WorldWideScience

Sample records for n-h stretch vibrational

  1. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  2. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  3. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    Science.gov (United States)

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (p<0.001) and NoVIB (-2.6°±6.1°) (p=0.041) conditions (adjusted for gymnast level). This effect was greatest in lower skill level gymnasts (p=0.003), while the highest skill level gymnasts showed no significant decrease in the split jump (p=0.105). Jump height was not significantly different between conditions (p=0.892) or within groups (p=0.880). An acute session of static stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  4. Stretching dependence of the vibration modes of a single-molecule Pt-H-2-Pt bridge

    DEFF Research Database (Denmark)

    Djukic, D.; Thygesen, Kristian Sommer; Untiedt, C.

    2005-01-01

    isotope substitution is obtained. The stretching dependence for each of the modes allows uniquely classifying them as longitudinal or transversal modes. The interpretation of the experiment in terms of a Pt-H-2-Pt bridge is verified by density-functional theory calculations for the stability, vibrational...

  5. Ab initio anharmonic vibrational frequency predictions for linear proton-bound complexes OC-H(+)-CO and N(2)-H(+)-N(2).

    Science.gov (United States)

    Terrill, Kasia; Nesbitt, David J

    2010-08-01

    Ab initio anharmonic transition frequencies are calculated for strongly coupled (i) asymmetric and (ii) symmetric proton stretching modes in the X-H(+)-X linear ionic hydrogen bonded complexes for OCHCO(+) and N(2)HN(2)(+). The optimized potential surface is calculated in these two coordinates for each molecular ion at CCSD(T)/aug-cc-pVnZ (n = 2-4) levels and extrapolated to the complete-basis-set limit (CBS). Slices through both 2D surfaces reveal a relatively soft potential in the asymmetric proton stretching coordinate at near equilibrium geometries, which rapidly becomes a double minimum potential with increasing symmetric proton acceptor center of mass separation. Eigenvalues are obtained by solution of the 2D Schrödinger equation with potential/kinetic energy coupling explicity taken into account, converged in a distributed Gaussian basis set as a function of grid density. The asymmetric proton stretch fundamental frequency for N(2)HN(2)(+) is predicted at 848 cm(-1), with strong negative anharmonicity in the progression characteristic of a shallow "particle in a box" potential. The corresponding proton stretch fundamental for OCHCO(+) is anomalously low at 386 cm(-1), but with a strong alternation in the vibrational spacing due to the presence of a shallow D(infinityh) transition state barrier (Delta = 398 cm(-1)) between the two equivalent minimum geometries. Calculation of a 2D dipole moment surface and transition matrix elements reveals surprisingly strong combination and difference bands with appreciable intensity throughout the 300-1500 cm(-1) region. Corrected for zero point (DeltaZPE) and thermal vibrational excitation (DeltaE(vib)) at 300 K, the single and double dissociation energies in these complexes are in excellent agreement with thermochemical gas phase ion data.

  6. Torsion-inversion tunneling patterns in the CH-stretch vibrationally excited states of the G12 family of molecules including methylamine.

    Science.gov (United States)

    Dawadi, Mahesh B; Bhatta, Ram S; Perry, David S

    2013-12-19

    Two torsion-inversion tunneling models (models I and II) are reported for the CH-stretch vibrationally excited states in the G12 family of molecules. The torsion and inversion tunneling parameters, h(2v) and h(3v), respectively, are combined with low-order coupling terms involving the CH-stretch vibrations. Model I is a group theoretical treatment starting from the symmetric rotor methyl CH-stretch vibrations; model II is an internal coordinate model including the local-local CH-stretch coupling. Each model yields predicted torsion-inversion tunneling patterns of the four symmetry species, A, B, E1, and E2, in the CH-stretch excited states. Although the predicted tunneling patterns for the symmetric CH-stretch excited state are the same as for the ground state, inverted tunneling patterns are predicted for the asymmetric CH-stretches. The qualitative tunneling patterns predicted are independent of the model type and of the particular coupling terms considered. In model I, the magnitudes of the tunneling splittings in the two asymmetric CH-stretch excited states are equal to half of that in the ground state, but in model II, they differ when the tunneling rate is fast. The model predictions are compared across the series of molecules methanol, methylamine, 2-methylmalonaldehyde, and 5-methyltropolone and to the available experimental data.

  7. On the origin of red and blue shifts of X-H and C-H stretching vibrations in formic acid (formate ion) and proton donor complexes.

    Science.gov (United States)

    Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel

    2007-01-08

    Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.

  8. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH3 in promoting H + NH3 → H2 + NH2 reaction

    Science.gov (United States)

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-01

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-of-the-art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH3 → H2 + NH2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH3 stretching modes, is demonstrated. It is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.

  9. Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)

    International Nuclear Information System (INIS)

    Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.

    1999-01-01

    Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2ν 1 to 5ν 1 ) and free-jet action spectra of the second through the fourth overtones (3ν 1 to 5ν 1 ) of the N - H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N - H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with ab initio calculations of East, Johnson, and Allen [J. Chem. Phys. 98, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N - H stretching zero-order states are ones with a quantum of N - H stretching excitation (ν 1 ) replaced by different combinations of N - C - O asymmetric or symmetric stretching excitation (ν 2 or ν 3 ) and trans-bending excitation (ν 4 ). The two strongest couplings of the nν 1 state are to the states (n-1)ν 1 +ν 2 +ν 4 and (n-1)ν 1 +ν 3 +2ν 4 , and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N - H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. copyright 1999 American Institute of Physics

  10. The molecular structure of the borate mineral inderite Mg(H4B3O7)(OH) · 5H2O--a vibrational spectroscopic study.

    Science.gov (United States)

    Frost, Ray L; López, Andrés; Xi, Yunfei; Lima, Rosa Malena Fernandes; Scholz, Ricardo; Granja, Amanda

    2013-12-01

    We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH) · 5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [Formula: see text] soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm(-1) are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm(-1) are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm(-1) with sharper bands at 3459, 3530 and 3562 cm(-1) assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Brightening and locking a weak and floppy N-H chromophore: the case of pyrrolidine.

    Science.gov (United States)

    Hesse, Susanne; Wassermann, Tobias N; Suhm, Martin A

    2010-10-07

    The N-H stretching signature of the puckering equilibrium between equatorial and axial pyrrolidine is analyzed via FTIR and Raman spectroscopy in supersonic jets as a function of aggregation. Vibrational temperatures along the expansion axis can be extracted from the Raman spectra and allow for a localization of the compression shock waves. While the equatorial conformation is more stable in the ground state monomer, this preference is probably switched in the excited state with one N-H stretching quantum. Furthermore, the dominant dimer involves an axial donor and the trimer and tetramer structures seem to prefer uniform axial conformations. The IR intensity is boosted by up to 3 orders of magnitude upon aggregation, whereas the Raman scattering intensity shows only moderate hydrogen bond effects. B3LYP and MP2 calculations provide a reasonable description of the N-H vibrational dynamics under the influence of self-aggregation. In mixed dimers with pyrrole, pyrrolidine assumes the role of a hydrogen bond acceptor.

  12. Effect of antisymmetric C–H stretching excitation on the dynamics of O({sup 1}D) + CH{sub 4} → OH + CH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huilin; Yang, Jiayue; Zhang, Dong; Shuai, Quan; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-04-21

    The effect of antisymmetric C–H stretching excitation of CH{sub 4} on the dynamics and reactivity of the O({sup 1}D) + CH{sub 4} → OH + CD{sub 3} reaction at the collision energy of 6.10 kcal/mol has been investigated using the crossed-beam and time-sliced velocity map imaging techniques. The antisymmetric C–H stretching mode excited CH{sub 4} molecule was prepared by direct infrared excitation. From the measured images of the CH{sub 3} products with the infrared laser on and off, the product translational energy and angular distributions were derived for both the ground and vibrationally excited reactions. Experimental results show that the vibrational energy of the antisymmetric stretching excited CH{sub 4} reagent is channeled exclusively into the vibrational energy of the OH co-products and, hence, the OH products from the excited-state reaction are about one vibrational quantum hotter than those from the ground-state reaction, and the product angular distributions are barely affected by the vibrational excitation of the CH{sub 4} reagent. The reactivity was found to be suppressed by the antisymmetric stretching excitation of CH{sub 4} for all observed CH{sub 3} vibrational states. The degree of suppression is different for different CH{sub 3} vibrational states: the suppression is about 40%–60% for the ground state and the umbrella mode excited CH{sub 3} products, while for the CH{sub 3} products with one quantum symmetric stretching mode excitation, the suppression is much less pronounced. In consequence, the vibrational state distribution of the CH{sub 3} product from the excited-state reaction is considerably different from that of the ground-state reaction.

  13. Study of the solvent effects on the molecular structure and Cdbnd O stretching vibrations of flurbiprofen

    Science.gov (United States)

    Tekin, Nalan; Pir, Hacer; Sagdinc, Seda

    2012-12-01

    The effects of 15 solvents on the C=O stretching vibrational frequency of flurbiprofen (FBF) were determined to investigate solvent-solute interactions. Solvent effects on the geometry and C=O stretching vibrational frequency, ν(C=O), of FBF were studied theoretically at the DFT/B3LYP and HF level in combination with the polarizable continuum model and experimentally using attenuated total reflection infrared spectroscopy (ATR-IR). The calculated C=O stretching frequencies in the liquid phase are in agreement with experimental values. Moreover, the wavenumbers of ν(C=O) of FBF in different solvents have been obtained and correlated with the Kirkwood-Bauer-Magat equation (KBM), the solvent acceptor numbers (ANs), and the linear solvation energy relationships (LSERs). The solvent-induced stretching vibrational frequency shifts displayed a better correlation with the LSERs than with the ANs and KBM.

  14. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  15. Global minimum-energy structure and spectroscopic properties of I2(*-) x n H2O clusters: a Monte Carlo simulated annealing study.

    Science.gov (United States)

    Pathak, Arup Kumar; Mukherjee, Tulsi; Maity, Dilip Kumar

    2010-01-18

    The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine-dimer radical-anion clusters, I(2)(*-) x n H(2)O (n=1-10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum-energy structure by applying a Monte Carlo simulated annealing procedure including spin-orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I-I stretching band but enhances the intensity of the O-H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O-H bonds in a cyclic water network are observed for I(2)(*-) x n H(2)O clusters with n > or = 3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite-size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I(2)(*-) in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl(2)(*-) and Br(2)(*-).

  16. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    Science.gov (United States)

    Velarde, Luis; Wang, Hong-fei

    2013-08-01

    While in principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system, the inhomogeneous character of surface vibrations in sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with time-domain SFG-VS by mapping the decay of the vibrational polarization using ultrafast lasers, this due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough lineshape. Here, with the recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) technique, we show that the inhomogeneous lineshape can be obtained in the frequency-domain for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 ± 0.01 cm-1 with a total linewidth of 10.9 ± 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4.7 ± 0.4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8.1 ± 0.2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57° ± 2° from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accommodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  17. Excitation and deexcitation of the Si-H stretching mode in a Si:H with picosecond free electron laser pulses

    International Nuclear Information System (INIS)

    Xu, Z.; Fauchet, M.; Rella, C.W.

    1995-01-01

    Hydrogen in amorphous and crystalline silicon has been the topic of intense theoretical and experimental investigations for more than one decade. To better understand how the Si-H bonds interact with the Si matrix and how they can be broken, it would be useful to excite selectively these bonds and monitor the energy flow from the Si-H bonds into the bulk Si modes. One attractive way of exciting the Si-H modes selectively is with an infrared laser tuned to a Si-H vibrational mode. Unfortunately, up to now, this type of experiment had not been possible because of the lack of a laser producing intense, ultrashort pulses that are tunable in the mid infrared. In this presentation, we report the first measurement where a 1 picosecond long laser pulse was used to excite the Si-H stretching modes near 2000 cm -1 and another identical laser pulse was used to measure the deexcitation from that specific vibrational mode. The laser was the Stanford free electron laser generating ∼1 ps-long pulses, tunable in the 5 μm region and focussed to an intensity of ∼1 GW/cm 2 . The pump-probe measurements were performed in transmission at room temperature on several 2 μm thick a-Si:H films deposited on c-Si. Samples with predominant Si-H 1 modes, predominant Si-H n>1 modes and with a mixture of modes were prepared. The laser was tuned on resonance with either of these modes. Immediately after excitation, we observe a bleaching of the infrared absorption, which can be attributed to excitation of the Si-H mode. Beaching is expected since, as a result of anharmonicity, the detuning between the (E 3 - E 2 ) resonance and the (E 2 - E 1 ) resonance is larger than the laser bandwidth. Note that despite the anharmonicity, it should be possible to climb the vibrational ladder due to power broadening

  18. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics.

    Science.gov (United States)

    Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro

    2012-04-21

    Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO(4) tetrahedron of symmetry T(d), the bridging oxygen (BO) Si-O-Si of symmetry C(2v), the geminal oxygen O-Si-O of symmetry C(2v), the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H(6)Si(2)O(7) dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q(0) monomer up to the fully polymerized Q(4) tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q(2) tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm(-1) and the ethane-like vibrational contribution of the H(6)Si(2)O(7) dimer at 870 cm(-1).

  19. Quantum-mechanical study of energies, structures, and vibrational spectra of the H(D)Cl complexed with dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Boda, Łukasz, E-mail: lboda@chemia.uj.edu.pl; Boczar, Marek; Gług, Maciej; Wójcik, Marek J. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland)

    2015-11-28

    Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl–H and Cl–D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl–H and Cl–D stretching bands were performed and the results were compared with experimental spectra.

  20. Bandshapes in vibrational spectroscopy

    International Nuclear Information System (INIS)

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  1. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C ( L-ascorbic acid) and H 2O

    Science.gov (United States)

    Dimitrova, Yordanka

    2006-02-01

    The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.

  2. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  3. Overtone spectroscopy of the hydroxyl stretch vibration in hydroxylamine (NH2OH)

    International Nuclear Information System (INIS)

    Scott, J.L.; Luckhaus, D.; Brown, S.S.; Crim, F.F.

    1995-01-01

    We present photoacoustic spectra of the second (3ν OH ), third (4ν OH ), and fourth (5ν OH ) overtone bands of the hydroxyl stretch vibration in hydroxylamine. Asymmetric rotor simulations of the rovibrational contours provide rotational constants and an estimate of the homogeneous linewidth. The fourth overtone band appears anomalously broad relative to the two lower bands, reflecting a sharp increase in the rate of intramolecular vibrational energy redistribution (IVR). By contrast, the calculated density of states increases smoothly with energy. The homogeneous linewidth of the fourth overtone transition is similar to that measured by Luo et al. [J. Chem. Phys. 93, 9194 (1990)] for the predissociative sixth overtone band, supporting the conclusion that the broadening arises from increased (ro)vibrational coupling at an energy between the third and fourth overtone states

  4. Effects of intermolecular interactions on absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations of methanol and t-butanol‑d9 in n-hexane studied by visible/near-infrared/infrared spectroscopy

    Science.gov (United States)

    Morisawa, Yusuke; Suga, Arisa

    2018-05-01

    Visible (Vis), near-infrared (NIR) and IR spectra in the 15,600-2500 cm- 1 region were measured for methanol, methanol-d3, and t-butanol-d9 in n-hexane to investigate effects of intermolecular interaction on absorption intensities of the fundamental and the first, second, and third overtones of their OH stretching vibrations. The relative area intensities of OH stretching bands of free and hydrogen-bonded species were plotted versus the vibrational quantum number using logarithm plots (V = 1-4) for 0.5 M methanol, 0.5 M methanol‑d3, and 0.5 M t-butanol-d9 in n-hexane. In the logarithm plots the relative intensities of free species yield a linear dependence irrespective of the solutes while those of hydrogen-bonded species deviate significantly from the linearity. The observed results suggest that the modifications in dipole moment functions of the OH bond induced by the formation of the hydrogen bondings change transient dipole moment, leading to the deviations of the dependences of relative absorption intensities on the vibrational quantum number from the linearity.

  5. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  6. High-resolution sub-Doppler infrared spectroscopy of atmospherically relevant Criegee precursor CH2I radicals: CH2 stretch vibrations and "charge-sloshing" dynamics

    Science.gov (United States)

    Kortyna, A.; Lesko, D. M. B.; Nesbitt, D. J.

    2018-05-01

    The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and

  7. The dimers of glyoxal and acrolein with H 2O and HF: Negative intramolecular coupling and blue-shifted C-H stretch

    Science.gov (United States)

    Karpfen, Alfred; Kryachko, Eugene S.

    2010-04-01

    The structures and the vibrational spectra of the hydrogen-bonded complexes: glyoxal-H 2O, glyoxal-HF, acrolein-H 2O, and acrolein-HF, are investigated within the MP2/aug-cc-pVTZ computational approach. It is demonstrated that the calculated blue shifts of the C-H stretching frequencies in the glyoxal-H 2O complexes are only indirectly pertinent to hydrogen bonding to the C-H group. The comparison with the glyoxal-HF and the acrolein-HF complexes reveals that these blue shifts are a direct consequence of a negative intramolecular coupling between vicinal C dbnd O and C-H bonds in the aldehyde groups of isolated glyoxal and acrolein molecules. To support this interpretation, the halogen-bonded complexes glyoxal-BrF and acrolein-BrF are discussed.

  8. Revisit the landscape of protonated water clusters H+(H2O)n with n = 10-17: An ab initio global search

    Science.gov (United States)

    Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun

    2018-05-01

    Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.

  9. Local vibrational modes of the water dimer - Comparison of theory and experiment

    Science.gov (United States)

    Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D.

    2012-12-01

    Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory. The local H-bond stretching frequency is 528 cm-1 compared to a normal mode stretching frequency of just 143 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-bond strength.

  10. Modulational instabilities in acetanilide taking into account both the N-H and the C=O vibrational self-trappings

    International Nuclear Information System (INIS)

    Simo, Elie

    2007-01-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schroedinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN

  11. Modulational instabilities in acetanilide taking into account both the N-H and the C=O vibrational self-trappings

    International Nuclear Information System (INIS)

    Simo, E.

    2005-10-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that acetanilide can be described by a set of two coupled discrete nonlinear Schroedinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wave numbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wave numbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the acetanilide. (author)

  12. Modulational instabilities in acetanilide taking into account both the N-H and the C=O vibrational self-trappings

    Energy Technology Data Exchange (ETDEWEB)

    Simo, Elie [Departement de Physique, Faculte des Sciences, Universite de Yaoune I, B.P. 812 Yaounde (Cameroon)

    2007-02-15

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schroedinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN.

  13. Modulational instabilities in acetanilide taking into account both the N H and the C=O vibrational self-trappings

    Science.gov (United States)

    Simo, Elie

    2007-02-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schrödinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN.

  14. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    Science.gov (United States)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  15. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra.

    Science.gov (United States)

    Lee, Christopher M; Kubicki, James D; Fan, Bingxin; Zhong, Linghao; Jarvis, Michael C; Kim, Seong H

    2015-12-10

    Hydrogen bonds play critical roles in noncovalent directional interactions determining the crystal structure of cellulose. Although diffraction studies accurately determined the coordinates of carbon and oxygen atoms in crystalline cellulose, the structural information on hydrogen atoms involved in hydrogen-bonding is still elusive. This could be complemented by vibrational spectroscopy; but the assignment of the OH stretch peaks has been controversial. In this study, we performed calculations using density functional theory with dispersion corrections (DFT-D2) for the cellulose Iβ crystal lattices with the experimentally determined carbon and oxygen coordinates. DFT-D2 calculations revealed that the OH stretch vibrations of cellulose are highly coupled and delocalized through intra- and interchain hydrogen bonds involving all OH groups in the crystal. Additionally, molecular dynamics (MD) simulations of a single cellulose microfibril showed that the conformations of OH groups exposed at the microfibril surface are not well-defined. Comparison of the computation results with the experimentally determined IR dichroism of uniaxially aligned cellulose microfibrils and the peak positions of various cellulose crystals allowed unambiguous identification of OH stretch modes observed in the vibrational spectra of cellulose.

  16. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  17. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    Science.gov (United States)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features

  18. Anharmonic vibrational modes of chemisorbed H on the Rh(001) surface

    International Nuclear Information System (INIS)

    Hamann, D.R.; Feibelman, P.J.

    1988-01-01

    The potential for H atoms in the vicinity of the fourfold hollow chemisorption site on the Rh(001) surface at monolayer coverage is calculated using local-density-functional theory, and the linear-augmented-plane-wave method. The potential is found to contain important anharmonic components, one that couples parallel and perpendicular motion, and another producing azimuthal anisotropy. Variational solutions are found for the ground and low-lying excited states of H and D in this potential. The fundamental asymmetric- and symmetric-stretch H vibrational excitations are found to have energies of 67 and 92 meV. The latter agrees with recent experimental results, and higher-lying experimental modes are interpreted as mixed excitations. Comparisons are made with spring-constant models, calculated potentials for H on Ni and Pd(001), and theories of Bloch states for H on Ni

  19. Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.

    Science.gov (United States)

    Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh

    2014-12-14

    The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.

  20. NH (X 3 summation -, v=1--3) formation and vibrational relaxation in electron-irradiated Ar/N2/H2 mixtures

    International Nuclear Information System (INIS)

    Dodd, J.A.; Lipson, S.J.; Flanagan, D.J.; Blumberg, W.A.M.; Person, J.C.; Green, B.D.

    1991-01-01

    Measurements of the dynamics of NH(X 3 summation - , v =1--3), created in electron-irradiated N 2 /H 2 and Ar/N 2 /H 2 mixtures, have been performed. Time-resolved Fourier spectroscopy was used to observe NH(v→v--1) vibrational fundamental band emission. Time-dependent populations were then determined by spectral fitting. Subsequent kinetic fitting of these populations using a single-quantum relaxation model and a power-law dependence of k v on v yielded the following NH(v =1--3) relaxation rate constants (units of 10 -14 cm 3 s -1 ): k v=1 (N 2 )=1.2±0.5, k v=2 (N 2 )=3.8±1.5, k v=3 (N 2 )=7.5±2.5; k v=1 (Ar)=0.2±0.1, k v=2 (Ar)=0.5±0.2, k v=3 (Ar)=0.8±0.3; k v=1 (H 2 )≤50, k v=2 (H 2 )≤100, k v=3 (H 2 )≤150. In addition, the N 2 /H 2 data provided a measurement of the nascent excited vibrational state distribution resulting from the reaction N( 2 D)+H 2 →NH(X,v)+H. The ratio NH(1):NH(2):NH(3) was found to be 1.0:0.97:0.81 (±0.28 in each value). Comparison of the observed nascent distribution with that of a statistical model suggests that the ratio NH(0):NH(1)=0.47. Using this derived distribution, we find the average product level left-angle v right-angle =1.6, and the fraction of the available product energy in vibration left-angle f v right-angle =0.44

  1. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    Science.gov (United States)

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  2. Structures and Spectroscopic Properties of F-(H2O) n with n = 1-10 Clusters from a Global Search Based On Density Functional Theory.

    Science.gov (United States)

    Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun

    2018-04-05

    Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.

  3. On the intramolecular origin of the blue shift of A-H stretching frequencies: triatomic hydrides HAX.

    Science.gov (United States)

    Karpfen, Alfred; Kryachko, Eugene S

    2009-04-30

    A series of intermolecular complexes formed between the triatomic hydrides HAX and various interaction partners are investigated computationally aiming (1) to demonstrate that either an appearance or nonappearance of a blue shift of the A-H stretching frequency is directly related to the sign of the intramolecular coupling that exists between the two degrees of freedom, the A-H and A-X bond lengths, and (2) to offer the following conjecture: the theoretical protonation of a triatomic neutral molecule HAX at the site X is a simple and rather efficient probe of a red or blue shift that the stretching frequency nu(A-H) undergoes upon complex formation regardless of whether this bond is directly involved in hydrogen bonding or not. In other words, to predict whether this A-H bond is capable to display a blue or red shift of nu(A-H), it suffices to compare the equilibrium structures and vibrational spectra of a given molecule with its protonated counterpart. The two above goals are achieved invoking a series of 11 triatomic molecules: HNO, HSN, HPO, and HPS characterized by a negative intramolecular coupling; HON and HNS as intermediate cases; and HOF, HOCl, HCN, HNC, and HCP with a positive intramolecular coupling. For these purposes, the latter molecules are investigated at the MP2/6-311++G(2p,2d) level in the neutral and protonated HAXH(+) forms as well as their complexes with H(2)O and with the fluoromethanes H(3)CF, H(2)CF(2), and HCF(3).

  4. A theoretical study of the molecular structures and vibrational spectra of the N 2O⋯(HF) 2

    Science.gov (United States)

    de Lima, Nathália B.; Ramos, Mozart N.

    2012-01-01

    Theoretical calculations using both the MP2 and B3LYP levels of calculation with a 6-311++G(3df,3pd) basis set have been performed to determine stable structures and molecular properties for the H-bonded complexes involving nitrous oxide (N 2O) and two HF molecules. Five complex have been characterized as minima since no imaginary frequency was found. Three complex are predicted to be relatively more stable with binding energies varying from 14 kJ mol -1 to 23 kJ mol -1 after BSSE and ZPE corrections. Our calculations have revealed that the second complexation with HF preferably occurs with the first complexed HF molecule, i.e., forming the X⋯H sbnd F⋯H sbnd F skeleton with X = O or N instead the F sbnd H⋯N sbnd N sbnd O⋯H sbnd F one. As expected, the H sbnd F chemical bonds are increased after complexation due to intermolecular charge transfer from "n" isolated pair of the X atom (X = N, O or F) to the σ ∗ anti-bonding orbital of HF. For the strongly bounded complex, the doubly complexed HF molecule acts as a bridge between the two end molecules while transferring electrons from N 2O to HF. Both possess the same amount of residual charge but with opposite signs. The H sbnd F stretching frequency of the monoprotic acid is shifted downward after complexation whereas its IR intensity is much enhanced. This increase has been adequately interpreted in terms of equilibrium hydrogen charge and charge-flux associated to the H sbnd F stretching using the CCFOM model for infrared intensities. This procedure has also allowed to analyze the new vibrational modes arising upon H-bond formation, especially those associated with the out-of-plane and in-plane HF bending modes, which are pure rotations in the HF isolated molecule.

  5. Local-mode vibrations of water

    International Nuclear Information System (INIS)

    Lawton, R.T.; Child, M.S.

    1981-01-01

    Quantum-mechanical eigenvalues for the stretching vibrations of H 2 O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm - 1 at v=1 to 0.001 cm - 1 at v=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode. (author)

  6. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    International Nuclear Information System (INIS)

    Mandal, Aritra; Tokmakoff, Andrei

    2015-01-01

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions

  7. Local-mode vibrations of water

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, R.T.; Child, M.S. (Oxford Univ. (UK). Dept. of Theoretical Chemistry)

    1981-05-11

    Quantum-mechanical eigenvalues for the stretching vibrations of H/sub 2/O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm/sup -1/ at v=1 to 0.001 cm/sup -1/ at v=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode.

  8. Local-mode vibrations of water

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, R.T.; Child, M.S. (Oxford Univ. (UK). Dept. of Theoretical Chemistry)

    1981-05-11

    Quantum-mechanical eigenvalues for the stretching vibrations of H/sub 2/O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm/sup -1/ at theta=1 to 0.001 cm/sup -1/ at theta=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode.

  9. Vibrational spectroscopic study of cationic phosphorus dendrimers with aminoethylpiperidine terminal groups

    Science.gov (United States)

    Furer, V. L.; Vandyukov, A. E.; Tripathi, V.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2018-04-01

    Two generations of phosphoric dendrimers with piperidine functional groups were synthesized for use in biology and medicine. Neutral samples are soluble in organic solvents but after protonation these dendrimers become water soluble and can be used for biological experiments. The FTIR and FT Raman spectra of two generations of dendrimers Gi constructed from the cyclotriphosphazene core, repeating units sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S)molecular structure and vibrational spectra of the first generation dendrimer was performed by the method of DFT. This molecule has flat, repeating units and a plane of symmetry passing through the core. The calculation of the distribution of potential energy made it possible to classify the bands in the experimental spectra of dendrimers. Amine groups are manifested in the form of a band of NH stretching vibrations at 3389 cm-1 in the IR spectrum of G1. NH+ stretching bands located at 2646 and 2540 cm-1 in the IR spectrum of G2. The stretching vibrations of NH+ groups are noticeably shifted to low frequencies due to the formation of a hydrogen bond with the chlorine atom. The line at 1575 cm-1 in the Raman spectrum of G1 is characteristic for repeating units.

  10. Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid

    Science.gov (United States)

    Alver, Özgur; Kaya, Mehmet Fatih

    2014-11-01

    Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  11. Efficient {pi} electrons delocalization in prospective push-pull non-linear optical chromophore 4-[N,N-dimethylamino]-4'-nitro stilbene (DANS): A vibrational spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, T.; Hubert Joe, I. [Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram 695 015, Kerala (India); Reghunadhan Nair, C.P. [Polymers and Special Chemicals Division, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, Kerala (India); Jayakumar, V.S. [Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram 695 015, Kerala (India)], E-mail: vsjk@vsnl.net

    2008-01-22

    A comprehensive investigation on the intramolecular charge transfer (ICT) of an efficient {pi}-conjugated potential push-pull NLO chromophore, 4-[N,N-dimethylamino]-4'-nitro stilbene (DANS), from a strong electron-donor group (dimethylamino-N(CH{sub 3}){sub 2}) to a strong electron-acceptor group (nitro-NO{sub 2}) through the {pi}-conjugated bridge (trans-stilbene) has been carried out from their vibrational spectra. The NIR FT-Raman and FT-IR spectra supported by the density functional theory (DFT) quantum chemical computations have been employed to analyze the effects of intramolecular charge transfer on the geometries and the vibrational modes contributing to the linear electro-optic effect of the organic NLO material. It has been observed that the changes in the endocyclic and exocyclic angles result from the charge-transfer interaction of the phenyl ring and the amino group in the electron-donor side of the NLO chromophore. The strongest vibrational modes contributing to the electro-optic effect have been identified and examined from the concurrent IR and Raman activation of {nu}(C=C/C-C) mode, ring C=C stretching modes, in-plane deformation modes, nitro modes and the umbrella mode of methyl groups. Furthermore, the splitting of the vinyl stretching modes and the electronic effects such as hyperconjugation and backdonation on the methyl hydrogen atoms causing the decrease of stretching frequencies and infrared intensities have also been analyzed in detail. The effect of frontier orbitals transition of electron density transfer and the influence of planarity between the phenyl rings of the stilbene moiety on the first hyperpolarizability have also been discussed.

  12. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    Science.gov (United States)

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  13. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    Science.gov (United States)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  14. Triceps surae short latency stretch reflexes contribute to ankle stiffness regulation during human running.

    Directory of Open Access Journals (Sweden)

    Neil J Cronin

    Full Text Available During human running, short latency stretch reflexes (SLRs are elicited in the triceps surae muscles, but the function of these responses is still a matter of controversy. As the SLR is primarily mediated by Ia afferent nerve fibres, various methods have been used to examine SLR function by selectively blocking the Ia pathway in seated, standing and walking paradigms, but stretch reflex function has not been examined in detail during running. The purpose of this study was to examine triceps surae SLR function at different running speeds using Achilles tendon vibration to modify SLR size. Ten healthy participants ran on an instrumented treadmill at speeds between 7 and 15 km/h under 2 Achilles tendon vibration conditions: no vibration and 90 Hz vibration. Surface EMG from the triceps surae and tibialis anterior muscles, and 3D lower limb kinematics and ground reaction forces were simultaneously collected. In response to vibration, the SLR was depressed in the triceps surae muscles at all speeds. This coincided with short-lasting yielding at the ankle joint at speeds between 7 and 12 km/h, suggesting that the SLR contributes to muscle stiffness regulation by minimising ankle yielding during the early contact phase of running. Furthermore, at the fastest speed of 15 km/h, the SLR was still depressed by vibration in all muscles but yielding was no longer evident. This finding suggests that the SLR has greater functional importance at slow to intermediate running speeds than at faster speeds.

  15. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    Science.gov (United States)

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  16. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  17. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H{sub 2}O and OH(D{sub 2}O){sub n} (n = 1-3)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Federico J. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba (Argentina); Brice, Joseph T.; Leavitt, Christopher M.; Liang, Tao; Douberly, Gary E., E-mail: douberly@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Raston, Paul L. [Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807 (United States); Pino, Gustavo A. [INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba (Argentina)

    2015-10-28

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing a 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.

  18. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure

    Science.gov (United States)

    Dimitrić Marković, Jasmina M.; Marković, Zoran S.; Milenković, Dejan; Jeremić, Svetlana

    2011-12-01

    This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm -1 wavenumber region. This region involves a combination of the C dbnd O, C2 dbnd C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm -1 range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm -1 is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy.

  19. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  20. Structural dynamics of N-ethylpropionamide clusters examined by nonlinear infrared spectroscopy

    International Nuclear Information System (INIS)

    Wang, Jianping; Yang, Fan; Zhao, Juan; Shi, Jipei

    2015-01-01

    In this work, the structural dynamics of N-ethylpropionamide (NEPA), a model molecule of β-peptides, in four typical solvents (DMSO, CH 3 CN, CHCl 3 , and CCl 4 ), were examined using the N—H stretching vibration (or the amide-A mode) as a structural probe. Steady-state and transient infrared spectroscopic methods in combination with quantum chemical computations and molecular dynamics simulations were used. It was found that in these solvents, NEPA exists in different aggregation forms, including monomer, dimer, and oligomers. Hydrogen-bonding interaction and local-solvent environment both affect the amide-A absorption profile and its vibrational relaxation dynamics and also affect the structural dynamics of NEPA. In particular, a correlation between the red-shifted frequency for the NEPA monomer from nonpolar to polar solvent and the vibrational excitation relaxation rate of the N—H stretching mode was observed

  1. Acute Whole-Body Vibration does not Facilitate Peak Torque and Stretch Reflex in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Ella W. Yeung

    2013-03-01

    Full Text Available The acute effect of whole-body vibration (WBV training may enhance muscular performance via neural potentiation of the stretch reflex. The purpose of this study was to investigate if acute WBV exposure affects the stretch induced knee jerk reflex [onset latency and electromechanical delay (EMD] and the isokinetic knee extensor peak torque performance. Twenty-two subjects were randomly assigned to the intervention or control group. The intervention group received WBV in a semi-squat position at 30° knee flexion with an amplitude of 0.69 mm, frequency of 45 Hz, and peak acceleration of 27.6 m/s2 for 3 minutes. The control group underwent the same semii-squatting position statically without exposure of WBV. Two-way mixed repeated measures analysis of variance revealed no significant group effects differences on reflex latency of rectus femoris (RF and vastus lateralis (VL; p = 0.934 and 0.935, respectively EMD of RF and VL (p = 0.474 and 0.551, respectively and peak torque production (p = 0.483 measured before and after the WBV. The results of this study indicate that a single session of WBV exposure has no potentiation effect on the stretch induced reflex and peak torque performance in healthy young adults.

  2. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions.

    Science.gov (United States)

    Hunger, Johannes; Tielrooij, Klaas-Jan; Buchner, Richard; Bonn, Mischa; Bakker, Huib J

    2012-04-26

    We study aqueous solutions of the amphiphilic osmolyte trimethylamine-N-oxide (TMAO) using broadband dielectric spectroscopy and femtosecond mid-infrared spectroscopy. Both experiments provide strong evidence for distinctively slower rotation dynamics for water molecules interacting with the hydrophobic part of the TMAO molecules. Further, water is found to interact more strongly at the hydrophilic site of the TMAO molecules: we find evidence for the formation of stable, TMAO·2H2O and/or TMAO·3H2O complexes. While this coordination structure seems obvious, the lifetime of these complexes is found to be extraordinarily long (>50 ps). The existence of these long-lived complexes leads to pronounced parallel dipole correlations between water and TMAO, reflected in enhanced amplitudes in the dielectric spectra. The strong interaction between water and TMAO also results in a red-shifted band for the O-D stretching vibration of HDO molecules in an isotopically diluted aqueous TMAO solution. This O-D stretching vibration has a vibrational lifetime of 670 fs, which is significantly shorter than the lifetime of the O-D stretch vibration of bulk-like HDO molecules, presumably due to efficient coupling to vibrational modes of TMAO. The rotational dynamics of these O-D groups are slowed down dramatically, and are limited by the rotation of the whole complex, while the O-D vector oriented away from TMAO probably shows an accelerated reorientation.

  3. Effect of collision energy and vibrational excitation on endothermic ion-molecule reactions

    International Nuclear Information System (INIS)

    Turner, T.P.

    1984-07-01

    This thesis is divided into two major parts. In the first part an experimental study of proton and deuteron transfer in H 2 + + He and HD + + He has been carried out as a function of kinetic and vibrational energy. The data gives evidence that at lower kinetic energies, the spectator stripping mechanism indeed plays an important role when H 2 + or HD + is vibrationally excited. The second half of this thesis examines the relative efficiencies between the excitation of C-C stretching vibration and collision energy on the promotion of the H atom transfer reaction of C 2 H 2 + + H 2 → C 2 H 3 + + H

  4. Vibrational inelasticity in H2 collisions with He and Li+

    International Nuclear Information System (INIS)

    Raczkowski, A.W.

    1975-09-01

    The partially averaged version of classical S-matrix theory was applied to three-dimensional collisions of H 2 with He and Li + . For H 2 -Li + , cross-sections for the de-excitation of H 2 from (n 1 ,j 1 ) = (1,0) to the ground vibrational manifold were computed at a total energy of 1.2 eV and compared to previously done coupled channel calculations of Schaefer and Lester. The agreement is very good. For H 2 -He, the Kutzelnigg-Tsapline interaction potential was extended to small atom-diatom separations, the ab initio points were then fit to an analytic form, and cross sections for the de-excitation of H 2 from the states (n 1 ,j 1 ), n 1 = 1, j 1 = 0,2,4 to the ground vibrational manifold were computed at total energies of .9, 1.1, 1.3 and 1.5 eV. For comparison, coupled channel calculations were also performed on the system at the same energies. The agreement was poorer than in the H 2 -Li + case, for identifiable reasons. The cross sections were used to compute rate constants and relaxation times for the H 2 -He system. Comparison of these results with the results of experiment and of other calculations shows good agreement, certainly within the expected errors. (7 figs., 30 refs., 3 tables)

  5. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure.

    Science.gov (United States)

    Dimitrić Marković, Jasmina M; Marković, Zoran S; Milenković, Dejan; Jeremić, Svetlana

    2011-12-01

    This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm(-1) wavenumber region. This region involves a combination of the CO, C2C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm(-1) range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm(-1) is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Vibrational modes and strain in GaN/AlN quantum dot stacks: dependence on spacer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Fresneda, J.; Cros, A.; Llorens, J.M.; Garcia-Cristobal, A.; Cantarero, A. [Institut de Ciencia del Materials, Universitat de Valencia, 46071 Valencia (Spain); Amstatt, B.; Bellet-Amalric, E.; Daudin, B. [CEA-CNRS Group, Nanophysique et Semiconducteurs, DRFMC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2007-06-15

    We have investigated the influence of spacer thickness on the vibrational and strain characteristics of GaN/AlN quantum dot multilayers (QD). The Raman shift corresponding to the E{sub 2h} vibrational mode related to the QDs has been analyzed for AlN thicknesses ranging from 4.4 nm to 13 nm, while the amount of GaN deposited in each layer remained constant from sample to sample. It is shown that there is a rapid blue shift of the GaN vibrational mode with spacer thickness when its value is smaller than 7 nm while it remains almost constant for thicker spacers. A rapid increase of the Raman line-width in the thicker samples is also observed. The experimental behavior is discussed in comparison with the results of a theoretical model for the strain in the QDs. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  8. Intramolecular Vibrational Energy Transfer and Bond-Selected Photochemistry in Liquids

    National Research Council Canada - National Science Library

    Crim, F

    2001-01-01

    .... In the gas phase experiments, one pulse excited the first overtone of the O-H stretching vibration in nitric acid and the second pulse probed the excited molecule by excitation to a dissociative...

  9. Structures of aspartic acid-96 in the L and N intermediates of bacteriorhodopsin: analysis by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Maeda, A.; Sasaki, J.; Shichida, Y.; Yoshizawa, T.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The light-induced difference Fourier transform infrared spectrum between the L or N intermediate minus light-adapted bacteriorhodopsin (BR) was measured in order to examine the protonated states and the changes in the interactions of carboxylic acids of Asp-96 and Asp-115 in these intermediates. Vibrational bands due to the protonated and unprotonated carboxylic acid were identified by isotope shift and band depletion upon substitution of Asp-96 or -115 by asparagine. While the signal due to the deprotonation of Asp-96 was clearly observed in the N intermediate, this residue remained protonated in L. Asp-115 was partially deprotonated in L. The C = O stretching vibration of protonated Asp-96 of L showed almost no shift upon 2H2O substitution, in contrast to the corresponding band of Asp-96 or Asp-115 of BR, which shifted by 9-12 cm-1 under the same conditions. In the model system of acetic acid in organic solvents, such an absence of the shift of the C = O stretching vibration of the protonated carboxylic acid upon 2H2O substitution was seen only when the O-H of acetic acid is hydrogen-bonded. The non-hydrogen-bonded monomer showed the 2H2O-dependent shift. Thus, the O-H bond of Asp-96 enters into hydrogen bonding upon conversion of BR to L. Its increased hydrogen bonding in L is consistent with the observed downshift of the O-H stretching vibration of the carboxylic acid of Asp-96.

  10. Dynamics of the OH stretching mode in crystalline Ba(ClO4)2.3H2O

    Science.gov (United States)

    Hutzler, Daniel; Brunner, Christian; Petkov, Petko St.; Heine, Thomas; Fischer, Sighart F.; Riedle, Eberhard; Kienberger, Reinhard; Iglev, Hristo

    2018-02-01

    The vibrational dynamics of the OH stretching mode in Ba(ClO4)2 trihydrate are investigated by means of femtosecond infrared spectroscopy. The sample offers plane cyclic water trimers in the solid phase that feature virtually no hydrogen bond interaction between the water molecules. Selective excitation of the symmetric and asymmetric stretching leads to fast population redistribution, while simultaneous excitation yields quantum beats, which are monitored via a combination tone that dominates the overtone spectrum. The combination of steady-state and time-resolved spectroscopy with quantum chemical simulations and general theoretical considerations gives indication of various aspects of symmetry breakage. The system shows a joint population lifetime of 8 ps and a long-lived coherence between symmetric and asymmetric stretching, which decays with a time constant of 0.6 ps.

  11. Vibrational structures in electron-CO2 scattering below the 2Πu shape resonance

    International Nuclear Information System (INIS)

    Allan, Michael

    2002-01-01

    Structures of vibrational origin were discovered in vibrationally inelastic electron-CO 2 cross sections in the energy range 0.4-0.9 eV, well below the 2 Π u shape resonance. They appear in the excitation of higher vibrational levels, in particular the highest members of the Fermi polyads of the type (n, 2m, 0) with n+m=2-4. The lowest two structures, at 0.445 and 0.525 eV, are narrow; higher-lying structures are broader and boomerang-like. The structures are absent when the antisymmetric stretch is co-excited. The structures are interpreted in terms of a wavepacket of the nuclei reflected from a potential surface of the CO 2 - anion in a bent and stretched geometry. A state emerging from the virtual state upon bending and stretching and the state resulting from bending the 2 Π u shape resonance are discussed as possibly being responsible for the structures. (author). Letter-to-the-editor

  12. Dissimilar Dynamics of Coupled Water Vibrations

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Cringus, Dan; Pshenichnikov, Maxim S.

    2009-01-01

    Dissimilar dynamics of coupled stretch vibrations of a water molecule are revealed by two-dimensional, IR correlation spectroscopy. These are caused by essentially non-Gaussian fluctuations of the electric field exerted by the environment on the individual OH stretch vibrations. Non-Gaussian

  13. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O

    Science.gov (United States)

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-01

    The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.

  14. High resolution spectroscopy of 1,2-difluoroethane in a molecular beam: A case study of vibrational mode-coupling

    Science.gov (United States)

    Mork, Steven W.; Miller, C. Cameron; Philips, Laura A.

    1992-09-01

    The high resolution infrared spectrum of 1,2-difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1 spectral region. This region corresponds to the symmetric combination of asymmetric C-H stretches in DFE. Observed rotational fine structure indicates that this C-H stretch is undergoing vibrational mode coupling to a single dark mode. The dark mode is split by approximately 19 cm-1 due to tunneling between the two identical gauche conformers. The mechanism of the coupling is largely anharmonic with a minor component of B/C plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. Analysis of the fine structure identifies the dark state as being composed of C-C torsion, CCF bend, and CH2 rock. Coupling between the C-H stretches and the C-C torsion is of particular interest because DFE has been observed to undergo vibrationally induced isomerization from the gauche to trans conformer upon excitation of the C-H stretch.

  15. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  16. Linking structure and vibrational mode coupling using high-resolution infrared spectroscopy: A comparison of gauche and trans 1-chloro-2-fluoroethane

    Science.gov (United States)

    Miller, C. Cameron; Stone, Stephen C.; Philips, Laura A.

    1995-01-01

    The high-resolution infrared spectrum of 1-chloro-2-fluoroethane in a molecular beam was collected over the 2975-2994 cm-1 spectral region. The spectral region of 2975-2981 cm-1 contains a symmetric C-H stretching vibrational band of the gauche conformer containing the 35Cl isotope. The spectral region of 2985-2994 cm-1 contains three vibrational bands of the trans conformer. Two of the three bands are assigned as an antisymmetric C-H stretch of each of the two different chlorine isotopes. The third band is assigned as a symmetric C-H stretch of the 35Cl isotope. The gauche conformer of 1-chloro-2-fluoroethane showed doublet patterns similar to those previously observed in 1,2-difluoroethane. The model for 1,2-difluoroethane is further refined in the present work. These refinements suggest that the coupling dark state in 1,2-difluoroethane is composed of 1 quantum C-H bend, 1 quantum C-C stretch, and 12 quanta of torsion. For 1-chloro-2-fluoroethane the dark state could not be identified due to a small data set. The trans conformer of 1-chloro-2-fluoroethane showed no evidence of mode coupling in the three vibrational bands. Including 2-fluoroethanol in this series of molecules, the extent of vibrational mode coupling did not correlate with the density of states available for coupling. Therefore, density of states alone is insufficient to explain the observed trend. A correlation was observed between the degree of intramolecular interaction and vibrational mode coupling.

  17. Infrared, diode laser spectroscopy of the Ar--N2O complex: Observation of the intermolecular bending mode in combination with the highest frequency intramolecular stretching mode

    International Nuclear Information System (INIS)

    Hu, T.A.; Chappell, E.L.; Sharpe, S.W.

    1993-01-01

    Rotationally resolved vibrational spectra consisting of a-type transitions have been observed for the low-frequency, intermolecular bending mode in combination with the highest frequency, intramolecular stretching mode of Ar--N 2 O. Analysis of the spectral data places the origin of the combination band at 2256.1 cm -1 while the origin of the intramolecular stretching fundamental is at 2223.9 cm -1 . The difference between these two origins is approximately 32.2 cm -1 and agrees well with our calculated frequency of 31.5 cm -1 for the intermolecular bending mode, which was obtained by analysis of the centrifugal distortion constants. In addition, argon--nitrous oxide exhibits an anomalously large inertial defect of 10.96 amu A 2 in the combination state. This indicates a breakdown in the assumption of separation between vibration and rotation. While much of the inertial defect in the ground state can be accounted for by including Coriolis interactions, that occurring in the combination state is only partially accounted for by a similar analysis. Small, but significant changes, are observed in both the radial and angular parameters for Ar--N 2 O when going from the ground to the combination state, indicating large amplitude motion. The combination band is approximately 200 times less intense than the high-frequency, stretching fundamental of Ar--N 2 O. In addition, over 400 new rovibrational transitions are assigned to the previously observed 1 0 1 intramolecular stretching fundamental of the complex, and the subsequent rotational analysis is found to be in close agreement with earlier studies. Data were taken on a newly built, rapid-scan, diode laser spectrometer that incorporates a 12 cmx200 μm pulsed slit-expansion nozzle

  18. Two-Dimensional Infrared Study of Vibrational Coupling between Azide and Nitrile Reporters in a RNA Nucleoside.

    Science.gov (United States)

    Schmitz, Andrew J; Hogle, David G; Gai, Xin Sonia; Fenlon, Edward E; Brewer, Scott H; Tucker, Matthew J

    2016-09-08

    The vibrations in the azide, N3, asymmetric stretching region and nitrile, CN, symmetric stretching region of 2'-azido-5-cyano-2'-deoxyuridine (N3CNdU) are examined by two-dimensional infrared (2D IR) spectroscopy. At earlier waiting times, the 2D IR spectrum shows the presence of both vibrational transitions along the diagonal and off-diagonal cross peaks indicating vibrational coupling. The coupling strength is determined from the off-diagonal anharmonicity to be 66 cm(-1) for the intramolecular distance of ∼7.9 Å, based on a structural map generated for this model system. In addition, the frequency-frequency correlation decay is detected, monitoring the solvent dynamics around each individual probe position. Overall, these vibrational reporters can be utilized in tandem to simultaneously track global structural information and fast structural fluctuations.

  19. Vibrational spectra of cholorophylls a and b labeled with 26Mg and 15N

    International Nuclear Information System (INIS)

    Lutz, M.; Kleo, J.; Gilet, R.; Henry, M.; Plus, R.; Leicknam, J.P.

    1975-01-01

    Chlorophyll molecules having their central natural magnesium replaced by 26 Mg and their natural nitrogens by 15 N were obtained by biosynthesis and examined by infrared and resonance Raman spectrometry. These observations provide unequivocal assignments of the molecular vibrational frequencies which involve the magnesium and nitrogen atoms. In particular, in both infrared and resonance Raman spectra, the absence of displacements in bands of frequency higher than 1550 cm -1 indicated the insignificant contributions of C=N stretching modes, which have maximum activity in the 1050 to 1180 cm -1 region. These results also indicate a configuration of chlorophyll in which the magnesium atom is not at a center of symmetry

  20. Diagnostics of the Raman spectral structure of the stretching vibrations of water by means of polarization CARS

    International Nuclear Information System (INIS)

    Bunkin, A.F.; Maltsev, D.V.; Surskii, K.O.; Shapiro, Y.G.; Chernov, V.G.

    1988-01-01

    A method is proposed for decomposing into components by computer the partially resolved polarization CARS spectra of the ν OH Raman band of stretching vibrations of liquid water under various experimental conditions. The spectroscopic parameters of the ν OH band of the components at water temperatures of 5 degree C and 20 degree C are given. It is shown that single-mode-continuum models and mixed models of the structure of liquid water (in the 5--60 degree C range) contradict the results of experiments on polarization CARS

  1. Description of pnicogen bonding with the help of vibrational spectroscopy-The missing link between theory and experiment

    Science.gov (United States)

    Setiawan, D.; Kraka, E.; Cremer, D.

    2014-10-01

    The nature of the E⋯E‧ pnicogen bond (E = N, P, As) in dimers such as H2FP⋯PH2F (1) and H3N⋯PHNO2 (2) can be described using vibrational spectroscopy in form of the calculated infrared and depolarized Raman scattering spectra. Utilizing the six calculated intermonomer frequencies, the corresponding local mode E⋯E‧ stretching frequency and force constant are obtained, where the latter provides a unique measure of the E⋯E‧ bond strength. Pnicogen bonding in 1 is relative strong (bond strength order n = 0.151) and covalent whereas pnicogen bonding in 2 is electrostatic (n = 0.047) because of a different bonding mechanism.

  2. O modelo AM1 na previsão de frequências vibracionais The vibration frequencies predicted by the AM1 model

    Directory of Open Access Journals (Sweden)

    João Carlos Silva Ramos

    1999-09-01

    Full Text Available We analyse vibrational frequencies of 168 compounds with the AM1 model concerning its experimentally observed gaseous frequencies. Stretching of CH, NH, OH and CO bonds, its related bending frequencies, and the CC frame movements are the studied vibrations. The results show problems with the AM1 vibrational splittings. Often symmetric stretching frequencies, like in CH3, CH2 and NH3, appear switched with the corresponding antisymmetrical ones. Among the studied vibrations many stretchings are overestimated, while bendings oscillate around experimental values. Fluorine stretchings, NN, OO, CH, double and triples CC bonds and cyclic hydrocarbon breathing modes are always overestimated while torsions, umbrella modes and OH/SH stretching are, in average, underestimated. Graphical analysis show that compounds with the lowest molecular masses are the ones with the largest difference to the experimental values. From our results it is not possible to fit confortably the calculated frequencies by a simple linear relationship of the type, n(obs=a*n(AM1. Better aggreement is obtained when different curves are adjusted for the stretching and bending modes, and when a complete linear function is used. Among our studies the best obtained statistical results are for CH, NH and OH. The conclusions obtained in this work will improve the AM1 calculated frequencies leading to accurate results for these properties.

  3. Vibration test of 1/5 scale H-II launch vehicle

    Science.gov (United States)

    Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.

    In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.

  4. Effects of temperature and other experimental variables on single molecule vibrational spectroscopy with the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Lauhon, L. J.; Ho, W.

    2001-01-01

    Inelastic electron tunneling spectroscopy (IETS) was performed on single molecules with a variable temperature scanning tunneling microscope. The peak intensity, width, position, and line shape of single molecule vibrational spectra were studied as a function of temperature, modulation bias, bias polarity, and tip position for the (C--H,C--D) stretching vibration of acetylene (C 2 H 2 ,C 2 D 2 ) on Cu(001). The temperature broadening of vibrational peaks was found to be a consequence of Fermi smearing as in macroscopic IETS. The modulation broadening of vibrational peaks assumed the expected form for IETS. Extrapolation of the peak width to zero temperature and modulation suggested an intrinsic width of ∼4 meV due primarily to instrumental broadening. The inelastic tunneling cross section at negative bias was reduced by a factor of 1.7 for the C--H stretch mode. Low energy modes of other molecules did not show such a reduction. There was no evidence of a tip-induced Stark shift in the peak positions. The spatial variation of the inelastic signal was measured to determine the junction stability necessary for the acquisition of single molecule vibrational spectra

  5. Vibrational zero point energy for H-doped silicon

    Science.gov (United States)

    Karazhanov, S. Zh.; Ganchenkova, M.; Marstein, E. S.

    2014-05-01

    Most of the studies addressed to computations of hydrogen parameters in semiconductor systems, such as silicon, are performed at zero temperature T = 0 K and do not account for contribution of vibrational zero point energy (ZPE). For light weight atoms such as hydrogen (H), however, magnitude of this parameter might be not negligible. This Letter is devoted to clarify the importance of accounting the zero-point vibrations when analyzing hydrogen behavior in silicon and its effect on silicon electronic properties. For this, we estimate the ZPE for different locations and charge states of H in Si. We show that the main contribution to the ZPE is coming from vibrations along the Si-H bonds whereas contributions from other Si atoms apart from the direct Si-H bonds play no role. It is demonstrated that accounting the ZPE reduces the hydrogen formation energy by ˜0.17 eV meaning that neglecting ZPE at low temperatures one can underestimate hydrogen solubility by few orders of magnitude. In contrast, the effect of the ZPE on the ionization energy of H in Si is negligible. The results can have important implications for characterization of vibrational properties of Si by inelastic neutron scattering, as well as for theoretical estimations of H concentration in Si.

  6. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Ken-ichi; Singh, Prashant C. [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nihonyanagi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, Shoichi [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Applied Chemistry, Saitama University, 255 Shimo-Okubo, Saitama 338-8570 (Japan)

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  7. A quantum chemical study of the N2H+ + e- → N2 + H reaction I: The linear dissociation path

    International Nuclear Information System (INIS)

    Talbi, D.

    2007-01-01

    A theoretical investigation of the dissociative recombination (DR) of linear N 2 H + (X 1 Σ g + ) to give N 2 + H has been undertaken because it is of interest for astrochemistry and also because it has been recently studied experimentally. Using state of the art quantum chemical methods, it is shown that the lowest 2 Σ repulsive state of N 2 H leading to the N 2 and H fragments in their ground electronic states does not cross the curve of the ion nor the one of the lowest N 2 H Rydberg state. This lowest 2 Σ repulsive state is very low in energy. Its curve passes below the 1 Σ N 2 H + state and below the lowest bound 2 Σ N 2 H states. However, it is also shown that there exist higher repulsive 2 Σ and 2 Δ states of N 2 H (the second and third repulsive states) crossing the ion curve. These states will lead to the formation of N 2 in its 3 Σ u + and 3 Δ u states. This study, the first of its type, shows that the DR of linear N 2 H + should involve the direct mechanism and that it should lead to N 2 in its first excited states. However this process may not be efficient for N 2 H + in its ground vibrational state (v = 0), a state in which it exists in the cold environment of the interstellar medium. For the DR to be efficient for N 2 H + in its ground v = 0 vibrational state, bent geometries of the ion might have to be considered

  8. Knotting in stretched polygons

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Orlandini, E; Tesi, M C; Whittington, S G

    2008-01-01

    The knotting in a lattice polygon model of ring polymers is examined when a stretching force is applied to the polygon. By examining the incidence of cut-planes in the polygon, we prove a pattern theorem in the stretching regime for large applied forces. This theorem can be used to examine the incidence of entanglements such as knotting and writhing. In particular, we prove that for arbitrarily large positive, but finite, values of the stretching force, the probability that a stretched polygon is knotted approaches 1 as the length of the polygon increases. In the case of writhing, we prove that for stretched polygons of length n, and for every function f(n)=o(√n), the probability that the absolute value of the mean writhe is less than f(n) approaches 0 as n → ∞, for sufficiently large values of the applied stretching force

  9. Vibrational properties of water molecules adsorbed in different zeolitic frameworks

    International Nuclear Information System (INIS)

    Crupi, V; Longo, F; Majolino, D; Venuti, V

    2006-01-01

    The perturbation of water 'sorbed' in samples of zeolites of different structural type, genesis, and cation composition (K-, Na-, Mg- and Ca-rich zeolites), namely the CHA framework of a synthetic K-chabazite, the LTA framework of synthetic Na-A and Mg50-A zeolites, and the NAT framework of a natural scolecite, has been studied by FTIR-ATR spectroscopy, in the -10 to +80 o C temperature range. The aim was to show how differences in the chemical composition and/or in the topology of the zeolite framework and, in particular, the possibility for the guest water molecules to develop guest-guest and/or host-guest interactions, lead to substantial differences in their vibrational dynamical properties. The spectra, collected in the O-H stretching and H 2 O bending mode regions, are complex, with multiple bands being observed. As far as water in the CHA and LTA frameworks is concerned, whose behaviour is governed by the balance of water-water, water-framework and water-extra-framework cations interactions, the assignment of the resolved components of the O-H stretching band has been discussed by fitting the band shapes into individual components attributed to H 2 O molecules engaged in different degrees of hydrogen bonding. A detailed quantitative picture of the connectivity pattern of water, as a function of temperature and according to the chemical and topological properties of the environment, is furnished. The H 2 O bending vibrational bands give additional information that perfectly agrees with the results obtained from the analysis of the O-H stretching spectral region. In the case of scolecite, a small-pored zeolite where water-water interactions are eliminated, the increased complexity observed in the infrared spectra in the O-H stretching and H 2 O bending regions was explained as due to the hydrogen bonding between the water molecules and the network, and also with the extra-framework cation. Furthermore, these observations have been correlated with the different

  10. Spectrum of OH-stretching vibrations of water in a "floating" water bridge

    Science.gov (United States)

    Oshurko, V. B.; Ropyanoi, A. A.; Fedorov, A. N.; Fedosov, M. V.; Shelaeva, N. A.

    2012-11-01

    The axial distribution (over the cross section) of the spectra of the OH-stretching band of water in a water bridge is investigated using the Raman scattering method. It is found that the axial structure of the bridge is inhomogeneous: the core at the center of the bridge contains a larger amount of water with an "icelike" structure and a presumably larger number of H+ ions, while the outer layer probably consists of water with a larger number of OH- ions.

  11. High resolution spectroscopy of jet cooled phenyl radical: The ν{sub 1} and ν{sub 2} a{sub 1} symmetry C–H stretching modes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hsuan; Nesbitt, David J. [JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, USA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-07-28

    A series of CH stretch modes in phenyl radical (C{sub 6}H{sub 5}) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (∼60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a{sub 1} symmetry, ν{sub 1} and ν{sub 2}, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν{sub 1} and ν{sub 2} band origins are determined to be 3073.968 50(8) cm{sup −1} and 3062.264 80(7) cm{sup −1}, respectively, which both agree within 5 cm{sup −1} with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm{sup −1} blue shift between gas phase and Ar matrix values for ν{sub 1} and ν{sub 2}. This differs substantially from the much smaller red shift (Δν ≈ − 1 cm{sup −1}) reported for the ν{sub 19} mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet

  12. Analysis of changes of vibrational properties of water in the presence of disaccharides

    CERN Document Server

    Branca, C; Maisano, G; Migliardo, F; Romeo, G; Bennington, S M; Fak, B; Bellocco, E; Lagana', G

    2002-01-01

    Results of inelastic neutron scattering (INS) measurements performed by the MARI spectrometer (ISIS, UK) on aqueous solutions of sucrose and alpha,alpha-trehalose are reported. To get some insight into the effects of disaccharides on the hydrogen-bond network of water, we investigated the intramolecular O-H stretching modes. The obtained spectra show that, contrary to sucrose, the presence of trehalose affects significantly the pure-water O-H stretching mode. The observed changes can be related to the presence of heavier vibrating units, namely to the higher hydration number of trehalose with respect to sucrose. (orig.)

  13. Analysis of changes of vibrational properties of water in the presence of disaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Magazu' , S.; Maisano, G.; Migliardo, F.; Romeo, G. [Dipartimento di Fisica and INFM, Universita' di Messina, PO Box 55, 98166 Messina (Italy); Bennington, S.M.; Fak, B. [Rutherford Appleton Laboratory, Chilton, Didcot, OX11 OQX (United Kingdom); Bellocco, E.; Lagana' , G. [Dipartimento di Chimica Organica Biologica,Universita' di Messina, PO Box 55, 98166 Messina (Italy)

    2002-07-01

    Results of inelastic neutron scattering (INS) measurements performed by the MARI spectrometer (ISIS, UK) on aqueous solutions of sucrose and {alpha},{alpha}-trehalose are reported. To get some insight into the effects of disaccharides on the hydrogen-bond network of water, we investigated the intramolecular O-H stretching modes. The obtained spectra show that, contrary to sucrose, the presence of trehalose affects significantly the pure-water O-H stretching mode. The observed changes can be related to the presence of heavier vibrating units, namely to the higher hydration number of trehalose with respect to sucrose. (orig.)

  14. Theoretical study of [Li(H2O)n]+ and [K(H2O)n]+ (n = 1-4) complexes

    International Nuclear Information System (INIS)

    Wojcik, M.J.; Mains, G.J.; Devlin, J.P.

    1995-01-01

    The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H 2 O) n ] + and [K(H 2 O) n ] + (n = 1-4) complexes. The basis sets used are 6-31G * and LANL1DZ (Los Alamos ECP+DZ) at the SCF and MP2 levels. There is an agreement for calculated structures and frequencies between the MP2/6-31G * and MP2/LANL1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. 19 refs., 4 figs., 6 tabs

  15. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.

    Science.gov (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng

    2015-05-07

    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  16. Theoretical Investigation on the Molecular Structure, Vibrational and NMR Spectra of N, N, 4-Tri chlorobenzenesulfonamide

    International Nuclear Information System (INIS)

    Cinar, M.

    2008-01-01

    In the present study, the structural properties of N,N,4-Tri chlorobenzenesulfonamide have been studied extensively using Density Functional Theory (DFT) employing B3LYP exchange correlation. The geometry of the molecule was fully optimized, vibrational spectrum was calculated and fundamental vibrations were assigned based on the scaled theoretical wavenumbers. The 1 H and 13 C nuclear magnetic resonance (NMR) chemical shifts of the compound were calculated using the Gauge-Invariant Atomic Orbital (GIAO) method. To investigate the basis set effects, calculations were performed at the 6-31G(d,p), 6-311G(d,p), 6-31++G(d,p) and 6-311++G(d,p) levels. Finally, geometric parameters, vibrational bands and isotropic chemical shifts were compared with available experimental data of compound. The fully optimized geometry of the molecule was found to be consistent with the X-ray crystal structure. The observed and calculated frequencies and chemical shifts were found to be in very good agreement. The computed results appear that the basis set has slight effect on the molecular geometry of N,N,4-Tri chlorobenzenesulfonamide

  17. Quasi-classical trajectory study of the role of vibrational and translational energy in the Cl(2P) + NH3 reaction.

    Science.gov (United States)

    Monge-Palacios, M; Corchado, J C; Espinosa-Garcia, J

    2012-05-28

    A detailed state-to-state dynamics study was performed to analyze the effects of vibrational excitation and translational energy on the dynamics of the Cl((2)P) + NH(3)(v) gas-phase reaction, effects which are connected to such issues as mode selectivity and Polanyi's rules. This reaction evolves along two deep wells in the entry and exit channels. At low and high collision energies quasi-classical trajectory calculations were performed on an analytical potential energy surface previously developed by our group, together with a simplified model surface in which the reactant well is removed to analyze the influence of this well. While at high energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity by a factor ≈1.1-2.9 with respect to the vibrational ground-state, at low energy the opposite behaviour is found (factor ≈ 0.4-0.9). However, when the simplified model surface is used at low energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Moreover, we find that this reaction exhibits negligible mode selectivity, first because the independent excitation of the N-H symmetric and asymmetric stretch modes, which lie within 200 cm(-1) of each other, leads to reactions with similar reaction probabilities, and second because the vibrational excitation of the reactive N-H stretch mode is only partially retained in the products. For this "late transition-state" reaction, we also find that vibrational energy is more effective in driving the reaction than an equivalent amount of energy in translation, consistent with an extension of Polanyi's rules. Finally, we find that the non-reactive events, Cl((2)P)+NH(3)(v) → Cl((2)P) + NH(3)(v'), lead to a great number of populated vibrational states in the NH(3)(v') product, even starting from the NH(3)(v = 0) vibrational ground state at low energies

  18. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. High-pressure Raman study of vibrational spectra in crystalline acetanilide

    Science.gov (United States)

    Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro

    1993-01-01

    We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.

  20. Acute effect of different stretching methods on flexibility and jumping performance in competitive artistic gymnasts.

    Science.gov (United States)

    Dallas, G; Smirniotou, A; Tsiganos, G; Tsopani, D; Di Cagno, A; Tsolakis, Ch

    2014-12-01

    The purpose of this study was to investigate the acute effects of 3 different warm up methods of stretching (static, proprioceptive neuromuscular facilitation, and stretching exercises on a Vibration platform) on flexibility and legs power-jumping performance in competitive artistic gymnasts. Eighteen competitive artistic gymnasts were recruited to participate in this study. Subjects were exposed to each of 3 experimental stretching conditions: static stretching (SS), proprioceptive neuromuscular facilitation stretching (PNF), and stretching exercises on a Vibration platform (S+V). Flexibility assessed with sit and reach test (S & R) and jumping performance with squat jump (SJ) and counter movement jump (CMJ) and were measured before, immediately after and 15 min after the interventions. Significant differences were observed for flexibility after all stretching conditions for S+V (+1.1%), SS (+5.7%) and PNF (+6.8%) (P=0.000), which remained higher 15 min after interventions (S+V (1.1%), SS (5.3%) and PNF (5.5%), respectively (P=0.000). PNF stretching increased flexibility in competitive gymnasts, while S+V maintained jumping performance when both methods were used as part of a warm-up procedure.

  1. Defect hydrogen vibrations in various phases deuterium ice

    International Nuclear Information System (INIS)

    Li, J.C.; Wang, Y.; Dong, S.L.; Zhang, P.; Kolesnikov, A.I.

    2003-01-01

    The inelastic incoherent neutron scattering spectra of D 2 O mixed with a small amount of H 2 O (5% by weight) high density amorphous (hda) ice, ice-VIII, and ice-II have been measured on HET spectrometer at Rutherford Appleton Laboratory (UK). The hydrogen atom in D 2 O ice lattice has three distinguished vibrations: two modes normal to the O---H bond at lower frequency and a stretching mode along the O-H bond at higher frequency. For different ice phases these frequencies are different, it was found that the lower defect mode is at ∼97 meV for ice-II, at about 95 meV for hda-ice and ice-VIII, and they are all lower than the value of 105 meV for ice-Ih. The O-H stretching modes are at 415 meV for ice-II, at 418 meV for hda-ice, and at 425 meV for ice-VIII, which all are much larger than the value for ice-Ih, 406 meV. It was also found that O-D stretching modes in D 2 O ice-VIII is centered at ∼320 meV which is significantly higher than the corresponding value of ∼305 meV for ice-Ih

  2. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    Science.gov (United States)

    Homayoon, Zahra

    2014-09-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  3. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    International Nuclear Information System (INIS)

    Homayoon, Zahra

    2014-01-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO + (H 2 O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO + (H 2 O) and NO + (D 2 O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO + (H 2 O) and NO + (D 2 O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO + (H 2 O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing

  4. Comparison of the local binding motifs in the imidazolium-based ionic liquids [EMIM][BF{sub 4}] and [EMMIM][BF{sub 4}] through cryogenic ion vibrational predissociation spectroscopy: Unraveling the roles of anharmonicity and intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A., E-mail: mark.johnson@yale.edu, E-mail: mccoy@chemistry.ohio-state.edu [Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520 (United States); McCoy, Anne B., E-mail: mark.johnson@yale.edu, E-mail: mccoy@chemistry.ohio-state.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-02-14

    We clarify the role of the critical imidazolium C{sub (2)}H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF{sub 4}] ionic liquid by analyzing the vibrational spectra of the bare EMIM{sup +} ion as well as that of the cationic [EMIM]{sub 2}[BF{sub 4}]{sup +} (EMIM{sup +} = 1-ethyl-3-methylimidazolium, C{sub 6}H{sub 11}N{sub 2}{sup +}) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D{sub 2} molecules formed in a 10 K ion trap. The C{sub (2)}H behavior is isolated by following the evolution of key vibrational features when the C{sub (2)} hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM{sup +} analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM{sup +} ⋅ ⋅ ⋅ BF{sub 4}{sup −} ⋅ ⋅ ⋅ EMIM{sup +} ternary complex, the C{sub (2)}H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM{sup +} ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C{sub (2)}H is replaced by a methyl group are consistent with BF{sub 4}{sup −} attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions.

  5. Effect of CH stretching excitation on the reaction dynamics of F + CHD{sub 3} → DF + CHD{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiayue; Zhang, Dong; Chen, Zhen; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Blauert, Florian [Dynamics at Surfaces, Faculty of Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen (Germany); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Zhang, Donghui; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-28

    The vibrationally excited reaction of F + CHD{sub 3}(ν{sub 1} = 1) → DF + CHD{sub 2} at a collision energy of 9.0 kcal/mol is investigated using the crossed-beams and time-sliced velocity map imaging techniques. Detailed and quantitative information of the CH stretching excitation effects on the reactivity and dynamics of the title reaction is extracted with the help of an accurate determination of the fraction of the excited CHD{sub 3} reagent in the crossed-beam region. It is found that all vibrational states of the CHD{sub 2} products observed in the ground-state reaction, which mainly involve the excitation of the umbrella mode of the CHD{sub 2} products, are severely suppressed by the CH stretching excitation. However, there are four additional vibrational states of the CHD{sub 2} products appearing in the excited-state reaction which are not presented in the ground-state reaction. These vibrational states either have the CH stretching excitation retained or involve one quantum excitation in the CH stretching and the excitation of the umbrella mode. Including all observed vibrational states, the overall cross section of the excited-state reaction is estimated to be 66.6% of that of the ground-state one. Experimental results also show that when the energy of CH stretching excitation is released during the reaction, it is deposited almost exclusively as the rovibrational energy of the DF products, with little portion in the translational degree of freedom. For vibrational states of the CHD{sub 2} products observed in both ground- and excited-state reactions, the CH stretching excitation greatly suppresses the forward scattered products, causing a noticeable change in the product angular distributions.

  6. Si-H bond dynamics in hydrogenated amorphous silicon

    Science.gov (United States)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  7. Molecular Origin of the Vibrational Structure of Ice Ih.

    Science.gov (United States)

    Moberg, Daniel R; Straight, Shelby C; Knight, Christopher; Paesani, Francesco

    2017-06-15

    An unambiguous assignment of the vibrational spectra of ice I h remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice I h in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the lattice vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal. The high level of agreement with experiment raises prospects for predictive MB-MD simulations that, complementing analogous measurements, will provide molecular-level insights into fundamental processes taking place in bulk ice and on ice surfaces under different thermodynamic conditions.

  8. Intrinsic chirality and prochirality at Air/R-(+)- and S-(-)-limonene interfaces: spectral signatures with interference chiral sum-frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei

    2014-09-01

    We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the Cα-H stretching mode, and a spectral signature from the prochiral response of the CH(2) asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH(2) asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i.e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface. © 2014 Wiley Periodicals, Inc.

  9. Spectroscopy of vibrationally hot molecules: Hydrogen cyanide and acetylene

    International Nuclear Information System (INIS)

    Jonas, D.M.

    1992-01-01

    An efficient formula for calculating nuclear spin statistical weights is presented. New experimental methods to distinguish electric and magnetic multipole transitions are proposed and used to prove that the formaldehyde A - X 0-0 transition is a magnetic dipole transition. HIgh resolution vacuum ultraviolet studies of the A → X fluorescence excitation spectrum of hydrogen cyanide (HCN) have: (i) determined that only the (0,1,0) vibrational level of the HCN A-state has a sufficiently long fluorescence lifetime to be suitable for Stimulated Emission Pumping (SEP) studies; and (ii) measured the electric dipole moment of the A-state. Several transitions in the hydrogen cyanide A → X SEP spectrum are shown to be due to the axis-switching mechanism. From a Franck-Condon plot of the intensities and a comparison between sums of predicted rotational constants and sums of observed rotational constants, all of the remaining transitions in the SEP spectrum can be securly assigned. Two weak resonances; a 2:3 CH:CN stretch Fermi resonance and a 6:2 bend:CN stretch resonance appear in the SEP spectrum. Excitation of the CH stretching vibration is predicted and shown to be entirely absent, apart from resonances, in the HCN SEP spectrum. A → X SEP spectra of acetylene (HCCH) near E VIB = 7,000 cm -1 display a wealth of strong and fully assignable anharmonic resonances and forbidden rotational transitions. It is proved that Darling-Dennison resonance between the cis and trans bending vibrations is the crucial first step in a series of anharmonic resonances which can transfer nearly all the vibrational energy out of the initial CC stretch/trans-bend excitation at high vibrational energy. Secondary steps in the vibrational energy flow are vibrational-l-resonance and the '2345' Fermi resonance. For short times, the vibrational energy redistribution obeys very restrictive rules

  10. Dynamics of Dangling Od-Stretch at the Air/water Interface by Heterodyne-Detected Sfg Spectroscopy

    Science.gov (United States)

    Stiopkin, I. V.; Weeraman, C.; Shalhout, F.; Benderskii, A. V.

    2009-06-01

    SFG spectra of dangling OD-stretch at the air/water interface contain information on vibrational dephasing dynamics, ultrafast reorientational molecular motion, and vibrational energy transfer. To better separate these processes we conducted heterodyne-detected SFG experiments to measure real and imaginary contributions of the SFG spectrum of the dangling OD-stretch at the air/D_2O interface for SSP, PPP, and SPS polarizations. Variations in the temporal profiles of the SFG signals for these three polarizations will be also discussed.

  11. Probing the electronic structure and Au—C chemical bonding in AuCn− and AuCnH− (n = 2, 4, and 6) using high-resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    León, Iker; Ruipérez, Fernando; Ugalde, Jesus M.; Wang, Lai-Sheng

    2016-01-01

    We report a joint photoelectron spectroscopy and theoretical study on AuC 4 − , AuC 6 − , and AuC n H − (n = 2, 4, and 6) using high-resolution photoelectron imaging and ab initio calculations. The ground state of AuC 2 H − , AuC 4 H − , and AuC 6 H − is found to be linear, while that of AuC 4 − and AuC 6 − is bent. All the species are found to be linear in their neutral ground states. The electron affinities (EAs) are measured to be 3.366(1) and 3.593(1) eV for AuC 4 and AuC 6 , respectively. Both bending and stretching frequencies are resolved in the spectra of AuC 4 − and AuC 6 − . High-resolution data of AuC n H − reveal major vibrational progressions in the Au—C stretching and bending modes. AuC 2 H − has a ground state stretching frequency of 445(10) cm −1 and a bending frequency of 260(10) cm −1 ; AuC 4 H − has a ground state stretching frequency of 340(10) cm −1 ; AuC 6 H − has a ground state stretching frequency of 260(10) cm −1 and a bending frequency of 55(10) cm −1 . The EAs are measured to be 1.475(1), 1.778(1), and 1.962(1) eV for AuC 2 H, AuC 4 H, and AuC 6 H, respectively. The strength of the Au—C bond decreases as the number of carbon atoms increases. The current study provides a wealth of electronic structure information about AuC 4 − , AuC 6 − , and AuC n H − (n = 2, 4, and 6) and their corresponding neutrals.

  12. Spectral response of crystalline acetanilide and N -methylacetamide: Vibrational self-trapping in hydrogen-bonded crystals

    Science.gov (United States)

    Edler, Julian; Hamm, Peter

    2004-06-01

    Femtosecond pump-probe and Fourier transform infrared spectroscopy is applied to compare the spectral response of the amide I band and the NH-stretching band of acetanilide (ACN) and N -methylacetamide (NMA), as well as their deuterated derivatives. Both molecules form hydrogen-bonded molecular crystals that are regarded to be model systems for polypeptides and proteins. The amide I bands of both ACN and NMA show a temperature-dependent sideband, while the NH bands are accompanied by a sequence of equidistantly spaced satellite peaks. These spectral anomalies are interpreted as a signature of vibrational self-trapping. Two different types of states can be identified in both crystals in the pump-probe signal: a delocalized free-exciton state and a set of localized self-trapped states. The phonons that mediate self-trapping in ACN and deuterated ACN are identified by their temperature dependence, confirming our previous results. The study shows that the substructure of the NH band in NMA (amide A and amide B bands) originates, at least partly, from vibrational self-trapping and not, as often assumed, from a Fermi resonance.

  13. Microsolvation of the acetanilide cation (AA(+)) in a nonpolar solvent: IR spectra of AA(+)-L(n) clusters (L = He, Ar, N2; n ≤ 10).

    Science.gov (United States)

    Schmies, Matthias; Patzer, Alexander; Schütz, Markus; Miyazaki, Mitsuhiko; Fujii, Masaaki; Dopfer, Otto

    2014-05-07

    Infrared photodissociation (IRPD) spectra of mass-selected cluster ions of acetanilide (N-phenylacetamide), AA(+)-Ln, with the ligands L = He (n = 1-2), Ar (n = 1-7), and N2 (n = 1-10) are recorded in the hydride stretch (amide A, νNH, νCH) and fingerprint (amide I-III) ranges of AA(+) in its (2)A'' ground electronic state. Cold AA(+)-Ln clusters are generated in an electron impact ion source, which predominantly produces the most stable isomer of a given cluster ion. Systematic vibrational frequency shifts of the N-H stretch fundamentals (νNH) provide detailed information about the sequential microsolvation process of AA(+) in a nonpolar (L = He and Ar) and quadrupolar (L = N2) solvent. In the most stable AA(+)-Ln clusters, the first ligand forms a hydrogen bond (H-bond) with the N-H proton of trans-AA(+) (t-AA(+)), whereas further ligands bind weakly to the aromatic ring (π-stacking). There is no experimental evidence for complexes with the less stable cis-AA(+) isomer. Quantum chemical calculations at the M06-2X/aug-cc-pVTZ level confirm the cluster growth sequence derived from the IR spectra. The calculated binding energies of De(H) = 720 and 1227 cm(-1) for H-bonded and De(π) = 585 and 715 cm(-1) for π-bonded Ar and N2 ligands in t-AA(+)-L are consistent with the observed photofragmentation branching ratios of AA(+)-Ln. Comparison between charged and neutral AA((+))-L dimers indicates that ionization switches the preferred ion-ligand binding motif from π-stacking to H-bonding. Electron removal from the HOMO of AA(+) delocalized over both the aromatic ring and the amide group significantly strengthens the C[double bond, length as m-dash]O bond and weakens the N-H bond of the amide group.

  14. 4-Mercaptophenylboronic acid: conformation, FT-IR, Raman, OH stretching and theoretical studies.

    Science.gov (United States)

    Parlak, Cemal; Ramasami, Ponnadurai; Tursun, Mahir; Rhyman, Lydia; Kaya, Mehmet Fatih; Atar, Necip; Alver, Özgür; Şenyel, Mustafa

    2015-06-05

    4-Mercaptophenylboronic acid (4-mpba, C6H7BO2S) was investigated experimentally by vibrational spectroscopy. The molecular structure and spectroscopic parameters were studied by computational methods. The molecular dimer was investigated for intermolecular hydrogen bonding. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. The present work provides a simple physical picture of the OH stretch vibrational spectra of 4-mpba and analogues of the compound studied. When the different computational methods are compared, there is a strong evidence of the better performance of the BLYP functional than the popular B3LYP functional to describe hydrogen bonding in the dimer. The findings of this research work should be useful to experimentalists in their quests for functionalised 4-mpba derivatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Calculation of vibrational spectra of complex hydrides, LiBeH/sub 3/, NaBeH/sub 3/ and LiMgH/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, L P; Boldyrev, A I [AN SSSR, Chernogolovka. Inst. Novykh Khimicheskikh Problem

    1984-03-01

    The non-empirical Hartree-Fock-Ruthan method with a two-exponent Ros-Zigban basis has been used to calculate the coefficients of harmonic force field, frequency and intensity of normal vibrations of the LiBeH/sub 3/, NaBeH/sub 3/ and LiMgH/sub 3/ complex hydrides. Attribution of vibrational types is conducted. Isotope shifts for different isotope substitutions in the L(MH/sub 3/) are calculated. The effect of the nature of both the outer-spherical cation L/sup +/ and central atom M on the vibrational spectrum is discussed.

  16. Spectra and relaxation dynamics of the pseudohalide (PS) vibrational bands for Ru(bpy)2(PS)2 complexes, PS = CN, NCS and N3

    International Nuclear Information System (INIS)

    Compton, Ryan; Gerardi, Helen K.; Weidinger, Daniel; Brown, Douglas J.; Dressick, Walter J.; Heilweil, Edwin J.; Owrutsky, Jeffrey C.

    2013-01-01

    Highlights: ► Static and transient infrared spectroscopy of pseudohalide bipyridine ruthenium complexes. ► Vibrational energy relaxes faster for the azide than the thiocyanate and cyanide analogs. ► Intramolecular vibrational relaxation is prevalent in cis-Ru(bpy) 2 (N 3 ) 2 . - Abstract: Static and transient infrared spectroscopy were used to investigate cis-Ru(bpy) 2 (N 3 ) 2 (bpy = 2,2′-bipyridine), cis-Ru(bpy) 2 (NCS) 2 , and cis-Ru(bpy) 2 (CN) 2 in solution. The NC stretching IR band for cis-Ru(bpy) 2 (NCS) 2 appears at higher frequency (∼2106 cm −1 in DMSO) than for the free NCS − anion while the IR bands for the azide and cyanide complexes are closer to those of the respective free anions. The vibrational energy relaxation (VER) lifetime for the azide complex is found to be much shorter (∼5 ps) than for either the NCS or CN species (both ∼70 ps in DMSO) and the lifetimes resemble those for each corresponding free anion in solution. However, for cis-Ru(bpy) 2 (N 3 ) 2 , it is determined that the transition frequency depends more on the solvent than the VER lifetime implying that intramolecular vibrational relaxation is predominant over solvent energy-extracting interactions. These results are compared to the behavior of other related metal complexes in solution

  17. Resonances in photoionization. Cross section for vibrationally excited H2

    International Nuclear Information System (INIS)

    Mezei, J.Zs.; Jungen, Ch.

    2011-01-01

    Complete text of publication follows. Diatomic molecular Hydrogen is the most abundant molecule in interstellar molecular clouds. The modeling of these environments relies on accurate cross sections for the various relevant processes. Among them, the photoionization plays a major role in the kinetics and in the energy exchanges involving H 2 . The recent discovery of vibrationally excited molecular hydrogen in extragalactic environments revealed the need for accurate evaluation of the corresponding photoionization cross sections. In the present work we report theoretical photoionization cross sections for excitation from excited vibrational levels of the ground state, dealing with the Q(N = 1) (ΔN = 0, where N is the total angular momentum of the molecule) transitions which account for roughly one third of the total photoabsorption cross section. We will focus on the v' = 1 excited level of the ground electronic state. Our calculations are based on Multichannel Quantum Defect Theory (MQDT), which allows us to take into account of the full manifold of Rydberg states and their interactions with the electronic continuum. We have carried out two types of MQDT calculations. First, we omitted all open channels and calculated energy levels, wave functions and spontaneous emission Einstein coefficients, making use of the theoretical method presented in [2]. In a second set of calculations we included the open ionization channels in the computations getting the continuum phase shifts, channel mixing coefficients and channel dipole moments and finally the photoabsorption/ photoionization cross section. The cross section is dominated by the presence of resonance structures corresponding to excitation of various vibrational levels of bound electronic states which lie above the ionization threshold. In order to assess the importance of the resonances we have calculated for each vibrational interval (the energy interval between two consecutive ionization thresholds) the

  18. Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite - CaBSiO4(OH)

    Science.gov (United States)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Lima, Rosa Malena Fernandes; Horta, Laura Frota Campos; Lopez, Andres

    2013-11-01

    The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700-775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm-1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm-1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm-1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.

  19. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    Science.gov (United States)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  20. Communication: Reactivity borrowing in the mode selective chemistry of H + CHD3 → H2 + CD3

    Science.gov (United States)

    Ellerbrock, Roman; Manthe, Uwe

    2017-12-01

    Quantum state-resolved reaction probabilities for the H + CHD3 → H2 + CD3 reaction are calculated by accurate full-dimensional quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree approach and the quantum transition state concept. Reaction probabilities of various ro-vibrational states of the CHD3 reactant are investigated for vanishing total angular momentum. While the reactivity of the different vibrational states of CHD3 mostly follows intuitive patterns, an unusually large reaction probability is found for CHD3 molecules triply excited in the CD3 umbrella-bending vibration. This surprising reactivity can be explained by a Fermi resonance-type mixing of the single CH-stretch excited and the triple CD3 umbrella-bend excited vibrational states of CHD3. These findings show that resonant energy transfer can significantly affect the mode-selective chemistry of CHD3 and result in counter-intuitive reactivity patterns.

  1. Behavior of ro-vibrationally excited H2 molecules and H atoms in a plasma expansion

    International Nuclear Information System (INIS)

    Vankan, P.; Schram, D.C.; Engeln, R.

    2005-01-01

    The behavior in a supersonic plasma expansion of H atom and H2 molecules, both ground-state and ro-vibrationally excited, is studied using various laser spectroscopic techniques. The ground-state H2 molecules expand like a normal gas. The behavior of H atoms and H 2 rv molecules, on the other hand, is considerably influenced, and to some extend even determined, by their reactivity. The H atoms diffuse out of the expansion due to surface association at the walls of the vacuum vessel. Moreover, by reducing the surface area of the nozzle by a factor of two, the amount of H atoms leaving the source is increased by one order of magnitude, due to a decreased surface association of H atoms in the nozzle. The evolution of the ro-vibrational distributions along the expansion axis shows the relaxation of the molecular hydrogen from the high temperature in the up-stream region to the low ambient temperature in the down-stream region. Whereas the vibrational distribution resembles a Boltzmann distribution, the rotational distribution is a non-equilibrium one, in which the high rotational levels (J > 7) are much more populated than what is expected from the low rotational levels (J <5). We observed overpopulations of up to seven orders of magnitude. The production of the high rotational levels is very probably connected to the surface association in the nozzle

  2. New investigation of the ν3 C-H stretching region of 12CH4 through the analysis of high temperature infrared emission spectra

    Science.gov (United States)

    Amyay, Badr; Gardez, Aline; Georges, Robert; Biennier, Ludovic; Vander Auwera, Jean; Richard, Cyril; Boudon, Vincent

    2018-04-01

    The ν3 C-H stretching region of methane was reinvestigated in this work using high temperature (620-1715 K) emission spectra recorded in Rennes at Doppler limited resolution. This work follows our recent global analysis of the Dyad system Δn = ±1 (1000-1500 cm-1), with n being the polyad number [B. Amyay et al., J. Chem. Phys. 144, 24312 (2016)]. Thanks to the high temperature, new assignments of vibration-rotation methane line positions have been achieved successfully in the Pentad system and some associated hot bands (Δn = ±2) observed in the spectral region 2600-3300 cm-1. In particular, rotational assignments in the cold band [Pentad-ground state (GS)] and in the first related hot band (Octad-Dyad) were extended up to J = 30 and 27, respectively. In addition, 1525 new transitions belonging to the Tetradecad-Pentad hot band system were assigned for the first time, up to J = 20. The effective global model used to deal with the new assignments was developed to the 6th order for the first three polyads (Monad, Dyad, and Pentad), and to the 5th order for both the Octad and the Tetradecad. 1306 effective parameters were fitted with a dimensionless standard deviation σ = 2.64. The root mean square deviations dRMS obtained are 4.18 × 10-3 cm-1 for the Pentad-GS cold band, 2.48 × 10-3 cm-1 for the Octad-Dyad, and 1.43 × 10-3 cm-1 for the Tetradecad-Pentad hot bands.

  3. The immediate effect of vibration therapy on flexibility in female ...

    African Journals Online (AJOL)

    The immediate effect of vibration therapy on flexibility in female junior elite gymnasts. ... Therefore, the aim of this study was to investigate the acute effects of vibration therapy on the flexibility of female gymnasts. A pre-test ... Keywords: Static stretching, vibration training, vibration therapy, acute effect, artistic gymnastics.

  4. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  5. Sum frequency generation for surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-01-01

    Surface vibrational spectroscopy is one of the best means for characterizing molecular adsorbates. For this reason, many techniques have been developed in the past. However, most of them suffer from poor sensitivity, low spectral and temporal resolution, and applications limited to vacuum solid interfaces. Recently, the second harmonic generation (SHG) technique was proved repeatedly to be a simple but versatile surface probe. It is highly sensitive and surface specific; it is also capable of achieving high temporal, spatial, and spectral resolution. Being an optical technique, it can be applied to any interface accessible by light. The only serious drawback is its lack of molecular selectivity. An obvious remedy is the extension of the technique to IR-visible sum frequency generation (SFG). Surface vibrational spectroscopy with submonolayer sensitivity is then possible using SFG with the help of a tunable IR laser. The authors report here an SFG measurement of the C-H stretch vibration of monolayers of molecules at air-solid and air-liquid interfaces

  6. Vibrations of alkali metal overlayers on metal surfaces

    International Nuclear Information System (INIS)

    Rusina, G G; Eremeev, S V; Borisova, S D; Echenique, P M; Chulkov, E V; Benedek, G

    2008-01-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation

  7. Measurements of vibrational excitation of N2, CO, and NO by low energy proton impact

    International Nuclear Information System (INIS)

    Krutein, J.; Linder, F.

    1979-01-01

    Differential scattering experiments are reported for proton impact on N 2 , CO, and NO in the energy range E/sub lab/=30--80 eV. The measurements include the range of very small scattering angles around 0 0 as well as the rainbow region. The vibrationally resolved energy-loss spectra show a relatively low vibrational inelasticity for all three systems. Differential cross sections, transition probabilities, and the mean vibrational energy transfer are presented. Rotational excitation is indicated by the broadening of the energy-loss peaks which is most significant for H + --NO. The small-angle scattering data for vibrational excitation in CO show good agreement with the impact parameter theory using the known long-range interactions for this system

  8. Stretched polygons in a lattice tube

    Energy Technology Data Exchange (ETDEWEB)

    Atapour, M [Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3 (Canada); Soteros, C E [Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N 5E6 (Canada); Whittington, S G [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada)], E-mail: atapour@mathstat.yorku.ca, E-mail: soteros@math.usask.ca, E-mail: swhittin@chem.utoronto.ca

    2009-08-14

    We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n {yields} {infinity}. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n {yields} {infinity}. Thus as n {yields} {infinity} when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)

  9. Stretched polygons in a lattice tube

    International Nuclear Information System (INIS)

    Atapour, M; Soteros, C E; Whittington, S G

    2009-01-01

    We examine the topological entanglements of polygons confined to a lattice tube and under the influence of an external tensile force f. The existence of the limiting free energy for these so-called stretched polygons is proved and then, using transfer matrix arguments, a pattern theorem for stretched polygons is proved. Note that the tube constraint allows us to prove a pattern theorem for any arbitrary value of f, while without the tube constraint it has so far only been proved for large values of f. The stretched polygon pattern theorem is used first to show that the average span per edge of a randomly chosen n-edge stretched polygon approaches a positive value, non-decreasing in f, as n → ∞. We then show that the knotting probability of an n-edge stretched polygon confined to a tube goes to one exponentially as n → ∞. Thus as n → ∞ when polygons are influenced by a force f, no matter its strength or direction, topological entanglements, as defined by knotting, occur with high probability. (fast track communication)

  10. Communication: Disorder-suppressed vibrational relaxation in vapor-deposited high-density amorphous ice

    Science.gov (United States)

    Shalit, Andrey; Perakis, Fivos; Hamm, Peter

    2014-04-01

    We apply two-dimensional infrared spectroscopy to differentiate between the two polyamorphous forms of glassy water, low-density (LDA) and high-density (HDA) amorphous ices, that were obtained by slow vapor deposition at 80 and 11 K, respectively. Both the vibrational lifetime and the bandwidth of the 1-2 transition of the isolated OD stretch vibration of HDO in H2O exhibit characteristic differences when comparing hexagonal (Ih), LDA, and HDA ices, which we attribute to the different local structures - in particular the presence of interstitial waters in HDA ice - that cause different delocalization lengths of intermolecular phonon degrees of freedom. Moreover, temperature dependent measurements show that the vibrational lifetime closely follows the structural transition between HDA and LDA phases.

  11. Isotopic and chemical dilution effects on the vibrational relaxation rate of some totally symmetric motions of liquid acetonitrile

    International Nuclear Information System (INIS)

    Marri, E.; Morresi, A.; Paliani, G.; Cataliotti, R.S.; Giorgini, M.G.

    1999-01-01

    The vibrational dephasing of the ν 1 (C-H, C-D stretching) and ν 3 (C-H, C-D bending) symmetric motions of liquid acetonitrile in its light and fully deuterated forms has been studied in the frame of the vibrational time correlation functions obtained as Fourier transforms of the isotropic Raman spectral distributions and interpreted within the Kubo theory. In addition, the experimental isotropic profiles have been analysed within the bandshape approach formulated by analytical Fourier transformation of the Kubo vibrational time correlation functions in order to derive the relaxation parameters in the frequency domain. The effects of the isotopic (CH 3 CN/CD 3 CN and vice versa) and chemical (CCl 4 ) dilution on the bandshapes and on the vibrational relaxation parameters have been studied. It was observed that the decay rate of ν 1 mode is insensitive to the isotopic dilution but varies appreciably with chemical (CCl 4 ) dilution. The vibrational dephasing of ν 3 mode is qualitatively, but not quantitatively, affected in the same way by chemical dilution and shows a slower modulation regime than that exhibited by the stretching mode. Unlikely from the latter, the ν 3 mode results are slightly affected by the isotopic dilution. Phase relaxation mechanisms of these two motions of acetonitrile in the liquid state are proposed on the basis of these data, and a comparison is made with the results earlier published. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Magnitude and duration of stretch modulate fibroblast remodeling.

    Science.gov (United States)

    Balestrini, Jenna L; Billiar, Kristen L

    2009-05-01

    Mechanical cues modulate fibroblast tractional forces and remodeling of extracellular matrix in healthy tissue, healing wounds, and engineered matrices. The goal of the present study is to establish dose-response relationships between stretch parameters (magnitude and duration per day) and matrix remodeling metrics (compaction, strength, extensibility, collagen content, contraction, and cellularity). Cyclic equibiaxial stretch of 2-16% was applied to fibroblast-populated fibrin gels for either 6 h or 24 h/day for 8 days. Trends in matrix remodeling metrics as a function of stretch magnitude and duration were analyzed using regression analysis. The compaction and ultimate tensile strength of the tissues increased in a dose-dependent manner with increasing stretch magnitude, yet remained unaffected by the duration in which they were cycled (6 h/day versus 24 h/day). Collagen density increased exponentially as a function of both the magnitude and duration of stretch, with samples stretched for the reduced duration per day having the highest levels of collagen accumulation. Cell number and failure tension were also dependent on both the magnitude and duration of stretch, although stretch-induced increases in these metrics were only present in the samples loaded for 6 h/day. Our results indicate that both the magnitude and the duration per day of stretch are critical parameters in modulating fibroblast remodeling of the extracellular matrix, and that these two factors regulate different aspects of this remodeling. These findings move us one step closer to fully characterizing culture conditions for tissue equivalents, developing improved wound healing treatments and understanding tissue responses to changes in mechanical environments during growth, repair, and disease states.

  13. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Homayoon, Zahra, E-mail: zhomayo@emory.edu [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  14. Electrical properties of GaAsN film grown by chemical beam epitaxy

    International Nuclear Information System (INIS)

    Nishimura, K.; Suzuki, H.; Saito, K.; Ohshita, Y.; Kojima, N.; Yamaguchi, M.

    2007-01-01

    The local vibrational modes (LVMs) observed by Fourier transform infrared (FTIR) spectroscopy in GaAsN films grown by chemical beam epitaxy (CBE) was studied, and the influence of the nitrogen-hydrogen bond (N-H) concentration on the hole concentration was investigated. The absorption peak around 936 cm -1 is suggested to be the second harmonic mode of the substitutional N, N As , LVM around 469 cm -1 . The absorption peak around 960 cm -1 is suggested to be the wagging mode of the N-H, where the stretch mode is observed around 3098 cm -1 . The hole concentration linearly increases with increasing N-H concentration, and the slope increases with increasing growth temperature. It indicates that the hole concentration in GaAsN film is determined by both the number of the N-H and unknown defect, such as impurities, vacancies, and interstitials. This defect concentration increases with increasing growth temperature, suggesting that it is determined by Arrhenius type reaction

  15. Towards completing the cyclopropenylidene cycle: rovibrational analysis of cyclic N3+, CNN, HCNN+, and CNC.

    Science.gov (United States)

    Fortenberry, Ryan C; Lee, Timothy J; Huang, Xinchuan

    2017-08-30

    The simple aromatic hydrocarbon, cyclopropenylidene (c-C 3 H 2 ), is a known, naturally-occurring molecule. The question remains as to whether its isoelectronic, cyclic, fellow aromatics of c-N 3 + , c-CNN, HCNN + , and c-CNC - are as well. Each of these are exciting objects for observation of Titan, and the rotational constants and vibrational frequencies produced here will allow for remote sensing of Titan's atmosphere or other astrophysical or terrestrial sources. None of these four aromatic species are vibrationally strong absorbers/emitters, but the two ions, HCNN + and c-CNC - , have dipole moments of greater than 3 D and 1 D, respectively, making them good targets for rotational spectroscopic observation. Each of these molecules is shown here to exhibit its own, unique vibrational properties, but the general trends put the vibrational behavior for corresponding fundamental modes within close ranges of one another, even producing nearly the same heavy atom, symmetric stretching frequencies for HCNN + and c-C 3 H 2 at 1600 cm -1 . The c-N 3 + cation is confirmed to be fairly unstable and has almost no intensity in its ν 2 fundamental. Hence, it will likely remain difficult to characterize experimentally.

  16. Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent.

    Science.gov (United States)

    von Lewinski, Dirk; Stumme, Burkhard; Maier, Lars S; Luers, Claus; Bers, Donald M; Pieske, Burkert

    2003-03-15

    Stretch induces functional and trophic effects in mammalian myocardium via various signal transduction pathways. We tested stretch signal transduction on immediate and slow force response (SFR) in rabbit myocardium. Experiments were performed in isolated right ventricular muscles from adult rabbit hearts (37 degrees C, 1 Hz stimulation rate, bicarbonate-buffer). Muscles were rapidly stretched from 88% of optimal length (L88) to near optimal length (L98) for functional analysis. The resulting immediate and slow increases in twitch force (first phase and SFR, respectively) were assessed at reduced [Na+]o or without and with blockade of stretch activated ion channels (SACs), angiotensin-II (AT1) receptors, endothelin-A (ET(A)) receptors, Na+/H+-exchange (NHE1), reverse mode Na+/Ca2+-exchange (NCX), or Na+/K+-ATPase. The effects of stretch on sarcoplasmic reticulum Ca2+-load were characterized using rapid cooling contractures (RCCs). Intracellular pH was measured in BCECF-AM loaded muscles, and action potential duration (APD) was assessed using floating electrodes. On average, force increased to 216+/-8% of the pre-stretch value during the immediate phase, followed by a further increase to 273+/-10% during the SFR (n=81). RCCs significantly increased during SFR, whereas pH and APD did not change. Neither inhibition of SACs, AT1, or ET(A) receptors affected the stretch-dependent immediate phase nor SFR. In contrast, SFR was reduced by NHE inhibition and almost completely abolished by reduced [Na+]o or inhibition of reverse-mode NCX, whereas increased SFR was seen after raising [Na+]i by Na+/K+-ATPase inhibition. The data demonstrate the existence of a delayed, Na+- and Ca2+-dependent but pH and APD independent SFR to stretch in rabbit myocardium. This inotropic response appears to be independent of autocrine/paracrine AT1 or ET(A) receptor activation, but mediated through stretch-induced activation of NHE and reverse mode NCX.

  17. Experimental Study of the Effects of EIPA, Losartan, and BQ-123 on Electrophysiological Changes Induced by Myocardial Stretch.

    Science.gov (United States)

    Chorro, Francisco J; Canto, Irene Del; Brines, Laia; Such-Miquel, Luis; Calvo, Conrado; Soler, Carlos; Zarzoso, Manuel; Trapero, Isabel; Tormos, Álvaro; Such, Luis

    2015-12-01

    Mechanical response to myocardial stretch has been explained by various mechanisms, which include Na(+)/H(+) exchanger activation by autocrine-paracrine system activity. Drug-induced changes were analyzed to investigate the role of these mechanisms in the electrophysiological responses to acute myocardial stretch. Multiple epicardial electrodes and mapping techniques were used to analyze changes in ventricular fibrillation induced by acute myocardial stretch in isolated perfused rabbit hearts. Four series were studied: control (n = 9); during perfusion with the angiotensin receptor blocker losartan (1 μM, n = 8); during perfusion with the endothelin A receptor blocker BQ-123 (0.1 μM, n = 9), and during perfusion with the Na(+)/H(+) exchanger inhibitor EIPA (5-[N-ethyl-N-isopropyl]-amiloride) (1 μM, n = 9). EIPA attenuated the increase in the dominant frequency of stretch-induced fibrillation (control=40.4%; losartan=36% [not significant]; BQ-123=46% [not significant]; and EIPA=22% [PII receptor antagonist losartan and the endothelin A receptor blocker BQ-123 did not modify these effects. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  18. A new vibrational level of the H2+ molecular ion

    International Nuclear Information System (INIS)

    Carbonell, J.; Lazauskas, R.; Delande, D.; Hilico, L.; Kilic, S.; Hilico, L.; Kilic, S.

    2003-01-01

    A new vibrational level of the molecular ion H 2 + with binding energy of 1.09 x 10 -9 a.u. ∼ 30 neV below the first dissociation limit is predicted, using highly accurate numerical non-relativistic quantum calculations, which go beyond the Born-Oppenheimer approximation. It is the first-excited vibrational level v=1 of the 2pσ u electronic state, antisymmetric with respect to the exchange of the two protons, with orbital angular momentum L=0. It manifests itself as a huge p - H scattering length of a = 750 ± 5 Bohr radii. (authors)

  19. Refinements in the vibration frequencies of H3+ and D3+

    International Nuclear Information System (INIS)

    Carney, G.D.

    1980-01-01

    Refinements in vibration intervals of the order of 1 per cent are reported for H 3 + and D 3 + . These improved intervals result from the addition of polarization terms to the electronic wavefunction previously obtained with a complete configuration-interaction treatment of electron correlation using a 21 floating gaussian lobe basis. Twelve additional floating gaussian lobe orbitals were used to construct 78 additional configuration-interaction functions. Positions and exponents of these additional floating gaussian lobe orbitals were carefully chosen to allow for polarization of the correlated wavefunctions. Calculated vibrational state-averaged and observed geometries for H 3 + agree to within 0.01 A; refined fundamental frequencies are νsub(A) = 3220.48 and νsub(E) = 2545.99 cm -1 for H 3 + , and νsub(A) = 2332.94 and νsub(E) = 1848.12 cm -1 for D 3 + . Einstein coefficients for spontaneous emission of radiation from infrared active states of H 3 + and D 3 + are reported, and an alternative to the Carney-Porter method of vibration analysis is used to confirm the accuracy of their method for axial molecules such as H 3 + . (author)

  20. 5-r-1h- benzimidazol-2-yl

    African Journals Online (AJOL)

    Preferred Customer

    HL1, the bands at 3330 and 3284 cm–1 are due to OH and NH stretching vibration frequencies, respectively. These bands ... complexes are due to stretching vibrations of the methyl group or groups. The ν(C=C) frequencies ..... potential to generate novel metabolites, by displaying high affinities towards various receptors.

  1. Non-traditional vibration mitigation methods for reciprocating compressor system

    NARCIS (Netherlands)

    Eijk, A.; Lange, T.J. de; Vreugd, J. de; Slis, E.J.P.

    2016-01-01

    Reciprocating compressors generate vibrations caused by pulsation-induced forces, mechanical (unbalanced) free forces and moments, crosshead guide forces and cylinder stretch forces. The traditional way of mitigating the vibration and cyclic stress levels to avoid fatigue failure of parts of the

  2. Dissociation pathways of a single dimethyl disulfide on Cu(111): Reaction induced by simultaneous excitation of two vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, Kenta, E-mail: kmotobayashi@cat.hokudai.ac.jp [Catalysis Research Center, Hokkaido University, Sapporo 001-0021 (Japan); Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); Surface and Interface Science Laboratory, RIKEN, Wako 351-0198 (Japan); Kim, Yousoo [Surface and Interface Science Laboratory, RIKEN, Wako 351-0198 (Japan); Arafune, Ryuichi [International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044 (Japan); Ohara, Michiaki; Ueba, Hiromu; Kawai, Maki, E-mail: maki@k.u-tokyo.ac.jp [Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-05-21

    We present a novel reaction mechanism for a single adsorbed molecule that proceeds via simultaneous excitation of two different vibrational modes excited by inelastic tunneling electrons from a scanning tunneling microscope. Specifically, we analyze the dissociation of a single dimethyl disulfide (DMDS, (CH{sub 3}S){sub 2}) molecule on Cu(111) by using a versatile theoretical method, which permits us to simulate reaction rates as a function of sample bias voltage. The reaction is induced by the excitation of C-H stretch and S-S stretch modes by a two-electron process at low positive bias voltages. However, at increased voltages, the dissociation becomes a single-electron process that excites a combination mode of these stretches, where excitation of the C-H stretch is the energy source and excitation of the S-S stretch mode enhances the anharmonic coupling rate. A much smaller dissociation yield (few orders of magnitude) at negative bias voltages is understood in terms of the projected density of states of a single DMDS on Cu(111), which reflects resonant excitation through the molecular orbitals.

  3. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    International Nuclear Information System (INIS)

    Thompson, Michael C.; Weber, J. Mathias; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.

    2015-01-01

    We report infrared spectra of nitromethane anion, CH 3 NO 2 − , in the region 700–2150 cm −1 , obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states

  4. Torsion-rotation structure and quasi-symmetric-rotor behaviour for the CH3SH asymmetric CH3-bending and C-H stretching bands of E parentage

    Science.gov (United States)

    Lees, R. M.; Xu, Li-Hong; Guislain, B. G.; Reid, E. M.; Twagirayezu, S.; Perry, D. S.; Dawadi, M. B.; Thapaliya, B. P.; Billinghurst, B. E.

    2018-01-01

    High-resolution Fourier transform spectra of the asymmetric methyl-bending and methyl-stretching bands of CH3SH have been recorded employing synchrotron radiation at the FIR beamline of the Canadian Light Source. Analysis of the torsion-rotation structure and relative intensities has revealed the novel feature that for both bend and stretch the in-plane and out-of-plane modes behave much like a Coriolis-coupled l-doublet pair originating from degenerate E modes of a symmetric top. As the axial angular momentum K increases, the energies of the coupled "l = ±1" modes diverge linearly, with effective Coriolis ζ constants typical for symmetric tops. For the methyl-stretching states, separated at K = 0 by only about 1 cm-1, the assigned sub-bands follow a symmetric top Δ(K - l) = 0 selection rule, with only ΔK = -1 transitions observed to the upper l = -1 in-plane A‧ component and only ΔK = +1 transitions to the lower l = +1 out-of-plane A″ component. The K = 0 separation of the CH3-bending states is larger at 9.1 cm-1 with the l-ordering reversed. Here, both ΔK = +1 and ΔK = -1 transitions are seen for each l-component but with a large difference in relative intensity. Term values for the excited state levels have been fitted to J(J + 1) power-series expansions to obtain substate origins. These have then been fitted to a Fourier model to characterize the torsion-K-rotation energy patterns. For both pairs of vibrational states, the torsional energies display the customary oscillatory behaviour as a function of K and have inverted torsional splittings relative to the ground state. The spectra show numerous perturbations, indicating local resonances with the underlying bath of high torsional levels and vibrational combination and overtone states. The overall structure of the two pairs of bands represents a new regime in which the vibrational energy separations, torsional splittings and shifts due to molecular asymmetry are all of the same order, creating a

  5. Vibrational spectroscopy of the phosphate mineral lazulite--(Mg, Fe)Al2(PO4)2·(OH)2 found in the Minas Gerais, Brazil.

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei; Beganovic, Martina; Belotti, Fernanda Maria; Scholz, Ricardo

    2013-04-15

    This research was done on lazulite samples from the Gentil mine, a lithium bearing pegmatite located in the municipality of Mendes Pimentel, Minas Gerais, Brazil. Chemical analysis was carried out by electron microprobe analysis and indicated a magnesium rich phase with partial substitution of iron. Traces of Ca and Mn, (which partially replaced Mg) were found. The calculated chemical formula of the studied sample is: (Mg0.88, Fe0.11)Al1.87(PO4)2.08(OH)2.02. The Raman spectrum of lazulite is dominated by an intense sharp band at 1060 cm(-1) assigned to PO stretching vibrations of of tetrahedral [PO4] clusters presents into the HPO4(2-) units. Two Raman bands at 1102 and 1137 cm(-1) are attributed to both the HOP and PO antisymmetric stretching vibrations. The two infrared bands at 997 and 1007 cm(-1) are attributed to the ν1PO4(3-) symmetric stretching modes. The intense bands at 1035, 1054, 1081, 1118 and 1154 cm(-1) are assigned to the ν3PO4(3-) antisymmetric stretching modes from both the HOP and tetrahedral [PO4] clusters. A set of Raman bands at 605, 613, 633 and 648 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4, HPO4 and H2PO4 units. Raman bands observed at 414, 425, 460, and 479 cm(-1) are attributed to the ν2 tetrahedral PO4 clusters, HPO4 and H2PO4 bending modes. The intense Raman band at 3402 and the infrared band at 3403 cm(-1) are assigned to the stretching vibration of the OH units. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral lazulite to be understood. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The vibrational Jahn–Teller effect in E⊗e systems

    Energy Technology Data Exchange (ETDEWEB)

    Thapaliya, Bishnu P.; Dawadi, Mahesh B.; Ziegler, Christopher; Perry, David S., E-mail: dperry@uakron.edu

    2015-10-16

    Highlights: • The vibrational Jahn–Teller effect is documented for three E⊗e molecular systems. • The spontaneous vibrational Jahn–Teller distortion is very small. • Vibrational Jahn–Teller splittings are substantial (1–60 cm{sup −1}). • Vibrational conical intersections in CH{sub 3}OH are accessible at low energies. - Abstract: The Jahn–Teller theorem is applied in the vibrational context where degenerate high-frequency vibrational states (E) are considered as adiabatic functions of low-frequency vibrational coordinates (e). For CH{sub 3}CN and Cr(C{sub 6}H{sub 6})(CO){sub 3}, the global minimum of the non-degenerate electronic potential energy surface occurs at the C{sub 3v} geometry, but in CH{sub 3}OH, the equilibrium geometry is far from the C{sub 3v} reference geometry. In the former cases, the computed spontaneous Jahn–Teller distortion is exceptionally small. In methanol, the vibrational Jahn–Teller interaction results in the splitting of the degenerate E-type CH stretch into what have been traditionally assigned as the distinct ν{sub 2} and ν{sub 9} vibrational bands. The ab initio vibrational frequencies are fit precisely by a two-state high-order Jahn–Teller Hamiltonian (Viel and Eisfeld, 2004). The presence of vibrational conical intersections, including 7 for CH{sub 3}OH, has implications for spectroscopy, for geometric phase, and for ultrafast localized non-adiabatic energy transfer.

  7. Resonant ion-dip infrared spectroscopy of benzene-(water)n-(methanol)m clusters with n+m=4, 5

    International Nuclear Information System (INIS)

    Hagemeister, F.C.; Gruenloh, C.J.; Zwier, T.S.

    1998-01-01

    Resonant two-photon ionization and resonant ion-dip infrared (RIDIR) spectra of benzene-(water) n -(methanol) m clusters (hereafter shortened to BW n M m ) have been recorded for a total of seven clusters with n+m=4 and 5. The infrared spectra in the OH and CH stretch regions show absorptions characteristic of H-bonded W n M m clusters which are bound to benzene by a π H-bond involving a dangling OH on the W n M m sub-unit. Density functional theory (DFT) calculations identify a number of conformational isomers in the n+m=4 series which meet the general criteria imposed by the experimental spectra. The structures, binding energies, harmonic vibrational frequencies, and infrared intensities for these isomers have been calculated for comparison with experiment. Based on the calculations, tentative assignments of several of the observed species are given. The calculations uncover the fact that complexation of benzene to the cyclic water tetramer imposes much the same perturbations on the cycle as substitution of methanol for water. In particular, the single-donor OH stretch spectra of W n M m and BW n+1 M m-1 are calculated to be virtually identical to one another. The comparison of experiment and theory for this series of cyclic structures is used to assess the strengths and limitations of the calculations at the DFT Becke3LYP/6-31+G * level of theory. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Hyperfine-resolved transition frequency list of fundamental vibration bands of H35Cl and H37Cl

    Science.gov (United States)

    Iwakuni, Kana; Sera, Hideyuki; Abe, Masashi; Sasada, Hiroyuki

    2014-12-01

    Sub-Doppler resolution spectroscopy of the fundamental vibration bands of H35Cl and H37Cl has been carried out from 87.1 to 89.9 THz. We have determined the absolute transition frequencies of the hyperfine-resolved R(0) to R(4) transitions with a typical uncertainty of 10 kHz. We have also yielded six molecular constants for each isotopomer in the vibrational excited state, which reproduce the determined frequencies with a standard deviation of about 10 kHz.

  9. Molecular structure and vibrational spectroscopy of isoproturon

    Science.gov (United States)

    Vrielynck, L.; Dupuy, N.; Kister, J.; Nowogrocki, G.

    2006-05-01

    The crystal structure of isoproturon [ N-(4-isopropylphenyl)- N', N'-dimethylurea] has been determined: the compound crystallizes in the space group Pbca with unit cell parameters a=10.186(2) Å, b=11.030(2) Å, c=20.981(4) Å. The structure was solved and refined down to R1=0.0508 and ωR2=0.12470 for 3056 reflections. The crystalline molecular network of this pesticide is stabilized, as for many molecules of the same family, by π-π interactions but especially by a medium-strong N-H⋯C dbnd6 O intermolecular hydrogen bond (2.14 Å). The X-ray parameters were then compared with the results of DFT quantum chemical calculation computed with the GAUSSIAN 94 package. A tentative assignment of the ATR-FT-IR and Raman spectra was proposed supported by vibrational mode calculation and spectroscopic data on benzenic and urea derivatives available in the literature. The presence of a tight band around 3300 cm -1, which can be assigned to the NH bond stretching mode as well as the low frequency position of the amide I band at 1640 cm -1, sensitive to solvent polarity, confirms the existence of a quite strong intermolecular hydrogen bond between neighboring molecules in the crystal of isoproturon.

  10. EFFICACY OF MODIFIED PROPRIOCEPTIVE NEUROMUSCULAR FACILITATION STRETCHING WITH CRYOTHERAPY OVER MANUAL PASSIVE STRETCHING WITH CRYOTHERAPY ON HAMSTRING FLEXIBILITY

    Directory of Open Access Journals (Sweden)

    Shamik Bhattacharjee

    2016-04-01

    Full Text Available Background: Healthy individuals, to ease and accomplish their activities of daily living they need flexible body without any tightness in the muscles, particularly those used for a definite function. Cooling soft tissues in a lengthened position after stretching has been shown to promote more lasting increases in soft tissue length and minimize post stretch muscle soreness. There are less documented studies which compared modified proprioceptive neuromuscular facilitation (PNF stretch over passive manual stretch with cold application commonly after the interventions. Methods: Thirty high school going healthy students were divided into two groups- Group I received Passive Manual stretching (n=15 and Group II received modified PNF stretching (n=15 and both groups received cold application after the interventions for 10 minutes commonly for 5 days. ROM was taken on day 1, day 5 and day 7. Results: After day 7, Group II with Modified PNF stretching along with cold application showed a significant increase in range of motion tested with active knee extension test (AKET. Conclusion: Modified PNF stretching is considered to be the effective intervention in increasing and maintaining ROM in AKET over passive manual stretching with cold applications commonly after the interventions.

  11. Resonant vibrational energy transfer in ice Ih

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Li, F.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  12. Dispersion-corrected first-principles calculation of terahertz vibration, and evidence for weak hydrogen bond formation

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa

    2013-03-01

    A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).

  13. Theoretical Study of Infrared and Raman Spectra of Hydrated Magnesium Sulfate Salts

    Science.gov (United States)

    Chaban, Galina M.; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Harmonic and anharmonic vibrational frequencies, as well as infrared and Raman intensities, are calculated for MgSO4.nH20 (n=1-3). Electronic structure theory at the second order Moller-Plesset perturbation theory (MP2) level with a triple-zeta + polarization (TZP) basis set is used to determine the geometry, properties, and vibrational spectra of pure and hydrated MgSO4 salts. The direct vibrational self-consistent field (VSCF) method and its correlation corrected (CC-VSCF) extension are used to determine anharmonic corrections to vibrational frequencies and intensities for the pure MgSO4 and its complex with one water molecule. Very significant differences are found between vibrational of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies are shifted to the red very significantly (by up to 1500-2000/cm) upon complexation with magnesium sulfate. They should be observed between 1700 and 3000/cm in a region very different from the corresponding O-H stretch frequency region of pure water (3700-3800/cm). In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. They can serve as unique identifiers for the presence of sulfate salts. The predicted infrared and Raman spectra should be of valuable help in the design of future missions and analysis of observed data from the ice surface of Jupiter's moon Europa that possibly contains hydrated MgSO4 salts.

  14. Neural-network analysis of the vibrational spectra of N-acetyl L-alanyl N '-methyl amide conformational states

    DEFF Research Database (Denmark)

    Bohr, Henrik; Frimand, Kenneth; Jalkanen, Karl J.

    2001-01-01

    Density-functional theory (DFT) calculations utilizing the Becke 3LYP hybrid functional have been carried out for N-acetyl L-alanine N'-methylamide and examined with respect to the effect of water on the structure, the vibrational frequencies, vibrational absorption (VA), vibrational circular dic...

  15. Intermolecular interactions involving C-H bonds, 3, Structure and energetics of the interaction between CH{sub 4} and CN{sup {minus}}

    Energy Technology Data Exchange (ETDEWEB)

    Novoa, J.J.; Whangbo, Myung-Hwan [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemistry; Williams, J.M. [Argonne National Lab., IL (United States)

    1991-12-31

    On the basis of SCF and single reference MP2 calculations, the full potential energy surface of the interaction between CH{sub 4} and CN{sup {minus}} was studied using extended basis sets of up to near Hartree-Fock limit quality. Colinear arrangements C-N{sup {minus}}{hor_ellipsis}H-CH{sub 3} and N-C{sup {minus}}{hor_ellipsis}H-CH{sub 3} are found to be the only two energy minima. The binding energies of these two structures are calculated to be 2.5 and 2.1 kcal/mol, respectively, at the MP2 level. The full vibrational analyses of two structures show a red shift of about 30 cm{sup {minus}1} for the v{sub s} C-H stretching.

  16. Vibrational properties of the amide group in acetanilide: A molecular-dynamics study

    Science.gov (United States)

    Campa, Alessandro; Giansanti, Andrea; Tenenbaum, Alexander

    1987-09-01

    A simplified classical model of acetanilide crystal is built in order to study the mechanisms of vibrational energy transduction in a hydrogen-bonded solid. The intermolecular hydrogen bond is modeled by an electrostatic interaction between neighboring excess charges on hydrogen and oxygen atoms. The intramolecular interaction in the peptide group is provided by a dipole-charge interaction. Forces are calculated up to second-order terms in the atomic displacements from equilibrium positions; the model is thus a chain of nonlinear coupled oscillators. Numerical molecular-dynamics experiments are performed on chain segments of five molecules. The dynamics is ordered, at all temperatures. Energy is widely exchanged between the stretching and the bending of the N-H bond, with characteristic times of the order of 0.2 ps. Energy transduction through the H bond is somewhat slower and of smaller amplitude, and is strongly reduced when the energies of the two bound molecules are very different: This could reduce the dissipation of localized energy fluctuations.

  17. Coadsorption and reaction of H2 and CO on Raney nickel: Neutron vibrational spectroscopy

    International Nuclear Information System (INIS)

    Kelley, R.D.; Kernforschungsanlage Juelich G.m.b.H.

    1983-01-01

    Neutron vibration spectroscopy is used to study the adsorption and reaction of H 2 and Co on a catalytic nickel surface. The sample was first exposed to H 2 and than to CO. At low temperatures there is no change of vibrational modes of H in the three-fold site; at a higher temperature changes occur. Some conclusions are drawn on the reaction product. (G.Q.)

  18. Stretch strength of Al-Li alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Sawa, Y.; Yokoyama, T.; Fujimoto, S. [Science Univ. of Tokyo (Japan). Dept. of Mech. Eng.; Sakamoto, T. [Kobe Steel Works, Tokyo (Japan)

    1998-07-01

    Stretch test on Al-Li alloy sheet was carried out in stretch rate of 0.01 to 0.2 mm/sec. The limiting stretch depth was measured in various conditions and the following results were obtained. (1) Stretch rate does not affect the limiting stretch depth of Al-Li alloy. (2) The limiting stretch depth is increased with increase of the profile radius. (3) Strain hardening exponent(n-value) and r-value of Lankford do not affect the limiting stretch depth. (4) Rapture pattern in stretch test of Al is {alpha} type rapture and that of Al-Li alloy is straight line type rapture. (orig.) 4 refs.

  19. Resonance Raman spectroscopy of 2H-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    Science.gov (United States)

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Farhoosh, R; Frank, H A

    1997-03-01

    As a step towards the structural analysis of the carotenoid spheroidene in the Rhodobacter sphaeroides reaction centre, we present the resonance Raman spectra of 14-2H, 15-2H, 15'-2H, 14'-2H, 14,15'-2H2 and 15-15'-2H2 spheroidenes in petroleum ether and, except for 14,15'-2H2 spheroidene, in the Rb. sphaeroides R26 reaction center (RC). Analysis of the spectral changes upon isotopic substitution allows a qualitative assignment of most of the vibrational bands to be made. For the all-trans spheroidenes in solution the resonance enhancement of the Raman bands is determined by the participation of carbon carbon stretching modes in the centre of the conjugated chain, the C9 to C15' region. For the RC-bound 15,15'-cis spheroidenes, enhancement is determined by the participation of carbon-carbon stretching modes in the centre of the molecule, the C13 to C13' region. Comparison of the spectra in solution and in the RC reveals evidence for an out-of-plane distortion of the RC-bound spheroidene in the central C14 to C14' region of the carotenoid. The characteristic 1240 cm-1 band in the spectrum of the RC-bound spheroidene has been assigned to a normal mode that contains the coupled C12-C13 and C13'-C12' stretch vibrations.

  20. The localized vibrations of H-H-, D-D- and H-D- pairs in KCl, KBr, KI, RbCl and NaCl

    International Nuclear Information System (INIS)

    Robert, R.

    1974-01-01

    The localized vibrational modes of H - H - , D - D - and H - D - pairs in KCl, KBr, KI, RbCl and NaCl were studied for different pair configurations. The measured frequencies of the infrared active modes were found to be in good agreement with a model of two coupled harmonic oscillators. The line width for different modes in the salts studied is discussed. The temperature dependence for the transversal modes T 1 and T 2 of the line width for the H - H - pairs in KCl indicates that the broadening of these lines is due to the 'decomposition mechanism', that generates two phonons. The generated phonons due to the decay of the localized in phase mode are: -one acustic phonon of the lattice, -one localized phonon that corresponds to the out of phase vibration of the H - H - pair. The general properties, as the Ivey law and several particulars of the properties in the alkali-halides studied are presented [pt

  1. On the planar and whirling motion of a stretched string due to a parametric harmonic excitation

    NARCIS (Netherlands)

    Van der Burgh, A.H.P.; Van Horssen, W.T.

    2004-01-01

    In this paper a model of the dynamics of a stretched string is derived. The sag of the string due to gravity is neglected. The string is suspended between a fixed support and a vibrating support. Due to the vibrating support the oscillation of the string in vertical direction is influenced by a

  2. Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel

    2009-05-07

    Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.

  3. Spectra and relaxation dynamics of the pseudohalide (PS) vibrational bands for Ru(bpy){sub 2}(PS){sub 2} complexes, PS = CN, NCS and N{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Compton, Ryan; Gerardi, Helen K. [Chemistry Division, Naval Research Laboratory, Washington, DC 20375 (United States); Weidinger, Daniel [SRA International, 4300 Fair Lakes Court, Fairfax, VA 22033 (United States); Brown, Douglas J. [Chemistry Department, US Naval Academy, Annapolis, MD 21402 (United States); Dressick, Walter J. [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375 (United States); Heilweil, Edwin J. [Radiation and Biomolecular Physics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Owrutsky, Jeffrey C., E-mail: Jeff.Owrutsky@nrl.navy.mil [Chemistry Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2013-08-30

    Highlights: ► Static and transient infrared spectroscopy of pseudohalide bipyridine ruthenium complexes. ► Vibrational energy relaxes faster for the azide than the thiocyanate and cyanide analogs. ► Intramolecular vibrational relaxation is prevalent in cis-Ru(bpy){sub 2}(N{sub 3}){sub 2}. - Abstract: Static and transient infrared spectroscopy were used to investigate cis-Ru(bpy){sub 2}(N{sub 3}){sub 2} (bpy = 2,2′-bipyridine), cis-Ru(bpy){sub 2}(NCS){sub 2}, and cis-Ru(bpy){sub 2}(CN){sub 2} in solution. The NC stretching IR band for cis-Ru(bpy){sub 2}(NCS){sub 2} appears at higher frequency (∼2106 cm{sup −1} in DMSO) than for the free NCS{sup −} anion while the IR bands for the azide and cyanide complexes are closer to those of the respective free anions. The vibrational energy relaxation (VER) lifetime for the azide complex is found to be much shorter (∼5 ps) than for either the NCS or CN species (both ∼70 ps in DMSO) and the lifetimes resemble those for each corresponding free anion in solution. However, for cis-Ru(bpy){sub 2}(N{sub 3}){sub 2}, it is determined that the transition frequency depends more on the solvent than the VER lifetime implying that intramolecular vibrational relaxation is predominant over solvent energy-extracting interactions. These results are compared to the behavior of other related metal complexes in solution.

  4. N-propyl nitrate vibrational spectrum analysis using DFT B3LYP quantum-chemical method

    Science.gov (United States)

    Shaikhullina, R. M.; Hrapkovsky, G. M.; Shaikhullina, M. M.

    2018-05-01

    Calculation of a molecular structure, conformation and related vibrational spectra of the n- propyl nitrate C3H7NO3 was carried out by means of density functional theory (DFT) by employing the Gaussian 03 package. The molecular geometries were fully optimized by using the Becker's three-parameter hybrid exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and using the 6-31G(d) basis set. By scanning the dihedral angles around C-O and C-C bonds, five energetically most favorable conformers of n-propyl nitrate - TG, TT, GT, GG and G´G forms were found. Vibrational spectra of the most energetically favorable conformers were calculated. The comparative analysis of calculated and experimental spectra is carried out, the spectral features of the conformational state of n-propyl nitrate and the spectral effects of formation of intramolecular hydrogen bonds are established.

  5. preparation, spectroscopic studies and x-ray structure of ...

    African Journals Online (AJOL)

    Administrator

    interest in this chemistry is stimulated by their low toxicity, their potential uses as diagnostic tools in biology and their .... C=O) and imine (C=N) bonds and a band at 1018 cm-1 is characteristic of N-N vibrations. In the .... due to the O-H stretching vibration of the phenolic groups and the non-coordinated water molecules [14].

  6. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  7. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    Science.gov (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  8. Preparative conditions and vibrational study of HUP : phase transition and conductivity mechanisms

    International Nuclear Information System (INIS)

    Thi, M.P.; Novak, A.; Colomban, Ph.

    1985-01-01

    Among solid protonic conductors HUP (H 3 OUO 2 PO 4 .3 H 2 O) exhibits very high conducting properties. Uranyl/phosphate hydrates belonging to the HUP family (HUP ; UO 2 (H 2 PO 4 ) 2 .3 H 2 O ; (U= 2 ) 3 (PO 4 ) 2 .4 H 2 O ; (UO O 2 )sub(1.43)PO 4 Hsub(0.14) 2-3.5 H 2 O) have been synthesized in different forms (crystals, powders, films, ...) and characterized by various methods: chemical analysis, DTA, TGA, SEM, X-Ray diffraction, IR and Raman spectroscopy. Morphological studies reveal the presence of various particulat es, from ultrafine powders ( 2 O washing of HUP. Infrared and Raman spectra of polycrystalline H 3 OUO 2 PO 4 .3 H 2 O (HUP) have been investigated at various temperatures between 50 K and 300 K. The most temperature-sensitive bands correspond to PO 4 and H 2 O librations; U-OPO 3 stretching and OH stretching vibrations indicate four different phases of HUP and allow to propose a phasetransition mechanism from a bidimensionnal, quasi-liquid state of a protonated species in the room-temperature phase to a fully ordered crystal below 130 K. The protonic conductivity mechanism of room- and low-temperature phases is discussed. (author)

  9. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  10. Interferometric imaging of Titan's HC$_3$N, H$^{13}$CCCN and HCCC$^{15}$N

    OpenAIRE

    Cordiner, M. A.; Nixon, C. A.; Charnley, S. B.; Teanby, N. A.; Molter, E. M.; Kisiel, Z.; Vuitton, V.

    2018-01-01

    We present the first maps of cyanoacetylene isotopologues in Titan's atmosphere, including H$^{13}$CCCN and HCCC$^{15}$N, detected in the 0.9 mm band using the Atacama Large Millimeter/submillimeter array (ALMA) around the time of Titan's (southern winter) solstice in May 2017. The first high-resolution map of HC$_3$N in its $v_7=1$ vibrationally excited state is also presented, revealing a unique snapshot of the global HC$_3$N distribution, free from the strong optical depth effects that adv...

  11. CORRELATION ANALYSIS OF IR, 1 H- AND 13 C-NMR SPECTRAL DATA OF N-ALKYL AND N-CYCLOALKYL CYANOACETAMIDES

    Directory of Open Access Journals (Sweden)

    Aleksandar D. Marinković

    2011-09-01

    Full Text Available Linear free energy relationships (LFER were applied to the IR, 1H- and 13C--NMR spectral data in N-alkyl and N-cycloalkyl cyanoacetamides. N-alkyl and N-cycloalkyl cyanocetamides were synthesized from corresponding amine and ethyl cyanoacetate. A number of substituents were employed for alkyl substitution, and fairly good correlations were obtained, using simple Hammett equation. In N-alkyl and N-cycloalkyl cyanoacetamides substituent cause SCS of N-H hydrogen primarily by steric interaction, polar subtituent effect influences SCS shift of C=O carbon, while steric effect of N-alkyl substituent causes IR stretching frequencies of N-H, C=O and CN group. The conformations of investigated compounds have been studied by the use of semiempirical PM6 method, and together with LFER analysis, give a better insight into the influence of such a structure on the transmission of electronic substituent effects. Negative ρ values for several correlations (reverse substituent effect were found.

  12. Spectroscopic and Potentiometric Analysis on Diaquo Bis(N–2 ...

    African Journals Online (AJOL)

    attributable to v(O-H) stretching frequencies in the Schiff base and it complex compound, respectively. The weak bands at 514 and 387 cm-1 are attributable to v(Cu-O) and v(Cu-N) stretching vibrations, respectively in the copper (II) Schiff base complex. The dissociation constant (pKa) of N – 2 – amino – 3 – methylbutyl – 2, ...

  13. Comparison of force fields and calculation methods for vibration intervals of isotopic H+3 molecules

    International Nuclear Information System (INIS)

    Carney, G.D.; Adler-Golden, S.M.; Lesseski, D.C.

    1986-01-01

    This paper reports (a) improved values for low-lying vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 calculated using the variational method and Simons--Parr--Finlan representations of the Carney--Porter and Dykstra--Swope ab initio H + 3 potential energy surfaces, (b) quartic normal coordinate force fields for isotopic H + 3 molecules, (c) comparisons of variational and second-order perturbation theory, and (d) convergence properties of the Lai--Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 for these potential surfaces are 6.9 (Carney--Porter) and 1.2 cm -1 (Dykstra--Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10 cm -1 for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed ''t'' coordinate Hamiltonian for these molecules, except in the case of H 2 D +

  14. Vibrational and orientational dynamics of water in aqueous hydroxide solutions.

    Science.gov (United States)

    Hunger, Johannes; Liu, Liyuan; Tielrooij, Klaas-Jan; Bonn, Mischa; Bakker, Huib

    2011-09-28

    We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton. © 2011 American Institute of Physics

  15. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  16. In- and out-of-plane response of a stretched string due to an in-plane harmonic excitation

    NARCIS (Netherlands)

    Van Horssen, W.T.; Van der Burgh, A.H.P

    2004-01-01

    In this paper a model of the dynamics of a stretched string is derived. The sag of the string due to gravity is neglected. The string is suspended between a fixed support and a vibrating support. Due to the vibrating support the oscillation of the string in vertical direction is influenced by a

  17. Instantaneous normal mode analysis for intermolecular and intramolecular vibrations of water from atomic point of view.

    Science.gov (United States)

    Chen, Yu-Chun; Tang, Ping-Han; Wu, Ten-Ming

    2013-11-28

    By exploiting the instantaneous normal mode (INM) analysis for models of flexible molecules, we investigate intermolecular and intramolecular vibrations of water from the atomic point of view. With two flexible SPC/E models, our investigations include three aspects about their INM spectra, which are separated into the unstable, intermolecular, bending, and stretching bands. First, the O- and H-atom contributions in the four INM bands are calculated and their stable INM spectra are compared with the power spectra of the atomic velocity autocorrelation functions. The unstable and intermolecular bands of the flexible models are also compared with those of the SPC/E model of rigid molecules. Second, we formulate the inverse participation ratio (IPR) of the INMs, respectively, for the O- and H-atom and molecule. With the IPRs, the numbers of the three species participated in the INMs are estimated so that the localization characters of the INMs in each band are studied. Further, by the ratio of the IPR of the H atom to that of the O atom, we explore the number of involved OH bond per molecule participated in the INMs. Third, by classifying simulated molecules into subensembles according to the geometry of their local environments or their H-bond configurations, we examine the local-structure effects on the bending and stretching INM bands. All of our results are verified to be insensible to the definition of H-bond. Our conclusions about the intermolecular and intramolecular vibrations in water are given.

  18. Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface

    Science.gov (United States)

    Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.

    2017-10-01

    In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show

  19. Fuchs-Kliewer phonons of H-covered and clean GaN(1 1 bar 00)

    Science.gov (United States)

    Rink, M.; Himmerlich, M.; Krischok, S.; Kröger, J.

    2018-01-01

    Inelastic electron scattering is used to study surface phonon polaritons on H-covered and clean GaN(1 1 bar 00) surfaces. The Fuchs-Kliewer phonon of GaN(1 1 bar 00) -H gives rise to characteristic signatures of its single and multiple excitation in specular electron energy loss spectra. The loss intensities for multi-phonon scattering processes decrease according to a Poisson distribution. Vibrational spectra of this surface are invariant on the time scale of days reflecting its chemical passivation by the H layer. In contrast, vibrational spectra of pristine GaN(1 1 bar 00) are subject to a pronounced temporal evolution where spectroscopic weight is gradually shifted towards the multiple excitation of the Fuchs-Kliewer phonon. As a consequence, the monotonous decrease of the cross section for multiple quantum excitation as observed for the H-covered surface is not applicable. This remarkable effect is particularly strong in spectra acquired at low primary energies of incident electrons, which hints at processes occurring in the very surface region. Scenarios that may contribute to these observations are discussed.

  20. Electronic excitation in collisions of H+ and H with N2

    International Nuclear Information System (INIS)

    Birely, J.H.

    1974-01-01

    The 200-500 nm radiation excited by collisions of a beam of 1.5-25 keV H + or H with N 2 has been studied under thin-target conditions with a viewing geometry chosen to minimize polarization effects. For both H + and H impact, the N 2 + (B 2 Σsub(u)sup(+)-X 2 Σsub(g)sup(+)) first negative bands are the most intense spectral features in this wavelength range. As expected from consideration of electron spin conservation, the probability of excitation of the N 2 (C 3 PIsub(u)-B 3 PIsub(g)) second positive bands by H impact greatly exceeds that for H + bombardment. Relative emission cross sections for the 0-0 bands of the first negative system at 391.5 nm and the second positive system at 337.1 nm were determined and made absolute via normalization to measurements reported at higher energies by previous workers. Cross sections for formation of N 2 + B 2 Σsub(u)sup(+) and N 2 C 3 PIsub(u) in the v'=0 vibrational level were derived from the measured emission cross sections and known transition probabilities. A maximum in the cross section for formation of N 2 + B 2 Σsub(u')sup(+), v'=0 of 9.7x10 -17 cm 2 at 10 keV was found for H + impact, while for H, the cross section for this process rises steadily with increasing collision energy until reaching a nearly constant value of 2.9x10 -17 cm 2 in the 15-25 keV range. The fraction of the total N 2 + yield that is formed in the B state is about 0.05 to 0.08 in the energy range studied. For formation of N 2 C 3 PIsub(u) with v'=0, the cross section has maximum value of 1.24x10 -17 cm 2 at 5 keV. At H atom energies below 7 keV, exchange excitation of N 2 to the C 3 PIsub(u) state is more probable than ionization to yield N 2 + in the B state while, at higher energies, ionization to yield the B state is the more probable process

  1. Sub-Doppler slit jet infrared spectroscopy of astrochemically relevant cations: Symmetric (ν1) and antisymmetric (ν6) NH stretching modes in ND2H2+

    Science.gov (United States)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2018-01-01

    Sub-Doppler infrared rovibrational transitions in the symmetric (v1) and antisymmetric (v6) NH stretch modes of the isotopomerically substituted ND2H2+ ammonium cation are reported for the first time in a slit jet discharge supersonic expansion spectrometer. The partially H/D substituted cation is generated by selective isotopic exchange of ND3 with H2O to form NHD2, followed by protonation with H3+ formed in the NHD2/H2/Ne slit-jet discharge expansion environment. Rotational assignment for ND2H2+ is confirmed rigorously by four line ground state combination differences, which agree to be within the sub-Doppler precision in the slit jet (˜9 MHz). Observation of both b-type (ν1) and c-type (ν6) bands enables high precision determination of the ground and vibrationally excited state rotational constants. From an asymmetric top Watson Hamiltonian analysis, the ground state constants are found to be A″ = 4.856 75(4) cm-1, B″ = 3.968 29(4) cm-1, and C″ = 3.446 67(6) cm-1, with band origins at 3297.5440(1) and 3337.9050(1) cm-1 for the v1 and v6 modes, respectively. This work permits prediction of precision microwave/mm-wave transitions, which should be invaluable in facilitating ongoing spectroscopic searches for partially deuterated ammonium cations in interstellar clouds and star-forming regions of the interstellar medium.

  2. DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Giovana M B Veronezi

    Full Text Available Valproic acid (VPA, a well-known histone deacetylase inhibitor, has been reported to affect the DNA methylation status in addition to inducing histone hyperacetylation in several cell types. In HeLa cells, VPA promotes histone acetylation and chromatin remodeling. However, DNA demethylation was not checked in this cell model for standing effects longer than those provided by histone acetylation, which is a rapid and transient phenomenon. Demonstration of VPA-induced DNA demethylation in HeLa cells would contribute to understanding the effect of VPA on an aggressive tumor cell line. In the present work, DNA demethylation in VPA-treated HeLa cells was assessed by image analysis of chromatin texture, the abundance of 5-methylcytosine (5mC immunofluorescence signals and Fourier transform-infrared (FT-IR microspectroscopy centered on spectral regions related to the vibration of-CH3 groups. Image analysis indicated that increased chromatin unpacking promoted by a 4-h-treatment with 1.0 mM VPA persisted for 24 h in the absence of the drug, suggesting the occurrence of DNA demethylation that was confirmed by decreased 5mC immunofluorescence signals. FT-IR spectra of DNA samples from 1 mM or 20 mM VPA-treated cells subjected to a peak fitting analysis of the spectral window for-CH3 stretching vibrations showed decreased vibrations and energy of these groups as a function of the decreased abundance of 5mC induced by increased VPA concentrations. Only the 20 mM-VPA treatment caused an increase in the ratio of -CH3 bending vibrations evaluated at 1375 cm-1 in relation to in-plane vibrations of overall cytosines evaluated at 1492 cm-1. CH3 stretching vibrations showed to be more sensitive than-CH3 bending vibrations, as detected with FT-IR microspectroscopy, for studies aiming to associate vibrational spectroscopy and changes in DNA 5mC abundance.

  3. How to determine local stretching and tension in a flow-stretched DNA molecule

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Marie, Rodolphe; Kristensen, Anders

    2016-01-01

    We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead......, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA......-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA—e.g., native DNA extracted from human cells or bacteria—must be stretched with ease for inspection, this method applies....

  4. Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction

    Science.gov (United States)

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-01

    Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  5. H3+: Ab initio calculation of the vibration spectrum

    International Nuclear Information System (INIS)

    Carney, G.D.; Porter, R.N.

    1976-01-01

    The vibration spectrum of H 3 + is calculated from the representation of a previously reported [J. Chem Phys. 60, 4251 (1974)] ab initio potential-energy surface in a fifth degree Simons--Parr--Finlan (SPF) expansion. Morse- and harmonic-oscillator basis functions are used to describe the motions of the three oscillators and the Harris--Engerholm--Gwinn quadrature technique is used to obtain matrix elements of the Hamiltonian in the basis of vibrational configurations. Our variational method is thus analogous to configuration--interaction calculations for electronic states. The ground state is found to have a zero-point energy of 4345 cm -1 and a vibrationally averaged geometry of R 1 =R 2 =0.91396 A, theta=60.0012degree, where theta is the angle between the two equivalent bonds. The transition frequencies for the E and A 1 fundamentals are nu-bar/sub E/=2516 cm -1 and nu-bar/sub A/=3185 cm -1 and those for the corresponding first overtones of the bending mode are 2nu-bar/sub E/=5004 +- 4 cm -1 and 2nu-bar/sub A/=4799 cm -1 . The first overtone of the breathing mode is 6264 cm -1 . The first-excited A 1 vibration state is metastable with a dipole--radiation lifetime of 3 sec. Transition frequencies, Einstein coefficients, and lifetimes are reported for a total of 21 transitions. Analysis of results for Dunham number and normal-coordinate expansions in comparison with those for SPF expansion show the latter to be superior for ab initio vibrational calculations. A scheme for possible direct measurement of the fundamental A 1 and E vibrational bands is suggested

  6. EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS

    Directory of Open Access Journals (Sweden)

    Ashlesha Sirari

    2015-06-01

    Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening

  7. THE CHEMISTRY OF VIBRATIONALLY EXCITED H2 IN THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Agundez, M.; Roueff, E.; Goicoechea, J. R.; Cernicharo, J.; Faure, A.

    2010-01-01

    The internal energy available in vibrationally excited H 2 molecules can be used to overcome or diminish the activation barrier of various chemical reactions of interest for molecular astrophysics. In this paper, we investigate in detail the impact on the chemical composition of interstellar clouds of the reactions of vibrationally excited H 2 with C + , He + , O, OH, and CN, based on the available chemical kinetics data. It is found that the reaction of H 2 (v>0) and C + has a profound impact on the abundances of some molecules, especially CH + , which is a direct product and is readily formed in astronomical regions with fractional abundances of vibrationally excited H 2 , relative to the ground state H 2 , in excess of ∼10 -6 , independently of whether the gas is hot or not. The effects of these reactions on the chemical composition of the diffuse clouds ζOph and HD 34078, the dense photon-dominated region (PDR) Orion Bar, the planetary nebula NGC 7027, and the circumstellar disk around the B9 star HD 176386 are investigated through PDR models. We find that formation of CH + is especially favored in dense and highly FUV illuminated regions such as the Orion Bar and the planetary nebula NGC 7027, where column densities in excess of 10 13 cm -2 are predicted. In diffuse clouds, however, this mechanism is found to be not efficient enough to form CH + with a column density close to the values derived from astronomical observations.

  8. Natural bond orbital analysis, electronic structure and vibrational spectral analysis of N-(4-hydroxyl phenyl) acetamide: A density functional theory

    Science.gov (United States)

    Govindasamy, P.; Gunasekaran, S.; Ramkumaar, G. R.

    2014-09-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator’s strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.

  9. Local vibrational modes of the formic acid dimer - the strength of the double hydrogen bond

    Science.gov (United States)

    Kalescky, R.; Kraka, E.; Cremer, D.

    2013-07-01

    The 24 normal and 24 local vibrational modes of the formic acid dimer formed by two trans formic acid monomers to a ring (TT1) are analysed utilising preferentially experimental frequencies, but also CCSD(T)/CBS and ωB97X-D harmonic vibrational frequencies. The local hydrogen bond (HB) stretching frequencies are at 676 cm-1 and by this 482 and 412 cm-1 higher compared to the measured symmetric and asymmetric HB stretching frequencies at 264 and 194 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to the topology of dimer TT1, mass coupling, and avoided crossings involving the HṡṡṡOC bending modes. The HB local mode stretching force constant is related to the strength of the HB whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the HB strength. The HB in TT1 is stabilised by electron delocalisation in the O=C-O units fostered by forming a ring via double HBs. This implies that the CO apart from the OH local stretching frequencies reflect the strength of the HB via their red or blue shifts relative to their corresponding values in trans formic acid.

  10. Structure, vibrations, and hydrogen bond parameters of dibenzotetraaza[14]annulene

    Science.gov (United States)

    Gawinkowski, S.; Eilmes, J.; Waluk, J.

    2010-07-01

    Geometry and vibrational structure of dibenzo[ b, i][1,4,8,11]tetraaza[14]annulene (TAA) have been studied using infrared and Raman spectroscopy combined with quantum-chemical calculations. The assignments were proposed for 106 out of the total of 108 TAA vibrations, based on comparison of the theoretical predictions with the experimental data obtained for the parent molecule and its isotopomer in which the NH protons were replaced by deuterons. Reassignments were suggesteded for the NH stretching and out-of-plane vibrations. The values of the parameters of the intramolecular NH⋯N hydrogen bonds were analysed in comparison with the corresponding data for porphyrin and porphycene, molecules with the same structural motif, a cavity composed of four nitrogen atoms and two inner protons. Both experiment and calculations suggest that the molecule of TAA is not planar and is present in a trans tautomeric form, with the protons located on the opposite nitrogen atoms.

  11. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  12. Symmetry Adaptation of the Rotation-Vibration Theory for Linear Molecules

    Directory of Open Access Journals (Sweden)

    Katy L. Chubb

    2018-04-01

    Full Text Available A numerical application of linear-molecule symmetry properties, described by the D ∞ h point group, is formulated in terms of lower-order symmetry groups D n h with finite n. Character tables and irreducible representation transformation matrices are presented for D n h groups with arbitrary n-values. These groups can subsequently be used in the construction of symmetry-adapted ro-vibrational basis functions for solving the Schrödinger equations of linear molecules. Their implementation into the symmetrisation procedure based on a set of “reduced” vibrational eigenvalue problems with simplified Hamiltonians is used as a practical example. It is shown how the solutions of these eigenvalue problems can also be extended to include the classification of basis-set functions using ℓ, the eigenvalue (in units of ℏ of the vibrational angular momentum operator L ^ z . This facilitates the symmetry adaptation of the basis set functions in terms of the irreducible representations of D n h . 12 C 2 H 2 is used as an example of a linear molecule of D ∞ h point group symmetry to illustrate the symmetrisation procedure of the variational nuclear motion program Theoretical ROVibrational Energies (TROVE.

  13. DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid

    Science.gov (United States)

    Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.

    2018-05-01

    The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  14. Photoinduced intermolecular electron transfer and off-resonance Raman characteristics of Rhodamine 101/N,N-diethylaniline

    International Nuclear Information System (INIS)

    Jiang, Li-lin; Liu, Wei-long; Song, Yun-fei; He, Xing; Wang, Yang; Wang, Chang; Wu, Hong-lin; Yang, Fang; Yang, Yan-qiang

    2014-01-01

    Highlights: • Mechanism of PIET reaction process for the Rh101 + /DEA system is investigated. • The significant geometrical changes of the charge–transfer complex are explained. • Forward Electron transfer from DEA to Rh101 +∗ occurs with lifetime of 425–560 fs. • Backward electron transfer occurs with a time constant of 46.16–51.40 ps. • Intramolecular vibrational relaxation occurs with lifetime of 2.77–5.39 ps. - Abstract: The ultrafast photoinduced intermolecular electron transfer (PIET) reaction of Rhodamine 101 (Rh101 + ) in N,N-diethylaniline (DEA) was investigated using off-resonance Raman, femtosecond time-resolved multiplex transient grating (TG) and transient absorption (TA) spectroscopies. The Raman spectra indicate that the C=C stretching vibration of the chromophore aromatic ring is more sensitive to ET compared with the C-C stretching mode. The ultrafast photoinduced intermolecular forward ET (FET) from DEA to Rh101 +∗ occurs on a time scale of τ FET = 425–560 fs. The backward ET (BET) occurs in the inverted region with a time constant of τ BET = 46.16–51.40 ps. The intramolecular vibrational relaxation (IVR) process occurs on the excited state potential energy surface with the time constant of τ IVR = 2.77–5.39 ps

  15. Anharmonic vibrational spectroscopic investigation of malonaldehyde

    International Nuclear Information System (INIS)

    Alparone, A.; Millefiori, S.

    2003-01-01

    Anharmonic IR spectra of H-bonded and non-H-bonded conformers of malonaldehyde (MA) and its isotopomers MA-D 6 D 8 and MA-D 7 D 9 have been computed by the Vibrational-Self-Consistent-Field (VSCF) and the correlation-corrected-VSCF (CC-VSCF) techniques using ab initio MP2/6-31G*(+p) potential energies. The agreement between the experimental and calculated frequencies is significantly improved to within 2-3%. Anharmonic contributions are substantial especially for νOH of the H-bonded form, by reducing the harmonic value by more than 500 cm -1 . The effect is less important in the non-H-bonded form. The νOH stretching mode is strongly coupled with the ν 3 mode (essentially νCH 7 ) and with the in-plane and out-of-plane OH bending deformations. H-bond formation and deuteration batochromically shift νOH by an amount which is influenced by the anharmonic terms, the major contribution arising from coupling between modes. The comparison with the νOH mode of some other H-bonded systems suggests that anharmonic correction follows H-bonding strength

  16. Nuclear resonance vibrational spectroscopy applied to [Fe(OEP)(NO)]: the vibrational assignments of five-coordinate ferrous heme-nitrosyls and implications for electronic structure.

    Science.gov (United States)

    Lehnert, Nicolai; Galinato, Mary Grace I; Paulat, Florian; Richter-Addo, George B; Sturhahn, Wolfgang; Xu, Nan; Zhao, Jiyong

    2010-05-03

    This study presents Nuclear Resonance Vibrational Spectroscopy (NRVS) data on the five-coordinate (5C) ferrous heme-nitrosyl complex [Fe(OEP)(NO)] (1, OEP(2-) = octaethylporphyrinato dianion) and the corresponding (15)N(18)O labeled complex. The obtained spectra identify two isotope sensitive features at 522 and 388 cm(-1), which shift to 508 and 381 cm(-1), respectively, upon isotope labeling. These features are assigned to the Fe-NO stretch nu(Fe-NO) and the in-plane Fe-N-O bending mode delta(ip)(Fe-N-O), the latter has been unambiguously assigned for the first time for 1. The obtained NRVS data were simulated using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Since complex 1 can potentially exist in 12 different conformations involving the FeNO and peripheral ethyl orientations, extended density functional theory (DFT) calculations and QCC-NCA simulations were performed to determine how these conformations affect the NRVS properties of [Fe(OEP)NO]. These results show that the properties and force constants of the FeNO unit are hardly affected by the conformational changes involving the ethyl substituents. On the other hand, the NRVS-active porphyrin-based vibrations around 340-360, 300-320, and 250-270 cm(-1) are sensitive to the conformational changes. The spectroscopic changes observed in these regions are due to selective mechanical couplings of one component of E(u)-type (in ideal D(4h) symmetry) porphyrin-based vibrations with the in-plane Fe-N-O bending mode. This leads to the observed variations in Fe(OEP) core mode energies and NRVS intensities without affecting the properties of the FeNO unit. The QCC-NCA simulated NRVS spectra of 1 show excellent agreement with experiment, and indicate that conformer F is likely present in the samples of this complex investigated here. The observed porphyrin-based vibrations in the NRVS spectra of 1 are also assigned based on the QCC-NCA results. The obtained force constants of the Fe-NO and N

  17. Raman study of vibrational dynamics of aminopropylsilanetriol in gas phase

    Science.gov (United States)

    Volovšek, V.; Dananić, V.; Bistričić, L.; Movre Šapić, I.; Furić, K.

    2014-01-01

    Raman spectrum of aminopropylsilanetriol (APST) in gas phase has been recorded at room temperature in macro chamber utilizing two-mirror technique over the sample tube. Unlike predominantly trans molecular conformation in condensed phase, the spectra of vapor show that the molecules are solely in gauche conformation with intramolecular hydrogen bond N⋯Hsbnd O which reduces the molecular energy in respect to trans conformation by 0.152 eV. The assignment of the molecular spectra based on the DFT calculation is presented. The strong vibrational bands at 354 cm-1, 588 cm-1 and 3022 cm-1 are proposed for verifying the existence of the ring like, hydrogen bonded structure. Special attention was devoted to the high frequency region, where hydrogen bond vibrations are coupled to stretchings of amino and silanol groups.

  18. Structural, electronic, topological and vibrational properties of a series of N-benzylamides derived from Maca (Lepidium meyenii) combining spectroscopic studies with ONION calculations

    Science.gov (United States)

    Chain, Fernando E.; Ladetto, María Florencia; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2016-02-01

    In the present work, the structural, topological and vibrational properties of four members of the N-benzylamides series derived from Maca (Lepidium meyenii) whose names are, N-benzylpentadecanamide, N-benzylhexadecanamide, N-benzylheptadecanamide and N-benzyloctadecanamide, were studied combining the FTIR, FT-Raman and 1H and 13C-NMR spectroscopies with density functional theory (DFT) and ONION calculations. Furthermore, the N-benzylacetamide, N-benzylpropilamide and N-benzyl hexanamide derivatives were also studied in order to compare their properties with those computed for the four macamides. These seven N-benzylamides series have a common structure, C8H8NO-R, being R the side chain [-(CH2)n-CH3] with a variable n number of CH2 groups. Here, the atomic charges, molecular electrostatic potentials, stabilization energies, topological properties of those macamides were analyzed as a function of the number of C atoms of the side chain while the frontier orbitals were used to compute the gap energies and some descriptors in order to predict their reactivities and behaviors in function of the longitude of the side chain. Here, the force fields, the complete vibrational assignments and the corresponding force constants were only reported for N-benzylacetamide, N-benzyl hexanamide and N-benzylpentadecanamide due to the high number of vibration normal modes that present the remains macamides.

  19. The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates

    International Nuclear Information System (INIS)

    Plattner, Nuria; Meuwly, Markus

    2014-01-01

    Vibrational frequency shifts of H 2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H 2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H 2 in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H 2 vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H 2 in the 5 12 cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5 12 cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5 12 6 4 cages for which higher occupation numbers than one H 2 per cage are likely

  20. MARVEL analysis of the rotational-vibrational states of the molecular ions H2D+ and D2H+.

    Science.gov (United States)

    Furtenbacher, Tibor; Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G

    2013-07-07

    Critically evaluated rotational-vibrational line positions and energy levels, with associated critically reviewed labels and uncertainties, are reported for two deuterated isotopologues of the H3(+) molecular ion: H2D(+) and D2H(+). The procedure MARVEL, standing for Measured Active Rotational-Vibrational Energy Levels, is used to determine the validated levels and lines and their self-consistent uncertainties based on the experimentally available information. The spectral ranges covered for the isotopologues H2D(+) and D2H(+) are 5.2-7105.5 and 23.0-6581.1 cm(-1), respectively. The MARVEL energy levels of the ortho and para forms of the ions are checked against ones determined from accurate variational nuclear motion computations employing the best available adiabatic ab initio potential energy surfaces of these isotopologues. The number of critically evaluated, validated and recommended experimental (levels, lines) are (109, 185) and (104, 136) for H2D(+) and D2H(+), respectively. The lists of assigned MARVEL lines and levels and variational levels obtained for H2D(+) and D2H(+) as part of this study are deposited in the ESI to this paper.

  1. The Effects of Two Different Stretching Programs on Balance Control and Motor Neuron Excitability

    Science.gov (United States)

    Kaya, Fatih; Biçer, Bilal; Yüktasir, Bekir; Willems, Mark E. T.; Yildiz, Nebil

    2018-01-01

    We examined the effects of training (4d/wk for 6 wks) with static stretching (SS) or contract-relax proprioceptive neuromuscular facilitation (PNF) on static balance time and motor neuron excitability. Static balance time, H[subscript max]/M[subscript max] ratios and H-reflex recovery curves (HRRC) were measured in 28 healthy subjects (SS: n = 10,…

  2. Vibrational normal modes of diazo-dimedone: A comparative study by Fourier infrared/Raman spectroscopies and conformational analysis by MM/QM

    Science.gov (United States)

    Téllez Soto, C. A.; Ramos, J. M.; Rianelli, R. S.; de Souza, M. C. B. V.; Ferreira, V. F.

    2007-07-01

    The 2-diazo-5,5-dimethyl-cyclohexane-1,3-dione ( 3) was synthesized and the FT-IR/Raman spectra were measured with the purpose of obtain a full assignment of the vibrational modes. Singular aspects concerning the -C dbnd N dbnd N oscillator are discussed in view of two strong bands observed in the region of 2300-2100 cm -1 in both, Infrared and Raman spectra. The density functional theory (DFT) was used to obtain the geometrical structure and for assisting in the vibrational assignment joint to the traditional normal coordinate analysis (NCA). The observed wavenumbers at 2145 (IR), 2144(R) are assigned as the coupled ν(N dbnd N) + ν(C dbnd N) vibrational mode with higher participation of the N dbnd N stretching. A 2188 cm -1 (IR) and at 2186 cm -1 (R) can be assigned as a overtone of one of ν(CC) normal mode or to a combination band of the fundamentals δ(CCH) found at 1169 cm -1 and the δ (CC dbnd N) found at 1017 cm -1 enhanced by Fermi resonance.

  3. Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂.

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei

    2013-02-15

    Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm(-1), assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm(-1) are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm(-1) is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Diode laser probe of CO2 vibrational excitation produced by collisions with hot deuterium atoms from the 193 nm excimer laser photolysis D2S

    International Nuclear Information System (INIS)

    O'Neill, J.A.; Cai, J.Y.; Flynn, G.W.; Weston, R.E. Jr.

    1986-01-01

    The 193 nm excimer laser photolysis of D 2 S in D 2 S/CO 2 mixtures produces fast deuterium atoms (E/sub TR/approx.2.2 eV) which vibrationally excite CO 2 molecules via inelastic translation--vibration/rotation (T--V/R) energy exchange processes. A high resolution (10 -3 cm -1 ) cw diode laser probe was used to monitor the excitation of ν 3 (antisymmetric stretch) and ν 2 (bend) vibrations in CO 2 . The present results are compared with previous experiments involving hot hydrogen atom excitation of CO 2 in H 2 S/CO 2 mixtures as well as with theoretical calculations of the excitation probability. The probability for excitation of a ν 3 quantum in CO 2 is about 1%--2% per gas kinetic D/CO 2 collision. Bending (ν 2 ) quanta are produced about eight times more efficiently than antisymmetric stretching (ν 3 ) quanta. The thermalization rate for cooling hot D atoms below the threshold for production of a ν 3 vibrational quantum corresponds to less than 2 D*/D 2 S collisions or 15 D*/CO 2 collisions

  5. Vibrational spectrum of solid picene (C22H14)

    International Nuclear Information System (INIS)

    Joseph, B; Capitani, F; Boeri, L; Malavasi, L; Artioli, G A; Protti, S; Fagnoni, M; Albini, A; Marini, C; Baldassarre, L; Perucchi, A; Lupi, S; Postorino, P; Dore, P

    2012-01-01

    Recently, Mitsuhashi et al observed superconductivity with a transition temperature up to 18 K in potassium doped picene (C 22 H 14 ), a polycyclic aromatic hydrocarbon compound (Mitsuhashi et al 2010 Nature 464 76). Theoretical analysis indicates the importance of electron-phonon coupling in the superconducting mechanisms of these systems, with different emphasis on inter- and intra-molecular vibrations, depending on the approximations used. Here we present a combined experimental and ab initio study of the Raman and infrared spectrum of undoped solid picene, which allows us to unambiguously assign the vibrational modes. This combined study enables the identification of the modes which couple strongly to electrons and hence can play an important role in the superconducting properties of the doped samples. (fast track communication)

  6. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    Science.gov (United States)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  7. Original Researc Original Research

    African Journals Online (AJOL)

    RAGHAVENDRA

    1270.04cm-1 are attributed to an olefinic system and C-O stretching vibration of an ester moiety, respectively. Furthermore, the IR absorptions at 2922.92cm-1 and. 3010cm-1 suggest sp3. C-H stretching and sp2. C-H stretching vibrations, respectively. The UV spectrum showed characteristic absorption bands for ester ...

  8. Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100)

    Science.gov (United States)

    Novko, D.; Alducin, M.; Juaristi, J. I.

    2018-04-01

    We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.

  9. Measurement and Simulation of Spontaneous Raman Scattering Spectra in High-Pressure, Fuel-Rich H2-Air Flames

    Science.gov (United States)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    Rotational vibrational spontaneous Raman spectra (SRS) of H2, N2, and H2O have been measured in H2-air flames at pressures up to 30 atm as a first stem towards establishing a comprehensive Raman spectral database for temperatures and species in high-pressure combustion. A newly developed high-pressure burner facility provides steady, reproducible flames with a high degree of flow precision. We have obtained an initial set of measurements that indicate the spectra are of sufficient quality in terms of spectral resolution, wavelength coverage, and signal-to-noise ratio for use in future reference standards. The fully resolved Stokes and anti-Stokes shifted SRS spectra were collected in the visible wavelength range (400-700 nm) using pulse-stretched 532 nm excitation and a non-intensified CCD spectrograph with a high-speed shutter. Reasonable temperatures were determined via the intensity distribution of rotational H2 lines at stoichiometry and fuel-rich conditions. Theoretical Raman spectra of H2 were computed using a semi-classical harmonic-oscillator model with recent pressure broadening data and were compared with experimental results. The data and simulation indicated that high-J rotational lines of H2 might interfere with the N2 vibrational Q-branch lines, and this could lead to errors in N2-Raman thermometry based on the line-fitting method. From a comparison of N2 Q-branch spectra in lean H2 low-pressure (1.2 atm) and high-pressure (30 atm) flames, we found no significant line-narrowing or -broadening effects at the current spectrometer resolution of 0.04 nm.

  10. Quasiclassical trajectory studies of the O(3P) + CX4(vk = 0, 1) → OXv + CX3(n1n2n3n4) [X = H and D] reactions on an ab initio potential energy surface.

    Science.gov (United States)

    Czakó, Gábor; Liu, Rui; Yang, Minghui; Bowman, Joel M; Guo, Hua

    2013-08-01

    We report quasiclassical trajectory calculations of the integral and differential cross sections and the mode-specific product state distributions for the "central-barrier" O((3)P) + CH4/CD4(vk = 0, 1) [k = 1, 2, 3, 4] reactions using a full-dimensional ab initio potential energy surface. The mode-specific vibrational distributions for the polyatomic methyl products are obtained by doing a normal-mode analysis in the Eckart frame, followed by standard histogram binning (HB) and energy-based Gaussian binning (1GB). The reactant bending excitations slightly enhance the reactivity, whereas stretching excitations activate the reaction more efficiently. None of the reactant vibrational excitations is as efficient as an equivalent amount of translational energy to promote the reactions. The excitation functions without product zero-point energy (ZPE) constraint are in good agreement with previous 8-dimensional quantum mechanical (QM) results for the ground-state and stretching-excited O + CH4 reactions, whereas for the bending-excited reactions the soft ZPE constraint, which is applied to the sum of the product vibrational energies, provides better agreement with the QM cross sections. All angular distributions show the dominance of backward scattering indicating a direct rebound mechanism, in agreement with experiment. The title reactions produce mainly OH/OD(v = 0) products for all the initial states. HB significantly overestimates the populations of OH/OD(v = 1), especially in the energetic threshold regions, whereas 1GB provides physically correct results. The CH3/CD3 vibrational distributions show dominant populations for ground (v = 0), umbrella-excited (v2 = 1, 2), in-plane-bending-excited (v4 = 1), and v2 + v4 methyl product states. Neither translational energy nor reactant vibrational excitation transfers significantly into product vibrations.

  11. An experimental and theoretical study of molecular structure and vibrational spectra of 2-methylphenyl boronic acid by density functional theory calculations

    Science.gov (United States)

    Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.

    2018-05-01

    This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  12. Quantum chemical study of agonist-receptor vibrational interactions for activation of the glutamate receptor.

    Science.gov (United States)

    Kubo, M; Odai, K; Sugimoto, T; Ito, E

    2001-06-01

    To understand the mechanism of activation of a receptor by its agonist, the excitation and relaxation processes of the vibrational states of the receptor should be examined. As a first approach to this problem, we calculated the normal vibrational modes of agonists (glutamate and kainate) and an antagonist (6-cyano-7-nitroquinoxaline-2,3-dione: CNQX) of the glutamate receptor, and then investigated the vibrational interactions between kainate and the binding site of glutamate receptor subunit GluR2 by use of a semiempirical molecular orbital method (MOPAC2000-PM3). We found that two local vibrational modes of kainate, which were also observed in glutamate but not in CNQX, interacted through hydrogen bonds with the vibrational modes of GluR2: (i) the bending vibration of the amine group of kainate, interacting with the stretching vibration of the carboxyl group of Glu705 of GluR2, and (ii) the symmetric stretching vibration of the carboxyl group of kainate, interacting with the bending vibration of the guanidinium group of Arg485. We also found collective modes with low frequency at the binding site of GluR2 in the kainate-bound state. The vibrational energy supplied by an agonist may flow from the high-frequency local modes to the low-frequency collective modes in a receptor, resulting in receptor activation.

  13. Muscle damage induced by stretch-shortening cycle exercise.

    Science.gov (United States)

    Kyröläinen, H; Takala, T E; Komi, P V

    1998-03-01

    Strenuous stretch-shortening cycle exercise was used as a model to study the leakage of proteins from skeletal muscle. The analysis included serum levels of creatine kinase (S-CK), myoglobin (S-Mb), and carbonic anhydrase (S-CA III). Blood samples from power- (N=11) and endurance-trained (N=10) athletes were collected before, 0, and 2 h after the exercise, which consisted of a total of 400 jumps. The levels of all determined myocellular proteins increased immediately after the exercise (P exercise, and the ratio of S-CA III and S-Mb decreased (P recruitment order of motor units, and/or differences in training background.

  14. Fueled viking generator S/N 106 acceptance vibration test report

    International Nuclear Information System (INIS)

    Anderson, C.; Brewer, C.O.; Abrahamson, S.G.

    1976-01-01

    The Viking Generator S/N 106 was vibrated to the Teledyne Isotope Flight Acceptance Schedule (Random Only) with no deviation from normal generator functional output. Radiographic analysis and power tests before and after the vibration test indicated no change in the condition of the generator. The work was conducted in the Alpha Fuels Environmental Test Facility at Mound Laboratory

  15. Fulltext PDF

    Indian Academy of Sciences (India)

    Administrator

    ... respectively, in poly-2-cynoaniline. The peak at 1455 cm–1 is attributed to C–N stretching of nitrile group attached to the benzene ring. The bands at. 1120 and 762 cm–1 can be attributed to the in-plane and out-of-plane C–H bending vibration modes, respectively. The 1331 cm–1 band may be assigned to C–C stretching.

  16. Photoinduced intermolecular electron transfer and off-resonance Raman characteristics of Rhodamine 101/N,N-diethylaniline

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Li-lin [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); School of Mechanical and Electronic Engineering, Hezhou University, Hezhou 542800 (China); Liu, Wei-long; Song, Yun-fei; He, Xing; Wang, Yang; Wang, Chang; Wu, Hong-lin [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Yang, Fang [National Key Laboratory of Science and Technology on Tunable Laser, Department of Optoelectronics Information Science Technology, Harbin Institute of Technology, Harbin 150001 (China); Yang, Yan-qiang, E-mail: yqyang@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China)

    2014-01-31

    Highlights: • Mechanism of PIET reaction process for the Rh101{sup +}/DEA system is investigated. • The significant geometrical changes of the charge–transfer complex are explained. • Forward Electron transfer from DEA to Rh101{sup +∗} occurs with lifetime of 425–560 fs. • Backward electron transfer occurs with a time constant of 46.16–51.40 ps. • Intramolecular vibrational relaxation occurs with lifetime of 2.77–5.39 ps. - Abstract: The ultrafast photoinduced intermolecular electron transfer (PIET) reaction of Rhodamine 101 (Rh101{sup +}) in N,N-diethylaniline (DEA) was investigated using off-resonance Raman, femtosecond time-resolved multiplex transient grating (TG) and transient absorption (TA) spectroscopies. The Raman spectra indicate that the C=C stretching vibration of the chromophore aromatic ring is more sensitive to ET compared with the C-C stretching mode. The ultrafast photoinduced intermolecular forward ET (FET) from DEA to Rh101{sup +∗} occurs on a time scale of τ{sub FET} = 425–560 fs. The backward ET (BET) occurs in the inverted region with a time constant of τ{sub BET} = 46.16–51.40 ps. The intramolecular vibrational relaxation (IVR) process occurs on the excited state potential energy surface with the time constant of τ{sub IVR} = 2.77–5.39 ps.

  17. Vibration characteristics of a PWR fuel rod supported by optimized H type spacer grids

    International Nuclear Information System (INIS)

    Choi, M. H.; Kang, H. S.; Yoon, K. H.; Kim, H. K.; Song, K. N.

    2002-01-01

    The spacer grids are one of the main structural components in the fuel assembly, which supports and protects the fuel rods from the external loads by seismic and coolant flow. In this study, a modal test and a FE vibration analysis using ABAQUS are performed on a PWR dummy fuel rod of 3.847 m which is continuously supported by eight Optimized H type spacer grids. The experimental results agree with previous works that the natural frequencies decrease, while the amplitudes increase, with the increase of the excitation force. The force levels showing the maximum displacement of 0.2 mm are in the range from 0.2 N to 0.3 N, and at the same force range the fundamental frequencies are measured around 42.0 Hz, at which the relatively big displacements are observed at the 7th span. The results from the modal tests and the FE analyses are compared by both Modal Assurance Criteria (MAC) values and mode shapes. The MAC values at 2nd, 4th, and 7th mode are below 50%. It is believed that the reason of the low MACs at those modes is that the vibration amplitudes of the modes are more distorted by the excitation force than those of the other modes

  18. OH vibrational activation and decay dynamics of CH4-OH entrance channel complexes

    International Nuclear Information System (INIS)

    Wheeler, Martyn D.; Tsiouris, Maria; Lester, Marsha I.; Lendvay, Gyoergy

    2000-01-01

    Infrared spectroscopy has been utilized to examine the structure and vibrational decay dynamics of CH 4 -OH complexes that have been stabilized in the entrance channel to the CH 4 +OH hydrogen abstraction reaction. Rotationally resolved infrared spectra of the CH 4 -OH complexes have been obtained in the OH fundamental and overtone regions using an IR-UV (infrared-ultraviolet) double-resonance technique. Pure OH stretching bands have been identified at 3563.45(5) and 6961.98(4) cm-1 (origins), along with combination bands involving the simultaneous excitation of OH stretching and intermolecular bending motions. The infrared spectra exhibit extensive homogeneous broadening arising from the rapid decay of vibrationally activated CH 4 -OH complexes due to vibrational relaxation and/or reaction. Lifetimes of 38(5) and 25(3) ps for CH 4 -OH prepared with one and two quanta of OH excitation, respectively, have been extracted from the infrared spectra. The nascent distribution of the OH products from vibrational predissociation has been evaluated by ultraviolet probe laser-induced fluorescence measurements. The dominant inelastic decay channel involves the transfer of one quantum of OH stretch to the pentad of CH 4 vibrational states with energies near 3000 cm-1. The experimental findings are compared with full collision studies of vibrationally excited OH with CH 4 . In addition, ab initio electronic structure calculations have been carried out to elucidate the minimum energy configuration of the CH 4 -OH complex. The calculations predict a C 3v geometry with the hydrogen of OH pointing toward one of four equivalent faces of the CH 4 tetrahedron, consistent with the analysis of the experimental infrared spectra. (c) 2000 American Institute of Physics

  19. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates.

    Science.gov (United States)

    Kong, Kien Voon; Dinish, U S; Lau, Weber Kam On; Olivo, Malini

    2014-04-15

    Conventional nanoparticle based Surface enhanced Raman scattering (SERS) technique for pH sensing often fails due to the aggregation of particles when detecting in acidic medium or biosamples having high ionic strength. Here, We develop SERS based pH sensing using a novel Raman reporter, arene chromium tricarbonyl linked aminothiophenol (Cr(CO)3-ATP), functionalized onto a nano-roughened planar substrates coated with gold. Unlike the SERS spectrum of the ATP molecule that dominates in the 400-1700 cm(-1) region, which is highly interfered by bio-molecules signals, metal carbonyl-ATP (Cr(CO)3)-ATP) offers the advantage of monitoring the pH dependent strong CO stretching vibrations in the mid-IR (1800-2200 cm(-1)) range. Raman signal of the CO stretching vibrations at ~1820 cm(-1) has strong dependency on the pH value of the environment, where its peak undergo noticeable shift as the pH of the medium is varied from 3.0 to 9.0. The sensor showed better sensitivity in the acidic range of the pH. We also demonstrate the pH sensing in a urine sample, which has high ionic strength and our data closely correlate to the value obtained from conventional sensor. In future, this study may lead to a sensitive chip based pH sensing platform in bio-fluids for the early diagnosis of diseases. © 2013 Published by Elsevier B.V.

  20. Experimental and theoretical investigation of vibrational spectra of coordination polymers based on TCE-TTF.

    Science.gov (United States)

    Olejniczak, Iwona; Lapiński, Andrzej; Swietlik, Roman; Olivier, Jean; Golhen, Stéphane; Ouahab, Lahcène

    2011-08-01

    The room-temperature infrared and Raman spectra of a series of four isostructural polymeric salts of 2,3,6,7-tetrakis(2-cyanoethylthio)-tetrathiafulvalene (TCE-TTF) with paramagnetic (Co(II), Mn(II)) and diamagnetic (Zn(II), Cd(II)) ions, together with BF(4)(-) or ClO(4)(-) anions are reported. Infrared and Raman-active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. It is confirmed that the TCE-TTF molecules in all the materials investigated are fully ionized and interact in the crystal structure through cyanoethylthio groups. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the occurrence of electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Immunomodulatory and antioxidant activity of a Siraitia grosvenorii ...

    African Journals Online (AJOL)

    Jane

    2011-08-31

    Aug 31, 2011 ... assay (ELISA) kits (Adlitteram Diagnostic Laboratories, USA) were used to ... the characteristic of the O–H stretching vibration due to existence of ... vibration. The absorption peaks and stretching vibration were distinctive configuration of polysaccharides. Sugar composition analysis by gas chromatography.

  2. Application of vibrational correlation formalism to internal conversion rate: Case study of Cun (n = 3, 6, and 9) and H2/Cu3

    International Nuclear Information System (INIS)

    Chiodo, Sandro Giuseppe; Mineva, Tzonka

    2015-01-01

    This work reports non-radiative internal conversion (IC) rate constants obtained for Cu n with n = 3, 6, and 9 and H 2 on Cu 3 . The Time-Dependent Density Functional Theory (TDDFT) method was employed with three different functionals in order to investigate the electronic structures and the absorption spectra. The performance of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) and the hybrid B3LYP and PBE0 exchange correlation functionals in combination with the SVP and the def2-TZVP basis sets was examined. TDDFT results were used as input data to compute internal conversion rate constants. For this purpose, we have developed a program package. A description of the theoretical background used in our numerical implementation and the program input file is presented. In view of future applications of this program package in photoinduced catalysis, we present the analysis of the IC rate processes for the photodissociation of H 2 on Cu 3 . These results showed the applicability of the method and the computational program to identify the vibrational modes in transition metal clusters giving rise to the largest IC rate constant due to their interactions with the excited electronic states occurring in the hot-electron induced dissociation phenomena

  3. Vibrational energy transfer in gas phase water and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, F.E. Jr.

    1979-09-01

    The V ..-->.. T, R relaxation rate for NH/sub 3/ (..nu../sub 2/) was studied from 198/sup 0/K to 398/sup 0/K by the method of laser-excited vibrational fluorescence. The self-deactivation rate constant decreases from 2.4 ..mu..sec torr/sup -1/ at 198/sup 0/K to 0.65 ..mu..sec/sup -1/ torr/sup -1/ at 398/sup 0/K. The rate constants for deactivation by He, Ar, N/sub 2/, and O/sub 2/ are much smaller and show a weak temperature dependence in the opposite direction. The vibrational relaxation rates of the coupled ..nu../sub 1/, ..nu../sub 3/ stretching level manifold and of the 2..nu../sub 2/ bending level in H/sub 2//sup 18/O was studied from 250/sup 0/K to 400/sup 0/K using th same method as for NH/sub 3/. The ..nu../sub 1/, ..nu../sub 3/ self-deactivation rate goes from 1.4 ..mu..sec/sup -1/ torr/sup -1/ at 250/sup 0/K to 0.48 ..mu..sec-/sup 1/ torr-/sup 1/ at 400/sup 0/K. For 2..nu../sub 2/ it goes from 4.5 ..mu..sec-/sup 1/ torr to 1.9 ..mu..sec/sup -1/ torr/sup -1/. The temperature dependence of the deactivation of both levels by He and Ar is much weaker and the rates are several hundred times slower. Deactivation of ..nu../sub 1/, ..nu../sub 3/ by N/sub 2/, O/sub 2/, and CO/sub 2/ is measured only at 293/sup 0/K. N/sub 2/ and O/sub 2/ deactivate ..nu../sub 1/, ..nu../sub 3/ about 5 and CO/sub 2/ about 50 times faster than He or Ar.

  4. Molecular and vibrational structure of the extracellular bacterial signal compound N-butyryl-homoserine lactone (C4-HSL)

    DEFF Research Database (Denmark)

    Bak, Jimmy; Spanget-Larsen, Jens

    2009-01-01

    contributions from suspended micro-crystalline aggregates and dissolved monomeric species. The key vibrational bands of the monomeric form of C4-HSL are reported here for the first time: 3425cm−1 (ν(N-H)), 1784cm−1 (ν(C&dbnd;O), lactone), 1688cm−1 (amide I), and 1494cm−1 (amide II) (CCl4)....

  5. Mode specific dynamics of the H2 + CH3 → H + CH4 reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods

    International Nuclear Information System (INIS)

    Wang, Yan; Li, Jun; Guo, Hua; Chen, Liuyang; Yang, Minghui; Lu, Yunpeng

    2015-01-01

    An eight-dimensional quantum dynamical model is proposed and applied to the title reaction. The reaction probabilities and integral cross sections have been determined for both the ground and excited vibrational states of the two reactants. The results indicate that the H 2 stretching and CH 3 umbrella modes, along with the translational energy, strongly promote the reactivity, while the CH 3 symmetric stretching mode has a negligible effect. The observed mode specificity is confirmed by full-dimensional quasi-classical trajectory calculations. The mode specificity can be interpreted by the recently proposed sudden vector projection model, which attributes the enhancement effects of the reactant modes to their strong couplings with the reaction coordinate at the transition state

  6. Evaluation of the structural, electronic, topological and vibrational properties of N-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (Lepidium meyenii) using different spectroscopic techniques

    Science.gov (United States)

    Chain, Fernando; Iramain, Maximiliano Alberto; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2017-01-01

    N-(3,4-dimethoxybenzyl)-hexadecanamide (DMH) was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet- Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. The structural, electronic, topological and vibrational properties were evaluated in gas phase and in n-hexane employing ONIOM and self-consistent force field (SCRF) calculations. The atomic charges, molecular electrostatic potentials, stabilization energies and topological properties of DMH were analyzed and compared with those calculated for N-(3,4-dimethoxybenzyl)-acetamide (DMA) in order to evaluate the effect of the side chain on the properties of DMH. The reactivity and behavior of this alkamide were predicted by using the gap energies and some descriptors. Force fields and the corresponding force constants were reported for DMA only in gas phase and n-hexane due to the high number of vibration normal modes showed by DMH, while the complete vibrational assignments are presented for DMA and both forms of DMH. The comparisons between the experimental FTIR, FT-Raman, UV-Visible and 1H and 13C NMR spectra with the corresponding theoretical ones showed a reasonable concordance.

  7. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution.

    Science.gov (United States)

    Raschke, Markus B; Molina, Leopoldo; Elsaesser, Thomas; Kim, Dong Ha; Knoll, Wolfgang; Hinrichs, Karsten

    2005-10-14

    Nanodomains formed by microphase separation in thin films of the diblock copolymers poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) and poly(styrene-b-ethyleneoxide) (PS-b-PEO) were imaged by means of infrared scattering-type near-field microscopy. When probing at 3.39 mum (2950 cm(-1)), contrast is obtained due to spectral differences between the C--H stretching vibrational resonances of the respective polymer constituents. An all-optical spatial resolution better than 10 nm was achieved, which corresponds to a sensitivity of just several thousand C--H groups facilitated by the local-field enhancement at the sharp metallic probe tips. The results demonstrate that infrared spectroscopy with access to intramolecular dimensions is within reach.

  8. Raman scattering and lattice stability of NaAlH{sub 4} and Na{sub 3}AlH{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan)], E-mail: hiroshi@numse.nagoya-u.ac.jp; Morisaku, N.; Li, Y.; Komiya, K.; Rong, R.; Shinzato, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Sekine, R. [Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan); Morinaga, M. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan)

    2007-10-31

    In situ Raman spectroscopy measurements have been performed during the decomposition of NaAlH{sub 4} in order to investigate the transition from the four-coordinated complex anion, [AlH{sub 4}]{sup -}, in NaAlH{sub 4} to the six-coordinated complex anion, [AlH{sub 6}]{sup 3-}, in Na{sub 3}AlH{sub 6}. Also, the local geometry and the Al-H vibrations are analyzed theoretically by the first-principle calculations of the electronic structures. It is found that the Raman sift at 1765 cm{sup -1} for the Al-H stretching vibration in NaAlH{sub 4} shifts towards the higher frequency side, 1801 cm{sup -1} upon melting. This Raman spectrum for the liquid phase recovers to the original position when it is cooled down to room temperature before Na{sub 3}AlH{sub 6} start to appear. The Raman peak around 1800 cm{sup -1} is still observed after the decomposition of NaAlH{sub 4} occurs to precipitate Na{sub 3}AlH{sub 6}. However, this peak does not recover to its original position by cooling, but still persists in the sample cooled down to room temperature. From these results, the intermediate transition state during the decomposition of NaAlH{sub 4} into Na{sub 3}AlH{sub 6} is discussed. In addition, it is shown from a series of calculation that the highest frequency of the Al-H vibration correlates with the shortest Al-H bond length in the MAlH{sub 4}-type and its derivative complex hydrides.

  9. Effects of nuclear vibration on the ionization process of H2+ in ultrashort intense laser field

    International Nuclear Information System (INIS)

    Phan, Ngoc-Loan; Nguyen, Ngoc-Ty; Truong, Tran-Chau

    2015-01-01

    By numerically solving the time-dependent Schrödinger equation, we calculate the ionization probability of a vibrating H 2 + exposed to ultrashort intense laser fields. The results show that the ionization probability increases by time and gets a saturation value. We also find that with some first vibration levels, the ionization probability from a higher vibration level is larger than that from a lower one. However, with higher vibration levels, at a certain level the ionization probability will take maximum and decrease with next levels. (paper)

  10. Post-activation depression of soleus stretch reflexes in healthy and spastic humans

    DEFF Research Database (Denmark)

    Grey, Michael James; Klinge, Klaus; Crone, Clarissa

    2007-01-01

    Reduced depression of transmitter release from Ia afferents following previous activation (post-activation depression) has been suggested to be involved in the pathophysiology of spasticity. However, the effect of this mechanism on the myotatic reflex and its possible contribution to increased...... reflex excitability in spastic participants has not been tested. To investigate these effects, we examined post-activation depression in Soleus H-reflex responses and in mechanically evoked Soleus stretch reflex responses. Stretch reflex responses were evoked with consecutive dorsiflexion perturbations...... of the soleus stretch reflex and H-reflex decreased as the interval between the stimulus/perturbation was decreased. Similarly, the stretch-evoked torque decreased. In the spastic participants, the post-activation depression of both reflexes and the stretch-evoked torque was significantly smaller than...

  11. Overtone vibrational spectroscopy in H2-H2O complexes: a combined high level theoretical ab initio, dynamical and experimental study.

    Science.gov (United States)

    Ziemkiewicz, Michael P; Pluetzer, Christian; Nesbitt, David J; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad

    2012-08-28

    First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.

  12. Stretch Sensor Device

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...

  13. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    Science.gov (United States)

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  14. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce, Nd

    International Nuclear Information System (INIS)

    De Almeida, Lucie; Grandjean, Stephane; Abraham, Francis; Rivenet, Murielle; Patisson, Fabrice

    2014-01-01

    New hydrazinium lanthanide oxalates N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce (Ce-H_yO_x) and Nd (Nd- H_yO_x), were synthesized by hydrothermal reaction at 150 C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2_1/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Angstroms, β = 116.638(4) degrees, V = 2021.4(7) Angstroems"3, Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO_9 and NdO_8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm"-"1 confirms the coordination of N_2H_5"+ to the metal. These polyhedra are connected through μ"2 and μ"3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-H_yO_x) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO_2 and Ce_0_._5Nd_0_._5O_1_._7_5 are formed at low temperature from Ce-H_yO_x and CeNd-H_yO_x, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxy-mono-cyanamides Ln_2O_2CN_2 are formed. (authors)

  15. Effect of pre-rigor stretch and various constant temperatures on the rate of post-mortem pH fall, rigor mortis and some quality traits of excised porcine biceps femoris muscle strips.

    Science.gov (United States)

    Vada-Kovács, M

    1996-01-01

    Porcine biceps femoris strips of 10 cm original length were stretched by 50% and fixed within 1 hr post mortem then subjected to temperatures of 4 °, 15 ° or 36 °C until they attained their ultimate pH. Unrestrained control muscle strips, which were left to shorten freely, were similarly treated. Post-mortem metabolism (pH, R-value) and shortening were recorded; thereafter ultimate meat quality traits (pH, lightness, extraction and swelling of myofibrils) were determined. The rate of pH fall at 36 °C, as well as ATP breakdown at 36 and 4 °C, were significantly reduced by pre-rigor stretch. The relationship between R-value and pH indicated cold shortening at 4 °C. Myofibrils isolated from pre-rigor stretched muscle strips kept at 36 °C showed the most severe reduction of hydration capacity, while paleness remained below extreme values. However, pre-rigor stretched myofibrils - when stored at 4 °C - proved to be superior to shortened ones in their extractability and swelling.

  16. Synthesis and Characterization of Diaquo Bis( N – Histidyl - 2, 4 ...

    African Journals Online (AJOL)

    1 cm2 mol-1. The infra-red spectral data showed bands in the range 1612 – 1634 and 1590 - 1610cm-1, assignable to v(C=N) stretching vibrations of Schiff base and its copper (II) complex, respectively. The broad bands in the range 3345 ...

  17. Infrared photodissociation spectroscopy of M(N2)n(+) (M = Y, La, Ce; n = 7-8) in the gas phase.

    Science.gov (United States)

    Xie, Hua; Shi, Lei; Xing, Xiaopeng; Tang, Zichao

    2016-02-14

    M(N2)n(+) (M = Y, La, Ce; n = 7-8) complexes have been studied by infrared photodissociation (IRPD) spectroscopy and density functional theory (DFT) calculations. The experimental results indicate that the N-N stretching vibrational frequencies are red-shifted from the gas-phase N2 value. The π back-donation is found to be a main contributor in these systems. IRPD spectra and DFT calculations reveal the coexistence of two isomers in the seven-coordinate M(N2)7(+) and eight-coordinate M(N2)8(+) complexes, respectively. The present studies on these metal-nitrogen complexes shed light on the interactions and coordinations toward N2 with transition and lanthanide metals.

  18. Mechanism of laser and rf plasma in vibrational nonequilibrium CO-N2 gas mixture

    International Nuclear Information System (INIS)

    Lou Guofeng; Adamovich, Igor V.

    2009-01-01

    This paper investigates the mechanism of plasma created by focused CO laser and rf electric field. The plasma is created in a CO/N 2 environment, at a total pressure of 600 torr. Ionization of the gases occurs by an associative ionization mechanism, in collisions of two highly vibrationally excited molecules. These highly vibrationally excited states are populated by resonance absorption of the CO radiation followed by anharmonic vibration-vibration (V-V) pumping. Moreover N 2 also becomes vibrationally excited due to collisions with vibrationally excited CO. The coupled rf reduced electric field E/N is sufficiently low to prevent electron impact ionization that may create plasma individually, so when a subbreakdown rf field is applied to the plasma, collisions between the free electrons heated by the field and the diatomic species create additional vibrational excitation both in the region occupied by the CO laser beam and outside of the laser beam region. The numerical results show plasma created in both regions (in and out of the CO laser beam region) with the associative ionization mechanism. This suggests a method for creating a stable nonequilibrium plasma. The calculation result is verified by comparison the synthetic spectrum to a measured one.

  19. SEM, EDS and vibrational spectroscopic study of dawsonite NaAl(CO3)(OH)2

    Science.gov (United States)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Sampaio, Ney Pinheiro; de Oliveira, Fernando A. N.

    2015-02-01

    In this work we have studied the mineral dawsonite by using a combination of scanning electron microscopy with EDS and vibrational spectroscopy. Single crystals show an acicular habitus forming aggregates with a rosette shape. The chemical analysis shows a phase composed of C, Al, and Na. Two distinct Raman bands at 1091 and 1068 cm-1 are assigned to the CO32- ν1 symmetric stretching mode. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred upon 950 cm-1 in both the Raman and infrared spectra show that the OH units in the dawsonite structure are non-equivalent. Raman bands observed at 3250, 3283 and 3295 cm-1 are assigned to OH stretching vibrations. The position of these bands indicates strong hydrogen bonding of the OH units in the dawsonite structure. The formation of the mineral dawsonite has the potential to offer a mechanism for the geosequestration of greenhouse gases.

  20. Nanostructures based in boro nitride thin films deposited by PLD onto Si/Si3N4/DLC substrate

    International Nuclear Information System (INIS)

    Roman, W S; Riascos, H; Caicedo, J C; Ospina, R; Tirado-MejIa, L

    2009-01-01

    Diamond-like carbon and boron nitride were deposited like nanostructered bilayer on Si/Si 3 N 4 substrate, both with (100) crystallographic orientation, these films were deposited through pulsed laser technique (Nd: YAG: 8 Jcm -2 , 9ns). Graphite (99.99%) and boron nitride (99.99%) targets used to growth the films in argon atmosphere. The thicknesses of bilayer were determined with a perfilometer, active vibration modes were analyzed using infrared spectroscopy (FTIR), finding bands associated around 1400 cm -1 for B - N bonding and bands around 1700 cm -1 associated with C=C stretching vibrations of non-conjugated alkenes and azometinic groups, respectively. The crystallites of thin films were analyzed using X-ray diffraction (XRD) and determinated the h-BN (0002), α-Si 3 N 4 (101) phases. The aim of this study is to relate the dependence on physical and chemical characteristics of the system Si/Si 3 N 4 /DLC/BN with gas pressure adjusted at the 1.33, 2.67 and 5.33 Pa values.

  1. Critical test of vibrational dephasing theories in solids using spontaneous Raman scattering in isotopically mixed crystals

    International Nuclear Information System (INIS)

    Marks, S.; Cornelius, P.A.; Harris, C.B.

    1980-01-01

    A series of experiments have been conducted in order to evaluate the relative importance of several recent theories of vibrational dephasing in solids. The theories are discussed briefly, and are used to interpret the temperature dependence of the C--H and C--D stretch bands in the spontaneous Raman spectra of h 14 - and d 14 -1,2,4,5-tetramethyl benzene (durene). The infrared spectra of these same molecules are also reported in the region of the combination bands involving C--H (or C--D) stretches and low-frequency modes. The results support the applicability of the model of Harris et al., [C. B. Harris, R. M. Shelby and P. A. Cornelius, Phys. Rev. Lett. 38, 1415 (1977); Chem Phys. Lett. 57, 8 (1978); R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem. Phys. 70, 34 (1979)], based on energy exchange in anharmonically coupled low-frequency modes. This theory is then used, in connection with Raman spectra obtained in isotopically mixed samples of durene, to elucidate the vibrational dynamics underlying the dephasing. It is found that the results are consistent with the hypothesis that some low-frequency modes in this molecule are significantly delocalized or ''excitonic'' in character, and that this delocalization may be studied by means of Raman spectroscopy on the low-frequency modes themselves, as well as by exchange analysis of the coupled high-frequency modes. These conclusions represent a generalization and extension of the previously published exchange model [R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem Phys. 70, 34 (1979)

  2. Stretching

    Science.gov (United States)

    ... after a workout. Stretching still can be a beneficial activity after you have sufficiently warmed up. The ... light aerobic activity and stretching. If you're running at a quick pace, you can slow down ...

  3. The workings of a molecular thermometer: the vibrational excitation of carbon tetrachloride by a solvent.

    Science.gov (United States)

    Graham, Polly B; Matus, Kira J M; Stratt, Richard M

    2004-09-15

    An intriguing energy-transfer experiment was recently carried out in methanol/carbon tetrachloride solutions. It turned out to be possible to watch vibrational energy accumulating in three of carbon tetrachloride's modes following initial excitation of O-H and C-H stretches in methanol, in effect making those CCl(4) modes "molecular thermometers" reporting on methanol's relaxation. In this paper, we use the example of a CCl(4) molecule dissolved in liquid argon to examine, on a microscopic level, just how this kind of thermal activation occurs in liquid solutions. The fact that even the lowest CCl(4) mode has a relatively high frequency compared to the intermolecular vibrational band of the solvent means that the only solute-solvent dynamics relevant to the vibrational energy transfer will be extraordinarily local, so much so that it is only the force between the instantaneously most prominent Cl and solvent atoms that will significantly contribute to the vibrational friction. We use this observation, within the context of a classical instantaneous-pair Landau-Teller calculation, to show that energy flows into CCl(4) primarily via one component of the nominally degenerate, lowest frequency, E mode and does so fast enough to make CCl(4) an excellent choice for monitoring methanol relaxation. Remarkably, within this theory, the different symmetries and appearances of the different CCl(4) modes have little bearing on how well they take up energy from their surroundings--it is only how high their vibrational frequencies are relative to the solvent intermolecular vibrational band edge that substantially favors one mode over another.

  4. Probing electronic and vibrational properties at the electrochemical interface using SFG spectroscopy: Methanol electro-oxidation on Pt(1 1 0)

    Science.gov (United States)

    Vidal, F.; Busson, B.; Tadjeddine, A.

    2005-02-01

    We report the study of methanol electro-oxidation on Pt(1 1 0) using infrared-visible sum-frequency generation (SFG) vibrational spectroscopy. The use of this technique enables to probe the vibrational and electronic properties of the interface simultaneously in situ. We have investigated the vibrational properties of the interface in the CO ads internal stretch spectral region (1700-2150 cm -1) over a wide range of potentials. The analysis of the evolution of the C-O stretch line shape, which is related to the interference between the vibrational and electronic parts of the non-linear response, with the potential allows us to show that the onset of bulk methanol oxidation corresponds to the transition from a negatively to a positively charged surface.

  5. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    Science.gov (United States)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  6. Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: Energetics, occupancy, and vibrationally averaged cluster structures

    Science.gov (United States)

    Sebastianelli, Francesco; Xu, Minzhong; Bačić, Zlatko

    2008-12-01

    We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H2 (p-H2) and ortho-D2 (o-D2) molecules inside the large hexakaidecahedral (51264) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H2)n and (o-D2)n clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H2)4. At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H2 or D2 molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D2 molecules, their mean distance from the cage center, the D2-D2 separation, and the specific orientation and localization of the tetrahedral (D2)4 cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D2 occupancy.

  7. Competitive roles of reagent vibration and translation in the exothermic proton transfer reaction H+2+Ar→HAr++H

    International Nuclear Information System (INIS)

    Bilotta, R.M.; Farrar, J.M.

    1981-01-01

    We present a crossed beam study of the title reaction at fixed collision energies of 1.2 and 2.3 eV with reagent H + 2 average vibrational energies of 0.44 and 0.89 eV; we also present data at fixed total energies with variable proportions of reagent vibrational and translational energy. At fixed collision energy, reagent vibrational excitation is found to have negligible effect on the total cross section for proton transfer. At fixed total energy, a decrease in reagent vibrational excitation with a corresponding increase in reagent translation leads to partial disposal of the incremental translation in product translation: At a total energy of 3.5 eV, 50% of this incremental reagent translation appears as product translation. At a total energy of 4.6 eV, 78% of the incremental translation appears in product translation. The experimental data are discussed in terms of induced attractive and repulsive energy release on an attractive potential surface. The role of noncollinear geometries and compressed reactant configurations is judged to be of substantial importance in assessing product rotational excitation and dissociation

  8. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    Science.gov (United States)

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  9. IR and Raman spectra of LaH(SeO3)2 and FeH(SeO3)2

    International Nuclear Information System (INIS)

    Ratheesh, R.; Suresh, G.; Nayar, V.U.; Morris, R.E.

    1995-01-01

    The infrared and Raman spectra of LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals are recorded and analysed. Bands confirm the coexistence of HSeO 3 - and SeO 3 2- ions in both LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals. The Se-OH stretching vibrations are observed to be at lower wavenumbers in LaH(SeO 3 ) 2 than that in the iron compound in agreement with the short O-O distance in the former. Observed bands indicate that the SeO 3 2- ions are more angularly distorted in FeH(SeO 3 ) 2 crystal. ABC bands, characteristic of strong hydrogen bonded systems are observed in the infrared spectra of both the crystals. (author). 15 refs., 2 figs., 1 tab

  10. Cyclic mechanical stretch enhances BMP9-induced osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Song, Yang; Tang, Yinhong; Song, Jinlin; Lei, Mingxing; Liang, Panpan; Fu, Tiwei; Su, Xudong; Zhou, Pengfei; Yang, Li; Huang, Enyi

    2018-04-01

    The purpose of this study was to investigate whether mechanical stretch can enhance the bone morphogenetic protein 9 (BMP9)-induced osteogenic differentiation in MSCs. Recombinant adenoviruses were used to overexpress the BMP9 in C3H10T1/2 MSCs. Cells were seeded onto six-well BioFlex collagen I-coated plates and subjected to cyclic mechanical stretch [6% elongation at 60 cycles/minute (1 Hz)] in a Flexercell FX-4000 strain unit for up to 12 hours. Immunostaining and confocal microscope were used to detect cytoskeleton organization. Cell cycle progression was checked by flow cytometry. Alkaline phosphatase activity was measured with a Chemiluminescence Assay Kit and was quantified with a histochemical staining assay. Matrix mineralization was examined by Alizarin Red S Staining. Mechanical stretch induces cytoskeleton reorganization and inhibits cell proliferation by preventing cells entry into S phase of the cell cycle. Although mechanical stretch alone does not induce the osteogenic differentiation of C3H10T1/2 MSCs, co-stimulation with mechanical stretch and BMP9 enhances alkaline phosphatase activity. The expression of key lineage-specific regulators (e.g., osteocalcin (OCN), SRY-related HMG-box 9, and runt-related transcription factor 2) is also increased after the co-stimulation, compared to the mechanical stretch stimulation along. Furthermore, mechanical stretch augments the BMP9-mediated bone matrix mineralization of C3H10T1/2 MSCs. Our results suggest that mechanical stretch enhances BMP9-induced osteoblastic lineage specification in C3H10T1/2 MSCs.

  11. Solvent-Mediated Synthesis of M(II-Coordination Polymer Part 1: Crystal Structure of Poly(1,2-di(4-pyridylethylene-k2N,N'-bis(1,4-benzenediacetato-k4O,O′,O′′,O′′'zinc(II], C22H18ZnN2O4

    Directory of Open Access Journals (Sweden)

    Stephen Adie Adalikwu

    2017-08-01

    Full Text Available An interaction of water-methanol solution of sodium1,4-benzenediacetate (bda and 4,4′-bipyridylethelene (bpee with aqueous solution of Zn(NO32·6H2O at room temperature yielded colourless crystals of 1 after three weeks in a sealed glass tube. The compound with composition C22H18ZnN2O4 crystallizes in monoclinic space group P21/c, with the following cell dimensions: a = 10.4566(2, b = 13.3085(2, c = 13.7189(2 Å, β = 101.491(1°. In the structure of 1, two Zn(II neighbours are connected by two bda ligands adopting chelating and bidentate-bridging coordination modes to form a dimeric unit (Zn2O8N4 with the Zn–Zn distance of 4.0432(6 Å. The carboxyl-bridged dimeric units are extended along the [001] direction by bpee co-ligands and further linked by bda ligand to form a three-dimensional network structure. The IR shows the characteristic bands of the carboxylates at 1611/1507 cm−1 and 1424/1373 cm−1, respectively, for asymmetric and symmetric stretching −CO2− vibrations. The separation ∆[νasym(CO2− − νsym(CO2−] values of 187 and 134 cm−1 are indicative of chelating and bidentate bridging coordination modes of the carboxylate to the metal centre.

  12. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates.

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M; Bačić, Zlatko

    2018-04-14

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H 2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H 2 in the v=0 and v=1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H 2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H 2 inside a hydrate domain is assumed to be pairwise additive. The H 2 -H 2 O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H 2 , v=0 or v=1, is derived from the high-quality ab initio full-dimensional (9D) PES of the H 2 -H 2 O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H 2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H 2 change very little with the domain size, unlike the H 2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H 2 O molecules in the first three complete hydration shells around H 2 .

  13. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M.; Bačić, Zlatko

    2018-04-01

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v =0 and v =1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v =0 or v =1 , is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.

  14. Vibrational spectroscopy of shock-compressed fluid N2 and O2

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.; Shaw, M.S.; Johnson, J.D.

    1987-01-01

    Single-pulse multiplex coherent anti-Stokes Raman scattering (CARS) was used to observe the vibrational spectra of liquid N 2 shock-compressed to several pressures and temperatures up to 41 GPa and 5200 K and liquid O 2 shock-compressed to several pressures and temperatures up to 10 GPa and 1000 K. For N 2 , the experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities, and Raman line widths. The question of excited state populations in the shock-compressed state is addressed

  15. N-(4-Nitrobenzoyl)-N'-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies

    Science.gov (United States)

    Arslan, N. Burcu; Kazak, Canan; Aydın, Fatma

    2012-04-01

    The title molecule (C19H17N5O4S·H2O) was synthesized and characterized by IR-NMR spectroscopy, MS and single-crystal X-ray diffraction. The molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method with 6-31G(d) basis set, and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and 1H and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained with respect to the selected torsion angle, which was varied from -180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties of the compound were investigated by theoretical calculations.

  16. Spectroscopic diagnostics of the vibrational population in the ground state of H2 and D2 molecules

    International Nuclear Information System (INIS)

    Fantz, U.; Heger, B.

    1998-01-01

    A diagnostic method has been evaluated for measuring the relative vibrational ground-state population of molecular hydrogen and deuterium. It is based on the analysis of the diagonal Fulcher bands · 3 Π u →a 3 Σ g + ) and the Franck-Condon principle of excitation. The validity of the underlying assumptions was verified by experiments in microwave discharges and the method is recommended for application in divertor plasmas in controlled fusion experiments. By attributing a vibrational temperature T vib to the ground-state electronic level (X 1 Σ g + ) and assuming population via the Franck-Condon principle, the upper Fulcher state vibrational distribution can be derived theoretically with T vib as parameter. Comparison with experimentally derived upper-state population gives the corresponding T vib of the ground state. The Franck-Condon factors for the · 3 Π 1 Σ g + and · 3 Π u →a 3 Σ g + transitions have been calculated for both hydrogen and deuterium from molecular constants using the FCFRKR code. The method has been applied to low pressure H 2 /He and D 2 /He microwave plasmas, showing good agreement of experimentally and theoretically derived upper Fulcher state vibrational distributions. The vibrational temperatures range from 3200 K to 6800 K for H 2 and 2600 K to 4000 K for D 2 · depending on molecular density, pressure and electron temperature, but indicating nearly the same vibrational population for H 2 and D 2 for comparable plasma conditions. (author)

  17. Vibrational spectroscopic study of poldervaartite CaCa[SiO3(OH)(OH)

    Science.gov (United States)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2015-02-01

    We have studied the mineral poldervaartite CaCa[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485 °C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite.

  18. FTIR investigation of the reaction between pyridine and iodine in a polyethylene host. Formation of N-iodopyridinium polyiodide

    DEFF Research Database (Denmark)

    Karlsen, Eva; Spanget-Larsen, Jens

    2009-01-01

    The reaction between pyridine and I2 in a low-density polyethylene (LDPE) host is investigated by FTIR vibrational spectroscopy in the mid- and far-IR regions. The investigation is supported by linear dichroism measurements on stretched LDPE samples, and by the results of quantum chemical density...... functional theoretical (DFT) calculations. Unlike the situation in liquid alkane solutions, pyridine and I2 dissolved in LDPE react to form N-iodopyridinium polyiodide. The ionic reaction is particularly efficient in stretched LDPE, suggesting that the reaction cavities in the stretched polymer catalyze...

  19. synthesis, characterization and antibacterial studies of metal

    African Journals Online (AJOL)

    Preferred Customer

    Metal complexes of sulfadiazine with N-alkyl-N-phenyldithiocarbamate. Bull. Chem. Soc. Ethiop. 2013, 27(1). 81 character of the C−N bond, and this is responsible for the shift in the v(C−N) stretching vibrations. In dithiocarbamate complexes, the v(C−S) symmetrical and asymmetrical stretching vibrations are diagnostics of ...

  20. Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].

    Science.gov (United States)

    2002

    This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…

  1. Vibrational Fingerprints of Low-Lying Pt(n)P(2n) (n = 1-5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces.

    Science.gov (United States)

    Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe

    2015-12-03

    Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.

  2. Nanostructures based in boro nitride thin films deposited by PLD onto Si/Si{sub 3}N{sub 4}/DLC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Roman, W S; Riascos, H [Grupo Plasma, Laser y Aplicaciones, Universidad Tecnologica de Pereira (Colombia); Caicedo, J C [Grupo de PelIculas Delgadas, Universidad del Valle, Cali (Colombia); Ospina, R [Laboratorio de Plasma, Universidad Nacional de Colombia, sede Manizales (Colombia); Tirado-MejIa, L, E-mail: hriascos@utp.edu.c [Laboratorio de Optoelectronica, Universidad del Quindio (Colombia)

    2009-05-01

    Diamond-like carbon and boron nitride were deposited like nanostructered bilayer on Si/Si{sub 3}N{sub 4} substrate, both with (100) crystallographic orientation, these films were deposited through pulsed laser technique (Nd: YAG: 8 Jcm{sup -2}, 9ns). Graphite (99.99%) and boron nitride (99.99%) targets used to growth the films in argon atmosphere. The thicknesses of bilayer were determined with a perfilometer, active vibration modes were analyzed using infrared spectroscopy (FTIR), finding bands associated around 1400 cm{sup -1} for B - N bonding and bands around 1700 cm{sup -1} associated with C=C stretching vibrations of non-conjugated alkenes and azometinic groups, respectively. The crystallites of thin films were analyzed using X-ray diffraction (XRD) and determinated the h-BN (0002), alpha-Si{sub 3}N{sub 4} (101) phases. The aim of this study is to relate the dependence on physical and chemical characteristics of the system Si/Si{sub 3}N{sub 4}/DLC/BN with gas pressure adjusted at the 1.33, 2.67 and 5.33 Pa values.

  3. Vibrational relaxation dynamics of SD molecules in As2S3: Observation of an anomalous isotope effect

    International Nuclear Information System (INIS)

    Engholm, J.R.; Happek, U.; Rella, C.W.

    1995-01-01

    It is generally assumed that the vibrational relaxation of molecular impurities in crystals and glasses mainly depends on the order of the decay process, with lower order processes leading to more rapid relaxation (a behavior that is known under the term open-quotes gap-lawclose quotes). Here we present measurements that contradict this assumption. Using high intensity psec pulses of the Stanford FEL we measured the relaxation rate of the SD vibrational stretch mode (at a frequency of 1800 cm) by applying a pump-probe technique. We find relaxation rates on the order of 2x10 9 sec -1 , which are a factor of 2 lower than those found for the isotope molecule SH (at a frequency of about 2500 cm - 1 ) in the same host 1 . We recall that the relaxation of the SD vibrational stretch mode is controlled by a lower order process as compared to the SH molecule, which is due to the smaller number of host vibrational quanta to match the energy of the stretch mode; a fact we have confirmed experimentally by temperature dependent relaxation measurements. Thus our remits are in marked contrast to the so-called open-quotes Gap-Lawclose quotes and emphasize the importance of the molecule - host coupling in the relaxation dynamics

  4. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    Science.gov (United States)

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  5. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    Science.gov (United States)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  6. Selective vibrational excitation of the ethylene--fluorine reaction in a nitrogen matrix. II

    International Nuclear Information System (INIS)

    Frei, H.

    1983-01-01

    The product branching between 1,2-difluoroethane and vinyl fluoride (plus HF) of the selective vibrationally stimulated reaction of molecular fluorine with C 2 H 4 has been studied in a nitrogen matrix at 12 K and found to be the same for five different vibrational transitions of C 2 H 4 between 1896 and 4209 cm -1 . The HF/DF branching ratio of the reaction of F 2 with CH 2 CD 2 , trans-CHDCHD, and cis-CHDCHD was determined to be 1.1, independent of precursor C 2 H 2 D 2 isomer and particular mode which excited the reaction. These results, as well as the analysis of the mixtures of partially deuterated vinyl fluoride molecules produced by each C 2 H 2 D 2 isomer indicate that the product branching occurs by αβ elimination of HF(DF) from a vibrationally excited, electronic ground state 1,2-difluoroethane intermediate. Selective vibrational excitation of fluorine reactions in isotopically mixed matrices t-CHDCHD/C 2 H 4 /F 2 /N 2 and CH 2 CD 2 /C 2 H 4 /F 2 /N 2 , and in matrices C 2 H 2 /C 2 H 4 /F 2 /N 2 revealed a high degree of isotopic and molecular selectivity. The extent to which intermolecular energy transfer occurred is qualitatively explained in terms of dipole coupled vibrational energy transfer. A study of the loss of absorbance of the C 2 H 4 x F 2 pairs in case of ν 9 as a function of both the laser irradiation frequency within the absorption profile, and the ethylene concentration showed that the C 2 H 4 x F 2 absorption is inhomogeneously broadened. Substantial depletion of reactive pairs which did not absorb laser light is interpreted in terms of Forster transfer

  7. Effects of Static Stretching and Playing Soccer on Knee Laxity.

    Science.gov (United States)

    Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen

    2015-11-01

    This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.

  8. Simple Analytic Collisional Rates for non-LTE Vibrational Populations in Astrophysical Environments: the Cases of Circumstellar SiO Masers and Shocked H2

    Science.gov (United States)

    Bieniek, Ronald

    2008-05-01

    Rates for collisionally induced transitions between molecular vibrational levels are important in modeling a variety of non-LTE processes in astrophysical environments. Two examples are SiO masering in circumstellar envelopes in certain late-type stars [1] and the vibrational populations of molecular hydrogen in shocked interstellar medium [cf 2]. A simple exponential-potential model of molecular collisions leads to a two-parameter analytic expression for state-to-state and thermally averaged rates for collisionally induced vibrational-translational (VT) transitions in diatomic molecules [3,4]. The thermally averaged rates predicted by this formula have been shown to be in excellent numerical agreement with absolute experimental and quantum mechanical rates over large temperature ranges and initial vibrational excitation levels in a variety of species, e.g., OH, O2, N2 [3] and even for the rate of H2(v=1)+H2, which changes by five orders of magnitude in the temperature range 50-2000 K [4]. Analogous analytic rates will be reported for vibrational transitions in SiO due to collisions with H2 and compared to the numerical fit of quantum-mechanical rates calculated by Bieniek and Green [5]. [1] Palov, A.P., Gray, M.D., Field, D., & Balint-Kurti, G.G. 2006, ApJ, 639, 204. [2] Flower, D. 2007, Molecular Collisions in the Interstellar Medium (Cambridge: Cambridge Univ. Press) [3] Bieniek, R.J. & Lipson, S.J. 1996, Chem. Phys. Lett. 263, 276. [4] Bieniek, R.J. 2006, Proc. NASA LAW (Lab. Astrophys. Workshop) 2006, 299; http://www.physics.unlv.edu/labastro/nasalaw2006proceedings.pdf. [5] Bieniek, R.J., & Green, S. 1983, ApJ, 265, L29 and 1983, ApJ, 270, L101.

  9. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    Science.gov (United States)

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P hamstring muscle strength at both the 60°/s and 180°/s test speeds (P 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  10. Excluded Volume Effects in Gene Stretching

    OpenAIRE

    Lam, Pui-Man

    2002-01-01

    We investigate the effects excluded volume on the stretching of a single DNA in solution. We find that for small force F, the extension h is not linear in F but proportion to F^{\\chi}, with \\chi=(1-\

  11. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS.

  12. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih

    International Nuclear Information System (INIS)

    Shi, L.; Skinner, J. L.

    2015-01-01

    OH-stretch inelastic incoherent neutron scattering (IINS) has been measured to determine the vibrational density of states (VDOS) in the OH-stretch region for liquid water, supercooled water, and ice Ih, providing complementary information to IR and Raman spectroscopies about hydrogen bonding in these phases. In this work, we extend the combined electronic-structure/molecular-dynamics (ES/MD) method, originally developed by Skinner and co-workers to simulate OH-stretch IR and Raman spectra, to the calculation of IINS spectra with small k values. The agreement between theory and experiment in the limit k → 0 is reasonable, further validating the reliability of the ES/MD method in simulating OH-stretch spectroscopy in condensed phases. The connections and differences between IINS and IR spectra are analyzed to illustrate the advantages of IINS over IR in estimating the OH-stretch VDOS

  13. Vibrational analysis of HOCl up to 98% of the dissociation energy with a Fermi resonance Hamiltonian

    International Nuclear Information System (INIS)

    Jost, R.; Joyeux, M.; Skokov, S.; Bowman, J.

    1999-01-01

    We have analyzed the vibrational energies and wave functions of HOCl obtained from previous ab initio calculations [J. Chem. Phys. 109, 2662 (1998); 109, 10273 (1998)]. Up to approximately 13 and h;000 cm -1 , the normal modes are nearly decoupled, so that the analysis is straightforward with a Dunham model. In contrast, above 13 and h;000 cm -1 the Dunham model is no longer valid for the levels with no quanta in the OH stretch (v 1 =0). In addition to v 1 , these levels can only be assigned a so-called polyad quantum number P=2v 2 +v 3 , where 2 and 3 denote, respectively, the bending and OCl stretching normal modes. In contrast, the levels with v 1 ≥2 remain assignable with three v i quantum numbers up to the dissociation (D 0 =19 and h;290 and h;cm -1 ). The interaction between the bending and the OCl stretch (ω 2 congruent 2ω 3 ) is well described with a simple, fitted Fermi resonance Hamiltonian. The energies and wave functions of this model Hamiltonian are compared with those obtained from ab initio calculations, which in turn enables the assignment of many additional ab initio vibrational levels. Globally, among the 809 bound levels calculated below dissociation, 790 have been assigned, the lowest unassigned level, No. 736, being located at 18 and h;885 cm -1 above the (0,0,0) ground level, that is, at about 98% of D 0 . In addition, 84 resonances located above D 0 have also been assigned. Our best Fermi resonance Hamiltonian has 29 parameters fitted with 725 ab initio levels, the rms deviation being of 5.3 cm -1 . This set of 725 fitted levels includes the full set of levels up to No. 702 at 18 and h;650 cm -1 . The ab initio levels, which are assigned but not included in the fit, are reasonably predicted by the model Hamiltonian, but with a typical error of the order of 20 cm -1 . The classical analysis of the periodic orbits of this Hamiltonian shows that two bifurcations occur at 13 and h;135 and 14 and h;059 cm -1 for levels with v 1 =0. Above each

  14. Water network-mediated, electron-induced proton transfer in [C{sub 5}H{sub 5}N ⋅ (H{sub 2}O){sub n}]{sup −} clusters

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Andrew F.; Wolke, Conrad T.; Johnson, Mark A., E-mail: jordan@pitt.edu, E-mail: nhammer@olemiss.edu, E-mail: mark.johnson@yale.edu [Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520 (United States); Weddle, Gary H. [Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520 (United States); Department of Chemistry, Fairfield University, 1073 North Benson Road, Fairfield, Connecticut 06824 (United States); Archer, Kaye A.; Jordan, Kenneth D., E-mail: jordan@pitt.edu, E-mail: nhammer@olemiss.edu, E-mail: mark.johnson@yale.edu [Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260 (United States); Kelly, John T.; Tschumper, Gregory S.; Hammer, Nathan I., E-mail: jordan@pitt.edu, E-mail: nhammer@olemiss.edu, E-mail: mark.johnson@yale.edu [Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677 (United States)

    2015-10-14

    The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ⋅ (H{sub 2}O){sub n=3−5}]{sup −} clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxide ions with the neutral pyridinium radical, PyH{sup (0)}, occupying one of the primary solvation sites of the OH{sup −}. The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the “solvent coordinate” at the heart of a prototypical proton-coupled electron transfer reaction.

  15. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.

    Science.gov (United States)

    Pathak, A K; Mukherjee, T; Maity, D K

    2007-07-28

    We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  16. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters

    Science.gov (United States)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2007-07-01

    We report vertical detachment energy (VDE) and IR spectra of Br2•-•(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2•-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150K. A linear relationship is obtained for VDE versus (n+3)-1/3 and bulk VDE of Br2•- aqueous solution is calculated as 10.01eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by ˜0.5eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by ˜6.4eV. Calculated IR spectra show that the formation of Br2•--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2•-•(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  17. Calculation of vibrational frequencies through a variational reduced-coupling approach.

    Science.gov (United States)

    Scribano, Yohann; Benoit, David M

    2007-10-28

    In this study, we present a new method to perform accurate and efficient vibrational configuration interaction computations for large molecular systems. We use the vibrational self-consistent field (VSCF) method to compute an initial description of the vibrational wave function of the system, combined with the single-to-all approach to compute a sparse potential energy surface at the chosen ab initio level of theory. A Davidson scheme is then used to diagonalize the Hamiltonian matrix built on the VSCF virtual basis. Our method is applied to the computation of the OH-stretch frequency of formic acid and benzoic acid to demonstrate the efficiency and accuracy of this new technique.

  18. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  19. Direct dynamics trajectory study of the reaction of formaldehyde cation with D2: vibrational and zero-point energy effects on quasiclassical trajectories.

    Science.gov (United States)

    Liu, Jianbo; Song, Kihyung; Hase, William L; Anderson, Scott L

    2005-12-22

    Quasiclassical, direct dynamics trajectories have been used to study the reaction of formaldehyde cation with molecular hydrogen, simulating the conditions in an experimental study of H2CO+ vibrational effects on this reaction. Effects of five different H2CO+ modes were probed, and we also examined different approaches to treating zero-point energy in quasiclassical trajectories. The calculated absolute cross-sections are in excellent agreement with experiments, and the results provide insight into the reaction mechanism, product scattering behavior, and energy disposal, and how they vary with impact parameter and reactant state. The reaction is sharply orientation-dependent, even at high collision energies, and both trajectories and experiment find that H2CO+ vibration inhibits reaction. On the other hand, the trajectories do not reproduce the anomalously strong effect of nu2(+) (the CO stretch). The origin of the discrepancy and approaches for minimizing such problems in quasiclassical trajectories are discussed.

  20. Acute effect of different stretching methods on isometric muscle strength

    Directory of Open Access Journals (Sweden)

    Gabriel Vasconcellos de Lima Costa e Silva

    2014-03-01

    This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.

  1. Infrared and Raman spectroscopic characterizations on new Fe sulphoarsenate hilarionite (Fe2(III)(SO4)(AsO4)(OH)·6H2O): Implications for arsenic mineralogy in supergene environment of mine area

    Science.gov (United States)

    Liu, Jing; He, LiLe; Dong, Faqin; Frost, Ray L.

    2017-01-01

    Hilarionite (Fe2 (SO4)(AsO4)(OH)·6H2O) is a new Fe sulphoarsenates mineral, which recently is found in the famous Lavrion ore district, Atliki Prefecture, Greece. The spectroscopic study of hilarionite enriches the data of arsenic mineralogy in supergene environment of a mine area. The infrared and Raman means are used to characterize the molecular structure of this mineral. The IR bands at 875 and 905 cm- 1 are assigned to the antisymmetric stretching vibrations of AsO43 -. The IR bands at 1021, 1086 and 1136 cm- 1 correspond to the possible antisymmetric and symmetric stretching vibrations of SO42 -. The Raman bands at 807, 843 and 875 cm- 1 clearly show that arsenate components in the mineral structure, which are assigned to the symmetric stretching vibrations (ν1) of AsO43 - (807 and 843 cm- 1) and the antisymmetric vibration (ν3) (875 cm- 1). IR bands provide more sulfate information than Raman, which can be used as the basis to distinguish hilarionite from kaňkite. The powder XRD data shows that hilarionite has obvious differences with the mineral structure of kaňkite. The thermoanalysis and SEM-EDX results show that hilarionite has more sulfate than arsenate.

  2. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    Science.gov (United States)

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  3. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d0 and Si-d3.

    Science.gov (United States)

    Durig, James R; Pan, Chunhua; Guirgis, Gamil A

    2003-03-15

    The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2

  4. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d 0 and Si-d 3

    Science.gov (United States)

    Durig, James R.; Pan, Chunhua; Guirgis, Gamil A.

    2003-03-01

    The infrared (3100-40 cm -1) and Raman (3100-20 cm -1) spectra of gaseous and solid n-propylsilane, CH 3CH 2CH 2SiH 3 and the Si-d 3 isotopomer, CH 3CH 2CH 2SiD 3, have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220±22 cm -1 (2.63±0.26 kJ mol -1) with the anti conformer the more stable form. A similar value of 234±23 cm -1 (2.80±0.28 kJ mol -1) was obtained for Δ H for the Si-d 3 isotopomer. At ambient temperature it is estimated that there is 30±2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm -1 for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d 0 and Si-d 3 molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d,p) and 6-311+G(2d,2p) basis sets. From the isolated

  5. Spectroscopic and Potentiometric Studies of N-(2- Hydroxybenzyl)-L ...

    African Journals Online (AJOL)

    The molar conductance of the cobalt (II) Schiff base complex compound determined is 5.2 ohm cm2 mol-1. The infra-red spectra of the Schiff base showed band in the range 1480 -1520cm-1, assignable to v(C=N) stretching vibrations, the same band is observable in the cobalt (II) Schiff base complex. The broad band in the ...

  6. Direct access to polyisocyanide screw sense using vibrational circular dichroism

    NARCIS (Netherlands)

    Schwartz, E.; Domingos, S.R.; Vdovin, A.; Koepf, M.; Buma, W.J.; Cornelissen, J.J.L.M.; Rowan, A.E.; Nolte, R.J.M.; Woutersen, S.

    2010-01-01

    We show that the screw sense of polyisocyanide helices can be determined in a simple manner from the vibrational circular dichroism (VCD) of their CN-stretching mode. The relation between VCD and molecular structure is obtained using the coupled-oscillator approximation. It is shown that since the

  7. Franck-Condon fingerprinting of vibration-tunneling spectra.

    Science.gov (United States)

    Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin

    2013-08-15

    We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.

  8. Hydrogen bonding in (substituted benzene)·(water)n clusters with n≤4

    International Nuclear Information System (INIS)

    Barth, H.-D.; Buchhold, K.; Djafari, S.; Reimann, B.; Lommatzsch, U.; Brutschy, B.

    1998-01-01

    Infrared ion-depletion spectroscopy, a double resonance method combining vibrational predissociation with resonant two-photon ionization (R2PI) spectroscopy, has been applied to study mixed clusters of the type (substituted benzene)·(H 2 O) n with n≤4. The UV chromophores were p-difluorobenzene, fluorobenzene, benzene, toluene, p-xylene and anisole. From the IR depletion spectra in the region of the OH stretching vibrations it could be shown that the water molecules are attached as subclusters to the chromophores. Size and configuration of the subclusters could be deduced from the IR depletion spectra. In the anisole·(H 2 O) 1 a nd 2 complexes the water clusters form an ordinary hydrogen bond to the oxygen atom of the methoxy group. In all other mixed complexes a π-hydrogen bond is formed between one of the free OH groups of a water subcluster and the π-system of the chromophore. According to the strength of this interaction the frequency of the respective absorption band exhibits a characteristic red-shift which could be related to the total atomic charges in the aromatic ring. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Studies on the substrate mediated vibrational excitation of CO/Si(100) by means of SFG spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xu; Lass, Kristian; Balgar, Thorsten; Hasselbrink, Eckart [Universitaet Duisburg-Essen, Fachbereich Chemie, 45117 Essen (Germany)

    2009-07-01

    Vibrational excitations of adsorbates play an important role in chemical reaction dynamics. In the past decade CO on solid surfaces was chosen as adequate model system for studying vibrational relaxation dynamics. Our work is focused on the energy dissipation of vibrationally excited CO adsorbed on a silicon surface by means of IR/Vis sum frequency generation (SFG) spectroscopy. Here we present studies on substrate mediated excitation of vibrational modes of CO on Si(100) induced by UV radiation. We suppose the observation of highly excited internal stretch vibrations of CO caused by hot electrons generated within the silicon substrate.

  10. Csbnd H⋯Ni and Csbnd H⋯π(chelate) interactions in nickel(II) complexes involving functionalized dithiocarbamates and triphenylphosphine

    Science.gov (United States)

    Sathiyaraj, E.; Thirumaran, S.; Selvanayagam, S.; Sridhar, B.; Ciattini, Samuele

    2018-05-01

    New bis(N-benzyl-N-substituted benzyldithiocarbamato-S,S‧)nickel(II) (1-3) and (N-benzyl-N-substituted benzyldithiocarbamato-S,S‧)(isothiocyanato-N)- (triphenylphosphane)nickel(II) (4-6) [where substituted benzyl = 2-HOsbnd C6H4sbnd CH2sbnd (1,4), 3-HOsbnd C6H4sbnd CH2sbnd (2,5), 4-Fsbnd C6H4sbnd CH2sbnd (3,6)] were synthesized and characterized using IR, electronic, and NMR (1H and 13C) spectra. X-ray structural analysis of homoleptic complex (1) and heteroleptic complexes (5 and 6) confirmed the presence of four coordinated nickel in a distorted square planar arrangement with NiS4 and NiS2PN chromophores, respectively. The νC-S stretching vibrations are observed around 990 cm-1 without any splitting supporting the bidentate coordination of the dithiocarbamate ligand. Electronic spectral studies of all the complexes (1-6) indicate that the geometry of the nickel atom is probably square planar. NMR spectra of all homoleptic and heteroleptic complexes (1-6) reveal a weak signal associated with the backbone carbon (N13CS2) in the region 204.0-210.0 ppm with a weak intensity characteristic of the quaternary carbon signals. The greater trans influence of triphenylphosphine in complexes 5 and 6 is supported by the long Nisbnd S distance compared to other Nisbnd S distance which is opposite to the NCS- ligand. In the structure of complex 5, C-H⋯π(chelate) interactions results in polymeric chain. Both structures show intramolecular Ni⋯H interactions but that on 6 is the strongest. C-H⋯π interactions are also found in 1, 5 and 6. Hirshfeld surface analysis and the associated 2D fingerprint plots of 1, 5 and 6 have been studied to evaluate intermolecular interactions. The molecular geometries of complexes 1, 5 and 6 have been optimized by abinitio HF method using LANL2DZ program.

  11. [Study on crystal growth and vibrational spectra of Yb(x) : KY(1-x) (WO4)2].

    Science.gov (United States)

    Liu, Jing-He; Zhang, Ying; Zhang, Li-Jie; Zeng, Fan-Ming; Wang, Cheng-Wei; Zhang, Xue-Jian

    2008-02-01

    Yb(x) : KY(1-x)W (x = 0.05)and KYbW crystals were grown by TSSG method. Both of the structure and spectral properties were compared. The condition for the crystal growth is: the rotation rate 10-15 r x min(-1), the pulling speed 1-2 d(-1), the growing period 10-15 d, cooling growing speed 0.05-0.1 degrees C x h(-1), and the cooling speed 20 degrees C x h(-1). X-ray powder diffraction analysis was performed for the crystal powder. They belong to beta-KYW structure with low thermal phase. The cell parameters of the two crystals were calculated, and they are respectively a1 = 1.063 nm, b1 = 1.034 nm, c1 = 0.755 nm, beta1 = 130.75 degrees, Z1 = 4 and a2 = 1.061 nm, b2 = 1.029 nm, c2 = 0.749 nm, beta2 = 130.65 degrees and Z2 = 4. The infrared spectrum and Raman spectrum of crystal were measured. The sample of Yb(x) : KY(1-x) W (x = 0.05) had stronger infrared absorption peaks at 925, 891, 840, 777 and 749 cm(-1), which were caused by stretching vibration. The sample of KYW had stronger infrared absorption peaks at 484 and 437 cm(-1) caused by bending vibration. The vibration modes were analysed and vibrational frequencies of vibratory activity was assigned. The two crystals had strong Raman activity. The vibration of WOOW and WOW exists from 200 to 1000 cm(-1).

  12. A Japanese Stretching Intervention Can Modify Lumbar Lordosis Curvature.

    Science.gov (United States)

    Kadono, Norio; Tsuchiya, Kazushi; Uematsu, Azusa; Kamoshita, Hiroshi; Kiryu, Kazunori; Hortobágyi, Tibor; Suzuki, Shuji

    2017-08-01

    Eighteen healthy male adults were assigned to either an intervention or control group. Isogai dynamic therapy (IDT) is one of Japanese stretching interventions and has been practiced for over 70 years. However, its scientific quantitative evidence remains unestablished. The objective of this study was to determine whether IDT could modify lumbar curvature in healthy young adults compared with stretching exercises used currently in clinical practice. None of previous studies have provided data that conventional stretching interventions could modify spinal curvatures. However, this study provides the first evidence that a specific form of a Japanese stretching intervention can acutely modify the spinal curvatures. We compared the effects of IDT, a Japanese stretching intervention (n=9 males), with a conventional stretching routine (n=9 males) used widely in clinics to modify pelvic tilt and lumbar lordosis (LL) angle. We measured thoracic kyphosis (TK) and LL angles 3 times during erect standing using the Spinal Mouse before and after each intervention. IDT consisted of: (1) hip joint correction, (2) pelvic tilt correction, (3) lumbar alignment correction, and (4) squat exercise stretch. The control group performed hamstring stretches while (1) standing and (2) sitting. IDT increased LL angle to 25.1 degrees (±5.9) from 21.2 degrees (±6.9) (P=0.047) without changing TK angle (pretest: 36.8 degrees [±6.9]; posttest: 36.1 degrees [±6.5]) (P=0.572). The control group showed no changes in TK (P=0.819) and LL angles (P=0.744). IDT can thus be effective for increasing LL angle, hence anterior pelvic tilt. Such modifications could ameliorate low back pain and improve mobility in old adults with an unfavorable pelvic position.

  13. Oxygen vibrations in the series Bi2Sr2Ca{_{n-1}}Cu{n}O{_{4+2 n+y}}

    Science.gov (United States)

    Faulques, E.; Dupouy, P.; Lefrant, S.

    1991-06-01

    We present a discussion of the oxygen vibrations in the Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} high T_c superconductors with the aim of interpreting Raman spectra in the case of the non-symmorphic Amaa structure. Group theory shows that the oxygen atoms belonging to the central CuO{2} plane generate a Raman activity for the n=1,3 phases. Consequently, we propose a novel assignment for the lines of weak intensity at 297, 316 and 333 cm^{-1}. It is shown that the two components of the 460 cm^{-1} band may be consistent with the Amma structure. Spectra recorded in crossed polarization exhibit weak lines which could be assigned to B {1g} modes expected for the three phases. Nous présentons une discussion sur les vibrations des atomes d'oxygène dans la série des supraconducteurs Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} dans le but d'interpréter les spectres Raman. L'analyse des modes normaux de vibration de la structure Amaa pour les phases n=1 ou 3 montre que les atomes d'oxygène du plan CuO{2} contenant les centres d'inversion donnent lieu à une activité Raman. En conséquence, nous proposons une nouvelle attribution pour les raies de faible intensité à 297, 316 et 333 cm^{-1}. Nous montrons que le dédoublement de la bande à 460 cm^{-1} pourrait être dû à la structure Amaa. Les spectres enregistrés en polarization croisée montrent de faibles bandes qui peuvent être attribuées aux modes B {1g} attendus pour les trois phases.

  14. Vibrational excitation of D2 by low energy electrons

    International Nuclear Information System (INIS)

    Buckman, S.J.; Phelps, A.V.

    1985-01-01

    Excitation coefficients for the production of vibrationally exicted D 2 by low energy electrons have been determined from measurements of the intensity of infrared emission from mixtures of D 2 and small concentrations of CO 2 or CO. The measurements were made using the electron drift tube technique and covered electric field to gas density ratios (E/n) from (5 to 80) x 10 -21 V m 2 , corresponding to mean electron energies between 0.45 and 4.5 eV. The CO 2 and CO concentrations were chosen to allow efficient excitation transfer from the D 2 to the carbon containing molecule, but to minimize direct excitation of the CO 2 or CO. The measured infrared intensities were normalized to predicted values for N 2 --CO 2 and N 2 --CO mixtures at E/n where the efficiency of vibrational excitation is known to be very close to 100%. The experimental excitation coefficients are in satisfactory agreement with predictions based on electron--D 2 cross sections at mean electron energies below 1 eV, but are about 50% too high at mean energies above about 2 eV. Application of the technique to H 2 did not yield useful vibrational excitation coefficients. The effective coefficients in H 2 --CO 2 mixtures were a factor of about 3 times the predicted values. For our H 2 --CO mixtures the excitation of CO via excitation transfer from H 2 is small compared to direct electron excitation of CO molecules. Published experiments and theories on electron--H 2 and electron--D 2 collisions are reviewed to obtain the cross sections used in the predictions

  15. Dynamics of H+ + CO at ELab = 30 eV

    Science.gov (United States)

    Stopera, Christopher; Maiti, Buddhadev; Grimes, Thomas V.; McLaurin, Patrick M.; Morales, Jorge A.

    2012-02-01

    The astrophysically relevant system H+ + CO (vi = 0) → H+ + CO (vf) at ELab = 30 eV is studied with the simplest-level electron nuclear dynamics (SLEND) method. This investigation follows previous successful SLEND studies of H+ + H2 and H+ + N2 at ELab = 30 eV [J. Morales, A. Diz, E. Deumens, and Y. Öhrn, J. Chem. Phys. 103(23), 9968 (1995), 10.1063/1.469886; C. Stopera, B. Maiti, T. V. Grimes, P. M. McLaurin, and J. A. Morales, J. Chem. Phys. 134(22), 224308 (2011), 10.1063/1.3598511]. SLEND is a direct, time-dependent, variational, and non-adiabatic method that adopts a classical-mechanics description for the nuclei and a single-determinantal wavefunction for the electrons. A canonical coherent-states (CS) procedure associated with SLEND reconstructs quantum vibrational properties from the SLEND classical dynamics. Present SLEND results include reactivity predictions, snapshots of the electron density evolution, average vibrational energy transfers, rainbow angle predictions, total and vibrationally resolved differential cross sections (DCS), and average vibrational excitation probabilities. SLEND results are compared with available data from experiments and vibrational close-coupling rotational infinite-order sudden (VCC-RIOS) approximation calculations. Present simulations employ four basis sets: STO-3G, 6-31G, 6-31G**, and cc-pVDZ to determine their effect on the results. SLEND simulations predict non-charge-transfer scattering and CO collision-induced dissociation as the main reactions. SLEND/6-31G, /6-31G**, and /cc-pVDZ predict rainbow angles and total DCS in excellent agreement with experiments and more accurate than their VCC-RIOS counterparts. SLEND/6-31G** and /cc-pVDZ predict vibrationally resolved DCS for vf = 0-2 in satisfactory experimental agreement, but less accurate than their comparable H+ + CO VCC-RIOS and H+ + H2 and H+ + N2 SLEND results. SLEND/6-31G** and /cc-pVDZ predict qualitatively correct average vibrational excitation probabilities

  16. Gold cluster carbonyls: saturated adsorption of CO on gold cluster cations, vibrational spectroscopy, and implications for their structures.

    Science.gov (United States)

    Fielicke, André; von Helden, Gert; Meijer, Gerard; Pedersen, David B; Simard, Benoit; Rayner, David M

    2005-06-15

    We report on the interaction of carbon monoxide with cationic gold clusters in the gas phase. Successive adsorption of CO molecules on the Au(n)(+) clusters proceeds until a cluster size specific saturation coverage is reached. Structural information for the bare gold clusters is obtained by comparing the saturation stoichiometry with the number of available equivalent sites presented by candidate structures of Au(n)(+). Our findings are in agreement with the planar structures of the Au(n)(+) cluster cations with n < or = 7 that are suggested by ion mobility experiments [Gilb, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M. M. J. Chem. Phys. 2001, 116, 4094]. By inference we also establish the structure of the saturated Au(n)(CO)(m)(+) complexes. In certain cases we find evidence suggesting that successive adsorption of CO can distort the metal cluster framework. In addition, the vibrational spectra of the Au(n)(CO)(m)(+) complexes in both the CO stretching region and in the region of the Au-C stretch and the Au-C-O bend are measured using infrared photodepletion spectroscopy. The spectra further aid in the structure determination of Au(n)(+), provide information on the structure of the Au(n)(+)-CO complexes, and can be compared with spectra of CO adsorbates on deposited clusters or surfaces.

  17. Hydrogen bonded networks in formamide [HCONH2]n (n = 1 – 10 ...

    Indian Academy of Sciences (India)

    gns

    Table S1: Comparison of interaction energy (I.E) in kcal/mol in four arrangements of formamide n=1-10 at B3LYP/D95** level of theory. n = #monomers. Table S2: O---H bond length (in Å) for formamide clusters n = (2-10). Table S3: N-H bond stretching frequency (in cm-1) for four arrangements of formamide clusters n.

  18. Upper Limb Static-Stretching Protocol Decreases Maximal Concentric Jump Performance

    Directory of Open Access Journals (Sweden)

    Paulo H. Marchetti

    2014-12-01

    Full Text Available The purpose of the present study was to evaluate the acute effects of an upper limb static-stretching (SS protocol on the maximal concentric jump performance. We recruited 25 young healthy, male, resistance trained individuals (stretched group, n = 15 and control group, n = 10 in this study. The randomized between group experimental protocol consisted of a three trials of maximal concentric jump task, before and after a SS of the upper limb. Vertical ground reaction forces (vGRF and surface electromyography (sEMG of both gastrocnemius lateralis (GL and vastus lateralis (VL were acquired. An extensive SS was employed consisting of ten stretches of 30 seconds, with 15 seconds of rest, and 70-90% of the point of discomfort (POD. ANOVA (2x2 (group x condition was used for shoulder joint range of motion (ROM, vGRF and sEMG. A significant interaction for passive ROM of the shoulder joint revealed significant increases between pre- and post-SS protocol (p < 0.001. A significant interaction demonstrated decreased peak force and an increased peak propulsion duration between pre- and post-stretching only for stretch group (p = 0.021, and p = 0.024, respectively. There was a significant main effect between groups (stretch and control for peak force for control group (p = 0.045. Regarding sEMG variables, there were no significant differences between groups (control versus stretched or condition (pre-stretching versus post-stretching for the peak amplitude of RMS and IEMG for both muscles (VL and GL. In conclusion, an acute extensive SS can increase the shoulder ROM, and negatively affect both the propulsion duration and peak force of the maximal concentric jump, without providing significant changes in muscle activation.

  19. 2-Ethynylpyridine dimers: IR spectroscopic and computational study

    Science.gov (United States)

    Bakarić, Danijela; Spanget-Larsen, Jens

    2018-04-01

    2-ethynylpyridine (2-EP) presents a multifunctional system capable of participation in hydrogen-bonded complexes utilizing hydrogen bond donating (tbnd Csbnd H, Aryl-H) and hydrogen bond accepting functions (N-atom, Ctbnd C and pyridine π-systems). In this work, IR spectroscopy and theoretical calculations are used to study possible 2-EP dimer structures as well as their distribution in an inert solvent such as tetrachloroethene. Experimentally, the tbnd Csbnd H stretching vibration of the 2-EP monomer absorbs close to 3300 cm-1, whereas a broad band with maximum around 3215 cm-1 emerges as the concentration rises, indicating the formation of hydrogen-bonded complexes involving the tbnd Csbnd H moiety. The Ctbnd C stretching vibration of monomer 2-EP close to 2120 cm-1 is, using derivative spectroscopy, resolved from the signals of the dimer complexes with maximum around 2112 cm-1. Quantum chemical calculations using the B3LYP + D3 model with counterpoise correction predict that the two most stable dimers are of the π-stacked variety, closely followed by dimers with intermolecular tbnd Csbnd H⋯N hydrogen bonding; the predicted red shifts of the tbnd Csbnd H stretching wavenumbers due to hydrogen bonding are in the range 54-120 cm-1. No species with obvious hydrogen bonding involving the Ctbnd C or pyridine π-systems as acceptors are predicted. Dimerization constant at 25 °C is estimated to be K2 = 0.13 ± 0.01 mol-1 dm3.

  20. Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory.

    Science.gov (United States)

    Pelmenschikov, Vladimir; Birrell, James A; Pham, Cindy C; Mishra, Nakul; Wang, Hongxin; Sommer, Constanze; Reijerse, Edward; Richers, Casseday P; Tamasaku, Kenji; Yoda, Yoshitaka; Rauchfuss, Thomas B; Lubitz, Wolfgang; Cramer, Stephen P

    2017-11-22

    [FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (H hyd ) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57 Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that H hyd is the catalytic state one step prior to H 2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H 2 bond formation by [FeFe]-hydrogenases.

  1. Collisional energy transfer between highly excited vibrational levels of K2 (11Σu+, V=46∼61) and H2

    International Nuclear Information System (INIS)

    Zhang Liping; Cai Qin; Luan Nannan; Dai Kang; Shen Yifan

    2011-01-01

    Using the CARS (Coherent Anti-stokes Raman Spectroscopy) detection technique, the electronic-to-rovibrational levels energy transfer between electronically excited K 2 (which is in the state of 1 1 ∑ u + , V=46∼61) and H 2 has been investigated. The scanned CARS spectra reveals that H 2 molecules are produced only at the V=1, J=2 and V=2, J=0, 1, 2 rovibrational levels during energy transfer processes. From scanned CARS spectral peaks the population ratios are obtained. The n 1 /n 4 9 n 2 /n 4 , and n 3 /n 4 are 3.3±0.5, 2.2±0.3 and 2.0±0.3, respectively, where n 1 , n 2 , n 3 and n 4 represent the number densities of H 2 at rovibrational levels (2, 0), (2, 1), (2, 2) and (1, 2), respectively. The population ratios indicate that the H 2 molecules produced by the energy transfer process are 88% populated at the V=2 level and 12% at V=1. The relative fractions (, , ) of average energy disposal are derived as (0.53, 0.01, 0.46), having major vibrational and translational energy release. Through simple kinetic model at the experimental conditions of T=573 K and P(H 2 ) =5 X 10 3 Pa, collisional transfer rate coefficients k 12 =(3.3±0.7) X 10 -14 and k 2 =(1.4±0.3) X 10 -14 cm 3 s -1 have been obtained. (authors)

  2. On the structure and normal modes of hydrogenated Ti-fullerene compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tlahuice-Flores, Alfredo, E-mail: tlahuicef@yahoo.com [Universidad Nacional Autonoma de Mexico, Instituto de Fisica (Mexico); Mejia-Rosales, Sergio, E-mail: sergio.mejiars@uanl.edu.mx [Universidad Autonoma de Nuevo Leon, CICFIM-Facultad de Ciencias Fisico Matematicas, and Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia (Mexico); Galvan, Donald H., E-mail: donald@cnyn.unam.mx [Centro de Nanociencias y Nanotecnologia-Universidad Nacional Autonoma de Mexico (Mexico)

    2012-08-15

    When titanium covers a C{sub 60} core, the metal atoms may suppress the fullerene's capacity of storing hydrogen, depending on the number of Ti atoms covering the C{sub 60} framework, the Ti-C binding energy, and diffusion barriers. In this article, we study the structural and vibrational properties of the C{sub 60}TiH{sub n} (n = 2, 4, 6, and 8) and C{sub 60}Ti{sub 6}H{sub 48} compounds. The IR spectra of C{sub 60}TiH{sub n} compounds have a maximum attributable to the Ti-H stretching mode, which shifts to lower values in the structures with n = 4, 8, while their Raman spectra show two peaks corresponding to the stretching modes of H{sub 2} molecules at apical and azimuthal positions. On the other hand, the IR spectrum of C{sub 60}Ti{sub 6}H{sub 48} shows an intense peak due to the Ti-H in-phase stretching mode, while its Raman spectrum has a maximum attributed to the pentagonal pinch of the C{sub 60} core. Finally, we have found that the presence of one apical H{sub 2} molecule enhances the pentagonal pinch mode, becoming the maximum in the Raman spectrum.Graphical Abstract.

  3. In Vitro Polarized Resonance Raman Study of N719 and N719-TBP in Dye Sensitized Solar Cells

    DEFF Research Database (Denmark)

    Hassing, Søren; Jernshøj, Kit Drescher; Nguyen, Phuong Tuyet

    2016-01-01

    Abstract: The working efficiency of dye-sensitized solar cells (DSCs) depends on the long-term stability of the dye itself and on the microscopic structure of the dye-semiconductor interface. Previous experimental studies of DSCs based on ruthenium dye with bipyridine ligands (N719) adsorbed...... to the TiO2substrate applied FTIR,un-polarized Raman (RS) and un-polarized resonance Raman (RRS) spectroscopy. In the un-polarized RRS studies of N719/TiO2 – DSCs the discussion of the adsorption of N719 was based on the rather weak carbonyl or carboxyl group stretching vibrations and on minor spectral...

  4. H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3).

    Science.gov (United States)

    Pauzat, F; Ellinger, Y; Pilmé, J; Mousis, O

    2009-05-07

    Recent studies on the formation of XH(3)(+) noble gas complexes have shown strategic implications for the composition of the atmospheres of the giant planets as well as for the composition of comets. One crucial factor in the astrophysical process is the relative abundances of the noble gases versus H(3)(+). It is the context in which the possibility for clustering with more than one noble gas (X(n)H(3)(+) up to n = 3) has been investigated for noble gases X ranging from neon to krypton. In order to assert our results, a variety of methods have been used including ab initio coupled cluster CCSD and CCSD(T), MP2, and density functional BH&HLYP levels of theory. All complexes with one, two, and three noble gases are found to be stable in the Ne, Ar, and Kr families. These stable structures are planar with the noble gases attached to the apices of the H(3)(+) triangle. The binding energy of the nth atom, defined as the X(n)H(3)(+) --> X(n-1)H(3)(+) + X reaction energy, increases slightly with n varying from 1 to 3 in the neon series, while it decreases in the argon series and shows a minimum for n = 2 in the krypton series. The origin of this phenomenon is to be found in the variations in the respective vibrational energies. A topological analysis of the electron localization function shows the importance of the charge transfer from the noble gases toward H(3)(+) as a driving force in the bonding along the series. It is also consistent with the increase in the atomic polarizabilities from neon to krypton. Rotational constants and harmonic frequencies are reported in order to provide a body of data to be used for the detection in laboratory prior to space observations. This study strongly suggests that the noble gases could be sequestered even in an environment where the H(3)(+) abundance is small.

  5. BSDB: the Biomolecule Stretching Database

    Science.gov (United States)

    Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej

    2011-03-01

    Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).

  6. Granular compaction and stretched exponentials - Experiments and a numerical stochastic model

    Directory of Open Access Journals (Sweden)

    Nicolas Maxime

    2017-01-01

    Full Text Available We present a stochastic model to investigate the compaction kinetics of a granular material submitted to vibration. The model is compared to experimental results obtained with glass beads and with a cohesive powder. We also propose a physical interpretation of the characteristic time τ and the exponent β of the stretched exponential function widely used to represent the granular compaction kinetics, and we show that the characteristic time is proportional to the number of grains to move. The exponent β is expressed as a logarithmic compaction rate.

  7. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.

    Science.gov (United States)

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-11-13

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

  8. Theoretical resonant electron-impact vibrational excitation, dissociative recombination and dissociative excitation cross sections of ro-vibrationally excited BeH"+ ion

    International Nuclear Information System (INIS)

    Laporta, V.; Chakrabarti, K.; Celiberto, R.; Janev, R. K.; Mezei, J. Zs.; Niyonzima, S.; Tennyson, J.; Schneider, I.F.

    2017-01-01

    A theoretical study of resonant vibrational excitation, dissociative recombination and dissociative excitation processes of the beryllium monohydride cation, BeH"+ , induced by electron impact, is reported. Full sets of ro-vibrationally-resolved cross sections and of the corresponding Maxwellian rate coefficients are presented for the three processes. Particular emphasis is given to the high-energy behaviour. Potential curves of "2σ"+, "2σ and "2δ symmetries and the corresponding resonance widths, obtained from R-matrix calculations, provide the input for calculations which use a local complex-potential model for resonant collisions in each of the three symmetries. Rotational motion of nuclei and isotopic effects are also discussed. The relevant results are compared with those obtained using a multichannel quantum defect theory method. Full results are available from the Phys4Entry database.

  9. H2+ embedded in a Debye plasma: Electronic and vibrational properties

    OpenAIRE

    Angel, M. L.; Montgomery Jr, H. E.

    2010-01-01

    The effect of plasma screening on the electronic and vibrational properties of the H2+ molecular ion was analyzed within the Born-Oppenheimer approximation. When a molecule is embedded in a plasma, the plasma screens the electrostatic interactions. This screening is accounted for in the Schr\\"odinger equation by replacing the Coulomb potentials with Yukawa potentials that incorporate the Debye length as a screening parameter. Variational expansions in confocal elliptical coordinates were used...

  10. Effect of vibrational excitation on the dynamics of ion-molecule reactions

    International Nuclear Information System (INIS)

    Anderson, S.L.

    1981-11-01

    A new experimental technique for the study of vibrational effects on ion-molecule reaction cross sections is described. Vibrational and collision energy dependent cross sections are presented for proton and H atom transfer, charge transfer and collision induced dissociation reactions in various isotopic H 2 + + H 2 systems. Charge and proton transfer cross sections are presented for the reactions of H 2 + and D 2 + with Ar, N 2 , CO, and O 2 . All the reactions are shown to be highly influenced by avoided crossings between the ground and first excited potential energy surfaces. Because of the nature of the crossings, vibrational motion of the systems can cause both adiabatic and non-adiabatic behavior of the system. This makes the vibrational dependences of the various cross sections a very sensitive probe of the dynamics of the collisions particularly, their behavior in the region of the crossings. Evidence is seen for charge transfer between reagents as they approach each other, transition to and in some cases reactions on excited potential energy surfaces, competition between different channels, and strong coupling of proton and charge transfer channels which occurs only for two of the systems studied (H 2 + + Ar, N 2 ). Oscillatory structure is observed in the collision energy dependence of the endoergic H 2 + (v = 0) + Ar charge transfer reaction for the first time, and a simple model which is commonly used for atom-atom charge transfer is used to fit the peaks. Finally a simple model is used to assess the importance of energy resonance and Franck-Condon effects on molecular charge transfer

  11. Implications of the (H2O)n + CO ↔ trans-HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions for primordial atmospheres of Venus and Earth

    Science.gov (United States)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2018-04-01

    The forward and backward (H2O)n + CO ↔ HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions were studied in order to furnish trustworthy thermochemical and kinetic data. Stationary point structures involved in these chemical processes were achieved at the B2PLYP/cc-pVTZ level so that the corresponding vibrational frequencies, zero-point energies, and thermal corrections were scaled to consider anharmonicity effects. A complete basis set extrapolation was also employed with the CCSD(T) method in order to improve electronic energy descriptions and providing therefore more accurate results for enthalpies, Gibbs energies, and rate constants. Forward and backward rate constants were encountered at the high-pressure limit between 200 and 4000 K. In turn, modified Arrhenius' equations were fitted from these rate constants (between 700 and 4000 K). Next, considering physical and chemical conditions that have supposedly prevailed on primitive atmospheres of Venus and Earth, our main results indicate that 85-88 per cent of all water forms on these atmospheres were monomers, whereas (H2O)2 and (H2O)3 complexes would represent 12-15 and ˜0 per cent, respectively. Besides, we estimate that Earth's and Venus' primitive atmospheres could have been composed by ˜0.001-0.003 per cent of HCOOH when their temperatures were around 1000-2000 K. Finally, the water loss process on Venus may have occurred by a mechanism that includes the formic acid as intermediate species.

  12. Simple systematization of vibrational excitation cross-section calculations for resonant electron-molecule scattering in the boomerang and impulse models.

    Science.gov (United States)

    Sarma, Manabendra; Adhikari, S; Mishra, Manoj K

    2007-01-28

    Vibrational excitation (nu(f), where psi(nu(i))(R,t) approximately =e(-iH(A(2))-(R)t/h phi(nu(i))(R) with time evolution under the influence of the resonance anionic Hamiltonian H(A(2) (-))(A(2) (-)=N(2)(-)/H(2) (-)) implemented using Lanczos and fast Fourier transforms. The target (A(2)) vibrational eigenfunctions phi(nu(i))(R) and phi(nu(f))(R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curves of the neutral target. Application of this simple systematization to calculate vibrational structure in e-N(2) and e-H(2) scattering cross-sections provides mechanistic insights into features underlying presence/absence of structure in e-N(2) and e-H(2) scattering cross-sections. The results obtained with approximate PE curves are in reasonable agreement with experimental/calculated cross-section profiles, and cross correlation functions provide a simple demarcation between the boomerang and impulse models.

  13. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy.

    Science.gov (United States)

    Groma, Géza I; Colonna, Anne; Martin, Jean-Louis; Vos, Marten H

    2011-03-16

    The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Synthesis, X-ray crystallography characterization, vibrational spectroscopic, molecular electrostatic potential maps, thermodynamic properties studies of N,N'-di(p-thiazole)formamidine.

    Science.gov (United States)

    Rofouei, M K; Fereyduni, E; Sohrabi, N; Shamsipur, M; Attar Gharamaleki, J; Sundaraganesan, N

    2011-01-01

    In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of N,N'-di(p-thiazole)formamidine (DpTF). DpTF has been synthesized and characterized by elemental analysis, FT-IR, FT-Raman, 1H NMR, 13C NMR spectroscopy and X-ray single crystal diffraction. The FT-IR and FT-Raman spectra of DpTF were recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods using 6-31G(d) basis set. The FT-IR and FT-Raman spectra of DpTF was calculated at the HF/B3LYP/6-31G(d) level and were interpreted in terms of potential energy distribution (PED) analysis. The scaled theoretical wavenumber showed very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of DpTF was reported. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between Cp,m°, Sm°, Hm° and temperatures. Furthermore, molecular electrostatic potential maps (MESP) and total dipole moment properties of the compound have been calculated. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael; Kosinka, Jin; Calo, Victor M.

    2015-01-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these 'stretch-free' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  16. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  17. Dynamics of H+ + CO at E(Lab) = 30 eV.

    Science.gov (United States)

    Stopera, Christopher; Maiti, Buddhadev; Grimes, Thomas V; McLaurin, Patrick M; Morales, Jorge A

    2012-02-07

    The astrophysically relevant system H(+) + CO (v(i) = 0) → H(+) + CO (v(f)) at E(Lab) = 30 eV is studied with the simplest-level electron nuclear dynamics (SLEND) method. This investigation follows previous successful SLEND studies of H(+) + H(2) and H(+) + N(2) at E(Lab) = 30 eV [J. Morales, A. Diz, E. Deumens, and Y. Öhrn, J. Chem. Phys. 103(23), 9968 (1995); C. Stopera, B. Maiti, T. V. Grimes, P. M. McLaurin, and J. A. Morales, J. Chem. Phys. 134(22), 224308 (2011)]. SLEND is a direct, time-dependent, variational, and non-adiabatic method that adopts a classical-mechanics description for the nuclei and a single-determinantal wavefunction for the electrons. A canonical coherent-states (CS) procedure associated with SLEND reconstructs quantum vibrational properties from the SLEND classical dynamics. Present SLEND results include reactivity predictions, snapshots of the electron density evolution, average vibrational energy transfers, rainbow angle predictions, total and vibrationally resolved differential cross sections (DCS), and average vibrational excitation probabilities. SLEND results are compared with available data from experiments and vibrational close-coupling rotational infinite-order sudden (VCC-RIOS) approximation calculations. Present simulations employ four basis sets: STO-3G, 6-31G, 6-31G**, and cc-pVDZ to determine their effect on the results. SLEND simulations predict non-charge-transfer scattering and CO collision-induced dissociation as the main reactions. SLEND/6-31G, /6-31G**, and /cc-pVDZ predict rainbow angles and total DCS in excellent agreement with experiments and more accurate than their VCC-RIOS counterparts. SLEND/6-31G** and /cc-pVDZ predict vibrationally resolved DCS for v(f) = 0-2 in satisfactory experimental agreement, but less accurate than their comparable H(+) + CO VCC-RIOS and H(+) + H(2) and H(+) + N(2) SLEND results. SLEND∕6-31G** and ∕cc-pVDZ predict qualitatively correct average vibrational excitation probabilities

  18. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine—Its vibrational spectra and theoretical calculations

    Science.gov (United States)

    Marchewka, M. K.; Drozd, M.; Janczak, J.

    2011-08-01

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  19. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  20. Composite Ag/C:H:N films prepared by planar magnetron deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hlidek, P. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic)], E-mail: hlidek@karlov.mff.cuni.cz; Hanus, J.; Biederman, H.; Slavinska, D.; Pesicka, J. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic)

    2008-05-30

    Composite Ag/C:H:N films were deposited by means of an unbalanced magnetron operated in a gas mixture of nitrogen and n-hexane. Composition of the films was controlled by electric power delivered to the magnetron and by ratio of nitrogen and n-hexane in the working gas mixture. The films were characterized using transmission electron microscopy, by the absorption spectra in visible and near infrared regions and by Fourier transform infrared spectroscopy. Immediately after film deposition and without breaking vacuum (in situ) corresponding vibration infrared spectra were scanned and their evolution during ageing of the films was monitored. Wettability as determined from water contact angle was improved with raising nitrogen contents, i.e. with increasing the electric power and the ratio of nitrogen/n-hexane in the working gas mixture. The increased wettability is likely caused by presence of NH{sub x} groups in Ag/C:H:N films. The incorporation of nitrogen effectively prevents the formation of carboxylate groups on the silver inclusions surfaces during the aging in the open air. In addition, the oxidation mechanism of the polymer matrix is modified.

  1. Infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite: DFT study

    International Nuclear Information System (INIS)

    Jiang Shujun; Huang Shiping; Tu Weixia; Zhu Jiqin

    2009-01-01

    The infrared spectra and stability of CO and H 2 O sorption over Ag-exchanged ZSM-5 zeolite were investigated by using density function theory (DFT). The changes of NBO charge show that the electron transfers from CO molecule to the Ag + cation to form an σ-bond, and it accompanies by the back donation of d-electrons from Ag + cation to the CO (π*) orbital as one and two CO molecules are adsorbed on Ag-ZSM-5. The free energy changes ΔG, -5.55 kcal/mol and 6.52 kcal/mol for one and two CO molecules, illustrate that the Ag + (CO) 2 complex is unstable at the room temperature. The vibration frequency of C-O stretching of one CO molecule bonded to Ag + ion at 2211 cm -1 is in good agreement with the experimental results. The calculated C-O symmetric and antisymmetric stretching frequencies in the Ag + (CO) 2 complex shift to 2231 cm -1 and 2205 cm -1 when the second CO molecule is adsorbed. The calculated C-O stretching frequency in CO-Ag-ZSM-5-H 2 O complex shifts to 2199 cm -1 , the symmetric and antisymmetric O-H stretching frequencies are 3390 cm -1 and 3869 cm -1 , respectively. The Gibbs free energy change (ΔG H 2 O ) is -6.58 kcal/mol as a H 2 O molecule is adsorbed on CO-Ag-ZSM-5 complex at 298 K. The results show that CO-Ag-ZSM-5-H 2 O complex is more stable at room temperature

  2. On the structure and reactivity of small iron clusters with benzene, [Fe{sub n}–C{sub 6}H{sub 6}]{sup 0,+,−}, n ⩽ 7: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Israel, E-mail: israelv@unam.mx

    2016-09-12

    Highlights: • Optimized structures of iron clusters capped with one benzene molecule. • Adsorption of benzene molecules quenches the magnetic moment of Fe clusters. • Adsorption of benzene on iron clusters leads to activation of non IR active vibrations of benzene. • Adsorption of benzene in small Fe{sub n} clusters is explained by the charge transfer model. • Relation between Fe{sub n}–benzene electron affinity and reactivity is observed. - Abstract: The structural, energetic, electronic, vibrational, and magnetic properties of iron–benzene clusters, Fe{sub n}–C{sub 6}H{sub 6}, n ⩽ 7, were calculated using an all-electron density functional theory, DFT, with the generalized gradient approximation and the 6−311++G(2d,2p) basis set. A proposal regarding the mechanism of the adsorption of benzene on iron clusters related to the charge transfer model is described. A direct relation between the calculated electron affinity, EA, of the Fe{sub n}–C{sub 6}H{sub 6} clusters and their reactivity were also determined.

  3. Vibration-proof FBR type reactor

    International Nuclear Information System (INIS)

    Kawamura, Yutaka.

    1992-01-01

    In a reactor container in an FBR type reactor, an outer building and upper and lower portions of a reactor container are connected by a load transmission device made of a laminated material of rubber and steel plates. Each of the reactor container and the outer building is disposed on a lower raft disposed on a rock by way of a vibration-proof device made of a laminated material of rubber and steel plates. Vibration-proof elements for providing vertical eigen frequency of the vibration-proof system comprising the reactor building and the vibration-proof device within a range of 3Hz to 5Hz are used. That is, the peak of designed acceleration for response spectrum in the horizontal direction of the reactor structural portions is shifted to side of shorter period from the main frequency region of the reactor structure. Alternatively, rigidity of the vibration-proof elements is decreased to shift the peak to the side of long period from the main frequency region. Designed seismic force can be greatly reduced both horizontally and vertically, to reduce the wall thickness of the structural members, improve the plant economy and to ensure the safety against earthquakes. (N.H.)

  4. A quantum-rovibrational-state-selected study of the proton-transfer reaction H2+(X2Σ: v+ = 1-3; N+ = 0-3) + Ne → NeH+ + H using the pulsed field ionization-photoion method: observation of the rotational effect near the reaction threshold.

    Science.gov (United States)

    Xiong, Bo; Chang, Yih-Chung; Ng, Cheuk-Yiu

    2017-07-19

    Using the sequential electric field pulsing scheme for vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection, we have successfully prepared H 2 + (X 2 Σ: v + = 1-3; N + = 0-5) ions in the form of an ion beam in single quantum-rovibrational-states with high purity, high intensity, and narrow laboratory kinetic energy spread (ΔE lab ≈ 0.05 eV). This VUV-PFI-PI ion source, when coupled with the double-quadrupole double-octupole ion-molecule reaction apparatus, has made possible a systematic examination of the vibrational- as well as rotational-state effects on the proton transfer reaction of H 2 + (X 2 Σ: v + ; N + ) + Ne. Here, we present the integral cross sections [σ(v + ; N + )'s] for the H 2 + (v + = 1-3; N + = 0-3) + Ne → NeH + + H reaction observed in the center-of-mass kinetic energy (E cm ) range of 0.05-2.00 eV. The σ(v + = 1, N + = 1) exhibits a distinct E cm onset, which is found to agree with the endothermicity of 0.27 eV for the proton transfer process after taking into account of experimental uncertainties. Strong v + -vibrational enhancements are observed for σ(v + = 1-3, N + ) in the E cm range of 0.05-2.00 eV. While rotational excitations appear to have little effect on σ(v + = 3, N + ), a careful search leads to the observation of moderate N + -rotational enhancements at v + = 2: σ(v + = 2; N + = 0) quantum dynamics predictions. We hope that these new experimental results would further motivate more rigorous theoretical calculations on the dynamics of this prototypical ion-molecule reaction.

  5. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices

    International Nuclear Information System (INIS)

    Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern

    2012-01-01

    Irradiation at 239 ± 20 nm of a p-H 2 matrix containing methoxysulfinyl chloride, CH 3 OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν 1 , CH 2 antisymmetric stretching), 2999.5 (ν 2 , CH 3 antisymmetric stretching), 2950.4 (ν 3 , CH 3 symmetric stretching), 1465.2 (ν 4 , CH 2 scissoring), 1452.0 (ν 5 , CH 3 deformation), 1417.8 (ν 6 , CH 3 umbrella), 1165.2 (ν 7 , CH 3 wagging), 1152.1 (ν 8 , S=O stretching mixed with CH 3 rocking), 1147.8 (ν 9 , S=O stretching mixed with CH 3 wagging), 989.7 (ν 10 , C-O stretching), and 714.5 cm -1 (ν 11 , S-O stretching) modes of syn-CH 3 OSO. When CD 3 OS(O)Cl in a p-H 2 matrix was used, lines at 2275.9 (ν 1 ), 2251.9 (ν 2 ), 2083.3 (ν 3 ), 1070.3 (ν 4 ), 1056.0 (ν 5 ), 1085.5 (ν 6 ), 1159.7 (ν 7 ), 920.1 (ν 8 ), 889.0 (ν 9 ), 976.9 (ν 10 ), and 688.9 (ν 11 ) cm -1 appeared and are assigned to syn-CD 3 OSO; the mode numbers correspond to those used for syn-CH 3 OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86/aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH 3 OSO near 2991, 2956, 1152, and 994 cm -1 to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD 3 OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H 2 such that the Cl atom, produced via UV photodissociation of CH 3 OS(O)Cl in situ, might escape from the original cage to yield isolated CH 3 OSO radicals.

  6. Infrared absorption of CH3OSO and CD3OSO radicals produced upon photolysis of CH3OS(O)Cl and CD3OS(O)Cl in p-H2 matrices.

    Science.gov (United States)

    Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern

    2012-03-28

    Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.

  7. Stretching Safely and Effectively

    Science.gov (United States)

    ... shown that stretching immediately before an event weakens hamstring strength. Instead of static stretching, try performing a " ... If you play soccer, for instance, stretch your hamstrings as you're more vulnerable to hamstring strains. ...

  8. Accuracy of the centrifugal sudden approximation in the H + CHD3 → H2 + CD3 reaction

    International Nuclear Information System (INIS)

    Zhang, Zhaojun; Chen, Jun; Liu, Shu; Zhang, Dong H.

    2014-01-01

    The initial state selected time-dependent wave packet method has been extended to calculate the coupled-channel reaction probabilities with total angular momentum J tot > 0 for the title reaction with seven degrees of freedom included. Fully converged integral cross sections were obtained for the ground and a number of vibrational excited initial states on a new potential energy surface recently constructed by this group using neural network fitting. As found from a previous study with the centrifugal sudden (CS) approximation, all these initial vibrational excitations investigated in this study enhance the reactivity considerably at a given collision energy, in particular the CH stretch excited state. The energy initially deposited in CH stretch motion is more effective than translational energy on promoting the reaction in the entire energy region, while for CH bending or CD 3 umbrella excitations only at the high collision energy the vibrational energy becomes more effective. Our calculations also revealed that the accuracy of the CS approximation considerably deteriorates with the increase of J tot , in particular on the threshold energy. The CS approximation underestimates the integral cross sections for all these initial states, albeit not very severely. In general, it works better at high collision energies and for vibrationally excited initial states, with the increase of integral cross section

  9. Cyclic Stretch Alters Vascular Reactivity of Mouse Aortic Segments

    Directory of Open Access Journals (Sweden)

    Arthur Leloup

    2017-10-01

    Full Text Available Large, elastic arteries buffer the pressure wave originating in the left ventricle and are constantly exposed to higher amplitudes of cyclic stretch (10% than muscular arteries (2%. As a crucial factor for endothelial and smooth muscle cell function, cyclic stretch has, however, never been studied in ex vivo aortic segments of mice. To investigate the effects of cyclic stretch on vaso-reactivity of mouse aortic segments, we used the Rodent Oscillatory Tension Set-up to study Arterial Compliance (ROTSAC. The aortic segments were clamped at frequencies of 6–600 bpm between two variable preloads, thereby mimicking dilation as upon left ventricular systole and recoiling as during diastole. The preloads corresponding to different transmural pressures were chosen to correspond to a low, normal or high amplitude of cyclic stretch. At different time intervals, cyclic stretch was interrupted, the segments were afterloaded and isometric contractions by α1-adrenergic stimulation with 2 μM phenylephrine in the absence and presence of 300 μM L-NAME (eNOS inhibitor and/or 35 μM diltiazem (blocker of voltage-gated Ca2+ channels were measured. As compared with static or cyclic stretch at low amplitude (<10 mN or low frequency (0.1 Hz, cyclic stretch at physiological amplitude (>10 mN and frequency (1–10 Hz caused better ex vivo conservation of basal NO release with time after mounting. The relaxation of PE-precontracted segments by addition of ACh to stimulate NO release was unaffected by cyclic stretch. In the absence of basal NO release (hence, presence of L-NAME, physiological in comparison with aberrant cyclic stretch decreased the baseline tension, attenuated the phasic contraction by phenylephrine in the absence of extracellular Ca2+ and shifted the smaller tonic contraction more from a voltage-gated Ca2+ channel-mediated to a non-selective cation channel-mediated. Data highlight the need of sufficient mechanical activation of endothelial and

  10. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  11. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  12. The Relation Between Stretching Typology and Stretching Duration: The Effects on Range of Motion.

    Science.gov (United States)

    Thomas, Ewan; Bianco, Antonino; Paoli, Antonio; Palma, Antonio

    2018-04-01

    Different stretching strategies and protocols are widely used to improve flexibility or maintain health, acting on the muscle tendon-unit, in order to improve the range of motion (ROM) of the joints. This review aims to evaluate the current body of literature in order to understand the relation between stretching typology and ROM, and secondly to evaluate if a relation exists between stretching volume (either as a single training session, weekly training and weekly frequency) and ROM, after long-term stretching. Twenty-three articles were considered eligible and included in the quantitative synthesis. All stretching typologies showed ROM improvements over a long-term period, however the static protocols showed significant gains (p<0.05) when compared to the ballistic or PNF protocols. Time spent stretching per week seems fundamental to elicit range of movement improvements when stretches are applied for at least or more than 5 min, whereas the time spent stretching within a single session does not seem to have significant effects for ROM gains. Weekly frequency is positively associated to ROM. Evaluated data indicates that performing stretching at least 5 days a week for at least 5 min per week using static stretching may be beneficial to promote ROM improvements. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Low-frequency, low-magnitude vibrations (LFLM enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-02-01

    Full Text Available The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS, to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2, and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.

  14. Calculated rotational and vibrational g factors of LiH X 1S+ and evaluation of parameters in radial functions from rotational and vibration-rotational spectra

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Paidarová, Ivana; Oddershede, Jens

    2011-01-01

    The vibrational g factor, that is, the nonadiabatic correction to the vibrational reduced mass, of LiH has been calculated for internuclear distances over a wide range. Based on multiconfigurational wave functions with a large complete active space and an extended set of gaussian type basis...

  15. Dependence of inhomogeneous vibrational linewidth broadening on attractive forces from local liquid number densities

    International Nuclear Information System (INIS)

    George, S.M.; Harris, C.B.

    1982-01-01

    The dependence of inhomogeneous vibrational linewidth broadening on attractive forces form slowly varying local liquid number densities is examined. The recently developed Schweizer--Chandler theory of vibrational dephasing is used to compute absolute inhomogeneous broadening linewidths. The computed linewidths are compared to measured inhomogeneous broadening linewidths determined using picosecond vibrational dephasing experiments. There is a similarity between correlations of the Schweizer--Chandler and George--Auweter--Harris predicted inhomogeneous broadening linewidths and the measured inhomogeneous broadening linewidths. For the methyl stretches under investigation, this correspondence suggests that the width of the number density distribution in the liquid determines the relative inhomogeneous broadening magnitudes

  16. Effects of Combining Running and Practical Duration Stretching on Proprioceptive Skills of National Sprinters.

    Science.gov (United States)

    Romero-Franco, Natalia; Párraga-Montilla, Juan Antonio; Molina-Flores, Enrique M; Jiménez-Reyes, Pedro

    2018-06-01

    Romero-Franco, N, Párraga-Montilla, JA, Molina-Flores, EM, and Jiménez-Reyes, P. Effects of combining running and practical duration stretching on proprioceptive skills of national sprinters. J Strength Cond Res XX(X): 000-000, 2018-Practical duration stretching after aerobic activities is a recommended component of the first part of warm-up because of its effects on performance. However, its effects on proprioceptive skills are unknown. This study aimed to analyze the effects of running and practical duration static stretching (SS) and dynamic stretching (DS) on postural balance and the joint position sense (JPS) of national sprinters. Thirty-two national sprinters were randomly classified into a SS group (n = 11), DS group (n = 11), or control group (n = 10). Static stretching performed 5 minutes of running and short-duration (20 seconds) static stretches; DS performed 5 minutes of running and short-duration dynamic (20 seconds) stretches; and the control group performed 5 minutes of running. Before and after the intervention, unipedal static postural balance and knee JPS were evaluated. Static stretching exhibited a more centralized center of pressure in the medial-lateral plane for unipedal static postural balance in right-leg support after stretching (p = 0.005, d = 1.24), whereas DS showed values further from the center after stretching for the same unipedal support compared with baseline (p = 0.042, d = 0.49), and the control group remained stable (p > 0.05). Joint position sense did not show significant differences in any group (p > 0.05). In conclusion, combining running and practical duration SS may be beneficial for right-leg postural stabilization, whereas DS may be partly and slightly deleterious. Both SS and DS combined with running and running alone have neutral effects on knee JPS. Sports professionals should consider running and practical duration SS as part of the warm-up of sprinters to partly improve unipedal static postural balance.

  17. Vibrational deactivation on chemically reactive potential surfaces: An exact quantum study of a low barrier collinear model of H + FH, D + FD, H + FD and D + FH

    International Nuclear Information System (INIS)

    Schatz, G.C.; Kuppermann, A.

    1980-01-01

    We study vibrational deactivation processes on chemically reactive potential energy surfaces by examining accurate quantum mechanical transition probabilities and rate constants for the collinear H + FH(v), D + FD(v), H + FD(v), and D + FH(v) reactions. A low barrier (1.7 kcal/mole) potential surface is used in these calculations, and we find that for all four reactions, the reactive inelastic rate constants are larger than the nonreactive ones for the same initial and final vibrational states. However, the ratios of these reactive and nonreactive rate constants depend strongly on the vibrational quantum number v and the isotopic composition of the reagents. Nonreactive and reactive transition probabilities for multiquantum jump transitions are generally comparable to those for single quantum transitions. This vibrationally nonadiabatic behavior is a direct consequence of the severe distortion of the diatomic that occurs in a collision on a low barrier reactive surface, and can make chemically reactive atoms like H or D more efficient deactivators of HF or DF than nonreactive collision partners. Many conclusions are in at least qualitative agreement with those of Wilkin's three dimensional quasiclassical trajectory study on the same systems using a similar surface. We also present results for H + HF(v) collisions which show that for a higher barrier potential surface (33 rather than 1.7 kcal/mole), the deactivation process becomes similar in character to that for nonreactive partners, with v→v-1 processes dominating

  18. The molecular, electronic structures and vibrational spectra of metal-free, N,N'-dideuterio and magnesium tetra-2,3-pyridino-porphyrazines: Density functional calculations.

    Science.gov (United States)

    Liu, Zhongqiang; Zhang, Xianxi; Zhang, Yuexing; Li, Renjie; Jiang, Jianzhuang

    2006-10-01

    A theoretical investigation of the fully optimized geometries and electronic structures of the metal-free (TPdPzH(2)), N,N'-dideuterio (TPdPzD(2)), and magnesium (TPdPzMg) tetra-2,3-pyridino-porphyrazine has been conducted based on density functional theory. The optimized geometries at density functional theory level for these compounds are reported here for the first time. A comparison between the different molecules for the geometry, molecular orbital, and atomic charge is made. The substituent effect of the N atoms on the molecular structures of these compounds is discussed. The IR and Raman spectra for these three compounds have also been calculated at density functional B3LYP level using the 6-31G(d) basis set. Detailed assignments of the NH, NM, and pyridine ring vibrational bands in the IR and Raman spectra have been made based on assistance of animated pictures. The simulated IR spectra of TPdPzH(2) are compared with the experimental absorption spectra, and very good consistency has been found. The isotope effect on the IR and Raman spectra is also discussed.

  19. Effects of Stretching by P.N.F and Harmonic Techniques on Hamstring Flexibility

    Directory of Open Access Journals (Sweden)

    Hassan Shakeri

    2006-01-01

    Full Text Available Objective: Improving of muscle flexibility is an important issue in physiotherapy and sport sciences. There are many methods for increasing muscle length and decreasing muscle stiffness. In research findings, PNF method has been found to be better than static and ballistic methods. There is another method named Harmonic technique (introduced by E. Lederman 1997 that has been claimed to be more effective, but there is not enough documentation about this claim. Aim of this study was to compare effects of stretching by PNF and harmonic techniques on hamstring flexibility. Materials & Methods: This research is a RCT study in that 45 colledge students aged 18-35 years were arranged in three groups (Harmonic, P.N.F, and control. Subjects haven’t had any painful pathology in low-back and lower extremities for last six months. Subjects had limited hamstring length (20 degrees deficiency in Active-Knee-Extension test and hadn’t professional sport activities. Dependent variablies were muscle stiffness and hamstring length which popliteal angle in AKE test was its indirect index. In pilot study, reliability of measurement of these variables were approved. Then hamstring muscle of subjects in harmonic and PNF groups were stretched by harmonic and PNF methods for six weeks, 5 minute per day and 3d/wks, whereas control group hadn’t any exercise. Results: Findings of this study showed that in both used techniques, changes of hamstring length were significant (P=0.000, but in control group there wasn’t significant change. There wasn’t significant differences between changes of hamstring length in PNF and Harmonic groups. Only in harmonic group, muscle stiffness had significant changes (P<0.03. Conclusion: According to findings of this research, both harmonic and PNF methods equally increased length of hamstring, and harmonic technique can be used as an alternative stretching method for other techniques. Maybe harmonic technique is better than PNF

  20. Self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state

    International Nuclear Information System (INIS)

    Mulloev, N.; Nurulloev, M.; Narziev, B.N.

    1993-01-01

    Present article is devoted to self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state. The study results of self-association specified by molecular hydrogen bonds of some heterocyclic compounds based on pyrrol on spectres of infrared absorption of stretching vibrations of N-H group were considered.

  1. Effectiveness of passive stretching versus hold relax technique in flexibility of hamstring muscle

    Directory of Open Access Journals (Sweden)

    Gauri Shankar

    2010-10-01

    Full Text Available Aim: To compare the effectiveness of passive stretching and hold relax technique in the flexibility of hamstring muscle. Methods: A total of 80 normal healthy female subjects between age group 20-30 years referred to the department of physiotherapy, Sumandeep Vidyapeeth University, sampling method being convenient sampling. The subjects were randomly divided in two groups i.e. passive stretching group (n=40 and PNF group (n=40 and given passive stretching and proprioceptive neuromuscular facilitation technique respectively. Active knee extension range was measured before and after the intervention by goniometer. Results: t test showed a highly significant (p=0.000 increase in range of motion in PNF group. Conclusion: Proprioceptive neuromuscular facilitation technique is more effective in increasing hamstring flexibility than the passive stretching.

  2. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    Science.gov (United States)

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  3. Retraction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiheng [Vanderbilt University; Feldman, Leonard C [ORNL; Tolk, Norman H. [Vanderbilt University; Zhang, Zhenyu [ORNL; Cohen, Philip [University of Minnesota

    2012-01-01

    IN OUR 2006 REPORT, DESORPTION OF H FROM SI(111) BY RESONANT EXCITATION OF THE Si-H vibrational stretch mode (1), we reported resonant photodesorption of hydrogen from a Si(111) surface using tunable infrared radiation that corresponded to the Si-H vibrational stretch mode. Our recent attempts to reproduce these experiments have been unsuccessful, and the free electron laser facility at Vanderbilt, a unique light source for this experiment, has shut down, prohibiting further research. Because our conclusions are now in question, we retract the Report.

  4. Vibrational spectra of methyllithium and its aggregates: a new interpretation from ab initio anharmonic calculations

    International Nuclear Information System (INIS)

    Gohaud, Neil; Begue, Didier; Pouchan, Claude

    2005-01-01

    The complete quartic force field of methyllithium (CH 3 Li) is computed at the B3LYP/cc-pVTZ level of theory. The vibrational energy levels calculated from a perturbational and a variational procedure are in agreement with the observed spectra except for the C-Li stretching and the symmetric methyl deformation modes for which a disagreement with the experimental assignment given by Andrews is apparent. This discrepancy between experiment and theory is so large that questions are raised either about a correct characterization of, or correct calculations for the monomeric species CH 3 Li. Our theoretical study of methyllithium aggregates (CH 3 Li) n , with n = 2, 3, 4 and 6, gives a new interpretation of the experimental data

  5. Local vibration inhibits H-reflex but does not compromise manual dexterity and does not increase tremor.

    Science.gov (United States)

    Budini, Francesco; Laudani, Luca; Bernardini, Sergio; Macaluso, Andrea

    2017-10-01

    The present work aimed at investigating the effects of local vibration on upper limb postural and kinetic tremor, on manual dexterity and on spinal reflex excitability. Previous studies have demonstrated a decrease in spinal reflex excitability and in force fluctuations in the lower limb but an increase in force fluctuation in the upper limbs. As hand steadiness is of vital importance in many daily-based tasks, and local vibration may also be applied in movement disorders, we decided to further explore this phenomenon. Ten healthy volunteers (26±3years) were tested for H reflex, postural and kinetic tremor and manual dexterity through a Purdue test. EMG was recorded from flexor carpi radialis (FCR) and extensor digitorum communis (EDC). Measurements were repeated at baseline, after a control period during which no vibration was delivered and after vibration. Intervention consisted in holding for two minutes a vibrating handle (frequency 75Hz, displacement∼7mm), control consisted in holding for two minutes the same handle powered off. Reflex excitability decreased after vibration whilst postural tremor and manual dexterity were not affected. Peak kinetic tremor frequency increased from baseline to control measurements (P=0.002). Co-activation EDC/FCR increased from control to vibration (P=0.021). These results show that two minutes local vibration lead to a decrease in spinal excitability, did not compromise manual dexterity and did not increase tremor; however, in contrast with expectations, tremor did not decrease. It is suggested that vibration activated several mechanisms with opposite effects, which resulted in a neutral outcome on postural and kinetic tremor. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses

    OpenAIRE

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-01-01

    Background The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. Findings The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decrease...

  7. The molecular structure and vibrational spectra of N-(2,2-diphenylacetyl)- N'-(naphthalen-1yl)-thiourea by Hartree-Fock and density functional methods

    Science.gov (United States)

    Arslan, Hakan; Mansuroglu, Demet Sezgin; VanDerveer, Don; Binzet, Gun

    2009-04-01

    N-(2,2-Diphenylacetyl)- N'-(naphthalen-1yl)-thiourea (PANT) has been synthesized and characterized by elemental analysis, IR spectroscopy and 1H NMR spectroscopy. The crystal and molecular structure of the title compound has been determined from single crystal X-ray diffraction data. It crystallizes in the triclinic space group P-1, Z = 2 with a = 10.284(2) Å, b = 10.790(2) Å, c = 11.305(2) Å, α = 64.92(3)°, β = 89.88(3)°, γ = 62.99(3)°, V = 983.7(3) Å 3 and Dcalc = 1.339 Mg/m 3. The molecular structure, vibrational frequencies and infrared intensities of PANT were calculated by the Hartree-Fock and density functional theory methods (BLYP and B3LYP) using the 6-31G* basis set. The calculated geometric parameters were compared to the corresponding X-ray structure of the title compound. We obtained 22 stable conformers for the title compound; however Conformer 1 is approximately 9.53 kcal/mol more stable than Conformer 22. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of Conformer 17. The harmonic vibrations computed for this compound by the B3LYP/6-31G* method are in good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using the VEDA 4 program. A general better performance of the investigated methods was calculated by PAVF 1.0 program.

  8. The mid-IR Absorption Cross Sections of α- and β-NAT (HNO3 · 3H2O) in the range 170 to 185 K and of metastable NAD (HNO3 · 2H2O) in the range 172 to 182 K

    Science.gov (United States)

    Iannarelli, R.; Rossi, M. J.

    2015-11-01

    Growth and Fourier transform infrared (FTIR) absorption in transmission of the title nitric acid hydrates have been performed in a stirred flow reactor (SFR) under tight control of the H2O and HNO3 deposition conditions affording a closed mass balance of the binary mixture. The gas and condensed phases have been simultaneously monitored using residual gas mass spectrometry and FTIR absorption spectroscopy, respectively. Barrierless nucleation of the metastable phases of both α-NAT (nitric acid trihydrate) and NAD (nitric acid dihydrate) has been observed when HNO3 was admitted to the SFR in the presence of a macroscopic thin film of pure H2O ice of typically 1 µm thickness. The stable β-NAT phase was spontaneously formed from the precursor α-NAT phase through irreversible thermal rearrangement beginning at 185 K. This facile growth scheme of nitric acid hydrates requires the presence of H2O ice at thicknesses in excess of approximately hundred nanometers. Absolute absorption cross sections in the mid-IR spectral range (700-4000 cm-1) of all three title compounds have been obtained after spectral subtraction of excess pure ice at temperatures characteristic of the upper troposphere/lower stratosphere. Prominent IR absorption frequencies correspond to the antisymmetric nitrate stretch vibration (ν3(NO3-)) in the range 1300 to 1420 cm-1 and the bands of hydrated protons in the range 1670 to 1850 cm-1 in addition to the antisymmetric O-H stretch vibration of bound H2O in the range 3380 to 3430 cm-1 for NAT.

  9. Structural, vibrational, elastic and topological properties of PaN under pressure

    DEFF Research Database (Denmark)

    Modak, P.; K. Verma, Ashok; Svane, A.

    2013-01-01

    Electronic, structural, vibrational and elastic properties of PaN have been studied both at ambient and high pressures, using first principles methods with several commonly used parameterizations of the exchange-correlation energy. The generalized gradient approximation (GGA) reproduces the groun...

  10. Optimal stretching in the reacting wake of a bluff body.

    Science.gov (United States)

    Wang, Jinge; Tithof, Jeffrey; Nevins, Thomas D; Colón, Rony O; Kelley, Douglas H

    2017-12-01

    We experimentally study spreading of the Belousov-Zhabotinsky reaction behind a bluff body in a laminar flow. Locations of reacted regions (i.e., regions with high product concentration) correlate with a moderate range of Lagrangian stretching and that range is close to the range of optimal stretching previously observed in topologically different flows [T. D. Nevins and D. H. Kelley, Phys. Rev. Lett. 117, 164502 (2016)]. The previous work found optimal stretching in a closed, vortex dominated flow, but this article uses an open flow and only a small area of appreciable vorticity. We hypothesize that optimal stretching is common in advection-reaction-diffusion systems with an excitation threshold, including excitable and bistable systems, and that the optimal range depends on reaction chemistry and not on flow shape or characteristic speed. Our results may also give insight into plankton blooms behind islands in ocean currents.

  11. [Structure analysis of disease-related proteins using vibrational spectroscopy].

    Science.gov (United States)

    Hiramatsu, Hirotsugu

    2014-01-01

    Analyses of the structure and properties of identified pathogenic proteins are important for elucidating the molecular basis of diseases and in drug discovery research. Vibrational spectroscopy has advantages over other techniques in terms of sensitivity of detection of structural changes. Spectral analysis, however, is complicated because the spectrum involves a substantial amount of information. This article includes examples of structural analysis of disease-related proteins using vibrational spectroscopy in combination with additional techniques that facilitate data acquisition and analysis. Residue-specific conformation analysis of an amyloid fibril was conducted using IR absorption spectroscopy in combination with (13)C-isotope labeling, linear dichroism measurement, and analysis of amide I band features. We reveal a pH-dependent property of the interacting segment of an amyloidogenic protein, β2-microglobulin, which causes dialysis-related amyloidosis. We also reveal the molecular mechanisms underlying pH-dependent sugar-binding activity of human galectin-1, which is involved in cell adhesion, using spectroscopic techniques including UV resonance Raman spectroscopy. The decreased activity at acidic pH was attributed to a conformational change in the sugar-binding pocket caused by protonation of His52 (pKa 6.3) and the cation-π interaction between Trp68 and the protonated His44 (pKa 5.7). In addition, we show that the peak positions of the Raman bands of the C4=C5 stretching mode at approximately 1600 cm(-1) and the Nπ-C2-Nτ bending mode at approximately 1405 cm(-1) serve as markers of the His side-chain structure. The Raman signal was enhanced 12 fold using a vertical flow apparatus.

  12. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline

    NARCIS (Netherlands)

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.

    2011-01-01

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are

  13. The effect of streptomycin on stretch-induced electrophysiological changes of isolated acute myocardial infarcted hearts in rats.

    Science.gov (United States)

    Fu, Lu; Cao, Jun-xian; Xie, Rong-sheng; Li, Jia; Han, Ying; Zhu, Li-qun; Dai, Ying-nan

    2007-08-01

    To explore whether the stretch of ischaemic myocardium could modulate the electrophysiological characteristics, especially repolarization via mechanoelectric feedback (MEF), as well as the effect of streptomycin (SM) on these changes. Methods Thirty-six wistar rats were randomly divided into four groups: control group (n = 9), SM group (n = 9), myocardial infarction (MI) group (n = 9), and MI + SM group (n = 9). After perfused on Langendorff, the isolated hearts were stretched for 5s by a ballon inflation of 0.2mL. After being stretched, the effect of the stretch was observed for 30s, including the 20, 20-70, 70, and 90% monophasic action potential duration (MAPD), i.e. MAPD(20), MAPD(20-70), MAPD(70), and MAPD(90), respectively, premature ventricular beats (PVB), and ventricular tachycardia (VT). Results The stretch caused a decrease in MAPD(20-70) (both P 0.05, except MAPD(20-70) between the control and SM groups, P maintenance of malignant arrhythmias. SM could significantly inhibit the occurrence of arrhythmias, which may correlate with the effect on blocking stretch-activated ion channels.

  14. Communication: On the competition between adiabatic and nonadiabatic dynamics in vibrationally mediated ammonia photodissociation in its A band

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Changjian [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Zhu, Xiaolei; Yarkony, David R., E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Ma, Jianyi, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065 (China); Xie, Daiqian, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guo, Hua, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-03-07

    Non-adiabatic processes play an important role in photochemistry, but the mechanism for conversion of electronic energy to chemical energy is still poorly understood. To explore the possibility of vibrational control of non-adiabatic dynamics in a prototypical photoreaction, namely, the A-band photodissociation of NH{sub 3}(X{sup ~1}A{sub 1}), full-dimensional state-to-state quantum dynamics of symmetric or antisymmetric stretch excited NH{sub 3}(X{sup ~1}A{sub 1}) is investigated on recently developed coupled diabatic potential energy surfaces. The experimentally observed H atom kinetic energy distributions are reproduced. However, contrary to previous inferences, the NH{sub 2}(A{sup ~2}A{sub 1})/NH{sub 2}(X{sup ~2}B{sub 1}) branching ratio is found to be small regardless of the initial preparation of NH{sub 3}(X{sup ~1}A{sub 1}), while the internal state distribution of the preeminent fragment, NH{sub 2}(X{sup ~2}B{sub 1}), is found to depend strongly on the initial vibrational excitation of NH{sub 3}(X{sup ~1}A{sub 1}). The slow H atoms in photodissociation mediated by the antisymmetric stretch fundamental state are due to energy sequestered in the internally excited NH{sub 2}(X{sup ~2}B{sub 1}) fragment, rather than in NH{sub 2}(A{sup ~2}A{sub 1}) as previously proposed. The high internal excitation of the NH{sub 2}(X{sup ~2}B{sub 1}) fragment is attributed to the torques exerted on the molecule as it passes through the conical intersection seam to the ground electronic state of NH{sub 3}. Thus in this system, contrary to previous assertions, the control of electronic state branching by selective excitation of ground state vibrational modes is concluded to be ineffective. The juxtaposition of precise quantum mechanical results with complementary results based on quasi-classical surface hopping trajectories provides significant insights into the non-adiabatic process.

  15. Characteristic vibration patterns of odor compounds from bread-baking volatiles upon protein binding: density functional and ONIOM study and principal component analysis.

    Science.gov (United States)

    Treesuwan, Witcha; Hirao, Hajime; Morokuma, Keiji; Hannongbua, Supa

    2012-05-01

    As the mechanism underlying the sense of smell is unclear, different models have been used to rationalize structure-odor relationships. To gain insight into odorant molecules from bread baking, binding energies and vibration spectra in the gas phase and in the protein environment [7-transmembrane helices (7TMHs) of rhodopsin] were calculated using density functional theory [B3LYP/6-311++G(d,p)] and ONIOM [B3LYP/6-311++G(d,p):PM3] methods. It was found that acetaldehyde ("acid" category) binds strongly in the large cavity inside the receptor, whereas 2-ethyl-3-methylpyrazine ("roasted") binds weakly. Lys296, Tyr268, Thr118 and Ala117 were identified as key residues in the binding site. More emphasis was placed on how vibrational frequencies are shifted and intensities modified in the receptor protein environment. Principal component analysis (PCA) suggested that the frequency shifts of C-C stretching, CH(3) umbrella, C = O stretching and CH(3) stretching modes have a significant effect on odor quality. In fact, the frequency shifts of the C-C stretching and C = O stretching modes, as well as CH(3) umbrella and CH(3) symmetric stretching modes, exhibit different behaviors in the PCA loadings plot. A large frequency shift in the CH(3) symmetric stretching mode is associated with the sweet-roasted odor category and separates this from the acid odor category. A large frequency shift of the C-C stretching mode describes the roasted and oily-popcorn odor categories, and separates these from the buttery and acid odor categories.

  16. Various vibration modes in a silicon ring resonator driven by p–n diode actuators formed in the lateral direction

    Science.gov (United States)

    Tsushima, Takafumi; Asahi, Yoichi; Tanigawa, Hiroshi; Furutsuka, Takashi; Suzuki, Kenichiro

    2018-06-01

    In this paper, we describe p–n diode actuators that are formed in the lateral direction on resonators. Because previously reported p–n diode actuators, which were driven by a force parallel to the electrostatic force induced in a p–n diode, were fabricated in the perpendicular direction to the surface, the fabrication process to satisfy the requirement of realizing a p–n junction set in the middle of the plate thickness has been difficult. The resonators in this work are driven by p–n diodes formed in the lateral direction, making the process easy. We have fabricated a silicon ring resonator that has in-plane vibration using p–n–p and n–p–n diode actuators formed in the lateral direction. First, we consider a space charge model that can sufficiently accurately describe the force induced in p–n diode actuators and compare it with the capacitance model used in most computer simulations. Then, we show that multiplying the vibration amplitude calculated by computer simulation by the modification coefficient of 4/3 provides the vibration amplitude in the p–n diode actuators. Good agreement of the theory with experimental results of the in-plane vibration measured for silicon ring resonators is obtained. The computer simulation is very useful for evaluating various vibration modes in resonators driven by the p–n diode actuators. The small amplitude of the p–n diode actuator measured in this work is expected to increase greatly with increased doping of the actuator.

  17. Vibrationally resolved charge transfer for proton collisions with CO and H collisions with CO+

    International Nuclear Information System (INIS)

    Lin, C. Y.; Stancil, P. C.; Li, Y.; Gu, J. P.; Liebermann, H. P.; Buenker, R. J.; Kimura, M.

    2007-01-01

    Electron capture by protons following collisions with carbon monoxide, and the reverse process, is studied with a quantal molecular-orbital coupled-channel method utilizing the infinite order sudden approximation for collision energies between 0.5 and 1000 eV/u. The potential surfaces and couplings, computed with the multireference single- and double-excitation method for a range of H + -CO orientation angles and C-O separations, are adopted in the scattering calculations. Results including vibrationally resolved and orientation-angle-dependent cross sections are presented for a range of CO and CO + vibrational levels. Comparison with experiment is made where possible and the relevance of the reaction in astrophysics and atmospheric physics is discussed

  18. SYNTHESES AND CHARACTERIZATIONS OF THE CYANIDE ...

    African Journals Online (AJOL)

    to ν(C–N) stretching vibration. The ν(CC) stretching vibrations are observed at 1431 and 1395 cm-1 in FT-IR spectrum and these vibrations in the complexes shifted to higher frequency region around 1–11 cm-1 at 1431 cm-1 and lower frequency region around 1–12 cm-1 at 1395 cm-1, compared with the free etim molecule.

  19. High resolution infrared and Raman spectra of 13C12CD2: The CD stretching fundamentals and associated combination and hot bands

    International Nuclear Information System (INIS)

    Di Lonardo, G.; Fusina, L.; Canè, E.; Tamassia, F.; Martínez, R. Z.; Bermejo, D.

    2015-01-01

    Infrared and Raman spectra of mono 13 C fully deuterated acetylene, 13 C 12 CD 2 , have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm −1 in the region 1800–7800 cm −1 . Sixty new bands involving the ν 1 and ν 3 C—D stretching modes also associated with the ν 4 and ν 5 bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν 1 fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm −1 . The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ 4 + υ 5 up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ 4 = 2 and υ 5 = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm −1 , of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν 2 manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows between independent vibrations

  20. White Noise Responsiveness of an AlN Piezoelectric MEMS Cantilever Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Jia, Y; Seshia, A A

    2014-01-01

    This paper reports the design, analysis and experimental characterisation of a piezoelectric MEMS cantilever vibration energy harvester, the enhancement of its power output by adding various values of end mass, as well as assessing the responsiveness towards white noise. Devices are fabricated using a 0.5 μm AlN on 10 μm doped Si process. Cantilevers with 5 mm length and 2 mm width were tested at either unloaded condition (MC0: f n 577 Hz) or subjected to estimated end masses of 2 mg (MC2: f n 129 Hz) and 5 mg (MC5: f n 80 Hz). While MC0 was able to tolerate a higher drive acceleration prior to saturation (7 g with 0.7 μW), MC5 exhibited higher peak power attainable at a lower input vibration (2.56 μW at 3 ms −2 ). MC5 was also subjected to band-limited (10 Hz to 2 kHz) white noise vibration, where the power response was only a fraction of its resonant counterpart for the same input: peak instantaneous power >1 μW was only attainable beyond 2 g of white noise, whereas single frequency resonant response only required 2.5 ms −2 . Both the first resonant response and the band-limited white noise response were also compared to a numerical model, showing close agreements

  1. Pump-dump iterative squeezing of vibrational wave packets.

    Science.gov (United States)

    Chang, Bo Y; Sola, Ignacio R

    2005-12-22

    The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.

  2. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  3. Structural characterization of CO-inhibited Mo-nitrogenase by combined application of nuclear resonance vibrational spectroscopy, extended X-ray absorption fine structure, and density functional theory: new insights into the effects of CO binding and the role of the interstitial atom.

    Science.gov (United States)

    Scott, Aubrey D; Pelmenschikov, Vladimir; Guo, Yisong; Yan, Lifen; Wang, Hongxin; George, Simon J; Dapper, Christie H; Newton, William E; Yoda, Yoshitaka; Tanaka, Yoshihito; Cramer, Stephen P

    2014-11-12

    The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N2ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm(-1) mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the α-H195Q N2ase variant. In the frequency region above 450 cm(-1), additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by (13)CO isotope shifts). The EXAFS for wild-type N2ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 Å in the resting enzyme. A DFT model with both a terminal -CO and a partially reduced -CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the α-H195Q variant NRVS. The calculations also shed light on the vibrational "shake" modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. Implications for the CO and N2 reactivity of N2ase are discussed.

  4. Influence of the stretch wrapping process on the mechanical behavior of a stretch film

    Science.gov (United States)

    Klein, Daniel; Stommel, Markus; Zimmer, Johannes

    2018-05-01

    Lightweight construction is an ongoing task in packaging development. Consequently, the stability of packages during transport is gaining importance. This study contributes to the optimization of lightweight packaging concepts regarding their stability. A very widespread packaging concept is the distribution of goods on a pallet whereas a Polyethylene (PE) stretch film stabilizes the lightweight structure during the shipment. Usually, a stretch wrapping machine applies this stretch film to the pallet. The objective of this study is to support packaging development with a method that predicts the result of the wrapping process, based on the mechanical characterization of the stretch film. This result is not only defined by the amount of stretch film, its spatial distribution on the pallet and its internal stresses that result in a containment force. More accurate, this contribution also considers the influence of the deformation history of the stretch film during the wrapping process. By focusing on similarities of stretch wrappers rather than on differences, the influence of generalized process parameters on stretch film mechanics and thereby on pallet stability can be determined experimentally. For a practical use, the predictive method is accumulated in an analytic model of the wrapping process that can be verified experimentally. This paves the way for experimental and numerical approaches regarding the optimization of pallet stability.

  5. 2-Ethynylpyridine dimers

    DEFF Research Database (Denmark)

    Bakarić, Danijela; Spanget-Larsen, Jens

    2018-01-01

    are used to study possible 2-EP dimer structures as well as their distribution in an inert solvent such as tetrachloroethene. Experimentally, the ≡C–H stretching vibration of the 2-EPmonomer absorbs close to 3300 cm−1, whereas a broad band withmaximum around 3215 cm−1 emerges as the concentration rises...... model with counterpoise correction predict that the two most stable dimers are of the pi-stacked variety, closely followed by dimers with intermolecular ≡C–H···N hydrogen bonding; the predicted red shifts of the ≡C–H stretching wavenumbers due to hydrogen bonding are in the range 54 – 120 cm–1...

  6. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-01-01

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed

  7. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Hiroaki; Sul, Soohwan [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States); Ge, Nien-Hui, E-mail: nhge@uci.edu [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States)

    2013-08-30

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  8. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  9. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n](2 - n) (n + m = 5).

    Science.gov (United States)

    Ingram, Kieran I M; Häller, L Jonas L; Kaltsoyannis, Nikolas

    2006-05-28

    Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands.

  10. Oriented Morphology and Anisotropic Transport in Uniaxially Stretched Perfluorosulfonate Ionomer Membranes

    Energy Technology Data Exchange (ETDEWEB)

    J Park; J Li; G Divoux; L Madsen; R Moore

    2011-12-31

    Relations between morphology and transport sensitively govern proton conductivity in perfluorsulfonate ionomers (PFSIs) and thus determine useful properties of these technologically important materials. In order to understand such relations, we have conducted a broad systematic study of H{sup +}-form PFSI membranes over a range of uniaxial extensions and water uptakes. On the basis of small-angle X-ray scattering (SAXS) and {sup 2}H NMR spectroscopy, uniaxial deformation induces a strong alignment of ionic domains along the stretching direction. We correlate ionic domain orientation to transport using pulsed-field-gradient {sup 1}H NMR measurements of water diffusion coefficients along the three orthogonal membrane directions. Intriguingly, we observe that uniaxial deformation enhances water transport in one direction (parallel-to-draw direction) while reducing it in the other two directions (two orthogonal directions relative to the stretching direction). We evaluate another important transport parameter, proton conductivity, along two orthogonal in-plane directions. In agreement with water diffusion experiments, orientation of ionic channels increases proton conduction along the stretching direction while decreasing it in the perpendicular direction. These findings provide valuable fodder for optimal application of PFSI membranes as well as for the design of next generation polymer electrolyte membranes.

  11. Thermal expansivity of highly-stretched linear polyethylene with extended chains irradiated with different doses of γ-rays

    International Nuclear Information System (INIS)

    Turetskij, A.A.; Chvalun, S.N.; Zubov, Yu.A.; Bakeev, N.F.

    1993-01-01

    Temperature begavior of crystal lattice parameters of highly-stretched samples of linear polyethylene with extended chains irradiated with different doses of γ-rays was studied. It was found that transverse vibrations of macromolecular chains are excited at irradiation doses D≥500 Mrad and temperatures close to the melting temperature of the crystallites. These vibrations cause a sharp increase in the latiice parameter a. But no phase transition to the hexagonal packing occurs. It was shown that the thermal expansivity of the lattice parameter c changes its sign at high irradiation doses. These results are explained by the presence in the crystallites of samples irradiated with large doses of a considerable number of intermolecular chemical bonds

  12. Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector.

    Science.gov (United States)

    Çakar, Halil Ibrahim; Doğan, Serfiraz; Kara, Sadık; Rittweger, Jörn; Rawer, Rainer; Zange, Jochen

    2017-06-01

    In this study, we investigated the effects of vibration of the whole lower leg on the content and the oxygenation of hemoglobin in the unloaded relaxed lateral gastrocnemius muscle. Vibration was applied orthogonal to and in parallel with leg axis to examine whether the extrusion of blood depends on an alignment of main vessel direction, axis of vibration and gravity. The blood volume in the muscles was altered by horizontal and 30° upright body posture. Fifteen male subjects were exposed to 4 sets of experiments with both vibration directions and both tilt angles applied in permutated order. The absence of voluntary muscular activity and the potential occurrence of compound action potentials by stretch reflexes were monitored using electromyography. Total hemoglobin and tissue saturation index were measured with near infrared spectroscopy. Changes of lower leg circumference were measured with strain gauge system placed around the calf. Vibration caused decrease in tHb and increase in TSI indicating extrusion of predominantly venous blood from the muscle. In 30° tilted position, muscles contained more blood at baseline and vibration ejected more blood from the muscle compared with horizontal posture (p < 0.01). At 30° tilting deeper drop in tHb and steeper increase in TSI (p < 0.01) were observed when vibration was applied in parallel with the length axis of muscle. It is concluded that the vibration extrudes more blood in 30° head up posture and the vibration applied in parallel with the length axis of the muscle is more effective than orthogonal vibration.

  13. Vibrational spectra and structure of icosahedral anion of monocarba-closo-dodecaborane [CB11H12]- and its nido-derivative: [CB10H13]-

    International Nuclear Information System (INIS)

    Kononova, E.G.; Bukalov, S.S.; Lejtes, L.A.; Lysenko, K.A.; Ol'shevskaya, V.A.

    2003-01-01

    Raman and IR spectra of cesium salts of monocarborane anions [closo-CB 11 H 12 ] - and [nido-CB 10 H 13 ] - were recorded, assignment of frequencies being provided. Quantum-chemical calculation of geometry of the closo-polyhedrons [B 12 H 12 ] 2- and [CB 11 H 12 ] - along with that of frequencies and forms of normal vibrations of the latter was made. Comparison of structural and spectral characteristics in the series of isoelectronic closo-polyhedrons [B 12 H 12 ] 2- , [CB 11 H 12 ] - and p-C 2 B 10 H 12 , as well as those of the closo- and nido structures, was made [ru

  14. Determination of excitation temperature and vibrational temperature of the N2(C 3Πu, ν') state in Ne-N2 RF discharges

    International Nuclear Information System (INIS)

    Rehman, N U; Naveed, M A; Zakaullah, M; Khan, F U

    2008-01-01

    Optical emission spectroscopy is used to investigate the effect of neon mixing on the excitation and vibrational temperatures of the second positive system in nitrogen plasma generated by a 13.56 MHz RF generator. The excitation temperature is determined from Ne I line intensities, using Boltzmann's plot. The overpopulation of the levels of the N 2 (C 3 Π u , ν') states with neon mixing are monitored by measuring the emission intensities of the second positive system of nitrogen molecules. The vibrational temperature is calculated for the sequence Δν = -2, with the assumption that it follows Boltzmann's distribution. But due to overpopulation of levels, e.g. 1, 4, a linearization process was employed for such distributions allowing us to calculate the vibrational temperature of the N 2 (C 3 Π u , ν') state. It is found that the excitation temperature as well as the vibrational temperature of the second positive system can be raised significantly by mixing neon with nitrogen plasma. It is also found that the vibrational temperature increases with power and pressure up to 0.5 mbar.

  15. Vibrational Fingerprints of Low-Lying PtnP2n (n = 1–5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces

    KAUST Repository

    Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe

    2015-01-01

    Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.

  16. Vibrational Fingerprints of Low-Lying PtnP2n (n = 1–5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces

    KAUST Repository

    Jedidi, Abdesslem

    2015-11-13

    Vibrational fingerprints of small PtnP2n (n = 1–5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first PtnP2n isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the PtnP2n structures.

  17. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility.

    Science.gov (United States)

    Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.

  18. Short Durations of Static Stretching when Combined with Dynamic Stretching do not Impair Repeated Sprints and Agility

    Science.gov (United States)

    Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.

    2011-01-01

    This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890

  19. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

    Science.gov (United States)

    Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

    2018-01-01

    amplification of handle vibration at the fingers. The fingers' vibration transmission performance of gloves were further evaluated using a proposed finger frequency-weighting W f apart from the standardized W h -weighting. It is shown that the W h weighting generally overestimates the VR glove effectiveness in limiting the fingers vibration in the high (H: 200-1250 Hz) frequency range. Both the weightings, however, revealed comparable performance of gloves in the mid (M: 25-200 Hz) frequency range. The VR gloves, with the exception of the leather glove, showed considerable reductions in the grip strength (27-41%), while the grip strength reduction was not correlated with the glove material thickness. It is suggested that effectiveness of VR gloves should be assessed considering the vibration transmission to both the palm and fingers of the hand together with the hand grip strength reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO⁺(H₂O) cluster using accurate potential energy and dipole moment surfaces.

    Science.gov (United States)

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO(+)(H2O) cluster is reported. The PES is based on fitting of roughly 32,000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO(+)(H2O) and NO(+)(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO(+)(H2O) and NO(+)(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO(+)(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  1. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  2. Synthesis, crystal structure, and vibrational spectra of the anhydrous lithium dicyanamide Li[N(CN){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 (United States); Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); DiSalvo, Francis J. [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 (United States); Schulz, Armin [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Blaschkowski, Bjoern; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Jagiella, Stefan [Institut fuer Physikalische und Theoretische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2014-04-15

    Crystals of Li[N(CN){sub 2}] were synthesized from a metathesis reaction of stoichiometric amounts of aqueous solutions of Na[N(CN){sub 2}] and Li{sub 2}[SO{sub 4}] followed by subsequent treatment with ethanol and evaporation of the filtered-off solution at 80 C under normal atmospheric conditions. The single crystals of the title compound are transparent, colorless, and extremly hygroscopic. X-ray structure analysis showed that Li[N(CN){sub 2}] crystallizes in the monoclinic space group P2/c with the cell parameters a = 530.79(8) pm, b = 524.89(9) pm, c = 1149.77(17) pm, β = 101.551(7) , and Z = 4. The crystal structure contains Li{sup +} cations in both tetrahedral and octahedral nitrogen coordination of the boomerang-shaped [N≡C-N-C≡N]{sup -} anions. The vibrational spectra of Li[N(CN){sub 2}] are reported as well, together with ab initio calculations for geometry and harmonic frequencies of the free dicyanamide anion. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Laser diagnostics of high vibrational and rotational H2-states

    International Nuclear Information System (INIS)

    Mosbach, Th.; Schulz-von der Gathen, V.; Doebele, H.F.

    2002-01-01

    We report on measurements of vibrational and rotational excited electronic-ground-state hydrogen molecules in a magnetic multipole plasma source by LIF with VUV radiation. The measurements are taken after rapid shut-off of the discharge current. Absolute level populations are obtained using Rayleigh scattering calibration with Krypton. The theoretically predicted suprathermal population of the vibrational distribution is clearly identified. We found also non-Boltzmann rotational distributions for the high vibrational states. The addition of noble gases (Argon and Xenon) to hydrogen leads to a decrease of the vibrational population. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  4. Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Michał; Oh, Younjun; Park, Kwanghee; Lee, Jooyong; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of); Kwak, Kyung-Won [Department of Chemistry, Chung-Ang University, Seoul 156-756, SouthKorea (Korea, Republic of)

    2014-06-21

    The structure and vibrational dynamics of SCN- and SeCN-bound myoglobin have been investigated using polarization-controlled IR pump-probe measurements and quantum chemistry calculations. The complexes are found to be in low and high spin states, with the dominant contribution from the latter. In addition, the Mb:SCN high spin complex exhibits a doublet feature in the thiocyanate stretch IR absorption spectra, indicating two distinct molecular conformations around the heme pocket. The binding mode of the high spin complexes was assigned to occur through the nitrogen atom, contrary to the binding through the sulfur atom that was observed in myoglobin derived from Aplysia Limacina. The vibrational energy relaxation process has been found to occur substantially faster than those of free SCN{sup −} and SeCN{sup −} ions and neutral SCN- and SeCN-derivatized molecules reported previously. This supports the N-bound configurations of MbNCS and MbNCSe, because S- and Se-bound configurations are expected to have significantly long lifetimes due to the insulation effect by heavy bridge atom like S and Se in such IR probes. Nonetheless, even though their lifetimes are much shorter than those of corresponding free ions in water, the vibrational lifetimes determined for MbNCS and MbNCSe are still fairly long compared to those of azide and cyanide myoglobin systems studied before. Thus, thiocyanate and selenocyanate can be good local probes of local electrostatic environment in the heme pocket. The globin dependence on binding mode and vibrational dynamics is also discussed.

  5. An investigation onto the molecular structure of 5-chloro-3-(2-(4-ethylpiperazine-1-il)-2-oxoethyl)benzo[d]thiazole-2(3H)-on drug molecule before and after atmospheric pressure plasma treatment

    Science.gov (United States)

    Tanışlı, Murat; Taşal, Erol; Şahin, Neslihan; Dikmen, Gökhan

    2018-05-01

    The spectra of molecular structure for the 5-chloro-3-(2-(4-ethylpiperazine-1-il)-2-oxoethyl)benzo[d]thiazole-2(3H)-on drug molecule (abbreviated as 5KEB) before and after the atmospheric pressure plasma treatments (APPTs) of neon (Ne) and argon (Ar) were investigated. The Fourier transform infrared (FT-IR), ultraviolet visible (UV-Vis) spectra and NMR measurements of the 5KEB drug molecule dissolved in toluene and ethanol solvents were recorded and examined for liquid phases. Then FT-IR, UV-Vis spectra and NMR measurements were analysed. It is seen that some bonds of 5KEB molecule were decomposed. There were also unobserved vibrational modes. After the Ne plasma at the atmospheric pressure applied to 5KEB drug molecule dissolved in toluene, the bonds as 9Ssbnd 8C; 9Ssbnd 8C = 10 O, 8Csbnd 7N, 7Nsbnd 8C = 10O were vanished, and then the new bonds of the 7N = 8C, 7N = 8C = 10 O, 9Ssbnd 5Csbnd 4Csbnd 7N = 8C = 10O were observed. New photoproducts may be defined as the stretching peaks, stretching vibrational modes for 5KEB drug molecule in liquid phase prepared with ethanol and toluene solvents after APPT. Also, after Ar plasma at atmospheric pressure applied here, the 9Ssbnd 8C bond of the 5KEB drug molecule dissolved in toluene was broken. The isomerization process in UV-Vis was defined by π-π* and n-π* electronic transitions. According to NMR results, protons of pyridine ring, protons of CH2 group bonded to carbonyl group and protons of CH3 group more affected than other protons from Ar and Ne APPTs and these protons were eliminated by Ar and Ne APPTs.

  6. Vibration-damping structure for reactor building

    International Nuclear Information System (INIS)

    Kuno, Toshio; Iba, Chikara; Tanaka, Hideki; Kageyama, Mitsuru

    1998-01-01

    In a damping structure of a reactor building, an inner concrete body and a reactor container are connected by way of a vibration absorbing member. As the vibration absorbing member, springs or dampers are used. The inner concrete body and the reactor container each having weight and inherent frequency different from each other are opposed displaceably by way of the vibration absorbing member thereby enabling to reduce seismic input and reduce shearing force at least at leg portions. Accordingly, seismic loads are reduced to increase the grounding rate of the base thereby enabling to satisfy an allowable value. Therefore, it is not necessary to strengthen the inner concrete body and the reactor container excessively, the amount of reinforcing rods can be reduced, and the amount of a portion of the base buried to the ground can be reduced thereby enabling to constitute the reactor building easily. (N.H.)

  7. Evaluation of mosquito larvicidal activity of fruit extracts of Acacia auriculiformis against the Japanese encephalitis vector Culex vishnui.

    Science.gov (United States)

    Barik, Mousumi; Rawani, Anjali; Laskar, Subrata; Chandra, Goutam

    2018-02-19

    The larvicidal potentiality of crude and ethyl acetate extracts of fruits of Acacia auriculiformis was investigated against all the larval instars of JE vector Culex vishnui. The crude extracts showed good results against all the larval instars with highest mortality at 0.09%. Highest mortality was found at 300 ppm of ethyl acetate extract. Lowest LC 50 value was obtained at 72 h for third instar larvae. Non target organisms tested, showed no to very less mortality to ethyl acetate solvent extract. Presence of N-H stretching, a C=O stretching, C=C and C-N stretching vibrations of secondary amide or amine group were confirmed from IR analysis. GC-MS analysis revealed the presence of three compounds namely Ethane 2-chloro-1,1-dimethoxy, Acetic acid, 1-methyl ether ester and [4-[1-[3,5-Dimethyl-4[(trimethylsilyl)oxy)phenyl]-1,3-dimethylbutyl)-2,6dimethylphenoxy)(trimethyl) silane, responsible for mosquito larval death.

  8. Passive Stretch Versus Active Stretch on Intervertebral Movement in Non - Specific Neck Pain

    International Nuclear Information System (INIS)

    Abd El - Aziz, A.H.; Amin, D.I.; Moustafa, I.

    2016-01-01

    Neck pain is one of the most common and painful musculoskeletal conditions. Point prevalence ranges from 6% to 22% and up to 38% of the elderly population, while lifetime prevalence ranges from 14,2% to 71%. Up till now no randomized study showed the effect between controversy of active and passive stretch on intervertebral movement. The purpose: the current study was to investigate the effect of the passive and active stretch on intervertebral movement in non - specific neck pain. Material and methods: Forty five subjects from both sexes with age range between 18 and 30 years and assigned in three groups, group I (15) received active stretch, ultrasound and TENS. Group II (15) received passive stretch, ultrasound and TENS. Group III (15) received ultrasound and TENS. The radiological assessment was used to measure rotational and translational movement of intervertebral movement before and after treatment. Results: MANOVA test was used for radiological assessment before and after treatment there was significant increase in intervertebral movement in group I as p value =0.0001. Conclusion: active stretch had a effect in increasing the intervertebral movement compared to the passive stretch

  9. Dissociative electron attachment to vibrationally excited H2 molecules involving the 2Σg+ resonant Rydberg electronic state

    International Nuclear Information System (INIS)

    Celiberto, R.; Janev, R.K.; Wadehra, J.M.; Tennyson, J.

    2012-01-01

    Graphical abstract: Dissociative electron attachment cross sections as a function of the incident electron energy and for the initial vibration levels v i = 0–5, 10 of the H 2 molecule. Highlights: ► We calculated electron–hydrogen dissociative attachment cross sections and rates coefficients. ► Collision processes occurring through a resonant Rydberg state are considered. ► Cross sections and rates were obtained for vibrationally excited hydrogen molecules. ► The cross sections exhibit pronounced oscillatory structures. ► A comparison with the process involving the electron–hydrogen resonant ground state is discussed. - Abstract: Dissociative electron attachment cross sections (DEA) on vibrationally excited H 2 molecule taking place via the 2 Σ g + Rydberg-excited resonant state are studied using the local complex potential (LCP) model for resonant collisions. The cross sections are calculated for all initial vibrational levels (v i = 0–14) of the neutral molecule. In contrast to the previously noted dramatic increase in the DEA cross sections with increasing v i , when the process proceeds via the X 2 Σ u + shape resonance of H 2 , for the 2 Σ g + Rydberg resonance the cross sections increase only gradually up to v i = 3 and then decrease. Moreover, the cross sections for v i ⩾ 6 exhibit pronounced oscillatory structures. A discussion of the origin of the observed behavior of calculated cross sections is given. The DEA rate coefficients for all v i levels are also calculated in the 0.5–1000 eV temperature range.

  10. Calcineurin /NFAT activation-dependence of leptin synthesis and vascular growth in response to mechanical stretch

    Directory of Open Access Journals (Sweden)

    Nadia Soudani

    2016-09-01

    Full Text Available Background and Aims- Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca+2/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC hypertrophy and leptin synthesis. Methods and Results- Rat portal vein (RPV organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM, the selective calcineurin inhibitor FK506 (1 nM and the ERK1/2 inhibitor PD98059 (1 μM. The transcription inhibitor actinomycin D (0.1M and the translation inhibitor cycloheximide (1 mM significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM. In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL, the ROCK inhibitor Y-27632 (10 μM, and the actin depolymerization agents Latrunculin B (50 nM and cytochalasin D (1 μM reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions- Mechanical stretch-induced VSMC hypertrophy and leptin

  11. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    Science.gov (United States)

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  12. Chemical reaction surface vibrational frequencies evaluated in curvilinear internal coordinates: Application to H + CH(4) H(2) + CH(3).

    Science.gov (United States)

    Banks, Simon T; Clary, David C

    2009-01-14

    We consider the general problem of vibrational analysis at nonglobally optimized points on a reduced dimensional reaction surface. We discuss the importance of the use of curvilinear internal coordinates to describe molecular motion and derive a curvilinear projection operator to remove the contribution of nonzero gradients from the Hessian matrix. Our projection scheme is tested in the context of a two-dimensional quantum scattering calculation for the reaction H + CH(4) --> H(2) + CH(3) and its reverse H(2) + CH(3) --> H + CH(4). Using zero-point energies calculated via rectilinear and curvilinear projections we construct two two-dimensional, adiabatically corrected, ab initio reaction surfaces for this system. It is shown that the use of curvilinear coordinates removes unphysical imaginary frequencies observed with rectilinear projection and leads to significantly improved thermal rate constants for both the forward and reverse reactions.

  13. Electric field dependent structural and vibrational properties of the Si(100)-H(2 x 1) surface and its implications for STM induced hydrogen desorption

    DEFF Research Database (Denmark)

    Stokbro, Kurt

    1999-01-01

    We report a first principles study of the structure and the vibrational properties of the Si(100)-H(2 x 1) surface in an electric field. The calculated vibrational parameters are used to model the vibrational modes in the presence of the electric field corresponding to a realistic scanning...

  14. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    Science.gov (United States)

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Errors in the estimation method for the rejection of vibrations in adaptive optics systems

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.

  16. Molecular structure, vibrational spectra and DFT computational studies of melaminium N-acetylglycinate dihydrate

    Science.gov (United States)

    Tanak, H.; Pawlus, K.; Marchewka, M. K.

    2016-10-01

    Melaminium N-acetylglycinate dihydrate, an organic material has been synthesized and characterized by X-ray diffraction, FT-IR, and FT-Raman spectroscopies for the protiated and deuteriated crystals. The title complex crystallizes in the triclinic system, and the space group is P-1 with a = 5.642(1) Å, b = 7.773(2) Å, c = 15.775(3) Å, α = 77.28(1)°, β = 84.00(1)°, γ = 73.43(1)° and Z = 2. The molecular geometry, vibrational frequencies and intensity of the vibrational bands have been interpreted with the aid of structure optimization based on density functional method (B3LYP) with the 6-311++G(d,p) basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. The intermolecular hydrogen bonding interactions of the title compound have been investigated using the natural bonding orbital analysis. It reveals that the O-H···O, N-H···N and N-H···O intermolecular interactions significantly influence crystal packing of this molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, thermodynamic properties, frontier orbitals and chemical reactivity descriptors were also performed at 6-311++G(d,p) level of theory.

  17. NEW ACCURATE MEASUREMENT OF {sup 36}ArH{sup +} AND {sup 38}ArH{sup +} RO-VIBRATIONAL TRANSITIONS BY HIGH RESOLUTION IR ABSORPTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, M.; Herrero, V. J.; Tanarro, I.; Doménech, J. L. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Cernicharo, J. [Department of Astrophysics, CAB. INTA-CSIC. Crta Torrejón-Ajalvir Km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Barlow, M. J.; Swinyard, B. M., E-mail: jl.domenech@csic.es [Department of Physics and Astronomy, University College London. Gower Street, London WC1E 6BT (United Kingdom)

    2014-03-01

    The protonated argon ion, {sup 36}ArH{sup +}, was recently identified in the Crab Nebula from Herschel spectra. Given the atmospheric opacity at the frequency of its J = 1-0 and J = 2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of {sup 36}ArH{sup +} and {sup 38}ArH{sup +} rotation-vibration transitions in the v = 1-0 band in the range 4.1-3.7 μm (2450-2715 cm{sup –1}). The wavenumbers of the R(0) transitions of the v = 1-0 band are 2612.50135 ± 0.00033 and 2610.70177 ± 0.00042 cm{sup –1} (±3σ) for {sup 36}ArH{sup +} and {sup 38}ArH{sup +}, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and with a linewidth of 1 km s{sup –1} of the R(0) line is 1.6 × 10{sup –15} × N({sup 36}ArH{sup +}). For column densities of {sup 36}ArH{sup +} larger than 1 × 10{sup 13} cm{sup –2}, significant absorption by the R(0) line can be expected against bright mid-IR sources.

  18. SHORT DURATIONS OF STATIC STRETCHING WHEN COMBINED WITH DYNAMIC STRETCHING DO NOT IMPAIR REPEATED SPRINTS AND AGILITY

    Directory of Open Access Journals (Sweden)

    Del P. Wong

    2011-06-01

    Full Text Available This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA and change of direction (COD. Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s. Three dynamic stretching exercises of 30 s duration were then performed (90 s total. Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p < 0.001. However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (< 90 s static stretching may not have provided sufficient stimulus to elicit performance impairments

  19. Theoretical study of manganese hydrides and halides, MnX{sub n} with X = H, F, Cl, Br and n = 1-4

    Energy Technology Data Exchange (ETDEWEB)

    Nhat, Pham Vu [Department of Chemistry, University of Leuven, B-3001 Leuven (Belgium); Department of Chemistry, Can Tho University, Can Tho (Viet Nam); Cuong, Ngo Tuan [Department of Chemistry, University of Leuven, B-3001 Leuven (Belgium); Duy, Pham Khac [Institute of Chemistry, Academy of Science and Technology (VAST), Ha Noi (Viet Nam); Nguyen, Minh Tho, E-mail: minh.nguyen@chem.kuleuven.be [Department of Chemistry, University of Leuven, B-3001 Leuven (Belgium); Institute for Computational Science and Technology (ICST), HoChiMinh City (Viet Nam)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer The B3P86 functional is found to be reliable in predictions of molecular structures and vibrational spectra. Black-Right-Pointing-Pointer The hybrid B3LYP is more reliable for energetic parameters such as heats of formation. Black-Right-Pointing-Pointer We also propose several new assignments for heats of formation and ionization energies of a number of species considered. - Abstract: Properties of a series of MnX{sub n} with X = H, F, Cl, Br and n = 1-4 are investigated using DFT, CCSD(T) and CASPT2 computations. The B3P86/6-311++G(3df,2d) method appears to be suitable for predicting their structures whose geometries and IR spectra are dependent on the charge state. While MnX{sub 2} are linear, MnX{sub 3} and MnX{sub 4} are characterized by high symmetry shape. The {pi}-bonding type is observed for MnH{sub 3}{sup 0/+} and MnH{sub 4}{sup 0/+}. In halides, a different type of bonds is formed as p-orbitals of halogens can overlap with empty metal d-orbitals allowing a more effective electron transfer and high spin ground electronic states. Vibrational frequencies and basic energetic quantities are computed and compared with available experiments. Several previous thermochemical quantities are re-evaluated, and the heats of formation of Mn-compounds can be determined with reasonable accuracy using the B3LYP functional. However, while calculated ionization energies are in agreement with experiment, electron affinities are obtained with large deviations.

  20. Studies of interstellar vibrationally-excited molecules

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Snell, R.L.; Erickson, N.R.

    1986-01-01

    Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam

  1. Research of H5N6 Treatment by Comparing with H6N1 and H10N8 by Using Decision Tree and Apriori Algorithm

    Directory of Open Access Journals (Sweden)

    Kim Sunghyun

    2016-01-01

    Full Text Available Since 2003, 608 people in 15 countries have infected with human-infectious AI viruses and 359 of them died. Especially, in China, H6N1 and H10N8 viruses were wide-spread and a lot of people were infected and died. Recently, H5N6 virus emerged in China and the number of patients has been increasing gradually. Therefore, this research compared amino acid strain of Matrix Protein, Hemagglutinin, Neuraminidase and Nucleoprotein of H5N6, H6N1 and H10N8, by using Decision tree and Apriori Algorithm, to figure out their similarity and devise the treatment. In result, Matrix protein and Nucleoprotein sequences of H5N6 were similar with those of H6N1 and H10N8. Therefore, this research concluded that the treatment targeting those proteins of H6N1 and H10N8 will be also effective to H5N6.

  2. Ultrafast phosphate hydration dynamics in bulk H2O

    Science.gov (United States)

    Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas

    2015-06-01

    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H2PO4- ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric ( ν S ( PO2 - ) ) and asymmetric ( ν A S ( PO2 - ) ) PO 2- stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH)2) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν S ( PO2 - ) and ν A S ( PO2 - ) transition frequencies with larger frequency excursions for ν A S ( PO2 - ) . The calculated frequency-time correlation function is in good agreement with the experiment. The ν ( PO2 - ) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H2PO4-/H2O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.

  3. Organic Signature of Dust from the Interstellar Medium (ISM)

    Science.gov (United States)

    Freund, Friedemann; Freund, Minoru; Staple, Aaron; Scoville, John

    2001-01-01

    Dust in the ISM carries an "organic" signature in form of a distinct group of C-H stretching bands, both in emission and absorption, around 3.4 micrometers. These bands agree with the symmetrical and asymmetrical C-H stretching vibrations of aliphatic -CH2- entities and are thought to be associated with organic molecules on the surface of dust grains. We show that this interpretation is inconsistent with laboratory experiments. Synthetic MgO and natural olivine single crystals, grown from a CO/CO2/H2O-saturated melt, exhibit the same C-H stretching bands but those bands are clearly associated with C-H entities inside the dense mineral matrix. The multitude of C-H stretching bands suggests that the C-H bonds arise from polyatomic C(sub n) entities. We heated the MgO and olivine crystals to temperatures between 550-1000 K to pyrolyze the C-H bonds and to cause the C-H stretching bands to disappear. Upon annealing at moderate temperatures between 300-390 K the C-H stretching bands reappear within a few days to weeks. The C-H stretching band intensity increases linearly with the square root of time. Thus, while the pyrolysis broke the C-H bonds and caused the H to disperse in the mineral matrix, the H atoms (or H2 molecules) are sufficiently mobile to return during annealing and reestablish the C-H bonds. Dust grains that condense in a gas-laden environment (outflow of late-stage stars or in dense molecular clouds) probably incorporate the same type of Cn-H entities. Imbedded in and in part bonded to the surrounding mineral matrix, the Cn-H entities display C-H stretching bands in the 3.4 micrometer region, but their lower frequency librational modes are so strongly coupled to the lattice modes that they broaden excessively and thus become unobservable.

  4. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    Science.gov (United States)

    2017-10-31

    VC-nH2O for Small and Water-Dominated Molecular Clusters October 31, 2017 Approved for public release; distribution is unlimited. L. Huang S.g...Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters L. Huang,1 S.G...nH2O molecular clusters using density function theory (DFT). DFT can provide interpretation of absorption spectra with respect to molecular

  5. Influence of H on the composition and atomic concentrations of 'N-rich' plasma deposited SiOxNyHz films

    International Nuclear Information System (INIS)

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bohne, W.; Roehrich, J.; Selle, B.

    2004-01-01

    The influence of H on the composition and atomic concentrations of Si, O, and N of plasma deposited SiO x N y H z films was investigated. The bonding scheme of H was analyzed by Fourier-transform infrared spectroscopy. The composition and absolute concentrations of all the species present in the SiO x N y H z , including H, was measured by heavy-ion elastic recoil detection analysis (HI-ERDA). Samples were deposited from SiH 4 , O 2 , and N 2 gas mixtures, with different gas flow ratios in order to obtain compositions ranging from SiN y H z to SiO 2 . Those samples deposited at higher SiH 4 partial pressures show both Si-H and N-H bonds, while those deposited at lower SiH 4 partial pressures show N-H bonds only. The Si-H and N-H bond concentrations were found to be proportional to the N concentration. The concentration of H was evaluated from the Si-H and N-H stretching absorption bands and compared to the HI-ERDA results, finding good agreement between both measurements. The deviation from H-free stoichiometric SiO x N y composition due to the presence of N-H bonds results in an effective coordination number of N to produce Si-N bonds lower than 3. By fitting the experimental composition data to a theoretical model taking into account the influence of N-H bonds, the actual concentration of N-H bonds was obtained, making evident the presence of nonbonded H. The presence of Si-H and Si-Si bonds was found to partially compensate the effect of N-H bonds, from the point of view of the relative N and Si contents. Finally, the presence of N-H bonds results in a lower Si atom concentration with respect to the stoichiometric film, due to a replacement of Si atoms by H atoms. This decrease of the Si concentration is lower in those films containing Si-H and Si-Si bonds. A model was developed to calculate the Si, O, and N atom concentrations taking into account the influence of N-H, Si-H, and Si-Si bonds, and was found to be in perfect agreement with the experimental data

  6. Conformational, vibrational and DFT studies of a newly synthesized arylpiperazine-based drug and evaluation of its reactivity towards the human GABA receptor

    Science.gov (United States)

    Onawole, A. T.; Al-Ahmadi, A. F.; Mary, Y. S.; Panicker, C. Y.; Ullah, N.; Armaković, S.; Armaković, S. J.; Van Alsenoy, C.; Al-Saadi, A. A.

    2017-11-01

    This study reports a computational assessment of important biochemical properties and vibrational assignments for the synthesized 1-(4-(3-methoxy-4-nitrophenyl)piperazin-1-yl)ethanone (MNPE). MNPE is related to the commonly used arylpiperazine-based drugs that exhibit a wide range of pharmacological activities. The characterization of MNPE is based on the readily sighted 1363 cm-1 infrared band (associated with piperazine ring stretching), 1308 cm-1 Raman line (associated with the phenyl ring breathing), 1242 cm-1 Raman line and 1092 cm-1 infrared band (both associated with Csbnd N stretching) as key modes in its vibrational spectra. First principle calculations revealed that MNPE could exist in sixteen different plausible conformations, which were used as basis to understand the possible molecular docking mechanism of the molecule as an agonist in the human GABAA receptor. The best binding scenarios showed the presence of intramolecular hydrogen bonding in MNPE and was comparable with the most stable configuration. It was further evaluated for its reactivity properties by utilizing the concepts of Average Local Ionization Energies (ALIE) and Fukui functions. The autoxidation and hydrolysis degradation likelihood of MNPE estimated from the computed bond dissociation energies and radial distribution functions predicted that MNPE is to be readily biodegradable in aqueous solutions.

  7. Structural and vibrational study of a neurotransmitter molecule: Dopamine [4-(2-aminoethyl) benzene-1,2-diol].

    Science.gov (United States)

    Jha, Omkant; Yadav, T K; Yadav, R A

    2018-01-15

    Structural and vibrational studies for the most stable conformer of dopamine {4-(2-Aminoethyl) benzene-1, 2-diol} have been carried out at the DFT/B3LYP/6-311++G** level using the Gaussian 09 software. The IR and Raman spectra have been recorded and analyzed in light of the computed vibrational parameters using the DFT and the PEDs computed with the help of the GAR2PED software. Some of the fundamentals have considerably changed frequencies in going from benzene to dopamine. Except the rocking and wagging modes of the NH 2 group the other four modes are pure group modes. The rocking and wagging modes of the NH 2 group show mixing with the other modes. The two OH stretching vibrations are highly localized modes. The Kekule phenyl ring stretching mode is found to remain almost unchanged. The HOMO-LUMO study suggests the existence of charge transfer within the molecule and the energy gap supports the pharmacological active property of the dopamine molecule. The NBO analysis has been carried out to understand the proper and improper hydrogen bonding. Copyright © 2017. Published by Elsevier B.V.

  8. Optimizing an Intermittent Stretch Paradigm Using ERK1/2 Phosphorylation Results in Increased Collagen Synthesis in Engineered Ligaments

    Science.gov (United States)

    Paxton, Jennifer Z.; Hagerty, Paul; Andrick, Jonathan J.

    2012-01-01

    Dynamic mechanical input is believed to play a critical role in the development of functional musculoskeletal tissues. To study this phenomenon, cyclic uniaxial mechanical stretch was applied to engineered ligaments using a custom-built bioreactor and the effects of different stretch frequency, amplitude, and duration were determined. Stretch acutely increased the phosphorylation of p38 (3.5±0.74-fold), S6K1 (3.9±0.19-fold), and ERK1/2 (2.45±0.32-fold). The phosphorylation of ERK1/2 was dependent on time, rather than on frequency or amplitude, within these constructs. ERK1/2 phosphorylation was similar following stretch at frequencies from 0.1 to 1 Hz and amplitudes from 2.5% to 15%, whereas phosphorylation reached maximal levels at 10 min of stretch and returned toward basal within 60 min of stretch. Following a single 10-min bout of cyclic stretch, the cells remained refractory to a second stretch for up to 6 h. Using the phosphorylation of ERK1/2 as a guide, the optimum stretch paradigm was hypothesized to be 10 min of stretch at 2.5% of resting length repeated every 6 h. Consistent with this hypothesis, 7 days of stretch using this optimized intermittent stretch program increased the collagen content of the grafts more than a continuous stretch program (CTL=3.1%±0.44%; CONT=4.8%±0.30%; and INT=5.9%±0.56%). These results suggest that short infrequent bouts of loading are optimal for improving engineered tendon and ligament physiology. PMID:21902469

  9. Relation between frequency and H bond length in heavy water: Towards the understanding of the unusual properties of H bond dynamics in nanoporous media

    International Nuclear Information System (INIS)

    Pommeret, Stanislas; Leicknam, Jean-Claude; Bratos, Savo; Musat, Raluca; Renault, Jean Philippe

    2009-01-01

    The published work on H bond dynamics mainly refers to diluted solutions HDO/D 2 O rather than to normal water. The reasons for this choice are both theoretical and experimental. Mechanical isolation of the OH vibrator eliminating the resonant energy transfer makes it a better probe of the local H bond network, while the dilution in heavy water reduces the infrared absorption, which permits the use of thicker experimental cells. The isotopic substitution does not alter crucially the nature of the problem. The length r of an OH . . . O group is statistically distributed over a large interval comprised between 2.7 and 3.2 A with a mean value r 0 = 2.86 A. Liquid water may thus be viewed as a mixture of hydrogen bonds of different length. Two important characteristics of hydrogen bonding must be mentioned. (i) The OH stretching vibrations are strongly affected by this interaction. The shorter the length r of the hydrogen bond, the strongest the H bond link and the lower is its frequency ω: the covalent OH bond energy is lent to the OH. . .O bond and reinforces the latter. A number of useful relationships between ω and r were published to express this correlation. The one adopted in our previous work is the relationship due to Mikenda. (ii) Not only the OH vibrations, but also the HDO rotations are influenced noticeably by hydrogen bonding. This is due to steric forces that hinder the HDO rotations. As they are stronger in short than in long hydrogen bonds, rotations are slower in the first case than in the second. This effect was only recently discovered, but its existence is hardly to be contested. In the present contribution, we want to revisit the relationship between the frequency of the OH vibrator and the distance OH. . .O.

  10. Resonance Raman detection of iron-ligand vibrations in cyano(pyridine)(octaethylporphinato)iron(III): Effects of pyridine basicity on the Fe-CN bond strength

    International Nuclear Information System (INIS)

    Uno, Tadayuki; Hatano, Keiichiro; Nishimura, Yoshifumi; Arata, Yoji

    1988-01-01

    The influence of axial ligand basicity on the bonding of iron(III) in cyano adducts of octaethylporphyrin has been studied by resonance Raman spectroscopy. In a six-coordinate ferric low-spin complex, cyano(pyridine)(octaethylporphinato)iron(III), Fe(OEP)(CN)(py), Raman lines at 449 and 191 cm -1 were assigned to the ν(Fe-CN) and ν(Fe-py) stretching modes, respectively. When pyridine was displaced with its derivatives, py-X, where X = 4-cyano, 3-acetyl, 3-methyl, 4-methyl, 3,4-dimethyl, and 4-dimethylamino, the ν(Fe-CN) stretching frequency was found to decrease in the complex with a high pyridine basicity. It was concluded that the stronger the trans pyridine basicity, the weaker the iron-carbon (cyanide) bond. A clear frequency shift was observed in the ν 4 model, though most of the porphyrin vibrations were insensitive to the ligand substitution. The frequency of the ν 4 mode, which is the C a -N(pyrrole) breathing vibration of the porphyrin skeleton, was found to increase with an increase in pyridine basicity. This is contrary to what was found in ferrous low-spin hemes as CO complexes. The ν 4 shift in the CN complexes was explained in terms of forward π donation; donation of electrons from the porphyrin π orbital to the d π vacancy of the low-spin iron(III) weakened the C a -N(pyrrole) bonds and hence decreased the ν 4 frequency. 32 references, 8 figures

  11. Effects of hamstring stretch with pelvic control on pain and work ability in standing workers.

    Science.gov (United States)

    Han, Hyun-Il; Choi, Ho-Suk; Shin, Won-Seob

    2016-11-21

    Hamstring tightness induces posterior pelvic tilt and decreased lumbar lordosis, which can result in low back painOBJECTIVE: We investigated effects of hamstring stretch with pelvic control on pain and work ability in standing workers. One hundred adult volunteers from a standing workers were randomly assigned to pelvic control hamstring stretching (PCHS) (n = 34), general hamstring stretching (GHS) (n = 34), control (n = 32) groups. The control group was performed self-home exercise. All interventions were conducted 3 days per week for 6 weeks, and included in the hamstring stretching and lumbopelvic muscle strengthening. Outcomes were evaluated through the visual analog scale (VAS), straight leg raise test (SLR), sit and reach test (SRT), Oswestry disability index (ODI), and work ability index (WAI). Significant difference in VAS, SLR, SRT, ODI, and WAI were found in the PCHS and GHS groups. The control group was a significant difference only in ODI. The PCHS group showed a greater difference than the GHS group and control group in VAS, SLR, SRT, and ODI. The pelvic control hamstring stretch exercise would be more helpful in back pain reduction and improvement of work ability in an industrial setting.

  12. Is N-protonated hydrogen isocyanide, H2NC+, an observable interstellar species?

    International Nuclear Information System (INIS)

    DeFrees, D.J.; Binkley, J.S.; Frisch, M.J.; McLean, A.D.

    1986-01-01

    Ab initio molecular orbital theory is used to examine the singlet and triplet potential energy surfaces for the CH 2 N + system. The results confirm those of earlier studies which suggested that the singlet H 2 NC + isomer could be formed via the corresponding triplet isomer. Also, it is shown that the reaction HCN + +H 2 might lead to this metastable isomer without invoking the triplet species. The best test of the hypothesis that this molecule can be formed by gas phase, ion molecule reactions and may be an important precursor in the interstellar synthesis of HCN and HNC is to search for it in space. To this end, theoretical predictions are made of its rotational frequencies and its vibrational frequencies and intensities to serve as a guide to laboratory spectroscopists and radioastronomers

  13. Crystal structure and vibrational spectra of melaminium arsenate

    Science.gov (United States)

    Anbalagan, G.; Marchewka, M. K.; Pawlus, K.; Kanagathara, N.

    2015-01-01

    The crystals of the new melaminium arsenate (MAS) [C3H7N6+ṡH2AsO4-] were obtained by the slow evaporation of an aqueous solution at room temperature. Single crystal X-ray diffraction analysis reveals that the crystal belongs to triclinic system with centro symmetric space group P-1. The crystals are built up from single protonated melaminium residues and single dissociated arsenate H2AsO4- anions. The protonated melaminium ring is almost planar. A combination of ionic and donor-acceptor hydrogen-bond interactions linking together the melaminium and arsenate residues forms a three-dimensional network. Vibrational spectroscopic analysis is reported on the basis of FT-IR and FT-Raman spectra recorded at room temperature. Hydrogen bonded network present in the crystal gives notable vibrational effect. DSC has also been performed for the crystal shows no phase transition in the studied temperature range (113-293 K).

  14. Deviations from the Boltzmann distribution in vibrationally excited gas flows

    International Nuclear Information System (INIS)

    Offenhaeuser, F.; Frohn, A.

    1986-01-01

    A new model for the exchange of vibrational energy in one-dimensional flows of CO 2 -H 2 O-N 2 -O 2 -He gas mixtures is presented. In contrast to previous models, the assumption of local Boltzmann distributions for the vibrational degrees of freedom is not required. This generalization was achieved by the assumption that the molecules are harmonic oscillators with one or more degrees of freedom represented by finite numbers of energy levels. The population densities of these energy levels are coupled by a set of rate equations. It is shown that in some cases of molecular gas flow the Boltzmann distribution for the vibrational degrees of freedom may be disturbed. 12 references

  15. Radiative transition probabilities for the main diatomic electronic systems of N2, N2+, NO, O2, CO, CO+, CN, C2 and H2 produced in plasma of atmospheric entry

    Science.gov (United States)

    Qin, Z.; Zhao, J. M.; Liu, L. H.

    2017-11-01

    Accurate radiative transition probabilities of diatomic electronic systems are required to calculate the discrete radiation of plasmas. However, most of the published transition probabilities are obtained using older spectroscopic constants and electronic transition moment functions (ETMFs), some of which deviates greatly from experimental data. Fortunately, a lot of new spectroscopic constants that include more anharmonic correction terms than the earlier ones have been published over the past few years. In this work, the Einstein coefficients, Franck-Condon factors and absorption band oscillator strengths are calculated for important diatomic radiative transition processes of N2-O2, CO2-N2 and H2 plasmas produced in entering into the atmosphere of Earth, Mars and Jupiter. The most up-to-date spectroscopic constants are selected to reconstruct the potential energy curves by the Rydberg-Klein-Rees (RKR) method. Then the vibrational wave functions are calculated through the resolution of the radial Schrödinger equation for such potential energy curves. These results, together with the latest "ab-initio" ETMFs derived from the literature are used to compute the square of electronic-vibrational transition moments, Einstein coefficients and absorption band oscillator strengths. Moreover, the Franck-Condon factors are determined with the obtained vibrational wave functions. In the supplementary material we present tables of the radiative transition probabilities for 40 band systems of N2, N2+, NO, O2, CO, CO+, CN, C2 and H2 molecules. In addition, the calculated radiative lifetimes are systematically validated by available experimental results.

  16. A Novel Cyanide-Bridged Thulium-Nickel Heterobimetallic Polymeric Complex (H2O)2(DMF)10Tm2[Ni(CN)4]2[Ni(CN)4] including O-H···N Hydrogen Bond

    International Nuclear Information System (INIS)

    Chung, Janghoon; Park, Daeyoung; Song, Mina; Ha, Sungin; Kang, Ansoo; Moon, Sangbong; Ryu, Cheolhwi

    2012-01-01

    The experimental section lists the observed infrared absorption frequencies for the complex. Typically bridging CN ligands have higher stretching frequencies than the terminal CN ligands. Accordingly, cyanide stretching bands (2170, 2156, 2139 cm -1 . at higher frequencies than the stretching band (2127 cm -1 ) of K 2 [Ni(CN) 4 ] are assigned to bridging cyanide ligands. The band at 2128 cm -1 is assigned to terminal cyanide ligands because their location in the cyanide stretching region compares with the absorption observed for the nonbridging cyanide ligands in K 2 [Ni(CN) 4 ]. Array (H 2 O) 2 (DMF) 10 Tm 2 [Ni(CN) 4 ] 2 [Ni(CN) 4 ] and other lanthanide metal-Ni systems display similar CN stretching patterns in their spectra. A broad absorption band at 2950-3550 cm -1 was observed in the spectrum. This supports the presence of O-H···N intermolecular hydrogen bond interactions between the polymers

  17. Prolonged passive static stretching-induced innervation zone shift in biceps brachii.

    Science.gov (United States)

    Ye, Xin; Beck, Travis W; Wages, Nathan P

    2015-05-01

    The purpose of this study was to examine the influence of a bout of repeated and prolonged passive static stretching on the innervation zone (IZ) location of the human biceps brachii muscle. Eleven men performed 12 sets of 100-s passive stretches on their biceps brachii. Before (Pre) and immediately after (Post) the stretching intervention, isometric strength was tested during the maximal voluntary contractions (MVCs) of the forearm flexors. The subjects also performed several separate isometric forearm flexion muscle actions at 30%, 50%, and 70% of their predetermined MVCs for examining the locations of the IZ at different contraction intensities. The IZ was identified through multi-channel surface electromyographic (EMG) recordings from a linear electrode array. The stretching intervention induced an average of 10% isometric strength loss for the forearm flexors (mean±SD: Pre-MVC vs. Post-MVC=332.12±59.40 N vs. 299.53±70.51 N; p<0.001). In addition, the average IZ shift was nearly 4.5 mm in average in the proximal direction. However, this shift was not specific to the contraction intensity. We believe that the IZ shift was caused by the elongation of the entire muscle-tendon unit in the proximal direction. Therefore, caution should be taken when using surface EMG technique to examine possible changes in the EMG variables after a stretching protocol, as these variables can be contaminated by the shift of the IZ.

  18. Proton conducting system (ImH2)2SeO4·2H2O investigated with vibrational spectroscopy

    Science.gov (United States)

    Zięba, Sylwia; Mizera, Adam; Pogorzelec-Glaser, Katarzyna; Łapiński, Andrzej

    2017-06-01

    Imidazolium selenate dihydrate (ImH2)2SeO4·2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of 10- 1 S/m at T = 333 K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

  19. Electron scattering by CO2: Elastic scattering, rotational excitation, and excitation of the asymmetric stretch at 10 eV impact energy

    International Nuclear Information System (INIS)

    Thirumalai, D.; Onda, K.; Truhlar, D.G.

    1981-01-01

    Coupled-channels calculations based on an effective potential are presented for electron scattering by CO 2 at 10 eV impact energy. The processes studied are pure elastic scattering, rotational excitation, and vibrational excitation of the asymmetric stretch; the vibrational excitation is always accompanied by rotational excitation. The quantities calculated are differential, partial, integral, and momentum transfer cross sections, both state to state and summed over final rotational states for a given final vibrational level. The effective potential is based on the INDOX2/1s method for the static and polarization potentials and the semiclassical exchange approximation for the exchange potential. There are no empirical parameters. The present calculations are compared to experiment and to previous calculations where available, and we also perform calculations with an altered polarization potential to further elucidate the reasons for the differences from one of the previous calculations. The agreement of the present results with the experimental rotationally summed, vibrationally inelastic differential cross section is excellent

  20. Infrared absorption of CH{sub 3}OSO and CD{sub 3}OSO radicals produced upon photolysis of CH{sub 3}OS(O)Cl and CD{sub 3}OS(O)Cl in p-H{sub 2} matrices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu-Fang; Kong, Lin-Jun [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan (China); Lee, Yuan-Pern [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2012-03-28

    Irradiation at 239 {+-} 20 nm of a p-H{sub 2} matrix containing methoxysulfinyl chloride, CH{sub 3}OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to {nu}{sub 1}, CH{sub 2} antisymmetric stretching), 2999.5 ({nu}{sub 2}, CH{sub 3} antisymmetric stretching), 2950.4 ({nu}{sub 3}, CH{sub 3} symmetric stretching), 1465.2 ({nu}{sub 4}, CH{sub 2} scissoring), 1452.0 ({nu}{sub 5}, CH{sub 3} deformation), 1417.8 ({nu}{sub 6}, CH{sub 3} umbrella), 1165.2 ({nu}{sub 7}, CH{sub 3} wagging), 1152.1 ({nu}{sub 8}, S=O stretching mixed with CH{sub 3} rocking), 1147.8 ({nu}{sub 9}, S=O stretching mixed with CH{sub 3} wagging), 989.7 ({nu}{sub 10}, C-O stretching), and 714.5 cm{sup -1} ({nu}{sub 11}, S-O stretching) modes of syn-CH{sub 3}OSO. When CD{sub 3}OS(O)Cl in a p-H{sub 2} matrix was used, lines at 2275.9 ({nu}{sub 1}), 2251.9 ({nu}{sub 2}), 2083.3 ({nu}{sub 3}), 1070.3 ({nu}{sub 4}), 1056.0 ({nu}{sub 5}), 1085.5 ({nu}{sub 6}), 1159.7 ({nu}{sub 7}), 920.1 ({nu}{sub 8}), 889.0 ({nu}{sub 9}), 976.9 ({nu}{sub 10}), and 688.9 ({nu}{sub 11}) cm{sup -1} appeared and are assigned to syn-CD{sub 3}OSO; the mode numbers correspond to those used for syn-CH{sub 3}OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86/aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH{sub 3}OSO near 2991, 2956, 1152, and 994 cm{sup -1} to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD{sub 3}OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H{sub 2} such that the Cl atom, produced via UV photodissociation of CH{sub 3}OS(O)Cl in situ, might escape from the original cage to yield isolated CH{sub 3}OSO

  1. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003.

    Science.gov (United States)

    Van Reeth, Kristien; Brown, Ian H; Dürrwald, Ralf; Foni, Emanuela; Labarque, Geoffrey; Lenihan, Patrick; Maldonado, Jaime; Markowska-Daniel, Iwona; Pensaert, Maurice; Pospisil, Zdenek; Koch, Guus

    2008-05-01

    Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance Network for Influenza in Pigs 1', aimed to determine the seroprevalence of the H1N2 virus in different European regions and to compare the relative prevalences of each SIV between regions. Laboratories from Belgium, the Czech Republic, Germany, Italy, Ireland, Poland and Spain participated in an international serosurvey. A total of 4190 sow sera from 651 farms were collected in 2002-2003 and examined in haemagglutination inhibition tests against H1N1, H3N2 and H1N2. In Belgium, Germany, Italy and Spain seroprevalence rates to each of the three SIV subtypes were high (> or =30% of the sows seropositive) to very high (> or =50%), except for a lower H1N2 seroprevalence rate in Italy (13.8%). Most sows in these countries with high pig populations had antibodies to two or three subtypes. In Ireland, the Czech Republic and Poland, where swine farming is less intensive, H1N1 was the dominant subtype (8.0-11.7% seropositives) and H1N2 and H3N2 antibodies were rare (0-4.2% seropositives). Thus, SIV of H1N1, H3N2 and H1N2 subtype are enzootic in swine producing regions of Western Europe. In Central Europe, SIV activity is low and the circulation of H3N2 and H1N2 remains to be confirmed. The evolution and epidemiology of SIV throughout Europe is being further monitored through a second 'European Surveillance Network for Influenza in Pigs'.

  2. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    Science.gov (United States)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  3. Vibrational, NMR and quantum chemical investigations of acetoacetanilde, 2-chloroacetoacetanilide and 2-methylacetoacetanilide.

    Science.gov (United States)

    Arjunan, V; Kalaivani, M; Senthilkumari, S; Mohan, S

    2013-11-01

    The vibrational assignment and analysis of the fundamental modes of the compounds acetoacetanilide (AAA), 2-chloroacetoacetanilide (2CAAA) and 2-methylacetoacetanilide (2MAAA) have been performed. Density functional theory studies have been carried out with B3LYP method utilising 6-311++G(**) and cc-pVTZ basis sets to determine structural, thermodynamic and vibrational characteristics of the compounds and also to understand the influence of chloro and methyl groups on the characteristic frequencies of amide (CONH) group. Intramolecular hydrogen bond exists in acetoacetanilide and o-substituted acetoacetanilide molecules and the N⋯O distance is found to be around 2.7Å. The (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecules were determined and the same have been calculated using the gauge independent atomic orbital (GIAO) method. The energies of the frontier molecular orbitals have been determined. In AAA, 2CAAA and 2MAAA molecules, the nN→πCO(∗) interaction between the nitrogen lone pair and the amide CO antibonding orbital gives strong stabilization of 64.75, 62.84 and 64.18kJmol(-1), respectively. The blue shift in amide-II band of 2MAAA is observed by 45-50cm(-1) than that of AAA. The steric effect of ortho methyl group significantly operating on the NH bond properties. The amide-III, the CN stretching mode of methyl and chloro substituted acetoacetanilide compounds are not affected by the substitution while the amide-V band, the NH out of plane bending mode of 2-chloroacetoacetanilide compound is shifted to a higher frequency than that of AAA. The substituent chlorine plays significantly and the blue shift in o-substituted compounds than the parent in the amide-V vibration is observed. The amide-VI, CO out of plane bending modes of 2MAAA and 2CAAA are significantly raised than that of AAA. A blue shift of amide-VI, CO out of plane bending modes of 2MAAA and 2CAAA than AAA is observed. Copyright © 2013 Elsevier B.V. All rights

  4. Atomic Stretch: Optimally bounded real-time stretching and beyond

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll

    2016-01-01

    Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...

  5. Wetting effect on optical sum frequency generation (SFG) spectra of D-glucose, D-fructose, and sucrose

    Science.gov (United States)

    Hieu, Hoang Chi; Li, Hongyan; Miyauchi, Yoshihiro; Mizutani, Goro; Fujita, Naoko; Nakamura, Yasunori

    2015-03-01

    We report a sum frequency generation (SFG) spectroscopy study of D-glucose, D-fructose and sucrose in the Csbnd H stretching vibration regime. Wetting effect on the SFG spectra was investigated. The SFG spectrum of D-glucose changed from that of α-D-glucose into those of α-D-glucose monohydrate by wetting. The SFG spectra showed evidence of a small change of β-D-fructopyranose into other anomers by wetting. SFG spectra of sucrose did not change by wetting. Assignments of the vibrational peaks in the SFG spectra of the three sugars in the dry and wet states were performed in the Csbnd H stretching vibration region near 3000 cm-1.

  6. 1H-1H correlations across N-H···N hydrogen bonds in nucleic acids

    International Nuclear Information System (INIS)

    Majumdar, Ananya; Gosser, Yuying; Patel, Dinshaw J.

    2001-01-01

    In 2H J NN -COSY experiments, which correlate protons with donor/acceptor nitrogens across N d ···HN a bonds, the receptor nitrogen needs to be assigned in order to unambiguously identify the hydrogen bond. For many situations this is a non-trivial task which is further complicated by poor dispersion of (N a ,N d ) resonances. To address these problems, we present pulse sequences to obtain direct, internucleotide correlations between protons in uniformly 13 C/ 15 N labeled nucleic acids containing N d ···HN a hydrogen bonds. Specifically, the pulse sequence H2(N1N3)H3 correlates H2(A,ω 1 ):H3(U,ω 2 ) protons across Watson-Crick A-U and mismatched G·A base pairs, the sequences H5(N3N1)H1/H6(N3N1)H1 correlate H5(C,ω 1 )/H6(C,ω 1 ):H1(G,ω 2 ) protons across Watson-Crick G-C base pairs, and the H 2 (N2N7)H8 sequence correlates NH 2 (G,A,C;ω 1 ):H8(G,A;ω 2 ) protons across G·G, A·A, sheared G·A and other mismatch pairs. These 1 H- 1 H connectivities circumvent the need for independent assignment of the donor/acceptor nitrogen and related degeneracy issues associated with poorly dispersed nitrogen resonances. The methodology is demonstrated on uniformly 13 C/ 15 N labeled samples of (a) an RNA regulatory element involving the HIV-1 TAR RNA fragment, (b) a multi-stranded DNA architecture involving a G·(C-A) triad-containing G-quadruplex and (c) a peptide-RNA complex involving an evolved peptide bound to the HIV-1 Rev response element (RRE) RNA fragment

  7. pH responsive alginate polymeric rafts for controlled drug release by using box behnken response surface design.

    Science.gov (United States)

    Abbas, Ghulam; Hanif, Muhammad; Khan, Mahtab Ahmad

    2017-01-01

    Aim of the present work was to develop alginate raft forming tablets for controlled release pantoprazole sodium sesquihydrate (PSS). Box behnken design was used to optimize 15 formulations with three independent and three dependent variables. Physical tests of all formulations were within pharmacopoeial limits. Raft was characterized by their strength, thickness, resilience, acid neutralizing capacity, floating lag time and total floating time. Raft strength, thickness and resilience of optimized formulation AR9 were 7.43 ± 0.019 g, 5.8 ± 0.245 cm and greater than 480 min, respectively. Buffering and neutralizing capacity were 11.2 ± 1.01 and 6.5 ± 0.56 meq, respectively. Dissolution studies were performed by using simulated gastric fluid pH 1.2 and cumulative percentage release of optimized formulation AR9 was found 98%. First order release kinetics were followed and non-fickian diffusion was observed as value of n was greater than 0.45 in korsmeyer-peppas model. PSS, polymers, tablets and rafts were further characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). FTIR spectra of PSS, polymers and raft of optimized formulation AR9 showed peaks at 3223.09, 1688.17, 1586.67, 1302.64 and 1027.74 cm -1 due to -OH stretching, ester carbonyl group (C=O) stretching, existence of water and carboxylic group in raft, C-N stretching and -OH bending vibration showed no interaction between them. XRD showed diffraction lines indicates crystalline nature of PSS. DSC thermogram showed endothermic peaks at 250 °C for PSS. The developed raft was suitable for controlled release delivery of PSS.

  8. Molecular structure, chemical reactivity, nonlinear optical activity and vibrational spectroscopic studies on 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one: A combined density functional theory and experimental approach

    Science.gov (United States)

    Pegu, David; Deb, Jyotirmoy; Saha, Sandip Kumar; Paul, Manoj Kumar; Sarkar, Utpal

    2018-05-01

    In this work, we have synthesized new coumarin Schiff base molecule, viz., 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one and characterized its structural, electronic and spectroscopic properties experimentally and theoretically. The theoretical analysis of UV-visible absorption spectra reflects a red shift in the absorption maximum in comparison to the experimental results. Most of the vibrational assignments of infrared and Raman spectra predicted using density functional theory approach match well with the experimental findings. Further, the chemical reactivity analysis confirms that solvent highly affects the reactivity of the studied compound. The large hyperpolarizability value of the compound concludes that the system exhibits significant nonlinear optical features and thus, points out their possibility in designing material with high nonlinear activity.

  9. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Science.gov (United States)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  10. Vibrational excitation in a hydrogen volume source

    International Nuclear Information System (INIS)

    Eenshuistra, P.J.

    1989-01-01

    In this thesis the complex of processes which determines the D - or H - density in a volume source, a hydrogen discharge, is studied. D - beams are of interest for driving the current of a fusion plasma in a TOKAMAK. Densities of vibrationally excited molecules, of H atoms, and of metastable hydrogen molecules were determined using Resonance-Enhanced MultiPhoton Ionization (REMPI). An experiment in which vibrationally highly excited molecules are formed by recombination of atoms in a cold metal surface, is described. The production and destruction of vibrationally excited molecules and atoms in the discharge is discussed. The vibrational distribution for 3≤ν≤5 (ν = vibrational quantumnumber) is strongly super-thermal. This effect is more apparent at higher discharge current and lower gas pressure. The analysis with a model based on rate equations, which molecules are predominantly produced by primary electron excitation of hydrogen molecules and deexcited upon one wall collision. The atom production is compatible with dissociation of molecules by primary electrons, dissociation of molecules on the filaments, and collisions between positive ions and electrons. The electrons are predominantly destroyed by recombination on the walls. Finally the production and destruction of H - in the discharge are discussed. The density of H - in the plasma, the electron density and temperature were determined. H - extraction was measured. The ratio of the extracted H - current and the H - density in the plasma gives an indication of the drift velocity of H - in the plasma. This velocity determines the emittance of the extracted beam. It was found that the H - velocity scales with the square root of the electron temperature. The measured H - densities are compatible with a qualitative model in which dissociative attachment of plasma electrons to vibrationally excited molecules is the most important process. (author). 136 refs.; 39 figs.; 10 tabs

  11. DFT study of IR and Raman spectra of phosphotrihydrazone dendrimer with terminal phenolic groups

    Science.gov (United States)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2017-09-01

    FT Raman and infrared spectra of phosphotrihydrazone (S)P[N(CH3)Ndbnd CHsbnd C6H4sbnd OH]3 (G0) were recorded. This compound is a zero generation phosphorus dendrimer with terminal phenolic groups. Optimal geometry and vibrational frequencies were calculated for G0 using the density functional theory (DFT). The molecule studied has C3 symmetry. In the molecule G0, each sbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P arm is flat. Optimized geometric parameters correspond to experimental data. The core of the dendrimer manifests itself as a band at 647 cm-1 in the Raman spectrum of G0 related to Pdbnd S stretching. Phenolic end functions exhibit a well-defined band at 3374 cm-1 in the experimental IR spectrum of G0. The observed frequency of the OH stretching vibrations of the phenolic groups is lower than the theoretical value due to the intermolecular Osbnd H⋯O hydrogen bond. This hydrogen bond is also responsible for the higher intensity of this band in the experimental IR spectrum compared with the theoretical value. DFT calculations suggest full assignment of normal modes. Global and local descriptors characterize the reactivity of the core and end groups.

  12. Fragmentation of stretched spin strength in N=Z sd-shell nuclei

    International Nuclear Information System (INIS)

    Carr, J.A.; Bloom, S.D.; Petrovich, F.; Philpott, R.J.

    1992-01-01

    Calculations have been performed to explore the effect of configuration mixing in a large basis on the fragmentation of ''stretched'' M6 strength in the sd-shell nuclei 20 Ne, 24 Mg, 28 Si, 32 S, and 36 Ar. This work elaborates on results for 28 Si given previously, extends those calculations to neighboring N=Z nuclei with the same basis restriction (one particle in the 1f 7/2 orbit and up to four particles in the 1d 3/2 orbit) used in that earlier paper, and examines all self-conjugate sd-shell nuclei in a basis with one particle in the 1f 7/2 orbit and unrestricted occupancy of the sd-shell orbits. It is found that configuration mixing in a large basis reproduces interesting features of the spectrum for 28 Si and 32 S and gives an improved description of other properties of the observed 6 - states, but fails to describe the observed spectrum in 24 Mg. Emphasis is placed on the location of additional observable fragments of the M6 response

  13. Computing the Stretch Factor of Paths, Trees, and Cycles in Weighted Fixed Orientation Metrics

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    2008-01-01

    Let G be a graph embedded in the L_1-plane. The stretch factor of G is the maximum over all pairs of distinct vertices p and q of G of the ratio L_1^G(p,q)/L_1(p,q), where L_1^G(p,q) is the L_1-distance in G between p and q. We show how to compute the stretch factor of an n-vertex path in O(n*(log...... n)^2) worst-case time and O(n) space and we mention generalizations to trees and cycles, to general weighted fixed orientation metrics, and to higher dimensions....

  14. Analysis of a filament stretching rheometer

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1996-01-01

    A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown.......A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown....

  15. Effectiveness of Manual Therapy and Stretching for Baseball Players With Shoulder Range of Motion Deficits.

    Science.gov (United States)

    Bailey, Lane B; Thigpen, Charles A; Hawkins, Richard J; Beattie, Paul F; Shanley, Ellen

    Baseball players displaying deficits in shoulder range of motion (ROM) are at increased risk of arm injury. Currently, there is a lack of consensus regarding the best available treatment options to restore shoulder ROM. Instrumented manual therapy with self-stretching will result in clinically significant deficit reductions when compared with self-stretching alone. Controlled laboratory study. Shoulder ROM and humeral torsion were assessed in 60 active baseball players (mean age, 19 ± 2 years) with ROM deficits (nondominant - dominant, ≥15°). Athletes were randomly assigned to receive a single treatment of instrumented manual therapy plus self-stretching (n = 30) or self-stretching only (n = 30). Deficits in internal rotation, horizontal adduction, and total arc of motion were compared between groups immediately before and after a single treatment session. Treatment effectiveness was determined by mean comparison data, and a number-needed-to-treat (NNT) analysis was used for assessing the presence of ROM risk factors. Prior to intervention, players displayed significant ( P < 0.001) dominant-sided deficits in internal rotation (-26°), total arc of motion (-18°), and horizontal adduction (-17°). After the intervention, both groups displayed significant improvements in ROM, with the instrumented manual therapy plus self-stretching group displaying greater increases in internal rotation (+5°, P = 0.010), total arc of motion (+6°, P = 0.010), and horizontal adduction (+7°, P = 0.004) compared with self-stretching alone. For horizontal adduction deficits, the added use of instrumented manual therapy with self-stretching decreased the NNT to 2.2 (95% CI, 2.1-2.4; P = 0.010). Instrumented manual therapy with self-stretching significantly reduces ROM risk factors in baseball players with motion deficits when compared with stretching alone. The added benefits of manual therapy may help to reduce ROM deficits in clinical scenarios where stretching alone is

  16. Altered Neuromodulatory Drive May Contribute to Exaggerated Tonic Vibration Reflexes in Chronic Hemiparetic Stroke

    Directory of Open Access Journals (Sweden)

    Jacob G. McPherson

    2018-04-01

    Full Text Available Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs, while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and

  17. Ultrafast phosphate hydration dynamics in bulk H2O

    International Nuclear Information System (INIS)

    Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas

    2015-01-01

    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H 2 PO 4 − ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (ν S (PO 2 − )) and asymmetric (ν AS (PO 2 − )) PO 2 − stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH) 2 ) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν S (PO 2 − ) and ν AS (PO 2 − ) transition frequencies with larger frequency excursions for ν AS (PO 2 − ). The calculated frequency-time correlation function is in good agreement with the experiment. The ν(PO 2 − ) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H 2 PO 4 − /H 2 O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water

  18. Theoretical studies for the N2–N2O van der Waals complex: The potential energy surface, intermolecular vibrations, and rotational transition frequencies

    International Nuclear Information System (INIS)

    Zheng, Rui; Zheng, Limin; Yang, Minghui; Lu, Yunpeng

    2015-01-01

    Theoretical studies of the potential energy surface (PES) and bound states are performed for the N 2 –N 2 O van der Waals (vdW) complex. A four-dimensional intermolecular PES is constructed at the level of single and double excitation coupled-cluster method with a non-iterative perturbation treatment of triple excitations [CCSD(T)] with aug-cc-pVTZ basis set supplemented with bond functions. Two equivalent T-shaped global minima are located, in which the O atom of N 2 O monomer is near the N 2 monomer. The intermolecular fundamental vibrational states are assigned by inspecting the orientation of the nodal surface of the wavefunctions. The calculated frequency for intermolecular disrotation mode is 23.086 cm −1 , which is in good agreement with the available experimental data of 22.334 cm −1 . A negligible tunneling splitting with the value of 4.2 MHz is determined for the ground vibrational state and the tunneling splitting increases as the increment of the vibrational frequencies. Rotational levels and transition frequencies are calculated for both isotopomers 14 N 2 –N 2 O and 15 N 2 –N 2 O. The accuracy of the PES is validated by the good agreement between theoretical and experimental results for the transition frequencies and spectroscopic parameters

  19. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    Science.gov (United States)

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  20. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    Directory of Open Access Journals (Sweden)

    Charles Nfon

    Full Text Available There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI. In addition, heterologous cell mediated immunity (CMI was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  1. Individually programmable cell stretching microwell arrays actuated by a Braille display.

    Science.gov (United States)

    Kamotani, Yoko; Bersano-Begey, Tommaso; Kato, Nobuhiro; Tung, Yi-Chung; Huh, Dongeun; Song, Jonathan W; Takayama, Shuichi

    2008-06-01

    Cell culture systems are often static and are therefore nonphysiological. In vivo, many cells are exposed to dynamic surroundings that stimulate cellular responses in a process known as mechanotransduction. To recreate this environment, stretchable cell culture substrate systems have been developed, however, these systems are limited by being macroscopic and low throughput. We have developed a device consisting of 24 miniature cell stretching chambers with flexible bottom membranes that are deformed using the computer-controlled, piezoelectrically actuated pins of a Braille display. We have also developed efficient image capture and analysis protocols to quantify morphological responses of the cells to applied strain. Human dermal microvascular endothelial cells (HDMECs) were found to show increasing degrees of alignment and elongation perpendicular to the radial strain in response to cyclic stretch at increasing frequencies of 0.2, 1, and 5 Hz, after 2, 4, and 12h. Mouse myogenic C2C12 cells were also found to align in response to the stretch, while A549 human lung adenocarcinoma epithelial cells did not respond to stretch.

  2. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells

    International Nuclear Information System (INIS)

    Ghazanfari, Samane; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali

    2009-01-01

    Bone marrow mesenchymal stem cells (MSCs) are capable of differentiating into a variety of cell types such as vascular smooth muscle cells (SMCs). In this study, we investigated influence of cyclic stretch on proliferation of hMSCs for different loading conditions, alignment of actin filaments, and consequent differentiation to SMCs. Isolated cells from bone marrow were exposed to cyclic stretch utilizing a customized device. Cell proliferation was examined by MTT assay, alignment of actin fibers by a designed image processing code, and cell differentiation by fluorescence staining. Results indicated promoted proliferation of hMSCs by cyclic strain, enhanced by elevated strain amplitude and number of cycles. Such loading regulated smooth muscle α-actin, and reoriented actin fibers. Cyclic stretch led to differentiation of hMSCs to SMCs without addition of growth factor. It was concluded that applying appropriate loading treatment on hMSCs could enhance proliferation capability, and produce functional SMCs for engineered tissues.

  3. Quantum algebraic description of vibrational and transitional nuclear spectra

    International Nuclear Information System (INIS)

    Raychev, P.P.; Roussev, R.P.; Inrne, D.

    1995-01-01

    A physically motivated extension of the SU q (2) model of rotational nuclear spectra is introduced, which is applicable in the vibrational and transitional regions as well. The deformation parameter is related to the centrifugal stretching effect, while the new parameter c allows the spectrum to be an expansion in terms of J(J+c) instead of J(J+1), thus describing nuclear anharmonicities in a way similar to the Interacting Boson Model and the Generalized Variable Moment of Inertia model

  4. Automation of a single-DNA molecule stretching device

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl; Lopacinska, Joanna M.; Tommerup, Niels

    2015-01-01

    We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free...

  5. Flexibility and stretching physiology : responses and adaptations to different stretching intensities.

    OpenAIRE

    Freitas, Sandro Remo Martins Neves Ramos

    2014-01-01

    Doutoramento em Motricidade Humana, especialidade de Biomecânica Research and reported literature regarding the conceptual, methodological, and training effects of stretching with different intensities are scarce. The purposes of this thesis were to: i) explore and develop methodological conditions to achieve the second purpose (studies: 1 to 3); ii) characterize the acute and chronic effects induced by different stretching intensities on skeletal muscle and joint mechanical properti...

  6. Infrared spectroscopy, vibrational predissociation dynamics and stability of the hydrogen trioxy (HOOO) radical and estimation of its abundance in the atmosphere

    Science.gov (United States)

    Derro, Erika L.

    The hydrogen trioxy (HOOO) radical has been implicated as an important intermediate in key processes in the atmosphere. In the present studies, HOOO is produced by the combination of O2 and photolytically generated OH radicals in the collisional region of a pulsed supersonic expansion. Rotationally cooled HOOO is probed in the effectively collision-free region of the expansion using infrared action spectroscopy, an infrared-pump, ultraviolet-probe technique, in which HOOO is vibrationally excited and the nascent OH products of vibrational predissociation are probed via laser-induced fluorescence. High resolution infrared spectra of HOOO and DOOO were observed in the fundamental and overtone OH/D stretching regions (nui and 2nu 1), which comprise a rotationally structured band attributed to the trans conformer, and an unstructured component assigned to the cis conformer. Infrared spectra of HOOO and DOOO combination bands composed of the OH stretch and a low frequency mode (nu1 + nun) were also observed. This allowed identification of vibrational frequencies for five of the six modes for trans-H/DOOO and four of the six modes for cis-HOOO and DOOO. Identification of low frequency modes provides critical information on the vibrational dynamics and thermochemical properties of the HOOO radical, and furthermore, provides a potential means for detecting HOOO in situ in the atmosphere. In addition, the nascent OH X2pi products following vibrational predissociation of HOOO have been investigated. The product state distributions reveal a distinct preference for population of pi(A ') Λ-doublets in OH that is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained. The highest observed OH quantum state allows determination of the stability of HOOO relative to the OH + O 2 asymptote using a conservation of energy approach. In conjunction with a similar investigation of DOOO, the binding energy is determined to be ≤ 5

  7. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I-Energy levels and transition wavenumbers for H217O and H218O

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Carleer, Michel R.; Csaszar, Attila G.; Gamache, Robert R.; Hodges, Joseph T.; Jenouvrier, Alain; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Toth, Robert A.; Vandaele, Ann Carine; Zobov, Nikolai F.; Daumont, Ludovic; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Mikhailenko, Semen N.

    2009-01-01

    This is the first part of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependence and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. The present article contains energy levels and data for line positions of the singly substituted isotopologues H 2 17 O and H 2 18 O. The procedure and code MARVEL, standing for measured active rotational-vibrational energy levels, is used extensively in all stages of determining the validated levels and lines and their self-consistent uncertainties. The spectral regions covered for both isotopologues H 2 17 O and H 2 18 O are 0-17125cm -1 . The energy levels are checked against ones determined from accurate variational calculations. The number of critically evaluated and recommended levels and lines are, respectively, 2687 and 8614 for H 2 17 O, and 4839 and 29 364 for H 2 18 O. The extensive lists of MARVEL lines and levels obtained are deposited in the Supplementary Material, as well as in a distributed information system applied to water, W-DIS, where they can easily be retrieved. A distinguishing feature of the present evaluation of water spectroscopic data is the systematic use of all available experimental data and validation by first-principles theoretical calculations.

  8. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles.

    Science.gov (United States)

    Li, Jian-Feng; Huang, Yi-Fan; Duan, Sai; Pang, Ran; Wu, De-Yin; Ren, Bin; Xu, Xin; Tian, Zhong-Qun

    2010-03-14

    The observed surface-enhanced Raman scattering (SERS) spectra of water adsorbed on metal film electrodes of silver, gold, and platinum nanoparticles were used to infer interfacial water structures on the basis of the change of the electrochemical vibrational Stark tuning rates and the relative Raman intensity of the stretching and bending modes. To explain the increase of the relative Raman intensity ratio of the bending and stretching vibrations at the very negative potential region, density functional theory calculations provide the conceptual model. The specific enhancement effect for the bending mode was closely associated with the water adsorption structure in a hydrogen bonded configuration through its H-end binding to surface sites with large polarizability due to strong cathodic polarization. The present results allow us to propose that interfacial water molecules exist on these metal cathodes with different hydrogen bonding interactions, i.e., the HO-HH-Pt dihydrogen bond for platinum and the HO-HAg(Au) for silver and gold. This dihydrogen bonding configuration on platinum is further supported from observation of the Pt-H stretching band. Furthermore, the influences of the pH effect on SERS intensity and vibrational Stark effect on the gold electrode indicate that the O-H stretching SERS signals are enhanced in the alkaline solutions because of the hydrated hydroxide surface species adsorbed on the gold cathode.

  9. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-08-01

    The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6HH2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.

  10. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects.

    LENUS (Irish Health Repository)

    O'Sullivan, Kieran

    2009-01-01

    BACKGROUND: Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. METHODS: A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1) at baseline; (2) after warm-up; (3) after stretch (static or dynamic) and (4) after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. RESULTS: Across both groups, there was a significant main effect for time (p < 0.001). PKE ROM significantly increased with warm-up (p < 0.001). From warm-up, PKE ROM further increased with static stretching (p = 0.04) but significantly decreased after dynamic stretching (p = 0.013). The increased flexibility after warm-up and static stretching reduced significantly (p < 0.001) after 15 minutes of rest, but remained significantly greater than at baseline (p < 0.001). Between groups, there was no main effect for group (p = 0.462), with no difference in mean PKE ROM values at any individual stage of the protocol (p > 0.05). Using ANCOVA to adjust for the non-significant (p = 0.141) baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05). CONCLUSION: Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced

  11. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    Science.gov (United States)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  12. Wiener Index, Diameter, and Stretch Factor of a Weighted Planar Graph in Subquadratic Time

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    over all pairs of distinct vertices of the ratio between the graph distance and the Euclidean distance between the two vertices). More specifically, we show that the Wiener index and diameter can be found in O(n^2*(log log n)^4/log n) worst-case time and that the stretch factor can be found in O(n^2......We solve three open problems: the existence of subquadratic time algorithms for computing the Wiener index (sum of APSP distances) and the diameter (maximum distance between any vertex pair) of a planar graph with non-negative edge weights and the stretch factor of a plane geometric graph (maximum...

  13. Optical emissions from the dissociative recombination of N{sub 2}H{sup +}, HCO{sup +}, HOC{sup +}, and HNC{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, R [Department of Physics and Astronomy University of Pittsburgh, Pittsburgh, PA 15260 (United States); Golde, M F [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Rosati, R E [Smithsonian Astrophysical Observatory, 60 Garden St. MS-50 Cambridge, MA, 02138 (United States); Pappas, D [Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD (United States); Skrzypkowski, M P, E-mail: rj@pitt.ed [Prometheus Energy Company, 3311 S. 120th Place Suite 100, Seattle, WA 98168 (United States)

    2009-11-15

    We present recent flowing-afterglow measurements of branching fractions for electronically and vibrationally excited products arising from the dissociative recombination of N{sub 2}H{sup +}, HCO{sup +}, HOC{sup +}, and HNC{sup +} ions with thermal electrons. State-specific yields were derived by fitting the observed, spatially resolved emission band intensities to models that simulate all ion-chemical processes, recombination, diffusion, and gas mixing.

  14. Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses.

    Science.gov (United States)

    Taylor, Janette; McPhie, Kenneth; Druce, Julian; Birch, Chris; Dwyer, Dominic E

    2009-11-01

    Twenty rapid antigen assays were compared for their ability to detect influenza using dilutions of virus culture supernatants from human isolates of influenza A H5N1 (clade 1 and 2 strains), H3N2 and H1N1 viruses, and influenza B. There was variation amongst the rapid antigen assays in their ability to detect different influenza viruses. Six of the 12 assays labeled as distinguishing between influenza A and B had comparable analytical sensitivities for detecting both influenza A H5N1 strains, although their ability to detect influenza A H3N2 and H1N1 strains varied. The two assays claiming H5 specificity did not detect either influenza A H5N1 strains, and the two avian influenza-specific assays detected influenza A H5N1, but missed some influenza A H3N2 virus supernatants. Clinical trials of rapid antigen tests for influenza A H5N1 are limited. For use in a pandemic where novel influenza strains are circulating (such as the current novel influenza A H1N1 09 virus), rapid antigen tests should ideally have comparable sensitivity and specificity for the new strains as for co-circulating seasonal influenza strains.

  15. Long-Range Vibrational Dynamics Are Directed by Watson-Crick Base Pairing in Duplex DNA.

    Science.gov (United States)

    Hithell, Gordon; Shaw, Daniel J; Donaldson, Paul M; Greetham, Gregory M; Towrie, Michael; Burley, Glenn A; Parker, Anthony W; Hunt, Neil T

    2016-05-05

    Ultrafast two-dimensional infrared (2D-IR) spectroscopy of a 15-mer A-T DNA duplex in solution has revealed structure-dependent vibrational coupling and energy transfer processes linking bases with the sugar-phosphate backbone. Duplex melting induces significant changes in the positions of off-diagonal peaks linking carbonyl and ring-stretching vibrational modes of the adenine and thymine bases with vibrations of the phosphate group and phosphodiester linkage. These indicate that Watson-Crick hydrogen bonding and helix formation lead to a unique vibrational coupling arrangement of base vibrational modes with those of the phosphate unit. On the basis of observations from time-resolved 2D-IR data, we conclude that rapid energy transfer processes occur between base and backbone, mediated by additional modes located on the deoxyribose moiety within the same nucleotide. These relaxation dynamics are insensitive to duplex melting, showing that efficient intramolecular energy relaxation to the solvent via the phosphate groups is the key to excess energy dissipation in both single- and double-stranded DNA.

  16. Molecular dynamics simulation based on the multi-component molecular orbital method: Application to H5O2+,D5O2+,andT5O2+

    International Nuclear Information System (INIS)

    Ishimoto, Takayoshi; Koyama, Michihisa

    2012-01-01

    Graphical abstract: Molecular dynamics method based on multi-component molecular orbital method was applied to basic hydrogen bonding systems, H 5 O 2 + , and its isotopomers (D 5 O 2 + andT 5 O 2 + ). Highlights: ► Molecular dynamics method with nuclear quantum effect was developed. ► Multi-component molecular orbital method was used as ab initio MO calculation. ► Developed method applied to basic hydrogen bonding system, H 5 O 2 + , and isotopomers. ► O ⋯ O vibrational stretching reflected to the distribution of protonic wavefunctions. ► H/D/T isotope effect was also analyzed. - Abstract: We propose a molecular dynamics (MD) method based on the multi-component molecular orbital (MC M O) method, which takes into account the quantum effect of proton directly, for the detailed analyses of proton transfer in hydrogen bonding system. The MC M O based MD (MC M O-MD) method is applied to the basic structures, H 5 O 2 + (called “Zundel ion”), and its isotopomers (D 5 O 2 + andT 5 O 2 + ). We clearly demonstrate the geometrical difference of hydrogen bonded O ⋯ O distance induced by H/D/T isotope effect because the O ⋯ O in H-compound was longer than that in D- or T-compound. We also find the strong relation between stretching vibration of O ⋯ O and the distribution of hydrogen bonded protonic wavefunction because the protonic wavefunction tends to delocalize when the O ⋯ O distance becomes short during the dynamics. Our proposed MC M O-MD simulation is expected as a powerful tool to analyze the proton dynamics in hydrogen bonding systems.

  17. Microstructural and optical properties of A-Si: H deposited by DC plasma glow discharge of electrode polarity

    International Nuclear Information System (INIS)

    Salam, R.; Danker, A.R.

    1993-01-01

    A method for deducing the density of valence electrons and the average atomic separation of Si atoms in a-Si:H are presented. Refractive index and optical absorption experimental data on a variety of dc glow discharge deposited a-Si:H samples are utilized to deduce the two parameters. The density of valence electrons depict values in the range (1.47-6.15)x10 22 cm -3 while the average atomic spacing varies within 3.13-4.61 A. The existence of microvoids and regions of rich silicon-hydride phase are proposed to account for this. Comparisons of the electrical conductivity, optical parameters and vibrational modes are done for cathode and anode deposited a-Si:H samples. Conductivity for both types of samples are the same at around 1.3x10 -9 (Ωcm) -1 , but significant differences are observed in the values of the refractive index n and the optical gap Eg of the cathode (4.06, 1.95 eV) and anode (3.13, 2.34 eV) samples. Observations on the infrared spectrum of the two a-Si:H samples suggests that the anode sample contain appreciable amount and a higher proportion of oxygen, as identified by the 2080cm -1 shift of the Si-H stretching mode, while a strong Si-H 3 symmetric deformation mode is proposed to occur in the cathode sample

  18. Does GaH5 exist?

    Science.gov (United States)

    Speakman, Lucas D.; Turney, Justin M.; Schaefer, Henry F.

    2005-11-01

    The existence or nonexistence of GaH5 has been widely discussed [N. M. Mitzel, Angew. Chem. Int. Ed. 42, 3856 (2003)]. Seven possible structures for gallium pentahydride have been systematically investigated using ab initio electronic structure theory. Structures and vibrational frequencies have been determined employing self-consistent field, coupled cluster including all single and double excitations (CCSD), and CCSD with perturbative triples levels of theory, with at least three correlation-consistent polarized-valence-(cc-pVXZ and aug-cc-pVXZ) type basis sets. The X˜A'1 state for GaH5 is predicted to be weakly bound complex 1 between gallane and molecular hydrogen, with Cs symmetry. The dissociation energy corresponding to GaH5→GaH3+H2 is predicted to be De=2.05kcalmol-1. The H-H stretching fundamental is predicted to be v =4060cm-1, compared to the tentatively assigned experimental feature of Wang and Andrews [J. Phys. Chem. A 107, 11371 (2003)] at 4087cm-1. A second Cs structure 2 with nearly equal energy is predicted to be a transition state, corresponding to a 90° rotation of the H2 bond. Thus the rotation of the hydrogen molecule is essentially free. However, hydrogen scrambling through the C2v structure 3 seems unlikely, as the activation barrier for scrambling is at least 30kcalmol-1 higher in energy than that for the dissociation of GaH5 to GaH3 and H2. Two additional structures consisting of GaH3 with a dihydrogen bond perpendicular to gallane (C3v structure 4) and an in-plane dihydrogen bond [Cs(III) structure 5] were also examined. A C3v symmetry second-order saddle point has nearly the same energy as the GaH3+H2 dissociation limit, while the Cs(III) structure 5 is a transition structure to the C3v structure. The C4v structure 6 and the D3h structure 7 are much higher in energy than GaH3+H2 by 88 and 103kcalmol-1, respectively.

  19. Randomized Trial of Modified Stretching Exercise Program for Menstrual Low Back Pain.

    Science.gov (United States)

    Chen, Huei-Mein; Hu, Hsou-Mei

    2018-03-01

    This study aimed to examine the effectiveness of a modified stretching exercise program on young women with menstrual low back pain. Overall, 127 young women were randomly assigned to the experimental ( n = 63) and control ( n = 64) groups. The experimental group followed the modified stretching exercise program, whereas the control group performed their usual activities. At 1, 4, 8, and 12 months, the experimental group had significantly lower scores on the visual analog scale for pain (95% confidence interval [CI] = [0.73, 1.96]; p < .05) and the Oswestry Low Back Pain Disability Questionnaire than the control group (95% CI = [0.68, 2.03]; p < .001). At 12 months, the experimental group showed significantly higher exercise self-efficacy than the control group (95% CI = [-6.87, 0.62]; p = .003). These findings can be used to enhance self-care capabilities by using the modified stretching exercise program for young women with menstrual low back pain.

  20. The synthesis of [fluorophenyl-3H(N)] ocfentanil and [fluorophenyl-3H(N)] brifentanil

    International Nuclear Information System (INIS)

    Filer, C.N.; Nugent, R.P.

    1995-01-01

    [Fluorophenyl- 3 H(N)] Ocfentanil and [fluorophenyl- 3 H(N)] brifentanil were synthesized by catalytic tritiation of appropriate bromo precursors. The products were purified by preparative HPLC and characterized chromatographically and by proton decoupled 3 H NMR. (author)

  1. METODE ACTIVE ISOLATED STRETCHING (AIS DAN METODE HOLD RELAX STRETCHING (HRS SAMA EFEKTIF DALAM MENINGKATKAN FLEKSIBILITAS OTOT HAMSTRING PADA MAHASISWA AKADEMI FISIOTERAPI WIDYA HUSADA SEMARANG YANG MENGALAMI HAMSTRING MUSCLE TIGHTNESS (HMTs

    Directory of Open Access Journals (Sweden)

    Akhmad alfajri

    2015-08-01

    Full Text Available Students with Hamstring Muscle Tightness (HMTs will be at risk of Anterior Crusiatum Ligament (ACL, Low Back Pain (LBP and also Plantar Faciitis. One of the efforts to reduce tightness and improve hamstring muscle flexibility is stretching. Active Isolated Stretching (AIS and Hold Relax Stretching (HRS are the methods of influential stretching to improve muscle flexibility. The goal of the research is to prove that AIS method is equally effective with the HRS method to improve hamstring muscle flexibility to the HMTs patients. The research method was true experimental with pre and post test group design. The research was conducted for 3 weeks and the samples are 23 students in range of 18-25 years old students of physical therapy in Physical Therapy Academy of Widya Husada Semarang which divided into 2 groups; AIS group (n= 12 and HRS group (n= 11. The research used Sit and Reach Test (SRT as the measurement instrument. The result of the research was the average result of AIS group used SRT before treatment was 1.75 cm, SB= 4.309 and after treatment was 10. 58 cm, SB = 8. 005 within p= 0.000 (p 0.05. Those explain that the improvement of hamstring muscle flexibility to the two groups does not show any significant difference. Conclusion from this study was active isolated stretching method and hold relax stretching method are equally effective to improving muscle flexibility of hamstring muscle tightness students of physical therapy in Physical Therapy Academy of Widya Husada Semarang.

  2. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    Science.gov (United States)

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  3. Modification of Spastic Stretch Reflexes at the Elbow by Flexion Synergy Expression in Individuals With Chronic Hemiparetic Stroke.

    Science.gov (United States)

    McPherson, Jacob G; Stienen, Arno H; Drogos, Justin M; Dewald, Julius P

    2018-03-01

    To systematically characterize the effect of flexion synergy expression on the manifestation of elbow flexor stretch reflexes poststroke, and to relate these findings to elbow flexor stretch reflexes in individuals without neurologic injury. Controlled cohort study. Academic medical center. Participants (N=20) included individuals with chronic hemiparetic stroke (n=10) and a convenience sample of individuals without neurologic or musculoskeletal injury (n=10). Participants with stroke were interfaced with a robotic device that precisely manipulated flexion synergy expression (by regulating shoulder abduction loading) while delivering controlled elbow extension perturbations over a wide range of velocities. This device was also used to elicit elbow flexor stretch reflexes during volitional elbow flexor activation, both in the cohort of individuals with stroke and in a control cohort. In both cases, the amplitude of volitional elbow flexor preactivation was matched to that generated involuntarily during flexion synergy expression. The amplitude of short- and long-latency stretch reflexes in the biceps brachii, assessed by electromyography, and expressed as a function of background muscle activation and stretch velocity. Increased shoulder abduction loading potentiated elbow flexor stretch reflexes via flexion synergy expression in the paretic arm. Compared with stretch reflexes in individuals without neurologic injury, paretic reflexes were larger at rest but were approximately equal to control muscles at matched levels of preactivation. Because flexion synergy expression modifies stretch reflexes in involved muscles, interventions that reduce flexion synergy expression may confer the added benefit of reducing spasticity during functional use of the arm. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Molecular and vibrational structure of diphenylether and its 4,4' -dibromo derivative. Infrared linear dichroism spectroscopy and density functional theory calculations

    DEFF Research Database (Denmark)

    Eriksen, Troels K; Karlsen, Eva; Spanget-Larsen, Jens

    2015-01-01

    The title compounds were investigated by means of Linear Dichroism (LD) IR spectroscopy on samples partially aligned in uniaxially stretched low-density polyethylene and by density functional theory calculations. Satisfactory overall agreement between observed and calculated vibrational wavenumbers...

  5. Effects of static-stretching and whole-body-vibration during warm-ups on bench-press kinematics in males and females college-aged. [Efectos de los estiramientos estáticos y vibraciones durante el calentamiento en los parámetros cinemáticos del press banca en hombres y mujeres estudiantes].

    OpenAIRE

    Esperanza Martín-Santana; Sonsoles Hernández-Sánchez; zael J. Herrero-Alonso; David García-López

    2015-01-01

    This study aimed to examine the effects of different specific warm-up protocols including static stretching (SS) and whole body vibrations (WBV) on kinematics and number of repetitions during a bench press set to failure in physically active male and female subjects. A secondary purpose was to analyze the role of sex on the warm-up induced effects. 24 participants (13 females and 11 males) were randomly assigned to complete 3 experimental conditions in a cross-over design: SS, WBV and SS+WBV...

  6. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    Science.gov (United States)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-01

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader's quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN (1Σ) and hydrideisocyanidezinc HZnNC (1Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]+ composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn+ (2Σ) and HCNZn+ (2Σ).

  7. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    International Nuclear Information System (INIS)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-01-01

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ( 1 Σ) and hydrideisocyanidezinc HZnNC ( 1 Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn] + composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn + ( 2 Σ) and HCNZn + ( 2 Σ)

  8. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen, E-mail: cbb@qf.uva.es [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ({sup 1}Σ) and hydrideisocyanidezinc HZnNC ({sup 1}Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]{sup +} composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn{sup +} ({sup 2}Σ) and HCNZn{sup +} ({sup 2}Σ)

  9. Active vibration control by robust control techniques

    International Nuclear Information System (INIS)

    Lohar, F.A.

    2001-01-01

    This paper studies active vibration control of multi-degree-of-freedom system. The control techniques considered are LTR, H/sup 2/ and H/sup infinite/. The results show that LTR controls the vibration but its respective settling time is higher than that of the other techniques. The control performance of H/sup infinite/ control is similar to that of H/sup 2/ control in the case of it weighting functions. However, H/sup infinite/ control is superior to H/sup 2/ control with respect to robustness, steady state error and settling time. (author)