoxycholic acid (UDCA and hyodeoxycholic acid (HDCA in rat bile and serum were detected by a developed LC-MS method after 42 days treatment. Partial least square-discriminate analysis (PLS-DA was applied to evaluate the indicative roles of the nine BAs, and metabolism of the nine BAs was summarized. Significant change was observed for the concentrations of nine BAs in treatment groups compared with normal control; In the PLS-DA plots of nine BAs in bile, normal control and raw HSW groups were separately clustered and could be clearly distinguished, GDCA was selected as the distinguished components for raw HSW overdose treatment group. In the PLS-DA plots of nine BAs in serum, the normal control and raw HSW overdose treatment group were separately clustered and could be clearly distinguished, and HDCA was selected as the distinguished components for raw HSW overdose treatment group. The results indicated the perturbation of nine BAs was associated with HSW induced liver injury; GDCA in bile, as well as HDCA in serum could be selected as potential biomarkers for HSW induced liver injury; it also laid the foundation for the further search on the mechanisms of liver injury induced by HSW .

  17. Anti-fatty liver effects of oils from Zingiber officinale and Curcuma longa on ethanol-induced fatty liver in rats.

    Science.gov (United States)

    Nwozo, Sarah Onyenibe; Osunmadewa, Damilola Adeola; Oyinloye, Babatunji Emmanuel

    2014-01-01

    The present study is aimed at evaluating the protective effects of oils from Zingiber officinale (ginger) and Curcuma longa (turmeric) on acute ethanol-induced fatty liver in male Wistar rats. Ferric reducing antioxidant power activity and oxygen radical absorbance capacity of the oils were evaluated ex vivo. Rats were pretreated for 28 d with standard drug (Livolin Forte) and oils from Z. officinale and C. longa before they were exposed to 45% ethanol (4.8 g/kg) to induce acute fatty liver. Histological changes were observed and the degree of protection was measured by using biochemical parameters such as alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activities. Serum triglyceride (TG) level, total cholesterol (TC) level and the effects of both oils on reduced gluthatione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and hepatic malondialdehyde (MDA) levels were estimated. Oils from Z. officinale and C. longa at a dose of 200 mg/kg showed hepatoprotection by decreasing the activities of serum enzymes, serum TG, serum TC and hepatic MDA, while they significantly restored the level of GSH as well as GST and SOD activities. Histological examination of rats tissues was related to the obtained results. From the results it may be concluded that oils from Z. officinale and C. longa (200 mg/kg) exhibited hepatoprotective activity in acute ethanol-induced fatty liver and Z. officinale oil was identified to have better effects than C. longa oil.

  18. Vildagliptin Can Alleviate Endoplasmic Reticulum Stress in the Liver Induced by a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoqing Ma

    2018-01-01

    Full Text Available Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD, high fat diet (HFD, and HFD administered with vildagliptin (50 mg/Kg (V-HFD. After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27% and liver triglycerides (314.75% compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.

  19. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats.

    Science.gov (United States)

    S, Latha; Chaudhary, Sheetal; R S, Ray

    2017-11-01

    Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Extended UVB Exposures Alter Tumorigenesis and Treatment Efficacy in a Murine Model of Cutaneous Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Erin M. Burns

    2013-01-01

    Full Text Available Epidemiological studies support a link between cumulative sun exposure and cutaneous squamous cell carcinoma (SCC development. However, the presumed effects of extended ultraviolet light B (UVB exposure on tumorigenesis in the sexes have not been formally investigated. We examined differences in ultimate tumorigenesis at 25 weeks in mice exposed to UVB for either 10 or 25 weeks. Additionally, we investigated the effect of continued UVB exposure on the efficacy of topical treatment with anti-inflammatory (diclofenac or antioxidant (C E Ferulic or vitamin E compounds on modulating tumorigenesis. Vehicle-treated mice in the 25-week UVB exposure model exhibited an increased tumor burden and a higher percentage of malignant tumors compared to mice in the 10-week exposure model, which correlated with increases in total and mutant p53-positive epidermal cells. Only topical diclofenac decreased tumor number and burden in both sexes regardless of UVB exposure length. These data support the commonly assumed but not previously demonstrated fact that increased cumulative UVB exposure increases the risk of UVB-induced SCC development and can also affect therapeutic efficacies. Our study suggests that cessation of UVB exposure by at-risk patients may decrease tumor development and that topical NSAIDs such as diclofenac may be chemopreventive.

  1. Extended UVB Exposures Alter Tumorigenesis and Treatment Efficacy in a Murine Model of Cutaneous Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Burns, E. M.; Tober, K. L.; Riggenbach, J. A.; Oberyszyn, T. M.; Kusewitt, D. F.; Young, G. S.

    2013-01-01

    Epidemiological studies support a link between cumulative sun exposure and cutaneous squamous cell carcinoma (SCC) development. However, the presumed effects of extended ultraviolet light B (UVB) exposure on tumorigenesis in the sexes have not been formally investigated. We examined differences in ultimate tumorigenesis at 25 weeks in mice exposed to UVB for either 10 or 25 weeks. Additionally, we investigated the effect of continued UVB exposure on the efficacy of topical treatment with anti-inflammatory (diclofenac) or antioxidant (C E Ferulic or vitamin E) compounds on modulating tumorigenesis. Vehicle-treated mice in the 25-week UVB exposure model exhibited an increased tumor burden and a higher percentage of malignant tumors compared to mice in the 10-week exposure model, which correlated with increases in total and mutant p53-positive epidermal cells. Only topical diclofenac decreased tumor number and burden in both sexes regardless of UVB exposure length. These data support the commonly assumed but not previously demonstrated fact that increased cumulative UVB exposure increases the risk of UVB-induced SCC development and can also affect therapeutic efficacies. Our study suggests that cessation of UVB exposure by at-risk patients may decrease tumor development and that topical NSAIDs such as diclofenac may be chemo preventive.

  2. Kinetics of the transformation of n-propyl gallate and structural analogs in the perfused rat liver

    International Nuclear Information System (INIS)

    Eler, Gabrielle Jacklin; Santos, Israel Souza; Giaretta de Moraes, Amarilis; Mito, Márcio Shigueaki; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2013-01-01

    n-Propyl gallate and its analogs are used in foods and other products to prevent oxidation. In the liver the compound exerts several harmful effects, especially gluconeogenesis inhibition. The mode of transport and distribution of n-propyl gallate and its kinetics of biotransformation have not yet been investigated. To fill this gap the transformation, transport and distribution of n-propyl gallate and two analogs were investigated in the rat liver. Isolated perfused rat liver was used. n-Propyl gallate, methyl gallate, n-octyl gallate and transformation products were quantified by high pressure-liquid chromatography coupled to fluorescence detection. The interactions of n-propyl gallate and analogs with the liver presented three main characteristics: (1) the hydrolytic release of gallic acid from n-propyl gallate and methyl gallate was very fast compared with the subsequent transformations of the gallic acid moiety; (2) transport of the esters was very fast and flow-limited in contrast to the slow and barrier-limited transport of gallic acid; (3) the apparent distribution volume of n-propyl gallate, but probably also of methyl gallate and n-octyl gallate, greatly exceeded the water space in the liver, contrary to the gallic acid space which is smaller than the water space. It can be concluded that at low portal concentrations (< 50 μM) the gallic acid esters are 100% extracted during a single passage through the liver, releasing mainly gallic acid into the systemic circulation. For the latter a considerable time is required until complete biotransformation. The exposure of the liver to the esters, however, is quite prolonged due to extensive intracellular binding. - Highlights: • The liver binds very strongly n-propyl gallate and releases basically gallic acid. • n-propyl gallate and analogs undergo concentrative flow-limited distribution. • Gallic acid undergoes barrier-limited distribution and is slowly transformed. • The long residence time of n

  3. Kinetics of the transformation of n-propyl gallate and structural analogs in the perfused rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Eler, Gabrielle Jacklin; Santos, Israel Souza; Giaretta de Moraes, Amarilis; Mito, Márcio Shigueaki; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar, E-mail: adebracht@uol.com.br

    2013-11-15

    n-Propyl gallate and its analogs are used in foods and other products to prevent oxidation. In the liver the compound exerts several harmful effects, especially gluconeogenesis inhibition. The mode of transport and distribution of n-propyl gallate and its kinetics of biotransformation have not yet been investigated. To fill this gap the transformation, transport and distribution of n-propyl gallate and two analogs were investigated in the rat liver. Isolated perfused rat liver was used. n-Propyl gallate, methyl gallate, n-octyl gallate and transformation products were quantified by high pressure-liquid chromatography coupled to fluorescence detection. The interactions of n-propyl gallate and analogs with the liver presented three main characteristics: (1) the hydrolytic release of gallic acid from n-propyl gallate and methyl gallate was very fast compared with the subsequent transformations of the gallic acid moiety; (2) transport of the esters was very fast and flow-limited in contrast to the slow and barrier-limited transport of gallic acid; (3) the apparent distribution volume of n-propyl gallate, but probably also of methyl gallate and n-octyl gallate, greatly exceeded the water space in the liver, contrary to the gallic acid space which is smaller than the water space. It can be concluded that at low portal concentrations (< 50 μM) the gallic acid esters are 100% extracted during a single passage through the liver, releasing mainly gallic acid into the systemic circulation. For the latter a considerable time is required until complete biotransformation. The exposure of the liver to the esters, however, is quite prolonged due to extensive intracellular binding. - Highlights: • The liver binds very strongly n-propyl gallate and releases basically gallic acid. • n-propyl gallate and analogs undergo concentrative flow-limited distribution. • Gallic acid undergoes barrier-limited distribution and is slowly transformed. • The long residence time of n

  4. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    Science.gov (United States)

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  5. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  6. The Effect of Nigella Sativa Extract on Alpha-ketoglutarate Activity and Histopathologic Changes on Rat Liver Induced by Monosodium Glutamate

    Directory of Open Access Journals (Sweden)

    Ala Sh Emhemed Eshami

    2015-09-01

    Full Text Available Monosodium glutamate (MSG is a commonly used food additive and found in most soups, fish, and processed meat. The use of MSG in food is growing. However, the fear of consuming MSG has increased in the last few years due to the adverse reactions and toxicity in the liver. Nigella sativa (NS is used as traditional medicine for the treatment of many diseases. It has been extensively investigated in recent years due to its notable pharmacological properties such as inhibit oxidative stress. The present study was undertaken to investigate the effect of different doses of Nigella Sativa on alpha KGDH activity and liver histology of MSG-induced rats. The animals (n=30 were grouped into A (control, B (treated with MSG 1g/kg.bw , C (treated with MSG 1g/kg.bw and NS 0.1 g/kg.bw, D (treated with MSG 1g/kg.bw and NS 0.2 g/kg.bw, E (treated with MSG 1g/kg.bw and NS 0.4 g/kg.bw and F (given a daily NS extract 0.2 g/kg.bw. Alpha KGDH activity was investigated using ELISA method and liver histopathology by light microscope. The MSG treatment increased Alpha KGDH activity and disturbed liver architecture, hemorrhage in the central veins, areas of necrosis, vacuolation and increased inflammatory cells infiltration. The condition was normalized by treatment NS on dose 0.2 and 0.4 g/kg.bw. The findings showed that the administration of MSG increases alpha KGDH and induces damage in liver tissue. Nigella sativa extract can reduce alpha KGDH and prevent liver damage caused by MSG.

  7. p53-Dependent Nestin Regulation Links Tumor Suppression to Cellular Plasticity in Liver Cancer

    DEFF Research Database (Denmark)

    Tschaharganeh, Darjus F; Xue, Wen; Calvisi, Diego F

    2014-01-01

    The p53 tumor suppressor coordinates a series of antiproliferative responses that restrict the expansion of malignant cells, and as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor-cell-associated protei...... by p53 restricts cellular plasticity and tumorigenesis in liver cancer....

  8. Portulaca oleracea L. alleviates liver injury in streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Zheng G

    2017-12-01

    Full Text Available Guoyin Zheng,1,* Fengfeng Mo,2,* Chen Ling,3,* Hao Peng,1 Wei Gu,1 Min Li,2 Zhe Chen1 1Department of Traditional Chinese Medicine, Changhai Hospital, 2Department of Military Hygiene, Second Military Medical University, 3Department of Biology, School of Life Science, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Purslane is a widespread succulent herb that exhibits various pharmacological effects. The purpose of this study was to evaluate the protective effect of Portulaca oleracea L. (purslane on streptozotocin-induced diabetes in mice. Oral glucose-tolerance tests were carried out to assess blood glucose levels and body weight and food intake were recorded. The biochemical parameters anti-aspartate aminotransferase, alanine aminotransferase, insulin, triglycerides, total cholesterol, IL-6, IL-1β, and TNFα were also measured. The pathological condition of liver tissues were examined by hematoxylin–eosin staining. Rho, ROCK1, ROCK2, NFκBp65, p-NFκBp65, IκBα, and p-IκBα expression in liver tissue were analyzed by Western blot. Purslane increased body weight and decreased food intake. Purslane also significantly reduced concentrations of glucose, anti-aspartate aminotransferase, alanine ­aminotransferase, triglycerides, total cholesterol, IL-6, IL-1β, and TNFα in serum. Serum insulin was elevated with purslane treatment. In addition, pathologic liver changes in diabetic mice were also alleviated by purslane. Obtained data revealed that purslane restored the levels of Rho–NFκB signaling-related proteins in comparison with those of diabetic mice. Above all, it can be assumed that purslane might play a positive role in regulating streptozotocin-induced liver injury through suppressing the Rho–NFκB pathway. Keywords: Portulaca oleracea L., diabetes, liver injury, Rho–NFκB

  9. Alteraciones hepáticas inducidas por la nutrición parenteral

    OpenAIRE

    J Salas Salvado; A Recaséns Garica

    1993-01-01

    Liver disorders induced by parenteral nutrition Alteraciones hepáticas inducidas por la nutrición parenteral Liver disorders induced by parenteral nutrition Alteraciones hepáticas inducidas por la nutrición parenteral

  10. Temozolomide-induced liver damage. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F.; Hecht, M.; Schmidtner, J.; Semrau, S.; Fietkau, R. [University of Erlangen-Nuremberg, Department of Radiation Oncology, Erlangen (Germany)

    2014-04-15

    Temozolomide (TMZ) is an alkylating agent used in chemoradiotherapy and adjuvant chemotherapy regimens for treatment of newly diagnosed or recurrent glioblastoma. In Germany alone, 900,000 daily doses of the drug are prescribed each year. Therefore, all severe side effects of TMZ, even those rarely observed, are relevant to radiotherapists. We report a case of severe drug-induced toxic hepatitis that developed during chemoradiotherapy with TMZ in a patient with glioblastoma multiforme. Transaminase elevation was observed after 5 weeks of TMZ treatment, followed by severe jaundice symptoms which only subsided 2 months later. These findings were consistent with diagnosis of the mixed hepatic/cholestatic type of drug-induced toxic hepatitis. Due to the early termination of treatment, no life-threatening complications occurred in our patient. However, rare reports of encephalopathy and fatality as complications of TMZ therapy can be found in the literature. When using TMZ for treatment of glioblastoma, monitoring of liver enzyme levels should be performed twice weekly to prevent fatal toxic hepatitis. In the case of any drug-induced hepatitis, TMZ must be discontinued immediately. (orig.)

  11. Factors affecting drug-induced liver injury: antithyroid drugs as instances

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2014-09-01

    Full Text Available Methimazole and propylthiouracil have been used in the management of hyperthyroidism for more than half a century. However, hepatotoxicity is one of the most deleterious side effects associated with these medications. The mechanism(s of hepatic injury induced by antithyroid agents is not fully recognized yet. Furthermore, there are no specific tools for predicting the occurrence of hepatotoxicity induced by these drugs. The purpose of this article is to give an overview on possible susceptibility factors in liver injury induced by antithyroid agents. Age, gender, metabolism characteristics, alcohol consumption, underlying diseases, immunologic mechanisms, and drug interactions are involved in enhancing antithyroid drugs-induced hepatic damage. An outline on the clinically used treatments for antithyroid drugs-induced hepatotoxicity and the potential therapeutic strategies found to be effective against this complication are also discussed.

  12. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice.

    Science.gov (United States)

    Cohen, Jessica I; Roychowdhury, Sanjoy; McMullen, Megan R; Stavitsky, Abram B; Nagy, Laura E

    2010-08-01

    Complement is involved in the development of alcoholic liver disease in mice; however, the mechanisms for complement activation during ethanol exposure have not been identified. C1q, the recognition subunit of the first complement component, binds to apoptotic cells, thereby activating the classical complement pathway. Because ethanol exposure increases hepatocellular apoptosis, we hypothesized that ethanol-induced apoptosis would lead to activation of complement via the classical pathway. Wild-type and C1qa-/- mice were allowed free access to ethanol-containing diets or pair-fed control diets for 4 or 25 days. Ethanol feeding for 4 days increased apoptosis of Kupffer cells in both wild-type and C1qa-/- mice. Ethanol-induced deposition of C1q and C3b/iC3b/C3c was colocalized with apoptotic Kupffer cells in wild-type, but not C1qa-/-, mice. Furthermore, ethanol-induced increases in tumor necrosis factor-alpha and interleukin-6 expression at this early time point were suppressed in C1q-deficient mice. Chronic ethanol feeding (25 days) increased steatosis, hepatocyte apoptosis, and activity of serum alanine and aspartate aminotransferases in wild-type mice. These markers of hepatocyte injury were attenuated in C1qa-/- mice. In contrast, chronic ethanol (25 days)-induced increases in cytochrome P450 2E1 expression and oxidative stress did not differ between wild-type and C1qa-/- mice. For the first time, these data indicate that ethanol activates the classical complement pathway via C1q binding to apoptotic cells in the liver and that C1q contributes to the pathogenesis of ethanol-induced liver injury. Copyright (c) 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Potential and Challenges of Induced Pluripotent Stem Cells in Liver Diseases Treatment

    Directory of Open Access Journals (Sweden)

    Yue Yu

    2014-09-01

    Full Text Available Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from cell therapy involving living metabolically active cells, either by treatment of their liver disease, or by prevention of their disease phenotype. Cell therapies, including hepatocyte transplantation and bioartificial liver (BAL devices, have been proposed as therapeutic alternatives to the shortage of transplantable livers. Both BAL and hepatocyte transplantation are cellular therapies that avoid use of a whole liver. Hepatocytes are also widely used in drug screening and liver disease modelling. However, the demand for human hepatocytes, heavily outweighs their availability by conventional means. Induced pluripotent stem cells (iPSCs technology brings together the potential benefits of embryonic stem cells (ESCs (i.e., self-renewal, pluripotency and addresses the major ethical and scientific concerns of ESCs: embryo destruction and immune-incompatibility. It has been shown that hepatocyte-like cells (HLCs can be generated from iPSCs. Furthermore, human iPSCs (hiPSCs can provide an unlimited source of human hepatocytes and hold great promise for applications in regenerative medicine, drug screening and liver diseases modelling. Despite steady progress, there are still several major obstacles that need to be overcome before iPSCs will reach the bedside. This review will focus on the current state of efforts to derive hiPSCs for potential use in modelling and treatment of liver disease.

  14. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    Science.gov (United States)

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  15. The inverse relationship between bladder and liver in 4-aminobiphenyl-induced DNA damage

    Science.gov (United States)

    Stablewski, Aimee B.; Vouros, Paul; Zhang, Yuesheng

    2015-01-01

    Bladder cancer risk is significantly higher in men than in women. 4-Aminobiphenyl (ABP) is a major human bladder carcinogen from tobacco smoke and other sources. In mice, male bladder is more susceptible to ABP-induced carcinogenesis than female bladder, but ABP is more carcinogenic in the livers of female mice than of male mice. Here, we show that castration causes male mice to acquire female phenotype regarding susceptibility of bladder and liver to ABP. However, spaying has little impact on organ susceptibility to ABP. Liver UDP-glucuronosyltransferases (UGTs) are believed to protect liver against but sensitize bladder to ABP, as glucuronidation of ABP and its metabolites generally reduces their toxicity and promotes their elimination via urine, but the metabolites are labile in urine, delivering carcinogenic species to the bladder. Indeed, liver expression of ABP-metabolizing human UGT1A3 transgene in mice increases bladder susceptibility to ABP. However, ABP-specific liver UGT activity is significantly higher in wild-type female mice than in their male counterparts, and castration also significantly increases ABP-specific UGT activity in the liver. Taken together, our data suggest that androgen increases bladder susceptibility to ABP via liver, likely by modulating an ABP-metabolizing liver enzyme, but exclude UGT as an important mediator. PMID:25596734

  16. Changes of liver function and serum hepatic fibrosis markers levels in patients with trichloroethylene induced drugrash-like dermatitis

    International Nuclear Information System (INIS)

    Li Senhua; Xie Guoqiang; Zeng Zeming

    2004-01-01

    Objective: To investigate the liver function damage and serum hepatic fibrosis markers levels changes in patients suffering from trichloroethylene induced drugrash-like dermatitis. Methods: Serum hyaluronic acid (HA), laminin (LN), procollagen type III (PC III), type IV collagen ( IV C) levels (with RIA), mono-amine oxidase (MAO) activity (with chemo-colorimetry) and liver function tests (including ALT, AGT, total protein, albumin, total bile acid, with automated biochemical analysis system) were determined in 30 controls and 30 patients with trichloroethylene induced drugrash-like dermatitis. Results: Severe liver function damage was demonstrated in all the patients. The serum hepatic fibrosis markers levels were significantly increased (vs controls, P<0.01) and correlated well with the degree of hepatic damage. Conclusion: Liver damage occurred early in patients with trichloroethylene induced dermatitis, accompanied with laboratory evidence of hepatic fibrosis. (authors)

  17. Clinical characteristics and outcomes of traditional Chinese medicine-induced liver injury: a systematic review.

    Science.gov (United States)

    Wang, Ran; Qi, Xingshun; Yoshida, Eric M; Méndez-Sánchez, Nahum; Teschke, Rolf; Sun, Mingyu; Liu, Xu; Su, Chunping; Deng, Jiao; Deng, Han; Hou, Feifei; Guo, Xiaozhong

    2018-04-01

    Traditional Chinese medicine (TCM) is becoming increasingly popular and related adverse events are often ignored or underestimated. This systematic review aimed to evaluate the clinical characteristics and outcomes of TCM-induced liver injury (TCM-ILI) and to estimate the proportion of TCM-ILI in all drug-induced liver injuries (DILI). China National Knowledge Infrastructure, Wanfang, VIP, PubMed, and Embase databases were searched. Demographic, clinical, and survival data were extracted and pooled. Factors associated with worse outcomes were calculated. For the proportion meta-analyses, the data were pooled by using a random-effects model. Overall, 21,027 articles were retrieved, of which 625 were finally included. There was a predominance of female and older patients. The proportion of liver transplantation was 2.18% (7/321). The mortality was 4.67% (15/321). Male, higher aspartate aminotransferase and direct bilirubin, and lower albumin were significantly associated with an increased risk of death/liver transplantation in TCM-ILI patients. The proportion of TCM-ILI in all DILI was 25.71%. The proportion was gradually increased with year. Our work summarises current knowledge regarding clinical presentation, disease course, and prognosis of TCM-ILI. TCM can result in hepatotoxicity, even death or necessitate life-saving liver transplantation. Governmental regulation of TCM products should be strictly established.

  18. Hepatoprotective Effects of Panus giganteus (Berk. Corner against Thioacetamide- (TAA- Induced Liver Injury in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Lun Wong

    2012-01-01

    Full Text Available Panus giganteus, a culinary and medicinal mushroom consumed by selected indigenous communities in Malaysia, is currently being considered for large scale cultivation. This study was undertaken to investigate the hepatoprotective effects of P. giganteus against thioacetamide- (TAA- induced liver injury in Sprague-Dawley rats. The rats were injected intraperitoneally with TAA thrice weekly and were orally administered freeze-dried fruiting bodies of P. giganteus (0.5 or 1 g/kg daily for two months, while control rats were given vehicle or P. giganteus only. After 60 days, rats administered with P. giganteus showed lower liver body weight ratio, restored levels of serum liver biomarkers and oxidative stress parameters comparable to treatment with the standard drug silymarin. Gross necropsy and histopathological examination further confirmed the hepatoprotective effects of P. giganteus. This is the first report on hepatoprotective effects of P. giganteus. The present study showed that P. giganteus was able to prevent or reduce the severity of TAA-induced liver injury.

  19. Idiosyncratic Drug-Induced Liver Injury: Is Drug-Cytokine Interaction the Linchpin?

    Science.gov (United States)

    Roth, Robert A; Maiuri, Ashley R; Ganey, Patricia E

    2017-02-01

    Idiosyncratic drug-induced liver injury continues to be a human health problem in part because drugs that cause these reactions are not identified in current preclinical testing and because progress in prevention is hampered by incomplete knowledge of mechanisms that underlie these adverse responses. Several hypotheses involving adaptive immune responses, inflammatory stress, inability to adapt to stress, and multiple, concurrent factors have been proposed. Yet much remains unknown about how drugs interact with the liver to effect death of hepatocytes. Evidence supporting hypotheses implicating adaptive or innate immune responses in afflicted patients has begun to emerge and is bolstered by results obtained in experimental animal models and in vitro systems. A commonality in adaptive and innate immunity is the production of cytokines, including interferon-γ (IFNγ). IFNγ initiates cell signaling pathways that culminate in cell death or inhibition of proliferative repair. Tumor necrosis factor-α, another cytokine prominent in immune responses, can also promote cell death. Furthermore, tumor necrosis factor-α interacts with IFNγ, leading to enhanced cellular responses to each cytokine. In this short review, we propose that the interaction of drugs with these cytokines contributes to idiosyncratic drug-induced liver injury, and mechanisms by which this could occur are discussed. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  1. Linc00210 drives Wnt/β-catenin signaling activation and liver tumor progression through CTNNBIP1-dependent manner.

    Science.gov (United States)

    Fu, Xiaomin; Zhu, Xiaoyan; Qin, Fujun; Zhang, Yong; Lin, Jizhen; Ding, Yuechao; Yang, Zihe; Shang, Yiman; Wang, Li; Zhang, Qinxian; Gao, Quanli

    2018-03-14

    Liver tumor initiating cells (TICs) have self-renewal and differentiation properties, accounting for tumor initiation, metastasis and drug resistance. Long noncoding RNAs are involved in many physiological and pathological processes, including tumorigenesis. DNA copy number alterations (CNA) participate in tumor formation and progression, while the CNA of lncRNAs and their roles are largely unknown. LncRNA CNA was determined by microarray analyses, realtime PCR and DNA FISH. Liver TICs were enriched by surface marker CD133 and oncosphere formation. TIC self-renewal was analyzed by oncosphere formation, tumor initiation and propagation. CRISPRi and ASO were used for lncRNA loss of function. RNA pulldown, western blot and double FISH were used to identify the interaction between lncRNA and CTNNBIP1. Using transcriptome microarray analysis, we identified a frequently amplified long noncoding RNA in liver cancer termed linc00210, which was highly expressed in liver cancer and liver TICs. Linc00210 copy number gain is associated with its high expression in liver cancer and liver TICs. Linc00210 promoted self-renewal and tumor initiating capacity of liver TICs through Wnt/β-catenin signaling. Linc00210 interacted with CTNNBIP1 and blocked its inhibitory role in Wnt/β-catenin activation. Linc00210 silencing cells showed enhanced interaction of β-catenin and CTNNBIP1, and impaired interaction of β-catenin and TCF/LEF components. We also confirmed linc00210 copy number gain using primary hepatocellular carcinoma (HCC) samples, and found the correlation between linc00210 CNA and Wnt/β-catenin activation. Of interest, linc00210, CTNNBIP1 and Wnt/β-catenin signaling targeting can efficiently inhibit tumor growth and progression, and liver TIC propagation. With copy-number gain in liver TICs, linc00210 is highly expressed along with liver tumorigenesis. Linc00210 drives the self-renewal and propagation of liver TICs through activating Wnt/β-catenin signaling. Linc00210

  2. N-nitrosamines induced infertility and hepatotoxicity in male rabbits.

    Science.gov (United States)

    Sheweita, S A; El Banna, Y Y; Balbaa, M; Abdullah, I A; Hassan, H E

    2017-09-01

    fibrosis around portal areas were seen in hepatic tissues. In the testes, histopathological examination displayed disorganized seminiferous tubules with degeneration of germinal epithelium and Sertoli cells. Also, spermatogenic cells had pyknotic nuclei and others were detached from basement membranes of seminiferous tubules, edema was seen between seminiferous tubules. Moreover, the present data showed that MEN and DEN down-regulated the protein expression of both CYP19A1 and 21A2 in both livers and testes of male rabbits. In addition, both MEN and DEN decreased levels of testosterone and estradiol in plasma of treated rabbits. On the one hand, DMN and DPN markedly up-regulated the protein expression of CYP19A1 in both hepatic and testicular tissues of treated rabbits. These compounds potentially increased estradiol and decreased testosterone levels. On the other hand, no correlation was found between the expression of CYP11A1 and levels of both testosterone and estradiol. It is concluded that most of tested N-nitrosamines induce different changes, which could be a new mechanism of infertility due to exposure to N-nitrosamines from different environmental sources. © 2017 Wiley Periodicals, Inc.

  3. Case Characterization, Clinical Features and Risk Factors in Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Aida Ortega-Alonso

    2016-05-01

    Full Text Available Idiosyncratic drug-induced liver injury (DILI caused by xenobiotics (drugs, herbals and dietary supplements presents with a range of both phenotypes and severity, from acute hepatitis indistinguishable of viral hepatitis to autoimmune syndromes, steatosis or rare chronic vascular syndromes, and from asymptomatic liver test abnormalities to acute liver failure. DILI pathogenesis is complex, depending on the interaction of drug physicochemical properties and host factors. The awareness of risk factors for DILI is arising from the analysis of large databases of DILI cases included in Registries and Consortia networks around the world. These networks are also enabling in-depth phenotyping with the identification of predictors for severe outcome, including acute liver failure and mortality/liver transplantation. Genome wide association studies taking advantage of these large cohorts have identified several alleles from the major histocompatibility complex system indicating a fundamental role of the adaptive immune system in DILI pathogenesis. Correct case definition and characterization is crucial for appropriate phenotyping, which in turn will strengthen sample collection for genotypic and future biomarkers studies.

  4. Administration of N-nitrosodimethylamine, N-nitrosopyrrolidine, or N'-nitrosonornicotine to nursing rats: their interactions with liver and kidney nucleic acids from sucklings

    International Nuclear Information System (INIS)

    Diaz Gomez, M.I.; Tamayo, D.; Castro, J.A.

    1986-01-01

    When nursing Sprague-Dawley rats were treated with [ 14 C]N-nitrosodimethylamine [(NDMA) CAS: 62-75-9], N-nitrosopyrrolidine (CAS:930-55-2), or N'-nitrosonornicotine (CAS: 16543-55-8), the liver and kidney DNA from their 14-day-old offspring that had been nursed over a 24-hour period became labeled. Upon analysis, liver DNA from sucklings whose nursing mothers were treated with [ 14 C]NDMA showed N7-methylguanine- and O6-methylguanine-altered bases. The results suggest that these nitrosamines, which are present in food, tobacco smoke, and in different environmental sources, are a risk not only for lactating mothers but also for the nursing infants

  5. Preventive effect of zinc on nickel-induced oxidative liver injury in rats

    African Journals Online (AJOL)

    MIDOU

    2013-12-18

    Dec 18, 2013 ... induced oxidative liver injury and lipid peroxidation probably due to its antioxidant proprieties. ... enzyme in every enzyme classification (Coyle et al.,. 2002). Others .... control group had a regular histological structure with a.

  6. Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis.

    Science.gov (United States)

    Yang, Qing-Li; Shen, Ji-Qing; Xue, Yan; Cheng, Xiao-Bing; Jiang, Zhi-Hua; Yang, Yi-Chao; Chen, Ying-Dan; Zhou, Xiao-Nong

    2015-12-01

    The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.

  7. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.

    Science.gov (United States)

    Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya

    2016-12-01

    Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols. Copyright

  8. Ultrasound imaging of Nd:YAG laser-induced tissue coagulation in porcine livers.

    Science.gov (United States)

    Ritzel, U; Wietzke-Braun, P; Brinck, U; Leonhardt, U; Ramadori, G

    2001-12-01

    Absorption of laser light energy induces denaturation of proteins and thermocoagulation of irradiated tissue. Recently, MRI-guided laser coagulation in combination with MR thermometry was reported as a treatment of liver tumours. In the present study ultrasonographic imaging was evaluated for its suitability in laser induced tissue thermocoagulation. Fresh porcine livers were used for ex vivo examinations. Placement of the laser catheter and tissue coagulation during laser light emission were online monitored by ultrasonography. Nd:YAG laser-induced tissue damage was evaluated by macroscopical and microscopical examinations of histological sections. During laser light emission a marked hyperdense signal enhancement was observed by ultrasonography which strongly correlated with the extent of macroscopic tissue damage. The size of laser-induced coagulation zone depended on both the power setting and total energy delivered. Carbonization of the tissue surrounding the laser tip is a limiting factor because of laser light absorption. However our data indicate that using appropriate laser energy and exposure time prevent carbonization although carbonization can not be visualized by ultrasonography. It is concluded from the present ex vivo studies that laser coagulation can be effectively performed under ultrasonographic guidance.

  9. Dietary low-dose sucrose modulation of IQ-induced genotoxicity in the colon and liver of Big Blue((TM)) rats

    DEFF Research Database (Denmark)

    Moller, P.; Hansen, Max; Autrup, H.

    2003-01-01

    Earlier studies have indicated that sucrose increases 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced aberrant crypt foci in the colon. In this study, we investigated the role of sucrose in IQ-induced genotoxicity of the colon mucosa and liver. Big Blue(TM) rats were fed with IQ (20 ppm...... in feed) and/or sucrose (3.45 or 6.85 wt.% in feed) for 3 weeks. IQ increased DNA strand breaks in the colon, whereas the mutation frequency was increased in the liver. The level of IQ-induced DNA adducts was elevated in both colon mucosa cells and liver. In the liver, high sucrose intake increased...... the level of DNA adducts above that of IQ and low sucrose intake. Oxidative DNA damage detected in terms of 7-hydro-8-oxo-2'-deoxyguanosine by HPLC-EC, or endonuclease HI or formamidopyrimidine DNA glycosylase sensitive sites were unaltered in the colon and liver. Expression of ERCC1 and OGG1 mRNA levels...

  10. Antioxidant and antiapoptotic effects of green tea polyphenols against azathioprine-induced liver injury in rats.

    Science.gov (United States)

    El-Beshbishy, Hesham A; Tork, Ola M; El-Bab, Mohamed F; Autifi, Mohamed A

    2011-04-01

    Green tea polyphenols (GTP) is considered to have protective effects against several diseases. The hepatotoxicity of azathioprine (AZA) has been reported and was found to be associated with oxidative damage. This study was conducted to evaluate the role of GTP to protect against AZA-induced liver injury in rats. AZA was administered i.p. in a single dose (50mgkg(-1)) to adult male rats. AZA-intoxicated rats were orally administered GTP (either 100mgkg(-1)day(-1) or 300mgkg(-1)day(-1), for 21 consecutive days, started 7 days prior AZA injection). AZA administration to rats resulted in significant elevation of serum transaminases (sALT and sAST), alkaline phosphatase (sALP), depletion of hepatic reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx), accumulation of oxidized glutathione (GSSG), elevation of lipid peroxides (LPO) expressed as malondialdehyde (MDA), reduction of the hepatic total antioxidant activity (TAA), decrease serum total proteins and elevation of liver protein carbonyl content. Significant rises in liver tumor necrosis factor-alpha (TNF-α) and caspase-3 levels were noticed in AZA-intoxicated rats. Treatment of the AZA-intoxicated rats with GTP significantly prevented the elevations of sALT, sAST and sALP, inhibited depletion of hepatic GSH, GPx, CAT and GSSG and inhibited MDA accumulation. Furthermore, GTP had normalized serum total proteins and hepatic TAA, CAT, TNF-α and caspase-3 levels of AZA-intoxicated rats. In addition, GTP prevented the AZA-induced apoptosis and liver injury as indicated by the liver histopathological analysis. The linear regression analysis showed significant correlation in either AZA-GTP100 or AZA-GTP300 groups between TNF-α and each of serum ALT, AST, ALP and total proteins and liver TAA, GPX, CAT, GSH, GSSG, MDA and caspase-3 levels. However, liver TNF-α produced non-significant correlation with the serum total proteins in both AZA-GTP100 and AZA-GTP300 groups. In conclusion, our data indicate

  11. Protective Effects of Pinus halepensis L. Essential Oil on Aspirin-induced Acute Liver and Kidney Damage in Female Wistar Albino Rats.

    Science.gov (United States)

    Bouzenna, Hafsia; Samout, Noura; Amani, Etaya; Mbarki, Sakhria; Tlili, Zied; Rjeibi, Ilhem; Elfeki, Abdelfattah; Talarmin, Hélène; Hfaiedh, Najla

    2016-08-01

    Aromatic and medicinal plants are sources of natural antioxidants thanks to their secondary metabolites. Administration of Pinus halepensis L. (Pinaceae family) in previous studies was found to alleviate deleterious effects of aspirin-induced damage on liver and kidney. The present study, carried out on female rats, evaluates the effects of P. halepensis L. essential oil (EOP) on aspirin (A)-induced damage to liver and kidney. The animals used in this study were rats (n=28) divided into 4 groups of 7 each: (1) a control group (C); (2) a group given NaCl for 56 days then treated with (A) (600 mg/kg) for 4 days (A); (3) a group fed with (EOP) for 56 days then (A) for 4 days; and a group fed with only (EOP) for 56 days and given NaCl for 4 days. Estimations of biochemical parameters in blood were determined using kit methods (Spinreact). Lipid peroxidation levels (TBARS), superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) activities were determined. Histopathological study was done by immersing pieces of both organs in a fixative solution followed by paraffin embeddeding and hematoxylin-eosin staining. Under our experimental conditions, Aspirin at dose 600 mg/kg body weight induced an increase of serum biochemical parameters as well as an oxidative stress in both organs. An increase occurred in TBARS by 108% and 55%, a decrease in SOD by 78% and 53%, CAT by 53% and 78%, and GPx by 78% and 51% in liver and kidney, respectively, compared to control. Administration of EOP given to rats enabled correction in these parameters. It could be concluded that the treatment with P. halepensis L. essential oil inhibited aspirin-induced liver and kidney damage.

  12. Drug-induced Liver Disease in Patients with Diabetes Mellitus

    OpenAIRE

    Iryna, Klyarytskaya; Helen, Maksymova; Elena, Stilidi

    2016-01-01

    The study presented here was accomplished to assess the course of drug-induced liver diseases in patient’s rheumatoid arthritis receiving long-term methotrexate therapy. Diabetes mellitus was revealed as the most significant risk factor. The combination of diabetes mellitus with other risk factors (female sex) resulted in increased hepatic fibrosis, degree of hepatic encephalopathy and reduction of hepatic functions. The effectiveness and safety of ursodeoxycholic acid and cytolytic type-with...

  13. Liver mitochondrial dysfunction and oxidative stress in the pathogenesis of experimental nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Oliveira C.P.M.S.

    2006-01-01

    Full Text Available Oxidative stress and hepatic mitochondria play a role in the pathogenesis of nonalcoholic fatty liver disease. The aim of the present study was to evaluate the role of hepatic mitochondrial dysfunction and oxidative stress in the pathogenesis of the disease. Fatty liver was induced in Wistar rats with a choline-deficient diet (CD; N = 7 or a high-fat diet enriched with PUFAs-omega-3 (H; N = 7 for 4 weeks. The control group (N = 7 was fed a standard diet. Liver mitochondrial oxidation and phosphorylation were measured polarographically and oxidative stress was estimated on the basis of malondialdehyde and glutathione concentrations. Moderate macrovacuolar liver steatosis was observed in the CD group and mild liver steatosis was observed in the periportal area in the H group. There was an increase in the oxygen consumption rate by liver mitochondria in respiratory state 4 (S4 and a decrease in respiratory control rate (RCR in the CD group (S4: 32.70 ± 3.35; RCR: 2.55 ± 0.15 ng atoms of O2 min-1 mg protein-1 when compared to the H and control groups (S4: 23.09 ± 1.53, 17.04 ± 2.03, RCR: 3.15 ± 0.15, 3.68 ± 0.15 ng atoms of O2 min-1 mg protein-1, respectively, P < 0.05. Hepatic lipoperoxide concentrations were significantly increased and the concentration of reduced glutathione was significantly reduced in the CD group. A choline-deficient diet causes moderate steatosis with disruption of liver mitochondrial function and increased oxidative stress. These data suggest that lipid peroxidation products can impair the flow of electrons along the respiratory chain, causing overreduction of respiratory chain components and enhanced mitochondrial reactive oxygen species. These findings are important in the pathogenesis of nonalcoholic fatty liver disease.

  14. Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury.

    Science.gov (United States)

    Volarevic, Vladislav; Markovic, Bojana Simovic; Bojic, Sanja; Stojanovic, Maja; Nilsson, Ulf; Leffler, Hakon; Besra, Gurdyal S; Arsenijevic, Nebojsa; Paunovic, Verica; Trajkovic, Vladimir; Lukic, Miodrag L

    2015-02-01

    Galectin-3 (Gal-3), an endogenous lectin, exhibits pro- and anti-inflammatory effects in various disease conditions. In order to explore the role of Gal-3 in NKT-cell-dependent pathology, we induced hepatitis in C57BL/6 WT and Gal-3-deficient mice by using specific ligand for NKT cells: α-galactosylceramide, glycolipid Ag presented by CD1d. The injection of α-galactosylceramide significantly enhanced expression of Gal-3 in liver NKT and dendritic cells (DCs). Genetic deletion or selective inhibition of Gal-3 (induced by Gal-3-inhibitor TD139) abrogated the susceptibility to NKT-cell-dependent hepatitis. Blood levels of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-12) and their production by liver DCs and NKT cells were also downregulated. Genetic deletion or selective inhibition of Gal-3 alleviated influx of inflammatory CD11c(+) CD11b(+) DCs in the liver and favored tolerogenic phenotype and IL-10 production of liver NKT and DCs. Deletion of Gal-3 attenuated the capacity of DCs to support liver damage in the passive transfer experiments and to produce pro-inflammatory cytokines in vitro. Gal-3-deficient DCs failed to optimally stimulate production of pro-inflammatory cytokines in NKT cells, in vitro and in vivo. In conclusion, Gal-3 regulates the capacity of DCs to support NKT-cell-mediated liver injury, playing an important pro-inflammatory role in acute liver injury. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE{sub 2} and IL-6

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haixia [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zhang, Xinhua [Department of Liver, Biliary And Pancreatic Tumors, Hubei Cancer Hospital, Wuhan 430079 (China); Chen, Xuewei; Li, Ying; Ke, Zunqiong [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Guo, Austin M. [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Department of Pharmacology, New York Medical College, Valhalla, NY 10595 (United States); Chen, Honglei, E-mail: hl-chen@whu.edu.cn [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-09-15

    M2 macrophage polarization is implicated in colorectal cancer development. Isoliquiritigenin (ISL), a flavonoid from licorice, has been reported to prevent azoxymethane (AOM) induced colon carcinogenesis in animal models. Here, in a mouse model of colitis-associated tumorigenesis induced by AOM/dextran sodium sulfate (DSS), we investigated the chemopreventive effects of ISL and its mechanisms of action. Mice were treated with AOM/DSS and randomized to receive either vehicle or ISL (3, 15 and 75 mg/kg). Tumor load, histology, immunohistochemistry, and gene and protein expressions were determined. Intragastric administration of ISL for 12 weeks significantly decreased colon cancer incidence, multiplicity and tumor size by 60%, 55.4% and 42.6%, respectively. Moreover, ISL inhibited M2 macrophage polarization. Such changes were accompanied by downregulation of PGE{sub 2} and IL-6 signaling. Importantly, depletion of macrophages by clodronate (Clod) or zoledronic acid (ZA) reversed the effects of ISL. In parallel, in vitro studies also demonstrated that ISL limited the M2 polarization of RAW264.7 cells and mouse peritoneal macrophages with concomitant inactivation of PGE{sub 2}/PPARδ and IL-6/STAT3 signaling. Conversely, exogenous addition of PGE{sub 2} or IL-6, or overexpression of constitutively active STAT3 reversed ISL-mediated inhibition of M2 macrophage polarization. In summary, dietary flavonoid ISL effectively inhibits colitis-associated tumorigenesis through hampering M2 macrophage polarization mediated by the interplay between PGE{sub 2} and IL-6. Thus, inhibition of M2 macrophage polarization is likely to represent a promising strategy for chemoprevention of colorectal cancer. - Highlights: • Isoliquiritigenin (ISL) prevents colitis-associated tumorigenesis. • ISL inhibits M2 macrophage polarization in vivo and in vitro. • ISL inhibits PGE{sub 2} and IL-6 signaling in colitis-associated tumorigenesis. • ISL may be an attractive candidate agent for

  16. Mangosteen peel extract reduces formalin-induced liver cell death in rats

    Directory of Open Access Journals (Sweden)

    Afiana Rohmani

    2014-08-01

    Full Text Available Background Formalin is a xenobiotic that is now commonly used as a preservative in the food industry. The liver is an organ that has the highest metabolic capacity as compared to other organs. Mangosteen or Garcinia mangostana Linn (GML peel contains xanthones, which are a source of natural antioxidants. The purpose of this study was to evaluate the effect of mangosteen peel extract on formalin-induced liver cell mortality rate and p53 protein expression in Wistar rats. Methods Eighteen rats received formalin orally for 2 weeks, and were subsequently divided into 3 groups, consisting of the formalin-control group receiving a placebo and treatment groups 1 and 2, which were treated with mangosteen peel extract at doses of 200 and 400 mg/kgBW/day, respectively. The treatment was carried out for 1 week, and finally the rats were terminated. The differences in liver cell mortality rate and p53 protein expression were analyzed. Results One-way ANOVA analysis showed significant differences in liver cell mortality rate among the three groups (p=0.004. The liver cell mortality rate in the treatment group receiving 400 mg/kgBW/day extract was lower than that in the formalin-control group. There was no p53 expression in all groups. Conclusions Garcinia mangostana Linn peel extract reduced the mortality rate of liver cells in rats receiving oral formalin. Involvement of p53 expression in liver cell mortality in rats exposed to oral formalin is presumably negligible.

  17. A new liver function test using the asialoglycoprotein-receptor system on the liver cell membrane, 2

    International Nuclear Information System (INIS)

    Kawa, Soukichi; Hazama, Hiroshi; Kojima, Michimasa

    1986-01-01

    We produced labeled neoglycoprotein (GHSA) that is physiologically equivalent to ASGP, and quantitatively examined whether its uptake by the liver is dose-related using the following methods: 1) binding assay between GHSA and ASGP receptors, 2) measurement of the liver extraction ratio in the initial circulation following administration into the portal vein, and 3) measurement of clearance in normal rats and rats with galacosamine-induced acute liver disorder. The binding assay showed a linear relationship between the concentration of 125 I-GHSA and the amount of ASGP receptors obtained from the rat liver. A membrane assay using 125 I-GHSA and the liver cell membrane revealed similar results. The liver extraction ratio in the initial circulation following the administration into the portal vein of normal rabbits was highly dose-dependent (r = -0.95 in the range of 5 - 100 μg GHSA). Serial imaging of 99m Tc-GHSA during two-hour period after administration into the peripheral blood showed specific accumulation in the liver beginning immediately after the intravenous injection and subsequent transport mainly via the biliary system into the small intestine in the normal rat and mainly into the urine in the bile duct ligated rat. As a dynamic model of 99m Tc-GHSA, its circulation through the heart and liver and inactivated release from the liver was used, and two-compartment analysis was made on measurement curves in the heart and liver to obtain clearance parameters. The concentration of administered 99m Tc-GHSA (50 - 100 μg/100 g body weight) showed a positive linear relationship with clearance. Administration of 50 μg/100 g body weight of 99m Tc-GHSA revealed a significant correlation (p < 0.001) between clearance and ASGP receptor activity in normal rats and rats with galactosamine-induced acute liver disorder. (J.P.N.)

  18. Antibody-Directed Glucocorticoid Targeting to CD163 in M2-type Macrophages Attenuates Fructose-Induced Liver Inflammatory Changes

    DEFF Research Database (Denmark)

    Svendsen, Pia; Graversen, Jonas Heilskov; Etzerodt, Anders

    2017-01-01

    Increased consumption of high-caloric carbohydrates contributes substantially to endemic non-alcoholic fatty liver disease in humans, covering a histological spectrum from fatty liver to steatohepatitis. Hypercaloric intake and lipogenetic effects of fructose and endotoxin-driven activation...... changes in rats on a high-fructose diet. The diet induced severe non-alcoholic steatohepatitis (NASH)-like changes within a few weeks but the antibody-drug conjugate strongly reduced inflammation, hepatocyte ballooning, fibrosis, and glycogen deposition. Non-conjugated dexamethasone or dexamethasone...... seems to be a promising approach for safe treatment of fructose-induced liver inflammation....

  19. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Kanikkai Raja Aseer

    Full Text Available Secreted protein acidic and rich in cysteine (SPARC is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ and its targets (TNFα, Il6, CRP, and Fn1 as well as myeloperoxidase (Mpo and C-X-C chemokine receptor type 2 (Cxcr2. Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels.

  20. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Aseer, Kanikkai Raja; Kim, Sang Woo; Choi, Myung-Sook; Yun, Jong Won

    2015-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ)-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and its targets (TNFα, Il6, CRP, and Fn1) as well as myeloperoxidase (Mpo) and C-X-C chemokine receptor type 2 (Cxcr2). Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels. PMID:26110898

  1. Hepatoprotective and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice.

    Science.gov (United States)

    Karuppanan, Muthupillai; Krishnan, Manigandan; Padarthi, Pavankumar; Namasivayam, Elangovan

    2014-01-01

    To explore the antioxidant and hepatoprotective effect of ethanolic Mangifera indica (EMI) and methanolic Mangifera indica (MMI) leaf extracts in mercuric chloride (HgCl 2 ) induced toxicity in Swiss albino mice. Toxicity in mice was induced with HgCl 2 (5.0 mg/kg, i.p.), followed by oral intervention with EMI and MMI extracts (25 mg and 50 mg/kg. body wt.) for 30 days. The extent of liver damage was assessed from the extents of histopathological, morphological, antioxidant and liver enzymes. Mercuric chloride-induced mice showed an increased cellular damage whereas leaf extracts of EMI and MMI-treated mice showed recovery of damaged hepatocytes. Mercuric chloride intoxicated mice exhibited a significant (p Mangifera indica extract remarkably reduces hepatotoxicity in mice possibly through its antioxidant potentials. How to cite this article: Karuppanan M, Krishnan M, Padarthi P, Namasivayam E. Hepatoprotec-tive and Antioxidant Effect of Mangifera Indica Leaf Extracts against Mercuric Chloride-induced Liver Toxicity in Mice. Euroasian J Hepato-Gastroenterol 2014;4(1):18-24.

  2. Ethylenediaminetetraacetic acid induces antioxidant and anti-inflammatory activities in experimental liver fibrosis.

    Science.gov (United States)

    González-Cuevas, J; Navarro-Partida, J; Marquez-Aguirre, A L; Bueno-Topete, M R; Beas-Zarate, C; Armendáriz-Borunda, J

    2011-01-01

    Experimental liver fibrosis induced by carbon tetrachloride (CCl(4)) is associated with oxidative stress, lipid peroxidation, and inflammation. This work was focused on elucidating the anti-inflammatory and antioxidant effects of ethylenediaminetetraacetic acid (EDTA) in this model of hepatotoxicity. Wistar male rats were treated with CCl(4) and EDTA (60, 120, or 240 mg/kg). Morphometric analyses were carried out in Masson's stained liver sections to determine fibrosis index. Coagulation tests prothrombin time (PT) and partial thromboplastin time (PTT) were also determined. Gene expression for transforming growth factor beta (TGF-beta1), alpha1(I) procollagen gene (alpha1 Col I), tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and superoxide dismutase (SOD) was monitored by real-time PCR. Antioxidant effect of EDTA was measured by its effects on lipid peroxidation; biological activity of ceruloplasmin (Cp), SOD, and catalase (Cat) were analyzed by zymography assays. Animals with CCl(4)-hepatic injury that received EDTA showed a decrement in fibrosis (20%) and lipid peroxidation (22%). The mRNA expression for TNF-alpha (55%), TGF-beta1 (50%), IL-6 (52%), and alpha1 Col I (60%) was also decreased. This group of animals showed increased Cp (62%) and SOD (25%) biological activities. Coagulation blood tests, Cat activity, and gene expression for SOD were not modified by EDTA treatment. This study demonstrates that EDTA treatment induces the activity of antioxidant enzymes, decreases lipid peroxidation, hepatic inflammation, and fibrosis in experimental liver fibrosis induced by CCl(4).

  3. Role of PGC-1{alpha} in exercise and fasting induced adaptations in mouse liver

    DEFF Research Database (Denmark)

    Haase, Tobias Nørresø; Jørgensen, Stine Ringholm; Leick, Lotte

    2011-01-01

    The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)-¿ coactivator (PGC)-1a plays a role in regulation of several metabolic pathways. By use of whole body PGC-1a knockout (KO) mice we investigated the role of PGC-1a in fasting, acute exercise and exercise training ind...... role in regulation of Cyt c and COXI expression in the liver in response to a single exercise bout and prolonged exercise training, which implies that exercise training induced improvements in oxidative capacity of the liver is regulated by PGC-1a.......The transcriptional coactivator peroxisome proliferator activated receptor (PPAR)-¿ coactivator (PGC)-1a plays a role in regulation of several metabolic pathways. By use of whole body PGC-1a knockout (KO) mice we investigated the role of PGC-1a in fasting, acute exercise and exercise training...... induced regulation of key proteins in gluconeogenesis and metabolism in the liver. In both wild type (WT) and PGC-1a KO mice liver, the mRNA content of the gluconeogenic proteins glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) was upregulated during fasting. Pyruvate...

  4. Protective effect of a coffee preparation (Nescafe pure) against carbon tetrachloride-induced liver fibrosis in rats.

    Science.gov (United States)

    Shi, Hongyang; Dong, Lei; Zhang, Yong; Bai, Yanhua; Zhao, Juhui; Zhang, Li

    2010-06-01

    We examined the effects of a coffee preparation on liver fibrosis induced by carbon tetrachloride (CCl(4)) and explored the possible mechanisms. Rats were divided randomly into four groups: control, CCl(4), and two coffee preparation groups. Except for the control group, liver fibrosis was induced in male Sprague-Dawley (SD) rats by subcutaneous injection with 40% CCl(4) twice a week for 8 weeks. At the same time, a coffee preparation (300 mg/kg and 150 mg/kg) was administered to the two coffee preparation groups intragastrically once daily. Upon pathological examination, a coffee preparation treatment significantly reduced liver damage and symptoms of liver fibrosis. The mRNA expression of collagen I, collagen III, bcl-2, vascular endothelial growth factor (VEGF) and transforming growth factor-beta1 (TGF-beta1) were markedly increased by CCl(4) treatment but suppressed by a coffee preparation treatment. Whereas compared with the CCl(4) group, the mRNA expression of Bax was increased in the coffee preparation group. The protein expression of Bax and bcl-2 were confirmed by western blot. Intragastric administration of a coffee preparation reduced the protein expression of alpha-smooth muscle actin (alpha-SMA) and the glucose-regulated proteins (GRP) 78 and 94 in rats increased by CCl(4). Our data indicate that a coffee preparation can efficiently inhibit CCl(4)-induced liver fibrosis in rats. The coffee preparation may therefore be a potential functional food for preventing liver fibrosis. Copyright 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation.

    Science.gov (United States)

    Liang, Wen; Lindeman, Jan H; Menke, Aswin L; Koonen, Debby P; Morrison, Martine; Havekes, Louis M; van den Hoek, Anita M; Kleemann, Robert

    2014-05-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components

  6. Anti-inflammatory and ameliorative effects of gallic acid on fluoxetine-induced oxidative stress and liver damage in rats.

    Science.gov (United States)

    Karimi-Khouzani, Omid; Heidarian, Esfandiar; Amini, Sayed Asadollah

    2017-08-01

    Fluoxetine-induced liver damage is a cause of chronic liver disease. In the present study the hepatoprotective effects of gallic acid against fluoxetine-induced liver damage were examined. Forty-eight male rats were divided into six groups as follow: group 1, the control group; group 2, rats receiving fluoxetine (24mg/kg bw daily, po) without treatment; group 3, rats receiving 24mg/kg bw fluoxetine, treated with 50mg/kg bw silymarin and groups 4, 5, and 6 in which gallic acid (50, 100, and 200mg/kg bw, po, respectively) was prescribed after the consumption of fluoxetine. The histopathological changes of hepatic tissues were checked out. Fluoxetine caused a significant increase in the levels of serum glutamate oxaloacetate transaminase (GOT), serum glutamate pyruvate transaminase (GPT), lipid profiles, urea, fasting blood sugar (FBS), creatinine (Cr), protein carbonyl (PC) content, malondialdehyde (MDA), and liver TNF-α as an inflammatory element. Also, the obtained results of group 2 revealed a significant decline in ferric reducing ability of plasma (FRAP), liver catalase (CAT), superoxide dismutase (SOD), and vitamin C levels. The treatment with gallic acid showed significant ameliorations in abnormalities of fluoxetine-induced liver injury as represented by the improvement of hepatic CAT, SOD activities, vitamin C levels, serum biochemical parameters, and histopathological changes, in addition to the recovery of antioxidant defense system status. Gallic acid has inhibitory effects on fluoxetine-induced liver damage. The effect of gallic acid is derived from free radical scavenging properties and the anti-inflammatory effect related to TNF-α. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  7. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway

    NARCIS (Netherlands)

    Neumann, Katrin; Rudolph, Christine; Neumann, Christian; Janke, Marko; Amsen, Derk; Scheffold, Alexander

    2015-01-01

    Under homeostasis, liver sinusoidal endothelial cells (LSECs) shift intrahepatic T-cell responses towards tolerance. However, the role of LSECs in the regulation of T-cell-induced liver inflammation is less clear. Here, we studied the capacity of LSECs to modulate pro-inflammatory Th1-cell

  8. Alpha-fetoprotein is a predictor of outcome in acetaminophen-induced liver injury

    DEFF Research Database (Denmark)

    Schmidt, Lars E; Dalhoff, Kim

    2005-01-01

    An increase in alpha-fetoprotein (AFP) following hepatic necrosis is considered indicative of hepatic regeneration. This study evaluated the prognostic value of serial AFP measurements in patients with severe acetaminophen-induced liver injury. Prospectively, serial measurements of AFP were...

  9. [The effect of N-stearoylethanolamine on liver phospholipid composition of rats with insulin resistance caused by alimentary obesity].

    Science.gov (United States)

    Onopchenko, O V; Kosiakova, H V; Horid'ko, T M; Klimashevskyĭ, V M; Hula, N M

    2014-01-01

    We used alimentary obesity-induced insulin resistance (IR) model in rats to investigate the influence of N-stearoylethanolamine on the content of phospholipids and their fatty acid composition. Our results show that prolonged high-fat diet triggers considerable aberrations in the composition of main phospholipids in the liver and can be one of the causes of IR in rats. In particular, the increase of phosphatidylcholine, phosphatidylethanolamine and significant decrease of other phospholipids: lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, phosphatidylinositol, phosphatidylserine and diphosphaglicerol were observed. The levels of monounsaturated (erucic, nervonic, oleic) and polyunsaturated (eicosatrienoic, docosatrienoic, arachidonic) fatty acids were increased; meanwhile the content of diunsaturated acids was decreased. The NSE administration (50 mg/kg of body weight) caused restoration of the phospholipids content in the liver of rats with diet-induced IR that highly correlated with the decrease in plasma insulin level and the improvement of insulin sensitivity. Moreover, the effect of NSE was accompanied by the normalization of fatty acids composition of phospholipids that could be related to modulating influence of NSE on the activity of the main fatty acid desaturases. It is known that the imbalance in phospholipid composition of the rat liver causes substantial metabolic alterations that are associated with the development of IR. Accordingly, the compensations of the imbalance by NSE can help to restore insulin sensitivity, inhibit the development of obesity, IR and type 2 diabetes.

  10. MRI-guided laser-induced thermotherapy (LITT) of liver metastases: clinical evaluation

    International Nuclear Information System (INIS)

    Vogl, T.J.; Weinhold, N.; Mueller, P.; Mack, M.; Scholz, W.; Philipp, C.; Roggan, A.; Felix, R.

    1996-01-01

    The goal was to perform an evaluation of MRI-guided laser-induced thermotherapy (LITT) of liver metastases as a clinical method. In a prospective study, 50 patients with liver metastases of colorectal carcinoma (35 patients), or other primary tumors (15 patients) were treated with LITT. For preparation and intermittent controls of therapy, standardized MRI examinations were made. Online monitoring during the the LITT was done with temperature-sensitive T1-weighted sequences (FLASH-2D, TurboFLASH). All in all, 83 metastases of a volume between 1 and 282 cubic centimeters (median = ± 10 cm 3 ) were treated.During performance of the LITT, a decrease of signal intensity in the thermosensitive sequences was measured for the application area, and was correlated with fluorine-optical temperature measurements. The MRI-guided LITT is a novel, potential modality for treatment of liver metastases, and poses only minimal clinical risks. (orig./VHE) [de

  11. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); Devaraj, Halagowder [Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); NiranjaliDevaraj, Sivasithamparam, E-mail: niranjali@yahoo.com [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India)

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  12. Camptosorus sibiricus rupr aqueous extract prevents lung tumorigenesis via dual effects against ROS and DNA damage.

    Science.gov (United States)

    He, Shugui; Ou, Rilan; Wang, Wensheng; Ji, Liyan; Gao, Hui; Zhu, Yuanfeng; Liu, Xiaomin; Zheng, Hongming; Liu, Zhongqiu; Wu, Peng; Lu, Linlin

    2018-06-28

    Camptosorus sibiricus Rupr (CSR) is a widely used herbal medicine with antivasculitis, antitrauma, and antitumor effects. However, the effect of CSR aqueous extract on B[a]P-initiated tumorigenesis and the underlying mechanism remain unclear. Moreover, the compounds in CSR aqueous extract need to be identified and structurally characterized. We aim to investigate the chemopreventive effect of CSR and the underlying molecular mechanism. A B[a]P-stimulated normal cell model (BEAS.2B) and lung adenocarcinoma animal model were established on A/J mice. In B[a]P-treated BEAS.2B cells, the protective effects of CSR aqueous extract on B[a]P-induced DNA damage and ROS production were evaluated through flow cytometry, Western blot, real-time quantitative PCR, single-cell gel electrophoresis, and immunofluorescence. Moreover, a model of B[a]P-initiated lung adenocarcinoma was established on A/J mice to determine the chemopreventive effect of CSR in vivo. The underlying mechanism was analyzed via immunohistochemistry and microscopy. Furthermore, the new compounds in CSR aqueous extract were isolated and structurally characterized using IR, HR-ESI-MS, and 1D and 2D NMR spectroscopy. CSR effectively suppressed ROS production by re-activating Nrf2-mediated reductases HO-1 and NQO-1. Simultaneously, CSR attenuated the DNA damage of BEAS.2B cells in the presence of B[a]P. Moreover, CSR at 1.5 and 3 g/kg significantly suppressed tumorigenesis with tumor inhibition ratios of 36.65% and 65.80%, respectively. The tumor volume, tumor size, and multiplicity of B[a]P-induced lung adenocarcinoma were effectively decreased by CSR in vivo. After extracting and identifying the compounds in CSR aqueous extract, three new triterpene saponins were isolated and characterized structurally. CSR aqueous extract prevents lung tumorigenesis by exerting dual effects against ROS and DNA damage, suggesting that CSR is a novel and effective agent for B[a]P-induced carcinogenesis. Moreover, by isolating

  13. Effect of quercetin on paracetamole-induced liver disjunction in irradiated rats

    International Nuclear Information System (INIS)

    Hedayat, I.S.

    2005-01-01

    Nowadays, increasing attention has been given to the role of free radicals generated through oxidation stress. Persons subjected to radiation, such as radiotherapy, consuming analgesic drugs such as paracetamole which accumulates at relatively high concentration in liver, are in need to be investigated to explore the synergetic effects of these stresses. Many radical scavengers, interestingly naturally occurring antioxidants, have been found to be effective in inhibiting the oxidative damage Quercetin, the well known phenolic compound widely present in the plant kingdom, has been investigated for its possible protection effect against gamma irradiation and paracetamole-induced hepatic damage. Data revealed serious effects of oral administration of sublethal dose of paracetamole (500 mg/kg) and/or exposure to 6 Gy whole body gamma irradiation on liver. This damage is reflected by increased hepatic levels of MDA, carbonyl content and ALT activity, associated by decrease in hepatic SOD, catalase and GSH when compared with respective control values. The combination of quercetin with paracetamole and/or gamma irradiation have clearly reduced liver damage. It was noticed that the restoration of peroxides and carbonyls rates has occurred. Quercetin seems to act by activation of the turnover of SOD, catalase and GSH and permitting the capitation of reactive metabolites of paracetamole as well as its ability in quenching free radicals induced by exposure of rats to gamma irradiation, thus improving regeneration in the biological tissues

  14. Activation of Akt1 accelerates carcinogen-induced tumorigenesis in mammary gland of virgin and post-lactating transgenic mice

    International Nuclear Information System (INIS)

    Wu, Yanyuan; Kim, Juri; Elshimali, Yayha; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2014-01-01

    Data from in vivo and in vitro studies suggest that activation of Akt regulates cell survival signaling and plays a key role in tumorigenesis. Hence, transgenic mice were created to explore the oncogenic role of Akt1 in the development of mammary tumors. The transgenic mice were generated by expressing myristoylated-Akt1 (myr-Akt1) under the control of the MMTV-LTR promoter. The carcinogen 7, 12 dimethyl-1,2-benzanthracene (DMBA) was used to induce tumor formation. The MMTV driven myr-Akt1 transgene expression was detected primarily in the mammary glands, uterus, and ovaries. The expression level increased significantly in lactating mice, suggesting that the response was hormone dependent. The total Akt expression level in the mammary gland was also higher in the lactating mice. Interestingly, the expression of MMTVmyr-Akt1 in the ovaries of the transgenic mice caused significant increase in circulating estrogen levels, even at the post-lactation stage. Expression of myr-Akt1 in mammary glands alone did not increase the frequency of tumor formation. However, there was an increased susceptibility of forming mammary tumors induced by DMBA in the transgenic mice, especially in mice post-lactation. Within 34 weeks, DMBA induced mammary tumors in 42.9% of transgenic mice post-lactation, but not in wild-type mice post-lactation. The myr-Akt1 mammary tumors induced by DMBA had increased phosphorylated-Akt1 and showed strong expression of estrogen receptor (ERα) and epidermal growth factor receptor (EGFR). In addition, Cyclin D1 was more frequently up-regulated in mammary tumors from transgenic mice compared to tumors from wild-type mice. Overexpression of Cyclin D1, however, was not completely dependent on activated Akt1. Interestingly, mammary tumors that had metastasized to secondary sites had increased expression of Twist and Slug, but low expression of Cyclin D1. In summary, the MMTVmyr-Akt1 transgenic mouse model could be useful to study mechanisms of ER

  15. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury.

    Science.gov (United States)

    Weaver, Richard J; Betts, Catherine; Blomme, Eric A G; Gerets, Helga H J; Gjervig Jensen, Klaus; Hewitt, Philip G; Juhila, Satu; Labbe, Gilles; Liguori, Michael J; Mesens, Natalie; Ogese, Monday O; Persson, Mikael; Snoeys, Jan; Stevens, James L; Walker, Tracy; Park, B Kevin

    2017-07-01

    The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.

  16. Hepatoprotective Effect of Trigona spp. Bee Propolis against Carbon Tetrachloride-Induced Liver Injury in Rat

    Directory of Open Access Journals (Sweden)

    Rachel Amelia

    2016-06-01

    Full Text Available Background: Oxidative stress reaction can cause liver injury. This process can be prevented by antioxidant activities which can break the destructive chain caused by free radical substances in the liver. Propolis produced by Trigona spp. bee is known to have a high level of antioxidant. The aim of this study was to examine the effect of Trigona spp. bee propolis on liver histological toxicity caused by carbon tetrachloride-induced oxidative stress. Methods:This experimental study was conducted in September 2013 at the Animal Laboratory of Departement of Pharmacology and Therapy, Faculty of Medicine Universitas Padjadjaran. Twenty-four healthy male Wistar rats as objects were adapted for one week and randomly divided into 3 groups. Group I was the control negative, group II was given carbon tetrachloride on day 14, group III was given Trigona spp. bee propolis on day 1-14. On day 14, group III was injected CCl4 intraperitoneally. The quantitative data were statistically analyzed using the one way ANOVA and Tukey test with p value < 0.05. Results: Group I showed the liver contained normal cells, without significant injury of the membrane, round and complete nucleus. The average number of liver cell was 464 ± 9.59281 cells/field; group II underwent necrosis and the average of the cells was 146 ± 7.56885 cells/field; group III showed some normal liver cells, and some necrotic area with the normal liver cells average was 263 ± 14.10860 cells/field. The p-value=0.00. Conclusions: Trigona spp. bee propolis has a hepatoprotective effect against CCl4-induced liver injury histologically.

  17. Zinc supplementation suppresses the progression of bile duct ligation-induced liver fibrosis in mice.

    Science.gov (United States)

    Shi, Fang; Sheng, Qin; Xu, Xinhua; Huang, Wenli; Kang, Y James

    2015-09-01

    Metallothionein (MT) gene therapy leads to resolution of liver fibrosis in mouse model, in which the activation of collagenases is involved in the regression of liver fibrosis. MT plays a critical role in zinc sequestration in the liver suggesting its therapeutic effect would be mediated by zinc. The present study was undertaken to test the hypothesis that zinc supplementation suppresses liver fibrosis. Male Kunming mice subjected to bile duct ligation (BDL) resulted in liver fibrosis as assessed by increased α-smooth muscle actin (α-SMA) and collagen I production/deposition in the liver. Zinc supplementation was introduced 4 weeks after BDL surgery via intragastric administration once daily for 2 weeks resulting in a significant reduction in the collagen deposition in the liver and an increase in the survival rate. Furthermore, zinc suppressed gene expression of α-SMA and collagen I and enhanced the capacity of collagen degradation, as determined by the increased activity of total collagenases and elevated mRNA and protein levels of MMP13. Therefore, the results demonstrate that zinc supplementation suppresses BDL-induced liver fibrosis through both inhibiting collagen production and enhancing collagen degradation. © 2014 by the Society for Experimental Biology and Medicine.

  18. Effects of maternal exposure to cow´s milk high or low in isoflavones on carcinogen-induced mammary tumorigenesis among rat offspring

    DEFF Research Database (Denmark)

    Nielsen, Tina Skau; Purup, Stig; Warri, A

    2011-01-01

    We investigated whether maternal exposure during pregnancy to cow's milk containing endogenous estrogens and insulin like growth factor 1 (IGF-1) and either high or low levels of isoflavones from dietary legumes (HIM and LIM, respectively) affected carcinogen-induced mammary carcinogenesis....... No differences in maternal serum estradiol (P = 0.19) and IGF-1 levels (P = 0.15) at GD 19 or birth weight among the milk and water groups were seen, but estradiol, and IGF-1 levels and birth weight were numerically higher in the LIM than in the HIM group. Puberty onset occurred earlier in the LIM offspring than...... in controls (P = 0.03). Although the high isoflavone content seemed to prevent the effect on circulating estradiol and IGF-1 levels and advanced puberty onset seen in the LIM group, HIM increased DMBA-DNA adducts in the mammary gland and tended to increase mammary tumorigenesis. In contrast, offspring exposed...

  19. Drug-induced liver injury due to antimicrobials, central nervous system agents, and nonsteroidal anti-inflammatory drugs.

    Science.gov (United States)

    Devarbhavi, Harshad; Andrade, Raúl J

    2014-05-01

    Antimicrobial agents including antituberculosis (anti-TB) agents are the most common cause of idiosyncratic drug-induced liver injury (DILI) and drug-induced liver failure across the world. Better molecular and genetic biomarkers are acutely needed to help identify those at risk of liver injury particularly for those needing antituberculosis therapy. Some antibiotics such as amoxicillin-clavulanate and isoniazid consistently top the lists of agents in retrospective and prospective DILI databases. Central nervous system agents, particularly antiepileptics, account for the second most common class of agents implicated in DILI registries. Hepatotoxicity from older antiepileptics such as carbamazepine, phenytoin, and phenobarbital are often associated with hypersensitivity features, whereas newer antiepileptic drugs have a more favorable safety profile. Antidepressants and nonsteroidal anti-inflammatory drugs carry very low risk of significant liver injury, but their prolific use make them important causes of DILI. Early diagnosis and withdrawal of the offending agent remain the mainstays of minimizing hepatotoxicity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose.

    Science.gov (United States)

    Li, Jianmei; He, Xiwei; Yang, Yang; Li, Mei; Xu, Chenke; Yu, Rong

    2018-07-01

    This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Human endometrial regenerative cells alleviate carbon tetrachloride-induced acute liver injury in mice

    Directory of Open Access Journals (Sweden)

    Shanzheng Lu

    2016-10-01

    Full Text Available Abstract Background The endometrial regenerative cell (ERC is a novel type of adult mesenchymal stem cell isolated from menstrual blood. Previous studies demonstrated that ERCs possess unique immunoregulatory properties in vitro and in vivo, as well as the ability to differentiate into functional hepatocyte-like cells. For these reasons, the present study was undertaken to explore the effects of ERCs on carbon tetrachloride (CCl4–induced acute liver injury (ALI. Methods An ALI model in C57BL/6 mice was induced by administration of intraperitoneal injection of CCl4. Transplanted ERCs were intravenously injected (1 million/mouse into mice 30 min after ALI induction. Liver function, pathological and immunohistological changes, cell tracking, immune cell populations and cytokine profiles were assessed 24 h after the CCl4 induction. Results ERC treatment effectively decreased the CCl4-induced elevation of serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activities and improved hepatic histopathological abnormalities compared to the untreated ALI group. Immunohistochemical staining showed that over-expression of lymphocyte antigen 6 complex, locus G (Ly6G was markedly inhibited, whereas expression of proliferating cell nuclear antigen (PCNA was increased after ERC treatment. Furthermore, the frequency of CD4+ and CD8+ T cell populations in the spleen was significantly down-regulated, while the percentage of splenic CD4+CD25+FOXP3+ regulatory T cells (Tregs was obviously up-regulated after ERC treatment. Moreover, splenic dendritic cells in ERC-treated mice exhibited dramatically decreased MHC-II expression. Cell tracking studies showed that transplanted PKH26-labeled ERCs engrafted to lung, spleen and injured liver. Compared to untreated controls, mice treated with ERCs had lower levels of IL-1β, IL-6, and TNF-α but higher level of IL-10 in both serum and liver. Conclusions Human ERCs protect the liver from acute injury

  2. BL153 Partially Prevents High-Fat Diet Induced Liver Damage Probably via Inhibition of Lipid Accumulation, Inflammation, and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2014-01-01

    Full Text Available The present study was to investigate whether a magnolia extract, named BL153, can prevent obesity-induced liver damage and identify the possible protective mechanism. To this end, obese mice were induced by feeding with high fat diet (HFD, 60% kcal as fat and the age-matched control mice were fed with control diet (10% kcal as fat for 6 months. Simultaneously these mice were treated with or without BL153 daily at 3 dose levels (2.5, 5, and 10 mg/kg by gavage. HFD feeding significantly increased the body weight and the liver weight. Administration of BL153 significantly reduced the liver weight but without effects on body weight. As a critical step of the development of NAFLD, hepatic fibrosis was induced in the mice fed with HFD, shown by upregulating the expression of connective tissue growth factor and transforming growth factor beta 1, which were significantly attenuated by BL153 in a dose-dependent manner. Mechanism study revealed that BL153 significantly suppressed HFD induced hepatic lipid accumulation and oxidative stress and slightly prevented liver inflammation. These results suggest that HFD induced fibrosis in the liver can be prevented partially by BL153, probably due to reduction of hepatic lipid accumulation, inflammation and oxidative stress.

  3. Genomic analysis of microRNA time-course expression in liver of mice treated with genotoxic carcinogen N-ethyl-N-nitrosourea

    Directory of Open Access Journals (Sweden)

    Guo Lei

    2010-10-01

    Full Text Available Abstract Background Dysregulated expression of microRNAs (miRNAs has been previously observed in human cancer tissues and shown promise in defining tumor status. However, there is little information as to if or when expression changes of miRNAs occur in normal tissues after carcinogen exposure. Results To explore the possible time-course changes of miRNA expression induced by a carcinogen, we treated mice with one dose of 120 mg/kg N-ethyl-N-nitrosourea (ENU, a model genotoxic carcinogen, and vehicle control. The miRNA expression profiles were assessed in the mouse livers in a time-course design. miRNAs were isolated from the livers at days 1, 3, 7, 15, 30 and 120 after the treatment and their expression was determined using a miRNA PCR Array. Principal component analysis of the miRNA expression profiles showed that miRNA expression at post-treatment days (PTDs 7 and 15 were different from those at the other time points and the control. The number of differentially expressed miRNAs (DEMs changed over time (3, 5, 14, 32, 5 and 5 at PTDs 1, 3, 7, 15, 30 and 120, respectively. The magnitude of the expression change varied with time with the highest changes at PTDs 7 or 15 for most of the DEMs. In silico functional analysis of the DEMs at PTDs 7 and 15 indicated that the major functions of these ENU-induced DEMs were associated with DNA damage, DNA repair, apoptosis and other processes related to carcinogenesis. Conclusion Our results showed that many miRNAs changed their expression to respond the exposure of the genotoxic carcinogen ENU and the number and magnitude of the changes were highest at PTDs 7 to 15. Thus, one to two weeks after the exposure is the best time for miRNA expression sampling.

  4. Progesterone-induced stimulation of mammary tumorigenesis is due to the progesterone metabolite, 5α-dihydroprogesterone (5αP) and can be suppressed by the 5α-reductase inhibitor, finasteride.

    Science.gov (United States)

    Wiebe, John P; Rivas, Martin A; Mercogliano, Maria F; Elizalde, Patricia V; Schillaci, Roxana

    2015-05-01

    Progesterone has long been linked to breast cancer but its actual role as a cancer promoter has remained in dispute. Previous in vitro studies have shown that progesterone is converted to 5α-dihydroprogesterone (5αP) in breast tissue and human breast cell lines by the action of 5α-reductase, and that 5αP acts as a cancer-promoter hormone. Also studies with human breast cell lines in which the conversion of progesterone to 5αP is blocked by a 5α-reductase inhibitor, have shown that the in vitro stimulation in cell proliferation with progesterone treatments are not due to progesterone itself but to the metabolite 5αP. No similar in vivo study has been previously reported. The objective of the current studies was to determine in an in vivo mouse model if the presumptive progesterone-induced mammary tumorigenesis is due to the progesterone metabolite, 5αP. BALB/c mice were challenged with C4HD murine mammary cells, which have been shown to form tumors when treated with progesterone or the progestin, medroxyprogesterone acetate. Cells and mice were treated with various doses and combinations of progesterone, 5αP and/or the 5α-reductase inhibitor, finasteride, and the effects on cell proliferation and induction and growth of tumors were monitored. Hormone levels in serum and tumors were measured by specific RIA and ELISA tests. Proliferation of C4HD cells and induction and growth of tumors was stimulated by treatment with either progesterone or 5αP. The progesterone-induced stimulation was blocked by finasteride and reinstated by concomitant treatment with 5αP. The 5αP-induced tumors expressed high levels of ER, PR and ErbB-2. Hormone measurements showed significantly higher levels of 5αP in serum from mice with tumors than from mice without tumors, regardless of treatments, and 5αP levels were significantly higher (about 4-fold) in tumors than in respective sera, while progesterone levels did not differ between the compartments. The results indicate that

  5. Loss of 5‐lipoxygenase activity protects mice against paracetamol‐induced liver toxicity

    Science.gov (United States)

    Pu, Shiyun; Ren, Lin; Liu, Qinhui; Kuang, Jiangying; Shen, Jing; Cheng, Shihai; Zhang, Yuwei; Jiang, Wei; Zhang, Zhiyong; Jiang, Changtao

    2015-01-01

    Background and Purpose Paracetamol (acetaminophen) is the most widely used over‐the‐counter analgesic and overdosing with paracetamol is the leading cause of hospital admission for acute liver failure. 5‐Lipoxygenase (5‐LO) catalyses arachidonic acid to form LTs, which lead to inflammation and oxidative stress. In this study, we examined whether deletion or pharmacological inhibition of 5‐LO could protect mice against paracetamol‐induced hepatic toxicity. Experimental Approach Both genetic deletion and pharmacological inhibition of 5‐LO in C57BL/6J mice were used to study the role of this enzyme in paracetamol induced liver toxicity. Serum and tissue biochemistry, H&E staining, and real‐time PCR were used to assess liver toxicity. Key Results Deletion or pharmacological inhibition of 5‐LO in mice markedly ameliorated paracetamol‐induced hepatic injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and hepatic centrilobular necrosis. The hepatoprotective effect of 5‐LO inhibition was associated with induction of the antitoxic phase II conjugating enzyme, sulfotransferase2a1, suppression of the pro‐toxic phase I CYP3A11 and reduction of the hepatic transporter MRP3. In 5‐LO−/− mice, levels of GSH were increased, and oxidative stress decreased. In addition, PPAR α, a nuclear receptor that confers resistance to paracetamol toxicity, was activated in 5‐LO−/− mice. Conclusions and Implications The activity of 5‐LO may play a critical role in paracetamol‐induced hepatic toxicity by regulating paracetamol metabolism and oxidative stress. PMID:26398229

  6. Loss of Dickkopf 3 Promotes the Tumorigenesis of Basal Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Eva Lorsy

    Full Text Available Dickkopf 3 (DKK3 has been associated with tumor suppression of various tumor entities including breast cancer. However, the functional impact of DKK3 on the tumorigenesis of distinct molecular breast cancer subtypes has not been considered so far. Therefore, we initiated a study analyzing the subtype-specific DKK3 expression pattern as well as its prognostic and functional impact with respect to breast cancer subtypes. Based on three independent tissue cohorts including one in silico dataset (n = 30, n = 463 and n = 791 we observed a clear down-regulation of DKK3 expression in breast cancer samples compared to healthy breast tissue controls on mRNA and protein level. Interestingly, most abundant reduction of DKK3 expression was detected in the highly aggressive basal breast cancer subtype. Analyzing a large in silico dataset comprising 3,554 cases showed that low DKK3 mRNA expression was significantly associated with reduced recurrence free survival (RFS of luminal and basal-like breast cancer cases. Functionally, DKK3 re-expression in human breast cancer cell lines led to suppression of cell growth possibly mediated by up-regulation of apoptosis in basal-like but not in luminal-like breast cancer cell lines. Moreover, ectopic DKK3 expression in mesenchymal basal breast cancer cells resulted in partial restoration of epithelial cell morphology which was molecularly supported by higher expression of epithelial markers like E-Cadherin and down-regulation of mesenchymal markers such as Snail 1. Hence, we provide evidence that down-regulation of DKK3 especially promotes tumorigenesis of the aggressive basal breast cancer subtype. Further studies decoding the underlying molecular mechanisms of DKK3-mediated effects may help to identify novel targeted therapies for this clinically highly relevant breast cancer subtype.

  7. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression

    Science.gov (United States)

    Krstić, Jelena; Trivanović, Drenka; Mojsilović, Slavko; Santibanez, Juan F.

    2015-01-01

    Transforming growth factor-beta (TGF-β) and oxidative stress/Reactive Oxygen Species (ROS) both have pivotal roles in health and disease. In this review we are analyzing the interplay between TGF-β and ROS in tumorigenesis and cancer progression. They have contradictory roles in cancer progression since both can have antitumor effects, through the induction of cell death, senescence and cell cycle arrest, and protumor effects by contributing to cancer cell spreading, proliferation, survival, and metastasis. TGF-β can control ROS production directly or by downregulating antioxidative systems. Meanwhile, ROS can influence TGF-β signaling and increase its expression as well as its activation from the latent complex. This way, both are building a strong interplay which can be taken as an advantage by cancer cells in order to increment their malignancy. In addition, both TGF-β and ROS are able to induce cell senescence, which in one way protects damaged cells from neoplastic transformation but also may collaborate in cancer progression. The mutual collaboration of TGF-β and ROS in tumorigenesis is highly complex, and, due to their differential roles in tumor progression, careful consideration should be taken when thinking of combinatorial targeting in cancer therapies. PMID:26078812

  8. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver.

    Science.gov (United States)

    Lanaspa, Miguel A; Sanchez-Lozada, Laura G; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y; Johnson, Richard J

    2012-11-23

    Uric acid is an independent risk factor in fructose-induced fatty liver, but whether it is a marker or a cause remains unknown. Hepatocytes exposed to uric acid developed mitochondrial dysfunction and increased de novo lipogenesis, and its blockade prevented fructose-induced lipogenesis. Rather than a consequence, uric acid induces fatty liver Hyperuricemic people are more prone to develop fructose-induced fatty liver. Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states.

  9. Interfacial behavior of N-nitrosodiethylamine/bovine serum albumin complexes at the air-water and the chloroform-water interfaces by axisymmetric drop tensiometry.

    Science.gov (United States)

    Juárez, J; Galaz, J G; Machi, L; Burboa, M; Gutiérrez-Millán, L E; Goycoolea, F M; Valdez, M A

    2007-03-15

    Interfacial properties of N-nitrosodiethylamine/bovine serum albumin (NDA/BSA) complexes were investigated at the air-water interface. The interfacial behavior at the chloroform-water interface of the interaction product of phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dissolved in the chloroform phase, and NDA/BSA complex, in the aqueous phase, were also analyzed by using a drop tensiometer. The secondary structure changes of BSA with different NDA concentrations were monitored by circular dichroism spectroscopy at different pH and the NDA/BSA interaction was probed by fluorescence spectroscopy. Different NDA/BSA mixtures were prepared from 0, 7.5 x 10(-5), 2.2 x 10(-4), 3.7 x 10(-4), 5 x 10(-4), 1.6 x 10(-3), and 3.1 x 10(-3) M NDA solutions in order to afford 0, 300/1, 900/1, 1 500/1, 2 000/1, 6 000/1, and 12 500/1 NDA/BSA molar ratios, respectively, in the aqueous solutions. Increments of BSA alpha-helix contents were obtained up to the 2 000/1 NDA/BSA molar ratio, but at ratios beyond this value, the alpha-helix content practically disappeared. These BSA structure changes produced an increment of the surface pressure at the air-water interface, as the alpha-helix content increased with the concentration of NDA. On the contrary, when alpha-helix content decreased, the surface pressure also appeared lower than the one obtained with pure BSA solutions. The interaction of DPPC with NDA/BSA molecules at the chloroform-water interface produced also a small, but measurable, pressure increment with the addition of NDA molecules. Dynamic light scattering measurements of the molecular sizes of NDA/BSA complex at pH 4.6, 7.1, and 8.4 indicated that the size of extended BSA molecules at pH 4.6 increased in a greater proportion with the increment in NDA concentration than at the other studied pH values. Diffusion coefficients calculated from dynamic surface tension values, using a short-term solution of the general adsorption model of Ward and Tordai

  10. Obstructive Sleep Apnea and Non-alcoholic Fatty Liver Disease: Is the Liver Another Target?

    Directory of Open Access Journals (Sweden)

    Aibek eMirrakhimov

    2012-10-01

    Full Text Available Obstructive sleep apnea (OSA is recurrent obstruction of the upper airway during sleep leading to intermittent hypoxia (IH. OSA has been associated with all components of the metabolic syndrome as well as with non-alcoholic fatty liver disease (NAFLD. NAFLD is a common condition ranging in severity from uncomplicated hepatic steatosis to steatohepatitis (NASH, liver fibrosis and cirrhosis. The gold standard for the diagnosis and staging of NAFLD is liver biopsy. Obesity and insulin resistance lead to liver steatosis, but the causes of the progression to NASH are not known. Emerging evidence suggests that OSA may play a role in the progression of hepatic steatosis and the development of NASH. Several cross-sectional studies showed that the severity of IH in patients with OSA predicted the severity of NAFLD on liver biopsy. However, neither prospective nor interventional studies with continuous positive airway pressure (CPAP treatment have been performed. Studies in a mouse model showed that IH causes triglyceride accumulation in the liver and liver injury as well as hepatic inflammation. The mouse model provided insight in the pathogenesis of liver injury showing that (1 IH accelerates the progression of hepatic steatosis by inducing adipose tissue lipolysis and increasing free fatty acids (FFA flux into the liver; (2 IH up-regulates lipid biosynthetic pathways in the liver; (3 IH induces oxidative stress in the liver; (4 IH up-regulates hypoxia inducible factor 1 alpha and possibly HIF-2 alpha, which may increase hepatic steatosis and induce liver inflammation and fibrosis. However, the role of FFA and different transcription factors in the pathogenesis of IH-induced NAFLD is yet to be established. Thus, multiple lines of evidence suggest that IH of OSA may contribute to the progression of NAFLD but definitive clinical studies and experiments in the mouse model have yet to be done.

  11. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes

    International Nuclear Information System (INIS)

    Parkinson, Andrew; Mudra, Daniel R.; Johnson, Cory; Dwyer, Anne; Carroll, Kathleen M.

    2004-01-01

    We have measured cytochrome P450 (CYP) activity in nearly 150 samples of human liver microsomes and 64 samples of cryopreserved human hepatocytes, and we have performed induction studies in over 90 preparations of cultured human hepatocytes. We have analyzed these data to examine whether the expression of CYP enzyme activity in liver microsomes and isolated hepatocytes or the inducibility of CYP enzymes in cultured hepatocytes is influenced by the gender, age, or ethnicity of the donor (the latter being limited to Caucasians, African Americans, and Hispanics due to a paucity of livers from Asian donors). In human liver microsomes, there were no statistically significant differences (P > 0.05) in CYP activity as a function of age, gender, or ethnicity with one exception. 7-Ethoxyresorufin O-dealkylase (CYP1A2) activity was greater in males than females, which is consistent with clinical observation. Liver microsomal testosterone 6β-hydroxylase (CYP3A4) activity was slightly greater in females than males, but the difference was not significant. However, in cryopreserved human hepatocytes, the gender difference in CYP3A4 activity (females = twice males) did reach statistical significance, which supports the clinical observation that females metabolize certain CYP3A4 substrates faster than do males. Compared with those from Caucasians and African Americans, liver microsomes from Hispanics had about twice the average activity of CYP2A6, CYP2B6, and CYP2C8 and half the activity of CYP1A2, although this apparent ethnic difference may be a consequence of the relatively low number of Hispanic donors. Primary cultures of hepatocytes were treated with β-naphthoflavone, an inducer of CYP1A2, phenobarbital or rifampin, both of which induce CYP2B6, CYP2C9, CYP2C19, and CYP3A4, albeit it to different extents. Induction of these CYP enzymes in freshly cultured hepatocytes did not appear to be influenced by the gender or age of the donor. Furthermore, CYP3A4 induction in

  12. Sox2 Suppresses Gastric Tumorigenesis in Mice

    Directory of Open Access Journals (Sweden)

    Abby Sarkar

    2016-08-01

    Full Text Available Sox2 expression marks gastric stem and progenitor cells, raising important questions regarding the genes regulated by Sox2 and the role of Sox2 itself during stomach homeostasis and disease. By using ChIP-seq analysis, we have found that the majority of Sox2 targets in gastric epithelial cells are tissue specific and related to functions such as endoderm development, Wnt signaling, and gastric cancer. Unexpectedly, we found that Sox2 itself is dispensable for gastric stem cell and epithelial self-renewal, yet Sox2+ cells are highly susceptible to tumorigenesis in an Apc/Wnt-driven mouse model. Moreover, Sox2 loss enhances, rather than impairs, tumor formation in Apc-deficient gastric cells in vivo and in vitro by inducing Tcf/Lef-dependent transcription and upregulating intestinal metaplasia-associated genes, providing a mechanistic basis for the observed phenotype. Together, these data identify Sox2 as a context-dependent tumor suppressor protein that is dispensable for normal tissue regeneration but restrains stomach adenoma formation through modulation of Wnt-responsive and intestinal genes.

  13. Factors influencing radiation-induced impairment of rat liver mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Alexander, K.C.; Aiyar, A.S.; Sreenivasan, A.

    1975-01-01

    The influence of some experimental conditions on the radiation-induced impairment of oxidative phosphorylation in rat liver mitochondria has been studied. Shielding of the liver during whole body irradiation of the animal does not significantly alter the decreased efficiency of phosphorylation. There exists a great disparity in the in vivo and in vitro radiation doses required for the manifestation of damage to liver mitochondria. While these observations point to the abscopal nature of the radiation effects, direct involvement of the adrenals has been ruled out by studies with adrenalectomised rats. Prior administration of the well known radio-protective agents, serotonin or 2-aminoethyl isothiouronium bromide hydrobromide, is effective in preventing the derangement of mitochondrial function following radioexposure. The hypocholesterolemic drug ethyl-α-p-chlorophenoxy isobutyrate, which is known to influence hepatic mitochondrial turnover, does not afford any significant protection against either mitochondrial damage or the mortality of the animals due to whole body irradiation. (author)

  14. Cell expression patterns of CD147 in N-diethylnitrosamine/phenobarbital-induced mouse hepatocellular carcinoma.

    Science.gov (United States)

    Lu, Meng; Wu, Jiao; He, Feng; Wang, Xi-Long; Li, Can; Chen, Zhi-Nan; Bian, Huijie

    2015-02-01

    Overexpression of CD147/basigin in hepatic cells promotes the progression of hepatocellular carcinoma (HCC). Whether CD147 also expressed in liver non-parenchymal cells and associated with HCC development was unknown. The aim of the study was to explore time-dependent cell expression patterns of CD147 in a widely accepted N-diethylnitrosamine/phenobarbital (DEN/PB)-induced HCC mouse model. Liver samples collected at month 1-12 of post-DEN/PB administration were assessed the localization of CD147 in hepatocytes, endothelial cells, hepatic stellate cells, and macrophages. Immunohistochemistry analysis showed that CD147 was upregulated in liver tumors during month 1-8 of DEN/PB induction. Expression of CD147 was positively correlated with cytokeratin 18, a hepatocyte marker (r = 0.7857, P = 0.0279), CD31 (r = 0.9048, P = 0.0046), an endothelial cell marker, and CD68, a macrophage marker (r = 0.7619, P = 0.0368). A significant correlation was also observed between CD147 and alpha-smooth muscle actin (r = 0.8857, P = 0.0333) at DEN/PB initiation and early stage of tumor formation. Immunofluorescence and fluorescence in situ hybridization showed that CD147 co-expressed with cytokeratin 18, CD31, alpha-smooth muscle actin, and CD68. Moreover, there existed positive correlations between CD147 and microvessel density (r = 0.7857, P = 0.0279), CD147 and Ki-67 (r = 0.9341, P = 0.0022) in the development of DEN/PB-induced HCC. In conclusion, our results demonstrated that CD147 was upregulated in the liver parenchymal and mesenchymal cells and involved in angiogenesis and tumor cell proliferation in the development of DEN/PB-induced HCC.

  15. Estrogen and estrogen receptor alpha promotes malignancy and osteoblastic tumorigenesis in prostate cancer.

    Science.gov (United States)

    Mishra, Sweta; Tai, Qin; Gu, Xiang; Schmitz, James; Poullard, Ashley; Fajardo, Roberto J; Mahalingam, Devalingam; Chen, Xiaodong; Zhu, Xueqiong; Sun, Lu-Zhe

    2015-12-29

    The role of estrogen signaling in regulating prostate tumorigenesis is relatively underexplored. Although, an increasing body of evidence has linked estrogen receptor beta (ERß) to prostate cancer, the function of estrogen receptor alpha (ERα) in prostate cancer is not very well studied. We have discovered a novel role of ERα in the pathogenesis of prostate tumors. Here, we show that prostate cancer cells express ERα and estrogen induces oncogenic properties in prostate cancer cells through ERα. Importantly, ERα knockdown in the human prostate cancer PacMetUT1 cells as well as pharmacological inhibition of ERα with ICI 182,780 inhibited osteoblastic lesion formation and lung metastasis in vivo. Co-culture of pre-osteoblasts with cancer cells showed a significant induction of osteogenic markers in the pre-osteoblasts, which was attenuated by knockdown of ERα in cancer cells suggesting that estrogen/ERα signaling promotes crosstalk between cancer and osteoblastic progenitors to stimulate osteoblastic tumorigenesis. These results suggest that ERα expression in prostate cancer cells is essential for osteoblastic lesion formation and lung metastasis. Thus, inhibition of ERα signaling in prostate cancer cells may be a novel therapeutic strategy to inhibit the osteoblastic lesion development as well as lung metastasis in patients with advanced prostate cancer.

  16. Protective function of complement against alcohol-induced rat liver damage.

    Science.gov (United States)

    Bykov, Igor L; Väkevä, Antti; Järveläinen, Harri A; Meri, Seppo; Lindros, Kai O

    2004-11-01

    The complement system can promote tissue damage or play a homeostatic role in the clearance and disposal of damaged tissue. We assessed the role of the terminal complement pathway in alcohol-induced liver damage in complement C6 (C6-/-) genetically deficient rats. C6-/- and corresponding C6+/+ rats were continuously exposed to ethanol by feeding ethanol-supplemented liquid diet for six weeks. Liver samples were analyzed for histopathology and complement component deposition by immunofluorescence microscopy. Prostaglandin E receptors and cytokine mRNA levels were analyzed by RT-PCR and plasma cytokines by ELISA. Deposition of complement components C1, C3, C8 and C9 was observed in C6+/+ rats, but not in C6-/- animals. The histopathological changes, the liver weight increase and the elevation of the plasma pro-/anti-inflammatory TNF-alpha/IL-10 ratio were, on the other hand, more marked in C6-/- rats. Furthermore, ethanol enhanced the hepatic mRNA expression of the prostaglandin E receptors EP2R and EP4R exclusively in the C6-/- rats. Our results indicate that a deficient terminal complement pathway predisposes to tissue injury and promotes a pro-inflammatory cytokine response. This suggests that an intact complement system has a protective function in the development of alcoholic liver damage.

  17. Differentiation of human-induced pluripotent stem cell under flow conditions to mature hepatocytes for liver tissue engineering

    DEFF Research Database (Denmark)

    Starokozhko, Viktoriia; Hemmingsen, Mette; Larsen, Layla

    2018-01-01

    Hepatic differentiation of human-induced pluripotent stem cells (hiPSCs) under flow conditions in a 3D scaffold is expected to be a major step forward for construction of bioartificial livers. The aims of this study were to induce hepatic differentiation of hiPSCs under perfusion conditions...... and to perform functional comparisons with fresh human precision-cut liver slices (hPCLS), an excellent benchmark for the human liver in vivo. The majority of the mRNA expression of CYP isoenzymes and transporters and the tested CYP activities, Phase II metabolism, and albumin, urea, and bile acid synthesis...... in the hiPSC-derived cells reached values that overlap those of hPCLS, which indicates a higher degree of hepatic differentiation than observed until now. Differentiation under flow compared with static conditions had a strong inducing effect on Phase II metabolism and suppressed AFP expression but resulted...

  18. Effects of aqueous extract of Portulaca oleracea L. on oxidative stress and liver, spleen leptin, PARα and FAS mRNA expression in high-fat diet induced mice.

    Science.gov (United States)

    Chen, Bendong; Zhou, Haining; Zhao, Wenchao; Zhou, Wenyan; Yuan, Quan; Yang, Guangshun

    2012-08-01

    We reported that an aqueous extract of Portulaca oleracea L. inhibited high-fat-diet-induced oxidative injury in a dose-dependent manner. Male kunming mice (5-weeks-old, 24 g) were used in this experiment. After a 4-day adaptation period, animals were randomly divided into four groups (n = 10 in each group); Group 1: animals received normal powdered rodent diet; Group 2: animals received high fat diet; Groups 3 and 4: animals received high fat diet and were fed by gavage to mice once a day with aqueous extract at the doses of 100 and 200 mg/kg body weight, respectively. In mice fed with high-fat diet, blood and liver lipid peroxidation level was significantly increased, whereas antioxidant enzymes activities were markedly decreased compared to normal control mice. Administration of an aqueous extract of P. oleracea L. significantly dose-dependently reduced levels of blood and liver lipid peroxidation and increased the activities of blood and liver antioxidant enzymes activities in high fat mice. Moreover, administration of an aqueous extract of P. oleracea L. significantly dose-dependently increase liver Leptin/β-actin (B), and Liver PPARα/β-actin, decrease liver, spleen FAS mRNA, p-PERK and p-PERK/PERK protein expression levels. Taken together, these data demonstrate that aqueous extract of P. oleracea L. can markedly alleviate high fat diet-induced oxidative injury by enhancing blood and liver antioxidant enzyme activities, modulating Leptin/β-actin (B), and Liver PPARα/β-actin, decrease liver, spleen FAS mRNA, p-PERK and p-PERK/PERK protein expression levels in mice.

  19. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice.

    Science.gov (United States)

    Langiewicz, Magda; Graf, Rolf; Humar, Bostjan; Clavien, Pierre A

    2018-04-27

    To improve outcomes of two-staged hepatectomies for large/multiple liver tumors, portal vein ligation (PVL) has been combined with parenchymal transection (coined ALPPS; Associated Liver Partition and Portal vein ligation for Staged hepatectomy) to greatly accelerate liver regeneration. In a novel ALPPS mouse model, we have reported paracrine Indian hedgehog (IHH) signaling from stellate cells as an early contributor to augmented regeneration. Here, we sought to identify upstream regulators of IHH. ALPPS in mice was compared against PVL and additional control surgeries. Potential IHH regulators were identified through in silico mining of transcriptomic data. JNK1 activity was reduced through SP600125 to evaluate its effects on IHH signaling. Recombinant IHH was injected after JNK diminution to substantiate their relationship during accelerated liver regeneration. Mining linked Ihh to Mapk8. JNK1 upregulation after ALPPS was validated and preceded the IHH peak. On immunofluorescence, JNK1 and IHH co-localized in ASMA-positive non-parenchymal cells. Inhibition of JNK1 prior to ALPPS surgery reduced liver weight gain to PVL levels and was accompanied by downregulation of hepatocellular proliferation and the IHH-GLI1-CCND1 axis. In JNK1-inhibited mice, recombinant IHH restored ALPPS-like acceleration of regeneration and re-elevated JNK1 activity, suggesting the presence of a positive IHH-JNK1 feedback loop. JNK1-mediated induction of IHH paracrine signaling from HSCs is essential for accelerated regeneration of parenchymal mass. The JNK1-IHH axis is a mechanism unique to ALPPS surgery and may point to therapeutic alternatives for patients with insufficient regenerative capacity. ALPPS, a novel two-staged hepatectomy, induces an unprecedented acceleration of liver regeneration to enable treatment of unresectable liver tumors. Here, we demonstrate JNK1-IHH signaling as a mechanism underlying the regenerative acceleration induced by ALPPS. Copyright © 2018 European

  20. Immunohistochemical study of macrophage migration inhibitory factor in rat liver fibrosis induced by thioacetamide

    Directory of Open Access Journals (Sweden)

    Y Hori

    2009-06-01

    Full Text Available Macrophage migration inhibitory factor (MIF is a molecule known to regulate macrophage accumulation at sites of inflammation. To elucidate the role of MIF in progression of liver fibrosis, the immunohistochemical localization of MIF and macrophages in the liver were examined. Male Wistar rats received thioacetamide (TA injections (200 mg/kg, i.p. for 1 or 6 weeks. In biochemical and histological tests, it was confirmed that liver fibrosis was induced. In immunohistochemical analyses, the expression of MIF protein was seen in hepatocytes in the areas extending out from the central veins to the portal tracts. In particular, at 6 weeks, immunoreactivity was detected in degenerated hepatocytes adjacent to the fibrotic areas but hardly observed in the fibrotic areas. On the other hand, a number of exudate macrophages stained by antibody ED1 were seen in the areas from the central veins to the portal tracts at 1 week and in the fibrotic areas at 6 weeks. Macrophages also showed a significant increase in number as compared with controls. These results revealed that there was a close relationship between the appearance of MIF expression and ED1-positive exudate macrophages in degenerated hepatocytes during the progression of TA-induced liver fibrosis.