WorldWideScience

Sample records for n-finger form-closure grasps

  1. Role of vision in aperture closure control during reach-to-grasp movements.

    Science.gov (United States)

    Rand, Miya K; Lemay, Martin; Squire, Linda M; Shimansky, Yury P; Stelmach, George E

    2007-08-01

    We have previously shown that the distance from the hand to the target at which finger closure is initiated during the reach (aperture closure distance) depends on the amplitude of peak aperture, as well as hand velocity and acceleration. This dependence suggests the existence of a control law according to which a decision to initiate finger closure during the reach is made when the hand distance to target crosses a threshold that is a function of the above movement-related parameters. The present study examined whether the control law is affected by manipulating the visibility of the hand and the target. Young adults made reach-to-grasp movements to a dowel under conditions in which the target or the hand or both were either visible or not visible. Reaching for and grasping a target when the hand and/or target were not visible significantly increased transport time and widened peak aperture. Aperture closure distance was significantly lengthened and wrist peak velocity was decreased only when the target was not visible. Further analysis showed that the control law was significantly different between the visibility-related conditions. When either the hand or target was not visible, the aperture closure distance systematically increased compared to its value for the same amplitude of peak aperture, hand velocity, and acceleration under full visibility. This implies an increase in the distance-related safety margin for grasping when the hand or target is not visible. It has been also found that the same control law can be applied to all conditions, if variables describing hand and target visibility were included in the control law model, as the parameters of the task-related environmental context, in addition to the above movement-related parameters. This suggests that that the CNS utilizes those variables for controlling grasp initiation based on a general control law.

  2. Getting a grip: different actions and visual guidance of the thumb and finger in precision grasping.

    Science.gov (United States)

    Melmoth, Dean R; Grant, Simon

    2012-10-01

    We manipulated the visual information available for grasping to examine what is visually guided when subjects get a precision grip on a common class of object (upright cylinders). In Experiment 1, objects (2 sizes) were placed at different eccentricities to vary the relative proximity to the participant's (n = 6) body of their thumb and finger contact positions in the final grip orientations, with vision available throughout or only for movement programming. Thumb trajectories were straighter and less variable than finger paths, and the thumb normally made initial contact with the objects at a relatively invariant landing site, but consistent thumb first-contacts were disrupted without visual guidance. Finger deviations were more affected by the object's properties and increased when vision was unavailable after movement onset. In Experiment 2, participants (n = 12) grasped 'glow-in-the-dark' objects wearing different luminous gloves in which the whole hand was visible or the thumb or the index finger was selectively occluded. Grip closure times were prolonged and thumb first-contacts disrupted when subjects could not see their thumb, whereas occluding the finger resulted in wider grips at contact because this digit remained distant from the object. Results were together consistent with visual feedback guiding the thumb in the period just prior to contacting the object, with the finger more involved in opening the grip and avoiding collision with the opposite contact surface. As people can overtly fixate only one object contact point at a time, we suggest that selecting one digit for online guidance represents an optimal strategy for initial grip placement. Other grasping tasks, in which the finger appears to be used for this purpose, are discussed.

  3. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  4. A General Contact Force Analysis of an Under-Actuated Finger in Robot Hand Grasping

    Directory of Open Access Journals (Sweden)

    Xuan Vinh Ha

    2016-02-01

    Full Text Available This paper develops a mathematical analysis of contact forces for the under-actuated finger in a general under-actuated robotic hand during grasping. The concept of under-actuation in robotic grasping with fewer actuators than degrees of freedom (DOF, through the use of springs and mechanical limits, allows the hand to adjust itself to an irregularly shaped object without complex control strategies and sensors. Here the main concern is the contact forces, which are important elements in grasping tasks, based on the proposed mathematical analysis of their distributions of the n-DOF under-actuated finger. The simulation results, along with the 3-DOF finger from the ADAMS model, show the effectiveness of the mathematical analysis method, while comparing them with the measured results. The system can find magnitudes of the contact forces at the contact positions between the phalanges and the object.

  5. Control of aperture closure during reach-to-grasp movements in Parkinson's disease.

    Science.gov (United States)

    Rand, M K; Smiley-Oyen, A L; Shimansky, Y P; Bloedel, J R; Stelmach, G E

    2006-01-01

    This study examined whether the pattern of coordination between arm-reaching toward an object (hand transport) and the initiation of aperture closure for grasping is different between PD patients and healthy individuals, and whether that pattern is affected by the necessity to quickly adjust the reach-to-grasp movement in response to an unexpected shift of target location. Subjects reached for and grasped a vertical dowel, the location of which was indicated by illuminating one of the three dowels placed on a horizontal plane. In control conditions, target location was fixed during the trial. In perturbation conditions, target location was shifted instantaneously by switching the illumination to a different dowel during the reach. The hand distance from the target at which the subject initiated aperture closure (aperture closure distance) was similar for both the control and perturbation conditions within each group of subjects. However, that distance was significantly closer to the target in the PD group than in the control group. The timing of aperture closure initiation varied considerably across the trials in both groups of subjects. In contrast, aperture closure distance was relatively invariant, suggesting that aperture closure initiation was determined by spatial parameters of arm kinematics rather than temporal parameters. The linear regression analysis of aperture closure distance showed that the distance was highly predictable based on the following three parameters: the amplitude of maximum grip aperture, hand velocity, and hand acceleration. This result implies that a control law, the arguments of which include the above parameters, governs the initiation of aperture closure. Further analysis revealed that the control law was very similar between the subject groups under each condition as well as between the control and perturbation conditions for each group. Consequently, the shorter aperture closure distance observed in PD patients apparently is a

  6. A simple design rule for 1st order form-closure of underactuated hands

    Directory of Open Access Journals (Sweden)

    S. Krut

    2011-02-01

    Full Text Available The property of form-closure of a grasp, as generally defined in the literature, is based on the assumption that contact points between the hand and the object are fixed in space. However, this assumption is false when considering a grasp exerted by an underactuated hand, since in this case, it is not possible to control the position of each phalanx independently. In spite of researchers' interest in studying form-closure, none of the available published work on this subject takes into consideration the particular kinematics of underactuated hands. Actually, there are few available tools to qualify or quantify the stability of a grasp exerted by an underactuated hand, thus the design of underactuated hands mostly results from an intuitive approach. This paper aims to reduce this gap.

    A classification of underactuated hands is proposed, based on the expression of contact forces. This highlights the influence of non-backdrivable mechanisms introduced in the transmission of the closing motion of the hand on the stability of the grasp. The way to extend the original definition of form-closure to underactuated grasps is illustrated. A more general definition is formulated, which checks the stability of the set "object + hand". Using this new definition, a simple rule is proposed for designing a hand capable of achieving 1st order form-closed grasps.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  7. Control of aperture closure during reach-to-grasp movements in parkinson’s disease

    Science.gov (United States)

    Rand, M. K.; Smiley-Oyen, A. L.; Shimansky, Y. P.; Bloedel, J. R.; Stelmach, G. E.

    2007-01-01

    This study examined whether the pattern of coordination between arm-reaching toward an object (hand transport) and the initiation of aperture closure for grasping is different between PD patients and healthy individuals, and whether that pattern is affected by the necessity to quickly adjust the reach-to-grasp movement in response to an unexpected shift of target location. Subjects reached for and grasped a vertical dowel, the location of which was indicated by illuminating one of the three dowels placed on a horizontal plane. In control conditions, target location was fixed during the trial. In perturbation conditions, target location was shifted instantaneously by switching the illumination to a different dowel during the reach. The hand distance from the target at which the subject initiated aperture closure (aperture closure distance) was similar for both the control and perturbation conditions within each group of subjects. However, that distance was significantly closer to the target in the PD group than in the control group. The timing of aperture closure initiation varied considerably across the trials in both groups of subjects. In contrast, aperture closure distance was relatively invariant, suggesting that aperture closure initiation was determined by spatial parameters of arm kinematics rather than temporal parameters. The linear regression analysis of aperture closure distance showed that the distance was highly predictable based on the following three parameters: the amplitude of maximum grip aperture, hand velocity, and hand acceleration. This result implies that a control law, the arguments of which include the above parameters, governs the initiation of aperture closure. Further analysis revealed that the control law was very similar between the subject groups under each condition as well as between the control and perturbation conditions for each group. Consequently, the shorter aperture closure distance observed in PD patients apparently is a

  8. How Weight Affects the Perceived Spacing between the Thumb and Fingers during Grasping.

    Directory of Open Access Journals (Sweden)

    Annie A Butler

    Full Text Available We know much about mechanisms determining the perceived size and weight of lifted objects, but little about how these properties of size and weight affect the body representation (e.g. grasp aperture of the hand. Without vision, subjects (n = 16 estimated spacing between fingers and thumb (perceived grasp aperture while lifting canisters of the same width (6.6cm but varied weights (300, 600, 900, and 1200 g. Lifts were performed by movement of either the wrist, elbow or shoulder to examine whether lifting with different muscle groups affects the judgement of grasp aperture. Results for perceived grasp aperture were compared with changes in perceived weight of objects of different sizes (5.2, 6.6, and 10 cm but the same weight (600 g. When canisters of the same width but different weights were lifted, perceived grasp aperture decreased 4.8% [2.2 ‒ 7.4] (mean [95% CI]; P < 0.001 from the lightest to the heaviest canister, no matter how they were lifted. For objects of the same weight but different widths, perceived weight decreased 42.3% [38.2 ‒ 46.4] from narrowest to widest (P < 0.001, as expected from the size-weight illusion. Thus, despite a highly distorted perception of the weight of objects based on their size, we conclude that proprioceptive afferents maintain a reasonably stable perception of the aperture of the grasping hand over a wide range of object weights. Given the small magnitude of this 'weight-grasp aperture' illusion, we propose the brain has access to a relatively stable 'perceptual ruler' to aid the manipulation of different objects.

  9. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.

    Science.gov (United States)

    Rand, Miya Kato; Lemay, Martin; Squire, Linda M; Shimansky, Yury P; Stelmach, George E

    2010-03-01

    The present project was aimed at investigating how two distinct and important difficulties (coordination difficulty and pronounced dependency on visual feedback) in Parkinson's disease (PD) affect each other for the coordination between hand transport toward an object and the initiation of finger closure during reach-to-grasp movement. Subjects with PD and age-matched healthy subjects made reach-to-grasp movements to a dowel under conditions in which the target object and/or the hand were either visible or not visible. The involvement of the trunk in task performance was manipulated by positioning the target object within or beyond the participant's outstretched arm to evaluate the effects of increasing the complexity of intersegmental coordination under different conditions related to the availability of visual feedback in subjects with PD. General kinematic characteristics of the reach-to-grasp movements of the subjects with PD were altered substantially by the removal of target object visibility. Compared with the controls, the subjects with PD considerably lengthened transport time, especially during the aperture closure period, and decreased peak velocity of wrist and trunk movement without target object visibility. Most of these differences were accentuated when the trunk was involved. In contrast, these kinematic parameters did not change depending on the visibility of the hand for both groups. The transport-aperture coordination was assessed in terms of the control law according to which the initiation of aperture closure during the reach occurred when the hand distance-to-target crossed a hand-target distance threshold for grasp initiation that is a function of peak aperture, hand velocity and acceleration, trunk velocity and acceleration, and trunk-target distance at the time of aperture closure initiation. When the hand or the target object was not visible, both groups increased the hand-target distance threshold for grasp initiation compared to its

  10. Quantitative model of transport-aperture coordination during reach-to-grasp movements.

    Science.gov (United States)

    Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E

    2008-06-01

    It has been found in our previous studies that the initiation of aperture closure during reach-to-grasp movements occurs when the hand distance to target crosses a threshold that is a function of peak aperture amplitude, hand velocity, and hand acceleration. Thus, a stable relationship between those four movement parameters is observed at the moment of aperture closure initiation. Based on the concept of optimal control of movements (Naslin 1969) and its application for reach-to-grasp movement regulation (Hoff and Arbib 1993), it was hypothesized that the mathematical equation expressing that relationship can be generalized to describe coordination between hand transport and finger aperture during the entire reach-to-grasp movement by adding aperture velocity and acceleration to the above four movement parameters. The present study examines whether this hypothesis is supported by the data obtained in experiments in which young adults performed reach-to-grasp movements in eight combinations of two reach-amplitude conditions and four movement-speed conditions. It was found that linear approximation of the mathematical model described the relationship among the six movement parameters for the entire aperture-closure phase with very high precision for each condition, thus supporting the hypothesis for that phase. Testing whether one mathematical model could approximate the data across all the experimental conditions revealed that it was possible to achieve the same high level of data-fitting precision only by including in the model two additional, condition-encoding parameters and using a nonlinear, artificial neural network-based approximator with two hidden layers comprising three and two neurons, respectively. This result indicates that transport-aperture coordination, as a specific relationship between the parameters of hand transport and finger aperture, significantly depends on the condition-encoding variables. The data from the aperture-opening phase also fit a

  11. ANALYSIS of Control Force Grasping for a Multifunctional Five Fingered Robot to Pick-up Various of Components

    Directory of Open Access Journals (Sweden)

    Widhiada W.

    2016-01-01

    Full Text Available Multi-fingered robot gripper has become popular in the major research topics as grasping an object in robotic systems. The author considers a matter of style-based control model for a multi-fingered robot hand grasping an object with a known geometric characteristics. This paper introduces design process and analysis of contact force the five fingered gripper suitable to handle several of objects. The author applied Simulink/SimMechanics, Support package Arduino and Inventor software packages to facilatate and integrated the design of contact force gripper systems. The advance of PID control is used to control dynamics motions of the five fingered gripper systems. The multifunction finger’s gripper is developed to handle the various components. Contact force between fingertips and object surface is computed using the Hooke law concept. The analysis of experiment result shows the optimum of contact forces are achieved to hold the object. The spring and damper algorithm is used to compute the interaction of force between fingertips and object surface.

  12. Method of Grasping Control by Computing Internal and External Impedances for Two Robot Fingers, and Its Application to Admittance Control of a Robot Hand-Arm System

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2015-08-01

    Full Text Available Impedance control is an important technology used in the grasping control of a robot hand. Numerous studies related to grasping algorithms have been reported in recent years, with the contact force between robot fingers and the object to be grasped being primarily discussed in most cases. Generally, a coupling effect occurs between the internal loop of the grasping operation and the external loop of the interaction with the environment when a multi-fingered robot hand is used to complete a contact task. Therefore, a robot hand cannot hold an object using a large external force to complete a wide range of tasks by applying the conventional method. In this paper, the coupling of the internal/external forces occurring in grasping operations using multiple fingers is analysed. Then, improved impedance control based on the previous method is proposed as an effective tool to solve the problem of grasping failure caused by single-finger contact. Furthermore, a method for applying the improved grasping algorithm to the admittance control of a robot hand-arm system is also proposed. The proposed method divides the impedance effect into the grasping control of the hand and the cooperative control of the arm, so that expanding the task space and increasing the flexibility of impedance adjustment can be achieved. Experiments were conducted to demonstrate the effectiveness of the proposed method.

  13. Adaptation of reach-to-grasp movement in response to force perturbations.

    Science.gov (United States)

    Rand, M K; Shimansky, Y; Stelmach, G E; Bloedel, J R

    2004-01-01

    reaching arm is perturbed or not. In addition, the results of the predictable perturbations showed that the time from movement onset to the onset of grip aperture closure changed as adaptation occurred. However, the spatial location where the onset of finger closure occurred showed minimum changes with perturbation. These data suggest that the onset of finger closure is dependent upon distance to target rather than the temporal relationship of the grasp relative to the transport phase of the movement.

  14. The Synthesis of Force Closure Grasps in the Plane.

    Science.gov (United States)

    1985-09-01

    TASK U Artificial Inteligence Laboratory AREA A WORK UN IT "NMUIERS ~( 545 Technology Square Cambridge, MA 02139 SI. CONTROLLING OFICE NAME ANO... ARTIFICIAL INThLLIX’ ENCE LABORATORY A. 1. Memo 861 September, 1985 The Synthesis of Force-Closure Grasps In the Plane DTIC ’VeL% ,#ECTE 1 VnDcNguyenU Abstract... Artificial In- telligenmcc Liabomatory of thle Massachuset Is hInsttute of Teclhnolog3 . Support for the Lahoratot * s Artificial Intelligence research is

  15. Seamless Control of Multi-Fingered Robot Hands Based on Grasp Polyhedrons

    Science.gov (United States)

    Nagase, Kenji; Shirai, Satoshi; Hayashi, Tsuyoshi

    This paper is concerned with a new feedback control design methodology for multi-fingered robot hands applicable to multiple contact situations. As a first step, we especially consider the situations where all the fingers are in contact or not in contact with an object, considering the tasks of catching and releasing the object preceding to or followed by grasping/manipulating the object. Main features of the proposed method are: (1) the direction of the fingertip motion in the non-contact situation is selected to be directly linked to the direction of the object motion and the internal force in the contact situation; (2) by introducing a unified system description for multiple contact situations, a linearizing compensator applicable to multiple contact situations is designed. The controller can handle the tasks with the multiple contact situations by choosing appropriate desired trajectories for the linearizing compensator without switching control architecture. In addition, owing to the selection of the motion in the non-contact situation, all the fingers can approach to the object synchronously along the directions of the object motion and the internal force in the contact situation. A numerical example is shown to prove effectiveness of the proposed method.

  16. CONTROL OF APERTURE CLOSURE INITIATION DURING TRUNK-ASSISTED REACH-TO-GRASP MOVEMENTS

    Science.gov (United States)

    Rand, Miya K.; Van Gemmert, Arend W. A.; Hossain, Abul B.M.I.; Shimansky, Yury P.; Stelmach, George E.

    2012-01-01

    The present study investigated how the involvement and direction of trunk movement during reach-to-grasp movements affect the coordination between the transport and grasping components. Seated young adults made prehensile movements in which the involvement of the trunk was varied; the trunk was not involved, moved forward (flexion), or moved backward (extension) in the sagittal plane during the reach to the object. Each of the trunk movements was combined with an extension or flexion motion of the arm during the reach. Regarding the relation between the trunk and arm motion for arm transport, the onset of wrist motion relative to that of the trunk was delayed to a greater extent for the trunk extension than for the trunk flexion. The variability of the time period from the peak of wrist velocity to the peak of trunk velocity was also significantly greater for trunk extension compared to trunk flexion. These findings indicate that trunk flexion was better integrated into the control of wrist transport than trunk extension. In terms of the temporal relationship between wrist transport and grip aperture, the relation between the time of peak wrist velocity and the time of peak grip aperture did not change or became less steady across conditions. Therefore, the stability of temporal coordination between wrist transport and grip aperture was maintained despite the variation of the pattern of intersegmental coordination between the arm and the trunk during arm transport. The transport-aperture coordination was further assessed in terms of the control law according to which the initiation of aperture closure during the reach occurs when the hand crosses a hand-to-target distance threshold for grasp initiation that is a function of peak aperture, wrist velocity and acceleration, trunk velocity and acceleration, and trunk-to-target distance at the time of aperture closure initiation. The participants increased the hand-to-target distance threshold for grasp initiation in

  17. Control of aperture closure initiation during trunk-assisted reach-to-grasp movements.

    Science.gov (United States)

    Rand, Miya K; Van Gemmert, Arend W A; Hossain, Abul B M I; Shimansky, Yury P; Stelmach, George E

    2012-06-01

    The present study investigated how the involvement and direction of trunk movement during reach-to-grasp movements affect the coordination between the transport and grasping components. Seated young adults made prehensile movements in which the involvement of the trunk was varied; the trunk was not involved, moved forward (flexion), or moved backward (extension) in the sagittal plane during the reach to the object. Each of the trunk movements was combined with an extension or flexion motion of the arm during the reach. Regarding the relationship between the trunk and arm motion for arm transport, the onset of wrist motion relative to that of the trunk was delayed to a greater extent for the trunk extension than for the trunk flexion. The variability of the time period from the peak of wrist velocity to the peak of trunk velocity was also significantly greater for trunk extension compared to trunk flexion. These findings indicate that trunk flexion was better integrated into the control of wrist transport than trunk extension. In terms of the temporal relationship between wrist transport and grip aperture, the relationship between the time of peak wrist velocity and the time of peak grip aperture did not change or become less steady across conditions. Therefore, the stability of temporal coordination between wrist transport and grip aperture was maintained despite the variation of the pattern of intersegmental coordination between the arm and the trunk during arm transport. The transport-aperture coordination was further assessed in terms of the control law according to which the initiation of aperture closure during the reach occurs when the hand crosses a hand-to-target distance threshold for grasp initiation, which is a function of peak aperture, wrist velocity and acceleration, trunk velocity and acceleration, and trunk-to-target distance at the time of aperture closure initiation. The participants increased the hand-to-target distance threshold for grasp

  18. Real-time vision, tactile cues, and visual form agnosia in pantomimed grasping: removing haptic feedback induces a switch from natural to pantomime-like grasps

    Directory of Open Access Journals (Sweden)

    Robert Leslie Whitwell

    2015-05-01

    Full Text Available Investigators study the kinematics of grasping movements (prehension under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. When patient DF, who suffers from visual form agnosia, performs natural grasps, her in-flight hand aperture is scaled to the widths of targets ('grip scaling' that she cannot discriminate amongst. In contrast, when DF's pantomime grasps are based on a memory of a previewed object, her grip scaling is very poor. Her failure on this task has been interpreted as additional support for the dissociation between the use of object vision for action and object vision for perception. Curiously, however, when DF directs her pantomimed grasps towards a displaced imagined copy of a visible object where her fingers make contact with the surface of the table, her grip scaling does not appear to be particularly poor. In the first of two experiments, we revisit this previous work and show that her grip scaling in this real-time pantomime grasping task does not differ from controls, suggesting that terminal tactile feedback from a proxy of the target can maintain DF's grip scaling. In a second experiment with healthy participants, we tested a recent variant of a grasping task in which no tactile feedback is available (i.e. no haptic feedback by comparing the kinematics of target-directed grasps with and without haptic feedback to those of real-time pantomime grasps without haptic feedback. Compared to natural grasps, removing haptic feedback increased RT, slowed the velocity of the reach, reduced grip aperture, sharpened the slopes relating grip aperture to target width, and reduced the final grip aperture. All of these effects were also observed in the pantomime grasping task. Taken together, these results provide compelling support for the view that removing haptic feedback induces a switch from real-time visual control to one that depends more on visual perception and cognitive supervision.

  19. Model-based automatic generation of grasping regions

    Science.gov (United States)

    Bloss, David A.

    1993-01-01

    The problem of automatically generating stable regions for a robotic end effector on a target object, given a model of the end effector and the object is discussed. In order to generate grasping regions, an initial valid grasp transformation from the end effector to the object is obtained based on form closure requirements, and appropriate rotational and translational symmetries are associated with that transformation in order to construct a valid, continuous grasping region. The main result of this algorithm is a list of specific, valid grasp transformations of the end effector to the target object, and the appropriate combinations of translational and rotational symmetries associated with each specific transformation in order to produce a continuous grasp region.

  20. Robot Grasp Learning by Demonstration without Predefined Rules

    Directory of Open Access Journals (Sweden)

    César Fernández

    2011-12-01

    Full Text Available A learning-based approach to autonomous robot grasping is presented. Pattern recognition techniques are used to measure the similarity between a set of previously stored example grasps and all the possible candidate grasps for a new object. Two sets of features are defined in order to characterize grasps: point attributes describe the surroundings of a contact point; point-set attributes describe the relationship between the set of n contact points (assuming an n-fingered robot gripper is used. In the experiments performed, the nearest neighbour classifier outperforms other approaches like multilayer perceptrons, radial basis functions or decision trees, in terms of classification accuracy, while computational load is not excessive for a real time application (a grasp is fully synthesized in 0.2 seconds. The results obtained on a synthetic database show that the proposed system is able to imitate the grasping behaviour of the user (e.g. the system learns to grasp a mug by its handle. All the code has been made available for testing purposes.

  1. Interlimb Transfer of Grasp Orientation is Asymmetrical

    Directory of Open Access Journals (Sweden)

    Victor Frak

    2006-01-01

    Full Text Available One the most fundamental aspects of the human motor system is the hemispheric asymmetry seen in behavioral specialization. Hemispheric dominance can be inferred by a contralateral hand preference in grasping. Few studies have considered grasp orientation in the context of manual lateralization and none has looked at grasp orientation with natural prehension. Thirty right-handed adults performed precision grasps of a cylinder using the thumb and index fingers, and the opposition axis (OA was defined as the line connecting these two contact points on the cylinder. Subjects made ten consecutive grasps with one hand (primary hand movements followed by ten grasps with the other hand (trailing movements. Differences between primary and trailing grasps revealed that each hemisphere is capable of programming the orientation of the OA and that primary movements with the right hand significantly influenced OA orientation of the trailing left hand. These results extend the hemispheric dominance of the left hemisphere to the final positions of fingers during prehension.

  2. Grasp Algorithms For Optotactile Robotic Sample Acquisition, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Robotic sample acquisition is basically grasping. Multi-finger robot sample grasping devices are controlled to securely pick up samples. While optimal grasps for...

  3. Gaze strategies during visually-guided versus memory-guided grasping.

    Science.gov (United States)

    Prime, Steven L; Marotta, Jonathan J

    2013-03-01

    Vision plays a crucial role in guiding motor actions. But sometimes we cannot use vision and must rely on our memory to guide action-e.g. remembering where we placed our eyeglasses on the bedside table when reaching for them with the lights off. Recent studies show subjects look towards the index finger grasp position during visually-guided precision grasping. But, where do people look during memory-guided grasping? Here, we explored the gaze behaviour of subjects as they grasped a centrally placed symmetrical block under open- and closed-loop conditions. In Experiment 1, subjects performed grasps in either a visually-guided task or memory-guided task. The results show that during visually-guided grasping, gaze was first directed towards the index finger's grasp point on the block, suggesting gaze targets future grasp points during the planning of the grasp. Gaze during memory-guided grasping was aimed closer to the blocks' centre of mass from block presentation to the completion of the grasp. In Experiment 2, subjects performed an 'immediate grasping' task in which vision of the block was removed immediately at the onset of the reach. Similar to the visually-guided results from Experiment 1, gaze was primarily directed towards the index finger location. These results support the 2-stream theory of vision in that motor planning with visual feedback at the onset of the movement is driven primarily by real-time visuomotor computations of the dorsal stream, whereas grasping remembered objects without visual feedback is driven primarily by the perceptual memory representations mediated by the ventral stream.

  4. Exploration of Hand Grasp Patterns Elicitable Through Non-Invasive Proximal Nerve Stimulation.

    Science.gov (United States)

    Shin, Henry; Watkins, Zach; Hu, Xiaogang

    2017-11-29

    Various neurological conditions, such as stroke or spinal cord injury, result in an impaired control of the hand. One method of restoring this impairment is through functional electrical stimulation (FES). However, traditional FES techniques often lead to quick fatigue and unnatural ballistic movements. In this study, we sought to explore the capabilities of a non-invasive proximal nerve stimulation technique in eliciting various hand grasp patterns. The ulnar and median nerves proximal to the elbow joint were activated transcutanously using a programmable stimulator, and the resultant finger flexion joint angles were recorded using a motion capture system. The individual finger motions averaged across the three joints were analyzed using a cluster analysis, in order to classify the different hand grasp patterns. With low current intensity (grasp patterns including single finger movement and coordinated multi-finger movements. This study provides initial evidence on the feasibility of a proximal nerve stimulation technique in controlling a variety of finger movements and grasp patterns. Our approach could also be developed into a rehabilitative/assistive tool that can result in flexible movements of the fingers.

  5. Visuomotor Resolution in Telerobotic Grasping with Transmission Delays

    Directory of Open Access Journals (Sweden)

    Omri Afgin

    2017-10-01

    Full Text Available Weber’s law is among the basic psychophysical laws of human perception. It determines that human sensitivity to change along a physical dimension, the just noticeable difference (JND, is linearly related to stimulus intensity. Conversely, in direct (natural, visually guided grasping, Weber’s law is violated and the JND does not depend on stimulus intensity. The current work examines adherence to Weber’s law in telerobotic grasping. In direct grasping, perception and action are synchronized during task performance. Conversely, in telerobotic control, there is an inherent spatial and temporal separation between perception and action. The understanding of perception–action association in such conditions may facilitate development of objective measures for telerobotic systems and contribute to improved interface design. Moreover, telerobotic systems offer a unique platform for examining underlying causes for the violation of Weber’s law during direct grasping. We examined whether, like direct grasping, telerobotic grasping with transmission delays violates Weber’s law. To this end, we examined perceptual assessment, grasp control, and grasp demonstration, using a telerobotic system with time delays in two spatial orientations: alongside and facing the robot. The examination framework was adapted to telerobotics from the framework used for examining Weber’s law in direct grasping. The variability of final grip apertures (FGAs in perceptual assessment increased with object size in adherence with Weber’s law. Similarly, the variability of maximal grip apertures in grasp demonstration approached significance in adherence with Weber’s law. In grasp control, the variability of maximal grip apertures did not increase with object size, which seems to violate Weber’s law. However, unlike in direct grasping, motion trajectories were prolonged and fragmented, and included an atypical waiting period prior to finger closure. Therefore, in

  6. Is the Control of Applied Digital Forces During Natural Five-digit Grasping Affected by Carpal Tunnel Syndrome?

    Science.gov (United States)

    Chen, Po-Tsun; Jou, I-Ming; Lin, Chien-Ju; Chieh, Hsiao-Feng; Kuo, Li-Chieh; Su, Fong-Chin

    2015-07-01

    The impaired sensory function of the hand induced by carpal tunnel syndrome (CTS) is known to disturb dexterous manipulations. However, force control during daily grasping configuration among the five digits has not been a prominent focus of study. Because grasping is so important to normal function and use of a hand, it is important to understand how sensory changes in CTS affect the digit force of natural grasp. We therefore examined the altered patterns of digit forces applied during natural five-digit grasping in patients with CTS and compared them with those seen in control subjects without CTS. We hypothesized that the patients with CTS will grasp by applying larger forces with lowered pair correlations and more force variability of the involved digits than the control subjects. Specifically, we asked: (1) Is there a difference between patients with CTS and control subjects in applied force by digits during lift-hold-lower task? (2) Is there a difference in force correlation coefficient of the digit pairs? (3) Are there force variability differences during the holding phase? We evaluated 15 female patients with CTS and 15 control subjects matched for age, gender, and hand dominance. The applied radial forces (Fr) of the five digits were recorded by respective force transducers on a cylinder simulator during the lift-hold-lower task with natural grasping. The movement phases of the task were determined by a video-based motion capture system. The applied forces of the thumb in patients with CTS (7 ± 0.8 N; 95% CI, 7.2-7.4 N) versus control subjects (5 ± 0.8 N; 95% CI, 5.1-5.3 N) and the index finger in patients with CTS (3 ± 0.3 N; 95% CI, 3.2-3.3 N) versus control subjects (2 ± 0.3 N; 95% CI, 2.2-2.3 N) observed throughout most of the task were larger in the CTS group (p ranges 0.035-0.050 for thumb and 0.016-0.050 for index finger). In addition, the applied force of the middle finger in patients with CTS (1 ± 0.1 N; 95% CI, 1.3-1.4 N

  7. Electromyographic Grasp Recognition for a Five Fingered Robotic Hand

    Directory of Open Access Journals (Sweden)

    Nayan M. Kakoty

    2012-09-01

    Full Text Available This paper presents classification of grasp types based on surface electromyographic signals. Classification is through radial basis function kernel support vector machine using sum of wavelet decomposition coefficients of the EMG signals. In a study involving six subjects, we achieved an average recognition rate of 86%. The electromyographic grasp recognition together with a 8-bit microcontroller has been employed to control a fivefingered robotic hand to emulate six grasp types used during 70% daily living activities.

  8. Human Grasp Assist Device With Exoskeleton

    Science.gov (United States)

    Bergelin, Bryan J (Inventor); Ihrke, Chris A. (Inventor); Davis, Donald R. (Inventor); Linn, Douglas Martin (Inventor); Bridgwater, Lyndon B. J. (Inventor)

    2014-01-01

    A grasp assist system includes a glove, actuator assembly, and controller. The glove includes a digit, i.e., a finger or thumb, and a force sensor. The sensor measures a grasping force applied to an object by an operator wearing the glove. Phalange rings are positioned with respect to the digit. A flexible tendon is connected at one end to one of the rings and is routed through the remaining rings. An exoskeleton positioned with respect to the digit includes hinged interconnecting members each connected to a corresponding ring, and/or a single piece of slotted material. The actuator assembly is connected to another end of the tendon. The controller calculates a tensile force in response to the measured grasping force, and commands the tensile force from the actuator assembly to thereby pull on the tendon. The exoskeleton offloads some of the tensile force from the operator's finger to the glove.

  9. Getting hold of approaching objects : In search of a common control of hand-closure initiation in catching and grasping

    NARCIS (Netherlands)

    van de Kamp, Cornelis; Bongers, Raoul M.; Zaal, Frank T. J. M.

    Both in the catching and grasping component of prehension, the hand opens and closes before hand-object contact is made. The initiation of hand closure has to be coordinated with the time course of the decrease of the distance between the hand and the target object, i.e., with the reaching component

  10. Design and fabrication of robotic gripper for grasping in minimizing contact force

    Science.gov (United States)

    Heidari, Hamidreza; Pouria, Milad Jafary; Sharifi, Shahriar; Karami, Mahmoudreza

    2018-03-01

    This paper presents a new method to improve the kinematics of robot gripper for grasping in unstructured environments, such as space operations. The robot gripper is inspired from the human hand and kept the hand design close to the structure of human fingers to provide successful grasping capabilities. The main goal is to improve kinematic structure of gripper to increase the grasping capability of large objects, decrease the contact forces and makes a successful grasp of various objects in unstructured environments. This research will describe the development of a self-adaptive and reconfigurable robotic hand for space operations through mechanical compliance which is versatile, robust and easy to control. Our model contains two fingers, two-link and three-link, with combining a kinematic model of thumb index. Moreover, some experimental tests are performed to examine the effectiveness of the hand-made in real, unstructured tasks. The results represent that the successful grasp range is improved about 30% and the contact forces is reduced approximately 10% for a wide range of target object size. According to the obtained results, the proposed approach provides an accommodative kinematic model which makes the better grasping capability by fingers geometries for a robot gripper.

  11. Concatenation of observed grasp phases with observer's distal movements: a behavioural and TMS study.

    Directory of Open Access Journals (Sweden)

    Elisa De Stefani

    Full Text Available The present study aimed at determining how actions executed by two conspecifics can be coordinated with each other, or more specifically, how the observation of different phases of a reaching-grasping action is temporary related to the execution of a movement of the observer. Participants observed postures of initial finger opening, maximal finger aperture, and final finger closing of grasp after observation of an initial hand posture. Then, they opened or closed their right thumb and index finger (experiments 1, 2 and 3. Response times decreased, whereas acceleration and velocity of actual finger movements increased when observing the two late phases of grasp. In addition, the results ruled out the possibility that this effect was due to salience of the visual stimulus when the hand was close to the target and confirmed an effect of even hand postures in addition to hand apparent motion due to the succession of initial hand posture and grasp phase. In experiments 4 and 5, the observation of grasp phases modulated even foot movements and pronunciation of syllables. Finally, in experiment 6, transcranial magnetic stimulation applied to primary motor cortex 300 ms post-stimulus induced an increase in hand motor evoked potentials of opponens pollicis muscle when observing the two late phases of grasp. These data suggest that the observation of grasp phases induced simulation which was stronger during observation of finger closing. This produced shorter response times, greater acceleration and velocity of the successive movement. In general, our data suggest best concatenation between two movements (one observed and the other executed when the observed (and simulated movement was to be accomplished. The mechanism joining the observation of a conspecific's action with our own movement may be precursor of social functions. It may be at the basis for interactions between conspecifics, and related to communication between individuals.

  12. Concatenation of observed grasp phases with observer's distal movements: a behavioural and TMS study.

    Science.gov (United States)

    De Stefani, Elisa; Innocenti, Alessandro; De Marco, Doriana; Gentilucci, Maurizio

    2013-01-01

    The present study aimed at determining how actions executed by two conspecifics can be coordinated with each other, or more specifically, how the observation of different phases of a reaching-grasping action is temporary related to the execution of a movement of the observer. Participants observed postures of initial finger opening, maximal finger aperture, and final finger closing of grasp after observation of an initial hand posture. Then, they opened or closed their right thumb and index finger (experiments 1, 2 and 3). Response times decreased, whereas acceleration and velocity of actual finger movements increased when observing the two late phases of grasp. In addition, the results ruled out the possibility that this effect was due to salience of the visual stimulus when the hand was close to the target and confirmed an effect of even hand postures in addition to hand apparent motion due to the succession of initial hand posture and grasp phase. In experiments 4 and 5, the observation of grasp phases modulated even foot movements and pronunciation of syllables. Finally, in experiment 6, transcranial magnetic stimulation applied to primary motor cortex 300 ms post-stimulus induced an increase in hand motor evoked potentials of opponens pollicis muscle when observing the two late phases of grasp. These data suggest that the observation of grasp phases induced simulation which was stronger during observation of finger closing. This produced shorter response times, greater acceleration and velocity of the successive movement. In general, our data suggest best concatenation between two movements (one observed and the other executed) when the observed (and simulated) movement was to be accomplished. The mechanism joining the observation of a conspecific's action with our own movement may be precursor of social functions. It may be at the basis for interactions between conspecifics, and related to communication between individuals.

  13. Differences in fixations between grasping and viewing objects

    NARCIS (Netherlands)

    Brouwer, A.M.; Franz, V.H.; Gegenfurtner, K.R.

    2009-01-01

    Where exactly do people look when they grasp an object? An object is usually contacted at two locations, whereas the gaze can only be at one location at the time. We investigated participants' fixation locations when they grasp objects with the contact positions of both index finger and thumb being

  14. Concatenation of Observed Grasp Phases with Observer’s Distal Movements: A Behavioural and TMS Study

    Science.gov (United States)

    De Stefani, Elisa; Innocenti, Alessandro; De Marco, Doriana; Gentilucci, Maurizio

    2013-01-01

    The present study aimed at determining how actions executed by two conspecifics can be coordinated with each other, or more specifically, how the observation of different phases of a reaching-grasping action is temporary related to the execution of a movement of the observer. Participants observed postures of initial finger opening, maximal finger aperture, and final finger closing of grasp after observation of an initial hand posture. Then, they opened or closed their right thumb and index finger (experiments 1, 2 and 3). Response times decreased, whereas acceleration and velocity of actual finger movements increased when observing the two late phases of grasp. In addition, the results ruled out the possibility that this effect was due to salience of the visual stimulus when the hand was close to the target and confirmed an effect of even hand postures in addition to hand apparent motion due to the succession of initial hand posture and grasp phase. In experiments 4 and 5, the observation of grasp phases modulated even foot movements and pronunciation of syllables. Finally, in experiment 6, transcranial magnetic stimulation applied to primary motor cortex 300 ms post-stimulus induced an increase in hand motor evoked potentials of opponens pollicis muscle when observing the two late phases of grasp. These data suggest that the observation of grasp phases induced simulation which was stronger during observation of finger closing. This produced shorter response times, greater acceleration and velocity of the successive movement. In general, our data suggest best concatenation between two movements (one observed and the other executed) when the observed (and simulated) movement was to be accomplished. The mechanism joining the observation of a conspecific’s action with our own movement may be precursor of social functions. It may be at the basis for interactions between conspecifics, and related to communication between individuals. PMID:24278395

  15. Compensating Pose Uncertainties through Appropriate Gripper Finger Cutouts

    DEFF Research Database (Denmark)

    Wolniakowski, Adam; Gams, Andrej; Kiforenko, Lilita

    2018-01-01

    The gripper finger design is a recurring problem in many robotic grasping platforms used in industry. The task of switching the gripper configuration to accommodate a new batch of objects typically requires engineering expertise and is a lengthy and costly iterative trial-and-error process. One...... in a sample industrial object grasping scenario for a finger that was designed using an automated simulation-based geometry optimization method (Wolniakowski et al., 2013, 2015). We test the developed gripper with a set of grasps subjected to structured perturbation in a simulation environment and in the real......-world setting. We provide a comparison of the data obtained by using both of these approaches. We argue that the strong correspondence observed in results validates the use of dynamic simulation for the gripper finger design and optimization....

  16. Grasping and manipulation of deformable objects based on internal force requirements

    Directory of Open Access Journals (Sweden)

    Sohil Garg

    2008-11-01

    Full Text Available In this paper an analysis of grasping and manipulation of deformable objects by a three finger robot hand has been carried out. It is proved that the required fingertip grasping forces and velocities vary with change in object size due to deformation. The variation of the internal force with the change in fingertip and object contact angle has been investigated in detail. From the results it is concluded that it is very difficult to manipulate an object if the finger contact angle is not between 30 o and 70 o, as the internal forces or velocities become very large outside this range. Hence even if the object is inside the work volume of the three fingers it would still not be possible to manipulate it. A simple control model is proposed which can control the grasping and manipulation of a deformable object. Experimental results are also presented to prove the proposed method.

  17. Prosthetic hand sensor placement: Analysis of touch perception during the grasp

    Directory of Open Access Journals (Sweden)

    Mirković Bojana

    2014-01-01

    Full Text Available Humans rely on their hands to perform everyday tasks. The hand is used as a tool, but also as the interface to “sense” the world. Current prosthetic hands are based on sophisticated multi-fingered structures, and include many sensors which counterpart natural proprioceptors and exteroceptors. The sensory information is used for control, but not sent to the user of the hand (amputee. Grasping without sensing is not good enough. This research is part of the development of the sensing interface for amputees, specifically addressing the analysis of human perception while grasping. The goal is to determine the small number of preferred positions of sensors on the prosthetic hand. This task has previously been approached by trying to replicate a natural sensory system characteristic for healthy humans, resulting in a multitude of redundant sensors and basic inability to make the patient aware of the sensor readings on the subconscious level. We based our artificial perception system on the reported sensations of humans when grasping various objects without seeing the objects (obstructed visual feedback. Subjects, with no known sensory deficits, were asked to report on the touch sensation while grasping. The analysis included objects of various sizes, weights, textures and temperatures. Based on this data we formed a map of the preferred positions for the sensors that is appropriate for five finger human-like robotic hand. The final map was intentionally minimized in size (number of sensors.

  18. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.

    Science.gov (United States)

    Salvietti, Gionata; Hussain, Irfan; Cioncoloni, David; Taddei, Sabrina; Rossi, Simone; Prattichizzo, Domenico

    2017-02-01

    A novel solution to compensate hand grasping abilities is proposed for chronic stroke patients. The goal is to provide the patients with a wearable robotic extra-finger that can be worn on the paretic forearm by means of an elastic band. The proposed prototype, the Robotic Sixth Finger, is a modular articulated device that can adapt its structure to the grasped object shape. The extra-finger and the paretic hand act like the two parts of a gripper cooperatively holding an object. We evaluated the feasibility of the approach with four chronic stroke patients performing a qualitative test, the Frenchay Arm Test. In this proof of concept study, the use of the Robotic Sixth Finger has increased the total score of the patients by two points in a five points scale. The subjects were able to perform the two grasping tasks included in the test that were not possible without the robotic extra-finger. Adding a robotic opposing finger is a very promising approach that can significantly improve the functional compensation of the chronic stroke patient during everyday life activities.

  19. Closure of digital arteries in high vascular tone states as demonstrated by measurement of systolic blood pressure in the fingers

    DEFF Research Database (Denmark)

    Krähenbühl, B; Nielsen, S L; Lassen, N A

    1977-01-01

    by direct cooling or intra-arterial noradrenaline infusion caused a marked drop in FSP in the exposed fingers, but not in the non-exposed fingers of the same hand. The fact that the non-exposed fingers retained the normal (arm systolic) pressure level is taken to indicate that palmar arch blood pressure......Finger systolic blood pressure (FSP) was measured indirectly in normal subjects and patients with primary Raynaud phenomenon by applying a thin-walled plastic cuff around the finger and a strain gauge more distally to detect volume changes. Inducing a high vascular tone in one or more fingers...... also remained normal. In the high vascular tone state, a large transmural pressure difference must apparently be established before the digital arteries are forced open. The lowered opening pressure constitutes a manifestation of the closure phenomenon of the digital arteries described in patients...

  20. Kinematic design of a finger abduction mechanism for an anthropomorphic robotic hand

    Directory of Open Access Journals (Sweden)

    L.-A. A. Demers

    2011-02-01

    Full Text Available This paper presents the kinematic design of an abduction mechanism for the fingers of an underactuated anthropomorphic robotic hand. This mechanism will enhance the range of feasible grasps of the underactuated hand without significantly increasing its complexity. The analysis of the link between the index finger and the third finger is first assessed, where the parameters are studied in order to follow the amplitude constraint and to minimize the coordination error. Then, the study of the mechanism joining the third finger and the little finger is summarized. Finally, a prototype of the finger's abduction system is presented.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  1. Finger pressure adjustments to various object configurations during precision grip in humans and monkeys.

    Science.gov (United States)

    Viaro, Riccardo; Tia, Banty; Coudé, Gino; Canto, Rosario; Oliynyk, Andriy; Salmas, Paola; Masia, Lorenzo; Sandini, Giulio; Fadiga, Luciano

    2017-06-01

    In this study, we recorded the pressure exerted onto an object by the index finger and the thumb of the preferred hand of 18 human subjects and either hand of two macaque monkeys during a precision grasping task. The to-be-grasped object was a custom-made device composed by two plates which could be variably oriented by a motorized system while keeping constant the size and thus grip dimension. The to-be-grasped plates were covered by an array of capacitive sensors to measure specific features of finger adaptation, namely pressure intensity and centroid location and displacement. Kinematic measurements demonstrated that for human subjects and for monkeys, different plate configurations did not affect wrist velocity and grip aperture during the reaching phase. Consistently, at the instant of fingers-plates contact, pressure centroids were clustered around the same point for all handle configurations. However, small pressure centroid displacements were specifically adopted for each configuration, indicating that both humans and monkeys can display finger adaptation during precision grip. Moreover, humans applied stronger thumb pressure intensity, performed less centroid displacement and required reduced adjustment time, as compared to monkeys. These pressure patterns remain similar when different load forces were required to pull the handle, as ascertained by additional measurements in humans. The present findings indicate that, although humans and monkeys share common features in motor control of grasping, they differ in the adjustment of fingertip pressure, probably because of skill and/or morphology divergences. Such a precision grip device may form the groundwork for future studies on prehension mechanisms. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Compensating Pose Uncertainties through Appropriate Gripper Finger Cutouts

    Directory of Open Access Journals (Sweden)

    Wolniakowski Adam

    2018-03-01

    Full Text Available The gripper finger design is a recurring problem in many robotic grasping platforms used in industry. The task of switching the gripper configuration to accommodate for a new batch of objects typically requires engineering expertise, and is a lengthy and costly iterative trial-and-error process. One of the open challenges is the need for the gripper to compensate for uncertainties inherent to the workcell, e.g. due to errors in calibration, inaccurate pose estimation from the vision system, or object deformation. In this paper, we present an analysis of gripper uncertainty compensating capabilities in a sample industrial object grasping scenario for a finger that was designed using an automated simulation-based geometry optimization method (Wolniakowski et al., 2013, 2015. We test the developed gripper with a set of grasps subjected to structured perturbation in a simulation environment and in the real-world setting. We provide a comparison of the data obtained by using both of these approaches. We argue that the strong correspondence observed in results validates the use of dynamic simulation for the gripper finger design and optimization.

  3. Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis

    Science.gov (United States)

    Schaefer, Sydney Y.; DeJong, Stacey L.; Cherry, Kendra M.; Lang, Catherine E.

    2011-01-01

    This study investigated whether grip type and/or task goal influenced reaching and grasping performance in post-stroke hemiparesis. Sixteen adults with post-stroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared to the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment. PMID:22357103

  4. Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis.

    Science.gov (United States)

    Schaefer, Sydney Y; DeJong, Stacey L; Cherry, Kendra M; Lang, Catherine E

    2012-04-01

    This study investigated whether grip type and/or task goal influenced reaching and grasping performance in poststroke hemiparesis. Sixteen adults with poststroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared with the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment.

  5. Improvement and Neuroplasticity after Combined Rehabilitation to Forced Grasping

    Directory of Open Access Journals (Sweden)

    Michiko Arima

    2017-01-01

    Full Text Available The grasp reflex is a distressing symptom but the need to treat or suppress it has rarely been discussed in the literature. We report the case of a 17-year-old man who had suffered cerebral infarction of the right putamen and temporal lobe 10 years previously. Forced grasping of the hemiparetic left upper limb was improved after a unique combined treatment. Botulinum toxin type A (BTX-A was first injected into the left biceps, wrist flexor muscles, and finger flexor muscles. Forced grasping was reduced along with spasticity of the upper limb. In addition, repetitive facilitative exercise and object-related training were performed under low-amplitude continuous neuromuscular electrical stimulation. Since this 2-week treatment improved upper limb function, we compared brain activities, as measured by near-infrared spectroscopy during finger pinching, before and after the combined treatment. Brain activities in the ipsilesional sensorimotor cortex (SMC and medial frontal cortex (MFC during pinching under electrical stimulation after treatment were greater than those before. The results suggest that training under electrical stimulation after BTX-A treatment may modulate the activities of the ipsilesional SMC and MFC and lead to functional improvement of the affected upper limb with forced grasping.

  6. Endoscopic full-thickness resection and defect closure in the colon.

    Science.gov (United States)

    von Renteln, Daniel; Schmidt, Arthur; Vassiliou, Melina C; Rudolph, Hans-Ulrich; Caca, Karel

    2010-06-01

    Endoscopic full-thickness resection (eFTR) is a minimally invasive method for en bloc resection of GI lesions. The aim of this pilot study was to evaluate the feasibility of a grasp-and-snare technique for eFTR combined with an over-the-scope clip (OTSC) for defect closure. Nonsurvival animal study. Animal laboratory. Fourteen female domestic pigs. The eFTR was performed in porcine colons using a novel tissue anchor in combination with a standard monofilament snare and 14 mm OTSC. In the first group (n = 20), closure of the colonic defects with OTSC was attempted after the resection. In the second group (n = 8), an endoloop was used to secure the resection base before eFTR was performed. In the first group (n = 20), eFTR specimens ranged from 2.4 to 5.5 cm in diameter. Successful closure was achieved in 9 out of 20 cases. Mean burst pressure for OTSC closure was 29.2 mm Hg (range, 2-90; SD, 29.92). Injury to adjacent organs occurred in 3 cases. Lumen obstruction due to the OTSC closure occurred in 3 cases. In the second group (n = 8), the diameter of specimens ranged from 1.2 to 2.2 cm. Complete closure was achieved in all cases, with a mean burst pressure of 76.6 mm Hg (range, 35-120; SD, 31). Lumen obstruction due to the endoloop closure occurred in one case. No other complications or injuries were observed in the second group. Nonsurvival setting. Colonic eFTR using the grasp-and-snare technique is feasible in an animal model. Ligation of the resection base with an endoloop before eFTR seems to reduce complication rates and improve closure success and leak test results despite yielding smaller specimens. Copyright 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  7. Grasp and index finger reach zone during one-handed smartphone rear interaction: effects of task type, phone width and hand length.

    Science.gov (United States)

    Lee, Songil; Kyung, Gyouhyung; Lee, Jungyong; Moon, Seung Ki; Park, Kyoung Jong

    2016-11-01

    Recently, some smartphones have introduced index finger interaction functions on the rear surface. The current study investigated the effects of task type, phone width, and hand length on grasp, index finger reach zone, discomfort, and muscle activation during such interaction. We considered five interaction tasks (neutral, comfortable, maximum, vertical, and horizontal strokes), two device widths (60 and 90 mm) and three hand lengths. Horizontal (vertical) strokes deviated from the horizontal axis in the range from -10.8° to -13.5° (81.6-88.4°). Maximum strokes appeared to be excessive as these caused 43.8% greater discomfort than did neutral strokes. The 90-mm width also appeared to be excessive as it resulted in 12.3% increased discomfort relative to the 60-mm width. The small-hand group reported 11.9-18.2% higher discomfort ratings, and the percent maximum voluntary exertion of their flexor digitorum superficialis muscle, pertaining to index finger flexion, was also 6.4% higher. These findings should be considered to make smartphone rear interaction more comfortable. Practitioner Summary: Among neutral, comfortable, maximum, horizontal, and vertical index finger strokes on smartphone rear surfaces, maximum vs. neutral strokes caused 43.8% greater discomfort. Horizontal (vertical) strokes deviated from the horizontal (vertical) axis. Discomfort increased by 12.3% with 90-mm- vs. 60-mm-wide devices. Rear interaction regions of five commercialised smartphones should be lowered 20 to 30 mm for more comfortable rear interaction.

  8. One digit interruption: the altered force patterns during functionally cylindrical grasping tasks in patients with trigger digits.

    Directory of Open Access Journals (Sweden)

    Po-Tsun Chen

    Full Text Available Most trigger digit (TD patients complain that they have problems using their hand in daily or occupational tasks due to single or multiple digits being affected. Unfortunately, clinicians do not know much about how this disease affects the subtle force coordination among digits during manipulation. Thus, this study examined the differences in force patterns during cylindrical grasp between TD and healthy subjects. Forty-two TD patients with single digit involvement were included and sorted into four groups based on the involved digits, including thumb, index, middle and ring fingers. Twelve healthy subjects volunteered as healthy controls. Two testing tasks, holding and drinking, were performed by natural grasping with minimal forces. The relations between the force of the thumb and each finger were examined by Pearson correlation coefficients. The force amount and contribution of each digit were compared between healthy controls and each TD group by the independent t test. The results showed all TD groups demonstrated altered correlation patterns of the thumb relative to each finger. Larger forces and higher contributions of the index finger were found during holding by patients with index finger involved, and also during drinking by patients with affected thumb and with affected middle finger. Although no triggering symptom occurred during grasping, the patients showed altered force patterns which may be related to the role of the affected digit in natural grasping function. In conclusion, even if only one digit was affected, the subtle force coordination of all the digits was altered during simple tasks among the TD patients. This study provides the information for the future studies to further comprehend the possible injuries secondary to the altered finger coordination and also to adopt suitable treatment strategies.

  9. One digit interruption: the altered force patterns during functionally cylindrical grasping tasks in patients with trigger digits.

    Science.gov (United States)

    Chen, Po-Tsun; Lin, Chien-Ju; Jou, I-Ming; Chieh, Hsiao-Feng; Su, Fong-Chin; Kuo, Li-Chieh

    2013-01-01

    Most trigger digit (TD) patients complain that they have problems using their hand in daily or occupational tasks due to single or multiple digits being affected. Unfortunately, clinicians do not know much about how this disease affects the subtle force coordination among digits during manipulation. Thus, this study examined the differences in force patterns during cylindrical grasp between TD and healthy subjects. Forty-two TD patients with single digit involvement were included and sorted into four groups based on the involved digits, including thumb, index, middle and ring fingers. Twelve healthy subjects volunteered as healthy controls. Two testing tasks, holding and drinking, were performed by natural grasping with minimal forces. The relations between the force of the thumb and each finger were examined by Pearson correlation coefficients. The force amount and contribution of each digit were compared between healthy controls and each TD group by the independent t test. The results showed all TD groups demonstrated altered correlation patterns of the thumb relative to each finger. Larger forces and higher contributions of the index finger were found during holding by patients with index finger involved, and also during drinking by patients with affected thumb and with affected middle finger. Although no triggering symptom occurred during grasping, the patients showed altered force patterns which may be related to the role of the affected digit in natural grasping function. In conclusion, even if only one digit was affected, the subtle force coordination of all the digits was altered during simple tasks among the TD patients. This study provides the information for the future studies to further comprehend the possible injuries secondary to the altered finger coordination and also to adopt suitable treatment strategies.

  10. Automatic analysis of force distribution in multi-fingered articulated hands

    Science.gov (United States)

    Amani, Mahyar

    A kinematic and force analysis of multifingered, multijointed dexterous hands is presented. The analysis involves calculation of the basis for null space of the grasp matrix. An algorithm is developed to perform all necessary analyses of dexterous hands. All equality and inequality constraints are automatically formulated in a constraint matrix. These include unisense constraints, frictional constraints, and joint torque limits. The reduction of the constraint matrix into a compact form is also presented. The algorithm is written in Fortran and is user-friendly and capable of handling all practical grasping problems. Different types of contact may be examined, including soft finger contact and point contact with and without friction. The software can easily determine the feasibility of a grasp for a given set of contact forces/torques, and may potentially be combined with either routines to compute the optimum value of contact wrench intensities and joint torque values.

  11. Functional classification of grasp strategies used by hemiplegic patients.

    Directory of Open Access Journals (Sweden)

    Alicia García Álvarez

    Full Text Available This study aimed to identify and qualify grasp-types used by patients with stroke and determine the clinical parameters that could explain the use of each grasp. Thirty-eight patients with chronic stroke-related hemiparesis and a range of motor and functional capacities (17 females and 21 males, aged 25-78, and 10 healthy subjects were included. Four objects were used (tissue packet, teaspoon, bottle and tennis ball. Participants were instructed to "grasp the object as if you are going to use it". Three trials were video-recorded for each object. A total of 456 grasps were analysed and rated using a custom-designed Functional Grasp Scale. Eight grasp-types were identified from the analysis: healthy subjects used Multi-pulpar, Pluri-digital, Lateral-pinch and Palmar grasps (Standard Grasps. Patients used the same grasps with in addition Digito-palmar, Raking, Ulnar and Interdigital grasps (Alternative Grasps. Only patients with a moderate or relatively good functional ability used Standard grasps. The correlation and regression analyses showed this was conditioned by sufficient finger and elbow extensor strength (Pluri-digital grasp; thumb extensor and wrist flexor strength (Lateral pinch or in forearm supinator strength (Palmar grasp. By contrast, the patients who had severe impairment used Alternative grasps that did not involve the thumb. These strategies likely compensate specific impairments. Regression and correlation analyses suggested that weakness had a greater influence over grasp strategy than spasticity. This would imply that treatment should focus on improving hand strength and control although reducing spasticity may be useful in some cases.

  12. ANALYSIS WITH MSC ADAMS OF A 5-FINGER AND 3-PHALANX /FINGER UNDER-ACTUATEDMECHANICAL HAND

    Directory of Open Access Journals (Sweden)

    Gheorghe POPESCU

    2013-05-01

    Full Text Available This paper studies the analysis with MSC ADAMS of a 5-fingered and 3-phalanx/finger underactuatedmechanical hand, designed by the author to work on industrial robots. Moreover, in order to increasegrasping safety in the automated handling process, the author has fitted each finger with a locking sequence inthe final phase of grasping. Thus, the mechanism of mechanical hand is considered to be a mechanical systemand is treated like a set of rigid bodies connected by mechanical linkages and elastic elements. To model andsimulate this mechanism with MSC ADAMS programme, the author covered the following stages: constructionof the model, testing-simulation, validation, finishing, parameterization, and optimization

  13. An Optimal Design of Driving Mechanism in a 1 Degree of Freedom (d.o.f. Anthropomorphic Finger

    Directory of Open Access Journals (Sweden)

    M. Ceccarelli

    2005-01-01

    Full Text Available Mechanisms can be used in finger design to obtain suitable actuation systems and to give stiff robust behavior in grasping tasks. The design of driving mechanisms for fingers has been attached at LARM in Cassino with the aim to obtain one degree of freedom actuation for an anthropomorphic finger. The dimensional design of a finger-driving mechanism has been formulated as a multi-objective optimization problem by using evaluation criteria for fundamental characteristics regarding with finger motion, grasping equilibrium and force transmission. The feasibility of the herein proposed optimum design procedure for a finger-driving mechanism has been tested by numerical examples that have been also used to enhance a prototype previously built at LARM in Cassino.

  14. Human Hand Motion Analysis and Synthesis of Optimal Power Grasps for a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Francesca Cordella

    2014-03-01

    Full Text Available Biologically inspired robotic systems can find important applications in biomedical robotics, since studying and replicating human behaviour can provide new insights into motor recovery, functional substitution and human-robot interaction. The analysis of human hand motion is essential for collecting information about human hand movements useful for generalizing reaching and grasping actions on a robotic system. This paper focuses on the definition and extraction of quantitative indicators for describing optimal hand grasping postures and replicating them on an anthropomorphic robotic hand. A motion analysis has been carried out on six healthy human subjects performing a transverse volar grasp. The extracted indicators point to invariant grasping behaviours between the involved subjects, thus providing some constraints for identifying the optimal grasping configuration. Hence, an optimization algorithm based on the Nelder-Mead simplex method has been developed for determining the optimal grasp configuration of a robotic hand, grounded on the aforementioned constraints. It is characterized by a reduced computational cost. The grasp stability has been tested by introducing a quality index that satisfies the form-closure property. The grasping strategy has been validated by means of simulation tests and experimental trials on an arm-hand robotic system. The obtained results have shown the effectiveness of the extracted indicators to reduce the non-linear optimization problem complexity and lead to the synthesis of a grasping posture able to replicate the human behaviour while ensuring grasp stability. The experimental results have also highlighted the limitations of the adopted robotic platform (mainly due to the mechanical structure to achieve the optimal grasp configuration.

  15. Writing forces associated with four pencil grasp patterns in grade 4 children.

    Science.gov (United States)

    Schwellnus, Heidi; Carnahan, Heather; Kushki, Azadeh; Polatajko, Helene; Missiuna, Cheryl; Chau, Tom

    2013-01-01

    OBJECTIVE. We investigated differences in handwriting kinetics, speed, and legibility among four pencil grasps after a 10-min copy task. METHOD. Seventy-four Grade 4 students completed a handwriting assessment before and after a copy task. Grip and axial forces were measured with an instrumented stylus and force-sensitive tablet. We used multiple linear regression to analyze the relationship between grasp pattern and grip and axial forces. RESULTS. We found no kinetic differences among grasps, whether considered individually or grouped by the number of fingers on the barrel. However, when grasps were grouped according to the thumb position, the adducted grasps exhibited higher mean grip and axial forces. CONCLUSION. Grip forces were generally similar across the different grasps. Kinetic differences resulting from thumb position seemed to have no bearing on speed and legibility. Interventions for handwriting difficulties should focus more on speed and letter formation than on grasp pattern. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  16. A fully rotational joint underactuated finger mechanism and its kinematics analysis

    Directory of Open Access Journals (Sweden)

    Wu Licheng

    2016-09-01

    Full Text Available The characteristic features of underactuated finger are compact structure, large grasping force, and simple operation. It has a wide application prospect in the fields of industrial robot, humanoid robot, human artificial limb, and space robot. A new type of fully rotating joint linkage-based underactuated mechanism is proposed, and a new method based on the law of minimum resistance is presented to realize the equivalent mechanism at different contact conditions of the finger and the kinematical analysis based on the equivalent mechanism. The kinematic equations and the limit moving position of the mechanism are derived using the proposed method. Finally, the numerical simulation is carried out by MATLAB program. The correctness and effectiveness of the proposed method are verified. The simulation results show that the proposed mechanism has a large grasp space and can achieve good grasp trajectory.

  17. Modbus RTU protocol and arduino IO package: A real time implementation of a 3 finger adaptive robot gripper

    Directory of Open Access Journals (Sweden)

    Sadun Amirul Syafiq

    2017-01-01

    Full Text Available Recently, the Modbus RTU protocol has been widely accepted in the application of robotics, communications and industrial control systems due to its simplicity and reliability. With the help of the MATLAB Instrument Control Toolbox, a serial communication between Simulink and a 3 Finger Adaptive Robot Gripper can be realized to demonstrate a grasping functionality. The toolbox includes a “to instrument” and “query instrument” programming blocks that enable the users to create a serial communication with the targeted hardware/robot. Similarly, the Simulink Arduino IO package also offers a real-time feature that enabled it to act as a DAQ device. This paper establishes a real-time robot control by using Modbus RTU and Arduino IO Package for a 3 Finger Adaptive Robot Gripper. The robot communication and grasping performance were successfully implemented and demonstrated. In particular, three (3 different grasping mode via normal, wide and pinch were tested. Moreover, the robot gripper’s feedback data, such as encoder position, motor current and the grasping force were easily measured and acquired in real-time. This certainly essential for future grasping analysis of a 3 Finger Adaptive Robot Gripper.

  18. Fuzzy Logic Controller Design for A Robot Grasping System with Different Membership Functions

    International Nuclear Information System (INIS)

    Ahmad, Hamzah; Razali, Saifudin; Mohamed, Mohd Rusllim

    2013-01-01

    This paper investigates the effects of the membership function to the object grasping for a three fingered gripper system. The performance of three famously used membership functions is compared to identify their behavior in lifting a defined object shape. MATLAB Simulink and SimMechanics toolboxes are used to examine the performance. Our preliminary results proposed that the Gaussian membership function surpassed the two other membership functions; triangular and trapezoid memberships especially in the context of firmer grasping and less time consumption during operations. Therefore, Gaussian membership function could be the best solution when time consumption and firmer grasp are considered

  19. Torque control of underactuated tendon-driven fingers

    Directory of Open Access Journals (Sweden)

    M. E. Abdallah

    2011-02-01

    Full Text Available Given an underactuated tendon-driven finger, the finger posture is underdetermined and can move freely ("flop" in a region of slack tendons. This work shows that such an underactuated finger can be operated in tendon force control (rather than position control with effective performance. The force control eliminates the indeterminate slack while commanding a parameterized space of desired torques. The torque will either push the finger to the joint limits or wrap around an external object with variable torque – behavior that is sufficient for primarily gripping fingers. In addition, introducing asymmetric joint radii to the design allows the finger to command an expanded range of joint torques and to scan an expanded set of external surfaces. This study is motivated by the design and control of the secondary fingers of the NASA-GM R2 humanoid hand.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  20. Mena–GRASP65 interaction couples actin polymerization to Golgi ribbon linking

    Science.gov (United States)

    Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang

    2016-01-01

    In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking. PMID:26538023

  1. Analysis and optimal design of an underactuated finger mechanism for LARM hand

    Science.gov (United States)

    Yao, Shuangji; Ceccarelli, Marco; Carbone, Giuseppe; Zhan, Qiang; Lu, Zhen

    2011-09-01

    This paper aims to present general design considerations and optimality criteria for underactuated mechanisms in finger designs. Design issues related to grasping task of robotic fingers are discussed. Performance characteristics are outlined as referring to several aspects of finger mechanisms. Optimality criteria of the finger performances are formulated after careful analysis. A general design algorithm is summarized and formulated as a suitable multi-objective optimization problem. A numerical case of an underactuated robot finger design for Laboratory of Robotics and Mechatronics (LARM) hand is illustrated with the aim to show the practical feasibility of the proposed concepts and computations.

  2. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.

    Science.gov (United States)

    Spiers, Adam J; Liarokapis, Minas V; Calli, Berk; Dollar, Aaron M

    2016-01-01

    Classical robotic approaches to tactile object identification often involve rigid mechanical grippers, dense sensor arrays, and exploratory procedures (EPs). Though EPs are a natural method for humans to acquire object information, evidence also exists for meaningful tactile property inference from brief, non-exploratory motions (a 'haptic glance'). In this work, we implement tactile object identification and feature extraction techniques on data acquired during a single, unplanned grasp with a simple, underactuated robot hand equipped with inexpensive barometric pressure sensors. Our methodology utilizes two cooperating schemes based on an advanced machine learning technique (random forests) and parametric methods that estimate object properties. The available data is limited to actuator positions (one per two link finger) and force sensors values (eight per finger). The schemes are able to work both independently and collaboratively, depending on the task scenario. When collaborating, the results of each method contribute to the other, improving the overall result in a synergistic fashion. Unlike prior work, the proposed approach does not require object exploration, re-grasping, grasp-release, or force modulation and works for arbitrary object start positions and orientations. Due to these factors, the technique may be integrated into practical robotic grasping scenarios without adding time or manipulation overheads.

  3. Linguistic approach to object recognition by grasping

    Energy Technology Data Exchange (ETDEWEB)

    Marik, V

    1982-01-01

    A method for recognizing both the three-dimensional object shapes and their sizes by grasping them with an antropomorphic five-finger artificial hand is described. The hand is equipped with position sensing elements in the joints of the fingers and with a tactile transducer net on the palm surface. The linguistic method uses formal grammars and languages for the pattern description. The recognition is hierarchically arranged, every level being different from the others by a formal language which has been used. On every level the pattern description is generated and verified from the symmetrical and semantical points of view. The results of the implementation of the recognition of cones, pyramides, spheres, prisms and cylinders are presented and discussed. 8 references.

  4. Compact Tactile Sensors for Robot Fingers

    Science.gov (United States)

    Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa

    2004-01-01

    Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.

  5. Compensating Pose Uncertainties Through Appropriate Gripper Finger Cutouts

    DEFF Research Database (Denmark)

    Wolniakowski, Adam; Gams, Andrej; Kiforenko, Lilita

    2018-01-01

    The gripper finger design is a recurring problem in many robotic grasping platforms used in industry. The task of switching the gripper configuration to accommodate for a new batch of objects typically requires engineering expertise, and is a lengthy and costly iterative trial-and-error process. ...

  6. Capacity of small groups of muscles to accomplish precision grasping tasks.

    Science.gov (United States)

    Towles, Joseph D; Valero-Cuevas, Francisco J; Hentz, Vincent R

    2013-01-01

    An understanding of the capacity or ability of various muscle groups to generate endpoint forces that enable grasping tasks could provide a stronger biomechanical basis for the design of reconstructive surgery or rehabilitation for the treatment of the paralyzed or paretic hand. We quantified two-dimensional endpoint force distributions for every combination of the muscles of the index finger, in cadaveric specimens, to understand the capability of muscle groups to produce endpoint forces that accomplish three common types of grasps-tripod, tip and lateral pinch-characterized by a representative level of Coulomb friction. We found that muscle groups of 4 or fewer muscles were capable of generating endpoint forces that enabled performance of each of the grasping tasks examined. We also found that flexor muscles were crucial to accomplish tripod pinch; intrinsic muscles, tip pinch; and the dorsal interosseus muscle, lateral pinch. The results of this study provide a basis for decision making in the design of reconstructive surgeries and rehabilitation approaches that attempt to restore the ability to perform grasping tasks with small groups of muscles.

  7. Design and control of five fingered under-actuated robotic hand

    Science.gov (United States)

    Sahoo, Biswojit; Parida, Pramod Kumar

    2018-04-01

    Now a day's research regarding humanoid robots and its application in different fields (industry, household, rehabilitation and exploratory) is going on entire the globe. Among which a challenging topic is to design a dexterous robotic hand which not only can perform as a hand of a robot but also can be used in re habilitation. The basic key concern is a dexterous robot hand which can be able to mimic the function of biological hand to perform different operations. This thesis work is regarding design and control of a under-actuated robotic hand consisting of four under actuated fingers (index finger, middle finger, little finger and ring finger ) , a thumb and a dexterous palm which can copy the motions and grasp type of human hand which having 21degrees of freedom instead of 25Degree Of Freedom.

  8. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play.

    Science.gov (United States)

    Taheri, Hossein; Rowe, Justin B; Gardner, David; Chan, Vicki; Gray, Kyle; Bower, Curtis; Reinkensmeyer, David J; Wolbrecht, Eric T

    2014-02-04

    This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to Guitar Hero. The goal was to make FINGER capable of assisting with motions where precise timing is important. FINGER consists of a pair of stacked single degree-of-freedom 8-bar mechanisms, one for the index and one for the middle finger. Each 8-bar mechanism was designed to control the angle and position of the proximal phalanx and the position of the middle phalanx. Target positions for the mechanism optimization were determined from trajectory data collected from 7 healthy subjects using color-based motion capture. The resulting robotic device was built to accommodate multiple finger sizes and finger-to-finger widths. For initial evaluation, we asked individuals with a stroke (n = 16) and without impairment (n = 4) to play a game similar to Guitar Hero while connected to FINGER. Precision design, low friction bearings, and separate high speed linear actuators allowed FINGER to individually actuate the fingers with a high bandwidth of control (-3 dB at approximately 8 Hz). During the tests, we were able to modulate the subject's success rate at the game by automatically adjusting the controller gains of FINGER. We also used FINGER to measure subjects' effort and finger individuation while playing the game. Test results demonstrate the ability of FINGER to motivate subjects with an engaging game environment that challenges individuated control of the fingers, automatically control assistance levels, and quantify finger individuation after stroke.

  9. Mena-GRASP65 interaction couples actin polymerization to Golgi ribbon linking.

    Science.gov (United States)

    Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang

    2016-01-01

    In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking. © 2016 Tang et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Selective recruitment of single motor units in human flexor digitorum superficialis muscle during flexion of individual fingers.

    Science.gov (United States)

    Butler, T J; Kilbreath, S L; Gorman, R B; Gandevia, S C

    2005-08-15

    Flexor digitorum superficialis (FDS) is an extrinsic multi-tendoned muscle which flexes the proximal interphalangeal joints of the four fingers. It comprises four digital components, each with a tendon that inserts onto its corresponding finger. To determine the degree to which these digital components can be selectively recruited by volition, we recorded the activity of a single motor unit in one component via an intramuscular electrode while the subject isometrically flexed each of the remaining fingers, one at a time. The finger on which the unit principally acted was defined as the 'test finger' and that which flexed isometrically was the 'active' finger. Activity in 79 units was recorded. Isometric finger flexion forces of 50% maximum voluntary contraction (MVC) activated less than 50% of single units in components of FDS acting on fingers that were not voluntarily flexed. With two exceptions, the median recruitment threshold for all active-test finger combinations involving the index, middle, ring and little finger test units was between 49 and 60% MVC (60% MVC being the value assigned to those not recruited). The exceptions were flexion of the little finger while recording from ring finger units (median: 40% MVC), and vice versa (median: 2% MVC). For all active-test finger combinations, only 35/181 units were activated when the active finger flexed at less than 20% MVC, and the fingers were adjacent for 28 of these. Functionally, to recruit FDS units during grasping and lifting, relatively heavy objects were required, although systematic variation occurred with the width of the object. In conclusion, FDS components can be selectively activated by volition and this may be especially important for grasping at high forces with one or more fingers.

  11. Radial force distribution changes associated with tangential force production in cylindrical grasping, and the importance of anatomical registration.

    Science.gov (United States)

    Pataky, Todd C; Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M

    2012-01-10

    Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Exploring manual asymmetries during grasping: a dynamic causal modeling approach.

    Directory of Open Access Journals (Sweden)

    Chiara eBegliomini

    2015-02-01

    Full Text Available Recording of neural activity during grasping actions in macaques showed that grasp-related sensorimotor transformations are accomplished in a circuit constituted by the anterior part of the intraparietal sulcus (AIP, the ventral (F5 and the dorsal (F2 region of the premotor area. In humans, neuroimaging studies have revealed the existence of a similar circuit, involving the putative homolog of macaque areas AIP, F5 and F2. These studies have mainly considered grasping movements performed with the right dominant hand and only a few studies have measured brain activity associated with a movement performed with the left non-dominant hand. As a consequence of this gap, how the brain controls for grasping movement performed with the dominant and the non-dominant hand still represents an open question. A functional resonance imaging experiment (fMRI has been conducted, and effective connectivity (Dynamic Causal Modelling, DCM was used to assess how connectivity among grasping-related areas is modulated by hand (i.e., left and right during the execution of grasping movements towards a small object requiring precision grasping. Results underlined boosted inter-hemispheric couplings between dorsal premotor cortices during the execution of movements performed with the left rather than the right dominant hand. More specifically, they suggest that the dorsal premotor cortices may play a fundamental role in monitoring the configuration of fingers when grasping movements are performed by either the right and the left hand. This role becomes particularly evident when the hand less-skilled (i.e., the left hand to perform such action is utilized. The results are discussed in light of recent theories put forward to explain how parieto-frontal connectivity is modulated by the execution of prehensile movements.

  13. Simulation of Grasping Prismatic Workpieces by a Pneumatically Driven 3-Finger Robotic Gripper

    Directory of Open Access Journals (Sweden)

    Calin-Octavian Miclosina

    2017-12-01

    Full Text Available The paper presents the 3D model of a robotic gripper and a way to determine the value of prehension force by using the SolidWorks software. A set of prismatic workpieces is considered, the contact force finger-workpiece being determined in SolidWorks Motion module for the most disadvantageous case - the heaviest workpiece, as well as von Mises stress that occurs in fingers gripper.

  14. Finger island flaps for treatment of dermato-desmogenic flexion contractures of proximal interphalangeal joints

    Directory of Open Access Journals (Sweden)

    T. S. Antonova

    2016-12-01

    Full Text Available Soft tissue defect will form after operative treatment of the dermato-desmogenic flexion contractures of fingers interphalangeal joints of the 2–3 grades after excision of the scar. Using the island flaps (Littler at the central vascular pedicle is one of the classical methods of plastic closure of such defects. Goal. To study the effectiveness of the surgical treatment of dermato-desmogenic flexion contractures of proximal interphalangeal joints of the fingers by using finger island flaps at the central vascular or neuro-vascular pedicle. Materials and methods. 14 operations were carried out on 13 patients for removing dermato-desmogenic flexion contractures of proximal interphalangeal (PIP joints of triphalangeal fingers over a 2-year period (2013–2015. The group included patients with a flexion contracture of the 2–3 grades PIP joints of triphalangeal fingers. Operations were performed on average 5 months after the injury (from 1.5 up to 16 months. Finger island flap in all cases was taken from adjacent finger by using the blood supply of their common finger artery. In all cases the island flap on the central pedicel was used, in 9 cases digital nerve was included in the pedicle (Littler. Closure of donor wound was made with free-skin grafts. Permanent splinting of the hand with extension of the interphalangeal joints and moderate flexion of the metacarpophalangeal joints were performed during 7–8 days after surgery, then exercise therapy was prescribed. Results. The results were estimated 6 and 12 months after surgery. All the results were regarded as excellent. In 5 cases of using the flap on a vascular pedicle flap hypoesthesia was detected, that has not led to dysfunction of the hand. Contracture recurrence during follow-up was not observed. Conclusions. Using the surgery for treatment of dermato-desmogenic flexion contractures of proximal interphalangeal joints of the fingers with the island flaps at the central vascular or neuro

  15. Grasp Densities for Grasp Refinement in Industrial Bin Picking

    DEFF Research Database (Denmark)

    Hupfauf, Benedikt; Hahn, Heiko; Bodenhagen, Leon

    in terms of object-relative gripper pose, can be learned from empirical experience, and allow the automatic choice of optimal grasps in a given scene context (object pose, workspace constraints, etc.). We will show grasp densities extracted from empirical data in a real industrial bin picking context...... generated in industrial bin-picking for grasp learning. This aim is achieved by using the novel concept of grasp densities (Detry et al., 2010). Grasp densities can describe the full variety of grasps that apply to specific objects using specific grippers. They represent the likelihood of grasp success...

  16. On the road to a neuroprosthetic hand: a novel hand grasp orthosis based on functional electrical stimulation.

    Science.gov (United States)

    Leeb, Robert; Gubler, Miguel; Tavella, Michele; Miller, Heather; Del Millan, Jose R

    2010-01-01

    To patients who have lost the functionality of their hands as a result of a severe spinal cord injury or brain stroke, the development of new techniques for grasping is indispensable for reintegration and independency in daily life. Functional Electrical Stimulation (FES) of residual muscles can reproduce the most dominant grasping tasks and can be initialized by brain signals. However, due to the very complex hand anatomy and current limitations in FES-technology with surface electrodes, these grasp patterns cannot be smoothly executed. In this paper, we present an adaptable passive hand orthosis which is capable of producing natural and smooth movements when coupled with FES. It evenly synchronizes the grasping movements and applied forces on all fingers, allowing for naturalistic gestures and functional grasps of everyday objects. The orthosis is also equipped with a lock, which allows it to remain in the desired position without the need for long-term stimulation. Furthermore, we quantify improvements offered by the orthosis compare them with natural grasps on healthy subjects.

  17. A Biologically Inspired Learning to Grasp System

    Science.gov (United States)

    2001-10-25

    possible extensive discussions of data on the premotor cortex and monkey grasping circuit with Giacomo Rizzolatti , Vittorio Gallese, to whom we express...premotor specialisation for the different types of grasps that Rizzolatti group [3] has found be formed at this age yet. Infants will need to...our gratitude. REFERENCES [1] M. Jeannerod, M.A. Arbib, G. Rizzolatti , H. Sakata, “Grasping objects: the cortical mechanisms of visuomotor

  18. Refining Grasp Affordance Models by Experience

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Buch, Anders Glent

    2010-01-01

    We present a method for learning object grasp affordance models in 3D from experience, and demonstrate its applicability through extensive testing and evaluation on a realistic and largely autonomous platform. Grasp affordance refers here to relative object-gripper configurations that yield stable...... with a visual model of the object they characterize. We explore a batch-oriented, experience-based learning paradigm where grasps sampled randomly from a density are performed, and an importance-sampling algorithm learns a refined density from the outcomes of these experiences. The first such learning cycle...... is bootstrapped with a grasp density formed from visual cues. We show that the robot effectively applies its experience by downweighting poor grasp solutions, which results in increased success rates at subsequent learning cycles. We also present success rates in a practical scenario where a robot needs...

  19. Grasp Assist Device with Shared Tendon Actuator Assembly

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  20. The extended object-grasping network.

    Science.gov (United States)

    Gerbella, Marzio; Rozzi, Stefano; Rizzolatti, Giacomo

    2017-10-01

    Grasping is the most important skilled motor act of primates. It is based on a series of sensorimotor transformations through which the affordances of the objects to be grasped are transformed into appropriate hand movements. It is generally accepted that a circuit formed by inferior parietal areas AIP and PFG and ventral premotor area F5 represents the core circuit for sensorimotor transformations for grasping. However, selection and control of appropriate grip should also depend on higher-order information, such as the meaning of the object to be grasped, and the overarching goal of the action in which grasping is embedded. In this review, we describe recent findings showing that specific sectors of the ventrolateral prefrontal cortex are instrumental in controlling higher-order aspects of grasping. We show that these prefrontal sectors control the premotor cortex through two main gateways: the anterior subdivision of ventral area F5-sub-area F5a-, and the pre-supplementary area (area F6). We then review functional studies showing that both F5a and F6, besides being relay stations of prefrontal information, also play specific roles in grasping. Namely, sub-area F5a is involved in stereoscopic analysis of 3D objects, and in planning cue-dependent grasping activity. As for area F6, this area appears to play a crucial role in determining when to execute the motor program encoded in the parieto-premotor circuit. The recent discovery that area F6 contains a set of neurons encoding specific grip types suggests that this area, besides controlling "when to go", also may control the grip type, i.e., "how to go". We conclude by discussing clinical syndromes affecting grasping actions and their possible mechanisms.

  1. Force coordination in static manipulation tasks performed using standard and non-standard grasping techniques.

    Science.gov (United States)

    de Freitas, Paulo B; Jaric, Slobodan

    2009-04-01

    We evaluated coordination of the hand grip force (GF; normal component of the force acting at the hand-object contact area) and load force (LF; the tangential component) in a variety of grasping techniques and two LF directions. Thirteen participants exerted a continuous sinusoidal LF pattern against externally fixed handles applying both standard (i.e., using either the tips of the digits or the palms; the precision and palm grasps, respectively) and non-standard grasping techniques (using wrists and the dorsal finger areas; the wrist and fist grasp). We hypothesized (1) that the non-standard grasping techniques would provide deteriorated indices of force coordination when compared with the standard ones, and (2) that the nervous system would be able to adjust GF to the differences in friction coefficients of various skin areas used for grasping. However, most of the indices of force coordination remained similar across the tested grasping techniques, while the GF adjustments for the differences in friction coefficients (highest in the palm and the lowest in the fist and wrist grasp) provided inconclusive results. As hypothesized, GF relative to the skin friction was lowest in the precision grasp, but highest in the palm grasp. Therefore, we conclude that (1) the elaborate coordination of GF and LF consistently seen across the standard grasping techniques could be generalized to the non-standard ones, while (2) the ability to adjust GF using the same grasping technique to the differences in friction of various objects cannot be fully generalized to the GF adjustment when different grasps (i.e., hand segments) are used to manipulate the same object. Due to the importance of the studied phenomena for understanding both the functional and neural control aspects of manipulation, future studies should extend the current research to the transient and dynamic tasks, as well as to the general role of friction in our mechanical interactions with the environment.

  2. Predicting the effect of surface texture on the qualitative form of prehension.

    Directory of Open Access Journals (Sweden)

    Ian John Flatters

    Full Text Available Reach-to-grasp movements change quantitatively in a lawful (i.e. predictable manner with changes in object properties. We explored whether altering object texture would produce qualitative changes in the form of the precontact movement patterns. Twelve participants reached to lift objects from a tabletop. Nine objects were produced, each with one of three grip surface textures (high-friction, medium-friction and low-friction and one of three widths (50 mm, 70 mm and 90 mm. Each object was placed at three distances (100 mm, 300 mm and 500 mm, representing a total of 27 trial conditions. We observed two distinct movement patterns across all trials--participants either: (i brought their arm to a stop, secured the object and lifted it from the tabletop; or (ii grasped the object 'on-the-fly', so it was secured in the hand while the arm was moving. A majority of grasps were on-the-fly when the texture was high-friction and none when the object was low-friction, with medium-friction producing an intermediate proportion. Previous research has shown that the probability of on-the-fly behaviour is a function of grasp surface accuracy constraints. A finger friction rig was used to calculate the coefficients of friction for the objects and these calculations showed that the area available for a stable grasp (the 'functional grasp surface size' increased with surface friction coefficient. Thus, knowledge of functional grasp surface size is required to predict the probability of observing a given qualitative form of grasping in human prehensile behaviour.

  3. Modelling and Simulation of a Manipulator with Stable Viscoelastic Grasping Incorporating Friction

    Directory of Open Access Journals (Sweden)

    A. Khurshid

    2016-12-01

    Full Text Available Design, dynamics and control of a humanoid robotic hand based on anthropological dimensions, with joint friction, is modelled, simulated and analysed in this paper by using computer aided design and multibody dynamic simulation. Combined joint friction model is incorporated in the joints. Experimental values of coefficient of friction of grease lubricated sliding contacts representative of manipulator joints are presented. Human fingers deform to the shape of the grasped object (enveloping grasp at the area of interaction. A mass-spring-damper model of the grasp is developed. The interaction of the viscoelastic gripper of the arm with objects is analysed by using Bond Graph modelling method. Simulations were conducted for several material parameters. These results of the simulation are then used to develop a prototype of the proposed gripper. Bond graph model is experimentally validated by using the prototype. The gripper is used to successfully transport soft and fragile objects. This paper provides information on optimisation of friction and its inclusion in both dynamic modelling and simulation to enhance mechanical efficiency.

  4. Development of five-finger robotic hand using master-slave control for hand-assisted laparoscopic surgery.

    Science.gov (United States)

    Yoshida, Koki; Yamada, Hiroshi; Kato, Ryu; Seki, Tatsuya; Yokoi, Hiroshi; Mukai, Masaya

    2016-08-01

    This study aims to develop a robotic hand as a substitute for a surgeon's hand in hand-assisted laparoscopic surgery (HALS). We determined the requirements for the proposed hand from a surgeon's motions in HALS. We identified four basic behaviors: "power grasp," "precision grasp," "open hand for exclusion," and "peace sign for extending peritoneum." The proposed hand had the minimum necessary DOFs for performing these behaviors, five fingers as in a human's hand, a palm that can be folded when a surgeon inserts the hand into the abdomen, and an arm for adjusting the hand's position. We evaluated the proposed hand based on a performance test and a physician's opinions, and we confirmed that it can grasp organs.

  5. Characteristics of grasping movements in a laboratory and in an everyday-like context.

    Science.gov (United States)

    Bock, Otmar; Züll, Anne

    2013-02-01

    To understand the principles of motor control, it is useful to know whether movements with the same physical constraints can be governed by different rules depending on the behavioral context. We therefore have recently introduced a paradigm in which subjects grasp from the same starting position to the same final object, once as a typical laboratory task and once as part of everyday-like behavior. In the laboratory context, grasping was repetitive, externally triggered and purposeless; in the everyday-like context, it was embedded in a complex activity, intentionally initiated, and served a purpose. Here we present a comprehensive analysis of data from that paradigm. Among 38 response parameters that reflected hand transport, grip shaping and object manipulation, 20 differed significantly between groups. Factor analysis further reduced them to four orthogonal factors: response speed, finger-object contact, response variability, and hand path curvature. This shows, for the first time, that behavioral context influences the execution of grasping movements in four independent ways, possibly reflecting four distinct functional modules in the motor system. This fits well with the view - derived from neurological data - that grasping is controlled by a set of interconnected brain areas which are differentially recruited to achieve different behavioral goals. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.

    Science.gov (United States)

    Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki

    2017-12-01

    Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.

  7. A Methodology for the Design of Robotic Hands with Multiple Fingers

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Parada Puig

    2008-11-01

    Full Text Available This paper presents a methodology that has been applied for a design process of anthropomorphic hands with multiple fingers. Biomechanical characteristics of human hand have been analysed so that ergonomic and anthropometric aspects have been used as fundamental references for obtaining grasping mechanisms. A kinematic analysis has been proposed to define the requirements for designing grasping functions. Selection of materials and actuators has been discussed too. This topic has been based on previous experiences with prototypes that have been developed at the Laboratory of Robotics and Mechatronics (LARM of the University of Cassino. An example of the application of the proposed method has been presented for the design of a first prototype of LARM Hand.

  8. Prosthetic finger phalanges with lifelike skin compliance for low-force social touching interactions

    Directory of Open Access Journals (Sweden)

    Ge Shuzhi

    2011-03-01

    Full Text Available Abstract Background Prosthetic arms and hands that can be controlled by the user's electromyography (EMG signals are emerging. Eventually, these advanced prosthetic devices will be expected to touch and be touched by other people. As realistic as they may look, the currently available prosthetic hands have physical properties that are still far from the characteristics of human skins because they are much stiffer. In this paper, different configurations of synthetic finger phalanges have been investigated for their skin compliance behaviour and have been compared with the phalanges of the human fingers and a phalanx from a commercially available prosthetic hand. Methods Handshake tests were performed to identify which areas on the human hand experience high contact forces. After these areas were determined, experiments were done on selected areas using an indenting probe to obtain the force-displacement curves. Finite element simulations were used to compare the force-displacement results of the synthetic finger phalanx designs with that of the experimental results from the human and prosthetic finger phalanges. The simulation models were used to investigate the effects of (a varying the internal topology of the finger phalanx and (b varying different materials for the internal and external layers. Results and Conclusions During handshake, the high magnitudes of contact forces were observed at the areas where the full grasping enclosure of the other person's hand can be achieved. From these areas, the middle phalanges of the (a little, (b ring, and (c middle fingers were selected. The indentation experiments on these areas showed that a 2 N force corresponds to skin tissue displacements of more than 2 mm. The results from the simulation model show that introducing an open pocket with 2 mm height on the internal structure of synthetic finger phalanges increased the skin compliance of the silicone material to 235% and the polyurethane material to

  9. Volitional and automatic control of the hand when reaching to grasp objects.

    Science.gov (United States)

    Chen, Zhongting; Saunders, Jeffrey Allen

    2018-02-26

    When picking up an object, we tend to grasp at contact points that allow a stable grip. Recent studies have demonstrated that appropriate grasp points can be selected during an ongoing movement in response to unexpected perturbations of the target object. In this study, we tested whether such online grip adjustments are automatic responses or can be controlled volitionally. Subjects performed virtual grasping movements toward target 2D shapes that sometimes changed shape or orientation during movement. Unlike in previous studies, the conditions and task requirements discouraged any online adjustments toward the perturbed shapes. In Experiment 1, target shapes were perturbed briefly (200 ms) during movement before reverting to the original shape, and subjects were instructed to ignore the transient perturbations. Despite subjects' intentions, we observed online adjustments of grip orientation that were toward the expected grip axis of the briefly presented shape. In Experiment 2, we added a stop-signal to the grasping task, with target perturbation as the stop cue. We again observed unnecessary online adjustments toward the grip axis of the perturbed shape, with similar latency. Furthermore, the grip adjustments continued after the forward motion of the hand had stopped, indicating that the automatic response to the perturbed target shape co-occurred with the volitional response to the perturbation onset. Our results provide evidence that automatic control mechanisms are used to guide the fingers to appropriate grasp points and suggest that these mechanisms are distinct from those involved with volitional control. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings

    Science.gov (United States)

    Su, Chen; Jiang, Xiaobo

    2017-01-01

    The reach-to-grasp activities play an important role in our daily lives. The developed RUPERT for stroke patients with high stiffness in arm flexor muscles is a low-cost lightweight portable exoskeleton rehabilitation robot whose joints are unidirectionally actuated by pneumatic artificial muscles (PAMs). In order to expand the useful range of RUPERT especially for patients with flaccid paralysis, functional electrical stimulation (FES) is taken to activate paralyzed arm muscles. As both the exoskeleton robot driven by PAMs and the neuromuscular skeletal system under FES possess the highly nonlinear and time-varying characteristics, iterative learning control (ILC) is studied and is taken to control this newly designed hybrid rehabilitation system for reaching trainings. Hand function rehabilitation refers to grasping. Because of tiny finger muscles, grasping and releasing are realized by FES array electrodes and matrix scan method. By using the surface electromyography (EMG) technique, the subject's active intent is identified. The upper limb rehabilitation robot powered by PAMs cooperates with FES arrays to realize active reach-to-grasp trainings, which was verified through experiments. PMID:29065566

  11. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings

    Directory of Open Access Journals (Sweden)

    Xikai Tu

    2017-01-01

    Full Text Available The reach-to-grasp activities play an important role in our daily lives. The developed RUPERT for stroke patients with high stiffness in arm flexor muscles is a low-cost lightweight portable exoskeleton rehabilitation robot whose joints are unidirectionally actuated by pneumatic artificial muscles (PAMs. In order to expand the useful range of RUPERT especially for patients with flaccid paralysis, functional electrical stimulation (FES is taken to activate paralyzed arm muscles. As both the exoskeleton robot driven by PAMs and the neuromuscular skeletal system under FES possess the highly nonlinear and time-varying characteristics, iterative learning control (ILC is studied and is taken to control this newly designed hybrid rehabilitation system for reaching trainings. Hand function rehabilitation refers to grasping. Because of tiny finger muscles, grasping and releasing are realized by FES array electrodes and matrix scan method. By using the surface electromyography (EMG technique, the subject’s active intent is identified. The upper limb rehabilitation robot powered by PAMs cooperates with FES arrays to realize active reach-to-grasp trainings, which was verified through experiments.

  12. GRASP para secuenciar modelos mixtos en una línea con sobrecarga, tiempo inerte y regularidad en la producción

    OpenAIRE

    Bautista Valhondo, Joaquín; Alfaro Pozo, Rocío; Batalla García, Cristina

    2015-01-01

    Se presenta un algoritmo GRASP para resolver un problema de secuenciación de productos en una línea de montaje de modelos mixtos. El objetivo del problema es obtener una secuencia de fabricación de productos con máximo trabajo total completado y cumpliendo la propiedad de regularidad en la producción. El algoritmo GRASP implementado se compara con otros procedimientos de resolución, empleando para ello las instancias de un caso de estudio asociado a la planta de fabricación de motores de Niss...

  13. Finger Forces in Clarinet Playing

    Directory of Open Access Journals (Sweden)

    Alex Hofmann

    2016-08-01

    Full Text Available Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17 and professional clarinettists (N = 6 were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 x 2 x 2 design (register: low--high; tempo: slow--fast, dynamics: soft--loud. There was an additional condition controlled by the experimenter, which determined the expression levels (low--high of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions. The melody was performed in three tempo conditions (slow, medium, fast in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean and peak force (Fmax were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N compared to those on other musical instruments (e.g. guitar. Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N.For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N. Such sensor instruments provide useful insights into player

  14. Development of a non-invasive, multifunctional grasp neuroprosthesis and its evaluation in an individual with a high spinal cord injury.

    Science.gov (United States)

    Rupp, Rüdiger; Kreilinger, Alex; Rohm, Martin; Kaiser, Vera; Müller-Putz, Gernot R

    2012-01-01

    Over the last decade the improvement of a missing hand function by application of neuroprostheses in particular the implantable Freehand system has been successfully shown in high spinal cord injured individuals. The clinically proven advantages of the Freehand system is its ease of use, the reproducible generation of two distinct functional grasp patterns and an analog control scheme based on movements of the contralateral shoulder. However, after the Freehand system is not commercially available for more than ten years, alternative grasp neuroprosthesis with a comparable functionality are still missing. Therefore, the aim of this study was to develop a non-invasive neuroprosthesis and to show that a degree of functional restoration can be provided to end users comparable to implanted devices. By introduction of an easy to handle forearm electrode sleeve the reproducible generation of two grasp patterns has been achieved. Generated grasp forces of the palmar grasp are in the range of the implanted system. Though pinch force of the lateral grasp is significantly lower, it can effectively used by a tetraplegic subject to perform functional tasks. The non-invasive grasp neuroprosthesis developed in this work may serve as an easy to apply and inexpensive way to restore a missing hand and finger function at any time after spinal cord injury.

  15. Reach-to-grasp movement as a minimization process.

    Science.gov (United States)

    Yang, Fang; Feldman, Anatol G

    2010-02-01

    It is known that hand transport and grasping are functionally different but spatially coordinated components of reach-to-grasp (RTG) movements. As an extension of this notion, we suggested that body segments involved in RTG movements are controlled as a coherent ensemble by a global minimization process associated with the necessity for the hand to reach the motor goal. Different RTG components emerge following this process without pre-programming. Specifically, the minimization process may result from the tendency of neuromuscular elements to diminish the spatial gap between the actual arm-hand configuration and its virtual (referent) configuration specified by the brain. The referent configuration is specified depending on the object shape, localization, and orientation. Since the minimization process is gradual, it can be interrupted and resumed following mechanical perturbations, at any phase during RTG movements, including hand closure. To test this prediction of the minimization hypothesis, we asked subjects to reach and grasp a cube placed within the reach of the arm. Vision was prevented during movement until the hand returned to its initial position. As predicted, by arresting wrist motion at different points of hand transport in randomly selected trials, it was possible to halt changes in hand aperture at any phase, not only during hand opening but also during hand closure. Aperture changes resumed soon after the wrist was released. Another test of the minimization hypothesis was made in RTG movements to an object placed beyond the reach of the arm. It has previously been shown (Rossi et al. in J Physiol 538:659-671, 2002) that in such movements, the trunk motion begins to contribute to hand transport only after a critical phase when the shifts in the referent arm configuration have finished (at about the time when hand velocity is maximal). The minimization rule suggests that when the virtual contribution of the arm to hand transport is completed

  16. Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping.

    Science.gov (United States)

    Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco

    2010-08-01

    The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.

  17. Active Grasp Synthesis for Grasping Unknown Objects

    NARCIS (Netherlands)

    Çall?, B.

    2015-01-01

    Manipulation is a key feature for robots which are designed to work in daily environments like homes, offices and streets. These robots do not often have manipulators that are specialized for specific tasks, but grippers that can grasp the target object. This makes grasping a crucial ability that

  18. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.

    Science.gov (United States)

    Jo, Inseong; Lee, Jeongsoo; Park, Yeongyu; Bae, Joonbum

    2017-07-01

    In this paper, design of a wearable hand exoskeleton system for exercising flexion/extension of the fingers, is proposed. The exoskeleton was designed with a simple and wearable structure to aid finger motions in 1 degree of freedom (DOF). A hand grasping experiment by fully-abled people was performed to investigate general hand flexion/extension motions and the polynomial curve of general hand motions was obtained. To customize the hand exoskeleton for the user, the polynomial curve was adjusted to the joint range of motion (ROM) of the user and the optimal design of the exoskeleton structure was obtained using the optimization algorithm. A prototype divided into two parts (one part for the thumb, the other for rest fingers) was actuated by only two linear motors for compact size and light weight.

  19. Grasping in Robotics

    CERN Document Server

    2013-01-01

    Grasping in Robotics contains original contributions in the field of grasping in robotics with a broad multidisciplinary approach. This gives the possibility of addressing all the major issues related to robotized grasping, including milestones in grasping through the centuries, mechanical design issues, control issues, modelling achievements and issues, formulations and software for simulation purposes, sensors and vision integration, applications in industrial field and non-conventional applications (including service robotics and agriculture).   The contributors to this book are experts in their own diverse and wide ranging fields. This multidisciplinary approach can help make Grasping in Robotics of interest to a very wide audience. In particular, it can be a useful reference book for researchers, students and users in the wide field of grasping in robotics from many different disciplines including mechanical design, hardware design, control design, user interfaces, modelling, simulation, sensors and hum...

  20. Scale-Dependent Grasp

    OpenAIRE

    Kaneko, Makoto; Shirai, Tatsuya; Tsuji, Toshio

    2000-01-01

    This paper discusses the scale-dependent grasp.Suppose that a human approaches an object initially placed on atable and finally achieves an enveloping grasp. Under such initialand final conditions, he (or she) unconsciously changes the graspstrategy according to the size of objects, even though they havesimilar geometry. We call the grasp planning the scale-dependentgrasp. We find that grasp patterns are also changed according tothe surface friction and the geometry of cross section in additi...

  1. Learning Grasp Affordance Densities

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Kroemer, Oliver

    2011-01-01

    and relies on kernel density estimation to provide a continuous model. Grasp densities are learned and refined from exploration, by letting a robot “play” with an object in a sequence of graspand-drop actions: The robot uses visual cues to generate a set of grasp hypotheses; it then executes......We address the issue of learning and representing object grasp affordance models. We model grasp affordances with continuous probability density functions (grasp densities) which link object-relative grasp poses to their success probability. The underlying function representation is nonparametric...... these and records their outcomes. When a satisfactory number of grasp data is available, an importance-sampling algorithm turns these into a grasp density. We evaluate our method in a largely autonomous learning experiment run on three objects of distinct shapes. The experiment shows how learning increases success...

  2. Growth of fingers at an unstable diffusing interface in a porous medium or hele-shaw cell

    Energy Technology Data Exchange (ETDEWEB)

    Wooding, R A

    1969-11-27

    Waves at an unstable horizontal interface, between 2 fluids moving vertically through a saturated porous medium, are observed to grow rapidly to become fingers (i.e., the amplitude greatly exceeds the wavelength). For a diffusing interface, in experiments using a Hele-Shaw cell, the mean amplitude taken over many fingers grows approx. as (time)U2D, followed by a transition to a growth proportional to time. Correspondingly, the mean wave number decreases approx. as (time)U-1/2D. Because of the rapid increase in amplitude, longitudinal dispersion ultimately becomes negligible relative to wave growth. To represent the observed quantities at large time, the transport equation is suitably weighted and averaged over the horizontal plane. Hyperbolic equations result, and the ascending and descending zones containing the fronts of the fingers are replaced by discontinuities. These averaged equations form an open set, but closure is achieved by assuming a law for the mean wave number based on similarity. (22 refs.)

  3. The influence of grasping habits and object orientation on motor planning in children and adults.

    Science.gov (United States)

    Jovanovic, Bianca; Schwarzer, Gudrun

    2017-12-01

    We investigated the influence of habitual grasp strategies and object orientation on motor planning in 3-year-olds and 4- to 5-year-old children and adults. Participants were required to rotate different vertically oriented objects around 180°. Usually, adults perform this task by grasping objects with an awkward grip (thumb and index finger pointing downward) at the beginning of the movement, in order to finish it with a comfortable hand position. This pattern corresponds to the well-known end-state comfort effect (ESC) in grasp planning. The presented objects were associated with different habitual grasp orientations that either corresponded with the grasp direction required to reach end-state comfort (downward) or implied a contrary grasp orientation (upward). Additionally, they were presented either in their usual, canonical orientation (e.g., shovel with the blade oriented downward versus cup with its opening oriented upward) or upside down. As dependent variable we analyzed the number of grips conforming to the end-state comfort principle (ESC score) realized in each object type and orientation condition. The number of grips conforming to ESC strongly increased with age. In addition, the extent to which end-state comfort was considered was influenced by the actual orientation of the objects' functional parts. Thus, in all age-groups the ESC score was highest when the functional parts of the objects were oriented downward (shovel presented canonically with blade pointing downward, cup presented upside down) and corresponded to the hand orientation needed to realize ESC. © 2017 Wiley Periodicals, Inc.

  4. 100-N Area underground storage tank closures

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  5. 100-N Area underground storage tank closures

    International Nuclear Information System (INIS)

    Rowley, C.A.

    1993-01-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D

  6. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Yang Liyuan; Ai Shan; Chen Yonghe; Cao Mengyi; Zhang Kai; Ma Xiaohua; Hao Yue

    2013-01-01

    Self-heating in multi-finger AlGaN/GaN high-electron-mobility transistors (HEMTs) is investigated by measurements and modeling of device junction temperature under steady-state operation. Measurements are carried out using micro-Raman scattering to obtain the detailed and accurate temperature distribution of the device. The device peak temperature corresponds to the high field region at the drain side of gate edge. The channel temperature of the device is modeled using a combined electro-thermal model considering 2DEG transport characteristics and the Joule heating power distribution. The results reveal excellent correlation to the micro-Raman measurements, validating our model for the design of better cooled structures. Furthermore, the influence of layout design on the channel temperature of multi-finger AlGaN/GaN HEMTs is studied using the proposed electro-thermal model, allowing for device optimization. (semiconductor devices)

  7. Aircraft Route Recovery Based on An Improved GRASP Method

    Directory of Open Access Journals (Sweden)

    Yang He

    2017-01-01

    Full Text Available Aircrafts maintenance, temporary airport closures are common factors that disrupt normal flight schedule. The aircraft route recovery aims to recover original schedules by some strategies, including flights swaps, and cancellations, which is a NP-hard problem. This paper proposes an improved heuristic procedure based on Greedy Random Adaptive Search Procedure (GRASP to solve this problem. The effectiveness and high global optimization capability of the heuristic is illustrated through experiments based on large-scale problems. Compared to the original one, it is shown that the improved procedure can find feasible flight recovered schedules with lower cost in a short time.

  8. Left hand finger force in violin playing: tempo, loudness, and finger differences.

    Science.gov (United States)

    Kinoshita, Hiroshi; Obata, Satoshi

    2009-07-01

    A three-dimensional force transducer was installed in the neck of a violin under the A string at the D5 position in order to study the force with which the violinist clamps the string against the fingerboard under normal playing conditions. Violinists performed repetitive sequences of open A- and fingered D-tones using the ring finger at tempi of 1, 2, 4, 8, and 16 notes/s at mezzo-forte. At selected tempi, the effects of dynamic level and the use of different fingers were investigated as well. The force profiles were clearly dependent on tempo and dynamic level. At slow tempi, the force profiles were characterized by an initial pulse followed by a level force to the end of the finger contact period. At tempi higher than 2 Hz, only pulsed profiles were observed. The peak force exceeded 4.5 N at 1 and 2 Hz and decreased to 1.7 N at 16 Hz. All force and impulse values were lower at softer dynamic levels, and when using the ring or little finger compared to the index finger.

  9. What a successful grasp tells about the success chances of grasps in its vicinity

    DEFF Research Database (Denmark)

    Bodenhagen, Leon; Detry, Renaud; Piater, Justus

    2011-01-01

    Infants gradually improve their grasping competences, both in terms of motor abilities as well as in terms of the internal shape grasp representations. Grasp densities provide a statistical model of such an internal learning process. In the concept of grasp densities, kernel density estimation...... probabilities representing grasp success in the neighborhood of a successful grasp. The anisotropy has been determined utilizing a simulation environment that allowed for evaluation of large scale experiments. The anisotropic kernel has been fitted to the conditional probabilities obtained from the experiments...

  10. Finger Search in the Implicit Model

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Nielsen, Jesper Asbjørn Sindahl; Truelsen, Jakob

    2012-01-01

    We address the problem of creating a dictionary with the finger search property in the strict implicit model, where no information is stored between operations, except the array of elements. We show that for any implicit dictionary supporting finger searches in q(t) = Ω(logt) time, the time to move...... the finger to another element is Ω(q− 1(logn)), where t is the rank distance between the query element and the finger. We present an optimal implicit static structure matching this lower bound. We furthermore present a near optimal implicit dynamic structure supporting search, change-finger, insert......, and delete in times $\\mathcal{O}(q(t))$, $\\mathcal{O}(q^{-1}(\\log n)\\log n)$, $\\mathcal{O}(\\log n)$, and $\\mathcal{O}(\\log n)$, respectively, for any q(t) = Ω(logt). Finally we show that the search operation must take Ω(logn) time for the special case where the finger is always changed to the element...

  11. Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients.

    Science.gov (United States)

    Rand, M K; Shimansky, Y; Stelmach, G E; Bracha, V; Bloedel, J R

    2000-11-01

    Reach-to-grasp movements of patients with pathology restricted to the cerebellum were compared with those of normal controls. Two types of paradigms with different accuracy constraints were used to examine whether cerebellar impairment disrupts the stereotypic relationship between arm transport and grip aperture and whether the variability of this relationship is altered when greater accuracy is required. The movements were made to either a vertical dowel or to a cross bar of a small cross. All subjects were asked to reach for either target at a fast but comfortable speed, grasp the object between the index finger and thumb, and lift it a short distance off the table. In terms of the relationship between arm transport and grip aperture, the control subjects showed a high consistency in grip aperture and wrist velocity profiles from trial to trial for movements to both the dowel and the cross. The relationship between the maximum velocity of the wrist and the time at which grip aperture was maximal during the reach was highly consistent throughout the experiment. In contrast, the time of maximum grip aperture and maximum wrist velocity of the cerebellar patients was quite variable from trial to trial, and the relationship of these measurements also varied considerably. These abnormalities were present regardless of the accuracy requirement. In addition, the cerebellar patients required a significantly longer time to grasp and lift the objects than the control subjects. Furthermore, the patients exhibited a greater grip aperture during reach than the controls. These data indicate that the cerebellum contributes substantially to the coordination of movements required to perform reach-to-grasp movements. Specifically, the cerebellum is critical for executing this behavior with a consistent, well-timed relationship between the transport and grasp components. This contribution is apparent even when accuracy demands are minimal.

  12. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    Science.gov (United States)

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  13. Determination of the characteristics of a Schottky barrier formed by latent finger mark corrosion of brass

    International Nuclear Information System (INIS)

    Bond, J W

    2009-01-01

    The ideality factor (η) and barrier height (φ B ) for a metal-copper(I) oxide rectifying contact formed by the latent finger mark corrosion of α phase brass have been determined from forward bias I/V characteristics in the range 0.4 V ≤ V ≤ 0.55 V. Rectifying contacts formed from the finger mark deposits of different people gave η = 1.5-1.6 ± 0.1 and φ B = 0.49-0.52 ± 0.04 V. A Mott-Schottky plot of capacitance-voltage measurements in reverse bias gave the built in potential ψ bi = 0.4 ± 0.1 V, the gradient of the plot confirming the conductivity of the finger mark corrosion as p type. X-ray photoelectron spectroscopy spectra of the corrosion showed that Cu(I), Cu(II) and Zn(II) can co-exist on the surface, the Cu(I) : Cu(II) and Zn : Cu ratios determining whether a rectifying contact is formed. Initial findings suggest that when the concentration of Cu(I) dominates the Cu(I) : Cu(II) ratio (approximately 6 : 1), or when Cu(II) is absent, a rectifying contact can be formed subject to the Zn : Cu ratio being approximately 1 : 3. As the surface concentration of zinc increases, the rectifying contact is degraded until the concentration of zinc approaches that of copper when no evidence of a Schottky barrier is observed and the contact appears ohmic.

  14. A Three-Axis Force Sensor for Dual Finger Haptic Interfaces

    OpenAIRE

    Fontana, Marco; Marcheschi, Simone; Salsedo, Fabio; Bergamasco, Massimo

    2012-01-01

    In this work we present the design process, the characterization and testing of a novel three-axis mechanical force sensor. This sensor is optimized for use in closed-loop force control of haptic devices with three degrees of freedom. In particular the sensor has been conceived for integration with a dual finger haptic interface that aims at simulating forces that occur during grasping and surface exploration. The sensing spring structure has been purposely designed in order to match force an...

  15. A two DoF finger for a biomechatronic artificial hand.

    Science.gov (United States)

    Carrozza, M C; Massa, B; Dario, P; Zecca, M; Micera, S; Pastacaldi, P

    2002-01-01

    Current prosthetic hands are basically simple grippers with one or two degrees of freedom, which barely restore the capability of the thumb-index pinch. Although most amputees consider this performance as acceptable for usual tasks, there is ample room for improvement by exploiting recent progresses in mechatronics design and technology. We are developing a novel prosthetic hand featured by multiple degrees of freedom, tactile sensing capabilities, and distributed control. Our main goal is to pursue an integrated design approach in order to fulfill critical requirements such as cosmetics, controllability, low weight, low energy consumption and noiselessness. This approach can be synthesized by the definition "biomechatronic design", which means developing mechatronic systems inspired by living beings and able to work harmoniously with them. This paper describes the first implementation of one single finger of a future biomechatronic hand. The finger has a modular design, which allows to obtain hands with different degrees of freedom and grasping capabilities. Current developments include the implementation of a hand comprising three fingers (opposing thumb, index and middle) and an embedded controller.

  16. Finger tapping analysis in patients with Parkinson's disease and atypical parkinsonism.

    Science.gov (United States)

    Djurić-Jovičić, Milica; Petrović, Igor; Ječmenica-Lukić, Milica; Radovanović, Saša; Dragašević-Mišković, Nataša; Belić, Minja; Miler-Jerković, Vera; Popović, Mirjana B; Kostić, Vladimir S

    2016-08-01

    The goal of this study was to investigate repetitive finger tapping patterns in patients with Parkinson's disease (PD), progressive supranuclear palsy-Richardson syndrome (PSP-R), or multiple system atrophy of parkinsonian type (MSA-P). The finger tapping performance was objectively assessed in PD (n=13), PSP-R (n=15), and MSA-P (n=14) patients and matched healthy controls (HC; n=14), using miniature inertial sensors positioned on the thumb and index finger, providing spatio-temporal kinematic parameters. The main finding was the lack or only minimal progressive reduction in amplitude during the finger tapping in PSP-R patients, similar to HC, but significantly different from the sequence effect (progressive decrement) in both PD and MSA-P patients. The mean negative amplitude slope of -0.12°/cycle revealed less progression of amplitude decrement even in comparison to HC (-0.21°/cycle, p=0.032), and particularly from PD (-0.56°/cycle, p=0.001), and MSA-P patients (-1.48°/cycle, p=0.003). No significant differences were found in the average finger separation amplitudes between PD, PSP-R and MSA-P patients (pmsa-pd=0.726, pmsa-psp=0.363, ppsp-pd=0.726). The lack of clinically significant sequence effect during finger tapping differentiated PSP-R from both PD and MSA-P patients, and might be specific for PSP-R. The finger tapping kinematic parameter of amplitude slope may be a neurophysiological marker able to differentiate particular forms of parkinsonism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.

    Science.gov (United States)

    Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling

    2013-06-01

    Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.

  18. GRASP: A multitasking tether

    Directory of Open Access Journals (Sweden)

    Catherine eRabouille

    2016-01-01

    Full Text Available Originally identified as Golgi stacking factors in vitro, the Golgi reassembly stacking protein (GRASP family has been shown to act as membrane tethers with multiple cellular roles. As an update to previous comprehensive reviews of the GRASP family (Vinke et al., 2011 (Giuliani et al., 2011;Jarvela and Linstedt, 2012, we outline here the latest findings concerning their diverse roles. New insights into the mechanics of GRASP-mediated tethering come from recent crystal structures. The models of how GRASP65 and GRASP55 tether membranes relate directly to their role in Golgi ribbon formation in mammalian cells and the unlinking of the ribbon at the onset of mitosis. However, it is also clear that GRASPs act outside the Golgi with roles at the ER and ER exit sites (ERES. Furthermore, the proteins of this family display other roles upon cellular stress, especially in mediating unconventional secretion of both transmembrane proteins (Golgi bypass and cytoplasmic proteins (through secretory autophagosomes.

  19. Factors Influencing School Closure and Dismissal Decisions: Influenza A (H1N1), Michigan 2009

    Science.gov (United States)

    Dooyema, Carrie A.; Copeland, Daphne; Sinclair, Julie R.; Shi, Jianrong; Wilkins, Melinda; Wells, Eden; Collins, Jim

    2014-01-01

    Background: In fall 2009, many US communities experienced school closures during the influenza A H1N1 pandemic (pH1N1) and the state of Michigan reported 567 closures. We conducted an investigation in Michigan to describe pH1N1-related school policies, practices, and identify factors related to school closures. Methods: We distributed an online…

  20. Statistical analysis on finger replacement schemes for RAKE receivers in the soft handover region with multiple BSs over i.n.d. fading channels

    KAUST Repository

    Nam, Sung Sik

    2017-06-12

    A new finger replacement technique which is applicable for RAKE receivers in the soft handover region has been proposed and studied under the ideal assumption that the fading is both independent and identically distributed from path to path. To supplement our previous work, we present a general comprehensive framework for the performance assessment of the proposed finger replacement schemes operating over independent but non-identically distributed (i.n.d.) faded paths. To accomplish this object, we derive new closed-form expressions for the target key statistics which are composed of i.n.d. exponential random variables. With these new expressions, the performance analysis of various wireless communication systems over more practical channel environments can be possible.

  1. Phase dependence of transport-aperture coordination variability reveals control strategy of reach-to-grasp movements.

    Science.gov (United States)

    Rand, Miya K; Shimansky, Y P; Hossain, Abul B M I; Stelmach, George E

    2010-11-01

    Based on an assumption of movement control optimality in reach-to-grasp movements, we have recently developed a mathematical model of transport-aperture coordination (TAC), according to which the hand-target distance is a function of hand velocity and acceleration, aperture magnitude, and aperture velocity and acceleration (Rand et al. in Exp Brain Res 188:263-274, 2008). Reach-to-grasp movements were performed by young adults under four different reaching speeds and two different transport distances. The residual error magnitude of fitting the above model to data across different trials and subjects was minimal for the aperture-closure phase, but relatively much greater for the aperture-opening phase, indicating considerable difference in TAC variability between those phases. This study's goal is to identify the main reasons for that difference and obtain insights into the control strategy of reach-to-grasp movements. TAC variability within the aperture-opening phase of a single trial was found minimal, indicating that TAC variability between trials was not due to execution noise, but rather a result of inter-trial and inter-subject variability of motor plan. At the same time, the dependence of the extent of trial-to-trial variability of TAC in that phase on the speed of hand transport was sharply inconsistent with the concept of speed-accuracy trade-off: the lower the speed, the larger the variability. Conversely, the dependence of the extent of TAC variability in the aperture-closure phase on hand transport speed was consistent with that concept. Taking into account recent evidence that the cost of neural information processing is substantial for movement planning, the dependence of TAC variability in the aperture-opening phase on task performance conditions suggests that it is not the movement time that the CNS saves in that phase, but the cost of neuro-computational resources and metabolic energy required for TAC regulation in that phase. Thus, the CNS

  2. Earlier and greater hand pre-shaping in the elderly: a study based on kinematic analysis of reaching movements to grasp objects.

    Science.gov (United States)

    Tamaru, Yoshiki; Naito, Yasuo; Nishikawa, Takashi

    2017-11-01

    Elderly people are less able to manipulate objects skilfully than young adults. Although previous studies have examined age-related deterioration of hand movements with a focus on the phase after grasping objects, the changes in the reaching phase have not been studied thus far. We aimed to examine whether changes in hand shape patterns during the reaching phase of grasping movements differ between young adults and the elderly. Ten healthy elderly adults and 10 healthy young adults were examined using the Simple Test for Evaluating Hand Functions and kinetic analysis of hand pre-shaping reach-to-grasp tasks. The results were then compared between the two groups. For kinetic analysis, we measured the time of peak tangential velocity of the wrist and the inter-fingertip distance (the distance between the tips of the thumb and index finger) at different time points. The results showed that the elderly group's performance on the Simple Test for Evaluating Hand Functions was significantly lower than that of the young adult group, irrespective of whether the dominant or non-dominant hand was used, indicating deterioration of hand movement in the elderly. The peak tangential velocity of the wrist in either hand appeared significantly earlier in the elderly group than in the young adult group. The elderly group also showed larger inter-fingertip distances with arch-like fingertip trajectories compared to the young adult group for all object sizes. To perform accurate prehension, elderly people have an earlier peak tangential velocity point than young adults. This allows for a longer adjustment time for reaching and grasping movements and for reducing errors in object prehension by opening the hand and fingers wider. Elderly individuals gradually modify their strategy based on previous successes and failures during daily living to compensate for their decline in dexterity and operational capabilities. © 2017 Japanese Psychogeriatric Society.

  3. Torque Control of Underactuated Tendon-driven Robotic Fingers

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Wampler, Charles W. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Bridgwater, Lyndon (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  4. Grasp planning for a reconfigurable parallel robot with an underactuated arm structure

    Directory of Open Access Journals (Sweden)

    M. Riedel

    2010-12-01

    Full Text Available In this paper, a novel approach of grasp planning is applied to find out the appropriate grasp points for a reconfigurable parallel robot called PARAGRIP (Parallel Gripping. This new handling system is able to manipulate objects in the six-dimensional Cartesian space by several robotic arms using only six actuated joints. After grasping, the contact elements at the end of the underactuated arm mechanisms are connected to the object which forms a closed loop mechanism similar to the architecture of parallel manipulators. As the mounting and grasp points of the arms can easily be changed, the manipulator can be reconfigured to match the user's preferences and needs. This paper raises the question, how and where these grasp points are to be placed on the object to perform well for a certain manipulation task.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  5. Grasp force sensor for robotic hands

    Science.gov (United States)

    Scheinman, Victor D. (Inventor); Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1989-01-01

    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces.

  6. Closure report for N Reactor

    International Nuclear Information System (INIS)

    1994-01-01

    This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule

  7. Closure report for N Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule.

  8. Continuum robots and underactuated grasping

    Directory of Open Access Journals (Sweden)

    N. Giri

    2011-02-01

    Full Text Available We discuss the capabilities of continuum (continuous backbone robot structures in the performance of under-actuated grasping. Continuum robots offer the potential of robust grasps over a wide variety of object classes, due to their ability to adapt their shape to interact with the environment via non-local continuum contact conditions. Furthermore, this capability can be achieved with simple, low degree of freedom hardware. However, there are practical issues which currently limit the application of continuum robots to grasping. We discuss these issues and illustrate via an experimental continuum grasping case study.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  9. The coordination patterns observed when two hands reach-to-grasp separate objects.

    Science.gov (United States)

    Bingham, Geoffrey P; Hughes, Kirstie; Mon-Williams, Mark

    2008-01-01

    What determines coordination patterns when both hands reach to grasp separate objects at the same time? It is known that synchronous timing is preferred as the most stable mode of bimanual coordination. Nonetheless, normal unimanual prehension behaviour predicts asynchrony when the two hands reach towards unequal targets, with synchrony restricted to targets equal in size and distance. Additionally, sufficiently separated targets require sequential looking. Does synchrony occur in all cases because it is preferred in bimanual coordination or does asynchrony occur because of unimanual task constraints and the need for sequential looking? We investigated coordinative timing when participants (n = 8) moved their right (preferred) hand to the same object at a fixed distance but the left hand to objects of different width (3, 5, and 7 cm) and grip surface size (1, 2, and 3 cm) placed at different distances (20, 30, and 40 cm) over 270 randomised trials. The hand movements consisted of two components: (1) an initial component (IC) during which the hand reached towards the target while forming an appropriate grip aperture, stopping at (but not touching) the object; (2) a completion component (CC) during which the finger and thumb closed on the target. The two limbs started the IC together but did not interact until the deceleration phase when evidence of synchronisation began to appear. Nonetheless, asynchronous timing was present at the end of the IC and preserved through the CC even with equidistant targets. Thus, there was synchrony but requirements for visual information ultimately yielded asynchronous coordinative timing.

  10. Control System Design of the YWZ Multi-Fingered Dexterous Hand

    Directory of Open Access Journals (Sweden)

    Wenzhen Yang

    2012-07-01

    Full Text Available The manipulation abilities of a multi-fingered dexterous hand, such as motion in real-time, flexibility, grasp stability etc., are largely dependent on its control system. This paper developed a control system for the YWZ dexterous hand, which had five fingers and twenty degrees of freedom (DOFs. All of the finger joints of the YWZ dexterous handwere active joints driven by twenty micro-stepper motors respectively. The main contribution of this paper was that we were able to use stepper motor control to actuate the hand's fingers, thus, increasing the hands feasibility. Based the actuators of the YWZ dexterous hand, we firstly developed an integrated circuit board (ICB, which was the communication hardware between the personal computer (PC and the YWZ dexterous hand. The ICB included a centre controller, twenty driver chips, a USB port and other electrical parts. Then, a communication procedure between the PC and the ICB was developed to send the control commands to actuate the YWZ dexterous hand. Experiment results showed that under this control system, the motion of the YWZ dexterous hand was real-time; both the motion accuracy and the motion stability of the YWZ dexterous hand were reliable. Compared with other types of actuators related to dexterous hands, such as pneumatic servo cylinder, DC servo motor, shape memory alloy etc., experiment results verified that the stepper motors as actuators for the dexterous handswere effective, economical, controllable and stable.

  11. Application of a sensor fusion algorithm for improving grasping stability

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyeon; Yoon, Hyun Suck; Moon, Hyung Pil; Choi, Hyouk Ryeol; Koo Ja Choon [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-07-15

    A robot hand normally employees various sensors that are packaged in small form factor, perform with delicately accurate, and cost mostly very expensive. Grasping operation of the hand relies especially on accuracy of those sensors. Even with a set of advanced sensory systems embedded in a robot hand, securing a stable grasping is still challenging task. The present work makes an attempt to improve force sensor accuracy by applying sensor fusion method. An optimal weight value sensor fusion method formulated with Kalman filters is presented and tested in the work. Using a set of inexpensive sensors, the work achieves a reliable force sensing and applies the enhanced sensor stability to an object pinch grasping.

  12. Application of a sensor fusion algorithm for improving grasping stability

    International Nuclear Information System (INIS)

    Kim, Jae Hyeon; Yoon, Hyun Suck; Moon, Hyung Pil; Choi, Hyouk Ryeol; Koo Ja Choon

    2015-01-01

    A robot hand normally employees various sensors that are packaged in small form factor, perform with delicately accurate, and cost mostly very expensive. Grasping operation of the hand relies especially on accuracy of those sensors. Even with a set of advanced sensory systems embedded in a robot hand, securing a stable grasping is still challenging task. The present work makes an attempt to improve force sensor accuracy by applying sensor fusion method. An optimal weight value sensor fusion method formulated with Kalman filters is presented and tested in the work. Using a set of inexpensive sensors, the work achieves a reliable force sensing and applies the enhanced sensor stability to an object pinch grasping.

  13. Design and fabrication of a three-finger prosthetic hand using SMA muscle wires

    Science.gov (United States)

    Simone, Filomena; York, Alexander; Seelecke, Stefan

    2015-03-01

    Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.

  14. A novel device for grasping assessment during functional tasks: preliminary results

    Directory of Open Access Journals (Sweden)

    Ana Carolinne Portela Rocha

    2016-02-01

    Full Text Available This paper presents a methodology and first results obtained in a study with a novel device that allows the analysis of grasping quality. Such a device is able to acquire motion information of upper limbs allowing kinetic of manipulation analysis as well. A pilot experiment was carried out with six groups of typically developing children aged between 5 and 10 years old, with 7-8 children in each one. The device, designed to emulate a glass, has an optical system composed by one digital camera and a special convex mirror that together allow image acquisition of grasping hand posture when it is grasped and manipulated. It also carries an Inertial Measurement Unit (IMU that captures motion data as acceleration, orientation, and angular velocities. The novel instrumented object is used in our approach to evaluate functional tasks performance in quantitative terms. During tests each child was invited to grasp the cylindrical part of the device that was placed on the top of a table, simulating the task of drinking a glass of water. In the sequence the child was oriented to transport the device back to the starting position and release it. The task was repeated 3 times for each child. A grasping hand posture evaluation is presented as an example to evaluate grasping quality. Additionally, motion patterns obtained with the triasl performed with the different groups are presented and discussed. This device is attractive due to its portable characteristics, the small size and its ability to evaluate grasping form. The results may be also useful to analyze the evolution of the rehabilitation process through reach-to-grasping movement and the grasping images analysis.

  15. An Intelligent Inference System for Robot Hand Optimal Grasp Preshaping

    Directory of Open Access Journals (Sweden)

    Cabbar Veysel Baysal

    2010-11-01

    Full Text Available This paper presents a novel Intelligent Inference System (IIS for the determination of an optimum preshape for multifingered robot hand grasping, given object under a manipulation task. The IIS is formed as hybrid agent architecture, by the synthesis of object properties, manipulation task characteristics, grasp space partitioning, lowlevel kinematical analysis, evaluation of contact wrench patterns via fuzzy approximate reasoning and ANN structure for incremental learning. The IIS is implemented in software with a robot hand simulation.

  16. Highly transparent front electrodes with metal fingers for p-i-n thin-film silicon solar cells

    Directory of Open Access Journals (Sweden)

    Moulin Etienne

    2015-01-01

    Full Text Available The optical and electrical properties of transparent conductive oxides (TCOs, traditionally used in thin-film silicon (TF-Si solar cells as front-electrode materials, are interlinked, such that an increase in TCO transparency is generally achieved at the cost of reduced lateral conductance. Combining a highly transparent TCO front electrode of moderate conductance with metal fingers to support charge collection is a well-established technique in wafer-based technologies or for TF-Si solar cells in the substrate (n-i-p configuration. Here, we extend this concept to TF-Si solar cells in the superstrate (p-i-n configuration. The metal fingers are used in conjunction with a millimeter-scale textured foil, attached to the glass superstrate, which provides an antireflective and retroreflective effect; the latter effect mitigates the shadowing losses induced by the metal fingers. As a result, a substantial increase in power conversion efficiency, from 8.7% to 9.1%, is achieved for 1-μm-thick microcrystalline silicon solar cells deposited on a highly transparent thermally treated aluminum-doped zinc oxide layer combined with silver fingers, compared to cells deposited on a state-of-the-art zinc oxide layer.

  17. RMF+BCS description of N = 32 and N = 34 shell closure

    International Nuclear Information System (INIS)

    Saxena, G.; Kumawat, M.; Singh, U.K.; Jain, S.K.; Aggarwal, Mamta; Kaushik, M.; Singh, S. Somorendro

    2017-01-01

    We have employed RMF+BCS (relativistic mean-field plus BCS) approach to study N = 32 and N = 34 shell closure with the help of ground state properties of even-even nuclei. Our present investigations include single particle energies, deformations, separation energies as well as neutron and proton densities etc. Encouraged by the recent experiments showing neutron magicity at N = 32 for Ca isotopes, we have applied RMF theory with delta function pairing along with mass dependency (1/A) for full chain of N = 32 and N = 34 isotones upto drip lines. This study predicts new doubly magic nuclei specially 48 Si which is in the same mass region in 52 Ca as the recent experiments observed

  18. An electromyographic analysis of two handwriting grasp patterns.

    Science.gov (United States)

    de Almeida, Pedro Henrique Tavares Queiroz; da Cruz, Daniel Marinho Cezar; Magna, Luis Alberto; Ferrigno, Iracema Serrat Vergotti

    2013-08-01

    Handwriting is a fundamental skill needed for the development of daily-life activities during lifetime and can be performed using different forms to hold the writing object. In this study, we monitored the sEMG activity of trapezius, biceps brachii, extensor carpi radialis brevis and flexor digitorum superficialis during a handwriting task with two groups of subjects using different grasp patterns. Twenty-four university students (thirteen males and eleven females; mean age of 22.04±2.8years) were included in this study. We randomly invited 12 subjects that used the Dynamic Tripod grasp and 12 subjects that used the Static Tripod grasp. The static tripod group showed statistically significant changes in the sEMG activity of trapezium and biceps brachii muscles during handwriting when compared to dynamic tripod group's subjects. No significant differences were found in extensor carpi radialis brevis and flexor digitorum superficialis activities among the two groups. The findings in this study suggest an increased activity of proximal muscles among subjects using a transitional grasp, indicating potential higher energy expenditure and muscular harm with the maintenance of this motor pattern in handwriting tasks, especially during the progression in academic life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. GRASP55 Senses Glucose Deprivation through O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion.

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Leibin; Lak, Behnam; Li, Jie; Jokitalo, Eija; Wang, Yanzhuang

    2018-04-23

    The Golgi apparatus is the central hub for protein trafficking and glycosylation in the secretory pathway. However, how the Golgi responds to glucose deprivation is so far unknown. Here, we report that GRASP55, the Golgi stacking protein located in medial- and trans-Golgi cisternae, is O-GlcNAcylated by the O-GlcNAc transferase OGT under growth conditions. Glucose deprivation reduces GRASP55 O-GlcNAcylation. De-O-GlcNAcylated GRASP55 forms puncta outside of the Golgi area, which co-localize with autophagosomes and late endosomes/lysosomes. GRASP55 depletion reduces autophagic flux and results in autophagosome accumulation, while expression of an O-GlcNAcylation-deficient mutant of GRASP55 accelerates autophagic flux. Biochemically, GRASP55 interacts with LC3-II on the autophagosomes and LAMP2 on late endosomes/lysosomes and functions as a bridge between LC3-II and LAMP2 for autophagosome and lysosome fusion; this function is negatively regulated by GRASP55 O-GlcNAcylation. Therefore, GRASP55 senses glucose levels through O-GlcNAcylation and acts as a tether to facilitate autophagosome maturation. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The Vacuum-Assisted Closure (VAC) device for hastened attachment of a superficial inferior-epigastric flap to third-degree burns on hand and fingers.

    Science.gov (United States)

    Weinand, Christian

    2009-01-01

    The vacuum-assisted closure (VAC) device has a wide range of clinical applications, including treatment of infected surgical wounds, traumatic wounds, pressure ulcers, wounds with exposed bone and hardware, diabetic foot ulcers, and venous stasis ulcers. Increased release of growth factors has been described, leading to improved vascularization and thereby formation of new tissue. The system is also used in burn surgery for reconstructive purposes. In this case report, a patient suffered from a third-degree burn injury to the dorsum of the hand with exposure of tendons, necessitating the use of a flap reconstruction. The patient was treated with a superficial inferior-epigastric artery-based flap and the VAC system was applied in a created glove-like shape. Hastened attachment of the flap onto the exposed fingers was observed after 4 days. The author reports on the additional use of the VAC system to hasten flap attachment in a patient with a burn injury to the dorsum of the hand.

  1. Investigating the DNA-binding ability of GATA-1-N-terminal zinc finger

    International Nuclear Information System (INIS)

    Wong, R.; Newton, A.; Crossley, M.; Mackay, J.

    2001-01-01

    Erythroid transcription factor GATA-1 interacts with both DNA and other proteins through its zinc finger domains (ZnFs). While it has been known for me time that the C-terminal ZnF binds DNA at GATA sites, only recently has it been observed that the N-terminal finger (NF) is capable of interacting with GATC sites. Further, a number of naturally occurring mutations in NF (V205M, G208S, R216Q, D218G) that lead to anaemia and thrombocytopenia have been identified. We are interested in characterising the NF-DNA interaction and determining the effects of mutation upon this interaction. Using nuclear magnetic resonance (NMR) spectroscopy, we have observed an interaction between recombinant NF and a 16-mer DNA duplex containing a core GATC sequence. This result forms the basis from which residues in NF involved in DNA binding can be identified, and work is being carried out to improve the quality of the NMR data with the aim of determining the solution structure of the NF-DNA complex. The DNA-binding affinity of both wild-type and mutant NFs mentioned above is also being investigated using isothermal titration calorimetry. These data suggest that the strength of the interaction between NF and the 16-mer DNA duplex is in the sub-micromolar range, and comparisons between the DNA-binding affinities of the NF mutants are being made. Together, these studies will help us to understand how GATA-1 acts as a transcriptional regulator and how mutations in NF domain of GATA-1 may lead to blood disorders

  2. A Novel Multi-Finger Gate Structure of AlGaN/GaN High Electron Mobility Transistor

    International Nuclear Information System (INIS)

    Cui Lei; Wang Quan; Wang Xiao-Liang; Xiao Hong-Ling; Wang Cui-Mei; Jiang Li-Juan; Feng Chun; Yin Hai-Bo; Gong Jia-Min; Li Bai-Quan; Wang Zhan-Guo

    2015-01-01

    A novel multi-finger gate high electron mobility transistor (HEMT) is designed to reduce the peak electric field value at the drain-side gate edge when the device is at off-state. The effective gate length (L_e_f_f) of the multi-finger gate device is smaller than that of the field plate gate device. In this work, field plate gate, five-finger gate and ten-finger gate devices are simulated. The results of the simulation indicate that the multi-finger gate device has a lower peak value than the device with the gate field plate. Moreover, this value would be further reduced when the number of gate fingers is increased. In addition, it has the potential to make the HEMT work in a higher frequency since it has a lower effective length of gate. (paper)

  3. Closure of digital arteries in high vascular tone states as demonstrated by measurement of systolic blood pressure in the fingers

    DEFF Research Database (Denmark)

    Krähenbühl, B; Nielsen, S L; Lassen, N A

    1977-01-01

    Finger systolic blood pressure (FSP) was measured indirectly in normal subjects and patients with primary Raynaud phenomenon by applying a thin-walled plastic cuff around the finger and a strain gauge more distally to detect volume changes. Inducing a high vascular tone in one or more fingers by ...

  4. Experiments in robotic sensorimotor control during grasp

    International Nuclear Information System (INIS)

    Stansfield, S.A.

    1993-01-01

    A series of experiments is presented, using a robot manipulator, which attempt to reproduce human sensorimotor control during grasping. The work utilizes a multifingered, dexterous robot hand equipped with a fingertip force sensor to explore dynamic grasp force adjustment during manipulation. The work is primarily concerned with the relationship between the weight of an object and the grasp force required to lift it. Too weak a grasp is unstable and the object will slip from the hand. Too strong a grasp may damage the object and/or the manipulator. An algorithm is presented which reproduces observed human behavior during grasp-and-lift tasks. The algorithm uses tactile information from the sensor to dynamically adjust the grasp force during lift. It is assumed that there is no a priori knowledge about the object to be manipulated. The effects of different arm/hand postures and object surfaces is explored. Finally, the use of sensory data to detect unexpected object motion and to signal transitions between manipulation phases--with the coincident triggering of new motor programs--is investigated

  5. Optimization for Guitar Fingering on Single Notes

    Science.gov (United States)

    Itoh, Masaru; Hayashida, Takumi

    This paper presents an optimization method for guitar fingering. The fingering is to determine a unique combination of string, fret and finger corresponding to the note. The method aims to generate the best fingering pattern for guitar robots rather than beginners. Furthermore, it can be applied to any musical score on single notes. A fingering action can be decomposed into three motions, that is, a motion of press string, release string and move fretting hand. The cost for moving the hand is estimated on the basis of Manhattan distance which is the sum of distances along fret and string directions. The objective is to minimize the total fingering costs, subject to fret, string and finger constraints. As a sequence of notes on the score forms a line on time series, the optimization for guitar fingering can be resolved into a multistage decision problem. Dynamic programming is exceedingly effective to solve such a problem. A level concept is introduced into rendering states so as to make multiple DP solutions lead a unique one among the DP backward processes. For example, if two fingerings have the same value of cost at different states on a stage, then the low position would be taken precedence over the high position, and the index finger would be over the middle finger.

  6. A Finger Exoskeleton Robot for Finger Movement Rehabilitation

    Directory of Open Access Journals (Sweden)

    Tzu-Heng Hsu

    2017-07-01

    Full Text Available In this study, a finger exoskeleton robot has been designed and presented. The prototype device was designed to be worn on the dorsal side of the hand to assist in the movement and rehabilitation of the fingers. The finger exoskeleton is 3D-printed to be low-cost and has a transmission mechanism consisting of rigid serial links which is actuated by a stepper motor. The actuation of the robotic finger is by a sliding motion and mimics the movement of the human finger. To make it possible for the patient to use the rehabilitation device anywhere and anytime, an Arduino™ control board and a speech recognition board were used to allow voice control. As the robotic finger follows the patients voice commands the actual motion is analyzed by Tracker image analysis software. The finger exoskeleton is designed to flex and extend the fingers, and has a rotation range of motion (ROM of 44.2°.

  7. Finger length ratio (2D:4D) correlates with physical aggression in men but not in women.

    Science.gov (United States)

    Bailey, Allison A; Hurd, Peter L

    2005-03-01

    Finger length ratio (2D:4D) is a sexually dimorphic trait. Men have relatively shorter second digits (index fingers) than fourth digits (ring fingers). Smaller, more masculine, digit ratios are thought to be associated with either higher prenatal testosterone levels or greater sensitivity to androgens, or both. Men with more masculine finger ratios are perceived as being more masculine and dominant by female observers, and tend to perform better in a number of physical sports. We hypothesized that digit ratio would correlate with propensity to engage in aggressive behavior. We examined the relationship between trait aggression, assayed using a questionnaire, and finger length ratio in both men and women. Men with lower, more masculine, finger length ratios had higher trait physical aggression scores (r(partial) = -0.21, N = 134, P = 0.028). We found no correlation between finger length ratio and any form of aggression in females. These results are consistent with the hypothesis that testosterone has an organizational effect on adult physical aggression in men.

  8. Study of the closure of the nuclear shells N = 16, 20, 28 and 40

    International Nuclear Information System (INIS)

    Sorlin, O.

    2005-12-01

    There are 2 types of nuclear shell closures: one is associated to a number of the harmonic oscillator, typically N = 20 and 40, and the other is a consequence of the spin-orbital interaction that produces magic numbers such as N = 28, 50, 82 and N = 126. The first part of this work deals with the knowledge accumulated around the closure of the N = 28 shell. 3 means of investigation have been used: -) the study of beta decay nuclei (K 47 , Ar 46 , S 44 , Si 42 and Cl 45 ), -) the on-line spectroscopy of nuclei around N = 28, and -) the study of Ar 45 and Ar 47 through transfer reactions. The second part is dedicated to results concerning the nuclear structure of nuclei around N = 14-20 and around N = 40. (A.C.)

  9. Are we real when we fake? Attunement to object weight in natural and pantomimed grasping movements

    Directory of Open Access Journals (Sweden)

    Caterina Ansuini

    2016-09-01

    Full Text Available Behavioural and neuropsychological studies suggest that real actions and pantomimed actions tap, at least in part, different neural systems. Inspired by studies showing weight-attunement in real grasps, here we asked whether (and to what extent kinematics of pantomimed reach-to-grasp movement can reveal the weight of the pretended target. To address this question, we instructed participants (n =15 either to grasp or pretend to grasp towards two differently weighted objects, i.e., a light object and heavy object. Using linear discriminant analysis, we then proceeded to classify the weight of the target – either real or pretended – on the basis of the recorded movement patterns. Classification analysis revealed that pantomimed reach-to-grasp movements retained information about object weight, although to a lesser extent than real grasp movements. These results are discussed in relation to the mechanisms underlying the control of real and pantomimed grasping movements.

  10. Analysis of prosody in finger braille using electromyography.

    Science.gov (United States)

    Miyagi, Manabi; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira

    2006-01-01

    Finger braille is one of the communication methods for the deaf blind. The interpreter types braille codes on the fingers of deaf blind. Finger braille seems to be the most suitable medium for real-time communication by its speed and accuracy of transmitting characters. We hypothesize that the prosody information exists in the time structure and strength of finger braille typing. Prosody is the paralinguistic information that has functions to transmit the sentence structure, prominence, emotions and other form of information in real time communication. In this study, we measured the surface electromyography (sEMG) of finger movement to analyze the typing strength of finger braille. We found that the typing strength increases at the beginning of a phrase and a prominent phrase. The result shows the possibility that the prosody in the typing strength of finger braille can be applied to create an interpreter system for the deafblind.

  11. Evaluation of Human Prehension Using Grasp Quality Measures

    Directory of Open Access Journals (Sweden)

    Beatriz León

    2012-10-01

    Full Text Available One of the main features of the human hand is its grasping ability. Robot grasping has been studied for years and different quality measures have been proposed to evaluate the stability and manipulability of grasps. Although the human hand is obviously more complex than robot hands, the methods used in robotics might be adopted to study the human grasp. The purpose of this work is to propose a set of measures that allow the evaluation of different aspects of the human grasp. The most common robotic grasp quality measures have been adapted to the evaluation of the human hand and a new quality measure – the fatigue index – is proposed in order to incorporate the biomechanical aspect into the evaluation. The minimum set of indices that allows the evaluation of the different aspects of the grasp is obtained from the analysis of a human prehension experiment.

  12. Grasping without sight: insights from the congenitally blind.

    Directory of Open Access Journals (Sweden)

    Kayla D Stone

    Full Text Available We reach for and grasp different sized objects numerous times per day. Most of these movements are visually-guided, but some are guided by the sense of touch (i.e. haptically-guided, such as reaching for your keys in a bag, or for an object in a dark room. A marked right-hand preference has been reported during visually-guided grasping, particularly for small objects. However, little is known about hand preference for haptically-guided grasping. Recently, a study has shown a reduction in right-hand use in blindfolded individuals, and an absence of hand preference if grasping was preceded by a short haptic experience. These results suggest that vision plays a major role in hand preference for grasping. If this were the case, then one might expect congenitally blind (CB individuals, who have never had a visual experience, to exhibit no hand preference. Two novel findings emerge from the current study: first, the results showed that contrary to our expectation, CB individuals used their right hand during haptically-guided grasping to the same extent as visually-unimpaired (VU individuals did during visually-guided grasping. And second, object size affected hand use in an opposite manner for haptically- versus visually-guided grasping. Big objects were more often picked up with the right hand during haptically-guided, but less often during visually-guided grasping. This result highlights the different demands that object features pose on the two sensory systems. Overall the results demonstrate that hand preference for grasping is independent of visual experience, and they suggest a left-hemisphere specialization for the control of grasping that goes beyond sensory modality.

  13. Hand Grasping Synergies As Biometrics.

    Science.gov (United States)

    Patel, Vrajeshri; Thukral, Poojita; Burns, Martin K; Florescu, Ionut; Chandramouli, Rajarathnam; Vinjamuri, Ramana

    2017-01-01

    Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements). Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic). Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies) from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies-postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security.

  14. Hand Grasping Synergies As Biometrics

    Directory of Open Access Journals (Sweden)

    Ramana Vinjamuri

    2017-05-01

    Full Text Available Recently, the need for more secure identity verification systems has driven researchers to explore other sources of biometrics. This includes iris patterns, palm print, hand geometry, facial recognition, and movement patterns (hand motion, gait, and eye movements. Identity verification systems may benefit from the complexity of human movement that integrates multiple levels of control (neural, muscular, and kinematic. Using principal component analysis, we extracted spatiotemporal hand synergies (movement synergies from an object grasping dataset to explore their use as a potential biometric. These movement synergies are in the form of joint angular velocity profiles of 10 joints. We explored the effect of joint type, digit, number of objects, and grasp type. In its best configuration, movement synergies achieved an equal error rate of 8.19%. While movement synergies can be integrated into an identity verification system with motion capture ability, we also explored a camera-ready version of hand synergies—postural synergies. In this proof of concept system, postural synergies performed well, but only when specific postures were chosen. Based on these results, hand synergies show promise as a potential biometric that can be combined with other hand-based biometrics for improved security.

  15. Neural control of finger movement via intracortical brain-machine interface

    Science.gov (United States)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.

    2017-12-01

    Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ  =  0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe

  16. Economic Evaluation of Individual School Closure Strategies: The Hong Kong 2009 H1N1 Pandemic.

    Directory of Open Access Journals (Sweden)

    Zoie Shui-Yee Wong

    Full Text Available School closures as a means of containing the spread of disease have received considerable attention from the public health community. Although they have been implemented during previous pandemics, the epidemiological and economic effects of the closure of individual schools remain unclear.This study used data from the 2009 H1N1 pandemic in Hong Kong to develop a simulation model of an influenza pandemic with a localised population structure to provide scientific justifications for and economic evaluations of individual-level school closure strategies.The estimated cost of the study's baseline scenario was USD330 million. We found that the individual school closure strategies that involved all types of schools and those that used a lower threshold to trigger school closures had the best performance. The best scenario resulted in an 80% decrease in the number of cases (i.e., prevention of about 830,000 cases, and the cost per case prevented by this intervention was USD1,145; thus, the total cost was USD1.28 billion.This study predicts the effects of individual school closure strategies on the 2009 H1N1 pandemic in Hong Kong. Further research could determine optimal strategies that combine various system-wide and district-wide school closures with individual school triggers across types of schools. The effects of different closure triggers at different phases of a pandemic should also be examined.

  17. Learning Grasp Strategies Composed of Contact Relative Motions

    Science.gov (United States)

    Platt, Robert, Jr.

    2007-01-01

    Of central importance to grasp synthesis algorithms are the assumptions made about the object to be grasped and the sensory information that is available. Many approaches avoid the issue of sensing entirely by assuming that complete information is available. In contrast, this paper proposes an approach to grasp synthesis expressed in terms of units of control that simultaneously change the contact configuration and sense information about the object and the relative manipulator-object pose. These units of control, known as contact relative motions (CRMs), allow the grasp synthesis problem to be recast as an optimal control problem where the goal is to find a strategy for executing CRMs that leads to a grasp in the shortest number of steps. An experiment is described that uses Robonaut, the NASA-JSC space humanoid, to show that CRMs are a viable means of synthesizing grasps. However, because of the limited amount of information that a single CRM can sense, the optimal control problem may be partially observable. This paper proposes expressing the problem as a k-order Markov Decision Process (MDP) and solving it using Reinforcement Learning. This approach is tested in a simulation of a two-contact manipulator that learns to grasp an object. Grasp strategies learned in simulation are tested on the physical Robonaut platform and found to lead to grasp configurations consistently.

  18. Effect of Live Poultry Market Closure on Avian Influenza A(H7N9) Virus Activity in Guangzhou, China, 2014

    Science.gov (United States)

    Yuan, Jun; Lau, Eric H.Y.; Li, Kuibiao; Leung, Y.H. Connie; Yang, Zhicong; Xie, Caojun; Liu, Yufei; Liu, Yanhui; Ma, Xiaowei; Liu, Jianping; Li, Xiaoquan; Chen, Kuncai; Luo, Lei; Di, Biao; Cowling, Benjamin J.; Leung, Gabriel M.; Peiris, Malik

    2015-01-01

    We assessed the effect of closing live poultry markets in China on influenza A(H7N9) virus detection and viability. Intensive sampling was carried out before, during, and after a 2-week citywide market closure; the markets were cleaned and disinfected at the beginning of the closure period. Swab samples were collected at different sites within the markets and tested for H7N9 by real-time reverse transcription PCR and culture. During the closure, H7N9 viral RNA detection and isolation rates in retail markets decreased by 79% (95% CI 64%–88%) and 92% (95% CI 58%–98%), respectively. However, viable H7N9 virus could be cultured from wastewater samples collected up to 2 days after the market closure began. Our findings indicates that poultry workers and the general population are constantly exposed to H7N9 virus at these markets and that market closure and disinfection rapidly reduces the amount of viable virus. PMID:26402310

  19. Fast grasping of unknown objects using principal component analysis

    Science.gov (United States)

    Lei, Qujiang; Chen, Guangming; Wisse, Martijn

    2017-09-01

    Fast grasping of unknown objects has crucial impact on the efficiency of robot manipulation especially subjected to unfamiliar environments. In order to accelerate grasping speed of unknown objects, principal component analysis is utilized to direct the grasping process. In particular, a single-view partial point cloud is constructed and grasp candidates are allocated along the principal axis. Force balance optimization is employed to analyze possible graspable areas. The obtained graspable area with the minimal resultant force is the best zone for the final grasping execution. It is shown that an unknown object can be more quickly grasped provided that the component analysis principle axis is determined using single-view partial point cloud. To cope with the grasp uncertainty, robot motion is assisted to obtain a new viewpoint. Virtual exploration and experimental tests are carried out to verify this fast gasping algorithm. Both simulation and experimental tests demonstrated excellent performances based on the results of grasping a series of unknown objects. To minimize the grasping uncertainty, the merits of the robot hardware with two 3D cameras can be utilized to suffice the partial point cloud. As a result of utilizing the robot hardware, the grasping reliance is highly enhanced. Therefore, this research demonstrates practical significance for increasing grasping speed and thus increasing robot efficiency under unpredictable environments.

  20. Vertical Finger Displacement Is Reduced in Index Finger Tapping During Repeated Bout Rate Enhancement.

    Science.gov (United States)

    Mora-Jensen, Mark Holten; Madeleine, Pascal; Hansen, Ernst Albin

    2017-10-01

    The present study analyzed (a) whether a recently reported phenomenon of repeated bout rate enhancement in finger tapping (i.e., a cumulating increase in freely chosen finger tapping frequency following submaximal muscle activation in the form of externally unloaded voluntary tapping) could be replicated and (b) the hypotheses that the faster tapping was accompanied by changed vertical displacement of the fingertip and changed peak force during tapping. Right-handed, healthy, and recreationally active individuals (n = 24) performed two 3-min index finger tapping bouts at freely chosen tapping frequency, separated by 10-min rest. The recently reported phenomenon of repeated bout rate enhancement was replicated. The faster tapping (8.8 ± 18.7 taps/min, corresponding to 6.0 ± 11.0%, p = .033) was accompanied by reduced vertical displacement (1.6 ± 2.9 mm, corresponding to 6.3 ± 14.9%, p = .012) of the fingertip. Concurrently, peak force was unchanged. The present study points at separate control mechanisms governing kinematics and kinetics during finger tapping.

  1. Patterns of muscle activity underlying object-specific grasp by the macaque monkey.

    Science.gov (United States)

    Brochier, T; Spinks, R L; Umilta, M A; Lemon, R N

    2004-09-01

    During object grasp, a coordinated activation of distal muscles is required to shape the hand in relation to the physical properties of the object. Despite the fundamental importance of the grasping action, little is known of the muscular activation patterns that allow objects of different sizes and shapes to be grasped. In a study of two adult macaque monkeys, we investigated whether we could distinguish between EMG activation patterns associated with grasp of 12 differently shaped objects, chosen to evoke a wide range of grasping postures. Each object was mounted on a horizontal shuttle held by a weak spring (load force 1-2 N). Objects were located in separate sectors of a "carousel," and inter-trial rotation of the carousel allowed sequential presentation of the objects in pseudorandom order. EMG activity from 10 to 12 digit, hand, and arm muscles was recorded using chronically implanted electrodes. We show that the grasp of different objects was characterized by complex but distinctive patterns of EMG activation. Cluster analysis shows that these object-related EMG patterns were specific and consistent enough to identify the object unequivocally from the EMG recordings alone. EMG-based object identification required a minimum of six EMGs from simultaneously recorded muscles. EMG patterns were consistent across recording sessions in a given monkey but showed some differences between animals. These results identify the specific patterns of activity required to achieve distinct hand postures for grasping, and they open the way to our understanding of how these patterns are generated by the central motor network.

  2. Visual Descriptor Learning for Predicting Grasping Affordances

    DEFF Research Database (Denmark)

    Thomsen, Mikkel Tang

    2016-01-01

    by the task of grasping unknown objects given visual sensor information. The contributions from this thesis stem from three works that all relate to the task of grasping unknown objects but with particular focus on the visual representation part of the problem. First an investigation of a visual feature space...... consisting of surface features was performed. Dimensions in the visual space were varied and the effects were evaluated with the task of grasping unknown object. The evaluation was performed using a novel probabilistic grasp prediction approach based on neighbourhood analysis. The resulting success......-rates for predicting grasps were between 75% and 90% depending on the object class. The investigations also provided insights into the importance of selecting a proper visual feature space when utilising it for predicting affordances. As a consequence of the gained insights, a semi-local surface feature, the Sliced...

  3. TRANSGENIC STRATEGY FOR IDENTIFYING SYNAPTIC CONNECTIONS IN MICE BY FLUORESCENCE COMPLEMENTATION (GRASP

    Directory of Open Access Journals (Sweden)

    Masahito eYamagata

    2012-02-01

    Full Text Available In the "GFP reconstitution across synaptic partners" (GRASP method, non-fluorescent fragments of GFP are expressed in two different neurons; the fragments self-assemble at synapses between the two to form a fluorophore. GRASP has proven useful for light microscopic identification of synapses in two invertebrate species, Caenorhabditis elegans and Drosophila melanogaster, but has not yet been applied to vertebrates. Here, we describe GRASP constructs that function in mammalian cells and implement a transgenic strategy in which a Cre-dependent gene switch leads to expression of the two fragments in mutually exclusive neuronal subsets in mice. Using a transgenic line that expresses Cre selectively in rod photoreceptors, we demonstrate labeling of synapses in the outer plexiform layer of the retina. Labeling is specific, in that synapses made by rods remain labeled for at least 6 months whereas nearby synapses made by intercalated cone photoreceptors on many of the same interneurons remain unlabeled. We also generated antisera that label reconstituted GFP but neither fragment in order to amplify the GRASP signal and thereby increase the sensitivity of the method.

  4. Grasping Unknown Objects in an Early Cognitive Vision System

    DEFF Research Database (Denmark)

    Popovic, Mila

    2011-01-01

    Grasping of unknown objects presents an important and challenging part of robot manipulation. The growing area of service robotics depends upon the ability of robots to autonomously grasp and manipulate a wide range of objects in everyday environments. Simple, non task-specific grasps of unknown ...... and comparing vision-based grasping methods, and the creation of algorithms for bootstrapping a process of acquiring world understanding for artificial cognitive agents....... presents a system for robotic grasping of unknown objects us- ing stereo vision. Grasps are defined based on contour and surface information provided by the Early Cognitive Vision System, that organizes visual informa- tion into a biologically motivated hierarchical representation. The contributions...... of the thesis are: the extension of the Early Cognitive Vision representation with a new type of feature hierarchy in the texture domain, the definition and evaluation of contour based grasping methods, the definition and evaluation of surface based grasping methods, the definition of a benchmark for testing...

  5. The zinc fingers of the Small Optic Lobes (SOL) calpain bind polyubiquitin.

    Science.gov (United States)

    Hastings, Margaret H; Qiu, Alvin; Zha, Congyao; Farah, Carole A; Mahdid, Yacine; Ferguson, Larissa; Sossin, Wayne S

    2018-05-28

    The Small Optic Lobes (SOL) calpain is a highly conserved member of the calpain family expressed in the nervous system. A dominant negative form of the SOL calpain inhibited consolidation of one form of synaptic plasticity, non-associative facilitation, in sensory-motor neuronal cultures in Aplysia, presumably by inhibiting cleavage of protein kinase Cs (PKCs) into constitutively active protein kinase Ms (PKMs) (Hu et al, 2017a). SOL calpains have a conserved set of 5-6 N-terminal zinc fingers. Bioinformatic analysis suggests that these zinc fingers could bind to ubiquitin. In this study, we show that both the Aplysia and mouse SOL calpain (also known as Calpain 15) zinc fingers bind ubiquitinated proteins, and we confirm that Aplysia SOL binds poly- but not mono or di-ubiquitin. No specific zinc finger is required for polyubiquitin binding. Neither polyubiquitin nor calcium was sufficient to induce purified Aplysia SOL calpain to autolyse or to cleave the atypical PKC to PKM in vitro. In Aplysia, overexpression of the atypical PKC in sensory neurons leads to an activity-dependent cleavage event and an increase in nuclear ubiquitin staining. Activity-dependent cleavage is partially blocked by a dominant negative SOL calpain, but not by a dominant negative classical calpain. The cleaved PKM was stabilized by the dominant negative classical calpain and destabilized by a dominant negative form of the PKM stabilizing proteinKIdney/BRAin protein(KIBRA). These studies provide new insight into SOL calpain's function and regulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. VISIONS FOR FOOTWEAR TIP SHAPE ACCORDING TO THE CONFIGURATION FINGER

    Directory of Open Access Journals (Sweden)

    MALCOCI Marina

    2015-05-01

    Full Text Available Compatibility between the consumer and the interior leg permanent footwear raises a number of issues. And any new form of footwear is time for a new silhouette last. Fashion is a factor in determining the shape of the last significant role. The most important influence on fashion in footwear that has at one time is found in peak shape. During registered a variety of forms leading to the last, for example, pointed, oval, round, square, asymmetrical, curved, trapezoidal, etc. Each has added a tip top recommended. The paper analyzes the morphofunctional characteristic, namely, finger configuration. The configuration of the fingers is determined from the positions of all the fingers of one another, as are six variants. Analysis of the shape and configuration of the arm fingers allow us to make the following recommendations to consumers: people showing finger configuration as in variant V and VI are advised not to wear pointy shoes because of the limited movement of the foot, which favors the diversion finger I exterior and deformed finger V; persons who fall within I-IV variant can procure pointy shoes; a round-tipped shoes, square, curved or asymmetric may be purchased by any consumer regardless of the configuration of the fingers; shoes with cut edge must be present only in garderopa people in variant I and II; consumers whose configuration is like finger-VI and III variants are awkwardly shaped fingers can buy shoes closed in the previous summer, but of different perforations or overlapping strips.

  7. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.

    Science.gov (United States)

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2015-05-01

    Goal-directed movements, such as reaching out to grasp an object, are necessarily constrained by the spatial properties of the target such as its size, shape, and position. For example, during a reach-to-grasp movement, the peak width of the aperture formed by the thumb and fingers in flight (peak grip aperture, PGA) is linearly related to the target's size. Suppressing vision throughout the movement (visual open loop) has a small though significant effect on this relationship. Visual open loop conditions also produce a large increase in the PGA compared to when vision is available throughout the movement (visual closed loop). Curiously, this differential effect of the availability of visual feedback is influenced by the presentation order: the difference in PGA between closed- and open-loop trials is smaller when these trials are intermixed (an effect we have called 'homogenization'). Thus, grasping movements are affected not only by the availability of visual feedback (closed loop or open loop) but also by what happened on the previous trial. It is not clear, however, whether this carry-over effect is mediated through motor (or sensorimotor) memory or through the interference of different task sets for closed-loop and open-loop feedback that determine when the movements are fully specified. We reasoned that sensorimotor memory, but not a task set for closed and open loop feedback, would be specific to the type of response. We tested this prediction in a condition in which pointing to targets was alternated with grasping those same targets. Critically, in this condition, when pointing was performed in open loop, grasping was always performed in closed loop (and vice versa). Despite the fact that closed- and open-loop trials were alternating in this condition, we found no evidence for homogenization of the PGA. Homogenization did occur, however, in a follow-up experiment in which grasping movements and visual feedback were alternated between the left and the right

  8. Trigger finger

    Science.gov (United States)

    ... digit; Trigger finger release; Locked finger; Digital flexor tenosynovitis ... cut or hand Yellow or green drainage from the cut Hand pain or discomfort Fever If your trigger finger returns, call your surgeon. You may need another surgery.

  9. Optimization by GRASP greedy randomized adaptive search procedures

    CERN Document Server

    Resende, Mauricio G C

    2016-01-01

    This is the first book to cover GRASP (Greedy Randomized Adaptive Search Procedures), a metaheuristic that has enjoyed wide success in practice with a broad range of applications to real-world combinatorial optimization problems. The state-of-the-art coverage and carefully crafted pedagogical style lends this book highly accessible as an introductory text not only to GRASP, but also to combinatorial optimization, greedy algorithms, local search, and path-relinking, as well as to heuristics and metaheuristics, in general. The focus is on algorithmic and computational aspects of applied optimization with GRASP with emphasis given to the end-user, providing sufficient information on the broad spectrum of advances in applied optimization with GRASP. For the more advanced reader, chapters on hybridization with path-relinking and parallel and continuous GRASP present these topics in a clear and concise fashion. Additionally, the book offers a very complete annotated bibliography of GRASP and combinatorial optimizat...

  10. Bilateral Acute Angle-closure after Intraocular Surgery.

    Science.gov (United States)

    Hoskens, Kirsten; Pinto, Luis Abegão; Vandewalle, Evelien; Verdonk, Nancy; Stalmans, Ingeborg

    2014-01-01

    We report the case of a 75-year-old woman who developed an acute bilateral angle-closure associated with choroidal effusion a day after an uneventful cataract surgery. The same patient had undergone a similarly uneventful cataract surgery two weeks before, under the same protocol, with no postoperative complication in the other eye. Medical treatment, including the use of oral sulfamide-related drugs (acetazolamide), topical beta-blockers and steroids led to a gradual decrease in intraocular pressure (IOP) and choroidal effusion. Despite initial reports suggesting a link between sulfamide-exposure and these rare forms of angle-closure, our report would suggest a more complex pathophysiology behind this intriguing phenomenon. How to cite this article: Hoskens K, Pinto LA, Vandewalle E, Verdonk N, Stalmans I. Bilateral Acute Angle-closure after Intraocular Surgery. J Curr Glaucoma Pract 2014;8(3):113-114.

  11. N=28 shell closure : shape coexistence and spin-orbit contribution

    International Nuclear Information System (INIS)

    Sarazin, Frederic

    1999-01-01

    One of the fundamental questions, which emerge from the study of nuclei far from stability, concerns the persistence of the magic character of certain configurations of protons and neutrons. From previous measurements around the N=28 magic number, it appears that this shell closure is especially weakening. In this context, a mass measurement experiment by a time of flight method around N=28 (Z 43 S in the same experiment and its interpretation by a shell model calculation confirm the analysis of the masses and constitutes the first evidence of shape coexistence around N=28. At the same time, an estimation of the evolution of the contribution of the spin-orbit coupling far from stability, partially responsible of the magic numbers sequence, showed that, although non-negligible, it is not sufficient to explain the vanishing of the shell closure. Through this study, it appeared extremely difficult to separate the contribution of the deformation from the one of the spin-orbit coupling in spectroscopic experiments. A feasibility study has thus been undertaken concerning a polarised proton and deuteron target to measure directly the evolution of the spin-orbit potential as a function of the isospin through elastic scattering experiments. (author) [fr

  12. Transcriptome wide identification and characterization of starch branching enzyme in finger millet.

    Science.gov (United States)

    Tyagi, Rajhans; Tiwari, Apoorv; Garg, Vijay Kumar; Gupta, Sanjay

    2017-01-01

    Starch-branching enzymes (SBEs) are one of the four major enzyme classes involved in starch biosynthesis in plants and play an important role in determining the structure and physical properties of starch granules. Multiple SBEs are involved in starch biosynthesis in plants. Finger millet is calcium rich important serial crop belongs to grass family and the transcriptome data of developing spikes is available on NCBI. In this study it was try to find out the gene sequence of starch branching enzyme and annotate the sequence and submit the sequence for further use. Rice SBE sequence was taken as reference and for characterization of the sequence different in silico tools were used. Four domains were found in the finger millet Starch branching enzyme like alpha amylase catalytic domain from 925 to2172 with E value 0, N-terminal Early set domain from 634 to 915 with E value 1.62 e-42, Alpha amylase, C-terminal all-beta domain from 2224 to 2511 with E value 5.80e-24 and 1,4-alpha-glucan-branching enzyme from 421 to 2517 with E value 0. Major binding interactions with the GLC (alpha-d-glucose), CA (calcium ion), GOL (glycerol), TRS (2-amino-2-hydroxymethylpropane- 1, 3-diol), MG (magnesium ion) and FLC (citrate anion) are fond with different residues. It was found in the phylogenetic study of the finger millet SBE with the 6 species of grass family that two clusters were form A and B. In cluster A, finger millet showed closeness with Oryzasativa and Setariaitalica, Sorghum bicolour and Zea mays while cluster B was formed with Triticumaestivum and Brachypodium distachyon. The nucleotide sequence of Finger millet SBE was submitted to NCBI with the accession no KY648913 and protein structure of SBE of finger millet was also submitted in PMDB with the PMDB id - PM0080938. This research presents a comparative overview of Finger millet SBE and includes their properties, structural and functional characteristics, and recent developments on their post-translational regulation.

  13. Effects of grasp compatibility on long-term memory for objects.

    Science.gov (United States)

    Canits, Ivonne; Pecher, Diane; Zeelenberg, René

    2018-01-01

    Previous studies have shown action potentiation during conceptual processing of manipulable objects. In four experiments, we investigated whether these motor actions also play a role in long-term memory. Participants categorized objects that afforded either a power grasp or a precision grasp as natural or artifact by grasping cylinders with either a power grasp or a precision grasp. In all experiments, responses were faster when the affordance of the object was compatible with the type of grasp response. However, subsequent free recall and recognition memory tasks revealed no better memory for object pictures and object names for which the grasp affordance was compatible with the grasp response. The present results therefore do not support the hypothesis that motor actions play a role in long-term memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Grasp Assist Device with Automatic Mode Control Logic

    Science.gov (United States)

    Davis, Donald R. (Inventor); Ihrke, Chris A. (Inventor); Laske, Evan (Inventor)

    2018-01-01

    A system includes a glove, sensors, actuator assemblies, and controller. The sensors include load sensors which measure an actual grasping force and attitude sensors which determine a glove attitude. The actuator assembly provides a grasp assist force to the glove. Respective locations of work cells in the work environment and permitted work tasks for each work cell are programmed into the controller. The controller detects the glove location and attitude. A work task is selected by the controller for the location. The controller calculates a required grasp assist force using measured actual grasping forces from the load sensors. The required grasp assist force is applied via the glove using the actuator assembly to thereby assist the operator in performing the identified work task.

  15. Automatic Grasp Generation and Improvement for Industrial Bin-Picking

    DEFF Research Database (Denmark)

    Kraft, Dirk; Ellekilde, Lars-Peter; Rytz, Jimmy Alison

    2014-01-01

    and achieve comparable results and that our learning approach can improve system performance significantly. Automatic bin-picking is an important industrial process that can lead to significant savings and potentially keep production in countries with high labour cost rather than outsourcing it. The presented......This paper presents work on automatic grasp generation and grasp learning for reducing the manual setup time and increase grasp success rates within bin-picking applications. We propose an approach that is able to generate good grasps automatically using a dynamic grasp simulator, a newly developed...

  16. Integration of tactile input across fingers in a patient with finger agnosia.

    Science.gov (United States)

    Anema, Helen A; Overvliet, Krista E; Smeets, Jeroen B J; Brenner, Eli; Dijkerman, H Chris

    2011-01-01

    Finger agnosia has been described as an inability to explicitly individuate between the fingers, which is possibly due to fused neural representations of these fingers. Hence, are patients with finger agnosia unable to keep tactile information perceived over several fingers separate? Here, we tested a finger agnosic patient (GO) on two tasks that measured the ability to keep tactile information simultaneously perceived by individual fingers separate. In experiment 1 GO performed a haptic search task, in which a target (the absence of a protruded line) needed to be identified among distracters (protruded lines). The lines were presented simultaneously to the fingertips of both hands. Similarly to the controls, her reaction time decreased when her fingers were aligned as compared to when her fingers were stretched and in an unaligned position. This suggests that she can keep tactile input from different fingers separate. In experiment two, GO was required to judge the position of a target tactile stimulus to the index finger, relatively to a reference tactile stimulus to the middle finger, both in fingers uncrossed and crossed position. GO was able to indicate the relative position of the target stimulus as well as healthy controls, which indicates that she was able to keep tactile information perceived by two neighbouring fingers separate. Interestingly, GO performed better as compared to the healthy controls in the finger crossed condition. Together, these results suggest the GO is able to implicitly distinguish between tactile information perceived by multiple fingers. We therefore conclude that finger agnosia is not caused by minor disruptions of low-level somatosensory processing. These findings further underpin the idea of a selective impaired higher order body representation restricted to the fingers as underlying cause of finger agnosia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Intravascular papillary endothelial hyperplasia: magnetic resonance imaging of finger lesions

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jinkyeong; Kim, Jee-Young [The Catholic University of Korea, Department of Radiology, St. Vincent' s Hospital, College of Medicine, Suwon, Gyeonggi-do (Korea, Republic of); Yoo, Changyoung [The Catholic University of Korea, Department of Hospital Pathology, St. Vincent' s Hospital, College of Medicine, Suwon, Gyeonggi-do (Korea, Republic of)

    2016-02-15

    To describe magnetic resonance imaging (MRI) features of intravascular papillary endothelial hyperplasia (IPEH), to identify findings differentiating IPEH of the finger from that of other locations, and to correlate these with pathology. Nineteen patients with 20 I.E. masses of the finger (n = 13) and other locations (n = 7) were evaluated. All patients underwent MRI, and the results were correlated with pathology. Seventeen IPEHs, including all IPEHs of the finger, were located in the subcutis, the three other lesions in the muscle layer. On T1WI, all masses were isointense or slightly hyperintense. IPEHs of the finger (n = 13) revealed focal hyperintense nodules (n = 2) or central hypointensity (n = 2) on T1WI, hypointensity with a hyperintense rim (n = 7), hyperintensity with hypointense nodules (n = 5), or isointensity with a hypointense rim (n = 1) on T2WI, and rim enhancement (n = 5), heterogeneous enhancement with nodular nonenhanced areas (n = 6), peripheral nodular enhancement (n = 1), or no enhancement (n = 1) on gadolinium-enhanced T1WI. IPEHs of other locations (n = 7) demonstrated focal hyperintense nodules (n = 5) on T1WI, hyperintensity with hypointense nodules (n = 5) or heterogeneous signal intensity (n = 2) on T2WI, and rim or rim and septal enhancement (n = 6) or peripheral nodular enhancement (n = 1). Microscopically, IPEHs were composed of thrombi that were hypointense on T2WI and papillary endothelial proliferations that showed T2 hyperintensity and enhancement. MRI of finger IPEH reveals well-demarcated subcutaneous masses with hypointensity or hypointense nodules with peripheral hyperintensity on T2WI, as well as peripheral enhancement. T1 hyperintense nodules, internal heterogeneity on T2WI, and septal enhancement are more common in IPEH of other locations. (orig.)

  18. Shifted Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65 results in formation of high mannose N-glycans in aggressive prostate cancer cells.

    Science.gov (United States)

    Bhat, Ganapati; Hothpet, Vishwanath-Reddy; Lin, Ming-Fong; Cheng, Pi-Wan

    2017-11-01

    There is a pressing need for biomarkers that can distinguish indolent from aggressive prostate cancer to prevent over-treatment of patients with indolent tumor. Golgi targeting of glycosyltransferases was characterized by confocal microscopy after knockdown of GM130, giantin, or both. N-glycans on a trans-Golgi enzyme β4galactosyltransferase-1 isolated by immunoprecipitation from androgen-sensitive and independent prostate cancer cells were determined by matrix-assisted laser desorption-time of flight-mass spectrometry. In situ proximity ligation assay was employed to determine co-localization of (a) α-mannosidase IA, an enzyme required for processing Man 8 GlcNAc 2 down to Man 5 GlcNAc 2 to enable synthesis of complex-type N-glycans, with giantin, GM130, and GRASP65, and (b) trans-Golgi glycosyltransferases with high mannose N-glycans terminated with α3-mannose. Defective giantin in androgen-independent prostate cancer cells results in a shift of Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65. Consequently, trans-Golgi enzymes and cell surface glycoproteins acquire high mannose N-glycans, which are absent in cells with functional giantin. In situ proximity ligation assays of co-localization of α-mannosidase IA with GM130 and GRASP65, and trans-Golgi glycosyltransferases with high mannose N-glycans are negative in androgen-sensitive LNCaP C-33 cells but positive in androgen-independent LNCaP C-81 and DU145 cells, and LNCaP C-33 cells devoid of giantin. In situ proximity ligation assays of Golgi localization of α-mannosidase IA at giantin versus GM130-GRASP65 site, and absence or presence of N-glycans terminated with α3-mannose on trans-Golgi glycosyltransferases may be useful for distinguishing indolent from aggressive prostate cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Relevant closure: a new form of defeasible reasoning for description logics

    CSIR Research Space (South Africa)

    Casini, G

    2014-09-01

    Full Text Available Relevant Closure and Minimal Relevant Closure. As the names suggest, both rely on defining a version of relevance. Our formalisation of relevance in this context is based on the notion of a justification (a minimal subset of sentences implying a given...

  20. Multifunctional Merkel cells: their roles in electromagnetic reception, finger-print formation, Reiki, epigenetic inheritance and hair form.

    Science.gov (United States)

    Irmak, M Kemal

    2010-08-01

    Merkel cells are located in glabrous and hairy skin and in some mucosa. They are characterized by dense-core secretory granules and cytoskeletal filaments. They are attached to neighboring keratinocytes by desmosomes and contain melanosomes similar to keratinocytes. They are excitable cells in close contact with sensory nerve endings but their function is still unclear. In this review, following roles are attributed for the first time to the Merkel cells: (1) melanosomes in Merkel cells may be involved in mammalian magnetoreception. In this model melanosome as a biological magnetite is connected by cytoskeletal filaments to mechanically gated ion channels embedded in the Merkel cell membrane. The movement of melanosome with the changing electromagnetic field may open ion channels directly producing a receptor potential that can be transmitted to brain via sensory neurons. (2) Merkel cells may be involved in finger-print formation: Merkel cells in glabrous skin are located at the base of the epidermal ridges the type of which defines the finger-print pattern. Finger-print formation starts at the 10th week of pregnancy after the arrival of Merkel cells. Keratinocyte proliferation and the buckling process observed in the basal layer of epidermis resulting in the epidermal ridges may be controlled and formed by Merkel cells. (3) Brain-Merkel cell connection is bi-directional and Merkel cells not only absorb but also radiate the electromagnetic frequencies. Hence, efferent aspects of the palmar and plantar Merkel nerve endings may form the basis of the biofield modalities such as Reiki, therapeutic touch and telekinesis. (4) Adaptive geographic variations such as skin color, craniofacial morphology and hair form result from interactions between environmental factors and epigenetic inheritance system. While environmental factors produce modifications in the body, they simultaneously induce epigenetic modifications in the oocytes and in this way adaptive changes could be

  1. Integration of tactile input across fingers in a patient with finger agnosia.

    NARCIS (Netherlands)

    Anema, H.A.; Overvliet, K.E.; Smeets, J.B.J.; Brenner, E.; Dijkerman, H.C.

    2011-01-01

    Finger agnosia has been described as an inability to explicitly individuate between the fingers, which is possibly due to fused neural representations of these fingers. Hence, are patients with finger agnosia unable to keep tactile information perceived over several fingers separate? Here, we tested

  2. Bone indicators of grasping hands in lizards

    Directory of Open Access Journals (Sweden)

    Gabriela Fontanarrosa

    2016-05-01

    Full Text Available Grasping is one of a few adaptive mechanisms that, in conjunction with clinging, hooking, arm swinging, adhering, and flying, allowed for incursion into the arboreal eco-space. Little research has been done that addresses grasping as an enhanced manual ability in non-mammalian tetrapods, with the exception of studies comparing the anatomy of muscle and tendon structure. Previous studies showed that grasping abilities allow exploitation for narrow branch habitats and that this adaptation has clear osteological consequences. The objective of this work is to ascertain the existence of morphometric descriptors in the hand skeleton of lizards related to grasping functionality. A morphological matrix was constructed using 51 morphometric variables in 278 specimens, from 24 genera and 13 families of Squamata. To reduce the dimensions of the dataset and to organize the original variables into a simpler system, three PCAs (Principal Component Analyses were performed using the subsets of (1 carpal variables, (2 metacarpal variables, and (3 phalanges variables. The variables that demonstrated the most significant contributions to the construction of the PCA synthetic variables were then used in subsequent analyses. To explore which morphological variables better explain the variations in the functional setting, we ran Generalized Linear Models for the three different sets. This method allows us to model the morphology that enables a particular functional trait. Grasping was considered the only response variable, taking the value of 0 or 1, while the original variables retained by the PCAs were considered predictor variables. Our analyses yielded six variables associated with grasping abilities: two belong to the carpal bones, two belong to the metacarpals and two belong to the phalanges. Grasping in lizards can be performed with hands exhibiting at least two different independently originated combinations of bones. The first is a combination of a highly

  3. Beta-decay half-lives at the N=28 shell closure

    Energy Technology Data Exchange (ETDEWEB)

    Grevy, S.; Angelique, J.C.; Baumann, P.; Borcea, C.; Buta, A.; Canchel, G.; Catford, W.N.; Courtin, S.; Daugas, J.M.; Oliveira, F. de; Dessagne, P.; Dlouhy, Z.; Knipper, A.; Kratz, K.L.; Lecolley, F.R.; Lecouey, J.L.; Lehrsenneau, G.; Lewitowicz, M.; Lienard, E.; Lukyanov, S.; Marechal, F.; Miehe, C.; Mrazek, J.; Negoita, F.; Orr, N.A.; Pantelica, D.; Penionzhkevich, Y.; Peter, J.; Pfeiffer, B.; Pietri, S.; Poirier, E.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Stodel, C.; Timis, C

    2004-08-05

    Measurements of the beta-decay half-lives of neutron-rich nuclei (Mg-Ar) in the vicinity of the N=28 shell closure are reported. Some 22 half-lives have been determined, 12 of which for the first time. Particular emphasis is placed on the results for the Si isotopes, the half-lives of which have been extended from N=25 to 28. Comparison with QRPA calculations suggests that {sup 42}Si is strongly deformed. This is discussed in the light of a possible weakening of the spin-orbit potential.

  4. IPMC microgripper research and development

    International Nuclear Information System (INIS)

    Lumia, R; Shahinpoor, M

    2008-01-01

    Described are the state of the art on designing and developing a microgripper using ionic polymer metal composites (IPMCs), an electroactive material, as an actuator to grasp and manipulate micro-sized flexible and rigid objects and yet also serve as a sensor for position feedback control. IPMCs, as a material, are compliant and can work in both wet and dry environments. This makes it ideally suited for both industrial operations, e.g., building microsystems from MEMS components, as well as for a variety of bio-micromanipulation tasks, e.g., bacterium and cell handling. We derive a theoretical force model for the microgripper. The model estimates that an IPMC finger of dimensions 5mm x lmm x 0.2mm exerts a force of 85 μN when grasping a solder ball of 15mg. We experimentally measure the load carrying capacity of the IPMC microgripper. Furthermore, we show empirically that the relationship between load carry capability and the length of microgripper fingers is linear. Experiments with three different microgripper finger shapes show that load carrying performance is related to the area of the finger rather than the shape. This implies that manufacturing ease favours microgrippers with tapered fingers. Finally, we show how flexible objects (hydrogel crystals in this case) are grasped with this IPMC microgripper.

  5. Viscous fingering of HCI through gastric mucin

    Science.gov (United States)

    Bhaskar, K. Ramakrishnan; Garik, Peter; Turner, Bradley S.; Bradley, James Douglas; Bansil, Rama; Stanley, H. Eugene; Lamont, J. Thomas

    1992-12-01

    THE HCI in the mammalian stomach is concentrated enough to digest the stomach itself, yet the gastric epithelium remains undamaged. One protective factor is gastric mucus, which forms a protective layer over the surface epithelium1-4 and acts as a diffusion barrier5,6 Bicarbonate ions secreted by the gastric epithelium7 are trapped in the mucus gel, establishing a gradient from pH 1-2 at the lumen to pH 6-7 at the cell surface8-10. How does HCI, secreted at the base of gastric glands by parietal cells, traverse the mucus layer without acidifying it? Here we demonstrate that injection of HCI through solutions of pig gastric mucin produces viscous fingering patterns11-18 dependent on pH, mucin concentration and acid flow rate. Above pH 4, discrete fingers are observed, whereas below pH 4, HCI neither penetrates the mucin solution nor forms fingers. Our in vitro results suggest that HCI secreted by the gastric gland can penetrate the mucus gel layer (pH 5-7) through narrow fingers, whereas HC1 in the lumen (pH 2) is prevented from diffusing back to the epithelium by the high viscosity of gastric mucus gel on the luminal side.

  6. User-Generated Free-Form Gestures for Authentication: Security and Memorability

    OpenAIRE

    Sherman, Michael; Clark, Gradeigh; Yang, Yulong; Sugrim, Shridatt; Modig, Arttu; Lindqvist, Janne; Oulasvirta, Antti; Roos, Teemu

    2014-01-01

    This paper studies the security and memorability of free-form multitouch gestures for mobile authentication. Towards this end, we collected a dataset with a generate-test-retest paradigm where participants (N=63) generated free-form gestures, repeated them, and were later retested for memory. Half of the participants decided to generate one-finger gestures, and the other half generated multi-finger gestures. Although there has been recent work on template-based gestures, there are yet no metr...

  7. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    Science.gov (United States)

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  8. A Mathematical and Numerically Integrable Modeling of 3D Object Grasping under Rolling Contacts between Smooth Surfaces

    Directory of Open Access Journals (Sweden)

    Suguru Arimoto

    2011-01-01

    Full Text Available A computable model of grasping and manipulation of a 3D rigid object with arbitrary smooth surfaces by multiple robot fingers with smooth fingertip surfaces is derived under rolling contact constraints between surfaces. Geometrical conditions of pure rolling contacts are described through the moving-frame coordinates at each rolling contact point under the postulates: (1 two surfaces share a common single contact point without any mutual penetration and a common tangent plane at the contact point and (2 each path length of running of the contact point on the robot fingertip surface and the object surface is equal. It is shown that a set of Euler-Lagrange equations of motion of the fingers-object system can be derived by introducing Lagrange multipliers corresponding to geometric conditions of contacts. A set of 1st-order differential equations governing rotational motions of each fingertip and the object and updating arc-length parameters should be accompanied with the Euler-Lagrange equations. Further more, nonholonomic constraints arising from twisting between the two normal axes to each tangent plane are rewritten into a set of Frenet-Serre equations with a geometrically given normal curvature and a motion-induced geodesic curvature.

  9. Management of complications relating to finger amputation and replantation.

    Science.gov (United States)

    Woo, Sang-Hyun; Kim, Young-Woo; Cheon, Ho-Jun; Nam, Hyun-Je; Kang, Dong-Ho; Kim, Jong-Min; Ahn, Hee-Chan

    2015-05-01

    There are many options in the management of fingertip or finger amputations. Injudicious revision amputation may cause complications. These complications can be prevented by tension-free closure of the amputation stump or primary coverage with appropriate flap. Replantation is the best way to keep the original length and maintain digital function. Patent vein repair or venous drainage with bleeding until neovascularization to the replanted part is the key to successful replantation. Prevention and management of complications in replantation and revision amputation increase patients' satisfaction and decrease costs. Research is needed to define new indications of replantation for digital amputation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Stainless steel quadralatch finger test report

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.

    1996-01-01

    The design of the quadralatch on the universal samplers was changed in response to flammable gas operating constraints. Additional redesign of the fingers was included to facilitate manufacturability. The new design was tested to assure satisfactory performance. It was shown that the fingers can hold a sampler in place with an upward force of at least 2200 N (500 pounds) and that the mechanical remote latch unit can release the quadralatch under this condition of maximum upward force

  11. Professional Closure Beyond State Authorization

    Directory of Open Access Journals (Sweden)

    Gitte Sommer Harrits

    2014-03-01

    Full Text Available For decades, the Weberian approach to the study of professions has been strong, emphasizing state authorization and market monopolies as constituting what is considered a profession. Originally, however, the Weberian conception of closure, or the ways in which a profession is constituted and made separate, was broader. This article suggests a revision of the closure concept, integrating insights from Pierre Bourdieu, and conceptualizing professional closure as the intersection of social, symbolic and legal closure. Based on this revision, this article demonstrates how to apply such a concept in empirical studies. This is done by exploring social, symbolic and legal closure across sixteen professional degree programs. The analyses show a tendency for some overlap between different forms of closure, with a somewhat divergent pattern for legal closure. Results support the argument that we need to study these processes as an intersection of different sources of closure, including capital, lifestyles and discourse

  12. Fast Grasp Contact Computation for a Serial Robot

    Science.gov (United States)

    Shi, Jianying (Inventor); Hargrave, Brian (Inventor); Diftler, Myron A. (Inventor)

    2015-01-01

    A system includes a controller and a serial robot having links that are interconnected by a joint, wherein the robot can grasp a three-dimensional (3D) object in response to a commanded grasp pose. The controller receives input information, including the commanded grasp pose, a first set of information describing the kinematics of the robot, and a second set of information describing the position of the object to be grasped. The controller also calculates, in a two-dimensional (2D) plane, a set of contact points between the serial robot and a surface of the 3D object needed for the serial robot to achieve the commanded grasp pose. A required joint angle is then calculated in the 2D plane between the pair of links using the set of contact points. A control action is then executed with respect to the motion of the serial robot using the required joint angle.

  13. On transferability and contexts when using simulated grasp databases

    DEFF Research Database (Denmark)

    Jørgensen, Jimmy Alison; Ellekilde, Lars-Peter; Kraft, Dirk

    2015-01-01

    It has become a common practice to use simulation to generate large databases of good grasps for grasp planning in robotics research. However, the existence of a generic simulation context that enables the generation of high quality grasps that can be used in several different contexts such as bi...

  14. Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors.

    Science.gov (United States)

    Hong, Hyung Gil; Lee, Min Beom; Park, Kang Ryoung

    2017-06-06

    Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods.

  15. Visual Field Preferences of Object Analysis for Grasping with One Hand

    Directory of Open Access Journals (Sweden)

    Ada eLe

    2014-10-01

    Full Text Available When we grasp an object using one hand, the opposite hemisphere predominantly guides the motor control of grasp movements (Davare et al. 2007; Rice et al. 2007. However, it is unclear whether visual object analysis for grasp control relies more on inputs (a from the contralateral than the ipsilateral visual field, (b from one dominant visual field regardless of the grasping hand, or (c from both visual fields equally. For bimanual grasping of a single object we have recently demonstrated a visual field preference for the left visual field (Le and Niemeier 2013a, 2013b, consistent with a general right-hemisphere dominance for sensorimotor control of bimanual grasps (Le et al., 2013. But visual field differences have never been tested for unimanual grasping. Therefore, here we asked right-handed participants to fixate to the left or right of an object and then grasp the object either with their right or left hand using a precision grip. We found that participants grasping with their right hand performed better with objects in the right visual field: maximum grip apertures (MGAs were more closely matched to the object width and were smaller than for objects in the left visual field. In contrast, when people grasped with their left hand, preferences switched to the left visual field. What is more, MGA scaling showed greater visual field differences compared to right-hand grasping. Our data suggest that, visual object analysis for unimanual grasping shows a preference for visual information from the ipsilateral visual field, and that the left hemisphere is better equipped to control grasps in both visual fields.

  16. Proposta e avaliação de heurísticas grasp para o problema da diversidade máxima

    Directory of Open Access Journals (Sweden)

    Geiza Cristina da Silva

    2006-08-01

    Full Text Available O Problema da Diversidade Máxima (PDM consiste em, dado um conjunto N composto de n elementos, selecionar um subconjunto M Ì N de forma tal que os elementos de M possuam a maior diversidade possível entre eles. O PDM pertence à classe de problemas NP-Difícil limitando, com isso, o uso exclusivo de métodos exatos e tornando atrativo o desenvolvimento de novos métodos heurísticos na solução aproximada deste problema. Neste trabalho são propostos métodos heurísticos de construção e busca local que, combinados, são usados como base em diferentes versões do algoritmo GRASP (Greedy Randomized Adaptive Search Procedure. Incluímos como objetivos analisar o impacto destas heurísticas no desempenho da metaheurística GRASP. Resultados computacionais mostram que os algoritmos propostos sempre alcançam uma solução ótima quando esta é conhecida e, para instâncias maiores, apresentam um desempenho médio superior quando comparados com as melhores heurísticas GRASP da literatura.The Maximum Diversity Problem (MDP consists of, given a set N with n elements, selecting a subset M Ì N such that the elements of M have the most possible diversity among them. The MDP belongs to the class of NP-Hard problems limiting the exclusive use of exact methods and turning attractive the development of heuristics to solve the problem. In this work we propose constructive and local search heuristics which are used in different versions of GRASP (Greedy Randomized Adaptive Search Procedure. We also analyze the impact of this heuristics in the GRASP performance. Computational results show that the proposed algorithms always find an optimal solution when this one is known and, for larger instances, produce an average performance better than well known versions of GRASP from the literature.

  17. Finger Search in the Implicit Model

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Nielsen, Jesper Asbjørn Sindahl; Truelsen, Jakob

    2012-01-01

    , and delete in times $\\mathcal{O}(q(t))$, $\\mathcal{O}(q^{-1}(\\log n)\\log n)$, $\\mathcal{O}(\\log n)$, and $\\mathcal{O}(\\log n)$, respectively, for any q(t) = Ω(logt). Finally we show that the search operation must take Ω(logn) time for the special case where the finger is always changed to the element...

  18. Assessing Grasp Stability Based on Learning and Haptic Data

    DEFF Research Database (Denmark)

    Bekiroglu, Yasemin; Laaksonen, Janne; Jørgensen, Jimmy Alison

    2011-01-01

    a probabilistic learning framework to assess grasp stability and demonstrate that knowledge about grasp stability can be inferred using information from tactile sensors. Experiments on both simulated and real data are shown. The results indicate that the idea to exploit the learning approach is applicable...... data and machine-learning methods, including AdaBoost, support vector machines (SVMs), and hidden Markov models (HMMs). In particular, we study the effect of different sensory streams to grasp stability. This includes object information such as shape; grasp information such as approach vector; tactile...

  19. General Rotorcraft Aeromechanical Stability Program (GRASP): Theory manual

    Science.gov (United States)

    Hodges, Dewey H.; Hopkins, A. Stewart; Kunz, Donald L.; Hinnant, Howard E.

    1990-01-01

    The general rotorcraft aeromechanical stability program (GRASP) was developed to calculate aeroelastic stability for rotorcraft in hovering flight, vertical flight, and ground contact conditions. GRASP is described in terms of its capabilities and its philosophy of modeling. The equations of motion that govern the physical system are described, as well as the analytical approximations used to derive them. The equations include the kinematical equation, the element equations, and the constraint equations. In addition, the solution procedures used by GRASP are described. GRASP is capable of treating the nonlinear static and linearized dynamic behavior of structures represented by arbitrary collections of rigid-body and beam elements. These elements may be connected in an arbitrary fashion, and are permitted to have large relative motions. The main limitation of this analysis is that periodic coefficient effects are not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground contact. Instead of following the methods employed in other rotorcraft programs. GRASP is designed to be a hybrid of the finite-element method and the multibody methods used in spacecraft analysis. GRASP differs from traditional finite-element programs by allowing multiple levels of substructure in which the substructures can move and/or rotate relative to others with no small-angle approximations. This capability facilitates the modeling of rotorcraft structures, including the rotating/nonrotating interface and the details of the blade/root kinematics for various types. GRASP differs from traditional multibody programs by considering aeroelastic effects, including inflow dynamics (simple unsteady aerodynamics) and nonlinear aerodynamic coefficients.

  20. Admittance Control of a Multi-Finger Arm Based on Manipulability of Fingers

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2011-09-01

    Full Text Available In the previous studies, admittance control and impedance control for a finger-arm robot using the manipulability of the finger were studied and methods of realizing the controls have been proposed. In this study, two 3-DOF fingers are attached to the end-effector of a 6-DOF arm to configure a multi-finger arm robot. Based on the previous methods, the authors have proposed an admittance control for a multi-finger arm robot using the manipulability of the fingers in this study. Algorithms of the averaging method and the mini-max method were introduced to establish a manipulability criterion of the two fingers in order to generate a cooperative movement of the arm. Comparison of the admittance controls combined with the top search method and local optimization method for the multi-finger arm robot was made and features of the control methods were also discussed. The stiffness control and damping control were experimentally evaluated to demonstrate the effectiveness of the proposed methods.

  1. TMS over the supramarginal gyrus delays selection of appropriate grasp orientation during reaching and grasping tools for use.

    Science.gov (United States)

    McDowell, Tomás; Holmes, Nicholas P; Sunderland, Alan; Schürmann, Martin

    2018-03-09

    Tool use, a ubiquitous part of human behaviour, requires manipulation control and knowledge of tool purpose. Neuroimaging and neuropsychological research posit that these two processes are supported by separate brain regions, ventral premotor and inferior parietal for manipulation control, and posterior middle temporal cortex for tool knowledge, lateralised to the left hemisphere. Action plans for tool use need to integrate these two separate processes, which is likely supported by the left supramarginal gyrus (SMG). However, whether this integration occurs during action execution is not known. To clarify the role of the SMG we conducted two experiments in which healthy participants reached to grasp everyday tools with the explicit instruction to use them directly following their grasp. To study the integration of manipulation control and tool knowledge within a narrow time window we mechanically perturbed the orientation of the tool to force participants to correct grasp orientation 'on-line' during the reaching movement. In experiment 1, twenty healthy participants reached with their left hand to grasp a tool. Double-pulse transcranial magnetic stimulation (TMS) was applied, in different blocks over left or right SMG at the onset of perturbation. Kinematic data revealed delayed and erroneous online correction after TMS over left and right SMG. In Experiment 2 twelve participants reached, in different blocks, with their left or right hand and TMS was applied over SMG ipsilateral to the reaching hand. A similar effect on correction was observed for ipsilateral stimulation when reaching with the left and right hands, and no effect of or interaction with hemisphere was observed. Our findings implicate a bilateral role of the SMG in correcting movements and selection of appropriate grasp orientation during reaching to grasp tools for use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Touching lips and hearing fingers: effector-specific congruency between tactile and auditory stimulation modulates N1 amplitude and alpha desynchronization.

    Science.gov (United States)

    Shen, Guannan; Meltzoff, Andrew N; Marshall, Peter J

    2018-01-01

    Understanding the interactions between audition and sensorimotor processes is of theoretical importance, particularly in relation to speech processing. Although one current focus in this area is on interactions between auditory perception and the motor system, there has been less research on connections between the auditory and somatosensory modalities. The current study takes a novel approach to this omission by examining specific auditory-tactile interactions in the context of speech and non-speech sound production. Electroencephalography was used to examine brain responses when participants were presented with speech syllables (a bilabial sound /pa/ and a non-labial sound /ka/) or finger-snapping sounds that were simultaneously paired with tactile stimulation of either the lower lip or the right middle finger. Analyses focused on the sensory-evoked N1 in the event-related potential and the extent of alpha band desynchronization elicited by the stimuli. N1 amplitude over fronto-central sites was significantly enhanced when the bilabial /pa/ sound was paired with tactile lip stimulation and when the finger-snapping sound was paired with tactile stimulation of the finger. Post-stimulus alpha desynchronization at central sites was also enhanced when the /pa/ sound was accompanied by tactile stimulation of the lip. These novel findings indicate that neural aspects of somatosensory-auditory interactions are influenced by the congruency between the location of the bodily touch and the bodily origin of a perceived sound.

  3. Grasping trajectories in a virtual environment adhere to Weber's law.

    Science.gov (United States)

    Ozana, Aviad; Berman, Sigal; Ganel, Tzvi

    2018-06-01

    Virtual-reality and telerobotic devices simulate local motor control of virtual objects within computerized environments. Here, we explored grasping kinematics within a virtual environment and tested whether, as in normal 3D grasping, trajectories in the virtual environment are performed analytically, violating Weber's law with respect to object's size. Participants were asked to grasp a series of 2D objects using a haptic system, which projected their movements to a virtual space presented on a computer screen. The apparatus also provided object-specific haptic information upon "touching" the edges of the virtual targets. The results showed that grasping movements performed within the virtual environment did not produce the typical analytical trajectory pattern obtained during 3D grasping. Unlike as in 3D grasping, grasping trajectories in the virtual environment adhered to Weber's law, which indicates relative resolution in size processing. In addition, the trajectory patterns differed from typical trajectories obtained during 3D grasping, with longer times to complete the movement, and with maximum grip apertures appearing relatively early in the movement. The results suggest that grasping movements within a virtual environment could differ from those performed in real space, and are subjected to irrelevant effects of perceptual information. Such atypical pattern of visuomotor control may be mediated by the lack of complete transparency between the interface and the virtual environment in terms of the provided visual and haptic feedback. Possible implications of the findings to movement control within robotic and virtual environments are further discussed.

  4. NUMERICALLY DETERMINED TRANSPORT LAWS FOR FINGERING ('THERMOHALINE') CONVECTION IN ASTROPHYSICS

    International Nuclear Information System (INIS)

    Traxler, A.; Garaud, P.; Stellmach, S.

    2011-01-01

    We present the first three-dimensional simulations of fingering convection performed at parameter values approaching those relevant for astrophysics. Our simulations reveal the existence of simple asymptotic scaling laws for turbulent heat and compositional transport, which can be straightforwardly extrapolated from our numerically tractable values to the true astrophysical regime. Our investigation also indicates that thermo-compositional 'staircases', a key consequence of fingering convection in the ocean, cannot form spontaneously in the fingering regime in stellar interiors. Our proposed empirically determined transport laws thus provide simple prescriptions for mixing by fingering convection in a variety of astrophysical situations, and should, from here on, be used preferentially over older and less accurate parameterizations. They also establish that fingering convection does not provide sufficient extra-mixing to explain observed chemical abundances in red giant branch stars.

  5. Randomized clinical trial of intestinal ostomy takedown comparing pursestring wound closure vs conventional closure to eliminate the risk of wound infection.

    Science.gov (United States)

    Camacho-Mauries, Daniel; Rodriguez-Díaz, José Luis; Salgado-Nesme, Noel; González, Quintín H; Vergara-Fernández, Omar

    2013-02-01

    The use of temporary stomas has been demonstrated to reduce septic complications, especially in high-risk anastomosis; therefore, it is necessary to reduce the number of complications secondary to ostomy takedowns, namely wound infection, anastomotic leaks, and intestinal obstruction. To compare the rates of superficial wound infection and patient satisfaction after pursestring closure of ostomy wound vs conventional linear closure. Patients undergoing colostomy or ileostomy closure between January 2010 and February 2011 were randomly assigned to linear closure (n = 30) or pursestring closure (n = 31) of their ostomy wound. Wound infection within 30 days of surgery was defined as the presence of purulent discharge, pain, erythema, warmth, or positive culture for bacteria. Patient satisfaction, healing time, difficulty managing the wound, and limitation of activities were analyzed with the Likert questionnaire. The infection rate for the control group was 36.6% (n = 11) vs 0% in the pursestring closure group (p ostomy wound closure (shorter healing time and improved patient satisfaction).

  6. Index finger somatosensory evoked potentials in blind Braille readers.

    Science.gov (United States)

    Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev

    2009-01-01

    Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.

  7. Learning Objects and Grasp Affordances through Autonomous Exploration

    DEFF Research Database (Denmark)

    Kraft, Dirk; Detry, Renaud; Pugeault, Nicolas

    2009-01-01

    We describe a system for autonomous learning of visual object representations and their grasp affordances on a robot-vision system. It segments objects by grasping and moving 3D scene features, and creates probabilistic visual representations for object detection, recognition and pose estimation...... image sequences as well as (3) a number of built-in behavioral modules on the one hand, and autonomous exploration on the other hand, the system is able to generate object and grasping knowledge through interaction with its environment....

  8. Robotic finger perturbation training improves finger postural steadiness and hand dexterity.

    Science.gov (United States)

    Yoshitake, Yasuhide; Ikeda, Atsutoshi; Shinohara, Minoru

    2018-02-01

    The purpose of the study was to understand the effect of robotic finger perturbation training on steadiness in finger posture and hand dexterity in healthy young adults. A mobile robotic finger training system was designed to have the functions of high-speed mechanical response, two degrees of freedom, and adjustable loading amplitude and direction. Healthy young adults were assigned to one of the three groups: random perturbation training (RPT), constant force training (CFT), and control. Subjects in RPT and CFT performed steady posture training with their index finger using the robot in different modes: random force in RPT and constant force in CFT. After the 2-week intervention period, fluctuations of the index finger posture decreased only in RPT during steady position-matching tasks with an inertial load. Purdue pegboard test score improved also in RPT only. The relative change in finger postural fluctuations was negatively correlated with the relative change in the number of completed pegs in the pegboard test in RPT. The results indicate that finger posture training with random mechanical perturbations of varying amplitudes and directions of force is effective in improving finger postural steadiness and hand dexterity in healthy young adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Robotic hand and fingers

    Science.gov (United States)

    Salisbury, Curt Michael; Dullea, Kevin J.

    2017-06-06

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  10. Effect of pencil grasp on the speed and legibility of handwriting in children.

    Science.gov (United States)

    Schwellnus, Heidi; Carnahan, Heather; Kushki, Azadeh; Polatajko, Helene; Missiuna, Cheryl; Chau, Tom

    2012-01-01

    Pencil grasps other than the dynamic tripod may be functional for handwriting. This study examined the impact of grasp on handwriting speed and legibility. We videotaped 120 typically developing fourth-grade students while they performed a writing task. We categorized the grasps they used and evaluated their writing for speed and legibility using a handwriting assessment. Using linear regression analysis, we examined the relationship between grasp and handwriting. We documented six categories of pencil grasp: four mature grasp patterns, one immature grasp pattern, and one alternating grasp pattern. Multiple linear regression results revealed no significant effect for mature grasp on either legibility or speed. Pencil grasp patterns did not influence handwriting speed or legibility in this sample of typically developing children. This finding adds to the mounting body of evidence that alternative grasps may be acceptable for fast and legible handwriting. Copyright © 2012 by the American Occupational Therapy Association, Inc.

  11. The role of fingers in number processing in young children.

    Science.gov (United States)

    Lafay, Anne; Thevenot, Catherine; Castel, Caroline; Fayol, Michel

    2013-01-01

    The aim of the present study was to investigate the relationship between finger counting and numerical processing in 4-7-year-old children. Children were assessed on a variety of numerical tasks and we examined the correlations between their rates of success and their frequency of finger use in a counting task. We showed that children's performance on finger pattern comparison and identification tasks did not correlate with the frequency of finger use. However, this last variable correlated with the percentages of correct responses in an enumeration task (i.e., Give-N task), even when the age of children was entered as a covariate in the analysis. Despite this correlation, we showed that some children who never used their fingers in the counting task were able to perform optimally in the enumeration task. Overall, our results support the conclusion that finger counting is useful but not necessary to develop accurate symbolic numerical skills. Moreover, our results suggest that the use of fingers in a counting task is related to the ability of children in a dynamic enumeration task but not to static tasks involving recognition or comparison of finger patterns. Therefore, it could be that the link between fingers and numbers remain circumscribed to counting tasks and do not extent to static finger montring situations.

  12. Probing the reaching-grasping network in humans through multivoxel pattern decoding.

    Science.gov (United States)

    Di Bono, Maria Grazia; Begliomini, Chiara; Castiello, Umberto; Zorzi, Marco

    2015-11-01

    The quest for a putative human homolog of the reaching-grasping network identified in monkeys has been the focus of many neuropsychological and neuroimaging studies in recent years. These studies have shown that the network underlying reaching-only and reach-to-grasp movements includes the superior parieto-occipital cortex (SPOC), the anterior part of the human intraparietal sulcus (hAIP), the ventral and the dorsal portion of the premotor cortex, and the primary motor cortex (M1). Recent evidence for a wider frontoparietal network coding for different aspects of reaching-only and reach-to-grasp actions calls for a more fine-grained assessment of the reaching-grasping network in humans by exploiting pattern decoding methods (multivoxel pattern analysis--MVPA). Here, we used MPVA on functional magnetic resonance imaging (fMRI) data to assess whether regions of the frontoparietal network discriminate between reaching-only and reach-to-grasp actions, natural and constrained grasping, different grasp types, and object sizes. Participants were required to perform either reaching-only movements or two reach-to-grasp types (precision or whole hand grasp) upon spherical objects of different sizes. Multivoxel pattern analysis highlighted that, independently from the object size, all the selected regions of both hemispheres contribute in coding for grasp type, with the exception of SPOC and the right hAIP. Consistent with recent neurophysiological findings on monkeys, there was no evidence for a clear-cut distinction between a dorsomedial and a dorsolateral pathway that would be specialized for reaching-only and reach-to-grasp actions, respectively. Nevertheless, the comparison of decoding accuracy across brain areas highlighted their different contributions to reaching-only and grasping actions. Altogether, our findings enrich the current knowledge regarding the functional role of key brain areas involved in the cortical control of reaching-only and reach-to-grasp actions

  13. A multi-pad electrode based functional electrical stimulation system for restoration of grasp

    Directory of Open Access Journals (Sweden)

    Malešević Nebojša M

    2012-09-01

    Full Text Available Abstract Background Functional electrical stimulation (FES applied via transcutaneous electrodes is a common rehabilitation technique for assisting grasp in patients with central nervous system lesions. To improve the stimulation effectiveness of conventional FES, we introduce multi-pad electrodes and a new stimulation paradigm. Methods The new FES system comprises an electrode composed of small pads that can be activated individually. This electrode allows the targeting of motoneurons that activate synergistic muscles and produce a functional movement. The new stimulation paradigm allows asynchronous activation of motoneurons and provides controlled spatial distribution of the electrical charge that is delivered to the motoneurons. We developed an automated technique for the determination of the preferred electrode based on a cost function that considers the required movement of the fingers and the stabilization of the wrist joint. The data used within the cost function come from a sensorized garment that is easy to implement and does not require calibration. The design of the system also includes the possibility for fine-tuning and adaptation with a manually controllable interface. Results The device was tested on three stroke patients. The results show that the multi-pad electrodes provide the desired level of selectivity and can be used for generating a functional grasp. The results also show that the procedure, when performed on a specific user, results in the preferred electrode configuration characteristics for that patient. The findings from this study are of importance for the application of transcutaneous stimulation in the clinical and home environments.

  14. Getting the right grasp on executive function

    Directory of Open Access Journals (Sweden)

    Claudia L R Gonzalez

    2014-04-01

    Full Text Available Executive Function (EF refers to important socio-emotional and cognitive skills that are known to be highly correlated with both academic and life success. EF is a blanket term that is considered to include self-regulation, working memory, and planning. Recent studies have shown a relationship between EF and motor control. The emergence of motor control coincides with that of EF, hence understanding the relationship between these two domains could have significant implications for early detection and remediation of later EF deficits. The purpose of the current study was to investigate this relationship in young children. This study incorporated the Behavioural Rating Inventory of Executive Function (BRIEF and two motor assessments with a focus on precision grasping to test this hypothesis. The BRIEF is comprised of two indices of EF: 1 the Behavioral Regulation Index (BRI containing three subscales: Inhibit, Shift, and Emotional Control; 2 the Metacognition Index (MI containing five subscales: Initiate, Working Memory, Plan/Organize, Organization of Materials, and Monitor. A global executive composite (GEC is derived from the two indices. In this study, right-handed children aged 5-6 and 9-10 were asked to: grasp-to-construct (Lego® models; and grasp-to-place (wooden blocks, while their parents completed the BRIEF questionnaire. Analysis of results indicated significant correlations between the strength of right hand preference for grasping and numerous elements of the BRIEF including the BRI, MI, and GEC. Specifically, the more the right hand was used for grasping the better the EF ratings. In addition, patterns of space-use correlated with the GEC in several subscales of the BRIEF. Finally and remarkably, the results also showed a reciprocal relationship between hand and space use for grasping and EF. These findings are discussed with respect to: 1 the developmental overlap of motor and executive functions; 2 detection of EF deficits through

  15. Attention and reach-to-grasp movements in Parkinson's disease.

    Science.gov (United States)

    Lu, Cathy; Bharmal, Aamir; Kiss, Zelma H; Suchowersky, Oksana; Haffenden, Angela M

    2010-08-01

    The role of attention in grasping movements directed at common objects has not been examined in Parkinson's disease (PD), though these movements are critical to activities of daily living. Our primary objective was to determine whether patients with PD demonstrate automaticity in grasping movements directed toward common objects. Automaticity is assumed when tasks can be performed with little or no interference from concurrent tasks. Grasping performance in three patient groups (newly diagnosed, moderate, and advanced/surgically treated PD) on and off of their medication or deep brain stimulation was compared to performance in an age-matched control group. Automaticity was demonstrated by the absence of a decrement in grasping performance when attention was consumed by a concurrent spatial-visualization task. Only the control group and newly diagnosed PD group demonstrated automaticity in their grasping movements. The moderate and advanced PD groups did not demonstrate automaticity. Furthermore, the well-known effects of pharmacotherapy and surgical intervention on movement speed and muscle activation patterns did not appear to reduce the impact of attention-demanding tasks on grasping movements in those with moderate to advanced PD. By the moderate stage of PD, grasping is an attention-demanding process; this change is not ameliorated by dopaminergic or surgical treatments. These findings have important implications for activities of daily living, as devoting attention to the simplest of daily tasks would interfere with complex activities and potentially exacerbate fatigue.

  16. Modeling and Simulation of Grasping of Deformable Objects

    DEFF Research Database (Denmark)

    Fugl, Andreas Rune

    Automated robot solutions have for decades been increasing productivity around the world. They are attractive for being fast, accurate and able to work in dangerous and repetitive environments. In traditional applications the grasped object is kinematically attached to the Tool Center Point....... The purpose of this thesis is to address the modeling and simulation of deformable objects, as applied to robotic grasping and manipulation. The main contributions of this work are: An evaluation of 3D linear elasticity used for robot grasping as implemented by a Finite Difference Method supporting regular...

  17. Grasping devices and methods in automated production processes

    DEFF Research Database (Denmark)

    Fantoni, Gualtiero; Santochi, Marco; Dini, Gino

    2014-01-01

    assembly to disassembly, from aerospace to food industry, from textile to logistics) are discussed. Finally, the most recent research is reviewed in order to introduce the new trends in grasping. They provide an outlook on the future of both grippers and robotic hands in automated production processes. (C......In automated production processes grasping devices and methods play a crucial role in the handling of many parts, components and products. This keynote paper starts with a classification of grasping phases, describes how different principles are adopted at different scales in different applications...

  18. Differing Dynamics of Intrapersonal and Interpersonal Coordination: Two-finger and Four-Finger Tapping Experiments.

    Directory of Open Access Journals (Sweden)

    Kentaro Kodama

    Full Text Available Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken-Kelso-Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1, the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2, pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure.

  19. A compliant underactuated hand with suction flow for underwater mobile manipulation

    KAUST Repository

    Stuart, Hannah S.

    2014-05-01

    © 2014 IEEE. Fingertip suction is investigated using a compliant, underactuated, tendon-driven hand designed for underwater mobile manipulation. Tendon routing and joint stiffnesses are designed to provide ease of closure while maintaining finger rigidity, allowing the hand to pinch small objects, as well as secure large objects, without diminishing strength. While the hand is designed to grasp a range of objects, the addition of light suction flow to the fingertips is especially effective for small, low-friction (slippery) objects. Numerical simulations confirm that changing suction parameters can increase the object acquisition region, providing guidelines for future versions of the hand.

  20. A compliant underactuated hand with suction flow for underwater mobile manipulation

    KAUST Repository

    Stuart, Hannah S.; Wang, Shiquan; Gardineer, Bayard; Christensen, David L.; Aukes, Daniel M.; Cutkosky, Mark

    2014-01-01

    © 2014 IEEE. Fingertip suction is investigated using a compliant, underactuated, tendon-driven hand designed for underwater mobile manipulation. Tendon routing and joint stiffnesses are designed to provide ease of closure while maintaining finger rigidity, allowing the hand to pinch small objects, as well as secure large objects, without diminishing strength. While the hand is designed to grasp a range of objects, the addition of light suction flow to the fingertips is especially effective for small, low-friction (slippery) objects. Numerical simulations confirm that changing suction parameters can increase the object acquisition region, providing guidelines for future versions of the hand.

  1. 49 CFR 391.41 - Physical qualifications for drivers.

    Science.gov (United States)

    2010-10-01

    ... impairment of: (i) A hand or finger which interferes with prehension or power grasping; or (ii) An arm, foot... amphetamine, a narcotic, or any other habit-forming drug. (ii) Exception. A driver may use such a substance or...

  2. Grasp frequency and usage in daily household and machine shop tasks.

    Science.gov (United States)

    Bullock, Ian M; Zheng, Joshua Z; De La Rosa, Sara; Guertler, Charlotte; Dollar, Aaron M

    2013-01-01

    In this paper, we present results from a study of prehensile human hand use during the daily work activities of four subjects: two housekeepers and two machinists. Subjects wore a head-mounted camera that recorded their hand usage during their daily work activities in their typical place of work. For each subject, 7.45 hours of video was analyzed, recording the type of grasp being used and its duration. From this data, we extracted overall grasp frequency, duration distributions for each grasp, and common transitions between grasps. The results show that for 80 percent of the study duration the housekeepers used just five grasps and the machinists used 10. The grasping patterns for the different subjects were compared, and the overall top 10 grasps are discussed in detail. The results of this study not only lend insight into how people use their hands during daily tasks, but can also inform the design of effective robotic and prosthetic hands.

  3. Decoding natural reach-and-grasp actions from human EEG

    Science.gov (United States)

    Schwarz, Andreas; Ofner, Patrick; Pereira, Joana; Ioana Sburlea, Andreea; Müller-Putz, Gernot R.

    2018-02-01

    Objective. Despite the high number of degrees of freedom of the human hand, most actions of daily life can be executed incorporating only palmar, pincer and lateral grasp. In this study we attempt to discriminate these three different executed reach-and-grasp actions utilizing their EEG neural correlates. Approach. In a cue-guided experiment, 15 healthy individuals were asked to perform these actions using daily life objects. We recorded 72 trials for each reach-and-grasp condition and from a no-movement condition. Main results. Using low-frequency time domain features from 0.3 to 3 Hz, we achieved binary classification accuracies of 72.4%, STD  ±  5.8% between grasp types, for grasps versus no-movement condition peak performances of 93.5%, STD  ±  4.6% could be reached. In an offline multiclass classification scenario which incorporated not only all reach-and-grasp actions but also the no-movement condition, the highest performance could be reached using a window of 1000 ms for feature extraction. Classification performance peaked at 65.9%, STD  ±  8.1%. Underlying neural correlates of the reach-and-grasp actions, investigated over the primary motor cortex, showed significant differences starting from approximately 800 ms to 1200 ms after the movement onset which is also the same time frame where classification performance reached its maximum. Significance. We could show that it is possible to discriminate three executed reach-and-grasp actions prominent in people’s everyday use from non-invasive EEG. Underlying neural correlates showed significant differences between all tested conditions. These findings will eventually contribute to our attempt of controlling a neuroprosthesis in a natural and intuitive way, which could ultimately benefit motor impaired end users in their daily life actions.

  4. From viscous fingers to wormholes - interactions between structures emerging in unstable growth

    Science.gov (United States)

    Budek, Agnieszka; Kwiatkowski, Kamil; Szymczak, Piotr

    2017-04-01

    Dissolution of porous and fractured rock can lead to instabilities, where long finger-like channels or „wormholes" are spontaneously formed, focusing the majority of the flow. Formation of those structures leads to a significant increase in permeability of the system, and is thus important in many engineering applications, e.g. in acidization during oil and gas recovery stimulation. In this communication, we analyse this process using two different numerical models (a network model and a Darcy scale one). We show that wormhole patterns depend strongly on the amount of soluble material in the system, as quantified by the permeability contrast κ between the dissolved and undissolved medium. For small and intermediate values of κ, a large number of relatively thin and strongly interacting channels are formed. The longer channels attract shorter ones, with loops being formed as a result. However, for large values of κ the pattern gets sparse with individual wormholes repelling each other. Interestingly, a similar succession of patterns can be observed in viscous fingering in a rectangular network of channels. In such a system, anisotropy of the network promotes the growth of long and thin fingers which behave similarly to wormholes. The attraction rate between growing fingers depends strongly on the viscosity ratio, I. The latter plays a role similar to that of permeability ratio for dissolution of porous material. To explain this behaviour, we have created a simple analytical model of interacting fingers, allowing us to quantify their mutual interaction as a function of finger lengths, distances between them and - most importantly - relative permeabilities. The theoretical predictions are in a good agreement with simulation data for both dissolution and viscous fingering processes.

  5. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    Science.gov (United States)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  6. Haptically guided grasping. FMRI shows right-hemisphere parietal stimulus encoding, and bilateral dorso-ventral parietal gradients of object- and action-related processing during grasp execution

    Directory of Open Access Journals (Sweden)

    Mattia eMarangon

    2016-01-01

    Full Text Available The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks. None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  7. The role of fingers in number processing in young children

    Directory of Open Access Journals (Sweden)

    Anne eLafay

    2013-07-01

    Full Text Available The aim of the present study was to investigate the relationship between finger counting and numerical processing in 4- to 7-year-old children. Children were assessed on a variety of numerical tasks and we examined the correlations between their rates of success and their frequency of finger use in a counting task. We showed that children’s performance on finger pattern comparison and identification tasks did not correlate with the frequency of finger use. However, this last variable correlated with the percentages of correct responses in an enumeration task (i.e., Give-N task, even when the age of children was entered as a covariate in the analysis. Despite this correlation, we showed that some children who never used their fingers in the counting task were able to perform optimally in the enumeration task. Overall, our results support the conclusion that finger counting is useful but not necessary to develop accurate symbolic numerical skills. Moreover, our results suggest that the use of fingers in a counting task is related to the ability of children in a dynamic enumeration task but not to static tasks involving recognition or comparison of finger patterns. Therefore, it could be that the link between fingers and numbers remain circumscribed to counting tasks and do not extent to static finger montring situations.

  8. Numerical approximation of the Boltzmann equation : moment closure

    NARCIS (Netherlands)

    Abdel Malik, M.R.A.; Brummelen, van E.H.

    2012-01-01

    This work applies the moment method onto a generic form of kinetic equations to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system

  9. Multi-fingered robotic hand

    Science.gov (United States)

    Ruoff, Carl F. (Inventor); Salisbury, Kenneth, Jr. (Inventor)

    1990-01-01

    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface.

  10. Passive Aerial Grasping of Ferrous Objects

    KAUST Repository

    Fiaz, Usman Amin

    2017-10-19

    Aerial transportation is probably the most efficient way to supply quick and effective aid especially in cases of emergency like search and rescue operations. Thus the ability to grasp and deliver objects is of vital importance in all sorts of unmanned and autonomous aerial operations. We detail a simple yet novel approach for aerial grasping of ferrous objects using a passive magnetic pickup and an impulse based drop mechanism. The design enables our gripper to grasp ferrous objects using single as well as multiple gripping pads, with visual as well as pickup and drop feedback. We describe the various components of the gripper with emphasis on its low mass and high lift capability since weight is a matter of high consideration in all aerial applications. In addition, we investigate and address the issues that may cause our design to fail. We demonstrate by experiments that the proposed design is robust and effective, based on its high payload capability, its sturdiness against possible slide during aggressive aerial maneuvers, and optimum performance of the drop mechanism for the designed range of payloads. We also show that the gripper is able to pick up and drop a single as well as multiple ferrous objects of different shapes, curvature, and inclination, which also involves picking up an object and then grasping the next, while keeping hold of the previous one.

  11. Passive Aerial Grasping of Ferrous Objects

    KAUST Repository

    Fiaz, Usman; Toumi, Noureddine; Shamma, Jeff S.

    2017-01-01

    Aerial transportation is probably the most efficient way to supply quick and effective aid especially in cases of emergency like search and rescue operations. Thus the ability to grasp and deliver objects is of vital importance in all sorts of unmanned and autonomous aerial operations. We detail a simple yet novel approach for aerial grasping of ferrous objects using a passive magnetic pickup and an impulse based drop mechanism. The design enables our gripper to grasp ferrous objects using single as well as multiple gripping pads, with visual as well as pickup and drop feedback. We describe the various components of the gripper with emphasis on its low mass and high lift capability since weight is a matter of high consideration in all aerial applications. In addition, we investigate and address the issues that may cause our design to fail. We demonstrate by experiments that the proposed design is robust and effective, based on its high payload capability, its sturdiness against possible slide during aggressive aerial maneuvers, and optimum performance of the drop mechanism for the designed range of payloads. We also show that the gripper is able to pick up and drop a single as well as multiple ferrous objects of different shapes, curvature, and inclination, which also involves picking up an object and then grasping the next, while keeping hold of the previous one.

  12. Differences in finger localisation performance of patients with finger agnosia.

    Science.gov (United States)

    Anema, Helen A; Kessels, Roy P C; de Haan, Edward H F; Kappelle, L Jaap; Leijten, Frans S; van Zandvoort, Martine J E; Dijkerman, H Chris

    2008-09-17

    Several neuropsychological studies have suggested parallel processing of somatosensory input when localising a tactile stimulus on one's own by pointing towards it (body schema) and when localising this touched location by pointing to it on a map of a hand (body image). Usually these reports describe patients with impaired detection, but intact sensorimotor localisation. This study examined three patients with a lesion of the angular gyrus with intact somatosensory processing, but with selectively disturbed finger identification (finger agnosia). These patients performed normally when pointing towards the touched finger on their own hand but failed to indicate this finger on a drawing of a hand or to name it. Similar defects in the perception of other body parts were not observed. The findings provide converging evidence for the dissociation between body image and body schema and, more importantly, reveal for the first time that this distinction is also present in higher-order cognitive processes selectively for the fingers.

  13. Intrinsic Hand Muscle Activation for Grasp and Horizontal Transport

    OpenAIRE

    Winges, Sara A.; Kundu, Bornali; Soechting, John F.; Flanders, Martha

    2007-01-01

    During object manipulation, the hand and arm muscles produce internal forces on the object (grasping forces) and forces that result in external translation or rotation of the object in space (transport forces). The present study tested whether the intrinsic hand muscles are actively involved in transport as well as grasping. Intrinsic hand muscle activity increased with increasing demands for grasp stability, but also showed the timing and directional tuning patterns appropriate for actively ...

  14. Admittance Control of a Multi-Finger Arm Based on Manipulability of Fingers

    Directory of Open Access Journals (Sweden)

    Takayuki Hori

    2011-09-01

    Full Text Available In the previous studies, admittance control and impedance control for a finger‐arm robot using the manipulability of the finger were studied and methods of realizing the controls have been proposed. In this study, two 3‐DOF fingers are attached to the end‐effector of a 6‐DOF arm to configure a multi‐finger arm robot. Based on the previous methods, the authors have proposed an admittance control for a multi‐finger arm robot using the manipulability of the fingers in this study. Algorithms of the averaging method and the mini‐max method were introduced to establish a manipulability criterion of the two fingers in order to generate a cooperative movement of the arm. Comparison of the admittance controls combined with the top search method and local optimization method for the multi‐finger arm robot was made and features of the control methods were also discussed. The stiffness control and damping control were experimentally evaluated to demonstrate the effectiveness of the proposed methods.

  15. Grasping with mechanical intelligence. M.S. Thesis

    Science.gov (United States)

    Ulrich, Nathan Thatcher

    1988-01-01

    Many robotic hands have been designed and a number have been built. Because of the difficulty of controlling and using complex hands, which usually have nine or more degrees of freedom, the simple one- or two-degree-of-freedom gripper is still the most common robotic end effector. A new category of device is presented: a medium-complexity end effector. With three to five degrees of freedom, such a tool is much easier to control and use, as well as more economical, compact and lightweight than complex hands. In order to increase the versatility, it was necessary to identify grasping primitives and to implement them in the mechanism. In addition, power and enveloping grasps are stressed over fingertip and precision grasps. The design is based upon analysis of object apprehension types, requisite characteristics for active sensing, and a determination of necessary environmental interactions. Contained are the general concepts necessary to the design of a medium-complexity end effector, an analysis of typical performance, and a computer simulation of a grasp planning algorithm specific to this type of mechanism. Finally, some details concerning the UPenn Hand-a tool designed for the research laboratory-are presented.

  16. Linear and nonlinear subspace analysis of hand movements during grasping.

    Science.gov (United States)

    Cui, Phil Hengjun; Visell, Yon

    2014-01-01

    This study investigated nonlinear patterns of coordination, or synergies, underlying whole-hand grasping kinematics. Prior research has shed considerable light on roles played by such coordinated degrees-of-freedom (DOF), illuminating how motor control is facilitated by structural and functional specializations in the brain, peripheral nervous system, and musculoskeletal system. However, existing analyses suppose that the patterns of coordination can be captured by means of linear analyses, as linear combinations of nominally independent DOF. In contrast, hand kinematics is itself highly nonlinear in nature. To address this discrepancy, we sought to to determine whether nonlinear synergies might serve to more accurately and efficiently explain human grasping kinematics than is possible with linear analyses. We analyzed motion capture data acquired from the hands of individuals as they grasped an array of common objects, using four of the most widely used linear and nonlinear dimensionality reduction algorithms. We compared the results using a recently developed algorithm-agnostic quality measure, which enabled us to assess the quality of the dimensional reductions that resulted by assessing the extent to which local neighborhood information in the data was preserved. Although qualitative inspection of this data suggested that nonlinear correlations between kinematic variables were present, we found that linear modeling, in the form of Principle Components Analysis, could perform better than any of the nonlinear techniques we applied.

  17. A three-axis force sensor for dual finger haptic interfaces.

    Science.gov (United States)

    Fontana, Marco; Marcheschi, Simone; Salsedo, Fabio; Bergamasco, Massimo

    2012-10-10

    In this work we present the design process, the characterization and testing of a novel three-axis mechanical force sensor. This sensor is optimized for use in closed-loop force control of haptic devices with three degrees of freedom. In particular the sensor has been conceived for integration with a dual finger haptic interface that aims at simulating forces that occur during grasping and surface exploration. The sensing spring structure has been purposely designed in order to match force and layout specifications for the application. In this paper the design of the sensor is presented, starting from an analytic model that describes the characteristic matrix of the sensor. A procedure for designing an optimal overload protection mechanism is proposed. In the last part of the paper the authors describe the experimental characterization and the integrated test on a haptic hand exoskeleton showing the improvements in the controller performances provided by the inclusion of the force sensor.

  18. A Three-Axis Force Sensor for Dual Finger Haptic Interfaces

    Directory of Open Access Journals (Sweden)

    Fabio Salsedo

    2012-10-01

    Full Text Available In this work we present the design process, the characterization and testing of a novel three-axis mechanical force sensor. This sensor is optimized for use in closed-loop force control of haptic devices with three degrees of freedom. In particular the sensor has been conceived for integration with a dual finger haptic interface that aims at simulating forces that occur during grasping and surface exploration. The sensing spring structure has been purposely designed in order to match force and layout specifications for the application. In this paper the design of the sensor is presented, starting from an analytic model that describes the characteristic matrix of the sensor. A procedure for designing an optimal overload protection mechanism is proposed. In the last part of the paper the authors describe the experimental characterization and the integrated test on a haptic hand exoskeleton showing the improvements in the controller performances provided by the inclusion of the force sensor.

  19. Shaping of Reach-to-Grasp Kinematics by Intentions

    DEFF Research Database (Denmark)

    Egmose, Ida; Køppe, Simo

    2017-01-01

    is primarily associated with transporting the hand to the object (i.e., extrinsic object properties), the decelerating part of the reach is used as a preparation for object manipulation (i.e., prepare the grasp or the subsequent action), and the grasp is associated with manipulating the object's intrinsic...

  20. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution.

    Science.gov (United States)

    Marangon, Mattia; Kubiak, Agnieszka; Króliczak, Gregory

    2015-01-01

    The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI) to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation, and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC) of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks). None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial) parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.

  1. Coordination of Reach-to-Grasp Kinematics in Individuals With Childhood-Onset Dystonia Due to Hemiplegic Cerebral Palsy.

    Science.gov (United States)

    Kukke, Sahana N; Curatalo, Lindsey A; de Campos, Ana Carolina; Hallett, Mark; Alter, Katharine E; Damiano, Diane L

    2016-05-01

    Functional reaching is impaired in dystonia. Here, we analyze upper extremity kinematics to quantify timing and coordination abnormalities during unimanual reach-to-grasp movements in individuals with childhood-onset unilateral wrist dystonia. Kinematics were measured during movements of both upper limbs in a patient group ( n = 11, age = 17.5 ±5 years), and a typically developing control group ( n = 9, age = 16.6 ±5 years). Hand aperture was computed to study the coordination of reach and grasp. Time-varying joint synergies within one upper limb were calculated using a novel technique based on principal component analysis to study intra-limb coordination. In the non-dominant arm, results indicate reduced coordination between reach and grasp in patients who could not lift the grasped object compared to those who could lift it. Lifters exhibit incoordination in distal upper extremity joints later in the movement and non-lifters lacked coordination throughout the movement and in the whole upper limb. The amount of atypical coordination correlates with dystonia severity in patients. Reduced coordination during movement may reflect deficits in the execution of simultaneous movements, motor planning, or muscle activation. Rehabilitation efforts can focus on particular time points when kinematic patterns deviate abnormally to improve functional reaching in individuals with childhood-onset dystonia.

  2. Echocardiographic predictors of coil vs device closure in patients undergoing percutaneous patent ductus arteriosus closure.

    Science.gov (United States)

    Roushdy, Alaa; Abd El Razek, Yasmeen; Mamdouh Tawfik, Ahmed

    2018-01-01

    To determine anatomic and hemodynamic echocardiographic predictors for patent ductus arteriosus (PDA) device vs coil closure. Seventy-six patients who were referred for elective transcatheter PDA closure were enrolled in the study. All patients underwent full echocardiogram including measurement of the PDA pulmonary end diameter, color flow width and extent, peak and end-diastolic Doppler gradients across the duct, diastolic flow reversal, left atrial dimensions and volume, left ventricular sphericity index, and volumes. The study group was subdivided into 2 subgroups based on the mode of PDA closure whether by coil (n = 42) or device (n = 34). Using univariate analysis there was a highly significant difference between the 2 groups as regard the pulmonary end diameter measured in both the suprasternal and parasternal short-axis views as well as the color flow width and color flow extent (P closure group had statistically significant higher end-systolic and end-diastolic volumes indexed, left atrial volume, and diastolic flow reversal. Receiver operating characteristic curve analysis showed a pulmonary end diameter cutoff point from the suprasternal view > 2.5 mm and from parasternal short-axis view > 2.61 mm to have the highest balanced sensitivity and specificity to predict the likelihood for device closure (AUC 0.971 and 0.979 respectively). The pulmonary end diameter measured from the suprasternal view was the most independent predictor of device closure. The selection between PDA coil or device closure can be done on the basis of multiple anatomic and hemodynamic echocardiographic variables. © 2017 Wiley Periodicals, Inc.

  3. Quantifying Parkinson's disease finger-tapping severity by extracting and synthesizing finger motion properties.

    Science.gov (United States)

    Sano, Yuko; Kandori, Akihiko; Shima, Keisuke; Yamaguchi, Yuki; Tsuji, Toshio; Noda, Masafumi; Higashikawa, Fumiko; Yokoe, Masaru; Sakoda, Saburo

    2016-06-01

    We propose a novel index of Parkinson's disease (PD) finger-tapping severity, called "PDFTsi," for quantifying the severity of symptoms related to the finger tapping of PD patients with high accuracy. To validate the efficacy of PDFTsi, the finger-tapping movements of normal controls and PD patients were measured by using magnetic sensors, and 21 characteristics were extracted from the finger-tapping waveforms. To distinguish motor deterioration due to PD from that due to aging, the aging effect on finger tapping was removed from these characteristics. Principal component analysis (PCA) was applied to the age-normalized characteristics, and principal components that represented the motion properties of finger tapping were calculated. Multiple linear regression (MLR) with stepwise variable selection was applied to the principal components, and PDFTsi was calculated. The calculated PDFTsi indicates that PDFTsi has a high estimation ability, namely a mean square error of 0.45. The estimation ability of PDFTsi is higher than that of the alternative method, MLR with stepwise regression selection without PCA, namely a mean square error of 1.30. This result suggests that PDFTsi can quantify PD finger-tapping severity accurately. Furthermore, the result of interpreting a model for calculating PDFTsi indicated that motion wideness and rhythm disorder are important for estimating PD finger-tapping severity.

  4. Posture of the arm when grasping spheres to place them elsewhere

    NARCIS (Netherlands)

    Schot, W.D.; Brenner, E.; Smeets, J.B.J.

    2010-01-01

    Despite the infinitely many ways to grasp a spherical object, regularities have been observed in the posture of the arm and the grasp orientation. In the present study, we set out to determine the factors that predict the grasp orientation and the final joint angles of reach-tograsp movements.

  5. A Grasp-Pose Generation Method Based on Gaussian Mixture Models

    Directory of Open Access Journals (Sweden)

    Wenjia Wu

    2015-11-01

    Full Text Available A Gaussian Mixture Model (GMM-based grasp-pose generation method is proposed in this paper. Through offline training, the GMM is set up and used to depict the distribution of the robot's reachable orientations. By dividing the robot's workspace into small 3D voxels and training the GMM for each voxel, a look-up table covering all the workspace is built with the x, y and z positions as the index and the GMM as the entry. Through the definition of Task Space Regions (TSR, an object's feasible grasp poses are expressed as a continuous region. With the GMM, grasp poses can be preferentially sampled from regions with high reachability probabilities in the online grasp-planning stage. The GMM can also be used as a preliminary judgement of a grasp pose's reachability. Experiments on both a simulated and a real robot show the superiority of our method over the existing method.

  6. Grasps Recognition and Evaluation of Stroke Patients for Supporting Rehabilitation Therapy

    Directory of Open Access Journals (Sweden)

    Beatriz Leon

    2014-01-01

    Full Text Available Stroke survivors often suffer impairments on their wrist and hand. Robot-mediated rehabilitation techniques have been proposed as a way to enhance conventional therapy, based on intensive repeated movements. Amongst the set of activities of daily living, grasping is one of the most recurrent. Our aim is to incorporate the detection of grasps in the machine-mediated rehabilitation framework so that they can be incorporated into interactive therapeutic games. In this study, we developed and tested a method based on support vector machines for recognizing various grasp postures wearing a passive exoskeleton for hand and wrist rehabilitation after stroke. The experiment was conducted with ten healthy subjects and eight stroke patients performing the grasping gestures. The method was tested in terms of accuracy and robustness with respect to intersubjects’ variability and differences between different grasps. Our results show reliable recognition while also indicating that the recognition accuracy can be used to assess the patients’ ability to consistently repeat the gestures. Additionally, a grasp quality measure was proposed to measure the capabilities of the stroke patients to perform grasp postures in a similar way than healthy people. These two measures can be potentially used as complementary measures to other upper limb motion tests.

  7. Collision-Avoidance Characteristics of Grasping. Early Signs in Hand and Arm Kinematics

    NARCIS (Netherlands)

    Lommertzen, J.; Costa e Silva, E.; Meulenbroek, R.G.J.

    2009-01-01

    Grasping an object successfully implies avoiding colliding into it before the hand is closed around the object. The present study focuses on prehension kinematics that typically reflect collision-avoidance characteristics of grasping movements. Twelve participants repeatedly grasped

  8. Grasp movement decoding from premotor and parietal cortex.

    Science.gov (United States)

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  9. From robot to human grasping simulation

    CERN Document Server

    León, Beatriz; Sancho-Bru, Joaquin

    2013-01-01

    The human hand and its dexterity in grasping and manipulating objects are some of the hallmarks of the human species. For years, anatomic and biomechanical studies have deepened the understanding of the human hand’s functioning and, in parallel, the robotics community has been working on the design of robotic hands capable of manipulating objects with a performance similar to that of the human hand. However, although many researchers have partially studied various aspects, to date there has been no comprehensive characterization of the human hand’s function for grasping and manipulation of

  10. Study of the closure of the nuclear shells N = 16, 20, 28 and 40; Etudes des fermetures de couches nucleaires N=16, 20, 28 et 40

    Energy Technology Data Exchange (ETDEWEB)

    Sorlin, O

    2005-12-15

    There are 2 types of nuclear shell closures: one is associated to a number of the harmonic oscillator, typically N = 20 and 40, and the other is a consequence of the spin-orbital interaction that produces magic numbers such as N = 28, 50, 82 and N = 126. The first part of this work deals with the knowledge accumulated around the closure of the N = 28 shell. 3 means of investigation have been used: -) the study of beta decay nuclei (K{sup 47}, Ar{sup 46}, S{sup 44}, Si{sup 42} and Cl{sup 45}), -) the on-line spectroscopy of nuclei around N = 28, and -) the study of Ar{sup 45} and Ar{sup 47} through transfer reactions. The second part is dedicated to results concerning the nuclear structure of nuclei around N = 14-20 and around N = 40. (A.C.)

  11. Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.

    Science.gov (United States)

    Nelissen, Koen; Fiave, Prosper Agbesi; Vanduffel, Wim

    2018-04-01

    Prehension movements typically include a reaching phase, guiding the hand toward the object, and a grip phase, shaping the hand around it. The dominant view posits that these components rely upon largely independent parieto-frontal circuits: a dorso-medial circuit involved in reaching and a dorso-lateral circuit involved in grasping. However, mounting evidence suggests a more complex arrangement, with dorso-medial areas contributing to both reaching and grasping. To investigate the role of the dorso-medial reaching circuit in grasping, we trained monkeys to reach-and-grasp different objects in the dark and determined if hand configurations could be decoded from functional magnetic resonance imaging (MRI) responses obtained from the reaching and grasping circuits. Indicative of their established role in grasping, object-specific grasp decoding was found in anterior intraparietal (AIP) area, inferior parietal lobule area PFG and ventral premotor region F5 of the lateral grasping circuit, and primary motor cortex. Importantly, the medial reaching circuit also conveyed robust grasp-specific information, as evidenced by significant decoding in parietal reach regions (particular V6A) and dorsal premotor region F2. These data support the proposed role of dorso-medial "reach" regions in controlling aspects of grasping and demonstrate the value of complementing univariate with more sensitive multivariate analyses of functional MRI (fMRI) data in uncovering information coding in the brain.

  12. An expert system for automated robotic grasping

    International Nuclear Information System (INIS)

    Stansfield, S.A.

    1990-01-01

    Many US Department of Energy sites and facilities will be environmentally remediated during the next several decades. A number of the restoration activities (e.g., decontamination and decommissioning of inactive nuclear facilities) can only be carried out by remote means and will be manipulation-intensive tasks. Experience has shown that manipulation tasks are especially slow and fatiguing for the human operator of a remote manipulator. In this paper, the authors present a rule-based expert system for automated, dextrous robotic grasping. This system interprets the features of an object to generate hand shaping and wrist orientation for a robot hand and arm. The system can be used in several different ways to lessen the demands on the human operator of a remote manipulation system - either as a fully autonomous grasping system or one that generates grasping options for a human operator and then automatically carries out the selected option

  13. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    Science.gov (United States)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  14. The contributions of vision and haptics to reaching and grasping

    Directory of Open Access Journals (Sweden)

    Kayla Dawn Stone

    2015-09-01

    Full Text Available This review aims to provide a comprehensive outlook on the sensory (visual and haptic contributions to reaching and grasping. The focus is on studies in developing children, normal and neuropsychological populations, and in sensory-deprived individuals. Studies have suggested a right-hand/left-hemisphere specialization for visually-guided grasping and a left-hand/right-hemisphere specialization for haptically-guided object recognition. This poses the interesting possibility that when vision is not available and grasping relies heavily on the haptic system, there is an advantage to use the left hand. We review the evidence for this possibility and dissect the unique contributions of the visual and haptic systems to grasping. We ultimately discuss how the integration of these two sensory modalities shape hand preference.

  15. Fuel channel closure and adapter

    International Nuclear Information System (INIS)

    Cashen, W.S.

    1985-01-01

    This invention provides a mechanical closure/actuating ram combination particularly suited for use in sealing the ends of the pressure tubes when a CANDU-type reactor is refueled. It provides a cluster that may be inserted into a fuel channel end fitting to provide at least partial closing off of a pressure tube while permitting the disengagement of the fueling machine and its withdrawal from the closure for other purposes. The invention also provides a ram/closure combination wherein the application of loading force to a deformable sealing disk is regulated by a massive load bar component forming part of the fueling machine and being therefore accessible for maintenance or replacement

  16. Multiple Fingers - One Gestalt.

    Science.gov (United States)

    Lezkan, Alexandra; Manuel, Steven G; Colgate, J Edward; Klatzky, Roberta L; Peshkin, Michael A; Drewing, Knut

    2016-01-01

    The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump. A discrimination task measured the bump's perceived location and perceptual reliability (assessed by differential thresholds) for four finger configurations, which varied in their adherence to the Gestalt principles of proximity (small versus large finger separation) and synchrony (virtual spring to link movements of the two fingers versus no spring). According to models of integration, reliability should increase with the degree to which multi-finger cues integrate into a unified percept. Differential thresholds were smaller in the virtual-spring condition (synchrony) than when fingers were unlinked. Additionally, in the condition with reduced synchrony, greater proximity led to lower differential thresholds. Thus, with greater adherence to Gestalt principles, thresholds approached values predicted for optimal integration. We conclude that the Gestalt principles of synchrony and proximity apply to haptic perception of surface properties and that these principles can interact to promote multi-finger integration.

  17. Limited Fine Motor and Grasping Skills in Six-month-old Infants at High Risk for Autism

    Science.gov (United States)

    Libertus, Klaus; Sheperd, Kelly A.; Ross, Samuel W.; Landa, Rebecca J.

    2014-01-01

    Atypical motor behaviors are common among children with Autism Spectrum Disorders (ASD). However, little is known about onset and functional implications of differences in early motor development among infants later diagnosed with ASD. Two prospective experiments were conducted to investigate motor skills among six-month-olds at increased risk (high-risk) for ASD (N1 = 129; N2 = 46). Infants were assessed using the Mullen Scales of Early Learning (MSEL) and during toy play. Across both experiments, high-risk infants exhibited less mature object manipulation in a highly structured (MSEL) context and reduced grasping activity in an unstructured (free play) context than infants with no family history of ASD. Longitudinal assessments suggest that between six and ten months, grasping activity increases in high-risk infants. PMID:24978128

  18. The magic grasp: motor expertise in deception.

    Directory of Open Access Journals (Sweden)

    Cristiana Cavina-Pratesi

    2011-02-01

    Full Text Available Most of us are poor at faking actions. Kinematic studies have shown that when pretending to pick up imagined objects (pantomimed actions, we move and shape our hands quite differently from when grasping real ones. These differences between real and pantomimed actions have been linked to separate brain pathways specialized for different kinds of visuomotor guidance. Yet professional magicians regularly use pantomimed actions to deceive audiences.In this study, we tested whether, despite their skill, magicians might still show kinematic differences between grasping actions made toward real versus imagined objects. We found that their pantomimed actions in fact closely resembled real grasps when the object was visible (but displaced (Experiment 1, but failed to do so when the object was absent (Experiment 2.We suggest that although the occipito-parietal visuomotor system in the dorsal stream is designed to guide goal-directed actions, prolonged practice may enable it to calibrate actions based on visual inputs displaced from the action.

  19. Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions

    KAUST Repository

    Wang, Bo

    2012-07-01

    The formation mechanism of phase-inversion ceramic hollow fibre membranes has not been well understood. In this paper, we report on the formation of finger-like macrovoids during non-solvent-induced phase inversion of alumina/PES/NMP suspensions. A membrane structure without such finger-like macrovoids was observed when the suspension was slowly immersed into pure ethanol or a mixture of 70. wt% NMP and 30. wt% water, whereas finger-like macrovoids occurred when the suspension was slid into the non-solvents at higher speeds. We found that the formation process of finger-like macrovoids could be fully or partially reversed when nascent membranes were taken out from water shortly after immersion, depending on the duration of the immersion. Splitting of the fingers during the formation of the macrovoids was also observed during the phase inversion of two alumina/PES/NMP suspensions. These experimental observations were not predicted by current theories of finger-like macrovoid formation in polymer membranes, but appear to mimic the well-known viscous fingering phenomenon. We therefore propose that in the phase inversion of ceramic suspensions, the viscous fingering phenomenon is an important mechanism in the formation of finger-like voids. © 2012 Elsevier B.V.

  20. ESTIMATION OF GRASPING TORQUE USING ROBUST REACTION TORQUE OBSERVER FOR ROBOTIC FORCEPS

    OpenAIRE

    塚本, 祐介

    2015-01-01

    Abstract— In this paper, the estimation of the grasping torque of robotic forceps without the use of a force/torque sensor is discussed. To estimate the grasping torque when the robotic forceps driven by a rotary motor with a reduction gear grasps an object, a novel robust reaction torque observer is proposed. In the case where a conventional reaction force/torque observer is applied, the estimated torque includes not only the grasping torque, namely the reaction torque, but also t...

  1. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  2. A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG.

    Science.gov (United States)

    Roy, Rinku; Sikdar, Debdeep; Mahadevappa, Manjunatha; Kumar, C S

    2018-05-19

    A stable grasp is attained through appropriate hand preshaping and precise fingertip forces. Here, we have proposed a method to decode grasp patterns from motor imagery and subsequent fingertip force estimation model with a slippage avoidance strategy. We have developed a feature-based classification of electroencephalography (EEG) associated with imagination of the grasping postures. Chaotic behaviour of EEG for different grasping patterns has been utilised to capture the dynamics of associated motor activities. We have computed correlation dimension (CD) as the feature and classified with "one against one" multiclass support vector machine (SVM) to discriminate between different grasping patterns. The result of the analysis showed varying classification accuracies at different subband levels. Broad categories of grasping patterns, namely, power grasp and precision grasp, were classified at a 96.0% accuracy rate in the alpha subband. Furthermore, power grasp subtypes were classified with an accuracy of 97.2% in the upper beta subband, whereas precision grasp subtypes showed relatively lower 75.0% accuracy in the alpha subband. Following assessment of fingertip force distributions while grasping, a nonlinear autoregressive (NAR) model with proper prediction of fingertip forces was proposed for each grasp pattern. A slippage detection strategy has been incorporated with automatic recalibration of the regripping force. Intention of each grasp pattern associated with corresponding fingertip force model was virtualised in this work. This integrated system can be utilised as the control strategy for prosthetic hand in the future. The model to virtualise motor imagery based fingertip force prediction with inherent slippage correction for different grasp types ᅟ.

  3. Covering the Dorsal Finger Defect with Reverse Cross Finger Flap

    Directory of Open Access Journals (Sweden)

    Kaan Gurbuz

    2014-12-01

    Full Text Available Reconstruction of finger extensor zone defects with or without tendon gaps still remains a challenge for surgeons. Although surgical treatments may differ, and range from the use of local, regional, to free flaps, the outcomes for all cases are not satisfactory. In this case report, we present a case of a 3rd finger extensor side crush injury including a defect of Dd (Digit Dorsal 1, Dd2 and Dd3 defects of extensor zones with tendon gap. Tendon gap was reconstructed using m. palmaris longus tendon graft and the defect was covered with reversed cross-finger flap (random pattern with good cosmetic and excellent functional results.

  4. The N=16 subshell closure; La fermeture de sous-couche N=16

    Energy Technology Data Exchange (ETDEWEB)

    Obertelli, A

    2005-09-01

    The sequence of magic numbers for stable nuclei is now well understood. However the magnitude of shell gap may evolve from stability to drip line. Several observables show that N = 16 neutron-rich isotones present a higher stability compared to their neighbors on the N-Z chart. The spectroscopy of the levels of Ne{sup 27}, involving sd and fp shells, has allowed us to study the evolution of the nuclear shells responsible for the structure changes in N 16 isotones. In this framework we have studied the neutron transfer reaction Ne{sup 26}(d,p)Ne{sup 27} by inverted kinematics at 9,7 MeV/u. A cryogenic D{sub 2} target (17 mg.cm{sup -2}) has been used. The use of the magnetic spectrometer Vamos and that of the Exogam photon detector in coincidence operating mode has allowed us to achieve the spectroscopy of Ne{sup 27}. The results show a reduction in the gap between sd and fp shells for N = 17 isotones as we go from stability toward the neutron drip line. We have also performed a theoretical study in mean-field theory and beyond it through configuration mixing so that we can see the evolution of the isospin of the N = 16 subshell's closure. We have used a HFB (Hartree-Fock-Bogoliubov) with the finite range D1S effective interaction. (A.C.)

  5. 17 CFR 270.30a-2 - Certification of Form N-CSR and Form N-Q.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Certification of Form N-CSR... Form N-CSR and Form N-Q. (a) Each report filed on Form N-CSR (§§ 249.331 and 274.128 of this chapter) or Form N-Q (§§ 249.332 and 274.130 of this chapter) by a registered management investment company...

  6. Fusarium verticillioides from finger millet in Uganda.

    Science.gov (United States)

    Saleh, Amgad A; Esele, J P; Logrieco, Antonio; Ritieni, Alberto; Leslie, John F

    2012-01-01

    Finger millet (Eleusine coracana) is a subsistence crop grown in Sub-Saharan Africa and the Indian Sub-continent. Fusarium species occurring on this crop have not been reported. Approximately 13% of the Fusarium isolates recovered from finger millet growing at three different locations in eastern Uganda belong to Fusarium verticillioides, and could produce up to 18,600 µg/g of total fumonisins when cultured under laboratory conditions. These strains are all genetically unique, based on AFLP analyses, and form fertile perithecia when crossed with the standard mating type tester strains for this species. All but one of the strains is female-fertile and mating-type segregates 13:20 Mat-1:Mat-2. Three new sequences of the gene encoding translation elongation factor 1-α were found within the population. These results indicate a potential health risk for infants who consume finger millet gruel as a weaning food, and are consistent with the hypothesis that F. verticillioides originated in Africa and not in the Americas, despite its widespread association with maize grown almost anywhere worldwide.

  7. The genetic map of finger millet, Eleusine coracana.

    Science.gov (United States)

    Dida, Mathews M; Srinivasachary; Ramakrishnan, Sujatha; Bennetzen, Jeffrey L; Gale, Mike D; Devos, Katrien M

    2007-01-01

    Restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), expressed-sequenced tag (EST), and simple sequence repeat (SSR) markers were used to generate a genetic map of the tetraploid finger millet (Eleusine coracana subsp. coracana) genome (2n = 4x = 36). Because levels of variation in finger millet are low, the map was generated in an inter-subspecific F(2) population from a cross between E. coracana subsp. coracana cv. Okhale-1 and its wild progenitor E. coracana subsp. africana acc. MD-20. Duplicated loci were used to identify homoeologous groups. Assignment of linkage groups to the A and B genome was done by comparing the hybridization patterns of probes in Okhale-1, MD-20, and Eleusine indica acc. MD-36. E. indica is the A genome donor to E. coracana. The maps span 721 cM on the A genome and 787 cM on the B genome and cover all 18 finger millet chromosomes, at least partially. To facilitate the use of marker-assisted selection in finger millet, a first set of 82 SSR markers was developed. The SSRs were identified in small-insert genomic libraries generated using methylation-sensitive restriction enzymes. Thirty-one of the SSRs were mapped. Application of the maps and markers in hybridization-based breeding programs will expedite the improvement of finger millet.

  8. Perceiving fingers in single-digit arithmetic problems.

    Science.gov (United States)

    Berteletti, Ilaria; Booth, James R

    2015-01-01

    In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.

  9. Stereo vision based automated grasp planning

    International Nuclear Information System (INIS)

    Wilhelmsen, K.; Huber, L.; Silva, D.; Grasz, E.; Cadapan, L.

    1995-02-01

    The Department of Energy has a need for treating existing nuclear waste. Hazardous waste stored in old warehouses needs to be sorted and treated to meet environmental regulations. Lawrence Livermore National Laboratory is currently experimenting with automated manipulations of unknown objects for sorting, treating, and detailed inspection. To accomplish these tasks, three existing technologies were expanded to meet the increasing requirements. First, a binocular vision range sensor was combined with a surface modeling system to make virtual images of unknown objects. Then, using the surface model information, stable grasp of the unknown shaped objects were planned algorithmically utilizing a limited set of robotic grippers. This paper is an expansion of previous work and will discuss the grasp planning algorithm

  10. Effects of material properties on soft contact dynamics

    International Nuclear Information System (INIS)

    Khurshid, A.; Malik, M.A.; Ghafoor, A.

    2009-01-01

    The superiority of deformable human fingertips as compared to hard robot gripper fingers for grasping and manipulation has led to a number of investigations with robot hands employing elastomers or materials such as fluids or powders beneath a membrane at the fingertips. In this paper, to analyze the stability of dynamic control of an object grasped between two soft fingertips through a soft interface using the viscoelastic material between the manipulating fingers and a manipulated object is modeled through bond graph method (BGM). The fingers are made viscoelastic by using springs and dampers. Detailed bond graph modeling (BGM) of the contact phenomenon with two soft-finger contacts considered to be placed against each other on the opposite sides of the grasped object as is generally the case in a manufacturing environment is presented. The stiffness of the springs is exploited in order to achieve the stability in the soft-grasping which includes friction between the soft finger contact surfaces and the object, The paper also analyses stability of dynamic control through a soft interface between a manipulating finger and a manipulated object. It is shown in the paper that the system stability depends on the visco-elastic material properties of the soft interface. Method of root locus is used to analyze this phenomenon. The paper shows how the weight of the object coming downward is controlled by the friction between the fingers and the object during the application of contact forces by varying the damping and the stiffness in the soft finger. (author)

  11. Mesofluidic controlled robotic or prosthetic finger

    Science.gov (United States)

    Lind, Randall F; Jansen, John F; Love, Lonnie J

    2013-11-19

    A mesofluidic powered robotic and/or prosthetic finger joint includes a first finger section having at least one mesofluidic actuator in fluid communication with a first actuator, a second mesofluidic actuator in fluid communication with a second actuator and a second prosthetic finger section pivotally connected to the first finger section by a joint pivot, wherein the first actuator pivotally cooperates with the second finger to provide a first mechanical advantage relative to the joint point and wherein the second actuator pivotally cooperates with the second finger section to provide a second mechanical advantage relative to the joint point.

  12. Toward autonomous avian-inspired grasping for micro aerial vehicles

    International Nuclear Information System (INIS)

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Kumar, Vijay; Sreenath, Koushil

    2014-01-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches. (papers)

  13. Kinematic characteristics of tenodesis grasp in C6 quadriplegia.

    Science.gov (United States)

    Mateo, S; Revol, P; Fourtassi, M; Rossetti, Y; Collet, C; Rode, G

    2013-02-01

    Descriptive control case study. To analyze the kinematics of tenodesis grasp in participants with C6 quadriplegia and healthy control participants in a pointing task and two daily life tasks involving a whole hand grip (apple) or a lateral grip (floppy disk). France. Four complete participants with C6 quadriplegia were age matched with four healthy control participants. All participants were right-handed. The measured kinematic parameters were the movement time (MT), the peak velocity (PV), the time of PV (TPV) and the wrist angle in the sagittal plane at movement onset, at the TPV and at the movement end point. The participants with C6 quadriplegia had significantly longer MTs in both prehension tasks. No significant differences in TPV were found between the two groups. Unlike control participants, for both prehension tasks the wrist of participants with C6 quadriplegia was in a neutral position at movement onset, in flexion at the TPV, and in extension at the movement end point. Two main kinematic parameters characterize tenodesis grasp movements in C6 quadriplegics: wrist flexion during reaching and wrist extension during the grasping phase, and increased MT reflecting the time required to adjust the wrist's position to achieve the tenodesis grasp. These characteristics were observed for two different grips (whole hand and lateral grip). These results suggest sequential planning of reaching and tenodesis grasp, and should be taken into account for prehension rehabilitation in patients with quadriplegia.

  14. Toward autonomous avian-inspired grasping for micro aerial vehicles.

    Science.gov (United States)

    Thomas, Justin; Loianno, Giuseppe; Polin, Joseph; Sreenath, Koushil; Kumar, Vijay

    2014-06-01

    Micro aerial vehicles, particularly quadrotors, have been used in a wide range of applications. However, the literature on aerial manipulation and grasping is limited and the work is based on quasi-static models. In this paper, we draw inspiration from agile, fast-moving birds such as raptors, that are able to capture moving prey on the ground or in water, and develop similar capabilities for quadrotors. We address dynamic grasping, an approach to prehensile grasping in which the dynamics of the robot and its gripper are significant and must be explicitly modeled and controlled for successful execution. Dynamic grasping is relevant for fast pick-and-place operations, transportation and delivery of objects, and placing or retrieving sensors. We show how this capability can be realized (a) using a motion capture system and (b) without external sensors relying only on onboard sensors. In both cases we describe the dynamic model, and trajectory planning and control algorithms. In particular, we present a methodology for flying and grasping a cylindrical object using feedback from a monocular camera and an inertial measurement unit onboard the aerial robot. This is accomplished by mapping the dynamics of the quadrotor to a level virtual image plane, which in turn enables dynamically-feasible trajectory planning for image features in the image space, and a vision-based controller with guaranteed convergence properties. We also present experimental results obtained with a quadrotor equipped with an articulated gripper to illustrate both approaches.

  15. Perceiving fingers in single-digit arithmetic problems

    Directory of Open Access Journals (Sweden)

    Ilaria eBerteletti

    2015-03-01

    Full Text Available In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.

  16. Shell closure in stable and unstable Fermion systems

    International Nuclear Information System (INIS)

    Lombard, R.J.

    1991-01-01

    Some of the findings of calculations performed with the density functional method in connection with shell closure are presented. In nuclei, some evidences seam to confirm the existence of a shell closure at N or Z=16, for Z or N<11. More data, particularly spectroscopic measurements would provide further information. Single particle energies for Z=16 isotopes as function of the neutron number N are given. (G.P.) 9 refs.; 6 figs

  17. High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N=40

    International Nuclear Information System (INIS)

    Guenaut, C.; Audi, G.; Beck, D.

    2007-01-01

    High-precision mass measurement of more than thirty neutron-rich nuclides around the Z=28 closed proton shell were performed with the triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN to address the question of a possible neutron shell closure at N=40. The results for 57,60,64-69 Ni, 65-74,76 Cu (Z=29), and 63-65,68-78 Ga (Z=31), have a relative uncertainty of the order of 10 -8 . In particular, the masses of 72-74,76 Cu have been measured for the first time. We analyse the resulting mass surface for signs of magicity, comparing the behavior of N=40 to that of known magic numbers and to mid-shell behavior. Contrary to nuclear spectroscopy studies, no indications of a shell or sub-shell closure are found for N=40. (authors)

  18. Impact of Finger Type in Fingerprint Authentication

    Science.gov (United States)

    Gafurov, Davrondzhon; Bours, Patrick; Yang, Bian; Busch, Christoph

    Nowadays fingerprint verification system is the most widespread and accepted biometric technology that explores various features of the human fingers for this purpose. In general, every normal person has 10 fingers with different size. Although it is claimed that recognition performance with little fingers can be less accurate compared to other finger types, to our best knowledge, this has not been investigated yet. This paper presents our study on the topic of influence of the finger type into fingerprint recognition performance. For analysis we employ two fingerprint verification software packages (one public and one commercial). We conduct test on GUC100 multi sensor fingerprint database which contains fingerprint images of all 10 fingers from 100 subjects. Our analysis indeed confirms that performance with small fingers is less accurate than performance with the others fingers of the hand. It also appears that best performance is being obtained with thumb or index fingers. For example, performance deterioration from the best finger (i.e. index or thumb) to the worst fingers (i.e. small ones) can be in the range of 184%-1352%.

  19. A novel algorithm for fast grasping of unknown objects using C-shape configuration

    Science.gov (United States)

    Lei, Qujiang; Chen, Guangming; Meijer, Jonathan; Wisse, Martijn

    2018-02-01

    Increasing grasping efficiency is very important for the robots to grasp unknown objects especially subjected to unfamiliar environments. To achieve this, a new algorithm is proposed based on the C-shape configuration. Specifically, the geometric model of the used under-actuated gripper is approximated as a C-shape. To obtain an appropriate graspable position, this C-shape configuration is applied to fit geometric model of an unknown object. The geometric model of unknown object is constructed by using a single-view partial point cloud. To examine the algorithm using simulations, a comparison of the commonly used motion planners is made. The motion planner with the highest number of solved runs, lowest computing time and the shortest path length is chosen to execute grasps found by this grasping algorithm. The simulation results demonstrate that excellent grasping efficiency is achieved by adopting our algorithm. To validate this algorithm, experiment tests are carried out using a UR5 robot arm and an under-actuated gripper. The experimental results show that steady grasping actions are obtained. Hence, this research provides a novel algorithm for fast grasping of unknown objects.

  20. 200 West Area Ash Pit Demolition Site closure plan. Revision 1

    International Nuclear Information System (INIS)

    Ruck, F.R.

    1994-01-01

    The Ash Pit Demolition Site had two known demolition events, the first occurred in November of 1984, and the second occurred in June of 1986. These demolition events were a form of thermal treatment for discarded explosive chemical products. Because the Ash Pit Demolition Site will no longer be used for this thermal activity, the site will be closed. Closure will be conducted pursuant to the requirements of the Washington State Department of Ecology (Ecology) ''Dangerous Waste Regulations'', Washington Administrative Code (WAC) 173-303-610 and 40 Code of Federal Regulations (CFR) 270.1. The 200 West Area Ash Pit Demolition Site Closure Plan consists of a Part A, Form 3, Dangerous Waste Permit Application (Revision 4) and a closure plan. An explanation of the Part A, Form 3, submitted with this closure plan is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. This closure plan presents a description of the Ash,Pit Demolition Site, the history of the waste treated, and the approach that will be followed to close the Ash Pit Demolition Site. Because there were no radioactively contaminated chemicals involved in the demolitions, the information on radionuclides is provided for ''information only''. Remediation of any radioactive contamination is not within the scope of this closure plan. Only dangerous constituents derived from Ash Pit Demolition Site operations will be addressed in this closure plan in accordance with WAC 173-303-610(2)(b)(i)

  1. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy.

    Science.gov (United States)

    Hwang, Chang Ho; Seong, Jin Wan; Son, Dae-Sik

    2012-08-01

    To evaluate individual finger synchronized robot-assisted hand rehabilitation in stroke patients. Prospective parallel group randomized controlled clinical trial. The study recruited patients who were ≥18 years old, more than three months post stroke, showed limited index finger movement and had weakened and impaired hand function. Patients with severe sensory loss, spasticity, apraxia, aphasia, disabling hand disease, impaired consciousness or depression were excluded. Patients received either four weeks (20 sessions) of active robot-assisted intervention (the FTI (full-term intervention) group, 9 patients) or two weeks (10 sessions) of early passive therapy followed by two weeks (10 sessions) of active robot-assisted intervention (the HTI (half-term intervention) group, 8 patients). Patients underwent arm function assessments prior to therapy (baseline), and at 2, 4 and 8 weeks after starting therapy. Compared to baseline, both the FTI and HTI groups showed improved results for the Jebsen Taylor test, the wrist and hand subportion of the Fugl-Meyer arm motor scale, active movement of the 2nd metacarpophalangeal joint, grasping, and pinching power (P vs. 46.4 ± 37.4) and wrist and hand subportion of the Fugl-Meyer arm motor scale (4.3 ± 1.9 vs. 3.4 ± 2.5) after eight weeks. A four-week rehabilitation using a novel robot that provides individual finger synchronization resulted in a dose-dependent improvement in hand function in subacute to chronic stroke patients.

  2. Hanford Patrol Academy Demolition Sites Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    From 1975 to 1991 the Hanford Patrol Academy Demolition Sites (HPADS) were used for demolition events. These demolition events were a form of thermal treatment for spent or abandoned chemical waste. Because the HPADS will no longer be used for this thermal activity, the sites will be closed. Closure will be conducted pursuant to the requirements of the Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and 40 CFR 270.1. Closure also will satisfy closure requirements of WAC 173-303-680 and for the thermal treatment closure requirements of 40 CFR 265.381. This closure plan presents a description of the HPADS, the history of the waste treated, and the approach that will be followed to close the HPADS. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. Only dangerous constituents derived from HPADS operations will be addressed in this closure plan in accordance with WAC 173-303-610(2)(b)(i). The HPADS are actually two distinct soil closure areas within the Hanford Patrol Academy training area

  3. Neural network committees for finger joint angle estimation from surface EMG signals

    Directory of Open Access Journals (Sweden)

    Reddy Narender P

    2009-01-01

    Full Text Available Abstract Background In virtual reality (VR systems, the user's finger and hand positions are sensed and used to control the virtual environments. Direct biocontrol of VR environments using surface electromyography (SEMG signals may be more synergistic and unconstraining to the user. The purpose of the present investigation was to develop a technique to predict the finger joint angle from the surface EMG measurements of the extensor muscle using neural network models. Methodology SEMG together with the actual joint angle measurements were obtained while the subject was performing flexion-extension rotation of the index finger at three speeds. Several neural networks were trained to predict the joint angle from the parameters extracted from the SEMG signals. The best networks were selected to form six committees. The neural network committees were evaluated using data from new subjects. Results There was hysteresis in the measured SMEG signals during the flexion-extension cycle. However, neural network committees were able to predict the joint angle with reasonable accuracy. RMS errors ranged from 0.085 ± 0.036 for fast speed finger-extension to 0.147 ± 0.026 for slow speed finger extension, and from 0.098 ± 0.023 for the fast speed finger flexion to 0.163 ± 0.054 for slow speed finger flexion. Conclusion Although hysteresis was observed in the measured SEMG signals, the committees of neural networks were able to predict the finger joint angle from SEMG signals.

  4. EMG finger movement classification based on ANFIS

    Science.gov (United States)

    Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.

    2018-04-01

    An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.

  5. Fingers that change color

    Science.gov (United States)

    ... gov/ency/article/003249.htm Fingers that change color To use the sharing features on this page, please enable JavaScript. Fingers or toes may change color when they are exposed to cold temperatures or ...

  6. A GRASP METAHEURISTIC FOR THE ORDERED CUTTING STOCK PROBLEM UN META-HEURÍSTICO GRASP PARA EL PROBLEMA DE STOCK DE CORTE ORDENADO

    Directory of Open Access Journals (Sweden)

    Rodrigo Rabello Golfeto

    2008-12-01

    Full Text Available This study presents a new mathematical model and a Greedy Randomized Adaptive Search Procedure (GRASP meta-heuristic to solve the ordered cutting stock problem. The ordered cutting stock problem was recently introduced in literature. It is appropriate to minimize the raw material used by industries that deal with reduced product inventories, such as industries that use the just-in-time basis for their production. In such cases, classic models for solving the cutting stock problem are useless. Results obtained from computational experiments for a set of random instances demonstrate that the proposed method can be applied to large industries that process cuts on their production lines and do not stock their products.Este estudio presenta un nuevo modelo matemático y un procedimiento meta-heurístico de búsqueda voraz adaptativa y aleatoria (GRASP, por sus siglas en inglés para resolver el problema de stock de corte ordenado. Éste problema ha sido introducido recientemente en la literatura. Es apropiado minimizar la materia prima usada por las industrias que manipulan inventarios reducidos de productos, tales como las industrias que usan la base justo a tiempo para su producción. En tales casos, los modelos clásicos para resolver el problema de stock de corte ordenado son inútiles. Los resultados obtenidos, mediante experimentos computacionales para un conjunto de ejemplos aleatorios, demuestran que el método propuesto puede ser aplicado a industrias grandes que procesan cortes en sus líneas de producción y no mantienen en stock sus productos.

  7. Optimizing Grippers for Compensating Pose Uncertainties by Dynamic Simulation

    DEFF Research Database (Denmark)

    Wolniakowski, Adam; Kramberger, Aljaž; Gams, Andrej

    2017-01-01

    Gripper design process is one of the interesting challenges in the context of grasping within industry. Typically, simple parallel-finger grippers, which are easy to install and maintain, are used in platforms for robotic grasping. The context switches in these platforms require frequent exchange......, we have presented a method to automatically compute the optimal finger shapes for defined task contexts in simulation. In this paper, we show the performance of our method in an industrial grasping scenario. We first analyze the uncertainties of the used vision system, which are the major source...

  8. Timing and extent of finger force enslaving during a dynamic force task cannot be explained by EMG activity patterns.

    Directory of Open Access Journals (Sweden)

    Mojtaba Mirakhorlo

    Full Text Available Finger enslaving is defined as the inability of the fingers to move or to produce force independently. Such finger enslaving has predominantly been investigated for isometric force tasks. The aim of this study was to assess whether the extent of force enslaving is dependent on relative finger movements. Ten right-handed subjects (22-30 years flexed the index finger while counteracting constant resistance forces (4, 6 and 8 N orthogonal to the fingertip. The other, non-instructed fingers were held in extension. EMG activities of the mm. flexor digitorum superficialis (FDS and extensor digitorum (ED in the regions corresponding to the index, middle and ring fingers were measured. Forces exerted by the non-instructed fingers increased substantially (by 0.2 to 1.4 N with flexion of the index finger, increasing the enslaving effect with respect to the static, pre-movement phase. Such changes in force were found 260-370 ms after the initiation of index flexion. The estimated MCP joint angle of the index finger at which forces exerted by the non-instructed fingers started to increase varied between 4° and 6°. In contrast to the finger forces, no significant changes in EMG activity of the FDS regions corresponding to the non-instructed fingers upon index finger flexion were found. This mismatch between forces and EMG of the non-instructed fingers, as well as the delay in force development are in agreement with connective tissue linkages being slack when the positions of the fingers are similar, but pulled taut when one finger moves relative to the others. Although neural factors cannot be excluded, our results suggest that mechanical connections between muscle-tendon structures were (at least partly responsible for the observed increase in force enslaving during index finger flexion.

  9. Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis

    Directory of Open Access Journals (Sweden)

    Isabelle Gillot

    2009-01-01

    Full Text Available During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.

  10. Role of zinc finger structure in nuclear localization of transcription factor Sp1

    International Nuclear Information System (INIS)

    Ito, Tatsuo; Azumano, Makiko; Uwatoko, Chisana; Itoh, Kohji; Kuwahara, Jun

    2009-01-01

    Transcription factor Sp1 is localized in the nucleus and regulates gene expression. Our previous study demonstrated that the carboxyl terminal region of Sp1 containing 3-zinc finger region as DNA binding domain can also serve as nuclear localization signal (NLS). However, the nuclear transport mechanism of Sp1 has not been well understood. In this study, we performed a gene expression study on mutant Sp1 genes causing a set of amino acid substitutions in zinc finger domains to elucidate nuclear import activity. Nuclear localization of the GFP-fused mutant Sp1 proteins bearing concomitant substitutions in the first and third zinc fingers was highly inhibited. These mutant Sp1 proteins had also lost the binding ability as to the GC box sequence. The results suggest that the overall tertiary structure formed by the three zinc fingers is essential for nuclear localization of Sp1 as well as dispersed basic amino acids within the zinc fingers region.

  11. Learning to Grasp Unknown Objects Based on 3D Edge Information

    DEFF Research Database (Denmark)

    Bodenhagen, Leon; Kraft, Dirk; Popovic, Mila

    2010-01-01

    In this work we refine an initial grasping behavior based on 3D edge information by learning. Based on a set of autonomously generated evaluated grasps and relations between the semi-global 3D edges, a prediction function is learned that computes a likelihood for the success of a grasp using either...... an offline or an online learning scheme. Both methods are implemented using a hybrid artificial neural network containing standard nodes with a sigmoid activation function and nodes with a radial basis function. We show that a significant performance improvement can be achieved....

  12. Software for relativistic atomic structure theory: The grasp project at oxford

    International Nuclear Information System (INIS)

    Parpia, F.A.; Grant, I.P.

    1991-01-01

    GRASP is an acronym for General-purpose Relativistic Atomic Structure Program. The objective of the GRASP project at Oxford is to produce user-friendly state-of-the-art multiconfiguration Dirac-Fock (MCDF) software packages for rleativistic atomic structure theory

  13. Transcatheter closure of patent ductus arteriosus with special conformation

    International Nuclear Information System (INIS)

    Zhang Yigang; Li Shijie; Fu Qiang

    2009-01-01

    Objective: To discuss the technique of transcatheter closure for the treatment of patent ductus arteriosus (PDA) with special conformation so as to improve the technical success rate and clinical safety. Methods: Transcatheter closure was performed in 23 patients with PDA of special types by using different devices according to the angiocardiographic conformation and the clinical manifestation. The therapeutic results were evaluated by transthoracic color Doppler echocardiography at 24 hours, one, three and six months after the operation. Results: Different occluders were successfully implanted in all patients. PDA of special types was found in 23 patients, which included: (1) special conformation (n=12), consisting of small type (n=5), huge type (n=3), aneurismal type (n=2) and displayed on special exposure position (n=2), (2) accompanied by other malformations (n=2), containing dextroaortic arch (n=1) and dextrocardia (n=1), (3) associated with severe pulmonary hypertension (n=8) and (4) recanalization after surgery (n=1). Conclusion: For PDA with special conformation, therapeutic strategy should be individually formulated in order to smoothly bring the closure procedure to success. (authors)

  14. Statistical analysis on finger replacement schemes for RAKE receivers in the soft handover region with multiple BSs over i.n.d. fading channels

    KAUST Repository

    Nam, Sung Sik; Ko, Young-Chai; Alouini, Mohamed-Slim; Choi, Seyeong

    2017-01-01

    . To supplement our previous work, we present a general comprehensive framework for the performance assessment of the proposed finger replacement schemes operating over independent but non-identically distributed (i.n.d.) faded paths. To accomplish this object, we

  15. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.

    Science.gov (United States)

    Burton, T M W; Vaidyanathan, R; Burgess, S C; Turton, A J; Melhuish, C

    2011-01-01

    This paper reports the integration of a kinematic model of the human hand during cylindrical grasping, with specific focus on the accurate mapping of thumb movement during grasping motions, and a novel, multi-degree-of-freedom assistive exoskeleton mechanism based on this model. The model includes thumb maximum hyper-extension for grasping large objects (~> 50 mm). The exoskeleton includes a novel four-bar mechanism designed to reproduce natural thumb opposition and a novel synchro-motion pulley mechanism for coordinated finger motion. A computer aided design environment is used to allow the exoskeleton to be rapidly customized to the hand dimensions of a specific patient. Trials comparing the kinematic model to observed data of hand movement show the model to be capable of mapping thumb and finger joint flexion angles during grasping motions. Simulations show the exoskeleton to be capable of reproducing the complex motion of the thumb to oppose the fingers during cylindrical and pinch grip motions. © 2011 IEEE

  16. Grasping convergent evolution in syngnathids: a unique tale of tails

    Science.gov (United States)

    Neutens, C; Adriaens, D; Christiaens, J; De Kegel, B; Dierick, M; Boistel, R; Van Hoorebeke, L

    2014-01-01

    Seahorses and pipehorses both possess a prehensile tail, a unique characteristic among teleost fishes, allowing them to grasp and hold onto substrates such as sea grasses. Although studies have focused on tail grasping, the pattern of evolutionary transformations that made this possible is poorly understood. Recent phylogenetic studies show that the prehensile tail evolved independently in different syngnathid lineages, including seahorses, Haliichthys taeniophorus and several types of so-called pipehorses. This study explores the pattern that characterizes this convergent evolution towards a prehensile tail, by comparing the caudal musculoskeletal organization, as well as passive bending capacities in pipefish (representing the ancestral state), pipehorse, seahorse and H. taeniophorus. To study the complex musculoskeletal morphology, histological sectioning, μCT-scanning and phase contrast synchrotron scanning were combined with virtual 3D-reconstructions. Results suggest that the independent evolution towards tail grasping in syngnathids reflects at least two quite different strategies in which the ancestral condition of a heavy plated and rigid system became modified into a highly flexible one. Intermediate skeletal morphologies (between the ancestral condition and seahorses) could be found in the pygmy pipehorses and H. taeniophorus, which are phylogenetically closely affiliated with seahorses. This study suggests that the characteristic parallel myoseptal organization as already described in seahorse (compared with a conical organization in pipefish and pipehorse) may not be a necessity for grasping, but represents an apomorphy for seahorses, as this pattern is not found in other syngnathid species possessing a prehensile tail. One could suggest that the functionality of grasping evolved before the specialized, parallel myoseptal organization seen in seahorses. However, as the grasping system in pipehorses is a totally different one, this cannot be

  17. 218-E-8 Borrow Pit Demolition Site closure plan. Revision 1

    International Nuclear Information System (INIS)

    Ruck, F.R.

    1994-01-01

    The 218-E-8 Demolition Site was the site of a single demolition event in November of 1984. This demolition event was a form of thermal treatment for discarded explosive chemical products. Because the 218-E-8 Demolition Site will no longer be used for this thermal activity, the site will be closed. Closure will be conducted pursuant to the requirements of the Washington State Department of Ecology (Ecology) ''Dangerous Waste Regulations,'' Washington Administrative Code (WAC) 173-303-610 and 40 Code of Federal Regulations (CFR) 270.1. The 218-E-8 Borrow Pit Demolition Site Closure Plan consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3, Revision 4, and a closure plan. An explanation of the Part A Form 3, submitted with this closure plan is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. This closure plan presents a description of the 218-E-8 Demolition Site, the history of the waste treated, and the approach that will be followed to close the 218-E-8 Demolition Site. Because there were no radioactively contaminated chemicals involved in t he demolitions at the 218-E-8 Borrow Pit site, the information on radionuclides is provided for ''information only.'' Remediation of any radioactive contamination is not within the scope of this closure plan. Only dangerous constituents derived from 218-E-8 Demolition Site operations will be addressed in this closure plan in accordance with WAC 173-303-610(2)(b)(i)

  18. Systematic classification of the His-Me finger superfamily.

    Science.gov (United States)

    Jablonska, Jagoda; Matelska, Dorota; Steczkiewicz, Kamil; Ginalski, Krzysztof

    2017-11-16

    The His-Me finger endonucleases, also known as HNH or ββα-metal endonucleases, form a large and diverse protein superfamily. The His-Me finger domain can be found in proteins that play an essential role in cells, including genome maintenance, intron homing, host defense and target offense. Its overall structural compactness and non-specificity make it a perfectly-tailored pathogenic module that participates on both sides of inter- and intra-organismal competition. An extremely low sequence similarity across the superfamily makes it difficult to identify and classify new His-Me fingers. Using state-of-the-art distant homology detection methods, we provide an updated and systematic classification of His-Me finger proteins. In this work, we identified over 100 000 proteins and clustered them into 38 groups, of which three groups are new and cannot be found in any existing public domain database of protein families. Based on an analysis of sequences, structures, domain architectures, and genomic contexts, we provide a careful functional annotation of the poorly characterized members of this superfamily. Our results may inspire further experimental investigations that should address the predicted activity and clarify the potential substrates, to provide more detailed insights into the fundamental biological roles of these proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  20. Finger multibiometric cryptosystems: fusion strategy and template security

    Science.gov (United States)

    Peng, Jialiang; Li, Qiong; Abd El-Latif, Ahmed A.; Niu, Xiamu

    2014-03-01

    We address two critical issues in the design of a finger multibiometric system, i.e., fusion strategy and template security. First, three fusion strategies (feature-level, score-level, and decision-level fusions) with the corresponding template protection technique are proposed as the finger multibiometric cryptosystems to protect multiple finger biometric templates of fingerprint, finger vein, finger knuckle print, and finger shape modalities. Second, we theoretically analyze different fusion strategies for finger multibiometric cryptosystems with respect to their impact on security and recognition accuracy. Finally, the performance of finger multibiometric cryptosystems at different fusion levels is investigated on a merged finger multimodal biometric database. The comparative results suggest that the proposed finger multibiometric cryptosystem at feature-level fusion outperforms other approaches in terms of verification performance and template security.

  1. Virtual Control of Prosthetic Hand Based on Grasping Patterns and Estimated Force from Semg

    Directory of Open Access Journals (Sweden)

    Zhu Gao-Ke

    2016-01-01

    Full Text Available Myoelectric prosthetic hands aim to serve upper limb amputees. The myoelectric control of the hand grasp action is a kind of real-time or online method. Thus it is of great necessity to carry on a study of online prosthetic hand electrical control. In this paper, the strategy of simultaneous EMG decoding of grasping patterns and grasping force was realized by controlling a virtual multi-degree-freedom prosthetic hand and a real one-degree-freedom prosthetic hand simultaneously. The former realized the grasping patterns from the recognition of the sEMG pattern. The other implemented the grasping force from sEMG force decoding. The results show that the control method is effective and feasible.

  2. Emotional Communication in Finger Braille

    Directory of Open Access Journals (Sweden)

    Yasuhiro Matsuda

    2010-01-01

    Full Text Available We describe analyses of the features of emotions (neutral, joy, sadness, and anger expressed by Finger Braille interpreters and subsequently examine the effectiveness of emotional expression and emotional communication between people unskilled in Finger Braille. The goal is to develop a Finger Braille system to teach emotional expression and a system to recognize emotion. The results indicate the following features of emotional expression by interpreters. The durations of the code of joy were significantly shorter than the durations of the other emotions, the durations of the code of sadness were significantly longer, and the finger loads of anger were significantly larger. The features of emotional expression by unskilled subjects were very similar to those of the interpreters, and the coincidence ratio of emotional communication was 75.1%. Therefore, it was confirmed that people unskilled in Finger Braille can express and communicate emotions using this communication medium.

  3. [Treatment of trigger finger with located needle knife].

    Science.gov (United States)

    Zhang, Qi-Feng; Yang, Jiang; Xi, Sheng-Hua

    2016-07-25

    To investigate the clinical effects of located needle knife in the treatment of trigger finger. The clinical data of 133 patients(145 fingers) with trigger finger underwent treatment with located needle knife from September 2010 to March 2014 were retrospectively analyzed. There were 37 males(40 fingers) and 96 females (105 fingers), aged from 18 to 71 years old with a mean of 51.8 years. Course of disease was from 1 to 19 months with an average of 8.2 months. Affected fingers included 82 thumbs, 12 index fingers, 11 middle fingers, 36 ring fingers, and 4 little fingers. According to the standard of Quinnell grade, 42 fingers were grade III, 92 fingers were grade IV, and 11 fingers were grade V. Firstly the double pipe gab was put into the distal edge of hypertrophic tendon sheath, then small knife needle was used to release the sheath proximally along the tendon line direction. The informations of wound healing and nerve injury, postoperative finger function, finger pain at 6 months were observed. The operation time was from 8 to 25 min with an average of 9.8 min. All the patients were followed up from 6 to 26 months with an average of 12.5 months. No complications such as the wound inflammation and seepage, vascular or nerve injuries were found. According to the standard of Quinnell grade, 123 fingers got excellent results, 15 good, 7 poor. It's a good choice to treat trigger finger with located needle knife in advantage of minimal invasion, simple safe operation, and it should be promoted in clinic.

  4. The creation of the artificial RING finger from the cross-brace zinc finger by α-helical region substitution

    International Nuclear Information System (INIS)

    Miyamoto, Kazuhide; Togiya, Kayo

    2010-01-01

    The creation of the artificial RING finger as ubiquitin-ligating enzyme (E3) has been demonstrated. In this study, by the α-helical region substitution between the EL5 RING finger and the Williams-Beuren syndrome transcription factor (WSTF) PHD finger, the artificial E3 (WSTF PHD R ING finger) was newly created. The experiments of the chemical modification of residues Cys and the circular dichroism spectra revealed that the WSTF PHD R ING finger binds two zinc atoms and adopts the zinc-dependent ordered-structure. In the substrate-independent ubiquitination assay, the WSTF PHD R ING finger functions as E3 and was poly- or mono-ubiquitinated. The present strategy is very simple and convenient, and consequently it might be widely applicable to the creation of various artificial E3 RING fingers with the specific ubiquitin-conjugating enzyme (E2)-binding capability.

  5. Limited fine motor and grasping skills in 6-month-old infants at high risk for autism.

    Science.gov (United States)

    Libertus, Klaus; Sheperd, Kelly A; Ross, Samuel W; Landa, Rebecca J

    2014-01-01

    Atypical motor behaviors are common among children with autism spectrum disorders (ASD). However, little is known about onset and functional implications of differences in early motor development among infants later diagnosed with ASD. Two prospective experiments were conducted to investigate motor skills among 6-month-olds at increased risk (high risk) for ASD (N1  = 129; N2  = 46). Infants were assessed using the Mullen Scales of Early Learning (MSEL) and during toy play. Across both experiments, high-risk infants exhibited less mature object manipulation in a highly structured (MSEL) context and reduced grasping activity in an unstructured (free-play) context than infants with no family history of ASD. Longitudinal assessments suggest that between 6 and 10 months, grasping activity increases in high-risk infants. © 2014 The Authors. Child Development © 2014 Society for Research in Child Development, Inc.

  6. Brain Function Overlaps When People Observe Emblems, Speech, and Grasping

    Science.gov (United States)

    Andric, Michael; Solodkin, Ana; Buccino, Giovanni; Goldin-Meadow, Susan; Rizzolatti, Giacomo; Small, Steven L.

    2013-01-01

    A hand grasping a cup or gesturing ‘thumbs-up’, while both manual actions, have different purposes and effects. Grasping directly affects the cup, whereas gesturing ‘thumbs-up’ has an effect through an implied verbal (symbolic) meaning. Because grasping and emblematic gestures (‘emblems’) are both goal-oriented hand actions, we pursued the hypothesis that observing each should evoke similar activity in neural regions implicated in processing goal-oriented hand actions. However, because emblems express symbolic meaning, observing them should also evoke activity in regions implicated in interpreting meaning, which is most commonly expressed in language. Using fMRI to test this hypothesis, we had participants watch videos of an actor performing emblems, speaking utterances matched in meaning to the emblems, and grasping objects. Our results show that lateral temporal and inferior frontal regions respond to symbolic meaning, even when it is expressed by a single hand action. In particular, we found that left inferior frontal and right lateral temporal regions are strongly engaged when people observe either emblems or speech. In contrast, we also replicate and extend previous work that implicates parietal and premotor responses in observing goal-oriented hand actions. For hand actions, we found that bilateral parietal and premotor regions are strongly engaged when people observe either emblems or grasping. These findings thus characterize converging brain responses to shared features (e.g., symbolic or manual), despite their encoding and presentation in different stimulus modalities. PMID:23583968

  7. Brain function overlaps when people observe emblems, speech, and grasping.

    Science.gov (United States)

    Andric, Michael; Solodkin, Ana; Buccino, Giovanni; Goldin-Meadow, Susan; Rizzolatti, Giacomo; Small, Steven L

    2013-07-01

    A hand grasping a cup or gesturing "thumbs-up", while both manual actions, have different purposes and effects. Grasping directly affects the cup, whereas gesturing "thumbs-up" has an effect through an implied verbal (symbolic) meaning. Because grasping and emblematic gestures ("emblems") are both goal-oriented hand actions, we pursued the hypothesis that observing each should evoke similar activity in neural regions implicated in processing goal-oriented hand actions. However, because emblems express symbolic meaning, observing them should also evoke activity in regions implicated in interpreting meaning, which is most commonly expressed in language. Using fMRI to test this hypothesis, we had participants watch videos of an actor performing emblems, speaking utterances matched in meaning to the emblems, and grasping objects. Our results show that lateral temporal and inferior frontal regions respond to symbolic meaning, even when it is expressed by a single hand action. In particular, we found that left inferior frontal and right lateral temporal regions are strongly engaged when people observe either emblems or speech. In contrast, we also replicate and extend previous work that implicates parietal and premotor responses in observing goal-oriented hand actions. For hand actions, we found that bilateral parietal and premotor regions are strongly engaged when people observe either emblems or grasping. These findings thus characterize converging brain responses to shared features (e.g., symbolic or manual), despite their encoding and presentation in different stimulus modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. 300 Area Process Trenches Closure Plan

    International Nuclear Information System (INIS)

    Luke, S.N.

    1994-01-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the US Department of Energy, Richland Operations Office and has served as co-operator of the 300 Area Process Trenches, the waste management unit addressed in this closure plan. For the purposes of the Resource Conservation and Recovery Act, Westinghouse Hanford Company is identified as ''co-operator.'' The 300 Area Process Trenches Closure Plan (Revision 0) consists of a Resource Conservation and Recovery Act Part A Dangerous Waste Permit Application, Form 3 and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A Permit Application, Form 3 submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and six appendices. The 300 Area Process Trenches received dangerous waste discharges from research and development laboratories in the 300 Area and from fuels fabrication processes. This waste consisted of state-only toxic (WT02), corrosive (D002), chromium (D007), spent halogenated solvents (F001, F002, and F003), and spent nonhalogented solvent (F005). Accurate records are unavailable concerning the amount of dangerous waste discharged to the trenches. The estimated annual quantity of waste (item IV.B) reflects the total quantity of both regulated and nonregulated waste water that was discharged to the unit

  9. Continuous grasp algorithm applied to economic dispatch problem of thermal units

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Neto, Julio Xavier [Pontifical Catholic University of Parana - PUCPR, Curitiba, PR (Brazil). Undergraduate Program at Mechatronics Engineering; Bernert, Diego Luis de Andrade; Coelho, Leandro dos Santos [Pontifical Catholic University of Parana - PUCPR, Curitiba, PR (Brazil). Industrial and Systems Engineering Graduate Program, LAS/PPGEPS], e-mail: leandro.coelho@pucpr.br

    2010-07-01

    The economic dispatch problem (EDP) is one of the fundamental issues in power systems to obtain benefits with the stability, reliability and security. Its objective is to allocate the power demand among committed generators in the most economical manner, while all physical and operational constraints are satisfied. The cost of power generation, particularly in fossil fuel plants, is very high and economic dispatch helps in saving a significant amount of revenue. Recently, as an alternative to the conventional mathematical approaches, modern heuristic optimization techniques such as simulated annealing, evolutionary algorithms, neural networks, ant colony, and tabu search have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. On other hand, continuous GRASP (C-GRASP) is a stochastic local search meta-heuristic for finding cost-efficient solutions to continuous global optimization problems subject to box constraints. Like a greedy randomized adaptive search procedure (GRASP), a C-GRASP is a multi-start procedure where a starting solution for local improvement is constructed in a greedy randomized fashion. The C-GRASP algorithm is validated for a test system consisting of fifteen units, test system that takes into account spinning reserve and prohibited operating zones constrains. (author)

  10. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.

    Science.gov (United States)

    Vaidya, Mukta; Balasubramanian, Karthikeyan; Southerland, Joshua; Badreldin, Islam; Eleryan, Ahmed; Shattuck, Kelsey; Gururangan, Suchin; Slutzky, Marc; Osborne, Leslie; Fagg, Andrew; Oweiss, Karim; Hatsopoulos, Nicholas G

    2018-04-01

    The development of coordinated reach-to-grasp movement has been well studied in infants and children. However, the role of motor cortex during this development is unclear because it is difficult to study in humans. We took the approach of using a brain-machine interface (BMI) paradigm in rhesus macaques with prior therapeutic amputations to examine the emergence of novel, coordinated reach to grasp. Previous research has shown that after amputation, the cortical area previously involved in the control of the lost limb undergoes reorganization, but prior BMI work has largely relied on finding neurons that already encode specific movement-related information. In this study, we taught macaques to cortically control a robotic arm and hand through operant conditioning, using neurons that were not explicitly reach or grasp related. Over the course of training, stereotypical patterns emerged and stabilized in the cross-covariance between the reaching and grasping velocity profiles, between pairs of neurons involved in controlling reach and grasp, and to a comparable, but lesser, extent between other stable neurons in the network. In fact, we found evidence of this structured coordination between pairs composed of all combinations of neurons decoding reach or grasp and other stable neurons in the network. The degree of and participation in coordination was highly correlated across all pair types. Our approach provides a unique model for studying the development of novel, coordinated reach-to-grasp movement at the behavioral and cortical levels. NEW & NOTEWORTHY Given that motor cortex undergoes reorganization after amputation, our work focuses on training nonhuman primates with chronic amputations to use neurons that are not reach or grasp related to control a robotic arm to reach to grasp through the use of operant conditioning, mimicking early development. We studied the development of a novel, coordinated behavior at the behavioral and cortical level, and the neural

  11. Finger tapping ability in healthy elderly and young adults.

    Science.gov (United States)

    Aoki, Tomoko; Fukuoka, Yoshiyuki

    2010-03-01

    The maximum isometric force production capacity of the fingers decreases with age. However, little information is available on age-related changes in dynamic motor capacity of individual fingers. The purpose of this study was to compare the dynamic motor function of individual fingers between elderly and young adults using rapid single-finger and double-finger tapping. Fourteen elderly and 14 young adults performed maximum frequency tapping by the index, middle, ring, or little finger (single-finger tapping) and with alternate movements of the index-middle, middle-ring, or ring-little finger-pair (double-finger tapping). The maximum pinch force between the thumb and each finger, tactile sensitivity of each fingertip, and time taken to complete a pegboard test were also measured. Compared with young subjects, the older subjects had significantly slower tapping rates in all fingers and finger-pairs in the tapping tasks. The age-related decline was also observed in the tactile sensitivities of all fingers and in the pegboard test. However, there was no group difference in the pinch force of any finger. The tapping rate of each finger did not correlate with the pinch force or tactile sensitivity for the corresponding finger in the elderly subjects. Maximum rate of finger tapping was lower in the elderly adults compared with the young adults. The decline of finger tapping ability in elderly adults seems to be less affected by their maximum force production capacities of the fingers as well as tactile sensitivities at the tips of the fingers.

  12. Responses of mirror neurons in area F5 to hand and tool grasping observation

    Science.gov (United States)

    Rochat, Magali J.; Caruana, Fausto; Jezzini, Ahmad; Escola, Ludovic; Intskirveli, Irakli; Grammont, Franck; Gallese, Vittorio; Rizzolatti, Giacomo

    2010-01-01

    Mirror neurons are a distinct class of neurons that discharge both during the execution of a motor act and during observation of the same or similar motor act performed by another individual. However, the extent to which mirror neurons coding a motor act with a specific goal (e.g., grasping) might also respond to the observation of a motor act having the same goal, but achieved with artificial effectors, is not yet established. In the present study, we addressed this issue by recording mirror neurons from the ventral premotor cortex (area F5) of two monkeys trained to grasp objects with pliers. Neuron activity was recorded during the observation and execution of grasping performed with the hand, with pliers and during observation of an experimenter spearing food with a stick. The results showed that virtually all neurons responding to the observation of hand grasping also responded to the observation of grasping with pliers and, many of them to the observation of spearing with a stick. However, the intensity and pattern of the response differed among conditions. Hand grasping observation determined the earliest and the strongest discharge, while pliers grasping and spearing observation triggered weaker responses at longer latencies. We conclude that F5 grasping mirror neurons respond to the observation of a family of stimuli leading to the same goal. However, the response pattern depends upon the similarity between the observed motor act and the one executed by the hand, the natural motor template. PMID:20577726

  13. Role of Rayleigh numbers on characteristics of double diffusive salt fingers

    Science.gov (United States)

    Rehman, F.; Singh, O. P.

    2018-05-01

    Double diffusion convection, driven by two constituents of the fluid with different molecular diffusivity, is widely applied in oceanography and large number of other fields like astrophysics, geology, chemistry and metallurgy. In case of ocean, heat (T) and salinity (S) are the two components with varying diffusivity, where heat diffuses hundred times faster than salt. Component (T) stabilizes the system whereas components (S) destabilizes the system with overall density remains stable and forms the rising and sinking fingers known as salt fingers. Recent observations suggest that salt finger characteristics such as growth rates, wavenumber, and fluxes are strongly depending on the Rayleigh numbers as major driving force. In this paper, we corroborate this observation with the help of experiments, numerical simulations and linear theory. An eigenvalue expression for growth rate is derived from the linearized governing equations with explicit dependence on Rayleigh numbers, density stability ratio, Prandtl number and diffusivity ratio. Expressions for fastest growing fingers are also derived as a function various non-dimensional parameter. The predicted results corroborate well with the data reported from the field measurements, experiments and numerical simulations.

  14. Development of Reaching and Grasping skills in infants with Down syndrome

    NARCIS (Netherlands)

    de Campos, A.C.; Rocha, N.A.C.F.; Savelsbergh, G.J.P.

    2010-01-01

    Reaching and grasping skills have been described to emerge from a dynamic interaction between intrinsic and extrinsic factors. The aims of the study were to investigate the effect of such intrinsic factors as age and Down syndrome on the development of reaching and grasping skills and on overall

  15. Student behavior during a school closure caused by pandemic influenza A/H1N1.

    Science.gov (United States)

    Miller, Joel C; Danon, Leon; O'Hagan, Justin J; Goldstein, Edward; Lajous, Martin; Lipsitch, Marc

    2010-05-05

    Many schools were temporarily closed in response to outbreaks of the recently emerged pandemic influenza A/H1N1 virus. The effectiveness of closing schools to reduce transmission depends largely on student/family behavior during the closure. We sought to improve our understanding of these behaviors. To characterize this behavior, we surveyed students in grades 9-12 and parents of students in grades 5-8 about student activities during a week long closure of a school during the first months after the disease emerged. We found significant interaction with the community and other students-though less interaction with other students than during school-with the level of interaction increasing with grade. Our results are useful for the future design of social distancing policies and to improving the ability of modeling studies to accurately predict their impact.

  16. Finger replantation: surgical technique and indications.

    Science.gov (United States)

    Barbary, S; Dap, F; Dautel, G

    2013-12-01

    In this article, we discuss the surgical technique of finger replantation in detail, distinguishing particularities of technique in cases of thumb amputation, children fingertip replantation, ring finger avulsion, and very distal replantations. We emphasize the principles of bone shortening, the spare part concept, the special importance of nerve sutures and the use of vein graft in case of avulsion or crushing. However, even if finger replantation is now a routine procedure, a clear distinction should be made between revascularization and functional success. The indications for finger replantation are then detailed in the second part of this paper. The absolute indications for replantation are thumb, multiple fingers, transmetacarpal or hand, and any upper extremity amputation in a child whatever the level. Fingertip amputations distal to the insertion of the Flexor digitorum superficialis (FDS) are also a good indication. Other cases are more controversial because of the poor functional outcome, especially for the index finger, which is often functionally excluded. Copyright © 2013. Published by Elsevier SAS.

  17. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Industrial robots are expected to undertake ever more advanced tasks in the modern manufacturing industry, such as intelligent grasping, in which robots should be capable of recognizing the position and orientation of a part before grasping it. In this paper, a monocular-based 6-degree of freedom (DOF pose estimation technology to enable robots to grasp large-size parts at informal poses is proposed. A camera was mounted on the robot end-flange and oriented to measure several featured points on the part before the robot moved to grasp it. In order to estimate the part pose, a nonlinear optimization model based on the camera object space collinearity error in different poses is established, and the initial iteration value is estimated with the differential transformation. Measuring poses of the camera are optimized based on uncertainty analysis. Also, the principle of the robotic intelligent grasping system was developed, with which the robot could adjust its pose to grasp the part. In experimental tests, the part poses estimated with the method described in this paper were compared with those produced by a laser tracker, and results show the RMS angle and position error are about 0.0228° and 0.4603 mm. Robotic intelligent grasping tests were also successfully performed in the experiments.

  18. Statistical Identification of Composed Visual Features Indicating High Likelihood of Grasp Success

    DEFF Research Database (Denmark)

    Thomsen, Mikkel Tang; Bodenhagen, Leon; Krüger, Norbert

    2013-01-01

    configurations of three 3D surface features that predict grasping actions with a high success probability. The strategy is based on first computing spatial relations between visual entities and secondly, exploring the cross-space of these relational feature space and grasping actions. The data foundation...... for identifying such indicative feature constellations is generated in a simulated environment wherein visual features are extracted and a large amount of grasping actions are evaluated through dynamic simulation. Based on the identified feature constellations, we validate by applying the acquired knowledge...

  19. Generic Automated Multi-function Finger Design

    Science.gov (United States)

    Honarpardaz, M.; Tarkian, M.; Sirkett, D.; Ölvander, J.; Feng, X.; Elf, J.; Sjögren, R.

    2016-11-01

    Multi-function fingers that are able to handle multiple workpieces are crucial in improvement of a robot workcell. Design automation of multi-function fingers is highly demanded by robot industries to overcome the current iterative, time consuming and complex manual design process. However, the existing approaches for the multi-function finger design automation are unable to entirely meet the robot industries’ need. This paper proposes a generic approach for design automation of multi-function fingers. The proposed approach completely automates the design process and requires no expert skill. In addition, this approach executes the design process much faster than the current manual process. To validate the approach, multi-function fingers are successfully designed for two case studies. Further, the results are discussed and benchmarked with existing approaches.

  20. Primary closure of equine laryngotomy incisions

    DEFF Research Database (Denmark)

    Lindegaard, C.; Karlsson, L.; Ekstrøm, Claus Thorn

    2016-01-01

    incision between January 1995 and June 2012 were reviewed. Horses with a laryngotomy incision closed in three layers for primary healing were included. Descriptive data on healing characteristics and complications of laryngotomy wounds were collected from the medical records and via follow......The objective was to report healing characteristics and complications after primary closure of equine laryngotomies and analyse factors potentially associated with complications. This retrospective case series of the medical records of horses (n = 180) undergoing laryngoplasty and laryngotomy...... after primary closure of equine laryngotomy incisions are infrequent and considered of minimal severity and can be performed safely when paying careful attention to the closure of the cricothyroid membrane....

  1. Patent foramen ovale closure using a bioabsorbable closure device: safety and efficacy at 6-month follow-up.

    Science.gov (United States)

    Van den Branden, Ben J; Post, Martijn C; Plokker, Herbert W; ten Berg, Jurriën M; Suttorp, Maarten J

    2010-09-01

    The aim of this study was to assess the mid-term safety and efficacy of percutaneous patent foramen ovale (PFO) closure using a bioabsorbable device (BioSTAR, NMT Medical, Boston, Massachusetts). Closure of PFO in patients with cryptogenic stroke has proven to be safe and effective using different types of permanent devices. All consecutive patients who underwent percutaneous PFO closure with the bioabsorbable closure device between November 2007 and January 2009 were included. Residual shunt was assessed using contrast transthoracic echocardiography. Sixty-two patients (55% women, mean age 47.7 ± 11.8 years) underwent PFO closure. The in-hospital complications were a surgical device retrieval in 2 patients (3.2%), device reposition in 1 (1.6%), and a minimal groin hematoma in 6 patients (9.7%). The short-term complications at 1-month follow-up (n = 60) were a transient ischemic attack in the presence of a residual shunt in 1 patient and new supraventricular tachycardia in 7 patients (11.3%). At 6-month follow-up (n = 60), 1 patient without residual shunt developed a transient ischemic attack and 1 developed atrial fibrillation. A mild or moderate residual shunt was noted in 51.7%, 33.9%, and 23.7% after 1-day, 1-month, and 6-month follow-up, respectively. A large shunt was present in 8.3%, 3.4%, and 0% after 1-day, 1-month, and 6-month follow-up. Closure of PFO using the bioabsorbable device is associated with a low complication rate and a low recurrence rate of embolic events. However, a relatively high percentage of mild or moderate residual shunting is still present at 6-month follow-up. Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  3. Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes.

    Science.gov (United States)

    Srinivasachary; Dida, Mathews M; Gale, Mike D; Devos, Katrien M

    2007-08-01

    Finger millet is an allotetraploid (2n = 4x = 36) grass that belongs to the Chloridoideae subfamily. A comparative analysis has been carried out to determine the relationship of the finger millet genome with that of rice. Six of the nine finger millet homoeologous groups corresponded to a single rice chromosome each. Each of the remaining three finger millet groups were orthologous to two rice chromosomes, and in all the three cases one rice chromosome was inserted into the centromeric region of a second rice chromosome to give the finger millet chromosomal configuration. All observed rearrangements were, among the grasses, unique to finger millet and, possibly, the Chloridoideae subfamily. Gene orders between rice and finger millet were highly conserved, with rearrangements being limited largely to single marker transpositions and small putative inversions encompassing at most three markers. Only some 10% of markers mapped to non-syntenic positions in rice and finger millet and the majority of these were located in the distal 14% of chromosome arms, supporting a possible correlation between recombination and sequence evolution as has previously been observed in wheat. A comparison of the organization of finger millet, Panicoideae and Pooideae genomes relative to rice allowed us to infer putative ancestral chromosome configurations in the grasses.

  4. Manipulation of Unknown Objects to Improve the Grasp Quality Using Tactile Information.

    Science.gov (United States)

    Montaño, Andrés; Suárez, Raúl

    2018-05-03

    This work presents a novel and simple approach in the area of manipulation of unknown objects considering both geometric and mechanical constraints of the robotic hand. Starting with an initial blind grasp, our method improves the grasp quality through manipulation considering the three common goals of the manipulation process: improving the hand configuration, the grasp quality and the object positioning, and, at the same time, prevents the object from falling. Tactile feedback is used to obtain local information of the contacts between the fingertips and the object, and no additional exteroceptive feedback sources are considered in the approach. The main novelty of this work lies in the fact that the grasp optimization is performed on-line as a reactive procedure using the tactile and kinematic information obtained during the manipulation. Experimental results are shown to illustrate the efficiency of the approach.

  5. Robust Robot Grasp Detection in Multimodal Fusion

    Directory of Open Access Journals (Sweden)

    Zhang Qiang

    2017-01-01

    Full Text Available Accurate robot grasp detection for model free objects plays an important role in robotics. With the development of RGB-D sensors, object perception technology has made great progress. Reach feature expression by the colour and the depth data is a critical problem that needs to be addressed in order to accomplish the grasping task. To solve the problem of data fusion, this paper proposes a convolutional neural networks (CNN based approach combined with regression and classification. In the CNN model, the colour and the depth modal data are deeply fused together to achieve accurate feature expression. Additionally, Welsch function is introduced into the approach to enhance robustness of the training process. Experiment results demonstrates the superiority of the proposed method.

  6. New Finger Biometric Method Using Near Infrared Imaging

    Science.gov (United States)

    Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul

    2011-01-01

    In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741

  7. Current status of ultrasonography of the finger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seun Ah; Kim, Baek Hyun [Dept. of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan (Korea, Republic of); Kim, Seon Jeong [Dept. of Radiology, Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Kim, Ji Na [Dept. of Radiology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon (Korea, Republic of); Park, Sun Young [Dept. of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of); Choi, Kyung Hee [Incheon Baek Hospital, Incheon (Korea, Republic of)

    2016-03-15

    The recent development of advanced high-resolution transducers has enabled the fast, easy, and dynamic ultrasonographic evaluation of small, superficial structures such as the finger. In order to best exploit these advances, it is important to understand the normal anatomy and the basic pathologies of the finger, as exemplified by the following conditions involving the dorsal, volar, and lateral sections of the finger: sagittal band injuries, mallet finger, and Boutonnière deformity (dorsal aspect); flexor tendon tears, trigger finger, and volar plate injuries (volar aspect); gamekeeper’s thumb (Stener lesions) and other collateral ligament tears (lateral aspect); and other lesions. This review provides a basis for understanding the ultrasonography of the finger and will therefore be useful for radiologists.

  8. Current status of ultrasonography of the finger

    Directory of Open Access Journals (Sweden)

    Seun Ah Lee

    2016-04-01

    Full Text Available The recent development of advanced high-resolution transducers has enabled the fast, easy, and dynamic ultrasonographic evaluation of small, superficial structures such as the finger. In order to best exploit these advances, it is important to understand the normal anatomy and the basic pathologies of the finger, as exemplified by the following conditions involving the dorsal, volar, and lateral sections of the finger: sagittal band injuries, mallet finger, and Boutonnière deformity (dorsal aspect; flexor tendon tears, trigger finger, and volar plate injuries (volar aspect; gamekeeper’s thumb (Stener lesions and other collateral ligament tears (lateral aspect; and other lesions. This review provides a basis for understanding the ultrasonography of the finger and will therefore be useful for radiologists.

  9. The "Haptic Finger"- a new device for monitoring skin condition.

    Science.gov (United States)

    Tanaka, Mami; Lévêque, Jean Luc; Tagami, Hachiro; Kikuchi, Katsuko; Chonan, Seifi

    2003-05-01

    Touching the skin is of great importance for the Clinician for assessing roughness, softness, firmness, etc. This type of clinical assessment is very subjective and therefore non-reproducible from one Clinician to another one or even from time to time for the same Clinician. In order to objectively monitor skin texture, we developed a new sensor, placed directly on the Clinician's finger, which generate some electric signal when slid over the skin surface. The base of this Haptic Finger sensor is a thin stainless steel plate on which sponge rubber, PVDF foil, acetate film and gauze are layered. The signal generated by the sensor was filtered and digitally stored before processing. In a first in vitro experiment, the sensor was moved over different skin models (sponge rubber covered by silicon rubber) of varying hardness and roughness. These experiments allowed the definition of two parameters characterizing textures. The first parameter is variance of the signal processed using wavelet analysis, representing an index of roughness. The second parameter is dispersion of the power spectrum density in the frequency domain, corresponding to hardness. To validate these parameters, the Haptic Finger was used to scan skin surfaces of 30 people, 14 of whom displayed a skin disorder: xerosis (n = 5), atopic dermatitis (n = 7), and psoriasis (n = 2). The results obtained by means of the sensor were compared with subjective, clinical evaluations by a Clinician who scored both roughness and hardness of the skin. Good agreement was observed between clinical assessment of the skin and the two parameters generated using the Haptic Finger. Use of this sensor could prove extremely valuable in cosmetic research where skin surface texture (in terms of tactile properties) is difficult to measure.

  10. An under-actuated origami gripper with adjustable stiffness joints for multiple grasp modes

    Science.gov (United States)

    Firouzeh, Amir; Paik, Jamie

    2017-05-01

    Under-actuated robots offer multiple degrees of freedom without much added complexity to the actuation and control. Utilizing adjustable stiffness joints in these robots allows us to control their stable configurations and their mode of interaction with the environment. In this paper, we present the design of tendon-driven robotic origami (robogami) joints with adjustable stiffness. The proposed designs allow us to place joints along any direction in the plane of the robot and in the normal direction to the plane. The layer-by-layer manufacturing of robogamis facilitates the design and manufacturing of robots with different arrangement of joints for different applications. We use thermally activated shape memory polymer to control the joint stiffness. The manufacturing of the polymer layer is compatible with the layer-by-layer manufacturing process of the robogamis which results in scalable and customizable robots. To demonstrate, we prototyped an under-actuated gripper with three fingers and only one input actuation. The grasp mode of the gripper is set by adjusting the configuration of the locked joints and modulating the stiffness of the active joints. We present a model to estimate the configuration and the contact forces of the gripper at different settings that will assist us in design and control of future generation of under-actuated robogamis.

  11. Grasping completions: Towards a new paradigm

    NARCIS (Netherlands)

    Lommertzen, J.; Meulenbroek, R.G.J.; Lier, R.J. van

    2006-01-01

    We studied contextual effects of amodal completion in both a primed-matching task, and a grasping task in a within-subjects design with twenty-nine participants. Stimuli were partly occluded cylindrical objects that could have indentations (or protrusions) at regular intervals along the contour. The

  12. A simple rule of thumb for elegant prehension.

    Science.gov (United States)

    Mon-Williams, M; Tresilian, J R

    2001-07-10

    Reaching out to grasp an object (prehension) is a deceptively elegant and skilled behavior. The movement prior to object contact can be described as having two components, the movement of the hand to an appropriate location for gripping the object, the "transport" component, and the opening and closing of the aperture between the fingers as they prepare to grip the target, the "grasp" component. The grasp component is sensitive to the size of the object, so that a larger grasp aperture is formed for wider objects; the maximum grasp aperture (MGA) is a little wider than the width of the target object and occurs later in the movement for larger objects. We present a simple model that can account for the temporal relationship between the transport and grasp components. We report the results of an experiment providing empirical support for our "rule of thumb." The model provides a simple, but plausible, account of a neural control strategy that has been the center of debate over the last two decades.

  13. Motivational state, reward value, and Pavlovian cues differentially affect skilled forelimb grasping in rats

    Science.gov (United States)

    de Clauser, Larissa; Kasper, Hansjörg; Schwab, Martin E.

    2016-01-01

    Motor skills represent high-precision movements performed at optimal speed and accuracy. Such motor skills are learned with practice over time. Besides practice, effects of motivation have also been shown to influence speed and accuracy of movements, suggesting that fast movements are performed to maximize gained reward over time as noted in previous studies. In rodents, skilled motor performance has been successfully modeled with the skilled grasping task, in which animals use their forepaw to grasp for sugar pellet rewards through a narrow window. Using sugar pellets, the skilled grasping task is inherently tied to motivation processes. In the present study, we performed three experiments modulating animals’ motivation during skilled grasping by changing the motivational state, presenting different reward value ratios, and displaying Pavlovian stimuli. We found in all three studies that motivation affected the speed of skilled grasping movements, with the strongest effects seen due to motivational state and reward value. Furthermore, accuracy of the movement, measured in success rate, showed a strong dependence on motivational state as well. Pavlovian cues had only minor effects on skilled grasping, but results indicate an inverse Pavlovian-instrumental transfer effect on movement speed. These findings have broad implications considering the increasing use of skilled grasping in studies of motor system structure, function, and recovery after injuries. PMID:27194796

  14. Modelling the shape hierarchy for visually guided grasping

    Directory of Open Access Journals (Sweden)

    Omid eRezai

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modelled shape tuning in visual AIP neurons and its relationship with curvature and gradient information from the caudal intraparietal area (CIP. The main goal was to gain insight into the kinds of shape parameterizations that can account for AIP tuning and that are consistent with both the inputs to AIP and the role of AIP in grasping. We first experimented with superquadric shape parameters. We considered superquadrics because they occupy a role in robotics that is similar to AIP, in that superquadric fits are derived from visual input and used for grasp planning. We also experimented with an alternative shape parameterization that was based on an Isomap dimension reduction of spatial derivatives of depth (i.e. distance from the observer to the object surface. We considered an Isomap-based model because its parameters lacked discontinuities between similar shapes. When we matched the dimension of the Isomap to the number of superquadric parameters, the superquadric model fit the AIP data somewhat more closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that the Isomap parameters could be approximated much more accurately than superquadric parameters by feedforward neural networks with CIP-like inputs. We conclude that Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP, provide a promising model of AIP electrophysiology data. However (in contrast with superquadrics further work is needed to test whether such shape parameterizations actually provide an effective basis for grasp control.

  15. Fear of movement modulates the feedforward motor control of the affected limb in complex regional pain syndrome (CRPS): A single-case study.

    Science.gov (United States)

    Osumi, Michihiro; Sumitani, Masahiko; Otake, Yuko; Morioka, Shu

    2018-01-01

    Pain-related fear can exacerbate physical disability and pathological pain in complex regional pain syndrome (CRPS) patients. We conducted a kinematic analysis of grasping movements with a pediatric patient suffering from CRPS in an upper limb to investigate how pain-related fear affects motor control. Using a three-dimensional measurement system, we recorded the patient's movement while grasping three vertical bars of different diameters (thin, middle, thick) with the affected and intact hands. We analyzed the maximum grasp distance between the thumb and the index finger (MGD), the peak velocity of the grasp movement (PV), and the time required for the finger opening phase (TOP) and closing phase (TCP). Consequently, the MGD and PV of grasp movements in the affected hand were significantly smaller than those of the intact hand when grasping the middle and thick bars. This might reflect pain-related fear against visual information of the target size which evokes sensation of difficulty in opening fingers widely to grasp the middle and thick bars. Although MGD and PV increased with target size, the TOP was longer in the affected hand when grasping the thick bar. These findings indicate that pain-related fear impairs motor commands that are sent to the musculoskeletal system, subsequently disrupting executed movements and their sensory feedback. Using kinematic analysis, we objectively demonstrated that pain-related fear affects the process of sending motor commands towards the musculoskeletal system in the CRPS-affected hand, providing a possible explanatory model of pathological pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.

    Science.gov (United States)

    Agashe, H A; Paek, A Y; Contreras-Vidal, J L

    2016-01-01

    Upper limb amputation results in a severe reduction in the quality of life of affected individuals due to their inability to easily perform activities of daily living. Brain-machine interfaces (BMIs) that translate grasping intent from the brain's neural activity into prosthetic control may increase the level of natural control currently available in myoelectric prostheses. Current BMI techniques demonstrate accurate arm position and single degree-of-freedom grasp control but are invasive and require daily recalibration. In this study we tested if transradial amputees (A1 and A2) could control grasp preshaping in a prosthetic device using a noninvasive electroencephalography (EEG)-based closed-loop BMI system. Participants attempted to grasp presented objects by controlling two grasping synergies, in 12 sessions performed over 5 weeks. Prior to closed-loop control, the first six sessions included a decoder calibration phase using action observation by the participants; thereafter, the decoder was fixed to examine neuroprosthetic performance in the absence of decoder recalibration. Ability of participants to control the prosthetic was measured by the success rate of grasping; ie, the percentage of trials within a session in which presented objects were successfully grasped. Participant A1 maintained a steady success rate (63±3%) across sessions (significantly above chance [41±5%] for 11 sessions). Participant A2, who was under the influence of pharmacological treatment for depression, hormone imbalance, pain management (for phantom pain as well as shoulder joint inflammation), and drug dependence, achieved a success rate of 32±2% across sessions (significantly above chance [27±5%] in only two sessions). EEG signal quality was stable across sessions, but the decoders created during the first six sessions showed variation, indicating EEG features relevant to decoding at a smaller timescale (100ms) may not be stable. Overall, our results show that (a) an EEG

  17. Many-particle and many-hole states in neutron-rich Ne isotopes related to broken N=20 shell closure

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Horiuchi, Hisashi

    2004-01-01

    The low-lying level structures of 26 Ne, 28 Ne and 30 Ne which are related to the breaking of the N=20 shell closure have been studied in the framework of the deformed-basis anti-symmetrized molecular dynamics plus generator coordinate method using the Gogny D1S force. The properties of the many-particle and many-hole states are studied as well as that of the ground band. We predict that the negative-parity states, in which neutrons are promoted into the pf-orbit from the sd orbit, have a small excitation energy in the cases of 28 Ne and 30 Ne. We regard this to be a typical phenomena accompanying the breaking of the N=20 shell closure. It is also found that the neutron 4p4h structure of 30 Ne appears at low excitation energy, which contains α + 16 O correlations. (author)

  18. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action-perception theory.

    Science.gov (United States)

    Kuntz, Jessica R; Karl, Jenni M; Doan, Jon B; Whishaw, Ian Q

    2018-04-01

    Reach-to-grasp movements feature the integration of a reach directed by the extrinsic (location) features of a target and a grasp directed by the intrinsic (size, shape) features of a target. The action-perception theory suggests that integration and scaling of a reach-to-grasp movement, including its trajectory and the concurrent digit shaping, are features that depend upon online action pathways of the dorsal visuomotor stream. Scaling is much less accurate for a pantomime reach-to-grasp movement, a pretend reach with the target object absent. Thus, the action-perception theory proposes that pantomime movement is mediated by perceptual pathways of the ventral visuomotor stream. A distinguishing visual feature of a real reach-to-grasp movement is gaze anchoring, in which a participant visually fixates the target throughout the reach and disengages, often by blinking or looking away/averting the head, at about the time that the target is grasped. The present study examined whether gaze anchoring is associated with pantomime reaching. The eye and hand movements of participants were recorded as they reached for a ball of one of three sizes, located on a pedestal at arms' length, or pantomimed the same reach with the ball and pedestal absent. The kinematic measures for real reach-to-grasp movements were coupled to the location and size of the target, whereas the kinematic measures for pantomime reach-to-grasp, although grossly reflecting target features, were significantly altered. Gaze anchoring was also tightly coupled to the target for real reach-to-grasp movements, but there was no systematic focus for gaze, either in relation with the virtual target, the previous location of the target, or the participant's reaching hand, for pantomime reach-to-grasp. The presence of gaze anchoring during real vs. its absence in pantomime reach-to-grasp supports the action-perception theory that real, but not pantomime, reaches are online visuomotor actions and is discussed in

  19. Human grasping database for activities of daily living with depth, color and kinematic data streams.

    Science.gov (United States)

    Saudabayev, Artur; Rysbek, Zhanibek; Khassenova, Raykhan; Varol, Huseyin Atakan

    2018-05-29

    This paper presents a grasping database collected from multiple human subjects for activities of daily living in unstructured environments. The main strength of this database is the use of three different sensing modalities: color images from a head-mounted action camera, distance data from a depth sensor on the dominant arm and upper body kinematic data acquired from an inertial motion capture suit. 3826 grasps were identified in the data collected during 9-hours of experiments. The grasps were grouped according to a hierarchical taxonomy into 35 different grasp types. The database contains information related to each grasp and associated sensor data acquired from the three sensor modalities. We also provide our data annotation software written in Matlab as an open-source tool. The size of the database is 172 GB. We believe this database can be used as a stepping stone to develop big data and machine learning techniques for grasping and manipulation with potential applications in rehabilitation robotics and intelligent automation.

  20. Student behavior during a school closure caused by pandemic influenza A/H1N1.

    Directory of Open Access Journals (Sweden)

    Joel C Miller

    Full Text Available BACKGROUND: Many schools were temporarily closed in response to outbreaks of the recently emerged pandemic influenza A/H1N1 virus. The effectiveness of closing schools to reduce transmission depends largely on student/family behavior during the closure. We sought to improve our understanding of these behaviors. METHODOLOGY/PRINCIPAL FINDINGS: To characterize this behavior, we surveyed students in grades 9-12 and parents of students in grades 5-8 about student activities during a week long closure of a school during the first months after the disease emerged. We found significant interaction with the community and other students-though less interaction with other students than during school-with the level of interaction increasing with grade. CONCLUSIONS: Our results are useful for the future design of social distancing policies and to improving the ability of modeling studies to accurately predict their impact.

  1. Software engineering capability for Ada (GRASP/Ada Tool)

    Science.gov (United States)

    Cross, James H., II

    1995-01-01

    The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada Source code. A new Motif compliant graphical user interface has been developed for the GRASP/Ada prototype.

  2. Infant manual performance during reaching and grasping for objects moving in depth.

    Science.gov (United States)

    Domellöf, Erik; Barbu-Roth, Marianne; Rönnqvist, Louise; Jacquet, Anne-Yvonne; Fagard, Jacqueline

    2015-01-01

    Few studies have investigated manual performance in infants when reaching and grasping for objects moving in directions other than across the fronto-parallel plane. The present preliminary study explored object-oriented behavioral strategies and side preference in 8- and 10-month-old infants during reaching and grasping for objects approaching in depth from three positions (midline, and 27° diagonally from the left and right). Effects of task constraint by using objects of three different types and two sizes were further examined for behavioral strategies and hand opening prior to grasping. Additionally, assessments of hand preference by a dedicated handedness test were performed. Regardless of object starting position, the 8-month-old infants predominantly displayed right-handed reaches for objects approaching in depth. In contrast, the older infants showed more varied strategies and performed more ipsilateral reaches in correspondence with the side of the approaching object. Conversely, 10-month-old infants were more successful than the younger infants in grasping the objects, independent of object starting position. The findings regarding infant hand use strategies when reaching and grasping for objects moving in depth are similar to those from earlier studies using objects moving along a horizontal path. Still, initiation times of reaching onset were generally long in the present study, indicating that the object motion paths seemingly affected how the infants perceived the intrinsic properties and spatial locations of the objects, possibly with an effect on motor planning. Findings are further discussed in relation to future investigations of infant reaching and grasping for objects approaching in depth.

  3. Development of Reaching and Grasping Skills in Infants with Down Syndrome

    Science.gov (United States)

    de Campos, Ana Carolina; Rocha, Nelci Adriana Cicuto Ferreira; Savelsbergh, Geert J. P.

    2010-01-01

    Reaching and grasping skills have been described to emerge from a dynamic interaction between intrinsic and extrinsic factors. The aims of the study were to investigate the effect of such intrinsic factors as age and Down syndrome on the development of reaching and grasping skills and on overall gross motor skill, and to test the influence of the…

  4. Classification of right-hand grasp movement based on EMOTIV Epoc+

    Science.gov (United States)

    Tobing, T. A. M. L.; Prawito, Wijaya, S. K.

    2017-07-01

    Combinations of BCT elements for right-hand grasp movement have been obtained, providing the average value of their classification accuracy. The aim of this study is to find a suitable combination for best classification accuracy of right-hand grasp movement based on EEG headset, EMOTIV Epoc+. There are three movement classifications: grasping hand, relax, and opening hand. These classifications take advantage of Event-Related Desynchronization (ERD) phenomenon that makes it possible to differ relaxation, imagery, and movement state from each other. The combinations of elements are the usage of Independent Component Analysis (ICA), spectrum analysis by Fast Fourier Transform (FFT), maximum mu and beta power with their frequency as features, and also classifier Probabilistic Neural Network (PNN) and Radial Basis Function (RBF). The average values of classification accuracy are ± 83% for training and ± 57% for testing. To have a better understanding of the signal quality recorded by EMOTIV Epoc+, the result of classification accuracy of left or right-hand grasping movement EEG signal (provided by Physionet) also be given, i.e.± 85% for training and ± 70% for testing. The comparison of accuracy value from each combination, experiment condition, and external EEG data are provided for the purpose of value analysis of classification accuracy.

  5. Optimal grasp planning for a dexterous robotic hand using the volume of a generalized force ellipsoid during accepted flattening

    Directory of Open Access Journals (Sweden)

    Peng Jia

    2017-01-01

    Full Text Available A grasp planning method based on the volume and flattening of a generalized force ellipsoid is proposed to improve the grasping ability of a dexterous robotic hand. First, according to the general solution of joint torques for a dexterous robotic hand, a grasping indicator for the dexterous hand—the maximum volume of a generalized external force ellipsoid and the minimum volume of a generalized contact internal force ellipsoid during accepted flattening—is proposed. Second, an optimal grasp planning method based on a task is established using the grasping indicator as an objective function. Finally, a simulation analysis and grasping experiment are performed. Results show that when the grasping experiment is conducted with the grasping configuration and positions of contact points optimized using the proposed grasping indicator, the root-mean-square values of the joint torques and contact internal forces of the dexterous hand are at a minimum. The effectiveness of the proposed grasping planning method is thus demonstrated.

  6. Clad vent set cup closure-weld-zone grinding evaluation

    International Nuclear Information System (INIS)

    Ulrich, G.B.; Woods, A.T.; Ohriner, E.K.

    1996-04-01

    Clad vent set (CVS) cups were ground in the closure-weld zone to reduce the wall-thickness variation created by the cup deep-drawing process. A significantly more uniform wall thickness would be beneficial for the CVS closure-weld operation. The goal was to reduce the average within-cup wall-thickness variation (defined as the range of wall thicknesses in the closure-weld zone) approximately 50% from the Cassini production value of 42 microm. This goal was shown to be achievable but, unfortunately, not with the existing blank and formed cup thicknesses

  7. the strategy of finger use in children's addition Relationship with short-term memory, finger dexterity, and addition skills

    OpenAIRE

    Asakawa, Atsushi; Sugimura, Shinichiro

    2009-01-01

    Previous research has shown that the children's use of the fingers in additon changes with age. In this study, a part of data on the strategy of finger use by Asakawa and Sugimura (2009) was reanalyzed to clarify the relationship between, short-term memory, finger dexterity and addition skills. A two-way ANOVA showed a significant interaction between memory span and finger use. Examination of simple main effect indicated that significant effect of memory span at the group of the children who ...

  8. Considerations for closure of low-level radioactive waste engineered disposal facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Proper stabilization and closure of low-level radioactive waste disposal facilities require detailed planning during the early stages of facility development. This report provides considerations for host States, compact regions, and unaffiliated States on stabilization and closure of engineered low-level radioactive waste and mixed waste disposal facilities. A time line for planning closure activities, which identifies closure considerations to be addressed during various stages of a facility's development, is presented. Current Federal regulatory requirements and guidance for closure and post-closure are outlined. Significant differences between host State and Federal closure requirements are identified. Design features used as stabilization measures that support closure, such as waste forms and containers, backfill materials, engineered barrier systems, and site drainage systems, are described. These design features are identified and evaluated in terms of how they promote long-term site stability by minimizing water infiltration, controlling subsidence and surface erosion, and deterring intrusion. Design and construction features critical to successful closure are presented for covers and site drainage. General considerations for stabilization and closure operations are introduced. The role of performance and environmental monitoring during closure is described

  9. Viscous fingering with permeability heterogeneity

    International Nuclear Information System (INIS)

    Tan, C.; Homsy, G.M.

    1992-01-01

    Viscous fingering in miscible displacements in the presence of permeability heterogeneities is studied using two-dimensional simulations. The heterogeneities are modeled as stationary random functions of space with finite correlation scale. Both the variance and scale of the heterogeneities are varied over modest ranges. It is found that the fingered zone grows linearly in time in a fashion analogous to that found in homogeneous media by Tan and Homsy [Phys. Fluids 31, 1330 (1988)], indicating a close coupling between viscous fingering on the one hand and flow through preferentially more permeable paths on the other. The growth rate of the mixing zone increases monotonically with the variance of the heterogeneity, as expected, but shows a maximum as the correlation scale is varied. The latter is explained as a ''resonance'' between the natural scale of fingers in homogeneous media and the correlation scale

  10. Anticipatory modulation of digit placement for grasp control is affected by Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Jamie R Lukos

    2010-02-01

    Full Text Available Successful object manipulation relies on the ability to form and retrieve sensorimotor memories of digit forces and positions used in previous object lifts. Past studies of patients affected by Parkinson's disease (PD have revealed that the basal ganglia play a crucial role in the acquisition and/or retrieval of sensorimotor memories for grasp control. Whereas it is known that PD impairs anticipatory control of digit forces during grasp, learning deficits associated with the planning of digit placement have yet to be explored. This question is motivated by recent work in healthy subjects revealing that anticipatory control of digit placement plays a crucial role for successful manipulation.We asked ten PD patients off medication and ten age-matched controls to reach, grasp and lift an object whose center of mass (CM was on the left, right or center. The only task requirement was to minimize object roll during lift. The CM remained the same across consecutive trials (blocked condition or was altered from trial to trial (random condition. We hypothesized that impairment of the basal ganglia-thalamo-cortical circuits in PD patients would reduce their ability to anticipate digit placement appropriate to the CM location. Consequently, we predicted that PD patients would exhibit similar digit placement in the blocked vs. random conditions and produce larger peak object rolls than that of control subjects. In the blocked condition, PD patients exhibited significantly weaker modulation of fingertip contact points to CM location and larger object roll than controls (p<0.05 and p<0.01, respectively. Nevertheless, both controls and PD patients minimized object roll more in the blocked than in the random condition (p<0.01.Our findings indicate that, even though PD patients may have a residual ability of anticipatory control of digit contact points and forces, they fail to implement a motor plan with the same degree of effectiveness as controls. We conclude

  11. Granular fingering as a mechanism for ridge formation in debris avalanche deposits: Laboratory experiments and implications for Tutupaca volcano, Peru

    Science.gov (United States)

    Valderrama, P.; Roche, O.; Samaniego, P.; van Wyk des Vries, B.; Araujo, G.

    2018-01-01

    The origin of subparallel, regularly-spaced longitudinal ridges often observed at the surface of volcanic and other rock avalanche deposits remains unclear. We addressed this issue through analogue laboratory experiments on flows of bi-disperse granular mixtures, because this type of flow is known to exhibit granular fingering that causes elongated structures resembling the ridges observed in nature. We considered four different mixtures of fine (300-400 μm) glass beads and coarse (600-710 μm to 900-1000 μm) angular crushed fruit stones, with particle size ratios of 1.9-2.7 and mass fractions of the coarse component of 5-50 wt%. The coarse particles segregated at the flow surface and accumulated at the front where flow instabilities with a well-defined wavelength grew. These formed granular fingers made of coarse-rich static margins delimiting fines-rich central channels. Coalescence of adjacent finger margins created regular spaced longitudinal ridges, which became topographic highs as finger channels drained at final emplacement stages. Three distinct deposit morphologies were observed: 1) Joined fingers with ridges were formed at low (≤ 1.9) size ratio and moderate (10-20 wt%) coarse fraction whereas 2) separate fingers or 3) poorly developed fingers, forming series of frontal lobes, were created at larger size ratios and/or higher coarse contents. Similar ridges and lobes are observed at the debris avalanche deposits of Tutupaca volcano, Peru, suggesting that the processes operating in the experiments can also occur in nature. This implies that volcanic (and non-volcanic) debris avalanches can behave as granular flows, which has important implications for interpretation of deposits and for modeling. Such behaviour may be acquired as the collapsing material disaggregates and forms a granular mixture composed by a right grain size distribution in which particle segregation can occur. Limited fragmentation and block sliding, or grain size distributions

  12. A novel photoplethysmography technique to derive normalized arterial stiffness as a blood pressure independent measure in the finger vascular bed

    International Nuclear Information System (INIS)

    Tanaka, Gohichi; Sawada, Yukihiro; Kato, Yuichi; Yamakoshi, Ken-ichi; Matsumura, Kenta; Maeda, Kimihito; Horiguchi, Masami; Ohguro, Hiroshi

    2011-01-01

    Stiffening of the small artery may be the earliest sign of arteriosclerosis. However, there is no adequate method for directly assessing small arterial stiffness. In this study, the finger arterial elasticity index (FEI) was defined as the parameter n which denotes the curvilinearity of an exponential model of pressure (P)–volume (V a ) relationship (V a = a − b exp (−nP)). For the original estimation, the FEI was calculated from a compliance index from the finger photoplethysmogram whilst occluding the finger. A simple estimation of the FEI was devised by utilizing normalized pulse volume instead of the compliance index. Both estimations yielded close agreement with the exponential model in healthy young participants (study 1: n = 19). Since the FEI was dependent on finger mean blood pressure, normalized finger arterial stiffness index (FSI) was defined as standardized residual from their relationship: mean and standard deviation (SD) of the FSI were 50 ± 10 (study 2: n = 174). The mean coefficient of variation of the FSI for four measurements was 5.72% (study 3: n = 6). The mean and SD of the FSI in seven arteriosclerotic patients were 100.0 ± 13.5. In conclusion, the FEI and FSI by simple estimation are valid and useful for arteriosclerosis research

  13. The Promyelocytic Leukemia Zinc Finger Protein: Two Decades of Molecular Oncology

    International Nuclear Information System (INIS)

    Suliman, Bandar Ali; Xu, Dakang; Williams, Bryan Raymond George

    2012-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein, also known as Zbtb16 or Zfp145, was first identified in a patient with acute promyelocytic leukemia, where a reciprocal chromosomal translocation t(11;17)(q23;q21) resulted in a fusion with the RARA gene encoding retinoic acid receptor alpha. The wild-type Zbtb16 gene encodes a transcription factor that belongs to the POK (POZ and Krüppel) family of transcriptional repressors. In addition to nine Krüppel-type sequence-specific zinc fingers, which make it a member of the Krüppel-like zinc finger protein family, the PLZF protein contains an N-terminal BTB/POZ domain and RD2 domain. PLZF has been shown to be involved in major developmental and biological processes, such as spermatogenesis, hind limb formation, hematopoiesis, and immune regulation. PLZF is localized mainly in the nucleus where it exerts its transcriptional repression function, and many post-translational modifications affect this ability and also have an impact on its cytoplasmic/nuclear dissociation. PLZF achieves its transcriptional regulation by binding to many secondary molecules to form large multi-protein complexes that bind to the regulatory elements in the promoter region of the target genes. These complexes are also capable of physically interacting with its target proteins. Recently, PLZF has become implicated in carcinogenesis as a tumor suppressor gene, since it regulates the cell cycle and apoptosis in many cell types. This review will examine the major advances in our knowledge of PLZF biological activities that augment its value as a therapeutic target, particularly in cancer and immunological diseases.

  14. Cancer risk among patients with finger and hand joint and temporo-mandibular joint prostheses in Denmark.

    Science.gov (United States)

    Fryzek, J P; Mellemkjaer, L; McLaughlin, J K; Blot, W J; Olsen, J H

    1999-05-31

    The use of artificial joint implants has risen greatly over the past years. However, few investigations of the cancer risk associated with implants have been performed. We investigated cancer risk in patients with finger and hand joint and temporo-mandibular (TMJ) joint implants. A nationwide cohort in Denmark of patients with finger and hand joint prostheses (n = 858) or TMJ implants (n = 389) was followed from January 1, 1977, to December 31, 1995, to evaluate any potential cancer risks subsequent to receiving these implants. Standardized incidence ratios (SIRs) for all cancers were 1.0 (95% CI = 0.8-1.2) for the finger and hand joint cohort and 1.1 (95% CI = 0.8-1.7) for the TMJ cohort. A significant risk for non-Hodgkin's lymphoma was found in the finger and hand joint cohort (SIR = 3.8, 95% CI = 1.5-7.8). When the finger and hand joint cohort was stratified by diagnosis of rheumatoid arthritis, the excess risk was seen only in the group with rheumatoid arthritis. This is consistent with past studies, which have found an association between rheumatoid arthritis and non-Hodgkin's lymphoma. Our results provide evidence that the cancer risk for patients with finger and hand joint prostheses and TMJ implants is similar to that for the general population.

  15. Closure certification report: TA-35 TSL-125 surface impoundment

    International Nuclear Information System (INIS)

    1991-01-01

    This closure report documents closure activities for the TA-35 TSL-125 surface impoundment and associated structures at Los Alamos National Laboratory (the Laboratory). Prior to formal approval of the closure plan, the decision was made to proceed with closure activities to prevent any further releases from the site following informal discussions with New Mexico Environment Department (NMED) personnel. The closure plan is a revision of the previously submitted draft dated July 1988. Clean closure of the TSL-125 site was accomplished through: Removal and proper disposal of all wastes contained within the surface impoundment system; Decontamination and/or removal and proper disposal of the surface impoundment, its associated structures, and contaminated soil underlying the impoundment area; Sampling and analysis of soil to determine the presence and concentrations of any hazardous constituents remaining in the soil at the TSL-125 site; and Demonstration through a risk assessment that any constituents remaining in the soil at the TSL-125 site pose no threat to human health and the environment. All remaining soil concentrations of hazardous constituents were below health-based action levels. Analytical results indicated that benzidine, n-nitrosodimethylamine, and n-nitrosodi-n-propylamine were not detected at or above their limits of quantitation and beryllium was not present at or above its laboratory detection limit. However, the limits of quantitation and detection for these constituents were greater than their calculated health-based action levels. To demonstrate that these constituents were not present, historical data was researched and it was determined that the constituents were not utilized at the Building 125 site. 4 refs., 8 figs., 1 tab

  16. Closure requirements

    International Nuclear Information System (INIS)

    Hutchinson, I.P.G.; Ellison, R.D.

    1992-01-01

    Closure of a waste management unit can be either permanent or temporary. Permanent closure may be due to: economic factors which make it uneconomical to mine the remaining minerals; depletion of mineral resources; physical site constraints that preclude further mining and beneficiation; environmental, regulatory or other requirements that make it uneconomical to continue to develop the resources. Temporary closure can occur for a period of several months to several years, and may be caused by factors such as: periods of high rainfall or snowfall which prevent mining and waste disposal; economic circumstances which temporarily make it uneconomical to mine the target mineral; labor problems requiring a cessation of operations for a period of time; construction activities that are required to upgrade project components such as the process facilities and waste management units; and mine or process plant failures that require extensive repairs. Permanent closure of a mine waste management unit involves the provision of durable surface containment features to protect the waters of the State in the long-term. Temporary closure may involve activities that range from ongoing maintenance of the existing facilities to the installation of several permanent closure features in order to reduce ongoing maintenance. This paper deals with the permanent closure features

  17. Bidirectional Barbed Sutures for Wound Closure: Evolution and Applications

    Science.gov (United States)

    Paul, Malcolm D.

    2009-01-01

    Traditionally, wound closure sutures have in common the need to tie knots with the inherent risk of extrusion, palpability, microinfarcts, breakage, and slippage. Bidirectional barbed sutures have barbs arrayed in a helical fashion in opposing directions on either side of an unbarbed midsegment. This suture is inserted at the midpoint of a wound and pulled through till resistance is encountered from the opposing barbs; each half of the suture is then advanced to the lateral ends of the wound. This design provides a method of evenly distributing tension along the incision line, a faster suture placement and closure time with no need to tie knots, and the possibility of improved cosmesis. Bidirectional barbed sutures, which are available in both absorbable and nonabsorbable forms, can be used for simple closures, multilayered closures, and closure of high-tension wounds in a variety of surgical settings. PMID:24527114

  18. Primary syphilis of the fingers

    OpenAIRE

    Starzycki, Z

    1983-01-01

    Six patients were seen with primary syphilitic chancres on their fingers between 1965 and 1980. Of these, two had bipolar chancres on their fingers and genitals resulting from sexual foreplay. Because syphilis is rarely suspected in such cases diagnostic errors are common.

  19. Bimanual reach to grasp movements after cervical spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Laura Britten

    Full Text Available Injury to the cervical spinal cord results in bilateral deficits in arm/hand function reducing functional independence and quality of life. To date little research has been undertaken to investigate control strategies of arm/hand movements following cervical spinal cord injury (cSCI. This study aimed to investigate unimanual and bimanual coordination in patients with acute cSCI using 3D kinematic analysis as they performed naturalistic reach to grasp actions with one hand, or with both hands together (symmetrical task, and compare this to the movement patterns of uninjured younger and older adults. Eighteen adults with a cSCI (mean 61.61 years with lesions at C4-C8, with an American Spinal Injury Association (ASIA grade B to D and 16 uninjured younger adults (mean 23.68 years and sixteen uninjured older adults (mean 70.92 years were recruited. Participants with a cSCI produced reach-to-grasp actions which took longer, were slower, and had longer deceleration phases than uninjured participants. These differences were exacerbated during bimanual reach-to-grasp tasks. Maximal grasp aperture was no different between groups, but reached earlier by people with cSCI. Participants with a cSCI were less synchronous than younger and older adults but all groups used the deceleration phase for error correction to end the movement in a synchronous fashion. Overall, this study suggests that after cSCI a level of bimanual coordination is retained. While there seems to be a greater reliance on feedback to produce both the reach to grasp, we observed minimal disruption of the more impaired limb on the less impaired limb. This suggests that bimanual movements should be integrated into therapy.

  20. Two-finger (TF) SPUDT cells.

    Science.gov (United States)

    Martin, Guenter; Biryukov, Sergey V; Schmidt, Hagen; Steiner, Bernd; Wall, Bert

    2011-03-01

    SPUDT cells including two fingers are only known thus far for so-called NSPUDT directions. In that case, usual solid-finger cells are used. The purpose of the present paper is to find SPUDT cell types consisting of two fingers only for pure mode directions. Two-finger (TF) cells for pure mode directions on substrates like 128°YX LiNbO(3) and YZ LiNbO(3) were found by means of an optimization procedure. The forward direction of a TF-cell SPUDT on 128°YX LiNbO(3) was determined experimentally. The properties of the new cells are compared with those of conventional SPUDT cells. The reflectivity of TF cells on 128°YX LiNbO(3) turns out to be two to three times larger than that of distributed acoustic reflection transducer (DART) and Hanma-Hunsinger cells at the same metal layer thickness.

  1. Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers

    Directory of Open Access Journals (Sweden)

    Muriaux Delphine

    2007-08-01

    Full Text Available Abstract Background The HIV-1 nucleocapsid protein (NC is formed of two CCHC zinc fingers flanked by highly basic regions. HIV-1 NC plays key roles in virus structure and replication via its nucleic acid binding and chaperoning properties. In fact, NC controls proviral DNA synthesis by reverse transcriptase (RT, gRNA dimerization and packaging, and virion assembly. Results We previously reported a role for the first NC zinc finger in virion structure and replication 1. To investigate the role of both NC zinc fingers in intracellular Gag trafficking, and in virion assembly, we generated series of NC zinc fingers mutations. Results show that all Zinc finger mutations have a negative impact on virion biogenesis and maturation and rendered defective the mutant viruses. The NC zinc finger mutations caused an intracellular accumulation of Gag, which was found either diffuse in the cytoplasm or at the plasma membrane but not associated with endosomal membranes as for wild type Gag. Evidences are also provided showing that the intracellular interactions between NC-mutated Gag and the gRNA were impaired. Conclusion These results show that Gag oligomerization mediated by gRNA-NC interactions is required for correct Gag trafficking, and assembly in HIV-1 producing cells and the release of infectious viruses.

  2. Short-Term Plasticity of the Visuomotor Map during Grasping Movements in Humans

    Science.gov (United States)

    Safstrom, Daniel; Edin, Benoni B.

    2005-01-01

    During visually guided grasping movements, visual information is transformed into motor commands. This transformation is known as the "visuomotor map." To investigate limitations in the short-term plasticity of the visuomotor map in normal humans, we studied the maximum grip aperture (MGA) during the reaching phase while subjects grasped objects…

  3. A Strategy for Grasping unknown Objects based on Co-Planarity and Colour Information

    DEFF Research Database (Denmark)

    Popovic, Mila; Kraft, Dirk; Bodenhagen, Leon

    2010-01-01

    with a reasonable success rate in rather complex environments (i.e., cluttered scenes with multiple objects). Moreover, we have embedded the algorithm within a cognitive system that allows for autonomous exploration and learning in different contexts. First, the system is able to perform long action sequences which......, although the grasping attempts not being always successful, can recover from mistakes and more importantly, is able to evaluate the success of the grasps autonomously by haptic feedback (i.e., by a force torque sensor at the wrist and proprioceptive information about the distance of the gripper after...... a gasping attempt). Such labelled data is then used for improving the initially hard-wired algorithm by learning. Moreover, the grasping behaviour has been used in a cognitive system to trigger higher level processes such as object learning and learning of object specific grasping....

  4. Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions

    KAUST Repository

    Wang, Bo; Lai, Zhiping

    2012-01-01

    membrane structure without such finger-like macrovoids was observed when the suspension was slowly immersed into pure ethanol or a mixture of 70. wt% NMP and 30. wt% water, whereas finger-like macrovoids occurred when the suspension was slid into the non

  5. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis

    Directory of Open Access Journals (Sweden)

    Matrone Giulia C

    2012-06-01

    Full Text Available Abstract Background In spite of the advances made in the design of dexterous anthropomorphic hand prostheses, these sophisticated devices still lack adequate control interfaces which could allow amputees to operate them in an intuitive and close-to-natural way. In this study, an anthropomorphic five-fingered robotic hand, actuated by six motors, was used as a prosthetic hand emulator to assess the feasibility of a control approach based on Principal Components Analysis (PCA, specifically conceived to address this problem. Since it was demonstrated elsewhere that the first two principal components (PCs can describe the whole hand configuration space sufficiently well, the controller here employed reverted the PCA algorithm and allowed to drive a multi-DoF hand by combining a two-differential channels EMG input with these two PCs. Hence, the novelty of this approach stood in the PCA application for solving the challenging problem of best mapping the EMG inputs into the degrees of freedom (DoFs of the prosthesis. Methods A clinically viable two DoFs myoelectric controller, exploiting two differential channels, was developed and twelve able-bodied participants, divided in two groups, volunteered to control the hand in simple grasp trials, using forearm myoelectric signals. Task completion rates and times were measured. The first objective (assessed through one group of subjects was to understand the effectiveness of the approach; i.e., whether it is possible to drive the hand in real-time, with reasonable performance, in different grasps, also taking advantage of the direct visual feedback of the moving hand. The second objective (assessed through a different group was to investigate the intuitiveness, and therefore to assess statistical differences in the performance throughout three consecutive days. Results Subjects performed several grasp, transport and release trials with differently shaped objects, by operating the hand with the myoelectric

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 477: Area 12 N-Tunnel Muckpile, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-03-15

    This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 477, N-Tunnel Muckpile. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 477 is comprised of one Corrective Action Site (CAS): • 12-06-03, Muckpile The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure with no further action, by placing use restrictions on CAU 477.

  7. Instrumented Glove Measures Positions Of Fingers

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1993-01-01

    Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.

  8. A special danger in bowling and skittle – bowling ball induced injuries of the distal fingers

    Directory of Open Access Journals (Sweden)

    Könneker, Sören

    2017-09-01

    Full Text Available Purpose: Injuries to the hand and fingers have been reported related to the popular sports of bowling and skittle. Both sports differ regarding size, shape, weight of the ball and technique. The focus of this study is to address whether bowling or skittle players are more prone to injuries. Methods: We assessed hand injuries related to bowling or skittle in a retrospective analysis of patients treated in our department between 2006 and 2016. We also investigated differences between both sports with regards to patient demographics, type and location of lesion, and treatment.Results: A total of 13 patients were identified with minors comprising a total of number of six patients. Six from the overall cohort developed injuries related to bowling, and seven sustained injuries related to skittle. In all cases, the pattern of injury revealed a contusion between two balls during retrieval. The distal phalanx was affected in all patients, and the middle phalanx in one. Out of the 13 patients, one patient presented with lesions on the 3 finger, ten patients on the 4 finger and two patients on the 5 finger. In cases of bone injury (n=10, patients received surgical treatment via K-wire-fixation (n=2, suture-cerclage (n=1, resection of little distal fragments (n=1 or splinting only (n=6. There were no significant differences between patients with bowling or skittle injuries with regard to frequency, type and location of the lesions.Conclusion: Bowling and skittle are comparable with their inherent risk of distal finger trauma. Almost all cases required surgical intervention. As most injuries occurred during retrieval of the ball from the rack, efforts should be put on prevention at this point. In both sports the majority of patients were minor, so age restriction should be evaluated.Level of evidence: Therapeutic study, level IV

  9. Thermal stability improvement of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations using non-uniform finger spacing

    International Nuclear Information System (INIS)

    Chen Liang; Zhang Wan-Rong; Jin Dong-Yue; Shen Pei; Xie Hong-Yun; Ding Chun-Bao; Xiao Ying; Sun Bo-Tao; Wang Ren-Qing

    2011-01-01

    A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions. (interdisciplinary physics and related areas of science and technology)

  10. Transuranic Storage Area (TSA)-2 container storage unit RCRA closure plan

    International Nuclear Information System (INIS)

    Lodman, D.W.; Spry, M.J.; Nolte, E.P.; Barry, G.A.

    1992-11-01

    This document describes the proposed plans for closure of the Transuranic Storage Area (TSA)-2 container storage unit at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act closure requirements. The location, size, capacity, history, and current status of the unit are described. Future plans for the unit include incorporating the earthen-covered portion of the TSA-2 pad into a TSA retrieval enclosure along with the TSA-1 and TSAR pads, and closure of the portion of the TSA-2 pad under the Air Support Weather Shield (ASWS-2). This plan addresses closure of the ASWS-2 by decontaminating structures and equipment that may have contacted the waste. Sufficient sampling and documentation of all closure activities will be performed to demonstrate clean closure. A tentative schedule is provided in the form of a milestone chart

  11. Interfacial elastic fingering in Hele-Shaw cells: A weakly nonlinear study

    KAUST Repository

    Carvalho, Gabriel D.

    2013-11-11

    We study a variant of the classic viscous fingering instability in Hele-Shaw cells where the interface separating the fluids is elastic, and presents a curvature-dependent bending rigidity. By employing a second-order mode-coupling approach we investigate how the elastic nature of the interface influences the morphology of emerging interfacial patterns. This is done by focusing our attention on a conventionally stable situation in which the fluids involved have the same viscosity. In this framework, we show that the inclusion of nonlinear effects plays a crucial role in inducing sizable interfacial instabilities, as well as in determining the ultimate shape of the pattern-forming structures. Particularly, we have found that the emergence of either narrow or wide fingers can be regulated by tuning a rigidity fraction parameter. Our weakly nonlinear findings reinforce the importance of the so-called curvature weakening effect, which favors the development of fingers in regions of lower rigidity. © 2013 American Physical Society.

  12. Interfacial elastic fingering in Hele-Shaw cells: A weakly nonlinear study

    KAUST Repository

    Carvalho, Gabriel D.; Miranda, José A.; Gadê lha, Hermes

    2013-01-01

    We study a variant of the classic viscous fingering instability in Hele-Shaw cells where the interface separating the fluids is elastic, and presents a curvature-dependent bending rigidity. By employing a second-order mode-coupling approach we investigate how the elastic nature of the interface influences the morphology of emerging interfacial patterns. This is done by focusing our attention on a conventionally stable situation in which the fluids involved have the same viscosity. In this framework, we show that the inclusion of nonlinear effects plays a crucial role in inducing sizable interfacial instabilities, as well as in determining the ultimate shape of the pattern-forming structures. Particularly, we have found that the emergence of either narrow or wide fingers can be regulated by tuning a rigidity fraction parameter. Our weakly nonlinear findings reinforce the importance of the so-called curvature weakening effect, which favors the development of fingers in regions of lower rigidity. © 2013 American Physical Society.

  13. Surgical Treatment of Trigger Finger: Open Release

    Directory of Open Access Journals (Sweden)

    Firat Ozan

    2016-01-01

    Full Text Available In this study, open A1 pulley release results were evaluated in patients with a trigger finger diagnosis. 45 patients (29 females, 16 males, mean age 50.7 ± 11.9; range (24-79, 45 trigger fingers were released via open surgical technique. On the 25 of 45 cases were involved in the right hand and 16 of them were at the thumb, 2 at index, 6 at the middle and 1 at ring finger. Similarly, at the left hand, 15 of 20 cases were at the thumb, 1 at the index finger, 2 at middle finger and 2 at ring finger. Average follow-up time was 10.2 ± 2.7 (range, 6-15 months. Comorbidities in patients were; diabetes mellitus at 6 cases (13.3%, hypertension at 11 cases (24.4%, hyperthyroidism at 2 cases (4.4%, dyslipidemia at 2 cases (4.4% and lastly 2 cases had carpal tunnel syndrome operation. The mean time between the onset of symptoms to surgery was 6.9 ± 4.8 (range, 2-24 months. Patient satisfaction was very good in 34 cases (75.4% and good in 11 (24.6% patients. The distance between the pulpa of the operated finger and the palm was normal in every case postoperatively. We have not encountered any postoperative complications. We can recommend that; A1 pulley release via open incision is an effective and reliable method in trigger finger surgery.

  14. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  15. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  16. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    Science.gov (United States)

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  17. Infant manual performance during reaching and grasping for objects moving in depth

    Directory of Open Access Journals (Sweden)

    Erik eDomellöf

    2015-08-01

    Full Text Available Few studies have observed investigated manual asymmetries performance in infants when reaching and grasping for objects moving in directions other than across the fronto-parallel plane. The present preliminary study explored manual object-oriented behavioral strategies and hand side preference in 8- and 10-month-old infants during reaching and grasping for objects approaching in depth from three positions (midline, and 27° diagonally from the left, and right, midline. Effects of task constraint by using objects of three different types and two sizes were further examined for behavioral strategies and . The study also involved measurements of hand position opening prior to grasping., and Additionally, assessments of general hand preference by a dedicated handedness test were performed. Regardless of object starting position, the 8-month-old infants predominantly displayed right-handed reaches for objects approaching in depth. In contrast, the older infants showed more varied strategies and performed more ipsilateral reaches in correspondence with the side of the approaching object. Conversely, 10-month-old infants were more successful than the younger infants in grasping the objects, independent of object starting position. The findings support the possibility of a shared underlying mechanism regarding for infant hand use strategies when reaching and grasping for horizontally objects moving in depth are similar to those from earlier studies using objects moving along a horizontal pathand vertically moving objects. Still, initiation times of reaching onset were generally long in the present study, indicating that the object motion paths seemingly affected how the infants perceived the intrinsic properties and spatial locations of the objects, possibly with an effect on motor planning. Findings are further discussed in relation to future investigations of infant reaching and grasping for objects approaching in depth.

  18. How to grasp a ripe tomato

    NARCIS (Netherlands)

    Verhagen, L.

    2012-01-01

    Fortunately, we don’t have to think about this when we are standing in the supermarket after a busy day. We adjust our grip without effort, making sure we don’t squish an overripe tomato, while we firmly grasp a hard green one. This is actually a complex task in which humans are surprisingly

  19. [A case with apraxia of tool use: selective inability to form a hand posture for a tool].

    Science.gov (United States)

    Hayakawa, Yuko; Fujii, Toshikatsu; Yamadori, Atsushi; Meguro, Kenichi; Suzuki, Kyoko

    2015-03-01

    Impaired tool use is recognized as a symptom of ideational apraxia. While many studies have focused on difficulties in producing gestures as a whole, using tools involves several steps; these include forming hand postures appropriate for the use of certain tool, selecting objects or body parts to act on, and producing gestures. In previously reported cases, both producing and recognizing hand postures were impaired. Here we report the first case showing a selective impairment of forming hand postures appropriate for tools with preserved recognition of the required hand postures. A 24-year-old, right-handed man was admitted to hospital because of sensory impairment of the right side of the body, mild aphasia, and impaired tool use due to left parietal subcortical hemorrhage. His ability to make symbolic gestures, copy finger postures, and orient his hand to pass a slit was well preserved. Semantic knowledge for tools and hand postures was also intact. He could flawlessly select the correct hand postures in recognition tasks. He only demonstrated difficulties in forming a hand posture appropriate for a tool. Once he properly grasped a tool by trial and error, he could use it without hesitation. These observations suggest that each step of tool use should be thoroughly examined in patients with ideational apraxia.

  20. Electrotactile feedback improves performance and facilitates learning in the routine grasping task

    Directory of Open Access Journals (Sweden)

    Milica Isaković

    2016-06-01

    Full Text Available Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels. First (baseline and the last (validation session were performed in open loop, while the second and the third session (training included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  1. Electrotactile Feedback Improves Performance and Facilitates Learning in the Routine Grasping Task.

    Science.gov (United States)

    Isaković, Milica; Belić, Minja; Štrbac, Matija; Popović, Igor; Došen, Strahinja; Farina, Dario; Keller, Thierry

    2016-06-13

    Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels). First (baseline) and the last (validation) session were performed in open loop, while the second and the third session (training) included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  2. GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences.

    Science.gov (United States)

    Petrey, Donald; Honig, Barry

    2003-01-01

    The widespread use of the original version of GRASP revealed the importance of the visualization of physicochemical and structural properties on the molecular surface. This chapter describes a new version of GRASP that contains many new capabilities. In terms of analysis tools, the most notable new features are sequence and structure analysis and alignment tools and the graphical integration of sequence and structural information. Not all the new GRASP2 could be described here and more capabilities are continually being added. An on-line manual, details on obtaining the software, and technical notes about the program and the Troll software library can be found at the Honig laboratory Web site (http://trantor.bioc.columbia.edu).

  3. Trigger Finger

    Science.gov (United States)

    ... in a bent position. People whose work or hobbies require repetitive gripping actions are at higher risk ... developing trigger finger include: Repeated gripping. Occupations and hobbies that involve repetitive hand use and prolonged gripping ...

  4. Contact behaviour of children and parental employment behaviour during school closures against the pandemic influenza A (H1N1-2009) in Japan.

    Science.gov (United States)

    Mizumoto, Kenji; Yamamoto, Taro; Nishiura, Hiroshi

    2013-06-01

    To identify epidemiological determinants of the contact behaviour of children and their impact on parental employment, during school closures that took place over the course of the 2009 pandemic influenza (H1N1-2009) in Japan. A retrospective survey was conducted in Japanese households between October 2009 and May 2010 by administration of a standardized questionnaire. Demographic and behavioural variables were explored, in association with the frequency with which children left the home and the risk of parents being absent from work during school closures. Data from 882 eligible households were analysed. A total of 181/882 (20.5%) of households reported that children left the home for nonessential reasons during school closures. No impact on parental working hours was reported by 742/882 (84.1%) of households. Univariate analyses showed that the frequency with which children left the home was dependent on age, extent of school closure and requirement for special childcare arrangements. A greater understanding of age-dependent behaviours, during school closures as a consequence of a pandemic, is required. Consideration of a public policy to permit a paid leave of absence from work for parents during school closures may be beneficial; the cost-effectiveness of such a measure should be assessed in future.

  5. Do already grasped objects activate motor affordances?

    Science.gov (United States)

    Iani, Cristina; Ferraro, Luca; Maiorana, Natale Vincenzo; Gallese, Vittorio; Rubichi, Sandro

    2018-04-07

    This study investigated whether in a stimulus-response compatibility (SRC) task affordance effects in response to picture of graspable objects emerge when these objects appear as already grasped. It also assessed whether the observed effects could be explained as due to spatial compatibility between the most salient part in the object/display and the hand of response rather than to action potentiation. To this aim, we conducted three behavioural experiments in which participants were required to discriminate the vertical orientation (upright vs. inverted) of an object presented in the centre of the screen, while ignoring the right-left orientation of its handle. The object could be presented alone, as already grasped, as partially masked (Experiment 1) or with a human hand close to its graspable side (Experiment 2). In addition, to assess the role of perceptual salience, the object could be presented with a human hand or a non-biological (a geometrical shape) distractor located opposite to the object's graspable side. Results showed faster responses when the object's handle was located on the same side of the responding hand with a larger effect when upright objects were shown as already grasped (Experiment 1) or when a hand was displayed close to its handle (Experiment 2), and a smaller reversed effect when the hand or the geometrical shape was located opposite to the handled side (Experiment 3). We interpreted these findings as indicating that handle orientation effects emerging in SRC tasks may result from the interplay between motor affordance and spatial compatibility mechanisms.

  6. Impaired anticipatory control of grasp during obstacle crossing in Parkinson's disease.

    Science.gov (United States)

    McIsaac, Tara L; Diermayr, Gudrun; Albert, Frederic

    2012-05-16

    During self-paced walking, people with Parkinson's disease maintain anticipatory control during object grasping. However, common functional tasks often include carrying an object while changing step patterns mid-path and maneuvering over obstacles, increasing task complexity and attentional demands. Thus, the present study investigated the effect of Parkinson's disease on the modulation of grasping force changes as a function of gait-related inertial forces. Subjects with Parkinson's disease maintained the ability to scale and to couple over time their grip and inertial forces while walking at irregular step lengths, but were unable to maintain the temporal coupling of grasping forces compared to controls during obstacle crossing. We suggest that this deterioration in anticipatory control is associated with the increased demands of task complexity and attention during obstacle crossing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. A circular feature-based pose measurement method for metal part grasping

    International Nuclear Information System (INIS)

    Wu, Chenrui; He, Zaixing; Zhang, Shuyou; Zhao, Xinyue

    2017-01-01

    The grasping of circular metal parts such as bearings and flanges is a common task in industry. Limited by low texture and repeated features, the point-feature-based method is not applicable in pose measurement of these parts. In this paper, we propose a novel pose measurement method for grasping circular metal parts. This method is based on cone degradation and involves a monocular camera. To achieve higher measurement accuracy, a position-based visual servoing method is presented to continuously control an eye-in-hand, six-degrees-of-freedom robot arm to grasp the part. The uncertainty of the part’s coordinate frame during the control process is solved by defining a fixed virtual coordinate frame. Experimental results are provided to illustrate the effectiveness of the proposed method and the factors that affect measurement accuracy are analyzed. (paper)

  8. 17 CFR 239.14 - Form N-2 for closed end management investment companies registered on Form N-8A.

    Science.gov (United States)

    2010-04-01

    ... management investment companies registered on Form N-8A. 239.14 Section 239.14 Commodity and Securities... Registration Statements § 239.14 Form N-2 for closed end management investment companies registered on Form N... closed end management investment companies registered under the Investment Company Act of 1940 on form N...

  9. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    Science.gov (United States)

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  10. Rehabilitation of single finger amputation with customized silicone prosthesis

    OpenAIRE

    Yadav, Niharika; Chand, Pooran; Jurel, Sunit Kumar

    2016-01-01

    Finger amputations are common in accidents at home, work, and play. Apart from trauma, congenital disease and deformity also leads to finger amputation. This results in loss of function, loss of sensation as well as loss of body image. Finger prosthesis offers psychological support and social acceptance in such cases. This clinical report describes a method to fabricate ring retained silicone finger prosthesis in a patient with partial finger loss.

  11. Finger prosthesis: a boon to handicapped.

    Science.gov (United States)

    Gupta, Ridhima; Kumar, Lakshya; Rao, Jitendra; Singh, Kamleshwar

    2013-08-29

    This is a clinical case report of a 52-year-old male patient with four partially missing fingers of the left hand. The article describes the clinical and laboratory procedure of making prosthesis with modern silicone material. A wax pattern was fabricated using the right hand of the patient. A special type of wax was formulated to make the pattern so that it can be easily moulded and carved. Intrinsic and extrinsic staining was also performed to match the adjacent skin colour. The patient was given the finger prosthesis and was asked to use a half glove (sports) to mask the junction between the prosthesis and the normal tissue. It also provides additional retention to the artificial fingers. The patient felt his social acceptance improved after wearing the finger prosthesis.

  12. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    Science.gov (United States)

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-07-15

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.

  13. Orbital maneuvering end effectors

    Science.gov (United States)

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)

    1986-01-01

    This invention relates to an end effector device for grasping and maneuvering objects such as berthing handles of a space telescope. The device includes a V-shaped capture window defined as inclined surfaces in parallel face plates which converge toward a retainer recess in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess where latches lock handle in the recess. To align the capture window, plates may be cocked plus or minus five degrees on base. Drive means is included in the form of a motor coupled with a harmonic drive speed reducer, which provides for slow movement of the fingers at a high torque so that large articles may be handled. Novelty of the invention is believed to reside in the combined intermeshing finger structure, drive means and the harmonic drive speed reducer, which features provide the required maneuverability and strength.

  14. Hamiltonian fluid closures of the Vlasov-Ampère equations: From water-bags to N moment models

    Energy Technology Data Exchange (ETDEWEB)

    Perin, M.; Chandre, C.; Tassi, E. [Aix-Marseille Université, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille (France); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712-1060 (United States)

    2015-09-15

    Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two, and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.

  15. Algoritmos GRASP para el equilibrado de líneas con riesgo ergonómico mínimo

    OpenAIRE

    Bautista Valhondo, Joaquín; Alfaro Pozo, Rocío; Batalla García, Cristina; Llovera Laborda, Sara

    2015-01-01

    Resumen - Se presenta un problema de equilibrado de líneas de montaje con ciclo compatible y número fijo de estaciones con el objetivo de minimizar el máximo riesgo ergonómico presente en las estaciones de trabajo. Tras la formu lación de un modelo matemático para el problema, se proponen procedimientos GRASP para su resolución. Los procedimientos incorporan un algoritmo greedy para regularizar el riesgo ergonómico así como diferentes tipos de mejora local. De...

  16. Preschool children adapt grasping movements to upcoming object manipulations: Evidence from a dial rotation task.

    Science.gov (United States)

    Herbort, Oliver; Büschelberger, Juliane; Janczyk, Markus

    2018-03-01

    In adults, the motor plans for object-directed grasping movements reflects the anticipated requirements of intended future object manipulations. This prospective mode of planning has been termed second-order planning. Surprisingly, second-order planning is thought to be fully developed only by 10 years of age, when children master seemingly more complex motor skills. In this study, we tested the hypothesis that already 5- and 6-year-old children consistently use second-order planning but that this ability does not become apparent in tasks that are traditionally used to probe it. We asked 5- and 6-year-olds and adults to grasp and rotate a circular dial in a clockwise or counterclockwise direction. Although children's grasp selections were less consistent on an intra- and inter-individual level than adults' grasp selections, all children adjusted their grasps to the upcoming dial rotations. By contrast, in an also administered bar rotation task, only a subset of children adjusted their grasps to different bar rotations, thereby replicating previous results. The results indicate that 5- and 6-year-olds consistently use second-order planning in a dial rotation task, although this ability does not become apparent in bar rotation tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Closure report for housekeeping category, Corrective Action Unit 348, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at twelve Corrective Action Sites within Corrective Action Unit 348 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  18. Closure report for housekeeping category, Corrective Action Unit 347, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 347 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  19. Grasping Force Control for a Robotic Hand by Slip Detection Using Developed Micro Laser Doppler Velocimeter

    Directory of Open Access Journals (Sweden)

    Nobutomo Morita

    2018-01-01

    Full Text Available The purpose of this paper is to show the feasibility of grasping force control by feeding back signals of the developed micro-laser Doppler velocimeter (μ-LDV and by discriminating whether a grasped object is slipping or not. LDV is well known as a high response surface velocity sensor which can measure various surfaces—such as metal, paper, film, and so on—thus suggesting the potential application of LDV as a slip sensor for grasping various objects. However, the use of LDV as a slip sensor has not yet been reported because the size of LDVs is too large to be installed on a robotic fingertip. We have solved the size problem and enabled the performance of a feasibility test with a few-millimeter-scale LDV referred to as micro-LDV (μ-LDV by modifying the design which was adopted from MEMS (microelectromechanical systems fabrication process. In this paper, by applying our developed μ-LDV as a slip sensor, we have successfully demonstrated grasping force control with three target objects—aluminum block, wood block, and white acrylic block—considering that various objects made of these materials can be found in homes and factories, without grasping force feedback. We provide proofs that LDV is a new promising candidate slip sensor for grasping force control to execute target grasping.

  20. Grasping Force Control for a Robotic Hand by Slip Detection Using Developed Micro Laser Doppler Velocimeter.

    Science.gov (United States)

    Morita, Nobutomo; Nogami, Hirofumi; Higurashi, Eiji; Sawada, Renshi

    2018-01-23

    The purpose of this paper is to show the feasibility of grasping force control by feeding back signals of the developed micro-laser Doppler velocimeter (μ-LDV) and by discriminating whether a grasped object is slipping or not. LDV is well known as a high response surface velocity sensor which can measure various surfaces-such as metal, paper, film, and so on-thus suggesting the potential application of LDV as a slip sensor for grasping various objects. However, the use of LDV as a slip sensor has not yet been reported because the size of LDVs is too large to be installed on a robotic fingertip. We have solved the size problem and enabled the performance of a feasibility test with a few-millimeter-scale LDV referred to as micro-LDV (μ-LDV) by modifying the design which was adopted from MEMS (microelectromechanical systems) fabrication process. In this paper, by applying our developed μ-LDV as a slip sensor, we have successfully demonstrated grasping force control with three target objects-aluminum block, wood block, and white acrylic block-considering that various objects made of these materials can be found in homes and factories, without grasping force feedback. We provide proofs that LDV is a new promising candidate slip sensor for grasping force control to execute target grasping.

  1. Extrinsic versus intrinsic hand muscle dominance in finger flexion.

    Science.gov (United States)

    Al-Sukaini, A; Singh, H P; Dias, J J

    2016-05-01

    This study aims to identify the patterns of dominance of extrinsic or intrinsic muscles in finger flexion during initiation of finger curl and mid-finger flexion. We recorded 82 hands of healthy individuals (18-74 years) while flexing their fingers and tracked the finger joint angles of the little finger using video motion tracking. A total of 57 hands (69.5%) were classified as extrinsic dominant, where the finger flexion was initiated and maintained at proximal interphalangeal and distal interphalangeal joints. A total of 25 (30.5%) were classified as intrinsic dominant, where the finger flexion was initiated and maintained at the metacarpophalangeal joint. The distribution of age, sex, dominance, handedness and body mass index was similar in the two groups. This knowledge may allow clinicians to develop more efficient rehabilitation regimes, since intrinsic dominant individuals would not initiate extrinsic muscle contraction till later in finger flexion, and might therefore be allowed limited early active motion. For extrinsic dominant individuals, by contrast, initial contraction of extrinsic muscles would place increased stress on the tendon repair site if early motion were permitted. © The Author(s) 2016.

  2. Elastic fingering in rotating Hele-Shaw flows

    KAUST Repository

    Carvalho, Gabriel D.; Gadê lha, Hermes; Miranda, José A.

    2014-01-01

    The centrifugally driven viscous fingering problem arises when two immiscible fluids of different densities flow in a rotating Hele-Shaw cell. In this conventional setting an interplay between capillary and centrifugal forces makes the fluid-fluid interface unstable, leading to the formation of fingered structures that compete dynamically and reach different lengths. In this context, it is known that finger competition is very sensitive to changes in the viscosity contrast between the fluids. We study a variant of such a rotating flow problem where the fluids react and produce a gellike phase at their separating boundary. This interface is assumed to be elastic, presenting a curvature-dependent bending rigidity. A perturbative weakly nonlinear approach is used to investigate how the elastic nature of the interface affects finger competition events. Our results unveil a very different dynamic scenario, in which finger length variability is not regulated by the viscosity contrast, but rather determined by two controlling quantities: a characteristic radius and a rigidity fraction parameter. By properly tuning these quantities one can describe a whole range of finger competition behaviors even if the viscosity contrast is kept unchanged. © 2014 American Physical Society.

  3. Elastic fingering in rotating Hele-Shaw flows

    KAUST Repository

    Carvalho, Gabriel D.

    2014-05-21

    The centrifugally driven viscous fingering problem arises when two immiscible fluids of different densities flow in a rotating Hele-Shaw cell. In this conventional setting an interplay between capillary and centrifugal forces makes the fluid-fluid interface unstable, leading to the formation of fingered structures that compete dynamically and reach different lengths. In this context, it is known that finger competition is very sensitive to changes in the viscosity contrast between the fluids. We study a variant of such a rotating flow problem where the fluids react and produce a gellike phase at their separating boundary. This interface is assumed to be elastic, presenting a curvature-dependent bending rigidity. A perturbative weakly nonlinear approach is used to investigate how the elastic nature of the interface affects finger competition events. Our results unveil a very different dynamic scenario, in which finger length variability is not regulated by the viscosity contrast, but rather determined by two controlling quantities: a characteristic radius and a rigidity fraction parameter. By properly tuning these quantities one can describe a whole range of finger competition behaviors even if the viscosity contrast is kept unchanged. © 2014 American Physical Society.

  4. Differences between kinematic synergies and muscle synergies during two-digit grasping

    Directory of Open Access Journals (Sweden)

    Michele eTagliabue

    2015-03-01

    Full Text Available The large number of mechanical degrees of freedom of the hand is not fully exploited during actual movements such as grasping. Usually, angular movements in various joints tend to be coupled, and EMG activities in different hand muscles tend to be correlated. The occurrence of covariation in the former was termed kinematic synergies, in the latter muscle synergies. This study addresses two questions: (i Whether kinematic and muscle synergies can simultaneously accommodate for kinematic and kinetic constraints. (ii If so, whether there is an interrelation between kinematic and muscle synergies. We used a reach-grasp-and-pull paradigm and recorded the hand kinematics as well as 8 surface EMGs. Subjects had to either perform a precision grip or side grip and had to modify their grip force in order to displace an object against a low or high load. The analysis was subdivided into three epochs: reach, grasp-and-pull, and static hold. Principal component analysis (PCA, temporal or static was performed separately for all three epochs, in the kinematic and in the EMG domain. PCA revealed that (i Kinematic- and muscle-synergies can simultaneously accommodate kinematic (grip type and kinetic task constraints (load condition. (ii Upcoming grip and load conditions of the grasp are represented in kinematic- and muscle-synergies already during reach. Phase plane plots of the principal muscle-synergy against the principal kinematic synergy revealed (iii that the muscle-synergy is linked (correlated, and in phase advance to the kinematic synergy during reach and during grasp-and-pull. Furthermore (iv, pair-wise correlations of EMGs during hold suggest that muscle-synergies are (in part implemented by coactivation of muscles through common input. Together, these results suggest that kinematic synergies have (at least in part their origin not just in muscular activation, but in synergiestic muscle activation. In short: kinematic synergies may result from muscle

  5. Acceptable results of early closure of loop ileostomy to protect low rectal anastomosis

    DEFF Research Database (Denmark)

    Perdawid, Sharafaden Karim; Andersen, Ole Bjørn; Perdawood, Sharaf

    2011-01-01

    INTRODUCTION: This was a pilot project performed prior to full implementation of early loop ileostomy closure (within two weeks) following low anterior resection of the rectum in a group of patients selected according to previously recommended criteria for safe, early ileostomy closure. MATERIAL......, closure operation, the postoperative closure period and follow-up. RESULTS: Eleven patients were included (men, n = 4) with a median age of 58 years (range 47-79 years). Ileostomy closure was performed at a median of ten days (range 8-13 days) following rectum resection. The median hospital stay was 16...

  6. Modeling task-specific neuronal ensembles improves decoding of grasp

    Science.gov (United States)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more

  7. Managing distributed dynamic systems with spatial grasp technology

    CERN Document Server

    Sapaty, Peter Simon

    2017-01-01

    The book describes a novel ideology and supporting information technology for integral management of both civil and defence-orientated large, distributed dynamic systems. The approach is based on a high-level Spatial Grasp Language, SGL, expressing solutions in physical, virtual, executive and combined environments in the form of active self-evolving and self-propagating patterns spatially matching the systems to be created, modified and controlled. The communicating interpreters of SGL can be installed in key system points, which may be in large numbers (up to millions and billions) and represent equipped humans, robots, laptops, smartphones, smart sensors, etc. Operating under gestalt-inspired scenarios in SGL initially injected from any points, these systems can be effectively converted into goal-driven spatial machines (rather than computers as dealing with physical matter too) capable of responding to numerous challenges caused by growing world dynamics in the 21st century. Including numerous practical e...

  8. Factors affecting closure of a temporary stoma.

    Science.gov (United States)

    Taylor, Claire; Varma, Sarah

    2012-01-01

    The purpose of the study was to examine time to reversal of a temporary ostomy, reasons for delayed closure, and patient satisfaction with the scheduling of their closure and related hospital care. Cross-sectional, descriptive study. The target population comprised patients who underwent creation of a temporary ostomy and reversal surgery within one National Health System Hospital Trust in the United Kingdom. The population served by this Trust are ethnically and socioeconomically diverse, predominantly living in urban areas around Greater London. Sixty-one persons who met inclusion criteria were identified. A two-step analytical process was undertaken. First, a literature review examining incidence and causes of delayed stoma closure was undertaken. Second, a postal survey of all patients who had had their stoma closed in 2009 was conducted. Respondents were allowed 2 weeks to complete and return the questionnaire. The survey instrument was developed locally and subjected to content validation using ostomy patients, surgical and nursing colleagues. It consisted of 9 questions querying time from original surgery to closure, reasons for delaying closure surgery beyond 12 weeks, and satisfaction with care. Twenty-seven patients returned their questionnaires, indicating they consented to participate; a response rate of 44%. Half of the respondents (n = 14 [52%]) underwent closure surgery within 6 months of stoma formation; the remaining 48% waited more than 6 months (median: 6.5 months, range: 1.5-26 months). Thirteen patients (48%) reported a delay in receiving their stoma closure; the main reason cited was the need for a course of adjuvant postoperative chemotherapy. Three quarters of respondents (22 [74%]) were satisfied with the overall care they received. Findings from this study suggest that stoma closure may be associated with fewest complications if performed before 12 weeks.

  9. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging

    Science.gov (United States)

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo ( N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females ( N = 25) and young females from a rural area ( N = 15) and an urban area ( N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females ( P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups ( P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  10. Finger impedance evaluation by means of hand exoskeleton.

    Science.gov (United States)

    Fiorilla, Angelo Emanuele; Nori, Francesco; Masia, Lorenzo; Sandini, Giulio

    2011-12-01

    Modulation of arm mechanical impedance is a fundamental aspect for interaction with the external environment and its regulation is essential for stability preservation during manipulation. Even though past research on human arm movements has suggested that models of human finger impedance would benefit the study of neural control mechanisms and the design of novel hand prostheses, relatively few studies have focused on finger and hand impedance. This article touches on the two main aspects of this research topic: first it introduces a mechanical refinement of a device that can be used to effectively measure finger impedance during manipulation tasks; then, it describes a pilot study aimed at identifying the inertia of the finger and the viscous and elastic properties of finger muscles. The proposed wearable exoskeleton, which has been designed to measure finger posture and impedance modulation while leaving the palm free, is capable of applying fast displacements while monitoring the interaction forces between the human finger and the robotic links. Moreover, due to the relatively small inertia of the fingers, it allows us to meet some stringent specifications, performing relatively large displacements (~45°) before the stretch reflex intervenes (~25 ms). The results of measurements on five subjects show that inertia, damping, and stiffness can be effectively identified and that the parameters obtained are comparable with values from previous studies.

  11. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.

    Science.gov (United States)

    Magdalon, Eliane C; Michaelsen, Stella M; Quevedo, Antonio A; Levin, Mindy F

    2011-09-01

    Virtual reality (VR) technology is being used with increasing frequency as a training medium for motor rehabilitation. However, before addressing training effectiveness in virtual environments (VEs), it is necessary to identify if movements made in such environments are kinematically similar to those made in physical environments (PEs) and the effect of provision of haptic feedback on these movement patterns. These questions are important since reach-to-grasp movements may be inaccurate when visual or haptic feedback is altered or absent. Our goal was to compare kinematics of reaching and grasping movements to three objects performed in an immersive three-dimensional (3D) VE with haptic feedback (cyberglove/grasp system) viewed through a head-mounted display to those made in an equivalent physical environment (PE). We also compared movements in PE made with and without wearing the cyberglove/grasp haptic feedback system. Ten healthy subjects (8 women, 62.1±8.8years) reached and grasped objects requiring 3 different grasp types (can, diameter 65.6mm, cylindrical grasp; screwdriver, diameter 31.6mm, power grasp; pen, diameter 7.5mm, precision grasp) in PE and visually similar virtual objects in VE. Temporal and spatial arm and trunk kinematics were analyzed. Movements were slower and grip apertures were wider when wearing the glove in both the PE and the VE compared to movements made in the PE without the glove. When wearing the glove, subjects used similar reaching trajectories in both environments, preserved the coordination between reaching and grasping and scaled grip aperture to object size for the larger object (cylindrical grasp). However, in VE compared to PE, movements were slower and had longer deceleration times, elbow extension was greater when reaching to the smallest object and apertures were wider for the power and precision grip tasks. Overall, the differences in spatial and temporal kinematics of movements between environments were greater than

  12. Road Closures

    Data.gov (United States)

    Montgomery County of Maryland — This is an up to date map of current road closures in Montgomery County.This dataset is updated every few minutes from the Department of Transportation road closure...

  13. Number magnitude to finger mapping is disembodied and topological.

    Science.gov (United States)

    Plaisier, Myrthe A; Smeets, Jeroen B J

    2011-03-01

    It has been shown that humans associate fingers with numbers because finger counting strategies interact with numerical judgements. At the same time, there is evidence that there is a relation between number magnitude and space as small to large numbers seem to be represented from left to right. In the present study, we investigated whether number magnitude to finger mapping is embodied (related to the order of fingers on the hand) or disembodied (spatial). We let healthy human volunteers name random numbers between 1 and 30, while simultaneously tapping a random finger. Either the hands were placed directly next to each other, 30 cm apart, or the hands were crossed such that the left hand was on the right side of the body mid-line. The results show that naming a smaller number than the previous one was associated with tapping a finger to the left of the previously tapped finger. This shows that there is a spatial (disembodied) mapping between number magnitude and fingers. Furthermore, we show that this mapping is topological rather than metrically scaled.

  14. Dextrous gripping in a hazardous environment

    International Nuclear Information System (INIS)

    Jongkind, W.

    1993-01-01

    Existing dextrous grippers are presented and compared, tasks to be performed in the hazardous environment are analyzed, and recommendations on gripper design and configuration are given. The outcome is a proposal for a dextrous gripper consisting of three antropomorphic fingers and an active palm. Sensor and actuator issues have been investigated and a selection of them has been made with respect to applicability in the hazardous environment. Theoretical contact issues were investigated and contacts have been modelled accordingly, followed by a kinematical analysis of the proposed gripper. Force and motion equations have been derived, and finger force distribution and computation has been analyzed. Grasp planning, the determination for a given task of a sequence of postures, to gurantee the safe and robust grasping of an object has been investigated. The determination of postures resulting in the designation of the number and categories of contact points before the fingers of the gripper contact the object is a matter of high-level grasping. The post-contact phase of the grasp, where set points for position and/or force have to be controlled, a matter of low-level grasp planning, has been investigated. The dissertation concluded with an investigation into the control of the gripper to achieve reliable grasps. The aim was to arrive at a controller that can comply with varying external forces and that can cope with imprecise known objects and imprecise task descriptions. Also the controlling of grasping forces as aimed at. The resulting gripper is radiation resistant. The methodology worked out in the dissertation is currently being applied to the design of a gripper able to operate in a hazardous nuclear environment. (orig./HP)

  15. The visual neuroscience of robotic grasping achieving sensorimotor skills through dorsal-ventral stream integration

    CERN Document Server

    Chinellato, Eris

    2016-01-01

    This book presents interdisciplinary research that pursues the mutual enrichment of neuroscience and robotics. Building on experimental work, and on the wealth of literature regarding the two cortical pathways of visual processing - the dorsal and ventral streams - we define and implement, computationally and on a real robot, a functional model of the brain areas involved in vision-based grasping actions. Grasping in robotics is largely an unsolved problem, and we show how the bio-inspired approach is successful in dealing with some fundamental issues of the task. Our robotic system can safely perform grasping actions on different unmodeled objects, denoting especially reliable visual and visuomotor skills. The computational model and the robotic experiments help in validating theories on the mechanisms employed by the brain areas more directly involved in grasping actions. This book offers new insights and research hypotheses regarding such mechanisms, especially for what concerns the interaction between the...

  16. Generating and analyzing synthetic finger vein images

    OpenAIRE

    Hillerström, Fieke; Kumar, Ajay; Veldhuis, Raymond N.J.

    2014-01-01

    Abstract: The finger-vein biometric offers higher degree of security, personal privacy and strong anti-spoofing capabilities than most other biometric modalities employed today. Emerging privacy concerns with the database acquisition and lack of availability of large scale finger-vein database have posed challenges in exploring this technology for large scale applications. This paper details the first such attempt to synthesize finger-vein images and presents analysis of synthesized images fo...

  17. Tactile Gloves for Autonomous Grasping With the NASA/DARPA Robonaut

    Science.gov (United States)

    Martin, T. B.; Ambrose, R. O.; Diftler, M. A.; Platt, R., Jr.; Butzer, M. J.

    2004-01-01

    Tactile data from rugged gloves are providing the foundation for developing autonomous grasping skills for the NASA/DARPA Robonaut, a dexterous humanoid robot. These custom gloves compliment the human like dexterity available in the Robonaut hands. Multiple versions of the gloves are discussed, showing a progression in using advanced materials and construction techniques to enhance sensitivity and overall sensor coverage. The force data provided by the gloves can be used to improve dexterous, tool and power grasping primitives. Experiments with the latest gloves focus on the use of tools, specifically a power drill used to approximate an astronaut's torque tool.

  18. Dependence of behavioral performance on material category in an object grasping task with monkeys.

    Science.gov (United States)

    Yokoi, Isao; Tachibana, Atsumichi; Minamimoto, Takafumi; Goda, Naokazu; Komatsu, Hidehiko

    2018-05-02

    Material perception is an essential part of our cognitive function that enables us to properly interact with our complex daily environment. One important aspect of material perception is its multimodal nature. When we see an object, we generally recognize its haptic properties as well as its visual properties. Consequently, one must examine behavior using real objects that are perceived both visually and haptically to fully understand the characteristics of material perception. As a first step, we examined whether there is any difference in the behavioral responses to different materials in monkeys trained to perform an object grasping task in which they saw and grasped rod-shaped real objects made of various materials. We found that the monkeys' behavior in the grasping task, measured based on the success rate and the pulling force, differed depending on the material category. Monkeys easily and correctly grasped objects of some materials, such as metal and glass, but failed to grasp objects of other materials. In particular, monkeys avoided grasping fur-covered objects. The differences in the behavioral responses to the material categories cannot be explained solely based on the degree of familiarity with the different materials. These results shed light on the organization of multimodal representation of materials, where their biological significance is an important factor. In addition, a monkey that avoided touching real fur-covered objects readily touched images of the same objects presented on a CRT display. This suggests employing real objects is important when studying behaviors related to material perception.

  19. Transuranic Storage Area (TSA)-3 container storage unit RCRA closure plan

    International Nuclear Information System (INIS)

    Barry, G.A.; Lodman, D.L.; Spry, M.J.; Poor, K.J.

    1992-11-01

    This document describes the proposed plan for closure of the Transuranic Storage Area (TSA)-3 container storage unit at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act closure requirements. The location, size, capacity, history, and current status of the unit are described. The unit will be closed by decontaminating structures and equipment that may have contacted waste. Sufficient sampling and documentation of all activities will be performed to demonstrate clean closure. A tentative schedule is provided in the form of a milestone chart

  20. Dorsal finger texture recognition: Investigating fixed-length SURF

    DEFF Research Database (Denmark)

    Hartung, Daniel; Kückelhahn, Jesper

    2012-01-01

    We seek to create fixed-length features from dorsal finger skin images extracted by the SURF interest point detector to combine it in the privacy enhancing helper data scheme. The source of the biometric samples is the GUC45 database which features finger vein, fingerprint and dorsal finger skin...

  1. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  2. Simulating school closure policies for cost effective pandemic decision making

    Directory of Open Access Journals (Sweden)

    Araz Ozgur M

    2012-06-01

    Full Text Available Abstract Background Around the globe, school closures were used sporadically to mitigate the 2009 H1N1 influenza pandemic. However, such closures can detrimentally impact economic and social life. Methods Here, we couple a decision analytic approach with a mathematical model of influenza transmission to estimate the impact of school closures in terms of epidemiological and cost effectiveness. Our method assumes that the transmissibility and the severity of the disease are uncertain, and evaluates several closure and reopening strategies that cover a range of thresholds in school-aged prevalence (SAP and closure durations. Results Assuming a willingness to pay per quality adjusted life-year (QALY threshold equal to the US per capita GDP ($46,000, we found that the cost effectiveness of these strategies is highly dependent on the severity and on a willingness to pay per QALY. For severe pandemics, the preferred strategy couples the earliest closure trigger (0.5% SAP with the longest duration closure (24 weeks considered. For milder pandemics, the preferred strategies also involve the earliest closure trigger, but are shorter duration (12 weeks for low transmission rates and variable length for high transmission rates. Conclusions These findings highlight the importance of obtaining early estimates of pandemic severity and provide guidance to public health decision-makers for effectively tailoring school closures strategies in response to a newly emergent influenza pandemic.

  3. VisGraB: A Benchmark for Vision-Based Grasping. Paladyn Journal of Behavioral Robotics

    DEFF Research Database (Denmark)

    Kootstra, Gert; Popovic, Mila; Jørgensen, Jimmy Alison

    2012-01-01

    that a large number of grasps can be executed and evaluated while dealing with dynamics and the noise and uncertainty present in the real world images. VisGraB enables a fair comparison among different grasping methods. The user furthermore does not need to deal with robot hardware, focusing on the vision......We present a database and a software tool, VisGraB, for benchmarking of methods for vision-based grasping of unknown objects with no prior object knowledge. The benchmark is a combined real-world and simulated experimental setup. Stereo images of real scenes containing several objects in different...

  4. A retrospective study of functional outcomes after successful replantation versus amputation closure for single fingertip amputations.

    Science.gov (United States)

    Hattori, Yasunori; Doi, Kazuteru; Ikeda, Keisuke; Estrella, Emmanuel P

    2006-01-01

    To compare the functional outcome of successful microsurgical replantation versus amputation closure for single fingertip amputations. Forty-six fingertip amputations in 46 patients (23 were replanted successfully, 23 had amputation closure) were included in this study. Thumb amputations were excluded. Grip strength and active range of motion of the proximal interphalangeal joint were evaluated. The patients were questioned about their symptoms of pain, paresthesia, and cold intolerance. The Disabilities of the Arm, Shoulder, and Hand questionnaire was given and the disability/symptom score was evaluated. Patients' satisfaction with the surgical result was assessed. Time spent in the hospital and time off from work were reviewed. Active range of motion of the proximal interphalangeal joint was greater in the successful replantation group. Although the existence of paresthesia and cold intolerance were not statistically different between the 2 groups, pain in the affected fingers was more frequent in the amputation closure group. The average Disabilities of the Arm, Shoulder, and Hand score of the successful replantation group was statistically better. All patients in the successful replantation group were highly or fairly satisfied with the surgical results, whereas 14 patients in the amputation closure group were highly or fairly satisfied. The time spent in the hospital and the time off from work for the successful replantation group were longer. Successful replantation of single fingertip amputations can result in minimal pain, better functional outcome, better appearance, and higher patient satisfaction. We recommend attempting fingertip replantation not only to obtain the best appearance but also to gain better functional outcome. If the patient requests the simple surgery and earlier return to work amputation closure is an accepted method despite the disadvantage of digital shortening and the risk for a painful stump. Therapeutic, Level III.

  5. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Böhm Siegfried

    2004-07-01

    Full Text Available Background The classical C2H2 zinc finger domain is involved in a wide range of functions and can bind to DNA, RNA and proteins. The comparison of zinc finger proteins in several eukaryotes has shown that there is a lot of lineage specific diversification and expansion. Although the number of characterized plant proteins that carry the classical C2H2 zinc finger motifs is growing, a systematic classification and analysis of a plant genome zinc finger gene set is lacking. Results We found through in silico analysis 176 zinc finger proteins in Arabidopsis thaliana that hence constitute the most abundant family of putative transcriptional regulators in this plant. Only a minority of 33 A. thaliana zinc finger proteins are conserved in other eukaryotes. In contrast, the majority of these proteins (81% are plant specific. They are derived from extensive duplication events and form expanded families. We assigned the proteins to different subgroups and families and focused specifically on the two largest and evolutionarily youngest families (A1 and C1 that are suggested to be primarily involved in transcriptional regulation. The newly defined family A1 (24 members comprises proteins with tandemly arranged zinc finger domains. Family C1 (64 members, earlier described as the EPF-family in Petunia, comprises proteins with one isolated or two to five dispersed fingers and a mostly invariant QALGGH motif in the zinc finger helices. Based on the amino acid pattern in these helices we could describe five different signature sequences prevalent in C1 zinc finger domains. We also found a number of non-finger domains that are conserved in these families. Conclusions Our analysis of the few evolutionarily conserved zinc finger proteins of A. thaliana suggests that most of them could be involved in ancient biological processes like RNA metabolism and chromatin-remodeling. In contrast, the majority of the unique A. thaliana zinc finger proteins are known or

  6. Estimation of Sex From Index and Ring Finger Lengths in An Indigenous Population of Eastern India

    Science.gov (United States)

    Sen, Jaydip; Ghosh, Ahana; Mondal, Nitish; Krishan, Kewal

    2015-01-01

    Introduction Forensic anthropology involves the identification of human remains for medico-legal purposes. Estimation of sex is an essential element of medico-legal investigations when identification of unknown dismembered remains is involved. Aim The present study was conducted with an aim to estimate sex from index and ring finger lengths of adult individuals belonging to an indigenous population of eastern India. Materials and Methods A total of 500 unrelated adult individuals (18-60 years) from the Rajbanshi population (males: 250, females: 250) took part in the study. A total of 400 (males: 200, 200 female) participants were randomly used to develop sex estimation models using Binary Logistic Regression Analysis (BLR). A separate group of 200 adults (18-60 years) from the Karbi tribal population (males 100, females 100) were included to validate the results obtained on the Rajbanshi population. The univarate and bivariate models derived on the study group (n=400) were tested on hold-out sample of Rajbanshi participants (n=100) and the other test population of the Karbi (n=200) participants. Results The results indicate that Index Finger Length (IFL) and Ring Finger Length (RFL) of both hands were significantly longer in males as compared to females. The ring finger was longer than the index finger in both sexes. The study successfully highlights the existence of sex differences in IFL and RFL (p<0.05). No sex differences were however, observed for the index and ring finger ratio. The predictive accuracy of IFL and RFL in sex estimation ranged between 70%-75% (in the hold out sample from the Rajbanshi population) and 60-66% (in the test sample from the Karbi population). A Receiver Operating Curve (ROC) analysis was performed to test the predictive accuracy after predicting the probability of IFL and RFL in sex estimation. The predicted probabilities using ROC analysis were observed to be higher on the left side and in multivariate analysis. Conclusion The

  7. Quantitative assessment of finger motor performance: Normative data.

    Directory of Open Access Journals (Sweden)

    Alessio Signori

    Full Text Available Finger opposition movements are the basis of many daily living activities and are essential in general for manipulating objects; an engineered glove quantitatively assessing motor performance during sequences of finger opposition movements has been shown to be useful to provide reliable measures of finger motor impairment, even subtle, in subjects affected by neurological diseases. However, the obtained behavioral parameters lack published reference values.To determine mean values for different motor behavioral parameters describing the strategy adopted by healthy people in performing repeated sequences of finger opposition movements, examining associations with gender and age.Normative values for finger motor performance parameters were obtained on a sample of 255 healthy volunteers executing sequences of finger-to-thumb opposition movements, stratified by gender and over a wide range of ages. Touch duration, inter-tapping interval, movement rate, correct sequences (%, movements in advance compared with a metronome (% and inter-hand interval were assessed.Increasing age resulted in decreased movement speed, advance movements with respect to a cue, correctness of sequences, and bimanual coordination. No significant performance differences were found between male and female subjects except for the duration of the finger touch, the interval between two successive touches and their ratio.We report age- and gender-specific normal mean values and ranges for different parameters objectively describing the performance of finger opposition movement sequences, which may serve as useful references for clinicians to identify possible deficits in subjects affected by diseases altering fine hand motor skills.

  8. The timing of ostomy closure in infants with necrotizing enterocolitis: a systematic review.

    Science.gov (United States)

    Struijs, Marie-Chantal; Sloots, Cornelius E J; Hop, Wim C J; Tibboel, Dick; Wijnen, Rene M H

    2012-07-01

    The optimal timing of ostomy closure is a matter of debate. We performed a systematic review of outcomes of early ostomy closure (EC, within 8 weeks) and late ostomy closure (LC, after 8 weeks) in infants with necrotizing enterocolitis. PubMed, EMbase, Web-of-Science, and Cinahl were searched for studies that detailed time to ostomy closure, and time to full enteral nutrition (FEN) or complications after ostomy closure. Patients with Hirschsprung's disease or anorectal malformations were excluded. Analysis was performed using SPSS 17 and RevMan 5. Of 778 retrieved articles, 5 met the inclusion criteria. The median score for study quality was 9 [range 8-14 on a scale of 0 to 32 points (Downs and Black, J Epidemiol Community Health 52:377-384, 1998)]. One study described mean time to FEN: 19.1 days after EC (n = 13) versus 7.2 days after LC (n = 24; P = 0.027). Four studies reported complication rates after ostomy closure, complications occurred in 27% of the EC group versus 23% of the LC group. The combined odds ratio (LC vs. EC) was 1.1 [95% CI 0.5, 2.5]. Evidence that supports early or late closure is scarce and the published articles are of poor quality. There is no significant difference between EC versus LC in the complication rate. This systematic review supports neither early nor late ostomy closure.

  9. Break up of the N = 14 subshell closure in sup 2 sup 0 C

    CERN Document Server

    Dombrádi, Z; Timar, J; Fülöp, Z; Krasznahorkay, A; Azaiez, F; Sorlin, O; Amorini, F; Baiborodin, D; Bauchet, A

    2003-01-01

    To study the stability of the N=14 subshell closure at lower Z values the excited states of sup 2 sup 1 N and sup 2 sup 0 C were investigated by use of in-beam gamma spectroscopy. Spectra were collected from the fragmentations of a sup 3 sup 6 S beam, as well as from the fragmentation of a mixture of radioactive beams of sup 2 sup 5 sup , sup 2 sup 6 Ne, sup 2 sup 7 sup , sup 2 sup 8 Na, sup 2 sup 9 sup , sup 3 sup 0 Mg produced by the fragmentation of a high intensity (400 pnA) sup 3 sup 6 S beam. From the analysis of the gamma-ray-fragment coincidences, gamma rays were assigned to the decay of excited states in sup 2 sup 1 N and from the radioactive beam experiment also in sup 2 sup 0 C. (R.P.)

  10. Compact Dexterous Robotic Hand

    Science.gov (United States)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  11. Modeling the shape hierarchy for visually guided grasping

    CSIR Research Space (South Africa)

    Rezai, O

    2014-10-01

    Full Text Available The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient...

  12. Modelling primate control of grasping for robotics applications

    CSIR Research Space (South Africa)

    Kleinhans, A

    2014-09-01

    Full Text Available The neural circuits that control grasping and perform related visual processing have been studied extensively in Macaque monkeys. We are developing a computational model of this system, in order to better understand its function, and to explore...

  13. Robust finger vein ROI localization based on flexible segmentation.

    Science.gov (United States)

    Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2013-10-24

    Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.

  14. Robust Finger Vein ROI Localization Based on Flexible Segmentation

    Directory of Open Access Journals (Sweden)

    Dong Sun Park

    2013-10-01

    Full Text Available Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.

  15. Finger vein extraction using gradient normalization and principal curvature

    Science.gov (United States)

    Choi, Joon Hwan; Song, Wonseok; Kim, Taejeong; Lee, Seung-Rae; Kim, Hee Chan

    2009-02-01

    Finger vein authentication is a personal identification technology using finger vein images acquired by infrared imaging. It is one of the newest technologies in biometrics. Its main advantage over other biometrics is the low risk of forgery or theft, due to the fact that finger veins are not normally visible to others. Extracting finger vein patterns from infrared images is the most difficult part in finger vein authentication. Uneven illumination, varying tissues and bones, and changes in the physical conditions and the blood flow make the thickness and brightness of the same vein different in each acquisition. Accordingly, extracting finger veins at their accurate positions regardless of their thickness and brightness is necessary for accurate personal identification. For this purpose, we propose a new finger vein extraction method which is composed of gradient normalization, principal curvature calculation, and binarization. As local brightness variation has little effect on the curvature and as gradient normalization makes the curvature fairly uniform at vein pixels, our method effectively extracts finger vein patterns regardless of the vein thickness or brightness. In our experiment, the proposed method showed notable improvement as compared with the existing methods.

  16. Robust Finger Vein ROI Localization Based on Flexible Segmentation

    Science.gov (United States)

    Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2013-01-01

    Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system. PMID:24284769

  17. Harnessing Finger Millet to Combat Calcium Deficiency in Humans: Challenges and Prospects.

    Science.gov (United States)

    Puranik, Swati; Kam, Jason; Sahu, Pranav P; Yadav, Rama; Srivastava, Rakesh K; Ojulong, Henry; Yadav, Rattan

    2017-01-01

    Humans require more than 20 mineral elements for healthy body function. Calcium (Ca), one of the essential macromineral, is required in relatively large quantities in the diet for maintaining a sound overall health. Young children, pregnant and nursing women in marginalized and poorest regions of the world, are at highest risk of Ca malnutrition. Elderly population is another group of people most commonly affected by Ca deficiency mainly in the form of osteoporosis and osteopenia. Improved dietary intake of Ca may be the most cost-effective way to meet such deficiencies. Finger millet [ Eleusine coracana (L.) Gaertn.], a crop with inherently higher Ca content in its grain, is an excellent candidate for understanding genetic mechanisms associated with Ca accumulation in grain crops. Such knowledge will also contribute toward increasing Ca contents in other staple crops consumed on daily basis using plant-breeding (also known as biofortification) methods. However, developing Ca-biofortified finger millet to reach nutritional acceptability faces various challenges. These include identifying and translating the high grain Ca content to an adequately bioavailable form so as to have a positive impact on Ca malnutrition. In this review, we assess some recent advancements and challenges for enrichment of its Ca value and present possible inter-disciplinary prospects for advancing the actual impact of Ca-biofortified finger millet.

  18. Harnessing Finger Millet to Combat Calcium Deficiency in Humans: Challenges and Prospects

    Directory of Open Access Journals (Sweden)

    Swati Puranik

    2017-07-01

    Full Text Available Humans require more than 20 mineral elements for healthy body function. Calcium (Ca, one of the essential macromineral, is required in relatively large quantities in the diet for maintaining a sound overall health. Young children, pregnant and nursing women in marginalized and poorest regions of the world, are at highest risk of Ca malnutrition. Elderly population is another group of people most commonly affected by Ca deficiency mainly in the form of osteoporosis and osteopenia. Improved dietary intake of Ca may be the most cost-effective way to meet such deficiencies. Finger millet [Eleusine coracana (L. Gaertn.], a crop with inherently higher Ca content in its grain, is an excellent candidate for understanding genetic mechanisms associated with Ca accumulation in grain crops. Such knowledge will also contribute toward increasing Ca contents in other staple crops consumed on daily basis using plant-breeding (also known as biofortification methods. However, developing Ca-biofortified finger millet to reach nutritional acceptability faces various challenges. These include identifying and translating the high grain Ca content to an adequately bioavailable form so as to have a positive impact on Ca malnutrition. In this review, we assess some recent advancements and challenges for enrichment of its Ca value and present possible inter-disciplinary prospects for advancing the actual impact of Ca-biofortified finger millet.

  19. The solution structure of the N-terminal zinc finger of GATA-1 reveals a specific binding face for the transcriptional co-factor FOG

    International Nuclear Information System (INIS)

    Kowalski, K.; Czolij, R.; King, G.F.; Crossley, M.; Mackay, J.P.

    1999-01-01

    Zinc fingers (ZnFs) are generally regarded as DNA-binding motifs. However, a number of recent reports have implicated particular ZnFs in the mediation of protein-protein interactions. The N-terminal ZnF of GATA-1 (NF) is one such finger, having been shown to interact with a number of other proteins, including the recently discovered transcriptional co-factor FOG. Here we solve the three-dimensional structure of the NF in solution using multidimensional 1H/15N NMR spectroscopy, and we use 1H/15N spin relaxation measurements to investigate its backbone dynamics. The structure consists of two distorted β-hairpins and a single α-helix, and is similar to that of the C-terminal ZnF of chicken GATA-1. Comparisons of the NF structure with those of other C4-type zinc binding motifs, including hormone receptor and LIM domains, also reveal substantial structural homology. Finally, we use the structure to map the spatial locations of NF residues shown by mutagenesis to be essential for FOG binding, and demonstrate that these residues all lie on a single face of the NF. Notably, this face is well removed from the putative DNA- binding face of the NF, an observation which is suggestive of simultaneous roles for the NF; that is, stabilisation of GATA-1 DNA complexes and recruitment of FOG to GATA-1-controlled promoter regions

  20. Number to finger mapping is topological.

    NARCIS (Netherlands)

    Plaisier, M.A.; Smeets, J.B.J.

    2011-01-01

    It has been shown that humans associate fingers with numbers because finger counting strategies interact with numerical judgements. At the same time, there is evidence that there is a relation between number magnitude and space as small to large numbers seem to be represented from left to right. In

  1. Polytopic dystelephalangy of the fingers

    International Nuclear Information System (INIS)

    Sugiura, Y.

    1989-01-01

    An 11-year old girl with dystelephalangy (Kirner deformity) of the right middle, ring, and little, and the left index through little fingers is reported. To the author's best knowledge, such polytopic affection with dystelephalangy has not yet been reported. The parents, one of the siblings and maternal grandfather showed dystelephalangy of the little finger. So, the patient was considered to be a homozygous state of dystelephalangy gene. (orig.)

  2. Hybrid-Actuated Finger Prosthesis with Tactile Sensing

    Directory of Open Access Journals (Sweden)

    Cheng Yee Low

    2013-10-01

    Full Text Available Finger prostheses are devices developed to emulate the functionality of natural human fingers. On top of their aesthetic appearance in terms of shape, size and colour, such biomimetic devices require a high level of dexterity. They must be capable of gripping an object, and even manipulating it in the hand. This paper presents a biomimetic robotic finger actuated by a hybrid mechanism and integrated with a tactile sensor. The hybrid actuation mechanism comprises a DC micromotor and a Shape Memory Alloy (SMA wire. A customized test rig has been developed to measure the force and stroke produced by the SMA wire. In parallel with the actuator development, experimental investigations have been conducted on Quantum Tunnelling Composite (QTC and Pressure Conductive Rubber (PCR towards the development of a tactile sensor for the finger. The viability of using these materials for tactile sensing has been determined. Such a hybrid actuation approach aided with tactile sensing capability enables a finger design as an integral part of a prosthetic hand for applications up to the transradial amputation level.

  3. Grasp Representations Depend on Knowledge and Attention

    Science.gov (United States)

    Chua, Kao-Wei; Bub, Daniel N.; Masson, Michael E. J.; Gauthier, Isabel

    2018-01-01

    Seeing pictures of objects activates the motor cortex and can have an influence on subsequent grasping actions. However, the exact nature of the motor representations evoked by these pictures is unclear. For example, action plans engaged by pictures could be most affected by direct visual input and computed online based on object shape.…

  4. Ground Robotic Hand Applications for the Space Program study (GRASP)

    Science.gov (United States)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  5. Blood pressure measurement of all five fingers by strain gauge plethysmography

    DEFF Research Database (Denmark)

    Hirai, M; Nielsen, S L; Lassen, N A

    1976-01-01

    of the other fingers was measured using a 24-mm-wide cuff. Blood pressure at the proximal phalanx was higher than that at the intermediate phalanx in all fingers except finger V. The difference of blood pressure values corresponded well with circumference of the finger. In 15 normal subjects, blood pressure...... at the proximal phalanx was compared in fingers I, III, IV, and V, using 16, 20, 24 and 24 mm wide cuffs. Finger blood pressure was closest to arm systolic blood pressure when a 24-mm or 27-mm-wide cuff was used in fingers I, III, and IV, and with a 20-mm-wide cuff in finger V. As the standard deviation......The aim of the present paper was to study the methodological problems involved in measuring systolic blood pressure in all five fingers by the strain gauge technique. In 24 normal subjects, blood pressure at the proximal phalanx of finger I and both at the proximal and the intermediate phalanx...

  6. Probing the N = 14 subshell closure: g factor of the 26Mg (21+) state

    Science.gov (United States)

    McCormick, B. P.; Stuchbery, A. E.; Kibédi, T.; Lane, G. J.; Reed, M. W.; Eriksen, T. K.; Hota, S. S.; Lee, B. Q.; Palalani, N.

    2018-04-01

    The first-excited state g factor of 26Mg has been measured relative to the g factor of the 24Mg (21+) state using the high-velocity transient-field technique, giving g = + 0.86 ± 0.10. This new measurement is in strong disagreement with the currently adopted value, but in agreement with the sd-shell model using the USDB interaction. The newly measured g factor, along with E (21+) and B (E 2) systematics, signal the closure of the νd5/2 subshell at N = 14. The possibility that precise g-factor measurements may indicate the onset of neutron pf admixtures in first-excited state even-even magnesium isotopes below 32Mg is discussed and the importance of precise excited-state g-factor measurements on sd shell nuclei with N ≠ Z to test shell-model wavefunctions is noted.

  7. 17 CFR 239.15 - Form N-1 for open-end management investment companies registered on Form N-8A.

    Science.gov (United States)

    2010-04-01

    ... management investment companies registered on Form N-8A. 239.15 Section 239.15 Commodity and Securities... Registration Statements § 239.15 Form N-1 for open-end management investment companies registered on Form N-8A...-end management investment companies that are separate accounts of insurance companies as defined by...

  8. Application of autoradiography in finger print analysis

    International Nuclear Information System (INIS)

    Stverak, B.; Kopejtko, J.; Simek, J.

    1983-01-01

    In order to broaden the possibilities of developing latent finger prints a tracer technique has been developed using sup(110m)Ag and autoradiographic imaging. This method has been tested on glass, paper and certain plastics. On paper it is possible to visualize finger prints even after previous development using Ninhydrin. It is shown that usable finger prints may be obtained also from materials from which they cannot be obtained using classical methods, e.g., polyethylene and simulated leather. (author)

  9. Deep learning-based artificial vision for grasp classification in myoelectric hands

    Science.gov (United States)

    Ghazaei, Ghazal; Alameer, Ali; Degenaar, Patrick; Morgan, Graham; Nazarpour, Kianoush

    2017-06-01

    Objective. Computer vision-based assistive technology solutions can revolutionise the quality of care for people with sensorimotor disorders. The goal of this work was to enable trans-radial amputees to use a simple, yet efficient, computer vision system to grasp and move common household objects with a two-channel myoelectric prosthetic hand. Approach. We developed a deep learning-based artificial vision system to augment the grasp functionality of a commercial prosthesis. Our main conceptual novelty is that we classify objects with regards to the grasp pattern without explicitly identifying them or measuring their dimensions. A convolutional neural network (CNN) structure was trained with images of over 500 graspable objects. For each object, 72 images, at {{5}\\circ} intervals, were available. Objects were categorised into four grasp classes, namely: pinch, tripod, palmar wrist neutral and palmar wrist pronated. The CNN setting was first tuned and tested offline and then in realtime with objects or object views that were not included in the training set. Main results. The classification accuracy in the offline tests reached 85 % for the seen and 75 % for the novel objects; reflecting the generalisability of grasp classification. We then implemented the proposed framework in realtime on a standard laptop computer and achieved an overall score of 84 % in classifying a set of novel as well as seen but randomly-rotated objects. Finally, the system was tested with two trans-radial amputee volunteers controlling an i-limb UltraTM prosthetic hand and a motion controlTM prosthetic wrist; augmented with a webcam. After training, subjects successfully picked up and moved the target objects with an overall success of up to 88 % . In addition, we show that with training, subjects’ performance improved in terms of time required to accomplish a block of 24 trials despite a decreasing level of visual feedback. Significance. The proposed design constitutes a substantial

  10. The influence of intrinsic sympathomimetic activity and beta-1 receptor selectivity on the recovery of finger skin temperature after finger cooling in normotensive subjects.

    Science.gov (United States)

    Lenders, J W; Salemans, J; de Boo, T; Lemmens, W A; Thien, T; van't Laar, A

    1986-03-01

    A double-blind randomized study was designed to investigate differences in the recovery of finger skin temperature after finger cooling during dosing with placebo or one of four beta-blockers: propranolol, atenolol, pindolol, and acebutolol. In 11 normotensive nonsmoking subjects, finger skin temperature was measured with a thermocouple before and 20 minutes after immersion of one hand in a water bath at 16 degrees C. This finger cooling test caused no significant changes in systemic hemodynamics such as arterial blood pressure, heart rate, and forearm blood flow. The recovery of finger skin temperature during propranolol dosing was better than that during pindolol and atenolol dosing. There were no differences between the recoveries of skin temperature during pindolol, atenolol, and acebutolol dosing. Thus we could demonstrate no favorable effect of intrinsic sympathomimetic activity or beta 1-selectivity on the recovery of finger skin temperature after finger cooling.

  11. Closure The Definitive Guide

    CERN Document Server

    Bolin, Michael

    2010-01-01

    If you're ready to use Closure to build rich web applications with JavaScript, this hands-on guide has precisely what you need to learn this suite of tools in depth. Closure makes it easy for experienced JavaScript developers to write and maintain large and complex codebases -- as Google has demonstrated by using Closure with Gmail, Google Docs, and Google Maps. Author and Closure contributor Michael Bolin has included numerous code examples and best practices, as well as valuable information not available publicly until now. You'll learn all about Closure's Library, Compiler, Templates, tes

  12. Mixing methods, tasting fingers

    DEFF Research Database (Denmark)

    Mann, Anna; Mol, Annemarie; Satalkar, Priya

    2011-01-01

    This article reports on an ethnographic experiment. Four finger eating experts and three novices sat down for a hot meal and ate with their hands. Drawing on the technique of playing with the familiar and the strange, our aim was not to explain our responses, but to articulate them. As we seek...... words to do so, we are compelled to stretch the verb "to taste." Tasting, or so our ethnographic experiment suggests, need not be understood as an activity confined to the tongue. Instead, if given a chance, it may viscously spread out to the fingers and come to include appreciative reactions otherwise...

  13. Vision-based autonomous grasping of unknown piled objects

    International Nuclear Information System (INIS)

    Johnson, R.K.

    1994-01-01

    Computer vision techniques have been used to develop a vision-based grasping capability for autonomously picking and placing unknown piled objects. This work is currently being applied to the problem of hazardous waste sorting in support of the Department of Energy's Mixed Waste Operations Program

  14. From a meso- to micro-scale connectome: Array Tomography and mGRASP

    Directory of Open Access Journals (Sweden)

    Jinhyun eKim

    2015-06-01

    Full Text Available Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing, combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors.

  15. Finger Angle-Based Hand Gesture Recognition for Smart Infrastructure Using Wearable Wrist-Worn Camera

    Directory of Open Access Journals (Sweden)

    Feiyu Chen

    2018-03-01

    Full Text Available The arising of domestic robots in smart infrastructure has raised demands for intuitive and natural interaction between humans and robots. To address this problem, a wearable wrist-worn camera (WwwCam is proposed in this paper. With the capability of recognizing human hand gestures in real-time, it enables services such as controlling mopping robots, mobile manipulators, or appliances in smart-home scenarios. The recognition is based on finger segmentation and template matching. Distance transformation algorithm is adopted and adapted to robustly segment fingers from the hand. Based on fingers’ angles relative to the wrist, a finger angle prediction algorithm and a template matching metric are proposed. All possible gesture types of the captured image are first predicted, and then evaluated and compared to the template image to achieve the classification. Unlike other template matching methods relying highly on large training set, this scheme possesses high flexibility since it requires only one image as the template, and can classify gestures formed by different combinations of fingers. In the experiment, it successfully recognized ten finger gestures from number zero to nine defined by American Sign Language with an accuracy up to 99.38%. Its performance was further demonstrated by manipulating a robot arm using the implemented algorithms and WwwCam to transport and pile up wooden building blocks.

  16. Cortical control of object-specific grasp relies on adjustments of both activity and effective connectivity

    DEFF Research Database (Denmark)

    Tia, Banty; Takemi, Mitsuaki; Kosugi, Akito

    2017-01-01

    The cortical mechanisms of grasping have been extensively studied in macaques and humans. Here, we investigated whether common marmosets could rely on similar mechanisms despite striking differences in manual dexterity. Two common marmosets were trained to grasp-and-pull three objects eliciting d...

  17. Grasping the intentions of others with one's own mirror neuron system.

    Directory of Open Access Journals (Sweden)

    Marco Iacoboni

    2005-03-01

    Full Text Available Understanding the intentions of others while watching their actions is a fundamental building block of social behavior. The neural and functional mechanisms underlying this ability are still poorly understood. To investigate these mechanisms we used functional magnetic resonance imaging. Twenty-three subjects watched three kinds of stimuli: grasping hand actions without a context, context only (scenes containing objects, and grasping hand actions performed in two different contexts. In the latter condition the context suggested the intention associated with the grasping action (either drinking or cleaning. Actions embedded in contexts, compared with the other two conditions, yielded a significant signal increase in the posterior part of the inferior frontal gyrus and the adjacent sector of the ventral premotor cortex where hand actions are represented. Thus, premotor mirror neuron areas-areas active during the execution and the observation of an action-previously thought to be involved only in action recognition are actually also involved in understanding the intentions of others. To ascribe an intention is to infer a forthcoming new goal, and this is an operation that the motor system does automatically.

  18. GRASP92: a package for large-scale relativistic atomic structure calculations

    Science.gov (United States)

    Parpia, F. A.; Froese Fischer, C.; Grant, I. P.

    2006-12-01

    Program summaryTitle of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: no Programming language used: Fortran Computer: IBM POWERstation 320H Operating system: IBM AIX 3.2.5+ RAM: 64M words No. of lines in distributed program, including test data, etc.: 65 224 No of bytes in distributed program, including test data, etc.: 409 198 Distribution format: tar.gz Catalogue identifier of previous version: ADCU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 94 (1996) 249 Does the new version supersede the previous version?: Yes Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a 'fully relativistic' approach. Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator, j=l+s, and the parity operator Π=βπ. Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator, J, and the atomic parity operator, P. Lists of CSFs are either explicitly prescribed by the user or generated from a set of reference CSFs, a set of subshells, and rules for deriving other CSFs from these. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average level (AL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number, n, of CSFs. Optimal level (OL) functionals are weighted sums of energies of some subset of ASFs; the GRASP92 package is optimized for this latter class of functionals. The composition of an ASF in terms

  19. US school morbidity and mortality, mandatory vaccination, institution closure, and interventions implemented during the 2009 influenza A H1N1 pandemic.

    Science.gov (United States)

    Rebmann, Terri; Elliott, Michael B; Swick, Zachary; Reddick, David

    2013-03-01

    The 2009 H1N1 pandemic disproportionately affected school-aged children, but only school-based outbreak case studies have been conducted. The purposes of this study were to evaluate US academic institutions' experiences during the 2009 H1N1 pandemic in terms of infection prevention interventions implemented and to examine factors associated with school closure during the pandemic. An online survey was sent to school nurses in May through July 2011. Hierarchical logistic regressions were used to determine predictive models for having a mandatory H1N1 vaccination policy for school nurses and school closure. In all, 1,997 nurses from 26 states participated. Very few nurses (3.3%, n=65) reported having a mandatory H1N1 influenza vaccination policy; nurses were more likely than all other school employees (pnurse employed by a public health agency or hospital, and being a private school. The most commonly implemented interventions included encouraging staff and students to exercise hand hygiene and increasing classroom cleaning; least commonly implemented interventions included discouraging face-to-face meetings, training staff on H1N1 influenza and/or respiratory hygiene, and discouraging handshaking. Schools should develop and continue to improve their pandemic plans, including collaborating with community response agencies.

  20. The Office of Site Closure: Progress in the Face of Challenges

    International Nuclear Information System (INIS)

    Fiore, J. J.; Murphie, W. E.; Meador, S. W.

    2002-01-01

    The Office of Site Closure (OSC) was formed in November 1999 when the Department of Energy's (DOE's) Office of Environmental Management (EM) reorganized to focus specifically on site cleanup and closure. OSC's objective is to achieve safe and cost-effective cleanups and closures that are protective of our workers, the public, and the environment, now and in the future. Since its inception, OSC has focused on implementing a culture of safe closure, with emphasis in three primary areas: complete our responsibility for the Closure Sites Rocky Flats, Mound, Fernald, Ashtabula, and Weldon Spring; complete our responsibility for cleanup at sites where the DOE mission has been completed (examples include Battelle King Avenue and Battelle West Jefferson in Columbus, and General Atomics) or where other Departmental organizations have an ongoing mission (examples include the Brookhaven, Livermore, or Los Alamos National Laboratories, and the Nevada Test Site); and create a framework a nd develop specific business closure tools that will help sites close, such as guidance for and decisions on post-contract benefit liabilities, records retention, and Federal employee incentives for site closure. This paper discusses OSC's 2001 progress in achieving site cleanups, moving towards site closure, and developing specific business closure tools to support site closure. It describes the tools used to achieve progress towards cleanup and closure, such as the application of new technologies, changes in contracting approaches, and the development of agreements between sites and with host states. The paper also identifies upcoming challenges and explores options for how Headquarters and the sites can work together to address these challenges. Finally, it articulates OSC's new focus on oversight of Field Offices to ensure they have the systems in place to oversee contractor activities resulting in site cleanups and closures

  1. Development of a CPM Machine for Injured Fingers.

    Science.gov (United States)

    Fu, Yili; Zhang, Fuxiang; Ma, Xin; Meng, Qinggang

    2005-01-01

    Human fingers are easy to be injured. A CPM machine is a mechanism based on the rehabilitation theory of continuous passive motion (CPM). To develop a CPM machine for the clinic application in the rehabilitation of injured fingers is a significant task. Therefore, based on the theories of evidence based medicine (EBM) and CPM, we've developed a set of biomimetic mechanism after modeling the motions of fingers and analyzing its kinematics and dynamics analysis. We also design an embedded operating system based on ARM (a kind of 32-bit RISC microprocessor). The equipment can achieve the precise control of moving scope of fingers, finger's force and speed. It can serves as a rational checking method and a way of assessment for functional rehabilitation of human hands. Now, the first prototype has been finished and will start the clinical testing in Harbin Medical University shortly.

  2. Functional morphology of the hallucal metatarsal with implications for inferring grasping ability in extinct primates.

    Science.gov (United States)

    Goodenberger, Katherine E; Boyer, Doug M; Orr, Caley M; Jacobs, Rachel L; Femiani, John C; Patel, Biren A

    2015-03-01

    Primate evolutionary morphologists have argued that selection for life in a fine branch niche resulted in grasping specializations that are reflected in the hallucal metatarsal (Mt1) morphology of extant "prosimians", while a transition to use of relatively larger, horizontal substrates explains the apparent loss of such characters in anthropoids. Accordingly, these morphological characters-Mt1 torsion, peroneal process length and thickness, and physiological abduction angle-have been used to reconstruct grasping ability and locomotor mode in the earliest fossil primates. Although these characters are prominently featured in debates on the origin and subsequent radiation of Primates, questions remain about their functional significance. This study examines the relationship between these morphological characters of the Mt1 and a novel metric of pedal grasping ability for a large number of extant taxa in a phylogenetic framework. Results indicate greater Mt1 torsion in taxa that engage in hallucal grasping and in those that utilize relatively small substrates more frequently. This study provides evidence that Carpolestes simpsoni has a torsion value more similar to grasping primates than to any scandentian. The results also show that taxa that habitually grasp vertical substrates are distinguished from other taxa in having relatively longer peroneal processes. Furthermore, a longer peroneal process is also correlated with calcaneal elongation, a metric previously found to reflect leaping proclivity. A more refined understanding of the functional associations between Mt1 morphology and behavior in extant primates enhances the potential for using these morphological characters to comprehend primate (locomotor) evolution. © 2014 Wiley Periodicals, Inc.

  3. Diagnostic aspects of vibration-induced white finger.

    Science.gov (United States)

    Olsen, Niels

    2002-01-01

    Vibration-induced white finger (VWF) is a secondary type of Raynaud's phenomenon (RP) caused by exposure to hand-arm vibration. The present review concerns the cold-provoked attack of RP in vasospastic VWF. It concentrates on the most common clinical and laboratory methods used to diagnose RP in vibration-exposed subjects. Some physiological aspects of the attack of RP are mentioned to elucidate the diagnostic principles of the tests. Anamnestic diagnostics by medical interviews and questionnaires as well as cold-provocation tests with detection of finger colour, finger systolic blood pressure (FSP), recovery time of finger skin temperature and recovery time of normal nail colour after nail compression are mentioned. The discriminative capacity and the reproducibility of the tests are discussed. Cold-provocation tests with detection of finger colour or zero FSP during cooling are recommended to be used if an attack of RP has to be registered for diagnostic or medico-legal purposes in individual cases. An abnormal reduction in FSP during cooling makes a history of RP very probable and is a suitable laboratory test for groups of subjects. Both recovery tests may be useful screening tests in field studies of vibration-exposed subject groups.

  4. Saccadic updating of object orientation for grasping movements

    NARCIS (Netherlands)

    Selen, L.P.J.; Medendorp, W.P.

    2011-01-01

    Reach and grasp movements are a fundamental part of our daily interactions with the environment. This spatially-guided behavior is often directed to memorized objects because of intervening eye movements that caused them to disappear from sight. How does the brain store and maintain the spatial

  5. Proton configurations and pairing correlations at the N=80 superdeformed shell closure: Study of 145Tb

    International Nuclear Information System (INIS)

    Mullins, S.M.; Schmeing, N.C.; Flibotte, S.; Hackman, G.; Rodriguez, J.L.; Waddington, J.C.; Yao, L.; Andrews, H.R.; Galindo-Uribarri, A.; Janzen, V.P.; Radford, D.C.; Ward, D.; DeGraaf, J.; Drake, T.E.; Pilotte, S.; Paul, E.S.

    1994-01-01

    A superdeformed band has been observed in the N=80 nucleus 145 Tb which was produced with the reactions 112 Sn( 37 Cl,2p2n) and 118 Sn( 31 P,4n) at bombarding energies of 187 and 160 MeV, respectively. Since superdeformed bands also exist in the three lighter N=80 isotones 142 Sm, 143 Eu, and 144 Gd, it is now possible to understand the valence-proton configurations of these bands in a systematic way. The T (2) dynamic moment of inertia in 145 Tb shows no evidence for the N = 6 quasiproton crossing that is observed in 144 Gd. Comparison with cranked Woods-Saxon and total Routhian surface calculations suggests that the proton configuration in 145 Tb is 6 1 direct-product[404] 9/2 + 2 in which the quasiproton crossing is blocked. Furthermore, like 143 Eu and 142 Sm, there is no evidence in the T (2) for the N=6 quasineutron crossing predicted by the calculations. This may indicate that static neutron pairing correlations are quenched at the N=80 superdeformed shell closure

  6. Towards the design of a prosthetic underactuated hand

    Directory of Open Access Journals (Sweden)

    T. Laliberté

    2010-12-01

    Full Text Available This paper presents recent advances in the design of an underactuated hand for applications in prosthetics. First, the design of the fingers is addressed. Based on previous experiments with prototypes developed in the past, new tendon routings are proposed that lead to a more effective transmission of the forces. A novel elastic tendon routing is also proposed for the passive opening of the hand. A simplified static analysis of the fingers is proposed to support the results. Then, a new kinematic design of the thumb is presented. The thumb is designed to perform out-of-the-plane motions in order to broaden the variety of possible grasps. A mechanism for the implementation of underactuation between the fingers is proposed that alleviates the friction problems encountered in earlier hand designs. Finally, a prototype of the hand is briefly described and typical grasps are shown.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  7. Development of a humanoid robot hand with coupling four-bar linkage

    Directory of Open Access Journals (Sweden)

    Xinhua Liu

    2017-01-01

    Full Text Available To improve the operating performance of robots’ end-effector, a humanoid robot hand based on coupling four-bar linkage was designed. An improved transmission system was proposed for the base joint of the thumb. Thus, a far greater motion range and more reasonable layout of the palm were obtained. Moreover, the mathematical model for kinematics simulation was presented based on the Assur linkage group theory to verify and optimize the proposed structure. To research the motion relationships between the fingers and the object in the process of grasping object, the grasping analysis of multi-finger manipulation was presented based on contact kinematics. Finally, a prototype of the humanoid robot hand was produced by a three-dimensional printer, and a kinematics simulation example and the workspace solving of the humanoid robot hand were carried out. The results showed that the velocities of finger joints approximately met the proportion relationship 1:1:1, which accorded with the grasping law of the human hand. In addition, the large workspace, reasonable layout, and good manipulability of the humanoid robot hand were verified.

  8. A Tale of Many Cities: A Contemporary Historical Study of the Implementation of School Closures during the 2009 pA(H1N1) Influenza Pandemic.

    Science.gov (United States)

    Navarro, J Alexander; Kohl, Katrin S; Cetron, Martin S; Markel, Howard

    2016-06-01

    Applying qualitative historical methods, we examined the consideration and implementation of school closures as a nonpharmaceutical intervention (NPI) in thirty US cities during the spring 2009 wave of the pA(H1N1) influenza pandemic. We gathered and performed close textual readings of official federal, state, and municipal government documents; media coverage; and academic publications. Lastly, we conducted oral history interviews with public health and education officials in our selected cities. We found that several local health departments pursued school closure plans independent of CDC guidance, that uncertainty of action and the rapidly evolving understanding of pA(H1N1) contributed to tension and pushback from the public, that the media and public perception played a significant role in the response to school closure decisions, and that there were some notable instances of interdepartmental communication breakdown. We conclude that health departments should continue to develop and fine-tune their action plans while also working to develop better communication methods with the public, and work more closely with education officials to better understand the complexities involved in closing schools. Lastly, state and local governments should work to resolve lingering issues of legal authority for school closures in times of public health crises. Copyright © 2016 by Duke University Press.

  9. A microelectrostatic repulsive-torque rotation actuator with two-width fingers

    International Nuclear Information System (INIS)

    Fan, Chao; He, Siyuan

    2015-01-01

    A microelectrostatic repulsive-torque rotation actuator with two-width fingers is presented. The actuator consists of finger-shaped electrodes and is made of two thin film layers, i.e. one movable layer and one fixed layer. There are two types of finger electrodes, namely constant-width and two-width fingers. The two-width finger has a narrow lower segment and a wide top segment. The constant-width finger has only the narrow lower segment. Each rotation finger has its corresponding aligned and unaligned fixed fingers. The electrostatic repulsive torque is generated and acts on the rotation fingers to rotate them up and away from the substrate. As a result, rotation is not limited by the gap between the movable and fixed layers and the ‘pull-in’ instability is avoided. Thus a large out-of-plane rotation and high operational stability can be achieved. The actuator is suitable for two-layer surface micromachining. The model of the actuator is developed. Prototypes are fabricated and tested. The experimental tests show that the actuator achieved a mechanical rotation of 7.65° at a driving voltage of 150 V. The settling time for a mechanical rotation of 5° is 5.7 ms. (paper)

  10. Impact of Different Standard Type A7A Drum Closure-Ring Practices on Gasket Contraction and Bolt Closure Distance– 15621

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Blanton, Paul [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bobbitt, John H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-11

    The Department of Energy, the Savannah River National Laboratory, several manufacturers of specification drums, and the United States Department of Transportation (DOT) are collaborating in the development of a guidance document for DOE contractors and vendors who wish to qualify containers to DOT 7A Type A requirements. Currently, the effort is focused on DOT 7A Type A 208-liter (55-gallons) drums with a standard 12-gauge bolted closure ring. The U.S. requirements, contained in Title 49, Part 178.350 “Specification 7A; general packaging, Type A specifies a competent authority review of the packaging is not required for the transport of (Class 7) radioactive material containing less than Type A quantities of radioactive material. For Type AF drums, a 4 ft. regulatory free drop must be performed, such that the drum “suffers maximum damage.” Although the actual orientation is not defined by the specification, recent studies suggest that maximum damage would result from a shallow angle top impact, where kinetic energy is transferred to the lid, ultimately causing heavy damage to the lid, or even worse, causing the lid to come off. Since each vendor develops closure recommendations/procedures for the drums they manufacture, key parameters applied to drums during closing vary based on vendor. As part of the initial phase of the collaboration, the impact of the closure variants on the ability of the drum to suffer maximum damage is investigated. Specifically, closure testing is performed varying: 1) the amount of torque applied to the closure ring bolt; and, 2) stress relief protocol, including: a) weight of hammer; and, b) orientation that the hammer hits the closure ring. After closure, the amount of drum lid gasket contraction and the distance that the closure bolt moves through the closure ring is measured.

  11. State Environmental Policy Act (SEPA) Environmental Checklist Form 216-B-3 Expansion Ponds Closure Plan

    International Nuclear Information System (INIS)

    1993-12-01

    The 216-B-3 Expansion Ponds Closure Plan (Revision 1) consists of a Part A Dangerous Waste Permit Application and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. The 216-B-3 Pond System consists of a series of four earthen, unlined, interconnected ponds and the 216-B-3-3 Ditch that receive waste water from various 200 East Area operating facilities. These four ponds, collectively. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the 216-B-3-3 Ditch. Water discharged to the 216-8-3-3 Ditch flows directly into the 216-B-3 Pond. In the past, waste water discharges to B Pond and the 216-B-3-3 Ditch contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous portion of mixed waste is regulated under RCRA. Mixed waste also may be considered a hazardous substance under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) when considering remediation of waste sites

  12. Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold.

    Directory of Open Access Journals (Sweden)

    Florence Guillière

    Full Text Available While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers.

  13. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.

    2015-02-23

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  14. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.; McCue, Scott W.; Dallaston, Michael C.; Moroney, Timothy J.

    2015-01-01

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  15. Speed invariance of independent control of finger movements in pianists.

    Science.gov (United States)

    Furuya, Shinichi; Soechting, John F

    2012-10-01

    Independent control of finger movements characterizes skilled motor behaviors such as tool use and musical performance. The purpose of the present study was to identify the effect of movement frequency (tempo) on individuated finger movements in piano playing. Joint motion at the digits was recorded while 5 expert pianists were playing 30 excerpts from musical pieces with different fingering and key locations either at a predetermined normal tempo or as fast as possible. Principal component analysis and cluster analysis using an expectation-maximization algorithm determined three distinct patterns of finger movement coordination for a keypress with each of the index, middle, ring, and little fingers at each of the two tempi. The finger kinematics of each coordination pattern was overall similar across the tempi. Tone sequences assigned into each cluster were also similar for both tempi. A linear regression analysis determined no apparent difference in the amount of movement covariation between the striking and nonstriking fingers at both metacarpo-phalangeal and proximal-interphalangeal joints across the two tempi, which indicated no effect of tempo on independent finger movements in piano playing. In addition, the standard deviation of interkeystroke interval across strokes did not differ between the two tempi, indicating maintenance of rhythmic accuracy of keystrokes. Strong temporal constraints on finger movements during piano playing may underlie the maintained independent control of fingers over a wider range of tempi, a feature being likely to be specific to skilled pianists.

  16. Explicit knowledge about the availability of visual feedback affects grasping with the left but not the right hand.

    Science.gov (United States)

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2014-01-01

    Previous research (Whitwell et al. in Exp Brain Res 188:603-611, 2008; Whitwell and Goodale in Exp Brain Res 194:619-629, 2009) has shown that trial history, but not anticipatory knowledge about the presence or absence of visual feedback on an upcoming trial, plays a vital role in determining how that feedback is exploited when grasping with the right hand. Nothing is known about how the non-dominant left hand behaves under the same feedback regimens. In present study, therefore, we compared peak grip aperture (PGA) for left- and right-hand grasps executed with and without visual feedback (i.e., closed- vs. open-loop conditions) in right-handed individuals under three different trial schedules: the feedback conditions were blocked separately, they were randomly interleaved, or they were alternated. When feedback conditions were blocked, the PGA was much larger for open-loop trials as compared to closed-loop trials, although this difference was more pronounced for right-hand grasps than left-hand grasps. Like Whitwell et al., we found that mixing open- and closed-loop trials together, compared to blocking them separately, homogenized the PGA for open- and closed-loop grasping in the right hand (i.e., the PGAs became smaller on open-loop trials and larger on closed-loop trials). In addition, the PGAs for right-hand grasps were entirely determined by trial history and not by knowledge of whether or not visual feedback would be available on an upcoming trial. In contrast to grasps made with the right hand, grasps made by the left hand were affected both by trial history and by anticipatory knowledge of the upcoming visual feedback condition. But these effects were observed only on closed-loop trials, i.e., the PGAs of grasps made with the left hand on closed-loop trials were smaller when participants could anticipate the availability of feedback on an upcoming trial (alternating trials) than when they could not (randomized trials). In contrast, grasps made with the

  17. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  18. Research on Visual Servo Grasping of Household Objects for Nonholonomic Mobile Manipulator

    Directory of Open Access Journals (Sweden)

    Huangsheng Xie

    2014-01-01

    Full Text Available This paper focuses on the problem of visual servo grasping of household objects for nonholonomic mobile manipulator. Firstly, a new kind of artificial object mark based on QR (Quick Response Code is designed, which can be affixed to the surface of household objects. Secondly, after summarizing the vision-based autonomous mobile manipulation system as a generalized manipulator, the generalized manipulator’s kinematic model is established, the analytical inverse kinematic solutions of the generalized manipulator are acquired, and a novel active vision based camera calibration method is proposed to determine the hand-eye relationship. Finally, a visual servo switching control law is designed to control the service robot to finish object grasping operation. Experimental results show that QR Code-based artificial object mark can overcome the difficulties brought by household objects’ variety and operation complexity, and the proposed visual servo scheme makes it possible for service robot to grasp and deliver objects efficiently.

  19. Natural orifice transluminal endoscopic surgery gastrotomy closure with an over-the-endoscope clip: a randomized, controlled porcine study (with videos).

    Science.gov (United States)

    von Renteln, Daniel; Schmidt, Arthur; Vassiliou, Melina C; Gieselmann, Maria; Caca, Karel

    2009-10-01

    Secure endoscopic closure of transgastric natural orifice transluminal endoscopic surgery (NOTES) access is of paramount importance. The over-the-scope clip (OTSC) system has previously been shown to be effective for NOTES gastrotomy closure. To compare OTSC gastrotomy closure with surgical closure. Randomized, controlled animal study. Animal facility laboratory. Thirty-six female domestic pigs. Gastrotomies were created by using a needle-knife and an 18-mm balloon. The animals were subsequently randomized to either open surgical repair with interrupted sutures or endoscopic repair with 12-mm OTSCs. In addition, pressurized leak tests were performed in ex vivo specimens of 18-mm scalpel incisions closed with suture (n = 14) and of intact stomachs (n = 10). The mean time for endoscopic closure was 9.8 minutes (range 3-22, SD 5.5). No complications occurred during either type of gastrotomy closure. At necropsy, examination of all OTSC and surgical closures demonstrated complete sealing of gastrotomy sites without evidence of injury to adjacent organs. Pressurized leak tests showed a mean burst pressure of 83 mm Hg (range 30-140, SD 27) for OTSC closures and 67 mm Hg (range 30-130, SD 27.7) for surgical sutures. Ex vivo hand-sewn sutures of 18-mm gastrotomies (n = 14) exhibited a mean burst pressure of 65 mm Hg (range 20-140, SD 31) and intact ex vivo stomachs (n = 10) had a mean burst pressure of 126 mm Hg (range 90-170, SD 28). The burst pressure of ex vivo intact stomachs was significantly higher compared with OTSC closures (P < .01), in vivo surgical closures (P < .01), and ex vivo hand-sewn closures (P < .01). There was a trend toward higher burst pressures in the OTSC closures compared with surgical closures (P = .063) and ex vivo hand-sewn closures (P = .094). In vivo surgical closures demonstrated similar burst pressures compared with ex vivo hand-sewn closures (P = .848). Nonsurvival setting. Endoscopic closure by using the OTSC system is comparable to

  20. Sliding Window-Based Region of Interest Extraction for Finger Vein Images

    Science.gov (United States)

    Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2013-01-01

    Region of Interest (ROI) extraction is a crucial step in an automatic finger vein recognition system. The aim of ROI extraction is to decide which part of the image is suitable for finger vein feature extraction. This paper proposes a finger vein ROI extraction method which is robust to finger displacement and rotation. First, we determine the middle line of the finger, which will be used to correct the image skew. Then, a sliding window is used to detect the phalangeal joints and further to ascertain the height of ROI. Last, for the corrective image with certain height, we will obtain the ROI by using the internal tangents of finger edges as the left and right boundary. The experimental results show that the proposed method can extract ROI more accurately and effectively compared with other methods, and thus improve the performance of finger vein identification system. Besides, to acquire the high quality finger vein image during the capture process, we propose eight criteria for finger vein capture from different aspects and these criteria should be helpful to some extent for finger vein capture. PMID:23507824

  1. Finger agnosia and cognitive deficits in patients with Alzheimer's disease.

    Science.gov (United States)

    Davis, Andrew S; Trotter, Jeffrey S; Hertza, Jeremy; Bell, Christopher D; Dean, Raymond S

    2012-01-01

    The purpose of this study was to examine the presence of finger agnosia in patients with Alzheimer's disease (AD) and to determine if level of finger agnosia was related to cognitive impairment. Finger agnosia is a sensitive measure of cerebral impairment and is associated with neurofunctional areas implicated in AD. Using a standardized and norm-referenced approach, results indicated that patients with AD evidenced significantly decreased performance on tests of bilateral finger agnosia compared with healthy age-matched controls. Finger agnosia was predictive of cognitive dysfunction on four of seven domains, including: Crystallized Language, Fluid Processing, Associative Learning, and Processing Speed. Results suggest that measures of finger agnosia, a short and simple test, may be useful in the early detection of AD.

  2. ZifBASE: a database of zinc finger proteins and associated resources

    Directory of Open Access Journals (Sweden)

    Punetha Ankita

    2009-09-01

    Full Text Available Abstract Background Information on the occurrence of zinc finger protein motifs in genomes is crucial to the developing field of molecular genome engineering. The knowledge of their target DNA-binding sequences is vital to develop chimeric proteins for targeted genome engineering and site-specific gene correction. There is a need to develop a computational resource of zinc finger proteins (ZFP to identify the potential binding sites and its location, which reduce the time of in vivo task, and overcome the difficulties in selecting the specific type of zinc finger protein and the target site in the DNA sequence. Description ZifBASE provides an extensive collection of various natural and engineered ZFP. It uses standard names and a genetic and structural classification scheme to present data retrieved from UniProtKB, GenBank, Protein Data Bank, ModBase, Protein Model Portal and the literature. It also incorporates specialized features of ZFP including finger sequences and positions, number of fingers, physiochemical properties, classes, framework, PubMed citations with links to experimental structures (PDB, if available and modeled structures of natural zinc finger proteins. ZifBASE provides information on zinc finger proteins (both natural and engineered ones, the number of finger units in each of the zinc finger proteins (with multiple fingers, the synergy between the adjacent fingers and their positions. Additionally, it gives the individual finger sequence and their target DNA site to which it binds for better and clear understanding on the interactions of adjacent fingers. The current version of ZifBASE contains 139 entries of which 89 are engineered ZFPs, containing 3-7F totaling to 296 fingers. There are 50 natural zinc finger protein entries ranging from 2-13F, totaling to 307 fingers. It has sequences and structures from literature, Protein Data Bank, ModBase and Protein Model Portal. The interface is cross linked to other public

  3. Generating and analyzing synthetic finger vein images

    NARCIS (Netherlands)

    Hillerström, Fieke; Kumar, Ajay; Veldhuis, Raymond N.J.

    2014-01-01

    Abstract: The finger-vein biometric offers higher degree of security, personal privacy and strong anti-spoofing capabilities than most other biometric modalities employed today. Emerging privacy concerns with the database acquisition and lack of availability of large scale finger-vein database have

  4. Revisiting the Landau fluid closure.

    Science.gov (United States)

    Hunana, P.; Zank, G. P.; Webb, G. M.; Adhikari, L.

    2017-12-01

    Advanced fluid models that are much closer to the full kinetic description than the usual magnetohydrodynamic description are a very useful tool for studying astrophysical plasmas and for interpreting solar wind observational data. The development of advanced fluid models that contain certain kinetic effects is complicated and has attracted much attention over the past years. Here we focus on fluid models that incorporate the simplest possible forms of Landau damping, derived from linear kinetic theory expanded about a leading-order (gyrotropic) bi-Maxwellian distribution function f_0, under the approximation that the perturbed distribution function f_1 is gyrotropic as well. Specifically, we focus on various Pade approximants to the usual plasma response function (and to the plasma dispersion function) and examine possibilities that lead to a closure of the linear kinetic hierarchy of fluid moments. We present re-examination of the simplest Landau fluid closures.

  5. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique

    International Nuclear Information System (INIS)

    Bastin, B.

    2007-10-01

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, 42 Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in 42 Si, combined with the observation of 38,40 Si and the spectroscopy of 41,43 P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  6. Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips

    Directory of Open Access Journals (Sweden)

    García-Rodríguez Rodolfo

    2016-06-01

    Full Text Available Object manipulation usually requires dexterity, encoded as the ability to roll, which is very difficult to achieve with robotic hands based on point contact models (subject to holonomic constraints. As an alternative for dexterous manipulation, deformable contact with hemispherical shape fingertips has been proposed to yield naturally a rolling constraint. It entails dexterity at the expense of dealing with normal and tangential forces, as well as more elaborated models and control schemes. Furthermore, the essential feature of the quality of grasp can be addressed with this type of robot hands, but it has been overlooked for deformable contact. In this paper, a passivity-based controller that considers an optimal grasping measure is proposed for robotic hands with hemispherical deformable fingertips, to manipulate circular dynamic objects. Optimal grasping that minimizes the contact wrenches is achieved through fingertip rolling until normal forces pass through the center of mass of the object, aligning the relative angle between these normal forces. The case of a circular object is developed in detail, though our proposal can be extended to objects with an arbitrary shape that admit a local decomposition by a circular curvature. Simulation and experimental results show convergence under various conditions, wherein rolling and tangent forces become instrumental to achieve such a quality of grasp.

  7. Finger millet [Eleusine coracana (L.) Gaertn].

    Science.gov (United States)

    Ceasar, Stanislaus Antony; Ignacimuthu, Savarimuthu

    2015-01-01

    Millets are the primary food source for millions of people in tropical regions of the world supplying mineral nutrition and protein. In this chapter, we describe an optimized protocol for the Agrobacterium-mediated transformation of finger millet variety GPU 45. Agrobacterium strain LBA4404 harboring plasmid pCAMBIA1301 which contains hygromycin phosphotransferase (hph) as selectable marker gene and β-glucuronidase (GUS) as reporter gene has been used. This protocol utilizes the shoot apex explants for the somatic embryogenesis and regeneration of finger millet after the transformation by Agrobacterium. Desiccation of explants during cocultivation helps for the better recovery of transgenic plants. This protocol is very useful for the efficient production of transgenic plants in finger millet through Agrobacterium-mediated transformation.

  8. Association Between Finger Clubbing and Chronic Lung Disease in ...

    African Journals Online (AJOL)

    Finger clubbed patients had higher risk of hypoxemia (46.7%), pulmonary hypertension (46.7%) and advanced disease in WHO stage III/ IV (91.7%) compared to non-finger clubbed patients. Finger clubbed patients had lower CD4 cells count and percentage (median 369cells, 13%) compared to non-clubbed patients ...

  9. Esthetic, functional, and prosthetic outcomes with implant-retained finger prostheses.

    Science.gov (United States)

    Aydin, Cemal; Nemli, Secil Karakoca; Yilmaz, Handan

    2013-04-01

    Traumatic amputation of fingers results in a serious impairment of hand function and affects the psychological status of the patients. The implant-retained finger prostheses are an alternative treatment. The aim of this case report is to represent the use of osseointegrated implants for retention of finger prostheses in a patient with amputated thumb and index finger. Dental implants were placed in the residual bone of the fingers using two-stage surgery. Custom-made attachments were used to provide retention between implants and silicone prostheses. Prosthetic fingernails were made of composite resin material. After 6 months, implants were clinically successful, and the patient was satisfied with the appearance and the function of the prostheses. The complications of broken prosthetic nail and mild discoloration were observed. Reconstruction of amputated fingers with implant-retained prosthesis is a worthwhile treatment providing esthetic, functional, and psychological benefits, although some complications might be experienced. Clinical relevance Implant-retained finger prostheses are an acceptable treatment modality for patients with amputated fingers. Evaluating implant prognosis, functional results and prosthetic results of the patients are necessary to address the benefits and complications of the treatment.

  10. Viscous Fingering in Deformable Systems

    Science.gov (United States)

    Guan, Jian Hui; MacMinn, Chris

    2017-11-01

    Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.

  11. High performance multi-finger MOSFET on SOI for RF amplifiers

    Science.gov (United States)

    Adhikari, M. Singh; Singh, Y.

    2017-10-01

    In this paper, we propose structural modifications in the conventional planar metal-oxide-semiconductor field-effect transistor (MOSFET) on silicon-on-insulator by utilizing trenches in the epitaxial layer. The proposed multi-finger MOSFET (MF-MOSFET) has dual vertical-gates placed in separate trenches to form multiple channels in the p-base which carry the drain current in parallel. The proposed device uses TaN as gate electrode and SiO2 as gate dielectric. Simultaneous conduction of multiple channels enhances the drain current (ID) and provides higher transconductance (gm) leading to significant improvement in cut-off frequency (ft). Two-dimensional simulations are performed to evaluate and compare the performance of the MF-MOSFET with the conventional MOSFET. At a gate length of 60 nm, the proposed device provides 4 times higher ID, 3 times improvement in gm and 1.25 times increase in ft with better control over the short channel effects as compared with the conventional device.

  12. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  13. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    Science.gov (United States)

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  14. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  15. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.

  16. Three-dimensional viscous fingering of miscible fluids in porous media

    Science.gov (United States)

    Suekane, Tetsuya; Ono, Jei; Hyodo, Akimitsu; Nagatsu, Yuichiro

    2017-10-01

    Viscous fingering is a flow instability that is induced at the displacement front when a less-viscous fluid (LVF) displaces a more-viscous fluid (MVF). Because of the opaque nature of porous media, most experimental investigations of the structure of viscous fingering and its development in time have been limited to two-dimensional porous media or Hele-Shaw cells. In this study, we investigate the three-dimensional characteristics of viscous fingering in porous media using a microfocused x-ray computer tomography (CT) scanner. Similar to two-dimensional experiments, characteristic events such as tip-splitting, shielding, and coalescence were observed in three-dimensional viscous fingering as well. With an increase in the Péclet number at a fixed viscosity ratio, M , the fingers appearing on the interface tend to be fine; however, the locations of the tips of the fingers remain the same for the same injected volume of the LVF. The finger extensions increase in proportion to ln M , and the number of fingers emerging at the initial interface increases with M . This fact agrees qualitatively with linear stability analyses. Within the fingers, the local concentration of NaI, which is needed for the x-ray CT scanner, linearly decreases, whereas it sharply decreases at the tips of the fingers. A locally high Péclet number as well as unsteady motions in lateral directions may enhance the dispersion at the tips of the fingers. As the viscosity ratio increases, the efficiency of each sweep monotonically decreases and reaches an asymptotic state; in addition, the degree of mixing increases with the viscosity ratio. For high flow rates, the asymptotic value of the sweep efficiency is low for high viscosity ratios, while there is no clear dependence of the asymptotic value on the Péclet number.

  17. Tight closure and vanishing theorems

    International Nuclear Information System (INIS)

    Smith, K.E.

    2001-01-01

    Tight closure has become a thriving branch of commutative algebra since it was first introduced by Mel Hochster and Craig Huneke in 1986. Over the past few years, it has become increasingly clear that tight closure has deep connections with complex algebraic geometry as well, especially with those areas of algebraic geometry where vanishing theorems play a starring role. The purpose of these lectures is to introduce tight closure and to explain some of these connections with algebraic geometry. Tight closure is basically a technique for harnessing the power of the Frobenius map. The use of the Frobenius map to prove theorems about complex algebraic varieties is a familiar technique in algebraic geometry, so it should perhaps come as no surprise that tight closure is applicable to algebraic geometry. On the other hand, it seems that so far we are only seeing the tip of a large and very beautiful iceberg in terms of tight closure's interpretation and applications to algebraic geometry. Interestingly, although tight closure is a 'characteristic p' tool, many of the problems where tight closure has proved useful have also yielded to analytic (L2) techniques. Despite some striking parallels, there had been no specific result directly linking tight closure and L∼ techniques. Recently, however, the equivalence of an ideal central to the theory of tight closure was shown to be equivalent to a certain 'multiplier ideal' first defined using L2 methods. Presumably, deeper connections will continue to emerge. There are two main types of problems for which tight closure has been helpful: in identifying nice structure and in establishing uniform behavior. The original algebraic applications of tight closure include, for example, a quick proof of the Hochster-Roberts theorem on the Cohen-Macaulayness of rings of invariants, and also a refined version of the Brianqon-Skoda theorem on the uniform behaviour of integral closures of powers of ideals. More recent, geometric

  18. Cross-finger dermal pocketing to augment venous outflow for distal fingertip replantation.

    Science.gov (United States)

    Tan, Valerie H; Murugan, Arul; Foo, Tun-Lin; Puhaindran, Mark E

    2014-09-01

    Venous anastomosis in distal fingertip replantations is not always possible, and venous congestion is recognized as a potential cause of failure. Methods previously described to address this problem include amputate deepithelization and dermal pocketing postarterial anastomosis to augment venous outflow. However, attachment of the digit to the palm or abdomen resulted in finger stiffness. We describe a modification of the previous methods by utilizing dermal flaps raised from the adjacent digit in the form of a cross-finger flap. The key differences are the partial deepithelization of the replanted fingertip and subsequent replacement of the dermal flap to the donor digit to minimize donor site morbidity. During the period where the 2 digits are attached, interphalangeal joint mobilization is permitted to maintain joint mobility.

  19. Development of Object and Grasping Knowledge by Robot Exploration

    DEFF Research Database (Denmark)

    Kraft, Dirk; Detry, Renaud; Pugeault, Nicolas

    2010-01-01

    We describe a bootstrapping cognitive robot system that—mainly based on pure exploration—acquires rich object representations and associated object-specific grasp affordances. Such bootstrapping becomes possible by combining innate competences and behaviours by which the system gradually enriches...

  20. 40 CFR 264.228 - Closure and post-closure care.

    Science.gov (United States)

    2010-07-01

    ... remaining wastes to a bearing capacity sufficient to support final cover; and (iii) Cover the surface....112 must include both a plan for complying with paragraph (a)(1) of this section and a contingent plan... practicably removed at closure; and (ii) The owner or operator must prepare a contingent post-closure plan...